
123

Ernesto Damiani
George Spanoudakis
Leszek Maciaszek (Eds.)

12th International Conference, ENASE 2017
Porto, Portugal, April 28–29, 2017
Revised Selected Papers

Evaluation of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 866

Communications
in Computer and Information Science 866

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

Ernesto Damiani • George Spanoudakis
Leszek Maciaszek (Eds.)

Evaluation of Novel Approaches
to Software Engineering
12th International Conference, ENASE 2017
Porto, Portugal, April 28–29, 2017
Revised Selected Papers

123

Editors
Ernesto Damiani
Khalifa University
Abu Dhabi
United Arab Emirates

George Spanoudakis
City University London
London
UK

Leszek Maciaszek
Macquarie University, Sydney
Wroclaw University of Economics
Wroclaw
Poland

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-94134-9 ISBN 978-3-319-94135-6 (eBook)
https://doi.org/10.1007/978-3-319-94135-6

Library of Congress Control Number: 2018947449

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 12th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering (ENASE 2017), held in Porto, Portugal, during April 28–29, 2017.

ENASE 2017 received 102 paper submissions from 30 countries, of which 14% are
included in this book. The papers were selected by the event chairs and their selection
is based on a number of criteria that include the classifications and comments provided
by the Program Committee members, the session chairs’ assessment, and also the
program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their paper having at least 30% innovative material.

The mission of ENASE (Evaluation of Novel Approaches to Software Engineering)
is to be a prime international forum for discussing and publishing research findings and
IT industry experiences related to novel approaches to software engineering. The
conference acknowledges an evolution in systems and software thinking due to con-
temporary shifts of the computing paradigm to e-services, cloud computing, mobile
connectivity, business processes, and societal participation. By publishing the latest
research on novel approaches to software engineering and by evaluating them against
systems and software quality criteria, ENASE conferences advance knowledge and
research in software engineering, including and emphasizing service-oriented,
business-process-driven, and ubiquitous mobile computing. ENASE aims at identifying
the most hopeful trends and proposing new directions for consideration by researchers
and practitioners involved in large-scale systems and software development, integra-
tion, deployment, delivery, maintenance, and evolution.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on the evaluation of novel approaches to software
engineering, including: meta-modelling and model-driven development (p. 111, p. 174,
p. 212), cloud computing and SOA (p. 22, p. 134), business process management
(p. 46, p. 67, p. 174), requirements engineering (p. 89, p. 174), user interface design
(p. 3), formal methods (p. 150, p. 197), software product lines (p. 111), and embedded
systems (p. 230).

We would like to thank all the authors for their contributions and the reviewers for
ensuring the quality of this publication.

April 2017 Ernesto Damiani
George Spanoudakis
Leszek Maciaszek

Organization

Conference Chair

Leszek Maciaszek Wroclaw University of Economics, Poland and
Macquarie University, Sydney, Australia

Program Co-chairs

Ernesto Damiani EBTIC-KUSTAR, UAE
George Spanoudakis City University London, UK

Program Committee

Frederic Andres Research Organization of Information and Systems,
Japan

Guglielmo De Angelis CNR - IASI, Italy
Claudio Ardagna Universitá degli Studi di Milano, Italy
Ayse Basar Bener Ryerson University, Canada
Jan Olaf Blech RMIT University, Australia
Markus Borg SICS Swedish ICT AB, Lund, Sweden
Glauco Carneiro Salvador University (UNIFACS), Brazil
Tomas Cerny Baylor University, USA
Rebeca Cortazar University of Deusto, Spain
Bernard Coulette Université Toulouse Jean Jaurès, France
Ernesto Damiani EBTIC-KUSTAR, UAE
Mariangiola Dezani Universitá di Torino, Italy
Angelina Espinoza Universidad Autónoma Metropolitana, Iztapalapa

(UAM-I), Spain
Vladimir Estivill-Castro Griffith University, Australia
Anna Rita Fasolino Università degli Studi di Napoli Federico II, Italy
Maria João Ferreira Universidade Portucalense, Portugal
Stéphane Galland Université de Technologie de Belfort Montbéliard,

France
Juan Garbajosa Technical University of Madrid, UPM, Spain
Frédéric Gervais Université Paris-Est, LACL, France
Atef Gharbi INSAT, Tunisia
Vaidas Giedrimas Siauliai University, Lithuania
Claude Godart Henri Poincare University, Nancy 1, France

Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish
National Research Council (CSIC), Spain

José-María
Gutiérrez-Martínez

Universidad de Alcalá, Spain

Hatim Hafiddi INPT, Morocco
Jason O. Hallstrom Clemson University, USA
Mahmoud EL Hamlaoui IMS-ADMIR Team, ENSIAS, Rabat IT Center,

University of Mohammed V in Rabat, Morocco
Rene Hexel Griffith University, Australia
Benjamin Hirsch EBTIC/Khalifa University, UAE
Robert Hirschfeld Hasso-Plattner-Institut, Germany
Stefan Jablonski University of Bayreuth, Germany
Stanislaw Jarzabek Bialystok University of Technology, Poland
Georgia Kapitsaki University of Cyprus, Cyprus
Heiko Kern University of Leipzig, Germany
Siau-cheng Khoo National University of Singapore, Singapore
Diana Kirk EDENZ Colleges, New Zealand
Piotr Kosiuczenko WAT, Poland
Filippo Lanubile University of Bari, Italy
Rosa Lanzilotti University of Bari, Italy
Robert S. Laramee Swansea University, UK
Bogdan Lent University of Applied Sciences, Switzerland
George Lepouras University of the Peloponnese, Greece
Bixin Li Southeast University, China
Huai Liu RMIT University, Australia
André Ludwig Kühne Logistics University, Germany
Ivan Lukovic University of Novi Sad, Serbia
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Nazim H. Madhavji University of Western Ontario, Canada
Patricia Martin-Rodilla Institute of Heritage Sciences, Spanish National

Research Council, Spain
Sascha Mueller-Feuerstein Ansbach University of Applied Sciences, Germany
Malcolm Munro Durham University, UK
Andrzej Niesler Wroclaw University of Economics, Poland
Andreas Oberweis Karlsruhe Institute of Technology (KIT), Germany
Janis Osis Riga Technical University, Latvia
Mourad Oussalah University of Nantes, France
Claus Pahl Free University of Bozen-Bolzano, Italy
Mauro Pezze Università della Svizzera Italiana, Switzerland
Naveen Prakash IGDTUW, India
Adam Przybylek Gdansk University of Technology, Poland
Elke Pulvermueller University of Osnabrück, Germany

VIII Organization

Lukasz Radlinski West Pomeranian University of Technology, Poland
Stefano Russo Universitá di Napoli Federico II, Italy
Krzysztof Sacha Warsaw University of Technology, Poland
Markus Schatten University of Zagreb, Croatia
Stefan Schönig University of Bayreuth, Germany
Keng L. Siau Missouri University of Science and Technology, USA
Marcin Sikorski Gdansk University of Technology, Poland
Josep Silva Universitat Politècnica de València, Spain
Michal Smialek Warsaw University of Technology, Poland
Ioana Sora Politehnica University of Timisoara, Romania
Andreas Speck Christian Albrechts University Kiel, Germany
Maria Spichkova RMIT University, Australia
Witold Staniszkis Rodan Development, Poland
Armando Stellato University of Rome, Tor Vergata, Italy
Chang-ai Sun University of Science and Technology Beijing, China
Jakub Swacha University of Szczecin, Poland
Stephanie Teufel University of Fribourg, Switzerland
Feng-Jian Wang National Chiao Tung University, Taiwan
Krzysztof Wecel Poznan University of Economics, Poland
Bernhard Westfechtel University of Bayreuth, Germany
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
Igor Wojnicki AGH University of Science and Technology, Poland
Alfred Zimmermann Reutlingen University, Germany

Additional Reviewers

Ahmed Alharthi RMIT University, Australia
Nicola Amatucci University of Naples Federico II, Italy
Abhijeet Banerjee NUS, Singapore
Thomas Buchmann University of Bayreuth, Germany
Michael Emmi Nokia Bell Labs, USA
Carlos Fernandez-Sanchez Universidad Politécnica de Madrid, Spain
Tarik Fissaa SIME/IMS, Morocco
Walid Gaaloul Institut TELECOM, France
Filippo Gaudenzi Università degli Studi di Milano, Italy
Franco Mazzanti Istituto di Scienza e Tecnologie dell’Informazione

A. Faedo, Italy
Anas Motii IRIT, France
Laura Nenzi IMT Alti Studi di Lucca, Italy
Antonio Pecchia Università degli Studi di Napoli Federico II, Italy
Abdelfetah Saadi Houari Boumediene University of Science

and Technology, Algeria
Felix Schwägerl University of Bayreuth, Germany

Organization IX

Jeremy Sproston Università degli Studi di Torino, Italy
Chengnian Sun UC Davis, USA
Jiannan Zhai FAU, USA
Zhiqiang Zuo University of California, Irvine, USA

Invited Speakers

Paris Avgeriou University of Groningen, The Netherlands
Hermann Kaindl TU Wien, Austria
Marco Brambilla Politecnico di Milano, Italy

X Organization

Contents

Service Science and Business Information Systems

Guidelines for Designing User Interfaces to Analyze Genetic Data.
Case of Study: GenDomus . 3

Carlos Iñiguez-Jarrín, Alberto García S., José F. Reyes Román,
and Óscar Pastor López

Biologically Inspired Anomaly Detection Framework 23
Tashreen Shaikh Jamaluddin, Hoda Hassan,
and Haitham Hamza

Genomic Tools*: Web-Applications Based on Conceptual Models
for the Genomic Diagnosis . 48

José F. Reyes Román, Carlos Iñiguez-Jarrín, and Óscar Pastor

Technological Platform for the Prevention and Management
of Healthcare Associated Infections and Outbreaks 70

Maria Iuliana Bocicor, Maria Dascălu, Agnieszka Gaczowska,
Sorin Hostiuc, Alin Moldoveanu, Antonio Molina,
Arthur-Jozsef Molnar, Ionuţ Negoi, and Vlad Racoviţă

Software Engineering

Exploiting Requirements Engineering to Resolve Conflicts
in Pervasive Computing Systems. 93

Osama M. Khaled, Hoda M. Hosny, and Mohamed Shalan

Assisting Configurations-Based Feature Model Composition:
Union, Intersection and Approximate Intersection . 116

Jessie Carbonnel, Marianne Huchard, André Miralles,
and Clémentine Nebut

A Cloud-Based Service for the Visualization and Monitoring
of Factories . 141

Guillaume Prévost, Jan Olaf Blech, Keith Foster,
and Heinrich W. Schmidt

An Operational Semantics of UML2.X Sequence Diagrams
for Distributed Systems . 158

Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé,
and Khaled Bsaies

Fast Prototyping of Web-Based Information Systems Using
a Restricted Natural Language Specification . 183

Jean Pierre Alfonso Hoyos and Felipe Restrepo-Calle

Model-Based Analysis of Temporal Properties . 208
Maria Spichkova

Towards a Java Library to Support Runtime Metaprogramming 224
Ignacio Lagartos, Jose Manuel Redondo, and Francisco Ortin

Design Approaches for Critical Embedded Systems: A Systematic
Mapping Study . 243

Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou,
Frank J. Affonso, Hugo Andrade, Katia R. Felizardo,
and Elisa Y. Nakagawa

Author Index . 275

XII Contents

Service Science and Business
Information Systems

Guidelines for Designing User Interfaces
to Analyze Genetic Data. Case of Study:

GenDomus

Carlos Iñiguez-Jarrín1,2(&), Alberto García S.1,
José F. Reyes Román1,3, and Óscar Pastor López1

1 Research Center on Software Production Methods (PROS),
Universitat Politècnica de València, Camino Vera s/n., 46022 Valencia, Spain

{ciniguez,algarsi3,jreyes,opastor}@pros.upv.es
2 Departamento de Informática y Ciencias de la Computación,

Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador
3 Department of Engineering Sciences, Universidad Central del Este (UCE),

Ave. Francisco Alberto Caamaño Deñó., 21000 San Pedro de Macorís,
Dominican Republic

Abstract. New Generation Technologies (NGS) have opened new opportuni-
ties in the genetic field. Analyzing data from large quantities of DNA sequenced
to transform it into knowledge has become a challenge. Several tools have been
developed to support the genetic analysis, however, most of them have user
interfaces that make it difficult to obtain knowledge from genetic data. The lack
of design guidelines in this domain leads to the development of user interfaces
that are far from satisfying the interaction needs of the domain. From the
experience of designing GenDomus, a web-based application to support
geneticists in the analysis of genetic data, several interaction-related consider-
ations emerged. Based on such considerations, we present guidelines for
designing user interfaces that support geneticists in the analysis of genetic data.
Such guidelines become important recommendations to be considered in the
design of user interfaces in the genetic field.

Keywords: User interface design � Design guidelines � GenDomus
Genomic information

1 Introduction

The Next-Generation Sequence (NGS) technologies [1] have promoted the prolifera-
tion of software applications to allow practitioners to manage huge considerable DNA
genetic information. The analysis of genetic data is a domain that requires collaborative
coordination between clinicians of several fields to identify and analyze patterns to
justify or discard genetic anomalies. In this domain, several supporting tools have been
developed, especially for analyzing variant1 genomic files (e.g., VCF [2]). These tools

1 Variation (or variants): naturally occurring genetic differences among organisms in the same species
[citable by Nature Edu.].

© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 3–22, 2018.
https://doi.org/10.1007/978-3-319-94135-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_1&domain=pdf

include powerful data operations (filtering, unions, comparing, etc.), capable to operate
at a low level over file data. However, to operate these tools, geneticists must have high
computational skills, since the user interfaces (UI) provided by the tools lack the
interaction mechanisms to facilitate the data analysis.

The UI’s goal is, among other things, to maximize learning speed, minimize cognitive
load, provide visual clues, promote visual quality, minimize error rate, maximize the speed
of use, and provide adequate aesthetics. To achieve this goal, UI designers rely on design
guidelines defined from the observation of problems and needs in UI design. Constantly
refining the guidelines is important to maintain their validity. As needs and problems arise,
new guidelines must appear to address them. The design guidelines are recommendations
rather than standards and serve to guide a designer to get UI’s adapted to the real needs of
the domain and guarantee the use of them. From a more global perspective, UI design
guidelines become key guides for better human-machine interaction.

In a previous work [3], we focused on (a) defining general design guidelines to
address aspects related to interaction and collaboration which are indispensable for the
design of genetic data analysis applications and (b) reporting the progress in the
implementation of GenDomus, a web application designed under the general design
guidelines to facilitate the genetic analysis for diagnosing genetic diseases. This work
extends the previous work by refining the general guidelines, specifically, these that
address the interaction issues in the analysis of genetic variants. From the general
design guidelines and interviews with domain specialists, we derive fine-grained design
guidelines focused on dealing with interaction issues. The derived guidelines become
the starting point for a new iteration in the GenDomus implementation. The advances
over our previous work [3] are:

(a) To describe a motivating scenario to illustrate how GenDomus works in the
genetic analysis.

(b) To extend high-level interaction guidelines by defining low-level guidelines based
on lessons learned from the implementation of GenDomus.

(c) To define design guidelines related to the platform that supports the application.

To achieve these advances following this research line, we firstly overview and
analyze the current tools for analyzing genomic data and outline the common func-
tionalities and characteristics between them. In Sect. 3, we make an overview of the
workflow to guide the genetic data analysis. Section 4 describes the GenDomus
application by mainly focusing on the UI’s. In Sect. 5, we present the motivating
scenario upon which GenDomus application has been demonstrated to the stakehold-
ers. Section 6 extends the general design guidelines from the lessons learned of
designing the GenDomus application. Finally, we close the paper presenting the
conclusions and outlining future work.

2 Related Works

Some tools have been developed to process the sequenced DNA data. A literature
review about tools to manipulate genetic data from VCF files was presented in a
previous work [3]. It serves as source of information to define new guidelines to
address interaction issues.

4 C. Iñiguez-Jarrín et al.

In that literature review, eight tools such as VCF-Miner [4], DECIPHER [5],
BIERapp [6], ISAAC [7], PolyTB [8], DraGnET [9], Variant Tool Chest (VTC) [10]
and VCF Tools [2] were selected considering following criteria: relevance (tools
reporting the highest number of citations by articles or experiments in the genomic
domain), modernity (tools that have emerged in the last 6 years), collaboration (tools
that incorporate collaborative aspects), cognitive support (tools supporting the cogni-
tive process of users).

The analysis of these tools allows identifying a set of characteristics that become a
generic profile of a genetic analysis application. Table 1 shows the characteristics
categorized into usability, collaboration, data operations, cognitive aspects and UI and
their correspondence with each tool.

Table 1. Comparative tool analysis.

Tools

Characteristic Description VCF-
Miner

DECIPHER BiERapp ISAAC PolyTB DraGnET VTC VCFTools

Interface type Application
platform

WEB WEB WEB WEB WEB WEB CLI CLI

Usability

Easy-to-use Non-technical
users are able to
use the tool

✓ ✓ ✓ ✓ ✓ ✓

Collaborative aspects

Collaborative
synchronous
analysis

Real-time and co-
located analysis

Share data Share data
between members
of team

✓ ✓

Cognitive aspects

Interpret Explain the
meaning of data
behaviour

✓ ✓ ✓

Perceive Acquire
knowledge
through data
graphs

✓ ✓ ✓

Operations over the data

Operation Description VCF-
Miner

DECIPHER BiERapp ISAAC PolyTB DraGnET VTC VCFTools

Query Find data on a
specific topic

✓ ✓ ✓ ✓ ✓ ✓

Filter Exclude the data
which are not
wanted

✓ ✓ ✓ ✓ ✓ ✓ ✓

Annotate Add notes to data ✓ ✓ ✓

Static
visualization

Read only data
graph

✓ ✓ ✓

Interactive
visualization

Data filtering
enabled by graphs

(continued)

Guidelines for Designing User Interfaces to Analyze Genetic Data 5

As is shown in the Table 1, the predominating architectures in the applications of
genetic analysis are standalone and client-server. Applications such as VTC and VCF
Tools have been built under a standalone architecture where the deployment of the
application is done on the same machine where the application is developed and
executed. On the other hand, web-based applications such as VCF Miner, DECIPHER,
BierApp, ISAAC, PolyTB and DraGNET have been obviously designed under a client-
server architecture, a distributed approach where clients make requests and servers
respond to such requests.

The UI styles that predominate in genetic analysis tools are the Command Line
Interface (CLI) and graphical user interface (GUI). Tools based on CLI interact with
the user through commands that execute specific actions. This kind of interaction
implies a high cognitive load for the user, which is why these kinds of interfaces are
probably more complicated to use. By contrast, GUIs allow direct manipulation (i.e.,
the user interacts directly with the interface elements) and are available as desktop UI’s
or as web user interfaces (WUI) that are accessible from web browsers. The authors of
WUI-based tools argue that using the web as a platform makes possible to create easy-
to-use tools and reduce the cognitive load of the end-user. In fact, using web forms to
search for variants with just one mouse click is easier than remembering the sequence
of commands and symbols to search for variants via CLI.

Collaboration mechanisms encourage the synergy of the geneticists. ISAAC and
DraGnET are web-based applications that incorporate collaboration mechanisms to
allow users to share data between them and publish information available to external
users. Such collaboration mechanisms rely on the communication capabilities provided
by the platform architecture. In contrast to standalone architecture, web architecture

Table 1. (continued)

Operations over the data

Operation Description VCF-
Miner

DECIPHER BiERapp ISAAC PolyTB DraGnET VTC VCFTools

Prediction Recommend data
or related actions

Store reusable
actions

Store actions to be
reused

✓ ✓ ✓

Merge Link data from
different data sets

✓ ✓

Intersection Obtain the
common data
between two data
sets

✓ ✓

Compaction Estimate the
similarities or
differences
between two or
more data sets

✓ ✓ ✓ ✓ ✓ ✓

Complement Obtain the data set
that does not
belong to the
selected data set

✓ ✓

6 C. Iñiguez-Jarrín et al.

support a distributed communication between several points, therefore, the tools based
on web platform can implement collaborative mechanisms.

The data graphical visualization is a feature to help users perceive the shape of data
and it is present in some tools. Although the tabular format is commonly used by the
tools to represent the data, tools such as DECIPHER, ISAAC, and PolyTB take
advantage of data graphical visualization to support the cognitive human capabilities to
data analysis (i.e., perceiving and interpreting).

Operations on data are functionalities closely related to the platform on which the
tool is implemented. Powerful data operations such as merge, intersect, compare and
complement are more common on the CLI-based tools such as VCF Tools and VTC. In
contrast, data operations to retrieve data (e.g., querying and filtering) are more common
on web-based tools.

Although there are several tools aimed to support the diagnosis of genetic diseases,
there is not a standard guide containing all the functionalities and features required to
design a genetic analysis application. GenDomus is a web-based application designed
to support the genetic analysis by incorporating interaction and collaborative mecha-
nisms. However, the real contribution of the GenDomus design is to gather the func-
tionalities present on the domain tools and define a set of guidelines that serves as
useful recommendations to design genetic applications. We have already made a first
endeavor by defining general guidelines where the interaction and collaborative aspects
are treated. In the next sections, we will overview the set of defined guidelines and
refine them by incorporating more detailed guidelines.

3 Genetic Diagnosis Scenario

Human diseases can be determined through the genes that cause them [11], a deter-
ministic approach that turns a disease into a genetic condition. The genetic diagnosis
aims to identify the genetic elements that cause a certain disease. The genetic diagnosis
starts from a tissue sample and includes the analysis of mutations within genes and the
interpretation of the effects that cause such mutations from information.

A genetic diagnosis project requires the active participation of several specialists
(i.e., biologists, geneticists, bioinformatics, etc.), working on a collaboratively way to
analyze the genetic samples and identify relevant patterns in the data. The resulting
findings are documented in a final report as evidence of the analysis. For example, in
the case of genetic analysis for diagnosing diseases described by Villanueva et al. [12],
the geneticists analyze the genetic variants contained in a DNA samples which have
been obtained from a VCF format file. The geneticists search for genetic variants
related to one pathology, identify relevant patterns in the data and define whether or not
the patient is at risk of developing a certain disease.

For such scenario, a workflow for diagnosing genetic diseases was defined in [3].
The workflow is made up of three stages: Data Selection, Variant Analysis and
Curation.

Guidelines for Designing User Interfaces to Analyze Genetic Data 7

• Data Selection: The geneticists select the suitable data sources (i.e., genetic data
sources) to compare with the samples containing genetic variants. The next stages
related to the data analysis rely on the data selected in this stage since selecting data
sources that are not suitable for analysis will produce inaccurate results or incorrect
diagnostics.

• Variant Analysis: The geneticists work collaboratively exploring the genetic
variants in the sample, filtering the data to focus on the relevant genetic variants. To
interpret the effects produced for each genetic variation, the geneticists gather
information about diseases which are related to the genetic variation. The aim of
this stage is to select the relevant genetic variants that can lead to relevant findings.

• Curation: In this stage, specialists consolidate all findings and proceed to draw
conclusions that support the diagnostic report.

4 GenDomus

GenDomus is a web-based solution that incorporates advanced interaction and col-
laborative mechanisms to help geneticists when diagnosing genetic diseases. The
project was carried out by the PROS Research Center’s Genome Group2 and partici-
pated in an applied science European project that encourages the use of FIWARE
Future Internet platform as a cloud platform of public use and free of royalties. In fact,
the GenDomus architecture was designed considering the FIWARE3 Generic Enablers
(GEs) to support the interactive and collaborative features inherent to the diagnosis of
genetic diseases.

The GEs are the key components in the development of future internet applications
(i.e., FIWARE applications). Each GE provides a set of application programming
interfaces APIs and its open reference for components development, which are
accessible from FIWARE catalogue together with its description and documentation
[13]. To design and implement the web UI, considering the need of visual data rep-
resentation, collaboration and interaction, we have considered two GEs: WireCloud
[14] and 2D-UI [15].

WireCloud, a web application for mashups, offers powerful functionalities (e.g.,
heterogeneous data integration, business logic and web UI components) that allows
users to create their own dashboards with RIA functionalities [16]. In fact, WireCloud
follows the philosophy of turning users into the developers of their own applications.
Consequently, the users are provided by a Composition Editor, called “dashboard”, to
edit, name, place and resize visual components. Dashboards are used to set up the
connections and interactions between the visual components (i.e., widgets, operators
and back-end services) in a customized way. Instead, the server side provides services
and functionalities like cross-domain proxy to access to external sources, store the data
and persistence state of mashups and the capability to connect to other FIWARE GEs.
The widgets are the UI components developed under web technologies (HTML, CSS

2 http://www.pros.webs.upv.es.
3 https://www.fiware.org/.

8 C. Iñiguez-Jarrín et al.

http://www.pros.webs.upv.es
https://www.fiware.org/

and JavaScript) capable to send and receive state change events from the remainder
widgets placed on the dashboard by an event based wiring engine. For instance, a
component containing Google maps to represent a position by a coordinate. On the
other hand, the operators are useful components to provide data or back-end services to
widgets. Developers can create both widgets and operators and make them available to
the end user through FIWARE catalogue4. On the one hand, the developers create
widgets and operators, packed in zipped file format (wgt) and upload them to the
FIWARE catalogue. While on the other hand, the users create their own dashboards
using the available operators and widgets from the catalogue [13]. WireCloud’s
dashboards provide dynamism and interaction between the visible components through
the “wiring” and “piping” mechanisms. These mechanisms are useful for orchestrating
the widget-to-widget interaction and widget-to-back services respectively [17].

The generic enabler 2D-UI is a JavaScript library for generating advanced and
dynamic Web UI’s based on HTML5. Its implementation supports the use of W3C
standards, the ability to define reusable web components that support 2D and 3D
interactions and the reduction of fragmentation issues produced in the presentation of
graphical UI’s across devices. The main idea is to enclose in a single web component,
both the graphical UI and the mechanism for recording and reporting of events pro-
duced by input devices. The web components implementation is achieved by Polymer5

JavaScript library, whereas the register and notification of events is achieved by
Input API, an application programming interface to deal with the events produced by
input devices (e.g., mouse, keyboard, game pad) on the web browser. Polymer allows
creating fully functional interoperable components, which work as DOM standard
elements, which means a web component package HTML code, a functionality
expressed on JavaScript and customized CSS styles for the proper functioning of the
component.

WireCloud widgets can be reused within the dashboard to show different infor-
mation in form and content, according to the needs of the user. For example, in Fig. 2A,
the same widget has been used to create three graphical components, the first one
displaying the number of variants per chromosome through a Pie chart (Fig. 2Ab), the
second one displaying the number of genetic variants by phenotype through a Bar chart
(Fig. 2Ac) and the last one (Fig. 2Ad) displaying the number of genetic variants by
clinical significance.

The statistical graphs support trigger events caused by sector selection and chart
resizing due to the nvd36 JavaScript library used for this purpose. The nvd3 library
provides a set of suitable statistical charts to represent a huge amount of data. For this
prototype, we have used the Pie Chart and the Discrete Bar Chart. In this way, these
charts incorporate filter mechanisms by selecting chart sectors which makes it possible
to create dynamic queries in an ease way.

GenDomus is built upon a suitable Conceptual Model of the Human Genome
(CMHG) [18] that gather the domain concepts (e.g., chromosome, gen, variation, VCF,

4 https://catalogue.fiware.org/.
5 https://www.polymer-project.org/1.0/.
6 http://nvd3.org/.

Guidelines for Designing User Interfaces to Analyze Genetic Data 9

https://catalogue.fiware.org/
https://www.polymer-project.org/1.0/
http://nvd3.org/

etc.) and its relationships as is described in [3]. Through the CMHG, GenDomus can
integrate the data sources required to the diagnosis of genetic diseases and create
valuable links to the genetic variants form the samples.

At the front-end level, GenDomus consists of three UI’s (data loading, genetic
variant analysis and curation) that address each of the phases of the workflow for
diagnosing genetic diseases discussed in the previous section.

In this section, we detail the UI’s of the application highlighting the technological
components provided by the FIWARE platform and how they have been orchestrated
to address the aspects of interaction and collaboration.

4.1 Graphical User Interface

The front end is composed of three (3) complementary web interfaces: data loading,
genetic variant analysis and curation, which are implemented under web standards
such as HTML5, JavaScript (Bootstrap7, jQuery8) and CSS. The three UI’s are aimed at
covering the three stages of genetic diagnosis described in the Sect. 3 of this paper.

Through the “Data loading” web page (Fig. 1), the geneticists select the genetic
samples to be analyzed along with the genetic databases with which the geneticists
want to compare. This UI is composed of three web components that retrieve infor-
mation from the underlying genome CM. The web component “project-info” (Fig. 1a)
presents the information of the genetic analysis project created to identify the analysis
in process together with the number of samples and data sources for the analysis. The
“Samples” panel (Fig. 1b) lists the genetic samples grouped by analysis study, while
the “Data Sources” panel (Fig. 1c) lists the available public genetic databases.

The “Genetic Variant Analysis” web page (Fig. 2A) incorporates a dashboard
where the user can place and set up widgets that incorporate bi-dimensional (2D)
statistical charts to represent how the data is distributed. The charts bring dynamism to
the data exploration, since every data chart placed on the dashboard is sensitive to
interactions and changes in the others. In fact, each effect caused by selecting a chart
sector is propagated and visualized in the rest of charts; thereby we provide an easy use
aesthetic system to build dynamic queries.

The genetic samples selected in the Data loading web page (Fig. 1b) are showed in
the Analysis web page through the Data List component (Fig. 2Aa) with the option to
select or deselect the samples participants in the data exploration. Interlinked charts
provide visualization of filter propagation effect and it serves as a helpful feedback
resource for users. The filters generated are showed in a filter stack panel (Fig. 2Ae)
enabling user to remember the actions executed, modify the query options or infer
information about the data showed in the graph. Ordering functionality is provided to
user to customize the view. The widgets have been developed based on the WireCloud
documentation, compressed in a file with “wgt” extension and uploaded on FIWARE
catalogue to be used by the final user.

7 http://getbootstrap.com/.
8 https://jquery.com/.

10 C. Iñiguez-Jarrín et al.

http://getbootstrap.com/
https://jquery.com/

In addition, interaction with data can be performed through any web-based device
(e.g. tablets, laptops). The main idea is to filter the information graphically to identify
relevant information related to genetic diseases.

Because of the filtering and data exploration in the genetic variant analysis web
page, the resulting genetic variants that accomplish with the filter constraints are
showed in the table of results contained in the “Curation” web page (Fig. 2B).

Fig. 1. Data loading web page allows to select the available samples and data sources to perform
the genetic data analysis (Source: [3]).

Guidelines for Designing User Interfaces to Analyze Genetic Data 11

The “Curation” web page allow the project leader together to analysts to filter and
compare the data to draw up conclusions to support the making decision. Formulating a
diagnosis report implies gather the findings all together. The main idea is to analyze the
filtered information, generate data value and appropriate information for supporting the
decision-making that will be documented in the final report. This UI is built by the web

Fig. 2. GenDomus web user interfaces. The Analysis web page (A) presents a dynamic
dashboard containing interlinked widgets: The Sample widget lists the set of samples selected in
the data loading web page, three statistical 2D charts to explore the data and a filter list to store
each selected chart sector. The curation web page (B) lists the filtered variants by user to be
considered in the diagnosis disease report. (Source: [3]).

12 C. Iñiguez-Jarrín et al.

component “curation-table” (Fig. 2Ba) which shows in tabular format the detail of
selected genetic variants because of the interaction in the dashboard mentioned in the
variant analysis stage.

Additionally, the design of web UI’s has been adapted to wide range of display
devices because of Accessibility guideline implementation.

Based on the workflow for the diagnosis of genetic diseases, the following section
describes a motivating scenario that illustrates how the interaction and collaboration
mechanisms provided by GenDomus become a useful tool for genetic analysis.

5 Motivating Scenario: The Collaborative Room

GenDomus is a prototype in continuous evolution. In fact, a first demonstration of the
application based on a motivating scenario, has already been made to project’s
stakeholders. The motivating scenario describes how the mechanisms of interaction and
collaboration incorporated in GenDomus are useful for the genetic analysis, specifically
the genetic analysis for diagnosing genetic diseases. In this section, we describe the
motivating scenario and highlight the functionalities provided by GenDomus that intent
to make the genetic analysis an easy activity.

5.1 Motivating Scenario

James, Francis and Johan (assumed names), a team of geneticists, plan a diagnosis
session to study the samples of a family of 4 members and determine if the presence of
cancer in one of them (the daughter specifically) has genetic reasons and, if applicable,
identify which members of the family are carriers of the same disease.

To this end, the geneticists meets in the “cognitive room” (Fig. 3), a physical room
specially designed to facilitate the collaborative work of geneticists. This room is
equipped with several display devices (i.e., laptop, smart TV, tablet) that access to the
GenDomus application through the internet.

As a first step, James (the team leader) uses one of the smart TV’s located on the
left wall of the room (Fig. 3a), to select the genetic samples and the data sources for the
analysis, as shown in Fig. 1. He selects the samples from each member of the family as
well as ClinVar and dbSNP (SNP database), the data sources that will provide infor-
mation about diseases. Then, GenDomus processes the data by matching each genetic
variation in the samples with the information from data sources. After the process, the
resulting genetic variants together with its related disease information are displayed in
the curation screen, as shown in Fig. 2B, by using a second smart TV located on the
right wall of the room (Fig. 3b).

Now, the geneticists have a huge set of data to be analyzed. Therefore, the
geneticists need to visualize how the data is distributed, from different perspectives, as
well as to apply filter conditions to focus on the relevant genetic variants. Each team
member adds a data chart to the analysis screen displayed through the smart TV located
in the center of the room (Fig. 3c). James, the team leader, uses his laptop to create,
drag and drop a pie chart that shows how the variants are distributed with respect to the
“chromosomes”, (as shown in Fig. 2Ab). At the same time, Francis uses his tablet

Guidelines for Designing User Interfaces to Analyze Genetic Data 13

(Fig. 3d) to create a bar chart that shows how the variants are distributed with respect to
“clinical significance” (as shown in Fig. 2Ad) whereas Johan, using his laptop, creates
a bar chart that shows how the variants are distributed with respect to “phenotypes” (or
diseases), as shown in Fig. 2Ac.

Since the data charts have interactive capabilities, James and his colleagues interact
directly with them to filter the genetic variants. In fact, Francis uses his tablet (Fig. 3d)
to filter the variants related with the chromosome 13 (the chromosome where the
cancer-related BRCA1 and BRCA2 genes are located) by selecting the corresponding
sector in the Pie Chart (Fig. 2Ab). Because of this interaction, every device in the
collaborative room automatically synchronizes its state, so the geneticists can follow
the data analysis in progress from either their mobile devices or the smart TVs, without
losing any of the actions performed in the analysis.

During the diagnostic session, Johan observes in the curation screen (Fig. 3b) that
according to ClinVar, most of the variants are “benign” (the variation has not effect on
the breast cancer disease); however, there are other variants that have been categorized
differently.

Johan wants to analyze these variants without interrupting or affecting the analysis
carried out by the whole team; therefore, He uses his tablet to access his individual
work space and filters the variants. He realizes that the variants are “intronic variants”

Fig. 3. Collaborative room for diagnosing genetic diseases.

14 C. Iñiguez-Jarrín et al.

(i.e., a variation located within a region of the gene that does not change the amino acid
code), and informs it to their colleagues. Thanks to Johan’s individual analysis, the
team decides to discard the benign and intronic variants from the variants causing the
disease.

From the remaining set of variants, the team use the curation screen (Fig. 3b) to
filter the variants whose “clinical significance” is “uncertain” but they realize that such
variants are not present in the sample of the daughter (the one with cancer) and
therefore these must also be discarded.

Consequently, the geneticists team concludes that the cancer of the daughter of the
family is not genetically related.

This motivating scenario has illustrated how the interactive and collaborative
capabilities of GenDomus are useful for the diagnosis of genetic diseases. From a more
abstract perspective, these tangible capabilities are the result of applying general design
guidelines that specifically address both the interaction and collaboration aspects. In the
next section, we describe the design guidelines that have been considered in the
GenDomus design and that we think, these can be considered, in a broader sense, as
general guidelines for the design and implementation of genetic analysis applications.

6 Design Guidelines

In a previous work [3], we present the design guidelines upon which the GenDomus
application was designed. These guidelines address the interaction, collaboration, and
platform issues that are central to GenDomus design. We call these guidelines as high-
level guidelines (HLG’s) as they address the above issues from a rather general point
of view.

Figure 4 summarize the HLG’s by showing the guidelines grouped by issues.
While the interaction issues group the visualization and prediction guidelines, the
collaboration issues group the communication, accessibility and workspaces guide-
lines. Supporting the issues of interaction and collaboration, we can find the platform
issues grouping the guidelines to deal, among others, with infrastructure, performance,
storage issues.

Although these HLG’s become useful recommendations for designing genetic
analysis applications, they are very general and lose sight of the detail of problems in
the domain. Therefore, low-level design guidelines (LLG’s) are needed to refine and
specify the HLG’s.

In this work, our goal is to define LLG’s to refine the HLG’s related to the issues of
interaction and platform since such issues are closely related to our main target: The UI
design.

To achieve this goal, we take advantage of the lessons learned from the design and
implementation of GenDomus, since such lessons are useful for (a) enriching each
HLG by providing a set of LLG’s that refine it, and (b) adding new guidelines to deal
with technological platform aspects.

The set of guidelines (i.e., HLG’s and LLG’s) is described following a top-down
perspective. First, we describe the HLG’s by highlighting how it was applied to
GenDomus, and then we describe the LLG’s to refine each HLG.

Guidelines for Designing User Interfaces to Analyze Genetic Data 15

6.1 Design Guidelines for User Interfaces

From the HLG’s (i.e., visualization and prediction) that address the interaction issues,
we derive LLG’s. In other words, we refine each HLG by incorporating the observa-
tions obtained from interviews with geneticists.

Interviews with geneticists from TellmeGen9, a recognized genetic laboratory from
Valencia, Spain, yielded important and more detailed observations. TellmeGen offers
personal genetic services. Through its on-line platform, it is possible to perform per-
sonal genetic tests in an easy, comfortable and fast way. The interviews conducted in
this laboratory arose some recommendations related to the interaction of how to search
for information and how to document the findings.

The guidelines presented here aim to improve the usability of the system, thus
providing a better user experience.

HLG: Visualization
Provide appropriate interactive visualization mechanisms for data discovery and
knowledge extraction.

When analyzing genetic data, analysts are challenged to gain knowledge from high
and heterogeneous volume of data. The human capacity to figure out the data rela-
tionships hidden into extensive sequence of data, is limited; therefore, visualization
mechanisms are needed to shape the data and explore it. As the well-known saying

Fig. 4. Fundamental design guidelines for genetic diseases’ diagnosis applications.

9 http://www.tellmegen.com/.

16 C. Iñiguez-Jarrín et al.

http://www.tellmegen.com/

goes: “A picture is worth a thousand words”, information graphs (maps, flowcharts,
bar plots, pie charts, etc.) become a powerful mechanism for understanding and
expressing knowledge that is often difficult through other forms of expression (e.g.
verbal, written). Tidwell [19] mentions that good interactive information graphics
allows users to answer questions such as: How is the data organized? What is related
to what? How can these data be exploited? The interactive graphics provide significant
advantages over static graphics. Through interactive graphics, users move from being
passive observers to being the main and active actors in the discovery of knowledge,
deciding how they want to visualize, explore and analyze the data and their
relationships.

GenDomus incorporates information graphics as a powerful and suitable mecha-
nism to (a) concretize the form of data, (b) understand data easily, (c) explore data
from a visual and interactive perspective, (d) draw conclusions and transmit knowl-
edge from what the user sees and thinks. For example, the available GenDomus data
charts (i.e., pie chart and bar chart) are used to show the data distribution from the
different point of views as well as data filtering mechanisms. In this way, a Pie Chart is
not only useful to show the data distribution across multiple sectors, but also to filter
the data by “clicking” on a certain chart sector. Consequently, the entire data set is
segregated under the given filter condition and the new data distribution, from each
perspective, is visualized instantaneously through the different graphic components
(e.g., charts, data table) involved into the same analysis space. In this way, information
graphics make the data filtering an easier direct data manipulation task allowing the
user to be aware of the data behavior change.

LLG 1: Interactive Data Charts. – Provide interactive data charts that allow both
visualizing how the data is distributed and filtering the data across multiple criteria.

Unlike command-line-based applications that require the user to enter certain
commands to filter data, web-based applications have more visual interfaces (web
forms) to facilitate data filtering. The trend is to enable users without advanced com-
puter skills to perform data operations in an easy, intuitive and efficient way. In this
respect, interactive charts support such a trend and become powerful mechanisms for
visualizing and filtering data.

The study of biological pathways [20] is a clear scenario where the LLG 1 can be
applied. The study of biological pathways is relevant to know the roots of a human
disease. Therefore, knowing the genetic variants involved in different biological
pathways becomes a necessity. By using interactive data charts, such as a Column
chart, geneticists can visualize the behavior of genetic variants with respect to bio-
logical pathways and filter the genetic variants to find which of them are related to a
certain disease. Concretely, each column in the chart represents a pathway from the
data set and the variable height of the column depends on the number of genetic
variants contained in the pathway. Once the columns have been displayed, the
geneticist can select one or another column to filter the variants or show, through
another UI control such as the data table, the list of genetic variants related to the
selected pathway.

LLG 2: Parallel Visualization. – Provide parallel visualization mechanisms that
allow visual comparisons on the data.

Guidelines for Designing User Interfaces to Analyze Genetic Data 17

A scenario where LLG 2 can be applied, for example, is the comparison of bio-
logical pathways. The user needs to compare biological pathways (one healthy with
one sick) to determine the problems caused by the mutations. Parallel visualization of
pathways allows the user to easily and intuitively identify genetic differences and draw
conclusions about them.

LLG 3: Operations between Samples. – Provide set operations (i.e., join, inter-
section, difference, complement) to produce new datasets or compare two or more
similar datasets.

One scenario where this guideline is applied is the comparison of genetic samples.
Genetic samples contain numerous amounts of genetic variation. Analyzing two
genetic samples involves, among other things, identifying and visualizing, at the level
of genetic variation, the differences between the samples (for example, listing the
genetic variants that are in one sample and are not in the other). In this scenario, set
operations play a key role. The intersection operation, for example, will allow to
quickly identify the coincident variants between the two samples. The execution of
each set operation produces new sets of genetic variants that can be used in later
operations.

HLG: Prediction
Use the user-data interactions as a source of information to predict the next steps in
the knowledge discovery.

LLG 4: Literature Search Methods. – Improve the literature search process through
recommendations based on a history of user interactions.

To interpret the effects produced by certain genetic variation, geneticists review the
clinical literature (e.g., clinical studies, research articles, clinical reports) in search of
evidence to support the such interpretation.

The search and review process of literature is not trivial. Geneticists use extensive
lists of terms like query strings to retrieve, through web browsers, documents or content
related to the search string. In some cases, the results are not as expected, because some
terms have not been included in the search string.

This process can be facilitated by using user interactions as a natural means to
generate precise search strings and to recommend literature associated with the topic of
interest. The application can recommend the revision of some literature related to the
subject of interest, based on analysis of user interactions in the literature search process
(e.g., search terms, applied data filters, search criteria defined, etc.) and interactions
stored in a database of previously defined knowledge.

LLG 5: Documentation of Findings. –Provide the user with ways to record their
findings during genetic data analysis.

Throughout the analysis of data, geneticists observe certain behaviors in the data or
information that are relevant when making decisions and generate conclusions. For
example, to interpret what a genetic variation represents, geneticists read literature
(e.g., blogs, medical articles) with information on diseases related to such genetic
variation. During review and reading of literature, the geneticist needs to record genes,
mutations or diseases strongly related to genetic variation. In addition, as if a reference

18 C. Iñiguez-Jarrín et al.

manager were (e.g., Mendeley10 or Zotero11), the annotations should include the
information of the resource to which they refer. This information will serve for further
review.

LLG 6: Interfaces with Assisted Interaction. – Use the end user interaction to guide
the user in the data analysis.

The amount of data involved in genetic analysis is so large and scattered. Conse-
quently, the user gets lost when browsing or exploring the data. From the set of
interactions performed on previous data analysis, the UI should be able to assist the
user on performing the data analysis. Previous interactions, performed by geneticists in
past analysis, can be the source of knowledge for current and future analysis.

Each interaction performed contains information about WHAT and WHY a certain
analysis action (e.g., select, filter, navigate) was performed, therefore, the user can be
guided in the data exploration by using the experience of other experts. When looking
for disease-causing variants, for example, the interactions from previous diagnostics are
useful for answering questions such as What other navigable options do I have from
here? Which data relationships were explored by other analysts in similar searches?
Why were they explored? What other information was searched in previous and similar
diagnostics?

6.2 Platform Design Guidelines

From the previous experience that has been generated from the development of Gen-
Domus, six guidelines have been extracted and defined with the aim of laying the
foundations of the platform that supports the execution of GenDomus. This platform
will inherit and enhance existing GenDomus capabilities. These guidelines are defined
for the sole purpose of accelerating genetic analysis, facilitating work, and automating
existing repetitive tasks as much as possible. Thus, we describe the guidelines:

LLG 7: Scalability Support. – The system must support scalability in both computing
and storage capacity.

The initial amount of data used on the platform will be high; nonetheless, this
amount will not be static and will, over the time, be increased with new genetic
information thanks to the work of geneticists identifying and isolating this information.

Likewise, the number of users and professionals who carry out analysis through our
tool will grow, meaning that the load of the system will increase too. The tool must
handle this increase of data and concurrent users satisfactorily, it must have the elas-
ticity to allow dynamic growing of stored knowledge base and compute capacity to
manage possible peaks of use of the application.

LLG 8: Availability. – Complete availability of the system must be guaranteed.
With a growing user base, to important scalable dimensions are identified: on the

one hand, the greater the application is used, the more information will be stored in the
system and therefore more frequently will be accessed. On the other hand, the more the

10 https://mendeley.com/.
11 https://www.zotero.org/.

Guidelines for Designing User Interfaces to Analyze Genetic Data 19

https://mendeley.com/
https://www.zotero.org/

application is accessed, the more dependent of the application the users will be. This
implies that the platform must offer high availability.

Application architecture will have the necessary mechanisms to guarantee its
availability in most situations.

LLG 9: Transparent Processing. – Data loading and data modification must be
transparent to the user.

The goal of the users of the application should be to focus on the analysis and
extraction of new information from data, hiding the obtaining of the data. This
guideline worked well in GenDomus but was limited: data sources could only be
managed before starting the analysis. Our purpose is to improve the guideline even
more in the new application. For this reason, data sources will be handled in a way that
will permit the user to dynamically change the working data set: adding and deleting
different data sources while an analysis is being done.

LLG 10: Query Execution Time. – To reduce the queries processing time.
The goal of the platform is to speed up genetic analysis. Therefore, the minimum

processing time of a query execution must be determined, analyzed and reduced
considering the existing hardware capabilities.

Unlike the current GenDomus architecture, the next one will guarantee a maximum
execution time until an executed query returns the information; moreover, when pos-
sible, the information will be delivered and shown to the user “on the fly”, no need to
wait until the full set of data is created or processed.

The usability needs of end users are changing; however, the set or defined
guidelines becomes a starting point to improve the usability of GenDomus. Future
requirements will be added to meet the needs of end-users. The goal is to design the
necessary interaction in the domain and generate usable UI’s that address the challenge
of consuming genetic data.

7 Conclusions and Future Work

In this work, we presented refined guidelines for designing UI’s aimed to the genetic
analysis. These guidelines have been derived from general guidelines proposed in an
earlier work, the experience learned from the design of a web based prototype appli-
cation (called GenDomus) for the genetic analysis as well as from the observations
obtained from interviews with geneticists.

In this work, we presented a motivating scenario that illustrate how the GenDomus
application can facilitate the genetic analysis.

To understand how the GenDomus application facilitates the activities of genetic
analysis, we provided a narrated motivating scenario called “Collaborative Room”.
This scenario, from which a demonstration of GenDomus for the stakeholders was
made, allowed us to identify in more detail the guidelines necessary to design UI’s
suitable for the genetic analysis.

We present a set of 10 low-level design guidelines that address interaction and
platform issues in the design of genetic analysis UI’s. These low-level guidelines refine
the high-level guidelines defined in an earlier work. The set of design guidelines

20 C. Iñiguez-Jarrín et al.

becomes a powerful tool that allows designers to design UI’s suitable for the genetic
analysis domain. It is important to note that, just as the data consumption needs in the
genetic analysis domain are constantly evolving, the guidelines presented in this paper
are susceptible to refinements as the domain needs are updated.

For the future, we will implement the low-level guidelines into the GenDomus
application and will plan to validate the application in real scenarios.

Acknowledgements. The author thanks the members of the PROS Center’s Genome group for
fruitful discussions. In addition, it is also important to highlight that Secretaría Nacional de
Educación, Ciencia y Tecnología (SENESCYT) and Escuela Politécnica Nacional from Ecuador
and the Ministry of Higher Education, Science and Technology (MESCyT) from Santo Domingo,
Dominican Republic, have supported this work. This project also has the support of Generalitat
Valenciana through project IDEO (PROMETEOII/2014/039) and Spanish Ministry of Science
and Innovation through project DataME (ref: TIN2016-80811-P).

The author thanks Francisco Valverde Giromé and María José Villanueva Del Pozo for their
collaboration with this project.

References

1. Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends
Genet. 24(3), 133–141 (2008)

2. Danecek, P., et al.: The variant call format and VCF tools. Bioinformatics 27(15), 2156–
2158 (2011). https://doi.org/10.1093/bioinformatics/btr330

3. Iñiguez-Jarrin, C., García, A., Reyes, J.F., Pastor, O.: GenDomus: interactive and
collaboration mechanisms for diagnosing genetic diseases. In: ENASE 2017 - Proceedings
of the 12th International Conference on Evaluation of Novel Approaches to Software
Engineering, Porto, Portugal, 28–29 April 2017, pp. 91–102 (2017). https://doi.org/10.5220/
0006324000910102

4. Hart, S.N., Duffy, P., Quest, D.J., Hossain, A., Meiners, M.A., Kocher, J.-P.: VCF-Miner:
GUI-based application for mining variants and annotations stored in VCF files. Brief.
Bioinform. 17(2), 346 (2016). https://doi.org/10.1093/bib/bbv051

5. Chatzimichali, E.A., et al.: Facilitating collaboration in rare genetic disorders through
effective matchmaking in DECIPHER. Hum. Mutat. 36(10), 941–949 (2015). https://doi.org/
10.1002/humu.22842

6. Alemán, A., Garcia-Garcia, F., Salavert, F., Medina, I., Dopazo, J.: A web-based interactive
framework to assist in the prioritization of disease candidate genes in whole-exome
sequencing studies. Nucleic Acids Res. 42(W1), 1–6 (2014). https://doi.org/10.1093/nar/
gku407

7. Baier, H., Schultz, J.: ISAAC - InterSpecies Analysing Application using Containers. BMC
Bioinform. 15(1), 18 (2014). https://doi.org/10.1186/1471-2105-15-18

8. Coll, F., et al.: PolyTB: a genomic variation map for Mycobacterium tuberculosis.
Tuberculosis (Edinb) 94(3), 346–354 (2014). https://doi.org/10.1016/j.tube.2014.02.005

9. Duncan, S., Sirkanungo, R., Miller, L., Phillips, G.J.: DraGnET: software for storing,
managing and analyzing annotated draft genome sequence data. BMC Bioinform. 11, 100
(2010). https://doi.org/10.1186/1471-2105-11-100

10. Ebbert, M.T.W., et al.: Variant Tool Chest: an improved tool to analyze and manipulate
variant call format (VCF) files. BMC Bioinform. 15(Suppl 7), S12 (2014). https://doi.org/10.
1186/1471-2105-15-S7-S12

Guidelines for Designing User Interfaces to Analyze Genetic Data 21

http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.5220/0006324000910102
http://dx.doi.org/10.5220/0006324000910102
http://dx.doi.org/10.1093/bib/bbv051
http://dx.doi.org/10.1002/humu.22842
http://dx.doi.org/10.1002/humu.22842
http://dx.doi.org/10.1093/nar/gku407
http://dx.doi.org/10.1093/nar/gku407
http://dx.doi.org/10.1186/1471-2105-15-18
http://dx.doi.org/10.1016/j.tube.2014.02.005
http://dx.doi.org/10.1186/1471-2105-11-100
http://dx.doi.org/10.1186/1471-2105-15-S7-S12
http://dx.doi.org/10.1186/1471-2105-15-S7-S12

11. Genetic Alliance, District of Columbia Department of Health: Understanding Genetics.
Genetic Alliance (2010). https://www.ncbi.nlm.nih.gov/books/NBK132149/

12. Villanueva, M.J., Valverde, F., Pastor, O.: Involving end-users in domain-specific languages
development experiences from a bioinformatics SME. In: ENASE 2013 - Proceedings of the
8th International Conference on Evaluation of Novel Approaches to Software Engineering,
pp. 97–108 (2013). https://doi.org/10.5220/0004450000970108

13. Fiware.org: Welcome to the FIWARE Wiki (2016)
14. Introduction to WireCloud. https://wirecloud.conwet.etsiinf.upm.es/slides/1.1_Introduction.

html#slide1
15. Fiware Catalogue - 2D-UI. http://catalogue.fiware.org/enablers/2d-ui
16. Fiware.org: FIWARE Catalogue - Application Mashup - Wirecloud (2015). https://

catalogue.fiware.org/enablers/application-mashup-wirecloud
17. FIWARE Academy: Application Mashup Generic Enabler (WireCloud). http://edu.fiware.

org/course/view.php?id=53. Accessed 24 Apr 2016
18. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual

modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song,
I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

19. Tidwell, J.: Designing Interfaces, vol. XXXIII, no. 2. O’Reilly, Sebastopol (2012)
20. National Human Genome Research Institute: Biological Pathways Fact Sheet - National

Human Genome Research Institute (NHGRI) (2015). https://www.genome.gov/27530687/
biological-pathways-fact-sheet/. Accessed 15 Aug 2017

22 C. Iñiguez-Jarrín et al.

https://www.ncbi.nlm.nih.gov/books/NBK132149/
http://dx.doi.org/10.5220/0004450000970108
https://wirecloud.conwet.etsiinf.upm.es/slides/1.1_Introduction.html#slide1
https://wirecloud.conwet.etsiinf.upm.es/slides/1.1_Introduction.html#slide1
http://catalogue.fiware.org/enablers/2d-ui
https://catalogue.fiware.org/enablers/application-mashup-wirecloud
https://catalogue.fiware.org/enablers/application-mashup-wirecloud
http://edu.fiware.org/course/view.php?id=53
http://edu.fiware.org/course/view.php?id=53
http://dx.doi.org/10.1007/978-3-319-46397-1_31
https://www.genome.gov/27530687/biological-pathways-fact-sheet/
https://www.genome.gov/27530687/biological-pathways-fact-sheet/

Biologically Inspired Anomaly
Detection Framework

Tashreen Shaikh Jamaluddin1, Hoda Hassan2(&),
and Haitham Hamza3

1 Computer Science Department, AASTMT Academy,
Qism El-Nozha, Cairo, Egypt

shaikh.tashreen@hotmail.com
2 Electrical Engineering Department, British University in Egypt,

ElShrouk, Cairo, Egypt
hoda.hassan@bue.edu.eg

3 Computer Science Department, Cairo University,
Ahmed Zewail st., Cairo, Egypt

hshamza@acm.org

Abstract. Service-Oriented Computing is largely accepted as a well-founded
reference paradigm for Service-Oriented Architecture that integrates Service-
Oriented Middleware and the Web Service interaction patterns. In most SOA
applications, SOAP as a communication protocol is adopted to develop Web
services. SOAP is highly extensible and ensures confidentiality and integrity as
specified within the WS-Security standards. Securing this protocol is obviously
a vital issue for securing Web services and SOA applications.
One of the functionalities of SOM is to provide strong security solutions for

SOC based applications. As distinct models of SOM started to develop to suit
particular requirements, a complete security solution for SOA applications
emerged as a new challenge. Moreover, with the wide adoption of SOC, web
service applications are no longer contained within tightly controlled environ-
ments, and thus could be subjected to malicious attacks, such as Denial of
Service attacks. To present, one of the most critical issues for SOM is the
absence of a complete security solution. This is a state that threatens the suc-
cessfulness of the Web services and SOA applications.
Our proposed Biologically Inspired Anomaly Detection Framework presents

a generic security service that protects web services against denial of service
attacks at the service-oriented middleware layer. It employs three processes,
namely: (i) the Initiation Process, (ii) the Recognition Process and (iii) the Co-
stimulation Process. These processes constitute the detection mechanism of DoS
attacks usually infused in the SOAP message in the service interaction of SOA.
To evaluate our work, we have developed a prototype that showed that our

proposed security service was able to detect SOAP-based DoS attacks targeting
a web service. The results show that the proposed prototype was capable to
detect most attacks administered to the system. The average percentage of attack
detection for our prototype was 73.41% as compared to an external commercial
parser which was 44.09%.

© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 23–47, 2018.
https://doi.org/10.1007/978-3-319-94135-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_2&domain=pdf

Keywords: Service-Oriented Computing (SOC)
Service-Oriented Architecture (SOA) � Web service
Service-Oriented Middleware (SOM) � SOAP message
Denial of Service (DoS) attacks

1 Introduction

Service-Oriented Architecture (SOA) serves as a flexible architectural approach to
create and integrate software systems built from autonomous services [1, 2].
With SOA, integration becomes protocol-independent, distributed, and loosely cou-
pled, i.e. clean separation of service interfaces from internal implementations, as end
solution that is likely to be composed of services. In SOA, software resources are
packaged as “services”, which are self-contained modules that provide standard busi-
ness functionality. These modules are independent of the state or context of other
services. The concept of developing applications from standalone services further
advanced to incorporate web services. A web service is a specific kind of service that
exposes its feature over the Web using standard protocols and Internet languages
through an identifying URI [3]. Web service protocols and technologies include: XML,
XML Schema, Web Services Description Language (WSDL), Universal Discovery
Description and Integration (UDDI) and Simple Object Access Protocol (SOAP). Web-
service-based applications can be developed from services that can be accessed and
integrated over the Internet using open Internet standards [3, 4]. Web Services has
published interface where it communicates with other requesting execution of their
operations in order to collectively support a common business task [5]. In most web-
service based-applications, SOAP is adopted as the underlying communication pro-
tocol. SOAP is a highly extensible protocol and ensures confidentiality and integrity as
specified within the WS-Security standards [4].

Service-Oriented Computing (SOC) is now largely accepted as a well-founded
reference paradigm for SOA that integrates SOM and the web service interaction
pattern. SOC paradigm refers to the set of concepts, principles, and methods that
represent computing in SOA, in which software applications are constructed based on
independent component services with standard interfaces. The main advantage of this
approach is interoperability and loose coupling among software components that allow
users to use commonly required services to develop their applications [6]. In SOC
Service-Oriented Middleware (SOM) is an essential software layer that provides
abstraction, interoperability and other services like the distribution of functionality,
scalability, load balancing and fault tolerance [7]. With the emerge of software as a
service (SaaS) and SOM, the concept of a more sophisticated framework under SOC
came into existence. Thus, SOM was developed as a vehicle to ease the use of the SOC
by offering solutions and approaches that made SOC more usable and feature-rich.

SOM operates as a management layer to provide efficient communication func-
tionalities between interacting web services. Accordingly, as mentioned in [7] mid-
dleware is challenged by the security problems generated though web services. Some
of security challenges faced by SOM include insufficient communication security,
identity management and authentication, access control, and trust management [6].

24 T. S. Jamaluddin et al.

Moreover, as there are no standard security guidelines for designing SOM [6], for
application developers, it became difficult to provide secure access to services and
message protection to the accessing party in a distributed environment. Ultimately, it
affects the operation of SOM, which is supposed to improve security features of SOC
[6]. To fully utilize security features of SOM within the business environment, vendors
started to develop SOM functionalities that were suited to their particular business
requirements. Several SOM security models that were studied in [6, 7] operate in an
SOA environment, yet they do not apply full security solutions. This situation arises the
problem to secure applications (exposed as services) mainly because:

No standard security guidelines for security design in SOM,
Highly distributed applications, networks, heterogenous environment, and com-
munication load for hardware,
Loosely coupled functionalities (for service integration) for software.

Designing independent SOM models only incorporate the set of functionalities
required within the application domain, but generate the risk of malicious attacks [8].
Usually in XML Denial of Service (DoS) attacks, the operational parameters of mes-
sages coming from legitimate users are changed in real-time by adding additional
elements or replacing existing elements within the message. As a result, messages
between hosts can be easily intercepted and altered, resulting in untraceable intrusion
attacks. Therefore, it is paramount to resolve SOM deficiencies in handling unautho-
rized access. Especially that SOM is required to deal with large volumes of data and
high communication loads over a highly heterogeneous network. To summarize, in
order to achieve a secure Web service communication by SOAP messages over dis-
tributed environments, well-defined SOM security approaches are needed to provide
complete security solutions [9]. A preliminary work proposed by Al-Jaroodi et al. [10]
to develop a general set of security requirements through independent “security as a
service” components. These security services can offer a variety of security function-
alities that could be adapted to SOM.

Bio-inspired security approaches have been proposed in literature as an alternative
to traditional security systems where the attack or the attack behavior is not previously
known. In Bio-inspired security systems attacks and anomalies are detected as changes
in the environment or deviations from the normal system behavior in complex problem
domains. These domains include both the application and the network-level systems to
analyze the intrusion or anomaly detection problems. In Bio-inspired approaches, the
role of the “human immune system” is detection and protection from infections
according to two behaviors as follows [11]:

a. Self-optimization process: Leucocytes launches a detection response to invading
pathogens leading to unspecific response.
Self-learning process: Immune response remembers past encounters, which repre-
sents immunological memory. B-cells and T-cells allow a faster response the sec-
ond time around showing a very specific response.

Both of these behaviors have been extensively used in many applications for
anomaly detection, data mining, machine learning, pattern recognition, agent based

Biologically Inspired Anomaly Detection Framework 25

systems, control, and robotics [11]. The application based techniques utilize the self-
optimization and self-learning processes for gearing application behavior at a time of
intrusion detection. These approaches include detecting deviations from normal
behavior of users browsing web pages, to monitor characteristics of HTTP sessions,
and to monitor a number of client’s requests. In many of these approaches, self-
optimization or self-organization serve as a primary defense mechanism.

For intrusion detection self-optimization and self-learning are robust and efficient
defense mechanism to protect web servers against application layer DoS attacks [11].
Moreover, as these techniques have been popular in solving intrusion detection
problems in network and application domain [12], we surmise that it would help us to
develop a robust security mechanism to combat DoS attacks.

The main contributions of this extended paper which is based on work in [20] are
(i) to present an application-level Bio-inspired Anomaly Detection Framework (BADF)
that draws on the ideology of the Danger Theory (DT) previously proposed in [12] for
heterogeneous networks. The presented framework is designed as a generic framework
that improves the security features of the SOM by applying the DT principles to protect
web-service based-applications from Denial of Service (DoS) attacks. (ii) Based on
BADF, we derive an architecture for a generic “security as a service” (SECaaS) web
service. Our derived security service is identified as a message-protection service as
mentioned in [10]. It aims to protect incoming SOAP messages against XML Denial of
Service (DoS) attacks. BADF is evaluated by developing a prototype for the “security
as a service” (SECaaS) architecture, and showing the ability of the SECaaS web-
service to detect different types of DoS attacks induced within SOAP requests.

The rest of this paper is organized as follows; Sect. 2 overviews related work with
respect to SOAP message attacks and possible mitigation methods. Section 3 presents
our Bio-inspired Anomaly Detection Framework (BADF) and the SECaaS architecture.
In Sect. 4 we describe our evaluation environment and results. Finally, in Sect. 5 we
conclude the paper and mention our future work.

2 Related Work

To secure Web services, WS-Security standard define an XML Schema which is a
precise description of the content of any XML document. Though being a very
powerful language for restricting the actual appearance of an XML document, i.e.
SOAP message, the active use of XML Schema validation is often omitted in XML-
processing applications due to performance reasons [1]. However, recent works in [13]
have shown that missing XML Schema validation in Web Service server systems
enables various XML-SOAP based attack vulnerabilities. The SOAP based attacks
exploit XML based messages and parsers, and pave the way to introduce DoS attacks
to restrict system’s availability. Several papers addressed the topic of DoS attacks on
SOAP messages as it became crucial to understand the DoS impact on the operation of
Web Services.

The XML-SOAP based attacks on Web services is being widely studied and
classified as Coercive parsing and Oversize payload [15], SOAPAction spoofing [1, 2],
XML injection and Parameter tampering [17]. All aforementioned SOAP based attacks

26 T. S. Jamaluddin et al.

exploit XML parser to prevent legitimate users from accessing the attacked web
services resulting in DoS. Gruschka et al. [15] studied the Coercive parsing and
Oversize payload attacks were excessive amount of XML data are infused in the
Clients SOAP messages to retaliate the server firewall. To detect excessive payload on
firewall Gruschka et al. [15] have proposed a Web service Firewall namely Check Way
Gateway, that validates the incoming SOAP requests against the strict XML Schema
generated from the WSDL file associated with the Web Service. The firewall performs
schema validation through event-based parsing using a SAX (Simple API for XML)
interface to detect attacks in the SOAP request. The performance time for this firewall
is faster than compared to other attacks detection techniques. The authors in [1, 2]
classified the SOAPAction spoofing and Oversize payload as DoS attacks were
attackers gain access to the servers by exploiting application vulnerabilities though
flooding malformed web service requests. They pointed that the advancement in new
technologies and standards have generated loopholes that supported the widespread of
DoS attacks. In this series, the authors in [29] surveyed the several SOAP based attacks
out of which XML injection and Parameter tampering were reported that contaminate
SOAP messages to facilitate DoS attacks. XML injection attacks insert and modifies
indefinite XML tags within a SOAP message, were as Parameter tampering bypass the
input validation in order to access the unauthorized information to achieve DoS attack.
Both attacks, compromise the web service availability by exhausting server resources,
that requires comprehensive and collaborative defense approach for SOA services.

In recent years, the necessity of using the SOM in SOA environment ensures that
security risks are minimized through well-defined security policies and access control
countermeasures as noted in [1, 2]. Moreover, the most important countermeasures
presently used to mitigate DoS attacks are XML Schema Validation [13], XML Schema
Hardening [13] and Self-adaptive Schema Hardening [18]. XML Schema validation
ensures that the SOAP messages should abide the same set of valid XML Schema as
described from the WSDL file. The XML Schema describes strict specifications
themselves, but additionally needs to be hardened to strictly prohibit any malicious
content that is not specified in the XML Schema. It is important for a schema to adapt for
better validation rules learned from the new strains of SOAP message attacks. Several
papers [2, 13, 18] surveyed and proposed Schema Validation, Strict WS-Security Policy
Enforcement, Schema Hardening, and Event-based SOAP message processing as a
countermeasure for web service attacks. Both XML Schema Validation and Hardening
techniques have been used to fend XML Signature Wrapping and DoS attacks. Jenson
et al. [19] have studied the WS-* Specification and proposed improvised XML Schema
definitions to strengthen XML Schema validation to detect Signature Wrapping attacks.
The evaluation showed the performance degradation due to increased processing time
through applying hardening definitions. Vipul et al. proposed a new self-adaptive
schema-hardening algorithm in [13] and its enhanced version in [18]. From the accu-
mulated malicious SOAP messages, the algorithm obtains strict fine-tuned schema to be
used to validate SOAP messages. The algorithm was capable to detect most SOAP
based attacks contrived on the Web services. Even though the algorithm detected most
SOAP based attacks compared to other mitigation techniques, but lacks performance
evaluation. In [18] the authors automates schema-hardening process to increase the

Biologically Inspired Anomaly Detection Framework 27

efficiency of the validation process to detect attacks. However, no evaluation results
were presented for the proposed self-adaptive schema-hardening algorithm.

In networks, Hashim et al. [12] adopted the ideology of the Danger Theory
(DT) from the field of biology to defend DoS/DDoS attacks in a heterogeneous
environment. An Anomaly Detection Framework is proposed to detect DoS attacks that
constitute three main processes, namely Initiation Process (IP), Recognition Process
(RP), and Co-stimulation Process (CP). The framework analyzes the network traffic
pattern to determine the abnormal behavior or real presence of intrusion attacks. This
pattern triggers the IP that studies the abnormal network traffic deviation and signals
the presence of malicious bandwidth attacks (such as DoS, DDoS or Worms) to
RP. The RP is responsible detects malicious anomalies in the network deviated traffic
and informs nearby nodes about the possible presence of an attack. The CP confirm an
attack by cross-examining the information gained from IP and RP and alerts the nearby
nodes in the network about the presence of DoS attacks. The framework’s attack
detection time and the Quality of Service (QoS) performance showed that it is robust
and adaptive in different network domains to detect DoS, DDoS or Worms attacks.

3 Proposed Work

To protect against SOAP based DoS attacks, it is crucial to design and implement a
flexible and secure SOAP message security validation scheme. In this paper, we present
an application-level Bio-inspired Anomaly Detection Framework (BADF) that acts as a
generic security service to protect web-service based-applications as well as the SOM
itself from DoS attacks. We describe in more detail the functions and the operation of
the BADF framework, the most important information about system processes, and the
distribution of the components in SOM, together with the required infrastructure.
Moreover, the interaction patterns of the BADF framework within the SOAs envi-
ronment, concerning the SOM services operations are detailed out. Based on BADF,
we derive a “SECurity as a Service” (SECaaS) architecture to be implemented as a web
service in the SOM. Our architecture will use a reformed version of the self-adaptive
schema-hardening algorithm proposed by Vipul et al. [18] to mitigate SOAP based
DoS attacks. In order to capture all these topics in a clear and consistent manner, the
proposed framework will be described as a generic message protection security service
to realize the vision set by Al-Jaroodi et al. [10] for SOM security services. To protect
Web Service from DoS attacks, the BADF is designed as a SOAP message protection
security service that uses the countermeasures employed for web services.

Our proposed system would be based on SOA architecture, where Web services
communicate with three elements (i) the Service Client, (ii) the UDDI Registry, and
(iii) the Service Provider. Our architecture will use a reformed version of the self-
adaptive schema-hardening algorithm proposed by [18] to mitigate SOAP based DoS
attacks. Our choice to focus on SOAP as the communication protocol stems from the
fact that most Web services are offered over HTTP using SOAP within SOA [21].
In order to use a web service, Clients send SOAP-requests (XML document) to request
a Web service, which has been previously published to the UDDI registry by the
Service provider. When receiving the SOAP-request message, Service providers

28 T. S. Jamaluddin et al.

respond with a SOAP-response message to fulfil the Client’s request. To guard against
SOAP DoS attacks, the SOAP-request message need to be handled carefully before it is
parsed for in-memory representation in case attacks are infused within the request. Our
security service is designed to handle SOAP-request message attack and provide
mitigation against XML SOAP-based attacks. In Sect. 3.1, we illustrate BADF inter-
action in the SOA and preliminary penetration testing phase required for BADF online
operation. In Sect. 3.2 we present our proposed framework and then in Sect. 3.3 we
derive its complexity. Moreover, in Sect. 3.4 we outline the components of our derived
architecture.

3.1 BADF Interaction in the SOA

The proposed BADF is a framework for a generic security service that interacts with
SOAP messages similar to any other web service in the SOA environment. SOA
platform is composed of three main components, which are (i) the Service Client,
(ii) the UDDI Registry, and (iii) the Service Provider. The communication among these
three components is executed through SOAP messages, i.e. SOAP is used as the
communication protocol. The BADF is designed as a generic security service to
operate at the SOM layer. Initially, the BADF is activated in response to the SOAP
request messages received at the registry as part of the message exchange occurring
within SOA. The BADF interaction within the SOA is illustrated in the Fig. 1 and
described below.

Fig. 1. BADF sequence diagram.

Biologically Inspired Anomaly Detection Framework 29

1. The Service registry (UDDI) uses the information included within the service
description (WSDL) to catalogue each web service, thus the Service Client queries a
service by sending a SOAP discovery request to the registry. The SOAP request
will pass through BADF. Here, BADF as a security service is activated to filter the
SOAP request, and passes it to the registry if it is legitimate. If it is an illegitimate
request, the BADF drops the request and sends SOAP response with attack vectors.
In case the request is legitimate, the Service registry searches for the requested
service and replies with a SOAP-response with the service description, indicating
where to locate the service and how to invoke it. Now, the Service Client sends
SOAP initiation request to the server of the Service Provider.

2. SOM as a gateway: When a Service Client makes a SOAP initiation request call it
passes through the SOM layer. Within the SOM the BADF would serve as a Web
service. Here, BADF as a security service is activated to protect requested Web
service from incoming SOAP request. If the SOAP request is legitimate, it is passed
to the Service Provider.

3. Service Provider Response: Initially the Server provider publishes the web service
description (WSDL) to the Service Registry for the Service Client to discover/find
it. Upon receiving a SOAP initiation request, the Service Client gets access to the
server of the Web Service. With the SOAP-response the Service Provider binds the
Service Client to access the requested task of the service.

Initially, the BADF processes would operate offline periodically for penetration
testing. This is an essential learning phase, where each SOAP request and its relative
schemas are collected in the repository. This training set of schemata would help to
learn the improvements required in the Service Provider Reference Schema (SPRS). It
would also enable our system to learn new trend of SOAP-DoS attacks that have not
been previously studied by our system. In the learning phase, the training set of
schemata are generated as follows:

1. IP would perform the validation and if an attack situation is detected it drop the
request but activates the RP for analyzing the schema based on the detected attack.

2. The RP performs the schema hardening on the requested schema, and store a copy
of hardened schema with the SPRS. This schema would be used at IP for the next
incoming SOAP request.

3. After a corpus of hardened schemata gets accumulated by the RP, the CP develops a
single hardened schema by merging SPRS with all hardened schemata. This merged
schema will be used at IP for attack detection for the next round of incoming SOAP
request. And the learning process continues periodically until a larger attack
detection ratio is achieved compared to already addressed attacks in the system.

In our evaluation, as the CP algorithm is not completely implemented, the training
set is generated only with the RP consecutively. For BADF use case, we applied the
hardening on a copy of SPRS in the first iteration of RP. Each time the RP is activated,
the hardening would be performed on the same generated copy and would be used by
IP for next SOAP request. This would strengthen the validation at IP, as the schema is
tuned not only from the attacked sections, but also for the lenient structure of the
schema, as attackers contriving malformed incoming SOAP message could use this

30 T. S. Jamaluddin et al.

lenient schema structure. As a result, validation and hardening provides self-learning
and self-optimization to combat future attacks. Similar to CP learning, the process
continues periodically until a larger attack ratio is achieved compared to already
addressed attacks. This penetration-testing phase would strengthen the validation
process of BADF, as the reference schema is developed from administered range of
DoS attacks techniques.

3.2 Biologically Inspired Anomaly Detection Framework (BADF)

Our proposed Biologically Inspired Anomaly Detection Framework (BADF) draws on
the biologically inspired Anomaly Detection Framework presented in networks by
Hashim et al. [12]. Our framework employs the three processes defined in [12] namely:
(i) the Initiation Process (IP), (ii) the Recognition Process (RP) and (iii) the Co-
stimulation Process (CP). Figure 2 shows the interaction of the three processes within
BADF and the details of their operation are presented below.

i. Initiation Process

Receiving a SOAP request at the UDDI registry activates the Initiation Process (IP).
The IP is responsible for validating the XML schema of the incoming SOAP-request
messages. The XML schema validation is an important measure for checking the
syntactical correctness of incoming messages. Schema validation checks for the
presence of broken attributes or additional unusual elements within the message body.
Detection of malfunctioned elements is considered as traces of attacks. These attack
traces are marked within the XML schema and will be referred to here on as “attack
vectors”. In order to perform SOAP validation, the IP checks the received message
structure against the XML Schema Document (XSD) associated with the corresponding
Web Service. Usually, the XSD is a modified XML Schema derived from the WSDL,
which is a Web Service interface description document. Initially, the XSD provided by
the Service Provider (SP) will be used as the reference schema (RS) for the validation
step at IP. However, this Service Provider Reference Schema (SPRS) will be later

Fig. 2. Biologically inspired anomaly detection framework (BADF) (Source [20]).

Biologically Inspired Anomaly Detection Framework 31

replaced by the XSD updated at the RP and CP. Thus, the main task of the IP is to
ensure the correctness of SOAP input parameters and operations, as specified in the
web service description and as required by the Service provider. During validation, if
the message does not abide by the schema structure of the XSD, the message is
identified as an attack. The SOAP message is dropped, but the attacks vectors are
identified to be used in the RP. Accordingly, the IP would send a SOAP-response
message to the Client indicating the presence of an attack. Since an attack can also be
due to the weak strictness of the service schema document (XSD), it is important to
further investigate the schema itself. The schema used for validation should be as strict
as possible to hamper modification inside the message body.

It is possible that false positive situation arises, when Clients send SOAP request
with unintentional wrong queries. This always happen when schema grammar rules are
not strictly defined. For example, to register a new client “createUser” action is per-
formed with clients details as shown in Fig. 3(a). But in Fig. 3(b) the schemata declares
the definition “deleteAllUsers” element within “createUsers” element, this would delete
all users data if client accidently select “deleteAllUsers” Hence, it is important to
separate both “createUser” and “deleteAllUsers” actions in schema for the same
element <createUser>.

To combat false positive situations due to schema inefficiencies, any detected attack
by the IP is sent to the RP and the CP for further investigation. Thus, in case the
validation of a SOAP message fails, the IP generates a danger signal, namely the
Initiation Signal (IS), for any malformed SOAP message to initiate the Recognition
Process (RP). In addition, IP marks the attack vectors identified in the defective XSD in
the XSD repositories to be further investigated by the RP.

ii. Recognition Process

The Recognition Process (RP) is initiated when receiving the IS signal. The RP is
responsible for XML schema hardening of any defective XSDs. Thus, the RP reads the
attack vectors of the message that was previously identified as an attack, as well as the
corresponding XSD for further investigation. To develop a hardened XSD, the RP

(a) (b)

Fig. 3. False positive example of SOAP message.

32 T. S. Jamaluddin et al.

would first read the Web Service description document of the attacked web service.
Basically, this description describes the grammar that XSD should follow. This
description is parsed to develop a stricter grammar structure that would enhance the
XSD operation. The structure contents, elements, rules, and definitions of the updated
schema should all abide by the set of Web service description specifications as defined
by the service provider and written in the WSDL. As not all grammar description is
possible here, we present a subset of grammar rules as examples in what follows for the
concrete part of the schema:

a. Replacing maxOccurs = “unbounded” in complex data types with an adequate
number, e.g. maxOccurs = “2000”. This limitation it is no longer possible to flood a
Web Service with endless series of elements.
Replacing simple types without length restriction with a corresponding data type
containing a length restriction. This can be implemented by adding an XML
Schema facette to the simple type definition inside the types section of the Web
Service description. Restricting simple types is easier and more natural than limiting
the message’s total length.
Removing all operations, which are not intended to be called from the Internet.

Abiding by the WSDL specifications, the RP generates the schema structure that
represents the hardened XSD and stores the updated XSD into the Schema repository to
be subsequently used by the IP in the validation step. However, the RP would not
update the reference schema (SPRS) initially given by the service provider. Typically,
from now on the newly hardened schema (XSD) would be used as the reference
schema instead of the SPRS. After performing the hardening step, the RP decides
whether the IS was issued as a result of an attack, or as a result of a lenient schema.
The RP identifies an attack situation, when the structure of the SOAP message to
interact with services is altered, as compared to concrete part of XSD. On the contrary,
a lenient schema is an XSD that usually has loose grammar definitions for both abstract
and concrete part. For example, a SOAP message in Fig. 3 has a lenient schema which
is shown in Fig. 4. In Fig. 4(a) is a lenient schema as it has a “deleteAllUser” action
specified within “createUser” element. Even though the schema structure is logical to a
delete user with the input username/password, but there is a possibility of unhandled
input operations. Hence, in Fig. 4(b) the element “deleteAllUser” is separated from
element “createUser” by the RP.

In case of an attack, the RP immediately issues the Recognition Signal (RS) for
investigating the attack further at the Co-stimulation Process (CP). In case of a lenient
schema, the RP issues the Recognition Signal (RS) only after the number of logged
XSDs for a specific web service has exceeded a preset threshold indicating recurring
incidences of false positive alerts.

i. Co-stimulation Process

The Co-stimulation Process (CP) is initiated as a result of the RS signal issued by the
RP. The CP is responsible for self-adaptive schema hardening for all defective XSDs
that have been accumulated for all SOAP messages requesting a specific Web service.
The purpose of the CP is to develop improvised solutions learned from the detection of

Biologically Inspired Anomaly Detection Framework 33

an attack at the IP and its consequent mitigation at RP. The CP is a crucial step as the
validation and hardening of XML schemata that were previously detected, and rec-
ognized as attacks, could possess some inaccuracies while issuing the danger signals;
IS and RS. This inaccuracy could be due to the flexible and permissive nature of the
schemata, where security issues might arise, yet are not evident at first sight. Hence, a
complete refinement is necessary to generate a strict XML Schema that would be
learned from multiple logged-in hardened-XSD attacks for a particular Web service.
Upon receiving the RS, the CP would be activated to perform self-adaptive schema
hardening to develop a strict XML schema (XSD) to be later used at the IP for
validation.

The self-adaptive algorithm that is used by the CP in our proposed framework
draws on the self-adaptive algorithm presented by [18], with some modifications,
which will be pointed out later. The algorithm presented herein considers only the
malformed XSDs that were logged by the RP. The algorithm initially measures the
similarity between each malformed XSDs with respect to the SPRS. Based on this
similarity measure the algorithm generates a reduced set of self-hardened schemata.
These ‘self-hardened’ schemata are then merged together to obtain one single XML
Schema (XSD). Basically, this new XSD would not update the SPRS rather it would
update the hardened-XSD produced at the RP to be used in the validation step at the IP
thereafter. We anticipate that our algorithm will achieve time efficiency by confining its
operation to the malformed XSDs thus minimizing the time required to attain pro-
gressive results (shown in Sect. 3.3). The stages of our algorithm are shown in Fig. 5.
As shown in the figure, our algorithm is similar to Vipul in the first and second stage
only. Furthermore, our algorithm takes as input the XSDs hardened by the RP in
contrast to Vipul et al. [18] algorithm that works on XSDs generated from SOAP-
requests. The stages of CP algorithm are detailed below.

(a) (b)

Fig. 4. Example of (a) lenient schema and (b) hardened schema.

34 T. S. Jamaluddin et al.

Stage 1 Schema Tree Generation. As pointed out by [18], it is inconvenient to directly
compare XSDs. Therefore, all hardened XSDs generated at the RP, as well as the
reference XSD, will be first transformed to normalized tree representations. To generate
the normalized schema tree representations we use the same methodology adopted in
[18], where each XSD is traversed and for each XSD tag encountered a node will be
introduced. Each node in the generated schema tree will have the following four
attributes:

• Node Name: this represents the name given to an Element and/or an Attribute.
However, for nodes that do not have a name, such as nodes that represent meta-data
as complexType, simpleType, sequence, etc.…, Node Name will be the name for
the meta-data that the node represents,

• Node Type: this represents the type of the node such as an element, an attribute, an
extension, a restriction, a sequence, a complexType or a simpleType, etc.…,

• Data Type: data type of a node, and
• Cardinality: this refers to the minimum and maximum number of occurrences of an

element.

For each of the generated trees, a tree signature is devised using a key generation
function that uniquely identifies each schema tree.

Stage 2 Bucketing Equivalent Schemas. The main aim of this stage is to determine the
equivalence among the generated trees in an attempt to cluster equivalent schemata
together. We opine that XSDs generated due to similar attack attempts, or similar
malformed SOAP-requests will have high equivalence, thus will fall into the same
bucket. As in [18], equivalence among two schema trees is determined through the

Fig. 5. CP Schema hardening algorithm (Source [20]).

Biologically Inspired Anomaly Detection Framework 35

measure of difference (MoD), which is two dimensional scalar quantity that represents
an extent to which two schemas differ. The similarity between normalized schema tree
(Ni) and reference schema tree (RS) is derived through the Graftcost and Prunecost,
from Compute Cost algorithm in Fig. 6 and detailed in [18]. The total insertion cost for
all nodes calculated at the root node for RS is called graftcost. Similarly, the total
deletion cost for all nodes calculated at the root node for Ni is called prunecost. The
graftcost of tree RS and prunecost of tree Ni are used to derive MoD. For calculating
the MoD among all schemata we adopt the algorithm presented in [18, 22] shown in
Fig. 7, which reduces the number of comparisons by determining the equivalence
among schemata by calculating the MoD between each of the normalized schema trees
(Ni) and the reference schema tree (RS). Schema trees that have similar MoD with
respect to the reference schema tree will be considered equivalent and will be grouped
together in the same Bucket. In this work, similar MoD means that the two dimensional

Fig. 6. Compute cost algorithm.

Fig. 7. Measure of Difference (MoD).

36 T. S. Jamaluddin et al.

scalar quantity calculated for the MoD is within a given range. For our purpose, we
create a list for each bucket that stores the schema tree signature and its equivalent
MoD value with respect to the reference schema.

Stage 3 Selecting Representative Schema Tree for Each Bucket. We speculate that the
schema trees grouped into the same bucket are those that represent the XSDs that have
been generated in response to similar anomaly situations. Accordingly, the schema
trees grouped within the same bucket represent the XSDs that incorporate the
refinements/updates that detect one class of anomalies. Furthermore, we reason that
within each bucket, the schema tree with the maximum MoD with respect to the
reference schema tree can be considered the representative schema tree for the rest of
the trees within the same bucket as a larger MoD implies a greater degree of hardening
has been applied to the schema. Thus to get a representative schema tree for each
bucket, we sort the list created for each bucket in the previous step in descending order
based on the value of the MoD, and pick the schema tree with the highest MoD.

Stage 4 Generating a New Hardened Reference Schema. A new hardened reference
schema tree will be created by merging the reference schema tree with all represen-
tative schema trees identified in the previous step. This merging step ensures that the
newly generated reference schema tree will incorporate all hardening refinements/
updates required to detect the different anomaly classes that have been encountered so
far. The newly generated reference schema tree will be converted back to an XSD
representation and passed back to the IP to be used in the validation step. To do so, the
CP activates the Co-stimulation signal (CS) to update the reference schema to the
newly generated XSD. In addition, the CP activates the Danger Zone (DZ) signal that
maps the left out schema trees within each bucket to associated SOAP-requests, to be
used at the network level to identify sources of anomalies.

3.3 Complexity Analysis of BADF

The validation and hardening steps used in IP and RP are based on selection operations
therefore, the time complexity is constant. The CP-algorithm is based on Edit Distance
[18, 22] and XSDs Edit Distance [23], where the complexity for Stage 1 and 2 have
already been proven within each of the cited references. In addition, for Stage 4 the
algorithms for constructing the deltas from XS-Diff [24] and XSD_merge [25] algo-
rithms have been proven as optimal algorithms for both time and space. In what follows
we will be discussing the complexity analysis from the respective papers for CP stages.
The following notations will be used in our analysis.

i. RS is the reference schema tree
ii. Ni is the normalized tree i for N number of trees
iii. |Ni| is number of nodes in tree i
iv. Nmax = max(|N1|, |N2|, ….|Nn|) where i = 1 to n
v. N1 and N2 are two representative schema trees
vi. Vb > V1 and Vb –> V2 are delta documents
vii. M is a path in tree Ni

Biologically Inspired Anomaly Detection Framework 37

viii. |M| is number of nodes on the path or sequence in tree Ni

ix. C is the number of components in tree Ni, where C are group of similar nodes

Stage 1. The XSD documents are parsed to construct XSD trees (RS inclusive). For an
XSDi, a normalized tree (Ni) would be constructed in O(|Ni|).

Stage 2. The graftcost and prunecost in Fig. 6 can be calculated by post-order
traversals of both trees; RS and Ni. which costs O(|RS||Nmax|) as shown in [38]. The
algorithm in Fig. 7 is a dynamic programming procedure that computes the MoD from
the pre-computed graft and prune cost of RS and Ni trees. Complexity of MoD
computation depends on the nodes of the input trees RS and Ni, as it is called once for
each pair of nodes at the same depth in the input trees. This results in a complexity of O
(|RS||Nmax|) for Stage 1 and 2 as proved in [22, 23].

Stage 3. Selection of representative tree and bucketing is a selective operation with a
constant cost.

Stage 4: To develop a hardened reference schema, the complexity of the three-way
merging algorithm presented in [25] is derive into two steps (i) derive deltas cost and
(ii) merging cost.

Delta Cost. To derive delta, we adopted XSDiff algorithm in [24]. First, for every node
in both trees RS and Ni, a call is made that finds the matching component. The general
definition of this function would be to enumerate all components and choose the best
one defined as the one component with the closest ancestor. It works by enumerating
components and testing the ancestor up to a given depth in the trees. The time com-
plexity of matching is O (C log (|M|)), where C is the number of components, M is the
maximum path and log (|M|) is the maximum path length allowed for ancestor’s look-
up or a match.

Second, the delta construction depends on the matches obtained previously. These
matches are important for the two major operations: (i) insert/delete, and (ii) mi-
grate/update operations. Finding components that have been deleted or inserted only
requires testing components in both trees RS and N1 which have been matched. The
insert and delete operations works in linear time with cost O(|M|) as stated in [24].

Finding components that requires update or migrate operations, the Longest
Common Subsequence (LCS) algorithm is applied on the sequential components.
The LCS have a time and space cost of O(C2/log(C)) [26], where C2 is the space cost
and C is the number of components. In practical applications, when applying LCS on a
fixed length of input nodes for merging, the algorithm obtains subsequences that has
time and space cost in O(C) [26]. As given in [24] the number of components (C) is
always less than the input tree (N1) nodes. Using LCS merging heuristic for the number
of components gives cost in O(C). To derive optimal delta as stated in [24], the
matching takes (C log (|M|)), where log(|M|) is constant for migrate/update operation.
So, the overall worst-case time and space complexity to derive delta is O(C).

Merging Cost. The merging complexity evaluation depends on the delta operation cost.
To derive a hardened merge tree NMerge, the algorithm in [25] takes as a input an edited
tree version N1 and the deltas of the Vb ! V1 and Vb ! V2. Algorithm in [25] loops

38 T. S. Jamaluddin et al.

over the components of input tree N1 and tries to detect duplicates components in given
deltas (Vb ! V1 and Vb ! V2) using the update, move, and delete procedures. This
costs O(C) for input tree N1. Finally, we note that the number of delta operation for
component lookup in delta Vb ! V1 will affect the running time. As stated in [25], the
initial size of components C for the input tree Ni, increases with delta operation.
Therefore, the number of components is maximally O(C) since C < N1 then the overall
complexity will be bounded by O(C). The delta operation cost is O(C) which domi-
nated the cost of maximum number of components. Hence, the overall complexity of
optimal merging as mentioned in [25] is O(C).

The overall complexity of CP is approximated as the complexity of the two major
stages which are Stage 2 and 4. Stage 2 has an asymptotic time complexity of O(|RS||
Nmax|), while stage 4 has an optimal O(C) time complexity. If we consider the costs of
these two steps further, we find that by using dynamic programming in MoD the cost to
edit the distance between pairs of trees of various sizes grows in an almost perfect
linear fashion with tree size [22]. Similarly, the delta operations performed on the size
of components will also grow linearly. Therefore we can conclude that the overall
asymptotic time complexity of the CP algorithm in the worst case scenario will be
bounded by the maximum of these two operations, i.e., the complexity of O(CP) =
max (O(|RS||Nmax|), O(C)).

3.4 Security as a Service Based on BADF

Based on our previously presented framework we derive an architecture that illustrates
the execution of the BADF processes to detect and mitigate SOAP-based DoS attacks.
The derived Security as a Service (SECaaS) architecture is labelled as the “SECaaS
Architecture” in Fig. 8. The components of the Security Service are (i) the SOAP
message validator to validate SOAP messages, (ii) the Schema repository to stored
XSDs, (iii) the SOAP-request repository to store malicious requests, (iv) the Schema
hardening mitigation parser to develop hardened schema, and (v) the Reference
Schema. The proposed Security Service is published within the UDDI registry as a
stand-alone web service and acts as a generic Web service that secures other web
services running in the UDDI registry at the application layer. Each of the SECaaS
processes operates independently and their execution is loop-free and sequential. In
addition, each process depends on the different instances of the XSDs that is stored
progressively in the schema repository for the correct overall operation of the security
service.

Our Security Service is activated when a client sends a SOAP-request to the reg-
istry requesting a particular web service. For example, in Fig. 8, a SOAP-request is sent
to the registry requesting one of the published web services, namely “WS-Response”.
The SOAP-request for “Web service 1” is handed to our Security Service. Accordingly
the IP loads the XSD that is associated with “WS-Response”. Initially, this XSD is
provided by the service provider and represents the reference schema that will be used

Biologically Inspired Anomaly Detection Framework 39

by the message validator to validate the SOAP-request message. If the validation of the
message fails, the following steps are executed:

(i) The IP logs the SOAP message as a malicious message in the SOAP-request
repository;

(ii) The IP replies to the client with a SOAP-response message identifying the attack
vectors

(iii) The IP marks attack traces within the XSD
(iv) The IP triggers the Initiation Signal (IS) to activate the RP.

Upon receiving the IS, the RP retrieves the XSD that has been previously accessed
and marked by IP from the schema repository. The RP generates a hardened XSD by
applying the hardening rules to the accessed XSD. The refined XSD is stored in the
schema repository to replace the older XSD that was previously associated with the
message of web service at IP. Typically, as mentioned earlier, the RP generates the
Recognition Signal (RS) based on the threshold value for false positive or in response
to a detected attack, to initiate the CP.

On receiving the RS, the CP is activated, which means that the dubious SOAP-
requests for a particular Web service has either exceeded a given threshold value or has
been identified with high confidence as an attack. The CP retrieves all accumulated
XSDs for all logged SOAP-requests for a given web service from the repository, and
initiates the self-adaptive schema-hardening algorithm over all XSDs for the same Web
service request. The hardened XSD would update the last logged XSD by RP that was
used as reference schema in the previous processes.

Fig. 8. SECaaS architecture sequence diagram.

40 T. S. Jamaluddin et al.

4 Evaluation

The BADF evaluation will be performed by evaluating the SECaaS architecture that we
have derived in the previous section. We have developed a prototype for the SCEaaS
architecture on a localhost and tested its behaviour against DoS SOAP-attacks. The
SECaaS prototype, as shown in Fig. 9, is composed of the main components of the
SOA, namely the SOAP Service Client, the Service Registry UDDI, and the SOAP
Server. The prototype components implement the IP and RP only, whereas the CP is
not implemented completely, we present some rudimentary work.

4.1 The Development Environment

In our implementation, we have used Eclipse JAX-WS as the SOAP engine and
Apache Tomcat juddi-tomcat-3.3.2 on Microsoft Windows 7 as the SOAP server. For
the Service Registry UDDI, we used jUDDI version juddi-distro-3.3.2. All the user and
service information about the published schema were stored in the MySQL Community
Server 5.5.14 database for jUDDI. All the Web services were developed using Java
(Java SE) version jdk1. 6.0_21. For testing our security service against incoming SOAP
messages we used SoapUI, which is a GUI for unit and load testing of SOAP web
services. To evaluate SECaaS performance, its responses were compared to the
responses generated by an external validation/parser tool [27] that is used in our base
case scenario. We reverted to this evaluation methodology since the comparative
evaluation with the literature mitigation techniques was not possible. This can be
attributed to the fact that to the extent of our knowledge the concept of SECaaS specific
to DoS attacks has not been presented before. Most of the reported work falls short of
evaluation results and address general web service attacks. The techniques discussed in
[15, 19] focused on performance evaluation and used large data sets for testing a

Fig. 9. Flowchart for SECaaS architecture (Source [20]).

Biologically Inspired Anomaly Detection Framework 41

number of web service elements. However, in our case, we care to evaluate the efficacy
of SECaaS to detect SOAP based DoS attacks within the SOA. Therefore, we reverted
to a local host implementation since an online implementation was not feasible.

To validate the efficacy of our security service on localhost, we built Disease
Information Web services, which has multiple APIs. The service operates on 1000
different health trace dataset gathered into a disease database.

4.2 The Types of Attacks

Our evaluation scenarios use four different DoS SOAP-attacks, namely Parameter
Tampering, XDoS, XML Injection, and Oversize/Recursive payload. The Parameter
Tampering attack infuses malicious content with node/tags within message query to
deceive the validator. The XDoS attack tries to exhaust the system resources on the
server by iteratively declaring strings. The XML Injection injects additional nodes or
modifies existing nodes so as to change the operation parameters of the message.
Finally, the Recursive payload adds additional nodes repeatedly, which are excessively
large, to deplete CPU cycles. All these attacks (listed in Table 1) were performed using
a malicious insider or man-in-the-middle techniques of DoS. Hence, to generate a good
set of inputs to be used in testing, we looked at the WSDL document of Disease Web
Service to find loopholes. These attacks traces were included in the SOAP request to
measure the efficiency of SECaaS Architecture.

Table 1. DoS SOAP-based attacks detected comparison (Source [20]).

Attack type Attack
code

Attack details SOAP REQ & Parameters Attack results

SECaaS on SECaaS off

Parameter
tampering

PT-1 Buffer
Overflow of
String Types

<name> ‘Cornary
temperedtext-CAD’
</name>

detected detected

PT-2 Buffer
Overflow of
Integer Types

<ldl> −1 </ldl> detected undetected

PT-3 Field
Manipulation
causes URL
manipulation

<heart_diseases
RegistrationNumber =
“1295857444”> ……
</heart_diseases>

detected undetected

XDoS XD-1 XML Extra
Long Names

<name> Ischemic Heart
Diseases </name>
repeated 50 times

detected detected

XD-2 XML
Namespace
Prefix Attack

<xs:heart_diseases
description = “Common
type” —repeated 100
times—>

detected undetected

(continued)

42 T. S. Jamaluddin et al.

4.3 Evaluating the SECaaS Architecture

Our evaluation is composed of two scenarios; a base scenario and a SECaaS scenario.
In the base scenario, the security service was turned off and an external parser was used
to validate the SOAP requests. In the SECaaS scenario, the security service was turned
on and the SOAP requests were validated at IP. In each scenario, we send one mal-
formed SOAP-request followed by several legitimate SOAP requests. Each malformed
SOAP-request comprises an attack and invokes a specific web service with some
tampered input parameter. Table 1 details the different attacks that were administered
to the system in each scenario and the response in each case.

As shown in Table 1, SECaaS prototype was capable of detecting all contrived
attacks in contrast to the base case, which missed several attacks. The summary of the
results of our evaluation can be seen in Fig. 10. As can be seen, the SECaaS prototype is
more capable of attacks detection compared to the base case. We note that our evaluation
has covered only a subset of the possible SOAP attacks mentioned in literature, since the
exhaustive enumeration of all possible SOAP attacks is not possible. However, we claim
that the results obtained provide a proof of concept and show the efficacy of our SECaaS
architecture to defend web services against SOAP based attacks.

Table 1. (continued)

Attack type Attack
code

Attack details SOAP REQ & Parameters Attack results

SECaaS on SECaaS off

XML injection XIJ-1 Reference
Entity Attack

<name> &xxe; </name> detected undetected

XIJ-2 Internal Entity
Attack 1

<name> > </name> detected undetected

XIJ-3 Internal Entity
Attack 2

<name> < </name> detected undetected

XIJ-4 Invalid XML
meta-characters
(quotes)

<xs:attribute
heart_diseases = ‘’>
345675453’ </xs:
attribute>

detected detected

XIJ-5 Invalid XML
meta-characters
(comment tag)

<xs:attribute
treatment_cost = ‘’> 465
< !– </xs:attribute>

detected undetected

Recursive
payload

RP-1 Tag recursive
calls

<level> <level> —
Beginner—
</level> </level> > called
100 times

detected detected

RP-2 XML
Recursive
Entity
Expansion

<!ENTITY x8 “&x7;
&x7;”>
called as <attack> &x8;
</attack>

detected undetected

Biologically Inspired Anomaly Detection Framework 43

4.4 Preliminary Work on CP

Due to the time limitation and un-availability of tools we did not design the tree
transformation API. Instead, we designed a corpus of schema trees individually as
normalized tree representations. The XSDs stored in the Schema repository at the RP
are converted into tree structures to be fed into Stage 2 of the CP algorithm. The
number of schema trees generated for this test, their type and notations are listed in
Table 2 below.

In Stage 2 in the CP, each of the schema trees Ni, are compared with the RS tree to
compute the MoD between the two trees. Based on the MoD, all trees are clustered into
buckets. From our analysis and experimentation, two or three buckets are generated

Fig. 10. Attack detection results (%).

Table 2. Number of schema tree generation.

Schema Tree Generated Schema Tree Attack Type Notation
Reference Schema Tree RS
Normalized Schema Tree Un-attacked NSi

Normalized Schema Tree Un-attacked NSj

Normalized Schema Trees for Parameter
Tampering

PT-1 NP1

PT-2 NP2

Normalized Schema Trees for XDoS XD-1 Nd1

XD-2 Nd2

Normalized Schema Trees for XML Injec-
tion

XIJ-1 NX1

XIJ-2 NX2

44 T. S. Jamaluddin et al.

each time as we repeated Stage 2. Therefore, we tried to initiate Stage 2 testing process
by sending some combination of normalized schema trees with the reference schema
tree. The input schema trees combination set and the resulted buckets clustered schema
trees are shown in Table 3.

Therefore, the aim of performing different sets of trials (e.g. 3 trials in Table 3) on
Stage 2 was to test the correctness of the CP-algorithm. From the bucketing results in
Table 3, we came to conclude that the algorithm used for bucketing in CP was able to
distinguish classes of anomalies as seen from the separation of schemas into different
buckets. For example, Bucket B1 had trees for parameter tampering, B2 had trees for
XDoS, and B3 had trees for XML Injection. It is worthy to note that the third trial
perfectly identified each class of anomalies into separate buckets. Therefore, we
selected the representative schema trees with the maximum MoD from the third trial as
follows; B1 = {NP1}, B2 = {Nd2}, and B3 = {NX2}. All these schema trees get to be
merged with the RS tree to develop a hardened Nnew schema tree. The evaluation
results for Nnew as a new reference schema is indicated in Fig. 10. AS expected the
attack detection improved when adding CP to IP and RP.

5 Conclusion

In this paper the topic of security in the context of Web services and SOM was
addressed. Especially the focus was to address the SOAP based DoS attacks on the
Web service and to strengthen the SOM security. To secure web service based
applications the Bio-inspired Anomaly Detection Framework (BADF) is presented.
Based on BADF we derive “Security as a Service” (SECaaS) architecture and its
prototype for evaluation. The evaluation shows that our prototype was able to detect
most SOAP based DoS attacks compared to commercial external parser. We also
presented some rudimentary work of CP algorithm and tested its behavior with IP and
RP, which showed good results. Therefore, our future work would be to fully integrate
and evaluate CP in the BADF. Moreover, to focus on performance evaluation of the
presented works in comparison to other techniques.

Table 3. Bucketing trees in each trial.

of Trials Set of Input
Trees

Bucket(B1) Bucket(B2) Bucket(B3)

First Trial NSi, NSj NP1,NP2,
Nd1, Nd2, NX1,NX2

NSi,

NP1,NP2

Nd1

Nd2 NSj,
NX1, NX2

Second Trial NSi, NSj NP1,NP2,
Nd1, Nd2,

NSi,

NP1,NP2

Nd1

Nd2 NSj

Third Trial NP1,NP2,

Nd1, Nd2,

NX1, NX2

NP1,NP2 Nd1, Nd2 NX1,NX2

Biologically Inspired Anomaly Detection Framework 45

References

1. Jensen, M., Gruschka, N., Herkenhoner, R., Luttenberger, N.: SOA and web services: new
technologies, new standards - new attacks. In: ECOWS 2007 Fifth European Conference on
Web Services, pp. 35–44 (2007). https://doi.org/10.1109/ecows.2007.9

2. Jensen, M., Gruschka, N., Herkenhoner, R.: A survey of attacks on web services. J. Comput.
Sci. Res. Dev. 24, 185–197 (2009). https://doi.org/10.1007/s00450-009-0092-6

3. Bichler, M., Lin, K.J.: Service-oriented computing. IEEE Comput. 39(3), 99–101 (2006).
https://doi.org/10.1109/MC.2006.102

4. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A.,
Lafon, Y.: SOAP Version 1.2. In: W3C Recommendation specification—SOAP Version 1.2,
vol. 24 (2007). http://www.w3.org/TR/soap12

5. Web Services Security: SOAP Messages Security 1.1. In OASIS Standard. http://www.
oasis-open.org/

6. Al-Jaroodi, J., Mohamed, N.: Service-oriented middleware: a survey. J. Netw. Comput.
Appl. 35, 211–220 (2010). https://doi.org/10.1016/j.jnca.2011.07.013

7. Al-Jaroodi, J., Mohamed, N., Aziz, J.: Service oriented middleware: trends and challenges.
In: Proceedings of the 2010 Seventh International Conference on Information Technology:
New Generations (ITNG). IEEE CPS, Las Vegas, USA (2010). https://doi.org/10.1109/itng.
2010.55

8. Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion detection: survey. In: Kumar, V.,
Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats: Issues, Approaches, and
Challenges, vol. 5, pp. 19–78. Springer, New York (2005). https://doi.org/10.1007/0-387-
24230-9_2

9. Al-Jaroodi, J., Jawhar, I., Al-Dhaheri, A., Al-Abdouli, F., Mohamed, N.: Security
middleware approaches and issues for ubiquitous applications. Comput. Math. Appl. 60,
187–197 (2010). https://doi.org/10.1016/j.camwa.2010.01.009. Science Direct

10. Al-Jaroodi, J., Al-Dhaheri, A.: Security issues of service-oriented middleware. Int.
J. Comput. Sci. Netw. Secur. 11(1) (2011)

11. Dressler, F.: Benefits of bio-inspired technologies for networked embedded systems: an
overview. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl, Wadern, Germany (2006)

12. Hashim, F., Munasinghe, K.S., Jamalipour, A.: Biologically inspired anomaly detection and
security control frameworks for complex heterogeneous networks. Proc. IEEE Trans. Netw.
Serv. Manage. 7(4), 268–281 (2010). https://doi.org/10.1109/TNSM.2010.1012.0360

13. Vipul, P., Mohandas, R., Alwyn. R.P.: Attacks on web services and mitigation schemes. In:
Proceedings of the 2010 International Conference, Security and Cryptography (SECRYPT)
(2010)

14. Schäfer, G., Sisalem, D., Kuthan, J.: Denial of Service Attacks and Sip Infrastructure Attack
Scenarios and Prevention Mechanisms (2017). https://www.researchgate.net/publication/237
572832_DENIAL_OF_SERVICE_ATTACKS_AND_SIP_INFRASTRUCTURE_Attack_
Scenarios_and_Prevention_Mechanisms

15. Gruschka, N., Luttenberger, N.: Protecting web services from DoS attacks by SOAP
message validation. In: IFIP TC-11 21st International Information Security Conference,
SEC, vol. 201, pp. 22–24 (2006)

16. Gruschka, N., Iacono, L.: Vulnerable cloud: SOAP message security validation revisited. In:
IEEE International Conference on Web Services ICWS (2009). https://doi.org/10.1109/icws.
2009.70

17. Gupta, A.N., Thilagam, P.S.: Attacks on web services need to secure XML on web. Comput.
Sci. Eng. Int. J. (CSEIJ) 3(5) (2013). https://doi.org/10.5121/cseij.2013.3501

46 T. S. Jamaluddin et al.

http://dx.doi.org/10.1109/ecows.2007.9
http://dx.doi.org/10.1007/s00450-009-0092-6
http://dx.doi.org/10.1109/MC.2006.102
http://www.w3.org/TR/soap12
http://www.oasis-open.org/
http://www.oasis-open.org/
http://dx.doi.org/10.1016/j.jnca.2011.07.013
http://dx.doi.org/10.1109/itng.2010.55
http://dx.doi.org/10.1109/itng.2010.55
http://dx.doi.org/10.1007/0-387-24230-9_2
http://dx.doi.org/10.1007/0-387-24230-9_2
http://dx.doi.org/10.1016/j.camwa.2010.01.009
http://dx.doi.org/10.1109/TNSM.2010.1012.0360
https://www.researchgate.net/publication/237572832_DENIAL_OF_SERVICE_ATTACKS_AND_SIP_INFRASTRUCTURE_Attack_Scenarios_and_Prevention_Mechanisms
https://www.researchgate.net/publication/237572832_DENIAL_OF_SERVICE_ATTACKS_AND_SIP_INFRASTRUCTURE_Attack_Scenarios_and_Prevention_Mechanisms
https://www.researchgate.net/publication/237572832_DENIAL_OF_SERVICE_ATTACKS_AND_SIP_INFRASTRUCTURE_Attack_Scenarios_and_Prevention_Mechanisms
http://dx.doi.org/10.1109/icws.2009.70
http://dx.doi.org/10.1109/icws.2009.70
http://dx.doi.org/10.5121/cseij.2013.3501

18. Patel, V., Mohandas, R., Pais, A.: Safeguarding web services using self-adaptive schema
hardening algorithm. In: Wyld, David C., Wozniak, M., Chaki, N., Meghanathan, N.,
Nagamalai, D. (eds.) CNSA 2011. CCIS, vol. 196, pp. 383–392. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22540-6_37

19. Jensen, M., Meyer, C., Somorovsky, J., Schwenk, J.: On the effectiveness of XML schema
validation for countering XML signature wrapping attacks. IEEE (2011). https://doi.org/10.
1109/iwsscloud.2011.6049019

20. Shaikh, J.T., Hassan, H., Hamza, H.: Biologically inspired security as a service for service-
oriented middleware. In: Proceedings of the 12th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE), vol. 1, pp. 121–132. ISBN: 978–989-
758-250-9 (2017). https://doi.org/10.5220/0006337801210132

21. OASIS UDDI Specification TC. https://www.oasis-open.org/committees/uddi-spec/faq.php
22. Nierman, A., Jagadish, H.: Evaluating structural similarity in XML documents. In:

Proceedings of the Fifth International Workshop on the Web and Databases WebDB,
Citeseer, Wisconsin, USA, pp. 61–66 (2002)

23. Mlýnková, I.: Equivalence of XSD constructs and its exploitation in similarity evaluation.
In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1253–1270. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4_24

24. Baqasah, A., Pardede, E., Rahayu, W., Holubova, I.: XS-Diff: XML schema change
detection algorithm. Int. J. Web Grid Serv. 11(2), 160–192 (2015). https://doi.org/10.1504/
ijwgs.2015.068897

25. Baqasah, A., Pardede, E., Rahayu, W.: A new approach for meaningful XML schema
merging. In: Proceedings of the 16th International Conference on Information Integration
and Web-based Applications & Services, pp. 430–439 (2014). https://doi.org/10.1145/
2684200.2684302

26. Marian, A., Abiteboul, S., Cobena, G., Mignet. L.: Change-centric management of versions
in an XML warehouse. In: Proceedings of the 27th International Conference on Very Large
Data Bases, pp. 581–590 (2001)

27. Using XML Schema. http://www.mantidproject.org/Using_XML_Schema

Biologically Inspired Anomaly Detection Framework 47

http://dx.doi.org/10.1007/978-3-642-22540-6_37
http://dx.doi.org/10.1109/iwsscloud.2011.6049019
http://dx.doi.org/10.1109/iwsscloud.2011.6049019
http://dx.doi.org/10.5220/0006337801210132
https://www.oasis-open.org/committees/uddi-spec/faq.php
http://dx.doi.org/10.1007/978-3-540-88873-4_24
http://dx.doi.org/10.1504/ijwgs.2015.068897
http://dx.doi.org/10.1504/ijwgs.2015.068897
http://dx.doi.org/10.1145/2684200.2684302
http://dx.doi.org/10.1145/2684200.2684302
http://www.mantidproject.org/Using_XML_Schema

Genomic Tools*: Web-Applications
Based on Conceptual Models
for the Genomic Diagnosis

José F. Reyes Román1,2(&), Carlos Iñiguez-Jarrín1,3,
and Óscar Pastor1

1 PROS Research Center, Universitat Politècnica de València,
Camino Vera s/n. 46022, Valencia, Spain

{jreyes,ciniguez,opastor}@pros.upv.es
2 Department of Engineering Sciences, Universidad Central del Este (UCE),

Ave. Francisco Alberto Caamaño Deñó, 21000 San Pedro de Macorís,
Dominican Republic

3 Departamento de Informática y Ciencias de la Computación,
Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador

Abstract. Although experts in the genomics field now work with bioinformatics
tools (software) to generate genomic diagnoses, the fact is that these solutions do
not fully meet their needs. From the perspective of Information Systems (IS), the
real problems lie in the lack of an approach (i.e., Software Engineering tech-
niques) that can generate correct structures for data management. Due to the
problems of dispersion, heterogeneity and the inconsistency of the data, under-
standing the genomic domain is a huge challenge. To demonstrate the advantages
of Conceptual Modeling (CM) in complex domains -such as genomics- we
propose two web-based tools for genomic diagnosis that incorporates: (i) a
Conceptual Model for the direct-to-consumer genetic tests (DCGT), and (ii) our
Conceptual Model of the Human Genome (CMHG), both with the aim of taking
advantage of Next-Generation Sequencing (NGS) for ensuring genomic diag-
nostics that help to maximize the Precision Medicine (PM).

Keywords: Geneslove.me � DCGT � VarSearch � BPMN � CMHG
Conceptual modeling � Precision medicine

1 Introduction

The study and understanding of the human genome (how life works on our planet)
could probably be considered one of the great challenges of our century. Thanks to the
advances in NGS (Next-Generation Sequencing) [1], there has been considerable
growth in the generation of genomic and molecular information. In addition, the
interactions that are available with this genomic knowledge have a direct impact on the
medical environment and Precision Medicine (PM) [2].

The application of Conceptual Modeling (CM) [3] techniques to the genomic
domain now provides solutions and optimizes some of the processes carried out by
experts (i.e., in genetic laboratories and hospitals), and helps to solve the problems that

© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 48–69, 2018.
https://doi.org/10.1007/978-3-319-94135-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_3&domain=pdf

arise in handling the large amounts of information from different sequencing methods.
The use of advanced Information System (IS) engineering approaches can be useful in
this domain due to the huge amount of biological information to be captured, un-
derstood and effectively managed. A considerable part of modern Bioinformatics is
devoted to the management of genomic data. The existence of a large set of diverse
data sources containing large amounts of data in continuous evolution makes it difficult
to find convincing solutions [4]. When we addressed this problem from the IS per-
spective, we understood that precise CMs were required to understand the relevant
information in the domain and to clearly fix and represent it to obtain an effective data
management strategy.

Research and genetic diagnoses are typical examples of the work done by experts -
biologists, researchers or geneticists- every day. However, some information is
required to perform these tasks. Where are these data? Currently, this information is
dispersed in genomic repositories including web sites, databanks, public files, etc.,
which are completely heterogeneous, redundant, and inconsistent (containing partial
information) [5]. In addition, most of these just focus on storing specific information in
order to solve a specific problem (e.g., UniProt: a catalog of information on proteins).

Due to these characteristics, we are able to estimate the difficulty of experts in
finding and manipulating certain genomic information, making this goal almost
impossible to achieve. Another relevant factor in the domain is the constant growth and
updating of the data (i.e., biological concepts). The use of standard definitions of
concepts is not mandatory, so that sometimes the same term can have different defi-
nitions, in which case the meaning of the concept depends on the interpretation given to
it by the expert. After studying this situation, we decided to develop a Genomic
Information System (GeIS) for facilitating the elaboration of end-user’s genetic tests.
Two strategies have been followed for accomplishing an adequate data treatment and
management policy:

1. To provide “GenesLove.Me” (GLM) as a web application designed to generate
direct-to-consumer genetic tests (DCGT) supported by BPMN [6] and CM [3]
techniques to study and analyze the essential elements of the processes involved in
the genomic diagnosis process and improve the development of GeIS.
The current availability of DCGT has a great number of advantages for the genomic
domain, making it easier for end-users to access early genetic-origin diseases
diagnosis services. Romeo-Malanda [7] defines “direct-to-consumer genetic anal-
ysis1” as a term which is used to describe analytic services offered to detect
‘polymorphism’ and ‘health-related genetic variations’.

2. To develop a prototype tool (“VarSearch”) for helping the treatment and manage-
ment of genomic data. This application contrasts a set of genomic variations with
the information contained in a database that follows the Conceptual Model of the
Human Genome (CMHG). This model is much more general and “ambitious” with
respect to the behavior of the human genome, and it consists of the following

1 This type of analysis is available through direct sales systems in pharmacies or other health care bodies,
but the Internet has become the main selling channel for direct-to-consumer genetic analyses [7].

Genomic Tools* 49

“views”: Structural, Transcription, Variation, Phenotypic, Pathways, and Biblio-
graphic references [4, 8].
Applying GeIS to the bioinformatics domain is a fundamental requirement, since it
allows us to structure our Human Genome Database (HGDB) with curated and
validated data (to treat the data that will be used in the proposed application, we
implemented the SILE methodology [9]).
The initial research on applying CM approaches to the human genome was reported
in the works of Paton [10] and Ram [11]. The main goal in Ram’s work was to
show the advantages and benefits of using CM to compare and search for the
protein in 3D (see other related works in [12]). Reyes et al. describes a CMHG [4]
which proposes a domain definition at the conceptual level. From this CMHG, we
generated a GeIS to support VarSearch. The application of CM helps us to better
understand and manage the knowledge of the human genome.

The efficient use of advances in genomic research allows the patient to be treated in
a more direct way, which is reflected in results such as: “better health” and “quality of
life”. The genomic domain requires methodologies and modeling techniques capable of
integrating innovative ideas into: (a) data management; (b) process improvement; and
(c) the inclusion of quality standards.

In this context, the goal of the present study, which is based on our previous work
[13], is to explain the functionality of the prototype called “VarSearch”, which starts
and ends its interaction in the BPMN described above in processes T10 and T11. This
tool has been developed with the objective of generating the genetic diagnosis that will
be provided to the end-user through the GenesLove.Me platform. The advances over
our previous work [13] are:

• The description of genetic tools based on conceptual models for the generation of
genomic diagnoses, which contribute greatly to the management of the data par-
ticipating in PM, and

• The explanation of the VarSearch prototype, which is used to generate the genomic
diagnosis from the HGDB. In addition, preliminary steps will be described to work
with the prototype, such as loading the database, selecting different data reposito-
ries, and others.

The paper is divided into the following sections: Sect. 2 reviews the present state of
the art. Section 3 describes BPMN applied to the genomic diagnosis process. Section 4
contains the two genetic tools (“GenesLove.Me” and “VarSearch”) based on concep-
tual models. Section 5 describes a case study with the VarSearch tool, and Sect. 6
summarizes the conclusions and outlines future work.

2 Related Work

Bioinformatics now play an important role in contributing advances to the medical and
technological sector. Genetic testing reveals existing knowledge about “genes” and
“variations” in the genomic domain, which is used to diagnose diseases of genetic
origin in order to prevent or treat them. This brings PM closer to end-users (i.e., clients
or patients).

50 J. F. Reyes Román et al.

The study of genomics (i.e., data repositories, genetic variations, diseases, treat-
ments, etc.) is constantly growing and is increasingly seeking to ensure the application
of PM. DNA sequencing began in 1977 and since then software tools have been
developed for its analysis. Thanks to NGS Technologies [14], it is now possible to
manipulate files (e.g., VCF: Variant Call Format) in order to generate genetic diag-
noses in a more agile and efficient way [15].

2.1 Precision Medicine (PM) and Genetic Tests

PM is a way of treating patients that allows doctors to identify an illness and select the
treatment most likely to help the patient according to a genetic concept of the disease in
question (therefore it has also been called Personalized Medicine) [16]. The advantages
of genetic tests are innumerable and allow us to identify mutations or alterations in the
genes and are of great use and interest in clinical (personalized medicine) and the early
diagnosis of diseases. By 2008 there were around 1,200 genetic tests available around
the world [17], but they had some limitations (e.g., data management, genome
sequencing, etc.) and their cost was quite high.

For this reason, companies were interested in reducing costs and providing services
to end-users in the comfort of their own homes. Technological advances played a
fundamental role in the genomic environment, since the introduction of the NGS for
sequencing samples made it possible to obtain sequences more quickly and cheaply
[18, 19].

23andMe is an American company that offers a wide range of services [20], and the
type of information obtained from genetic samples is oriented to (i) genetic history
(ancestors) and (ii) personal health (risk of diseases), and is presented mostly in
probabilistic terms [21].

In the same way, in Spain companies of this type have emerged (e.g., TellMeGen2

or IMEGEN3), all with the aim of providing genetic tests to end-users, simply and in
the form of providing a diagnosis that allows end-users to take reactive or corrective
actions (e.g., prevention and treatment) to improve their quality of life.

The genomic tools presented in this work goes one step beyond from an Infor-
mation Systems and Conceptual Modeling points of view, providing a working plat-
form strictly dependent on a precise Conceptual Model of the Human Genome
(CMHG), that semantically characterizes the genomic data to be managed and
interpreted.

2.2 Genetic Tools for Annotating Variations

In genomic practical settings, the annotation of variation is the most common strategy
used for trying to determine which are the correct data to be considered. In this work,
we consider SnpEff, Annovar, and VEP, which are three of the major tools that attempt
to classify variants.

2 www.tellmegen.com/.
3 https://www.imegen.es/.

Genomic Tools* 51

http://www.tellmegen.com/
https://www.imegen.es/

SnpEff [22] annotates and predicts the effects of genetic variants building a local
database by downloading information from trusted resources. After the database is
loaded, SnpEff can analyze thousands of variants per second. However, loading a
database is a very expensive task from the point of view of resources, and it is even
recommended to increase the default Java memory parameters.

On the other hand, although SnpEff can be run in a distributed fashion (using
Amazon Cloud Services), and offers limited web interfaces, it is command-line ori-
ented. SnpEff can also be integrated with other tools such as GATK4 or Galaxy5.

The Annovar software tool annotates variants [23]. The first step when using
Annovar scripts is to populate its local database tables using an extensive set of external
sources. It is then possible to annotate variants from a VCF file to get a separate custom
tab file. wAnnovar (Web Annovar) provides an easy and intuitive web-based access to
the most popular Annovar functionalities and allows users to submit their own files and
wait for the results of the analysis report. Like SnpEff, Annovar is command-line
oriented and does not provide a well-documented API for framework integration.

VEP (Variant Effect Predictor) [24] determines the effect of the variants by
querying external databases directly, with no need to load the local database (although
it is recommended for performance reasons). Like SnpEff and Annovar, it is command-
line oriented and web-access is functionally limited. In order to achieve integration,
basic VEP functionalities can be extended using VEP plugins. Table 1 compares
VarSearch with these three tools:

As shown, VarSearch overcomes limitations by:

• Being based on a Java EE multitier applications architecture, which is a solid
approach to high-level applications in complex and heterogeneous environments.
This allows VarSearch to be easily integrated with other web applications; the
software is fully localized, etc.

• Using a service oriented framework [25], which improves interoperability and
integration.

Table 1. Annotation tools comparison.

Feature SnpEff Annovar VEP VarSearch

Distributed architecture √ √ √ √
Type of application Desktop Desktop Desktop Web
Multiple database sources √ √ √ √
Standard input formats √ √ √ √
Standard output formats √ X √ √
Design paradigm Data-oriented Data-oriented Data-oriented Model-driven
Integration facilities √ X √ √

4 https://software.broadinstitute.org/gatk/.
5 https://usegalaxy.org/.

52 J. F. Reyes Román et al.

https://software.broadinstitute.org/gatk/
https://usegalaxy.org/

• Relying on a model-driven instead of a data-oriented paradigm. VarSearch uses a
projection of the CMHG.

• Providing a functionally complete web interface with the ability to download results
in standard output file formats, which can then be post-processed by third-party
tools.

As VarSearch follows a “client/server” architecture, data loading has no impact on
client performance, thus improving user experience. Data loading can be done off-line
on the server so that researchers can query data on the fly with a short response time.

3 BPMN: Genomic Diagnosis Process

The GemBiosoft company is a spin-off of the Universitat Politècnica de València
(UPV), founded in 2010. The main objective of this company is to define the CMHG to
obtain a precise schema to manage, integrate and consolidate the large amount of
genomic data in continuous growth within the genomic domain.

GemBiosoft has a web application called “GenesLove.Me” which offers DCGT to
the consumer. The information provided by the genetic tests is accessible online to all
users without prior registration (anonymous users). For example, non-registered users
of the web application are able to consult all information related to the diagnosis of rare
diseases of genetic origin, their characteristics, treatment, tutorials and videos of the
way in which the process is performed.

The access security in GenesLove.Me is controlled by profiles. Users can access
GLM under three profiles: (1) clients (patients), (2) provider and (3) administrator. An
authenticated user with a certain access profile is authorized to carry out the operations
corresponding to the access profile.

(1) Clients (patients): Users with this profile are able to contract the services offered
by selecting the services (DCGT) they are interested in and then paying the fee.
The user is able to monitor the notifications and messages related to the diagnoses,
besides consulting the histories of all the studies and treatments carried out and
updating the information associated with his profile.

(2) Supplier: Users with this profile are able to generate notifications about the change
of status in the treatment of samples. After receiving the genetic sample, the user
activates the sample by entering its code number. They can then track the sample
until the sequence file is generated. They can also update their profiles and consult
all the activated samples (in progress and finalized).

(3) Administrator: A user with administration privileges performs administration and
maintenance tasks of the web application, such as:
(a) publishing online results (the administrator uploads the resulting diagnoses

from the analysis performed on samples sequenced by the VarSearch tool.
The application automatically notifies the user when his/her results have been
published);

(b) publishing advertisements;

Genomic Tools* 53

(c) publishing new diagnostic services to diagnose new diseases; and
(d) consulting payment reports and the application usage report (custom time

period).

Genetic tests are currently offered with the aim of detecting a person’s predispo-
sition to contracting a disease of hereditary origin [26]. The bioinformatics domain
seeks to provide the necessary mechanisms and means to generate genetic diagnoses
that allow the end-users (patients) to obtain these results to facilitate a personalized
prevention treatment.

In order to improve the understanding of the whole process using a different CM
technique (business process-oriented), Fig. 1 shows a BPMN diagram describing the
genetic diagnosis process (from the end-user’s service request until he/she receives
his/her genetic test report).

Our goal is to reinforce the CM perspective of this work, in order to make CM an
essential working procedure to design and implement effective and efficient genomic
tools. In this process, the three actors/users specified are involved: (1) The client
(patient) who requests the service to determine whether or not he/she has a disease of
genetic origin; (2) The company, in this case GemBiosoft, which is in charge of
managing and performing the genomic diagnosis; and (3) the Suppliers, who in this
case prepare the file containing the reference of the patient involved in the genetic test.

The general process begins when the end-user (patient) enters the web application
and requests the genetic analysis (t1: task 1). The company (GemBiosoft) processes this
request and proceeds to send the sample container to the client (t2). When the client
receives the container, he must activate it by registering its identifier in the web
application (t3), then place the sample in the container and send it back to the company
(t4). Upon receipt of the sample, the company confirms that it meets the necessary
requirements for the study and notifies the customer of its receipt (t5). The next step is
to determine the supplier who will be responsible for sequencing the samples and send

Fig. 1. Genetic diagnosis process [13].

54 J. F. Reyes Román et al.

him the sample (t6). The selected supplier receives the sample and notifies its reception
to the company (t7). Sequence preparation is initiated through the sequencing tech-
nology used by the supplier (t8). The supplier sends the resulting sequence of the
sample (file) to the company (t9). The company confirms its reception to the supplier
and proceeds to analyze the sequenced sample as part of the genetic diagnosis (t10).
The definitive diagnosis report (t11) is then generated. The company (in this case the
administrator/user) proceeds to publish the genetic diagnosis (result) in the web
application and the end-users are automatically notified of the results (t12). To end the
process, the end-user accesses the web application to obtain the diagnosis and make
any queries (results) (t13). In this work, we want to go deeper into tasks ‘t10’ and ‘t11’,
to better understand the genomic diagnosis generation process.

The BPMN gives companies the ability to understand their internal business pro-
cedures in graphical notation and the ability to communicate these procedures in a
standard way [27].

Through the model shown in Fig. 1, it facilitates the understanding of commercial
collaboration and transactions between organizations. In this figure, we can see the
interactions between end-users, company and suppliers [15]. The company is interested
in providing a web application that allows end-users to obtain a quality genetic test in a
simple way that aids the treatment and prevention of diseases of genetic origin.

3.1 Exploitation Tasks 10 and 11 (T10–T11)

In this work, we want to enhance the use of VarSearch to generate the genomic
diagnostics offered through GLM6. For this, it is important to note that GLM includes
interaction with VarSearch (see tasks 10 and 11 of Fig. 1), an application developed by
PROS Research Center7 to automatically identify the relevant information contained in
the genomic databases and directly related to the genetic variations of the sequenced
sample.

VarSearch relies heavily on a CMHG, which makes integration of external geno-
mic databases feasible. However, due to the large amount of information available, the
data loaded in VarSearch are the result of a selective loading process [9] where the
selected data correspond to the relevant information on the disease to be analyzed.

4 Genetic Tools Based on Conceptual Models

It is widely accepted that applying conceptual models facilitates the understanding of
complex domains (like genetics). In our case we used this approach to define two
models representing:

(a) the characteristics and the processes of DCGT [13], and
(b) the behavior of the human genome (CMHG) [28]. One of the leading benefits of

CM is that it accurately represents the relevant concepts of the analyzed domain.

6 http://geneslove.me/index.php.
7 http://www.pros.webs.upv.es/.

Genomic Tools* 55

http://geneslove.me/index.php
http://www.pros.webs.upv.es/

After performing an initial analysis of the problem domain, the next step is to
design a domain representation in the form of a conceptual model.

Our conceptual models can evolved with the new discoveries made in the field of
genomics in order to improve data processing to ensure effective PM. We can thus see
how CM gives positive support to the knowledge in which precision medicine plays a
key role [28]. It is important to highlight that the advantage of CM for representing this
domain is that it eases the integration of new knowledge into the model [5].

4.1 GenesLove.Me (GLM)

After an analysis of the requirements required for this work, important decisions were
taken to arrive at an adequate representation of the basic and essential concepts in the
understanding of the domain under study.

Figure 2 presents the conceptual model proposed, which can be classified into three
main parts: (a) Stakeholders: represents all the participants involved in the web
application; (b) Genetic diagnostics: represents everything related to diseases offered,
diagnoses and samples of patients; and (c) Sales management: represents the man-
agement of services offered, purchases and payments.

The complete description of the CM can be found in the previous work [13].
Through our CM we incorporate genetic data currently used in the PM, achieving a
conceptual representation that meets the needs of the bioinformatics domain. As we

Fig. 2. GLM conceptual model [13].

56 J. F. Reyes Román et al.

mentioned above, this model aims to improve the conceptual definition of the treatment
related to genomic diagnosis, and thus leave a conceptual framework for further
improvements.

4.2 VarSearch (Prototype)

A GeIS can be defined as a system that collects, stores, manages and distributes
information related to the behavior of the human genome. As mentioned above, the
GeIS described here is based on the CMHG [4, 8, 28]. This section deals with the
preliminary steps and the design and implementation of the prototype.

4.2.1 First Steps
VarSearch is based upon the E-Genomic Framework (EGF), described in depth in
different research papers such as [25, 29]. For the implementation of the tool, a series of
steps were carried out to ensure its good performance, as explained below:

(a) Human Genome Database (HGDB). The transformation of our model defined for
the database schema (logical model) was almost automatic, using the Moskitt tool
(https://www.prodevelop.es/es/products/moskitt). The MOSKitt project aims to
provide a set of open source tools and a technological platform for supporting the
execution of software development methods which are based in model driven
approaches, including graphical modeling tools, model transformations, code
generation and collaboration support [30]. In this task, we found two different
levels of abstraction in the model. The conceptual model represents the domain
from the point of view of scientific knowledge, while the database schema (Fig. 3)
focuses on the efficient storage and retrieval of data.

For this reason, the details of the physical representation must be considered to
improve the final implementation. It is important to emphasize the integration of the
two tables “Validation” and “Curator” in the DB schema. These tables are not actually
part of the knowledge representation of the domain, but are necessary for the devel-
opment and implementation of the tool (Explained in detail in Sect. 4.2.2).

To load the HGDB the SILE methodology [9] was used, which was developed to
improve the loading processes and guarantee the treatment of “curated data”. SILE
was used to perform the “search” and “identification” of variations associated with a
specific disease (a task validated by experts in the genetic domain, for example,
biologists, geneticists, biomedical engineers).

When the identified and curated data have been obtained the “selective loading” is
performed (through the loading module) in the HGDB. The data loaded are then
“exploited” by VarSearch. Some of the diseases -of genetic origin- studied and loaded
were Alcohol Sensitivity [15], Neuroblastoma (Table 2 shows a set of variations
detected for Neuroblastoma) [31], and others.

(b) Selection of the different data sources. For the choice of data sources, we
addressed the requirements raised in this first phase of the project. After con-
ducting studies and analysis of various genomic repositories, we selected the
following databases: NCBI, dbSNP, UMD and BIC.

Genomic Tools* 57

https://www.prodevelop.es/es/products/moskitt

Fig. 3. Database schema (Human Genome Database, HGDB).

Table 2. Selection of partially annotated variations stored in Varsearch database. For each
variation, gene symbol, chromosome, HGVS name using the gene as reference, reference and
alternative allele, variation type, clinical significance and RS identifier are shown.

Id_Symbol HG_identifier NC_identifier Position REF ALT Specialization_type Clinically_importan DB_Variatin_id

KIF1B 1 NG_008069.1:

g.91501A > T

10297206 A T SNV Risk Factor rs121908161

KIF1B 1 NG_008069. 1:g.

69713 69716delCCTT

10275418

−10275421

CCTT – Deletion Uncertain

Significance

rs886044975

ALK 2 NG_009445.1:

g.705736T > G

29220831 T G SNV Pathogenic rs281864719

ALK 2 NG_009445.1:

g.716694T > C

29209873 T C SNV Pathologic rs113994092

KIF1B 1 NG_008069.1:g.

26608_26609dupTA

10232313

−10232314

– TA Duplication Likely Benign rs112765394

58 J. F. Reyes Román et al.

NCBI [32] (https://www.ncbi.nlm.nih.gov/) is a data source with curated data on
structural concepts of DNA sequencing. From this repository, we extracted information
related to chromosomes, genes, transcripts, exons… and everything related to the
“Structural view” of our conceptual model. dbSNP [33], BIC [34] and UMD [35] are
databases of variations that store curated information on genetic differences between
individuals. The main reason for using dbSNP is because it not only focuses on
variations of a specific gene or region, but also contains variations related to all
chromosomes and updates the information immediately. BIC and UMD were selected
because of the requirements of a research group that was collaborating with us in a
project (Future Clinic) focused on “breast cancer”. This group helped us to test the
performance of our GeIS and its associated tool. Currently, we are studying and
analyzing other genomic repositories like: ClinVar, dbGaP, 1000 Genomes, ALFRED,
and others [5].

(c) Genetic loading module. For the loading process of the HGDB, a load module
was designed to store the data from the previously measured data sources. This
load module was developed using an ETL strategy [36] with three different levels:
extraction, transformation, and load (see Fig. 4). Each level is completely inde-
pendent of the others, facilitating and clarifying the design of the system and
improving its flexibility and scalability. As can be seen in Fig. 4, all the necessary
information is extracted from the source databases in the first layer (1). All this
raw unstructured data goes to the second layer (2) where several transformations
are made in order to format the data according to the structure of our database
schema. These transformed data are sent to the third layer (3), which communi-
cates directly with the database (following the above-mentioned SILE method-
ology in Task “a”, Sect. 4.2.1).

4.2.2 Design and Implementation of VarSearch
VarSearch is a web application that allows the analysis of variations obtained from the
DNA sequenciation of biological samples and which is stored in FASTA or VCF file
formats [37]. Different users can access the application in private spaces in the HGDB
and each user can address his own variations. The validation of variations that they
consider relevant can be included. It also offers storage for the users’ variations to find
similarities in the file analysis process. Another advantage is the inclusion of the

Fig. 4. Load module.

Genomic Tools* 59

https://www.ncbi.nlm.nih.gov/

information obtained from the data sources, together with the user validations in the
database, which is an improvement in performance related to the search for variations.
VarSearch can find variations in our database from a provided file (see Fig. 5).

The variations found are displayed to the user, and any additional information that
the file lacks can be calculated and validated. Any variations of the file that have not
been found in our database can also be stored. After inserting one or more variations
not found in a file -because they are considered relevant to the user- and reanalyzing
this file, these inserted variations will be found in our database and displayed to the
user. Figure 6 shows how the functionality has been grouped into three main packages:
(1) User management: a user can act as administrator and control other users, or can
create new users and modify or eliminate their Information. (2) Data load manage-
ment: the system allows the user to load the files to be analyzed in both VCF and
FASTA format, compare the variations in these files to the variations in the HGDB
used by VarSearch. (3) Data analysis: After analyzing and verifying the variations in
the input files, the user can list the variations and classify them by multiple criteria
(position, chromosome, etc.). There is also a series of functionalities related to the login
and modification of account information that has not been grouped in any functionality
package.

• Confidentiality of the information. As this information is a company’s primary
resource, VarSearch restricts access to it. When a user validates a variation, he can
choose a privacy category:

(a) Public content, if he is willing to share the knowledge with other users, or
(b) Private content, allowing access only to the owner-user and hidden from other

users. All the variations can only be accessed by the user who created them.

Fig. 5. VarSearch application.

60 J. F. Reyes Román et al.

• VarSearch Architecture. In order to make it accessible to all users, VarSearch was
designed as a web application with HTML5 technology in a language common to
all current browsers. The information is managed by the MySQL database. The
VarSearch architecture consists of the following elements:

(a) A distributable database based on MySQL (using software tools like: Navicat
Enterprise and MySQL Workbench). For the initial validation of this database,
we only loaded the information related to chromosomes 13 and 22.

(b) A set of REST services [38] developed in Java using Hibernate and Jersey,
which are deployed on a Tomcat server 7.

(c) A web application, which uses the Bootstrap framework for general organi-
zation of the interface and files, together with jQuery to define advanced
interface components and invoke REST services.

(d) It also includes a “mini” REST service to manage users and roles, which is
based on the same architecture and technologies as the other REST services.
The data layer is based solely on MySQL (you can see the VarSearch archi-
tecture represented in Fig. 7).

The application entry point is a file with variations detected by a sequencing
machine in VCF or FASTA format. With this input the database is searched to detect
any variations, additional information on the diseases they may cause and the asso-
ciated bibliography. VarSearch users follow this process when working with the tool:

(1) A VCF file is uploaded from the web.
(2) The file is then processed and parsed. The entries are shown on an HTML table

and the variants of each VCF entry can be seen.

Fig. 6. VarSearch’s general use case diagram (domain).

Genomic Tools* 61

(3) The variations present in the input file can be annotated against the database and
the annotated file is downloaded in *.xls, *.csv and *.pdf format or its contents
viewed in another HTML table.

To parse the VCF file and annotate the variants, VarSearch relies on snpEff and
snpSift [39] tools, and so well tested libraries are used instead of reinventing the wheel.
This also ensures VCF standard support, using ANN files for variant annotation.

If another type of information is considered useful for annotation and not covered
by the procedure described, VarSearch uses the “INFO” field to introduce the desired
values. As VarSearch is based on EGF, new genome annotation files can be quickly
integrated by developing the proper parser module, either by a custom development or
integrating a third-party tool or library.

All the information associated with the variations found in our HGDB can be
obtained. For variations in the lists, user validations can be integrated for future
searches with the “Add Validation” option. Another advantage of VarSearch is the user
management (new users can be created and edited using the “User Management”
option).

One of the objectives of VarSearch is to continue the extension and implementation
of all the knowledge defined in our CMHG, such as the treatment of pathways and
metabolic routes [28]. This tool facilitates the analysis and search for variations,
improving the generation of genomic diagnoses associated with diseases of genetic
origin. End-users will find the web application easy to use and they are guaranteed
security for their data [40].

5 Case Studies

In the previous work [13], the case study applied to GenesLove.Me was defined,
explaining all the processes involved in the management of DTCG (Sect. 3). In
summary, the test cases were performed with the implemented solution.

Fig. 7. VarSearch architecture.

62 J. F. Reyes Román et al.

The validation scenario consisted of a group of five (5) users, who made requests
for genetic testing for “lactose intolerance”. To begin the process, each user involved
in the case study authorized the procedure through an “informed consent” [15, 41],
which becomes a legal support that establishes the rights and obligations of the service
offered and its expected scope.

Next, the following case studies performed with the prototype VarSearch are
presented.

5.1 Using the VarSearch Prototype

To verify VarSearch performance, two case studies were carried out. In the first,
VarSearch was used to analyze a VCF file. The second compared the time spent on
searching for variations manually and using the application; it is important to highlight
that this prototype has as end-users the geneticists and experts responsible for the
generation of the genomic diagnostics. To access the application VarSearch users must
have an account provided by Gembiosoft SME (http://gembiosoft.com/). After logging
in, a file is selected for analysis. VarSearch reads all records and transforms them into
variations.

These transformations depend on the file information: for example, the FASTA
files contain a genetic sequence (NG), and so require the reference on which the
variation is based to be to the “NG” sequence. In contrast, VCF files use positions
relative to chromosomes (NC). Once the file records have been converted into varia-
tions, the next step is to search for these variations in our HGDB. After the analysis, the
“variations found” and “variations not found” can be differentiated.

• Found Variations Management. Found variations are those extracted from the file
in which information has been found in the HGDB, which means that this variation
has been found in at least one genomic repository. A found variation has much more
information than the variation obtained from the file and allows us to calculate and
submit detailed information to the user.

Having analyzed the VCF file, all the variations found are displayed to the user, in
each case calculating the HGVS notation8, its data source identifier, clinical signifi-
cance, and the number of validations and databases found together with their biblio-
graphic references. This information is calculated for VCF and FASTA; however, VCF
variations are sorted by samples. Figure 8 shows the results obtained by analyzing a
VCF file with a single sample. For this sample (5323-BRCAyA), a number of varia-
tions were found with the corresponding information. A variation can have validations
made by users. The validation column corresponds to the number of validations that
each variation has and if a validation is private, only the owner will see it. Another
VarSearch feature is its support for multiple bibliographical references. A variation can
be found in different databases and may contain different bibliographic references.

8 http://www.hgvs.org/mutnomen/.

Genomic Tools* 63

http://gembiosoft.com/
http://www.hgvs.org/mutnomen/

• Not found Variations (insertion and treatment). The user who is analyzing
variations may find a variation in the file, which was not found in the database (see
Fig. 9). Using his experience and knowledge he may consider some variations as
relevant despite not being found.

Fig. 8. Analysis of VCF file using VarSearch.

Fig. 9. List of variations not found.

64 J. F. Reyes Román et al.

With VarSearch the user can insert the not found variations or any variation
considered key to the study. If the user has inserted certain variations that had not been
found, on reanalyzing the file these inserted variations are compared with the variations
in the file, showing the similarities.

In order to differentiate the variations of the different repositories from user vari-
ations, the results obtained from the user’s experience and the results from years of
study of different biomedical databases are differentiated.

5.2 Improved Efficiency and Time in Finding Variations with VarSearch

To validate the effectiveness and performance of the proposed software, some exper-
iments were performed to measure efficiency and time. A study was conducted to
compare the time spent searching for variations manually with an automatic search of
all the repositories mentioned above using VarSearch.

A manual search of one variation involves detecting the variation in the VCF or
FASTA file, a search for the variation in the different repositories, and the identification
and verification of the variation. VarSearch was tested for the time it needed to search
for several variations, calculating the time evolution according to the number of
variations involved (2, 5 and 7). The results can be seen in Fig. 10.

As can be seen in Fig. 10, the cost of performing a manual search rises to 5’32 min
for 2 variations, 10’83 min for 5 variations and 18’89 min for 7 variations.

However, with VarSearch the time remains constant at between 2 and 3 s for
different variations, which confirms its efficient performance. Using this prototype thus
significantly reduces the time spent on the search for variations. Also, it must be
remembered that the manual search process does not calculate additional information
for variations. If this information were necessary, the search time would increase
significantly, however, with VarSearch this time remains constant because this infor-
mation has already been calculated in the search for variations.

Fig. 10. Time optimization.

Genomic Tools* 65

6 Conclusions and Future Research

This paper describes a study and analysis of the implementation of two web application
to facilitate DCGT, the first offer the services (genomic diagnosis) to the final user
using an interface easy to use -GenesLove.Me-, and the second is a prototype for the
generation of the diagnosis using our HGDB -VarSearch-. Through these applications,
we can inform end-users about their predisposition to suffer certain genetically based
illnesses.

Through the development of our web applications we seek to provide end-users
with a genomic diagnosis in a secure and reliable way. The use of BPMN and Con-
ceptual Modeling based approaches for this type of service aids the understanding of
the participants in the processes in the genomic domain and improves the processes
involved.

Bioinformatics is a domain that is constantly evolving, and with the application of
conceptual models, we can extend our genomic knowledge and conceptual represen-
tation accurately and simply.

In this work, we have focused mainly on the description of the prototype “Var-
Search”, which plays a fundamental role in processes 10 and 11 of the BPMN pre-
viously described, because with this prototype we generated the genomic diagnosis
facilitated through GenesLove.Me.

VarSearch is a flexible new analysis framework or web application that provides a
powerful resource for exploring both “coding” and “non-coding” genetic variations. To
do this, VarSearch integrates VCF format input/output with an expanding set of genome
information. VarSearch (and other tools built on EGF) will therefore facilitate research
into the genetic basis of human diseases. EGF can also be expected to allow the
development of new tools in diverse e-genomics contexts. As genetic laboratories are
now oriented to facilitating genetic procedures, web access, usability and feasibility, the
definition of different profiles are therefore important goals. All this allows the user to
configure the tool according to his specific needs. These necessities include inserting
genetic variations and validating its own variations, thus increasing its “know-how”.

Future research work will also be aimed at:

– The application of Data Quality (DQ) metrics to enhance our HGDB.
– The study and treatment of new diseases of genetic origin (continue expanding the

list of illnesses available in the web application).
– Implementation of data management mechanisms to enhance the quality of per-

sonalized medicine.
– Improving/develop the next version of VarSearch (version 2.0) for genetic diag-

nosis (including -haplotypes and statistical factors-).
– We also intend to extend the model with studies on the treatment of “haplogroups”,

including subjects with a similar genetic profile who share a common ancestor.

Acknowledgements. This work was supported by the MESCyT of the Dominican Republic and
also by the Generalitat Valenciana through project IDEO (PROMETEOII/2014/039), the Spanish
Ministry of Science and Innovation through Project DataME (ref: TIN2016-80811-P).

66 J. F. Reyes Román et al.

The authors are grateful to Jorge Guerola M., David Roldán Martínez, Alberto García S., Ana
León Palacio, Francisco Valverde Girome, Ainoha Martín, Verónica Burriel Coll, Mercedes
Fernández A., Carlos Iñiguez-Jarrín, Lenin Javier Serrano and Ma. José Villanueva for their
valuable assistance.

References

1. Buermans, H.P.J., den Dunnen, J.T.: Next generation sequencing technology: advances and
applications. Biochimica et Biophysica Acta (BBA) – Mol. Basis Dis. 1842(10), 1932–1941
(2014). https://doi.org/10.1016/j.bbadis.2014.06.015

2. Grosso, L.A.: Precision medicine and cardiovascular diseases. Rev. Colomb. Cardiol. 23(2),
73–76 (2016). https://doi.org/10.1007/978-3-540-39390-0

3. Olivé, A.: Conceptual Modeling of Information Systems, pp. 1–445. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-39390-0

4. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual
modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song,
I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

5. Reyes Román, J.F., Pastor, Ó., Valverde, F., Roldán, D.: How to deal with Haplotype data:
an extension to the conceptual schema of the human genome. CLEI Electron. J. 19(3)
(2016). http://dx.doi.org/10.19153/cleiej.19.3.2

6. Object Management Group: Business Process Model and Notation (2016). http://www.
bpmn.org/

7. Romeo-Malanda, S.: Análisis genéticos directos al consumidor: cuestiones éticas y jurídicas
(2009). http://www.institutoroche.es/legalactualidad/85/analisis

8. Pastor López, O., Reyes Román, J.F., Valverde Giromé, F.: Conceptual Schema of the
Human Genome (CSHG). Technical report (2016). http://hdl.handle.net/10251/67297

9. Reyes Román, J.F., Pastor, O.: Use of GeIS for early diagnosis of alcohol sensitivity. In:
Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems
and Technologies, vol. 3, pp. 284–289 (2016). https://doi.org/10.5220/0005822902840289

10. Bornberg-Bauer, E., Paton, N.W.: Conceptual data modelling for bioinformatics. Briefings
Bioinform. 3(2), 166–180 (2002). https://doi.org/10.1093/bib/3.2.166

11. Ram, S., Wei, W.: Modeling the semantics of 3D protein structures. In: Conceptual
Modeling–ER 2004, Proceedings, pp. 696–708 (2004). https://doi.org/10.1007/978-3-540-
30464-7_52

12. Pastor, M.A., Burriel, V., Pastor, O.: Conceptual modeling of human genome mutations: a
dichotomy between what we have and what we should have. In: BIOSTEC Bioinformatics
2010, pp. 160–166 (2010). ISBN 978-989-674-019-1

13. Reyes Román, J.F., Iñiguez-Jarrín, C., Pastor, O.: GenesLove.Me: a model-based web-
application for direct-to-consumer genetic tests. In: Proceedings of the 12th International
Conference on Evaluation of Novel Approaches to Software Engineering, pp. 133–143,
Porto, Portugal, 28–29 April (2017). ISBN 978-989-758-250-9, https://doi.org/10.5220/
0006340201330143

14. Mardis, E.R.: The $1,000 genome, the $100,000 analysis? Genome Med. 2(11), 84 (2010)
15. Reyes Román, J.F.: Integración de haplotipos al modelo conceptual del genoma humano

utilizando la metodología SILE. Universitat Politècnica de València (2014). http://hdl.
handle.net/10251/43776

Genomic Tools* 67

http://dx.doi.org/10.1016/j.bbadis.2014.06.015
http://dx.doi.org/10.1007/978-3-540-39390-0
http://dx.doi.org/10.1007/978-3-540-39390-0
http://dx.doi.org/10.1007/978-3-319-46397-1_31
http://dx.doi.org/10.19153/cleiej.19.3.2
http://www.bpmn.org/
http://www.bpmn.org/
http://www.institutoroche.es/legalactualidad/85/analisis
http://hdl.handle.net/10251/67297
http://dx.doi.org/10.5220/0005822902840289
https://doi.org/10.1093/bib/3.2.166
http://dx.doi.org/10.1007/978-3-540-30464-7_52
http://dx.doi.org/10.1007/978-3-540-30464-7_52
http://dx.doi.org/10.5220/0006340201330143
http://dx.doi.org/10.5220/0006340201330143
http://hdl.handle.net/10251/43776
http://hdl.handle.net/10251/43776

16. Aguilar Cartagena, A.: Medicina Personalizada, Medicina De Precisión, ¿Cuán Lejos
Estamos De La Perfección? Carcinos 5, 1–2 (2015)

17. Grupo RETO Hermosillo, A.: El cáncer de mama (2016). http://gruporetohermosilloac.com/
index.php

18. Metzker, M.L.: Sequencing technologies - the next generation. Nat. Rev. Genet. 11(1),
31–46 (2010)

19. Voelkerding, K.V., Dames, S.A., Durtschi, J.D.: Next-generation sequencing: from basic
research to diagnostics. Clin. Chem. 55(4), 641–658 (2009)

20. 23andMe: 23andMe (2016). https://www.23andme.com/
21. 23andMe: How it works? (2016). https://www.23andme.com/howitworks/
22. Cingolani, P.: snpEff: variant effect prediction (2012)
23. Wang, K., Li, M., Hakonarson, H.: ANNOVAR: functional annotation of genetic variants

from high-throughput sequencing data. Nucleic Acids Res. 38(16), e164–e164 (2010)
24. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Cunningham, F.:

The ensembl variant effect predictor. Genome Biol. 17(1), 122 (2016)
25. Roldán, D., Pastor, O., Fernández, M.: An integration architecture framework for

e-genomics services. In: IEEE RCIS (2014). https://doi.org/10.1109/rcis.2014.6861063
26. U. S. National Library of Medicine: What is genetic testing? Genetics Home Reference

(2017)
27. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand.

Interfaces 34(1), 124–134 (2012)
28. Reyes Román, J.F., León, A., Pastor, Ó.: Software engineering and genomics: the two sides

of the same coin? In: Proceedings of the International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2017), pp. 1–6 (2017). https://doi.org/10.
5220/0006368203010307

29. Roldán M.D., Pastor López, Ó., Reyes Román, J.F.: E-genomic framework for delivering
genomic services. An application to JABAWS. In: 9th RCIS (IEEE), pp. 516–517 (2015).
https://doi.org/10.1109/RCIS.2015.7128915

30. Muñoz, J., Llacer, M., Bonet, B.: Configuring ATL transformations in MOSKitt. In:
Proceedings of the 2nd. International Workshop on Model Transformation with ATL
(MtATL 2010), CEUR Workshop Proceedings (2010)

31. Burriel, V., Reyes Román, J.F., Heredia C.A., Iñiguez-Jarrín, C., León, A.: GeIS based on
conceptual models for the risk assessment of neuroblastoma. In: 11th RCIS (IEEE), pp. 1–2
(2017). https://doi.org/10.1109/RCIS.2017.7956581

32. National Center for Biotechnology Information (2017). https://www.ncbi.nlm.nih.gov/
33. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M., Sirotkin, K.:

dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2001)
34. Szabo, C., Masiello, A., Reyes Román, J.F., Brody, L.C.: The breast cancer information

core: database design, structure, and scope. Hum. Mutat. 16(2), 123 (2000)
35. Béroud, C., Collod-Béroud, G., Boileau, C., Soussi, T., Junien, C.: UMD (Universal

mutation database): a generic software to build and analyze locus-specific databases. Hum.
Mutat. 15(1), 86 (2000)

36. Zhou, H., Yang, D., Xu, Y.: An ETL strategy for real-time data warehouse. In: Wang, Y., Li,
T. (eds.) Practical Applications of Intelligent Systems. Advances in Intelligent and Soft
Computing, vol. 124, pp. 329–336. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25658-5_41

37. Claverie, J.M., Notredame, C.: Bioinformatics for Dummies. Wiley, Hoboken (2011)
38. Haupt, F., Karastoyanova, D., Leymann, F., Schroth, B.: A model-driven approach for REST

compliant services. In: IEEE International Conference on Web Services (ICWS), pp. 129–
136 (2014)

68 J. F. Reyes Román et al.

http://gruporetohermosilloac.com/index.php
http://gruporetohermosilloac.com/index.php
https://www.23andme.com/
https://www.23andme.com/howitworks/
http://dx.doi.org/10.1109/rcis.2014.6861063
http://dx.doi.org/10.5220/0006368203010307
http://dx.doi.org/10.5220/0006368203010307
http://dx.doi.org/10.1109/RCIS.2015.7128915
http://dx.doi.org/10.1109/RCIS.2017.7956581
https://www.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1007/978-3-642-25658-5_41
http://dx.doi.org/10.1007/978-3-642-25658-5_41

39. Tolhuis, B., Wesselink, J.J.: NA12878 Platinum Genome GENALICE MAP analysis report
(2015)

40. León, A., Reyes, J., Burriel, V., Valverde, F.: Data quality problems when integrating
genomic information. In: Link, S., Trujillo, J.C. (eds.) ER 2016. LNCS, vol. 9975, pp. 173–
182. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47717-6_15

41. de Galicia, C.A.: Ley 3/2001, reguladora del consentimiento informado y de la historia
clínica de los pacientes (2001)

Genomic Tools* 69

http://dx.doi.org/10.1007/978-3-319-47717-6_15

Technological Platform for the Prevention
and Management of Healthcare

Associated Infections and Outbreaks

Maria Iuliana Bocicor1(B), Maria Dascălu2, Agnieszka Gaczowska3,
Sorin Hostiuc4, Alin Moldoveanu2, Antonio Molina5,

Arthur-Jozsef Molnar1, Ionut, Negoi4, and Vlad Racovit, ă1

1 SC Info World SRL, Bucharest, Romania
{iuliana.bocicor,arthur.molnar,vlad.racovita}@infoworld.ro

2 Polytechnic University of Bucharest, Bucharest, Romania
maria.dascalu@upb.ro, alin.moldoveanu@cs.pub.ro

3 NZOZ Eskulap, Skierniewice, Poland
agaczkowska@gmail.com

4 Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
soraer@gmail.com, negoiionut@gmail.com

5 Innovatec Sensing & Communication, Alcoi, Spain
amolina@innovatecsc.com

Abstract. Hospital acquired infections are infections that occur in
patients during hospitalization, which were not present at the time of
admission. They are among the most common adverse events in health-
care around the world, leading to increased mortality and morbidity
rates, prolonged hospitalization periods and considerable financial bur-
den on both hospitals and patients. Preventive guidelines and regula-
tions have been devised, however compliance to these is frequently poor
and there is much room for improvement. This paper presents the pro-
totype of an extensible, configurable cyber-physical system, developed
under European Union funding, that will assist in the prevention of hos-
pital infections and outbreaks. Integrating a wireless sensor network for
the surveillance of clinical processes with configurable monitoring soft-
ware built around a workflow engine as key component, our solution
detects deviations from established hygiene practices and provides real-
time information and alerts whenever an infection risk is discovered.
The platform is described from both hardware and software perspec-
tive, with emphasis on the wireless network’s elements as well as the
most important software components. Furthermore, two clinical work-
flows of different complexity, which are included in the system prototype
are detailed. The finalized system is expected to facilitate the creation
and automated monitoring of clinical workflows that are associated with
over 90% of hospital infections.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 70–90, 2018.
https://doi.org/10.1007/978-3-319-94135-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_4&domain=pdf

Healthcare Associated Infections and Outbreaks 71

1 Introduction

Hospital acquired infections (HAI), also known as healthcare associated infec-
tions or nosocomial infections are among the most common adverse events in
healthcare around the world, affecting between 8% and 12% of patients admit-
ted to hospitals in the European Union [13,22], and 5% to 10% of hospitalized
patients in the United States every year [10]. Hospital infections refer to those
infections that occur in patients during hospitalization, which were not present
or incubating at the time of admission, including “infections acquired in the hos-
pital but appearing after discharge, and also occupational infections among staff
of the facility” [57].

HAI are prevalent across the globe, regardless of geographical, social or eco-
nomic factors [12,21,51,59,60]. In addition to their most critical consequences,
which are an increased rate of mortality and morbidity (an annual number of
37 000 deaths in Europe, 99 000 attributable deaths in the USA [60], 8 000
in Canada [9] and between 7% and 46% attributed mortality rates in South-
east Asia [34]), HAI also translate in prolonged hospitalization periods (5 to
29.5 days worldwide [61]) and further administered treatments. This leads to
a considerable financial burden, estimated between $28 and 45 billion in the
United States [48], $129 million in extra costs incurred in Canada [9,27], and
e7 billion in Europe, in 2008 [20]. Furthermore, the problem of HAI is closely
connected with antimicrobial resistance, another fundamental difficulty for mod-
ern healthcare and a significant threat to public health. Many bacterial species,
such as Pseudomonas, Acinetobacter, Staphylococcus aureus or Clostridium dif-
ficile have developed to be resistant to a wide range of antibiotics. In many cases,
they also represent major causes of HAI [32].

Having been recognized as a significant issue for 30 years now [51], surveil-
lance has been in place and measures and precautions have been taken [11,62]
especially during the past decade, in order to reduce nosocomial infection rates.
When specific steps are taken by medical personnel, infection rates have been
shown to decrease by more than 70% [11]. Preventive efforts have proven to be
successful, as a report from the Agency of Healthcare Research and Quality [1]
estimates a 17% decline in the rate of HAI from 2010 to 2013 in the United
States. However, the issue is still a delicate one and there is much room for
improvement.

This paper presents an extensible, configurable cyber-physical system that
will assist in the prevention of HAI and outbreaks [7]. Integrating a wireless
sensor network (WSN) for the surveillance of clinical workflows with config-
urable monitoring software, our solution detects deviations from established
hygiene practices and provides real-time information and alerts, whenever non-
conformity is discovered. The hardware network of wireless sensors that can
be deployed within variable-sized clinical locations collect real-time information
from the clinical setting, such as substance or material availability (soap, antimi-
crobial agents, sterile gloves) and environmental conditions affecting the spread
of pathogens (oxygen levels, airflow, temperature), thereby providing a complete
image of the hospital environment in real time. Monitoring of complex processes

72 M. I. Bocicor et al.

such as management of indwelling urinary catheters, postoperative care, intu-
bation or endoscopy is possible by describing them using software workflows
that are interpreted and executed by a workflow engine. When the sequence
of transitions inferred by the system from sensor data presents deviations from
the expected flow, the system alerts responsible personnel. The system will also
provide advanced analytics, which are extremely important for pinpointing dif-
ficult infection sources that elude existing workflows and for the identification of
existing activities targeted towards outbreak prevention and control.

The system is researched and built within a European Union-funded project
and its current stage of development represents a proof of concept, including
multifunctional smart sensors for monitoring the use of soap, antimicrobial gel
and water sink together with two clinical workflows that describe the required
hygiene procedures in the case of the general practitioner’s office and for minor
surgeries that are performed within the clinic where the system will be first
deployed. This paper details the smart devices employed, the hardware-software
integration as well as the software components that ensure the cyber-physical
system achieves its objective of lowering the number and severity of hospital
infections.

2 State of the Art

In recent years several concrete measures have been taken to reduce the risk
of infections in hospitals. As such, guidelines and rules of prevention have been
devised for healthcare personnel and patients’ safety [33]. As a response of the
necessities within the hospital environment, various software or hybrid hardware
and software systems have been developed to ensure strict compliance with and
enforcement of these instructions.

2.1 Monitoring Hand Hygiene

Proper hand hygiene is considered the single most valuable tool in preventing
the spread of healthcare-associated infections [33]. Despite existing information,
hand hygiene measures are still not widely adopted, being applied in only 40%
of cases when it is required [43]. Thus, the underlying idea used by quite a
large number of systems is continuous monitoring of healthcare workers’ hand
hygiene and real-time alert generation in case of non-compliance with established
guidelines.

Numerous existing Information and Communication Technology (ICT) solu-
tions use this idea of continuous surveillance and immediate notification in case
of hygiene rule violation. IntelligentM [41] and Hyginex [30] are two systems
that combine sensors attached to soap, disinfectant dispensers or faucets with
Radio Frequency Identification (RFID) enabled bracelets designed to be worn
by medical personnel. Whenever hygiene events are omitted, the systems detect
the violation and the bracelet alerts the clinician using vibrations or luminous
signals. Biovigil Technology [4] and MedSense [26] are similar systems which

Healthcare Associated Infections and Outbreaks 73

use wearable badges attached to healthcare workers’ uniforms. While Biovigil
uses chemical sensors placed at hospital ward entrances to detect whether hand
hygiene is undertaken, MedSense employs beacons placed above patient beds or
in other points of care, with the aim to establish a wireless patient zone. This
allows the badge to identify hand hygiene opportunities by detecting when the
badge enters or exits a patient zone. SwipeSense [50] is composed of a series
of small, recyclable alcohol-based gel dispensers, which can be worn by medical
personnel together with proximity sensors mounted on hospital walls and a mon-
itoring web platform. Due to this design, the system allows clinicians to perform
hand hygiene without interrupting their activities to walk to a sink or a disin-
fectant dispenser [45]. UltraClenz’s Patient Safeguard System [53] is somewhat
similar to MedSense, in that it employs a patient based approach, as opposed
to the room based approach of previously presented technologies. The system
prompts workers to sanitize before and after every patient contact. Unlike other
systems presented so far, DebMed [16] does not use RFID technology, nor any
devices for medical personnel. It integrates a wireless network of dispensers that
send data to a server via hubs and modems installed on each floor. The server
application uses a customizable algorithm [18] to estimate the number of hand
hygiene opportunities per patient-day and compares this number with the actual
hand hygiene events that were performed.

2.2 Disinfection Robots

The systems mentioned in the previous section prevent the spread of HAI by
ensuring that transmission is not induced by medical personnel via contami-
nated hands. But transmission can also occur via air or contaminated surfaces.
Preventing this using chemicals or ultraviolet light has proven successful.

Short-wavelength ultraviolet (UV-C) light provides a strong germicidal effect,
by inducing cellular damage and cell death in pathogens. Water, air and surfaces
can be purified using UV-C. However, humans must avoid direct UV-C irradia-
tion due to its harmful effects.

Several types of solutions using UV-C or chemical substances have been devel-
oped for air and surface disinfection, in the form of disinfection robots. Tru-D
Smart UVC [52] scans the room to be disinfected and computes the optimal UV-C
light dose required for disinfection according to the particularities of the room.
These include its size, geometry, surface reflectivity and the amount and location
of equipment present. The robot performs disinfection of the entire room, from
top to bottom in one cycle and from one location, ensuring that the ultraviolet
light reaches even shadowed areas. The Xenex “Germ-Zapping Robot” [63] called
“Little Moe” can disinfect a room using pulses of high-intensity, high-energy ultra-
violet light. The deactivation of pathogens takes place in less than five minutes and
the disinfected room remains at a low microbial load until it is re-contaminated by
a person or the ventilation system. The UV-Disinfection Robot developed by Blue
Ocean Robotics [5] has the same purpose as Little Moe and Tru-D. The robot can
drive autonomously when called upon by medical personnel and the approximate
time it needs for fully disinfecting a room is between 10 to 15 min.

74 M. I. Bocicor et al.

In addition to UV-C light, certain chemical substances or chemical reactions
can be used to eliminate harmful bacteria. The Bioquell Q-10 robot [3] emits
hydrogen peroxide vapours, which are safe for hospital and equipment surfaces,
as well as for other technological machinery and computers, but are deadly to
pathogens. This antibacterial bleaching agent is also toxic to humans and there-
fore another solution must be distributed across the room after disinfection,
to make it safe for humans to enter. A different approach is taken by Sterisafe
Decontamination technology [47]: the Sterisafe robot does not employ any chem-
icals, but disinfects rooms, including corners and shadowed areas, and removes
gases and harmful particles using activated oxygen, also known as ozone. Com-
pared to UV-C light robots, Sterisafe’s main advantages are that it disinfects
hard to reach surfaces (under beds, behind equipment), while as opposed to the
Bioquell Q-10 robots, it completely removes the ozone and other by-products at
the end of the disinfection cycle, leaving the room safe for people. A comparison
study effectuated by Andersen et al. [2] concluded that disinfection with UV-C
light is very effective, but it’s best used in conjunction with chemical disinfection,
to ensure good cleaning of shadowed areas.

2.3 Infections and Outbreak Management

The fight against infections is reinforced through other types of systems that
were designed for infection management, such as clinical decision support sys-
tems or identification of models that shape the spread of disease. Protocol Watch
[39] is a decision support system used to improve compliance with the “Surviving
Sepsis Campaign” international guidelines [49], simplifying the implementation
of sepsis prevention protocols by regularly checking certain medical parameters
of patients. Other relevant software systems developed to enhance treatment
policy in case of an infection outbreak are RL6:Infection [40] and Accreditrack
[23]. Through proactive monitoring and integration of data obtained from several
hospital systems, RL6:Infection helps responsible persons to optimize their ini-
tiatives and to make the right decisions concerning infection prevention, based
on data collected and presented by the system. Accreditrack was designed to
ensure compliance with hand hygiene guidelines, to verify nosocomial infection
management processes as well as to provide visibility and transparency for these
processes.

Another beneficial endeavour for modelling the spread of disease, for iden-
tification of control policies and for ensuring the adoption of correct medical
practices is building contact networks [15]. A number of studies have modelled
interactions in clinical settings using data collected by wireless sensor networks
and electronic medical records, and illustrated that contact network knowledge
can be used in preventing and handling hospital infections [25,29,31,46,54,55].

The systems presented in this section are effective, but they all address the
issue of hospital infections from a singular direction. Systems for monitoring hand
hygiene specifically target processes involving disinfection of hands, disinfection
robots are useful for disinfecting rooms and equipment, while systems for manag-
ing outbreaks are particularly targeted towards that definite goal. The problem

Healthcare Associated Infections and Outbreaks 75

of hospital infections and outbreaks however, is a complex one, and we believe
a more comprehensive approach will provide a better solution. The platform
we propose intends to tackle HAI from several directions, using a two-pronged
approach. First, a basic line of defence able to monitor clinical workflows most
prone to infection transmission in real time will handle both pathogen-agnostic
and pathogen-specific scenarios. Second, an advanced line of defence will be cre-
ated, that will employ risk maps and will build contact networks using the data
gathered as part of the basic line of defence. To the best of our knowledge, our
proposed system is the first of its kind to combine a sensor network and software
in a cyber-physical platform of the intended versatility. The following sections
of the paper describe our proposed system in more detail.

3 HAI-OPS - Platform Overview

The platform we propose is developed within the Hospital Acquired Infection
and Outbreak Prevention System (HAI-OPS) research project [28], which aims to
build a pragmatic, automated solution to significantly decrease overall mortality
and morbidity associated with HAI by specifically targeting their most common
sources and pathways of transmission. To achieve this, the system will leverage
advances in computing power and availability of custom-developed, affordable
hardware that will be combined with a configurable, workflow-based software
system [8].

HAI-OPS will address several clinical and maintenance processes and pro-
cedures, such as hand hygiene, catheter management, invasive procedures and
surgical care. The system will employ an approach that allows the definition
and execution of custom Business Process Model and Notation (BPMN) [37]
encoded workflows, which model various clinical and maintenance processes. The
cyber-physical platform will be configurable so that it covers differences between
clinical unit location and layout, differences in types and specifics of undertaken
procedures, as well as variation between existing hygiene guidelines. Further-
more, it will offer interoperability with hospital information systems (HIS) and
will allow patient and infection data analysis using risk maps and contact net-
works. As such, the system will also be geared to help hospital epidemiologists
in the fight against infection and outbreaks.

The cornerstone of the proposed system is the detection of events happening
within the monitored location which are deemed relevant to infection prevention.
For the purposes of the pilot deployment, the system will detect the following
event types:
– Presence of persons within the clinical unit. The system will monitor employ-

ees working in clinical or auxiliary positions as well as patients. Person moni-
toring will be achieved using passive RFID tags embedded in badges. Employ-
ees will be provided with permanent customized badges linked to their user
profile. Patients will receive a temporary tag when checking into the clinic
reception, a mandatory step before any appointment. The use of passive tech-
nology allows keeping tags light and inexpensive, while powered elements are
embedded in the environment.

76 M. I. Bocicor et al.

– Person enters or leaves a room. The passive tags issued to personnel as well
as patients, as described above, will be detected by active RFID antennas
mounted within the door frames of monitored rooms. This will allow identi-
fication of the person as well as determine their direction of movement.

– Person undertakes hand hygiene. According to the regulations within the
partner clinic, hand hygiene can be undertaken using either soap and water,
or antimicrobial gel. Both are at the disposal of medical personnel and are
placed near the sink within all rooms where clinical activities require it. The
system will employ sensor-equipped soap and gel dispensers that transmit an
event whenever they are used. Furthermore, the system will employ active
RFID installed near the sink to also identify the person who is undertaking
hand hygiene. As such, hand hygiene is a high-level event that the software
identifies based on several low-level events: proximity to sink area and use of
soap dispenser or antimicrobial gel.

– Person equips gloves. Dispensers for single-use gloves are installed throughout
the clinic, near the sink in all rooms where their use might be required.
Dispensers will be equipped with sensors that emit an event whenever they
are used.

– Patient examination start. For most workflows, this is the first contact
between patient and medical personnel. Patient examinations always take
place within a designated area of the room, which usually has a patient bed
installed. The system will detect the patient examination event using several
low-level events, namely practitioner and patient proximity to the consulta-
tion bed as well as thermal imaging data based on an array-type sensor.

– Equipment is used. Certain procedures require the use of single-use or steril-
ized equipment. Dispensers are monitored for the single use items. Equipment
that can be reused must be sterilized in the autoclave, and witness strips must
be employed to prove that the sterilization process was complete. In this case,
barcode strips will be printed and affixed to sterilized packages, which will be
scanned using a wall-mounted reader when first opened. This will ensure the
traceability of the sterilization process for equipment.

– Surface disinfection. This is undertaken using spray-type disinfectant in recip-
ients. Like in the case of other dispensers, sensors will detect and emit an event
when used.

4 Modelling Clinical Processes

The HAI-OPS platform will monitor various clinical processes defined and
encoded as workflows. A workflow engine will create and execute instances of
workflows and emit real-time alerts when infection risks are detected, based on
the expected succession of actions encoded. Any clinical process can be seen as
a sequence of events, conditions and activities and thus modelled using BPMN
notation. In this section we describe and model two workflows that are proposed
for implementation within the clinical partner of the project, the NZOZ Eskulap
[36] outpatient clinic in Skierniwice, Poland.

Healthcare Associated Infections and Outbreaks 77

4.1 General Practitioner

The consultation workflow taking place in the general practitioner (GP) office
is the first one considered, given the number of daily consultations and the high
degree of event overlap that exists with other workflows taking place within the
partner clinic. The simplified BPMN-like model of this workflow, as it takes place
within the partner clinic is illustrated in Fig. 1.

Fig. 1. General practitioner workflow (from [7]).

An instance of this workflow is created every time a patient enters the GP’s
office. This is detected using an RFID active system mounted at the door frame,
as well as the RFID passive tag the patient receives at the clinic reception when
checking in for the appointment. All sensor types employed, along with their
positioning inside the GP’s office are detailed in Sect. 5.

After a short conversation, during which the GP might write down various
details about the patient’s medical issues, patient examination starts. This is
detected by a combination of sensors: the RFID tags of the doctor and the
patient, a proximity sensor mounted at the side of the bed and additionally an
infrared sensor mounted over the bed, used for checking presence. Given the flow
modelled in Fig. 1, the system detects that patient examination starts, at which
point it checks that hand hygiene was undertaken by the general practitioner.
Existing regulations precisely detail how to undertake hand hygiene correctly.
Thus, hands must be sanitized according to 10 steps for effective hygiene [58].

Assuming that all medical personnel are aware of the detailed actions and
correct procedure for proper hand washing, the system will only check that the
sink, disinfectants and paper towel dispenser were operated. A collection of sen-
sors mounted on the tap, soap, disinfectant and paper towel dispensers detects
the sequence of actions performed. If the sequence is detected in accordance
with the provided workflow, the system acknowledges that compliance has been
achieved. Otherwise, an alert is generated, sent to the GP and persisted within
the system. In such a situation, if the workflow is violated, its instance is stopped
and the hygiene breach is recorded. After receiving notification, the GP will have

78 M. I. Bocicor et al.

to perform hand hygiene before examining the patient, or else the system will
continue recording and sending alerts. If the workflow continues without inter-
ruption, its last step requires the GP to disinfect their hands using antimicrobial
gel after the last contact with the patient. This event is again recorded by the
system using the same sensors situated in the disinfectant dispenser area. When
the examination is finished, the GP updates the patient’s record and the patient
leaves the office. The workflow is thus completed. All actions detected during
workflow execution are persisted by the system to allow statistics and advanced
analyses.

The presented workflow accounts for an ordinary GP consultation. However,
some examinations, such as those involving the head, eyes, ears, nose and throat
or those concerning patients with skin infections require additional precautions
which should be included in the associated workflow. More precisely, new actions
must be added, referring to the doctor employing disposable gloves which must
be put on before examination and disposed of immediately after the procedure
is completed.

4.2 Minor Surgery

Minor surgeries represent the most complex clinical workflow currently under-
taken within the NZOZ Eskulap clinic [36]. Given the documented risk of infec-
tion following surgical procedures, as well as the complexity of invasive pro-
cedures that involve both medical personnel and equipment, we believe these
workflows are suitable for assessing the impact and performance of the proposed
system. Furthermore, ascertaining that our system does not impose additional
overhead for existing processes is equally important to consider.

Minor surgeries are undertaken by a team that consists of a surgeon and a
nurse, who must follow a well established hygiene protocol. The equipment used
during the procedure is either single use or must be sterilized. A traceability

Fig. 2. Minor surgery workflow.

Healthcare Associated Infections and Outbreaks 79

system must be employed to allow proving that equipment underwent proper
sterilization. The minor surgery suite consists of a consultation room, which is
the first room entered by the patient, and continues with the operating room
itself, which can be accessed only from the consultation room. In most cases,
minor surgery involves several patient appointments. These include the initial
consultation, the intervention itself and one or more follow-up appointments for
examination or dressing change.

Given the purpose of our system, we do not examine the medical procedures
that take place in detail, but focus our attention on those steps that experts deem
to present high infection risk. In the following we detail the types of surgical
appointments that take place at the Eskulap clinic:

– Patient examination. This is undertaken within the consultation room, in
the presence of the surgeon, and with the possible participation of the nurse.
Hygiene requirements are similar to those in the general practitioner’s office:
both the surgeon and nurse must undertake hand hygiene before and after
patient examination.

– Dressing change. This takes place in the operating room, in the presence of at
least one medical practitioner. The hygiene requirements are similar to those
during patient examination.

– Minor surgery. Interventions can take place with or without an immediately
preceding patient examination. Surgeries are undertaken only within the oper-
ating room, and consist in a series of well defined steps:
1. Appointment starts when the patient enters the operating room
2. Patient lays down on the operating table.
3. The nurse undertakes hand hygiene and equips single use gloves.
4. The nurse prepares the equipment to be used. Sterilized equipment is

taken out of the cabinet, the autoclave sterilization strip is checked and
the pouch is opened on the instrument tray.

5. The surgeon undertakes hand hygiene and equips single use gloves.
6. After the procedure is complete, the patient leaves the surgery suite.
7. Nurse disinfects the surgery table.
8. The appointment is complete.

Given that procedures for patient examination and dressing change are simi-
lar to those in the general practitioner’s office, Fig. 2 illustrates only the expected
event flow taking place within the operating room. As shown in the figure, there
exists a degree of overlap between the described workflows. This is both expected,
as events such as person movement, hand hygiene and equipment use and ster-
ilization are the cornerstones of preventing infection transmission. Furthermore,
a high degree of overlap will allow for the reuse of custom developed devices and
will lower the cost of deploying and maintaining the system.

4.3 Known Challenges

We identified some challenges regarding the interaction of the system with the
clinical processes mentioned in the previous subsections, which might emerge

80 M. I. Bocicor et al.

particularly due to the various possible constraints. We present these challenges
below, including solutions that have already been identified, or potential solu-
tions that are still being investigated within the project.

Firstly, the natural course of clinical processes must not be disrupted by
the HAI-OPS platform. The system should not interfere with normal clinical
activities, should achieve minimal overhead on clinical processes, as well as high
usability and maximal automation so that manual intervention is required only
when a risk is detected. Clinical staff must not experience any other modifications
from their usual activities; hygiene activities must be performed identically with
alerts sent to practitioners through their smartphones.

The placement of sensors within offices, surgery theaters, or generally, in
any hospital room, is a challenge within itself. Different types of sensors will be
used to detect proximity, position and movement. This requires setting up an
appropriate topology for positioning them that will ensure the accurate detection
of monitored workflows. Furthermore, the system must take into consideration
various restrictions that exist in medical units, such as radio frequency shielding,
influence of electromagnetic radiation or Bluetooth interference with medical
devices [17,42,56]. To overcome all these, our system will use communication
protocols such as healthcare-targeted Bluetooth Low Energy profiles [38], or even
wired communication when necessary together with custom designed intelligent
devices.

Finally, the most complex challenge regards the possibility of other persons
entering the consultation or surgery rooms during examination or minor surgery.
If the new person touches one of the practitioners or the patient, they must per-
form hand disinfection once again. While identification persons can be made
as soon as they enter the room, detecting contact between physician, patient
and another person is a very difficult task from a technological standpoint. Our
project aims to address this challenge by limiting detection to the area of the
consultation bed or surgery table using a proximity sensor array placed over
the area, as detailed within Sect. 5. A definitive solution to this challenge is
to trigger the execution of a new workflow once an external person enters the
examination/surgery room during consultation or minor surgery. We are still
investigating possible solutions which involve the clear detection of contact, to
avoid having to trigger a new workflow instance in cases when this is not abso-
lutely necessary.

5 The Wireless Sensor Network

The hardware platform consists of a Wireless Sensor Network (WSN) addressed
to measure and communicate to the software system information about the work-
flow related actions that are taking place inside the clinical location. All these
events are generated by various types of sensors which have different compu-
tational, communication and power requirements. For this reason, we designed
two different types of hardware nodes: dummy and smart nodes.

Dummy nodes are small, cheap and plain. They are only able to detect sim-
ple, low-level actions and send corresponding events to one of the smart nodes.

Healthcare Associated Infections and Outbreaks 81

A dummy node usually integrates a proximity sensor and an accelerometer. The
proximity sensor features an interrupt function for range detection up to 200 mm.
The node sends the triggered events to smart nodes using BLE communication,
which is further explained in Sect. 5.1. Both the sensors and the communication
module stand for low current consumption, thus it is possible to power supply
the device for several years using a small, coin-type battery.

Dummy nodes are able to detect what action is taking place, but the smart
nodes are the ones that complete this information by adding who is triggering
it, where and when it took place. In the general practitioner’s office, the smart
node has to find out which person is involved in every action triggered by the
dummy nodes (e.g. washing hands, dispensing soap, and so on). To achieve that
goal, it communicates with an RFID reader and a thermal array sensor. The
location of the smart node inside the GP’s office is delimited by the passive
infrared array sensor. In this case, it is placed over the consultation bed. This
sensor is able to trigger the event when the patient lies down for consultation
and when the doctor gets close to them, which is the trigger for starting the
patient examination.

The smart node placed within each room will receive RFID information using
two antennas. One of them is placed at the door frame and the other at the
water sink. Both antennas have different size and gain, which leads to different
distance detection ranges. The antenna placed at the door frame aims to detect
all badges worn inside the room by patients, practitioners or other identifiable
persons. This antenna must be placed opposite to the corridor in order to avoid
false positives. On the other hand, the antenna placed near the sink will have a
detection range up to 80 cm. This is because this antenna must detect only the
badge associated to the person using the sink.

In addition to the smart node, the sensor network in the GP office includes
four dummy nodes in charge of triggering low-level events denoting that equip-
ment is being used. These include the soap dispenser, disinfectant gel, disposable
gloves and the trash can. All these devices have been modified to electronically
detect use and transmit the event to the smart node. Figure 3 shows the sensor
node with BLE connectivity and its location within the trash can and glove
dispenser.

Installation of the sensor network in the minor surgery room is similar to the
GP office, except that the minor surgery ward involves two rooms, the consulta-
tion room and the operating room. As both include an area for hand hygiene and
consultation bed, we find that most devices must be duplicated. RFID readers
must be installed at both door rooms and both water sinks. It’s also necessary
to detect the same triggered events as in the GP office: use of soap dispenser or
antimicrobial gel, use of the glove dispenser and trash can. However, there are
also some important differences between the surgery room and the GP office.
First, there must be a way to ensure that the doctor is going to use disinfected
equipment before surgery. After the autoclave sterilization procedure is com-
pleted, a barcode sticker is attached to every bag where items are packaged.
When the nurse is preparing the equipment, all the items to be used are iden-

82 M. I. Bocicor et al.

Fig. 3. Dummy nodes located in trash can and gloves dispenser.

tified through a barcode reader placed on the wall near the equipment cabinet.
Second, surgery lamps prevent thermal array sensors in the ceiling from detecting
when the patient is laying down on the operating table. This event is triggered
using a combination of infrared sensors and RFID signal quality levels. Finally,
the system must detect when the operating table is cleaned after each procedure.
For this, a smart holder for the disinfectant spray has been built to detect, using
a simple electronic switch, when the spray is used.

5.1 Communication Infrastructure

In June 2010, the Bluetooth Special Interest Group (SIG) published the 4.0
version, which introduced a new specification, known as Bluetooth Low Energy
(BLE) [6]. This allows devices that do not require transmitting large volumes
of data to connect to each other and communicate while consuming a minimum
amount of energy.

This HAI-OPS platform is developed around this technology. Dummy nodes
include a BLE112 Smart Module from Bluegiga [44], which integrates features
required for BLE applications including radio, software stack and GATT-based
profiles. Moreover, it has flexible hardware interfaces to connect different periph-
erals and sensors and it is powered directly from a standard 3 V coin cell battery.

The network architecture used in the HAI-OPS platform is a star topology,
which in its simplest form consists of a central device that can connect to multiple
peripherals. The Generic Attribute Profile (GATT) establishes how to exchange
data over BLE. It makes use of the Attribute protocol (ATT) which is used to
store services, characteristics and related data in a table. Most of the ATT proto-
col is pure client-server: the client takes the initiative, while the server responds.
But it also has notifications and indication capabilities, in which the server takes
the initiative of notifying a client that an attribute value has changed. The low-
est concept in GATT communications is the characteristic, which encapsulates
single data, such as sensor measurements.

All data generated by dummy nodes is collected by a smart node and sent
to a database server. Smart nodes generate more data than dummy nodes and

Healthcare Associated Infections and Outbreaks 83

therefore require a more powerful communication interface. First of all, the smart
node must have full time connectivity to the central server and must always be
available for receiving events from dummy nodes. Second, data sent by smart
nodes has to reach a web server which may be located inside or outside the local
area network. In both cases, smart devices have to reach a router or an access
point which is most likely located in another room, separated by several walls.
Finally, data generated by some sensors like the RFID or the passive-infrared
array require a transmission rate of several Mbits/s.

The smart node integrates an Ethernet connector which allows it to connect
to the local network deployed in the building. In situations when cable instal-
lation is not possible in certain locations, the smart device may use its 802.11n
wireless module.

Data exchanged between smart nodes and the database server is formatted
in JavaScript Object Notation (JSON) format [19]. JSON is text, so it is easy
to work with the data as objects, with no complicated paring and translations.
Moreover, when storing data, the data has to be a certain format, and text is
always one of the legal formats.

6 Software Components

The HAI-OPS cyber-physical platform’s software architecture employs a client-
server model, with a server installed for each clinical unit, to which multiple
heterogeneous clients can connect. Considering this aspect, the present section
discusses the essential components of the platform’s server side, followed by the
expected components that make up the client.

Being a cyber-physical platform, the hardware devices required to measure
and record activities and their associated software are of major importance. Each
such device contains the required networking hardware and software controller
that allow it to connect to the HAI-OPS server in order to transmit live data.
We refer the reader to Sect. 5 for more details about the hardware side of these
devices. The software applications that manage the hardware equipment vary,
according to device type: for dummy nodes, we used the “BLE SW Update Tool”
[44], while smart nodes’ software was created using the Python programming lan-
guage, including support from specialized libraries for operations such as access
to system Bluetooth and BLE resources, reading and writing of digital pins,
communication with the RFID sensor, Inter-Integrated Circuit communication
[35] or analog to digital conversion.

6.1 Server Modules

Providing real-time alerts in case of detected infection risk is the leading feature
of the server software. However, to achieve this, the system first needs to be able
to receive data from connected devices and hospital information systems (when
available), to process and analyze the data and to monitor the infection risk
using workflow technology. In addition, the server-side software will also perform

84 M. I. Bocicor et al.

analyses on collected data, which must thus be persisted. As a consequence of all
these, the server main components, which are detailed below, are grouped into
four major categories: data acquisition, workflow engine, data store and client
facing subsystems.

Data Acquisition. This component’s main goal is to send the data recorded by
the platform’s connected devices to the system’s data store persistent repository.
A REST architecture [24] is implemented by the server to receive sensor data
and the incoming readings are JSON formatted [19]. All measurements trans-
mitted to the server by the sensors have at least the following essential fields: a
Uniform Resource Locator (URL) and a sensor unique identifier for identification
of the reading, its source node and the time stamp. In addition to these, each
measurement might contain further attributes according to its type: presence
sensors might send boolean values, RFID readers will send the identification tag
detected and so on.

As a secondary purpose, the data acquisition component can interact with
hospital information systems. Such systems contain a wealth of information that
can be used for prevention of infections and outbreaks, such as patient suscepti-
bility data, arrangement and location of patients and patient beds, information
about patients that are immunosuppressed or otherwise at a greater risk for con-
tracting infections. Data received from these external systems is stored in the
data repository, from where it is expected to be reused for further analyses.

Workflow Engine. A modelling component allows creating, deleting and
updating workflows monitored by the system. These workflows can be executed
by any commercial off the shelf workflow engine implementation that under-
stands BPMN notation. The workflow engine interprets events, such as inputs
from deployed sensors and acts upon them according to a predefined process,
represented by the modelled workflow. The workflow engine component also
integrates a generic adapter interface that can be developed to have various
implementations, to abstract the particularities of the specific workflow engine
employed. As such, HAI-OPS can be used with any major workflow engine imple-
mentation, as long as a suitable workflow adapter component is implemented.
Monitored workflows can be managed via a user interface, as detailed within
Sect. 6.2 by the system’s administrator and they are persisted in the data store.

Data Store. This component is the system’s data repository, being responsible
with data persistence for registered users and devices, workflow instances and
workflow metadata, as well as raw data recorded from the network of connected
devices or any input transmitted by deployed hospital information systems. All
stored data will be used for complex analyses part of the system’s advanced line
of defence geared towards pin-pointing elusive reasons of infection and for mon-
itoring outbreaks. The data store is implemented using Couchbase Server [14].

Healthcare Associated Infections and Outbreaks 85

Client Facing Subsystems. This component includes those subsystems which
are connected to client components detailed in Sect. 6.2, offering server-side func-
tionality for real-time alerting, data analysis and user and device management.
Real-Time Alerting. This is a key component of the system, as it is directly
responsible with creating and transmitting the alerts. Whenever an instantiated
workflow reaches a point where an infection risk is detected, the workflow engine
adapter component will send the required data to this subsystem, which will
create an alert and send it to responsible end-users. All alerts contain at least
the following information: the workflow, device and person responsible as well
as date and time information together with a textual description. The alert data
is sent to the user through the alerter client component installed on the users’
smartphone. In case of alert, the involved person will have to take corrective
measures. All generated alerts are persisted in the data store.
Data Analysis. This component provides the advanced data analysis capabilities
of the platform. Using data received from the connected devices and existing
hospital information systems, its purpose is to aggregate context information
and sensor readings and provide information regarding outbreak and infection
risk, as well as to facilitate the identification of infection sources and means
of transmission in the case of outbreak. It is directly connected to the client
epidemiology user interface detailed in Sect. 6.2, which allows epidemiologists to
visualize analyses results.
User and Device Management. All information regarding users and devices is
deposited within the data store repository, thus being made available to other
system components. Both entity types need to be uniquely identifiable, as work-
flow execution and alert transmission is tightly linked with involved users and
connected devices registered within the system. System users can have one of
the administrator, epidemiologist or clinical personnel roles with a role-based
access permission system put into place.

6.2 Client Components

Two client applications are included in the HAI-OPS platform: the Alerter Client
mobile application used to transmit alerts to clinical personnel using their smart-
phones or other smart wearables, and the Administration Client web application
that provides the required features to enable management of connected devices,
users and workflows.

Alerter Client. Users registered within the system will have the Alerter Client
application installed on their smartphone. The application will provide two fea-
tures: (1) Receive push notification when an alert is generated for the involved
person; (2) View history of past alerts for the involved person. The received
message will contain detailed information regarding why the alert was generated
as well as a meaningful description. As further development, we will also ana-
lyze the possibility of using alternate means of notification, such as using short
text messages (SMS) that will be received by the registered user’s mobile device,

86 M. I. Bocicor et al.

which would allow personnel to receive alerts without installing additional soft-
ware. While the current platform of choice is the smartphone, the system can
work with any programmable device, such as smart wearables or a custom design
active badge based on RFID technology.

Administration Client. User, workflow and smart device administration will
be achieved using a web application locally installed at each medical unit where
the HAI-OPS platform is deployed. The administration client will provide user
interfaces for:

– Visualizing the complete history and details for the alerts that were generated
for a specific user. Users having administrator privileges will be able to view
the entire alert history for any registered user.

– Managing HAI related data. This interface is targeted towards epidemiolo-
gists and will allow them to visualize the results of various statistical anal-
yses applied on collected data (e.g. statistics based on historical alert data,
aggregated by user, workflow or by sensor). This information will allow iden-
tification of infection and outbreak hotspots, as well as of locations where
additional disinfection procedures or staff are needed. This interface will also
have access to more complex reports, including risk maps and contact net-
works which, in conjunction with historical alert data, are important instru-
ments for the identification of transmission pathways.

– Administration of connected devices, registered users and monitored work-
flows. The associated user interface will only be available to users registered
as administrators. They are responsible with managing system users and
employed smart devices. When the system is deployed in a clinical unit, the
administrator will manage the monitored workflows, and will modify them as
required, maintaining a continuous communication with the clinical personnel.

7 Conclusions

Seven to ten people out of every 100 hospitalized patients worldwide acquire
at least one hospital infection [60]. The risk of contacting or transmitting a
hospital acquired infection can be greatly reduced, provided that medical units
are equipped with efficient tools that ensure compliance to sanitation regulations
and that medical personnel pay particular attention to hygiene.

Through our research within the HAI-OPS project [28] and through the
platform under development, we are aiming to bring a contribution towards
decreasing infection-related morbidity and mortality, to help prevent outbreaks
and also have an indirect positive impact regarding other connected issues, such
as the war against antimicrobial resistant pathogens.

The HAI-OPS platform is still under development and the present paper
depicts this system in its current stage, emphasizing both hardware and soft-
ware components. Using a wireless network of smart devices and sensors to

Healthcare Associated Infections and Outbreaks 87

monitor clinical processes that might be involved in infection transmission, the
system detects potential risks in real-time and immediately alerts involved per-
sons. Two clinical processes of different complexity, which were included in the
system’s prototype, as they were selected for implementation during the first
pilot deployment, are detailed in this paper for exemplification: general prac-
titioner examination and minor surgery. Similarly to all clinical processes that
will be included in the system, according to medical activities that take place
at various deployment locations, these processes are BPMN encoded and are
executed by a workflow engine. In case of a process violation, which is detected
via the wireless sensor network, the engine communicates this to the real-time
alerting subsystem, which promptly sends notifications to responsible medical
personnel. Thus, any clinical process can only be completely and successfully
executed when preventive guidelines are followed.

Current achievements constitute the basic line of defense which our system
offers for protection against infections. As further development, we intend to add
an advanced line of defence, which will bring the platform to its maturity. This
will include advanced analysis tools and algorithms to process data collected by
sensors during large periods of time. Together with information extracted from
hospital systems, risk maps will be constructed to depict the degree of infectious
risk at room level. Contact networks will be used to analyze the source and
spread of infection. These will be presented in an easy to understand, visual
form and will assist epidemiologists in pinpointing elusive reasons of infection,
in monitoring outbreaks and, most importantly, in planning infection prevention
and control.

Acknowledgments. This work was supported by a grant of the Romanian National
Authority for Scientific Research and Innovation, CCCDI UEFISCDI, project number
47E/2015, HAI-OPS - Hospital Acquired Infection and Outbreak Prevention System.

References

1. Agency for Healthcare Research and Quality: Interim Update on 2013 Annual
Hospital-Acquired Condition Rate and Estimates of Cost Savings and Deaths
Averted From 2010 to 2013 (2013). https://www.ahrq.gov/sites/default/files/
wysiwyg/professionals/quality-patient-safety/pfp/interimhacrate2013.pdf

2. Andersen, B., Banrud, H., Boe, E., Bjordal, O., Drangsholt, F.: Comparison of UV
C light and chemicals for disinfection of surfaces in hospital isolation units. Infect.
Control Hosp. Epidemiol. 27, 729–734 (2006)

3. Bioquell: Bioquell Q-10 (2016). http://www.bioquell.com/en-uk/products/life-
science-products/archive-hc-products/bioquell-q10/

4. BIOVIGIL Healthcare Systems Inc.: Biovigil and our team (2015). http://www.
biovigilsystems.com/about/

5. Blue Ocean Robotics: Uv-disinfection robot (2017). https://blue-ocean-robotics.
com/uv-disinfection/

6. Bluetooth SIG Inc.: Bluetooth low energy (2017). https://www.bluetooth.com/
what-is-bluetooth-technology/how-it-works/low-energy

https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/quality-patient-safety/pfp/interimhacrate2013.pdf
https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/quality-patient-safety/pfp/interimhacrate2013.pdf
http://www.bioquell.com/en-uk/products/life-science-products/archive-hc-products/bioquell-q10/
http://www.bioquell.com/en-uk/products/life-science-products/archive-hc-products/bioquell-q10/
http://www.biovigilsystems.com/about/
http://www.biovigilsystems.com/about/
https://blue-ocean-robotics.com/uv-disinfection/
https://blue-ocean-robotics.com/uv-disinfection/
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy

88 M. I. Bocicor et al.

7. Bocicor, I., Dascalu, M., Gaczowska, A., Hostiuc, S., Moldoveanu, A., Molina, A.,
Molnar, A.J., Negoi, I., Racovita, V.: Wireless sensor network based system for
the prevention of hospital acquired infections. In: 13th International Conference
on Evaluation of Novel Approaches to Software Engineering (2017)

8. Bocicor, M.I., Molnar, A.J., Taslitchi, C.: Preventing hospital acquired infections
through a workflow-based cyber-physical system. In: Proceedings of the 11th Inter-
national Conference on Evaluation of Novel Software Approaches to Software Engi-
neering, pp. 63–68 (2016)

9. Canadian Union of Public Employees: Health care associated infections: back-
grounder and fact sheet (2014). http://cupe.ca/health-care-associated-infections-
backgrounder-and-fact-sheet

10. Centers for Disease Control and Prevention: Preventing Healthcare-Associated
Infections. https://www.cdc.gov/washington/∼cdcatWork/pdf/infections.pdf

11. Centers for Disease Control and Prevention: HAI Data and Statistics (2016).
https://www.cdc.gov/hai/surveillance/

12. Coello, R., Glenister, H., Fereres, J., Bartlett, C., Leigh, D., Sedgwick, J., Cooke,
E.: The cost of infection in surgical patients: a case-control study. J. Hosp. Infect.
25, 239–250 (1993)

13. Collins, A.: Preventing health care-associated infections. In: Fagerberg, J., Mowery,
D.C., Nelson, R.R. (eds.) Patient Safety and Quality: An Evidence-Based Handbook
for Nurses, Chap. 41, pp. 547–570. Agency for Healthcare Research and Quality (US)
(2008)

14. Couchbase: Couchbase Server (2017). https://www.couchbase.com/
15. Curtis, D., Hlady, C., Kanade, G., Pemmaraju, S., Polgreen, P., Segre, A.: Health-

care worker contact networks and the prevention of hospital-acquired infections.
Plos One (2013). https://doi.org/10.1371/journal.pone.0079906

16. DebMed - The Hand Hygiene Compliance and Skin Care Experts: A differ-
ent approach to hand hygiene compliance (2016). http://debmed.com/products/
electronic-hand-hygiene-compliance-monitoring/a-different-approach/

17. Department of Veterans Affairs: MRI Design Guide (2008). https://www.wbdg.
org/ccb/VA/VADEGUID/mri.pdf

18. Diller, T., Kelly, J., Blackhurst, D., Steed, C., Boeker, S., McElveen, D.: Estimation
of hand hygiene opportunities on an adult medical ward using 24-hour camera
surveillance: validation of the HOW2 Benchmark Study. Am. J. Infect. Control
42, 602–607 (2014)

19. Ecma International: The JSON Data Interchange Format (2013). http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

20. European Academies Science Advisory Council: Healthcare-associated infections:
the view from EASAC. The Royal Society, London (2013). http://www.easac.eu/
fileadmin/PDF s/reports statements/Healthcare-associated.pdf

21. European Centre for Disease Prevention and Control: Annual epidemio-
logical report. antimicrobial resistance and healthcare-associated infections
2014 (2015). http://ecdc.europa.eu/en/publications/Publications/antimicrobial-
resistance-annual-epidemiological-report.pdf

22. European Commission: Questions and Answers on patient safety, including the
prevention and control of healthcare associated infections (2008). http://europa.
eu/rapid/press-release MEMO-08-788 en.htm

23. Excelion Technology Inc.: Accreditrack (2013). http://www.exceliontech.com/
accreditrack.html

24. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures, Doctoral dissertation, University of California (2000)

http://cupe.ca/health-care-associated-infections-backgrounder-and-fact-sheet
http://cupe.ca/health-care-associated-infections-backgrounder-and-fact-sheet
https://www.cdc.gov/washington/~cdcatWork/pdf/infections.pdf
https://www.cdc.gov/hai/surveillance/
https://www.couchbase.com/
https://doi.org/10.1371/journal.pone.0079906
http://debmed.com/products/electronic-hand-hygiene-compliance-monitoring/a-different-approach/
http://debmed.com/products/electronic-hand-hygiene-compliance-monitoring/a-different-approach/
https://www.wbdg.org/ccb/VA/VADEGUID/mri.pdf
https://www.wbdg.org/ccb/VA/VADEGUID/mri.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.easac.eu/fileadmin/PDF_s/reports_statements/Healthcare-associated.pdf
http://www.easac.eu/fileadmin/PDF_s/reports_statements/Healthcare-associated.pdf
http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf
http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf
http://europa.eu/rapid/press-release_MEMO-08-788_en.htm
http://europa.eu/rapid/press-release_MEMO-08-788_en.htm
http://www.exceliontech.com/accreditrack.html
http://www.exceliontech.com/accreditrack.html

Healthcare Associated Infections and Outbreaks 89

25. Friggeri, A., Chelius, G., Fleury, E., Fraboulet, A., Mentre, A., Lucet, J.C.: Recon-
structing social interactions using an unreliable wireless sensor network. Comput.
Commun. 34, 609–618 (2011)

26. General Sensing: Medsense clear. hand hygiene compliance monitoring (2014).
http://www.generalsensing.com/medsenseclear/

27. Government of Newfoundland and Labrador. Department of Health and Commu-
nity Services: HAI Report 2009–2012 (2013). http://www.health.gov.nl.ca/health/
publichealth/cdc/hai/hai 2012.pdf

28. HAI-OPS (2017). http://haiops.eu
29. Hornbeck, T., Naylor, D., Segre, A.M., Thomas, G., Herman, T., Polgreen, P.M.:

Using sensor networks to study the effect of peripatetic healthcare workers on the
spread of hospital associated infections. J. Infect. Dis. 206, 1549–1557 (2012)

30. Hyginex: Introducing hyginex generation 3 (2015). http://www.hyginex.com/
31. Mastrandrea, R., Soto-Aladro, A., Brouqui, P., Barrat, A.: Enhancing the evalua-

tion of pathogen transmission risk in a hospital by merging hand-hygiene compli-
ance and contact data: a proof-of-concept study. BMC Res. Notes 8, 426 (2015)

32. Mehrad, B., Clark, N., Zhanel, G., Lynch, J.: Antimicrobial resistance in hospital-
acquired gram-negative bacterial infections. Chest 147, 1413–1421 (2015)

33. Mehta, Y., Gupta, A., Todi, S., Myatra, S., Samaddar, D., Bhattacharya, P.V.P.,
Ramasubban, S.: Guidelines for prevention of hospital acquired infections. Indian
J. Crit. Care Med. 18, 149–163 (2014)

34. Ling, M.L., Apisarnthanarak, A., Madriaga, G.: The burden of healthcare-
associated infections in Southeast Asia: a systematic literature review and meta-
analysis. Clin. Infect. Dis. 60, 1690–1699 (2015)

35. NXP Semiconductors: I2C-bus specification and user manual (2014). http://www.
nxp.com/docs/en/user-guide/UM10204.pdf

36. NZOZ Eskulap: NZOZ Eskulap (2016). www.eskulapskierniewice.pl/
37. Object Management Group: Business process model and notation (2015). http://

www.bpmn.org/
38. Omre, A.: Bluetooth low energy: wireless connectivity for medical monitoring. J.

Diab. Sci. Technol. 4, 457–463 (2010)
39. Philips: Protocolwatch - SSC Sepsis (2015). http://www.healthcare.philips.com/

main/products/patient monitoring/products/protocol watch/
40. RL Solutions: The RL6 Suite/Infection Surveillance (2015). http://www.

rlsolutions.com/rl-products/infection-surveillance
41. Ryan, J.: Medtech profiles: Intelligentm - a simple yet powerful app to dramatically

reduce hospital-acquired infections (2013). https://medtechboston.medstro.com/
profiles-intelligentm/

42. Saraf, S.: Use of mobile phone in operating room. J. Med. Phys. 34, 101–1002
(2009)

43. SHEA/IDSA Practice Recommendation: Strategies to prevent surgical site infec-
tions in acute care. Infection Control and Hospital Epidemiology, vol. 29 (2008)

44. Silicon Labs: Bluegiga Bluetooth Smart Software Stack (2017). https://www.
silabs.com/products/development-tools/software/bluegiga-bluetooth-smart-
software-stack

45. Simonette, M.: Tech solutions to hospital acquired infections (2013). http://www.
healthbizdecoded.com/2013/06/tech-solutions-to-hospital-acquired-infections/

46. Stehle, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Regis, C.,
Pinton, J.F., Khanafer, N., Van den Broeck, N., Vanhems, P.: Simulation of an
SEIR infectious disease model on the dynamic contact network of conference atten-
dees. BMC Med. 9, 87 (2011)

http://www.generalsensing.com/medsenseclear/
http://www.health.gov.nl.ca/health/publichealth/cdc/hai/hai_2012.pdf
http://www.health.gov.nl.ca/health/publichealth/cdc/hai/hai_2012.pdf
http://haiops.eu
http://www.hyginex.com/
http://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.nxp.com/docs/en/user-guide/UM10204.pdf
www.eskulapskierniewice.pl/
http://www.bpmn.org/
http://www.bpmn.org/
http://www.healthcare.philips.com/main/products/patient_monitoring/products/protocol_watch/
http://www.healthcare.philips.com/main/products/patient_monitoring/products/protocol_watch/
http://www.rlsolutions.com/rl-products/infection-surveillance
http://www.rlsolutions.com/rl-products/infection-surveillance
https://medtechboston.medstro.com/profiles-intelligentm/
https://medtechboston.medstro.com/profiles-intelligentm/
https://www.silabs.com/products/development-tools/software/bluegiga-bluetooth-smart-software-stack
https://www.silabs.com/products/development-tools/software/bluegiga-bluetooth-smart-software-stack
https://www.silabs.com/products/development-tools/software/bluegiga-bluetooth-smart-software-stack
http://www.healthbizdecoded.com/2013/06/tech-solutions-to-hospital-acquired-infections/
http://www.healthbizdecoded.com/2013/06/tech-solutions-to-hospital-acquired-infections/

90 M. I. Bocicor et al.

47. SteriSafe ApS: Decontamination and disinfection robot for hospitals (2017). http://
sterisafe.eu/about-sterisafe/

48. Stone, P.: Economic burden of healthcare-associated infections: an american per-
spective. Expert Rev. Pharmacoecon Outcomes Res. 9, 417–422 (2009)

49. Surviving Sepsis Campaign: International Guidelines for Management of Severe
Sepsis and Septic Shock: 2012 (2012). http://www.sccm.org/Documents/SSC-
Guidelines.pdf

50. Swipe Sense: Hand hygiene. Redefined (2015). https://www.swipesense.com/
51. Tikhomirov, E.: WHO programme for the control of hospital infections. Chemioter-

apia 6, 148–151 (1987)
52. Tru-D Smart UVC: About tru-d (2016). http://tru-d.com/why-uvc-disinfection/
53. UltraClenz: Patient safeguard system (2016). http://www.ultraclenz.com/patient-

safeguard-system/
54. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.F., Khanafer, N., Regis, C., Kim,

B., Comte, B., Voirin, N.: Estimating potential infection transmission routes in
hospital wards using wearable proximity sensors. PloS One 8, e73970 (2013)

55. Voirin, N., Payet, C., Barrat, A., Cattuto, C., Khanafer, N., Regis, C., Kim, B.,
Comte, B., Casalegno, J.S., Lina, B., Vanhems, P.: Combining high-resolution con-
tact data with virological data to investigate influenza transmission in a tertiary
care hospital. Infect. Control Hosp. Epidemiol. 36, 254–260 (2015)

56. Wallin, M., Wajntraub, S.: Evaluation of bluetooth as a replacement for cables in
intensive care and surgery. Critical Care and Trauma, pp. 763–767 (2003)

57. World Health Organization: Prevention of hospital-acquired infections -
a practical guide (2002). http://www.who.int/csr/resources/publications/
whocdscsreph200212.pdf

58. World Health Organization: How to handwash? (2009). http://www.who.int/gpsc/
5may/How To HandWash Poster.pdf

59. World Health Organization: The burden of health care-associated infection world-
wide (2010). http://www.who.int/gpsc/country work/summary 20100430 en.pdf

60. World Health Organization: Health care-associated infections - fact sheet (2011).
http://www.who.int/gpsc/country work/gpsc ccisc fact sheet en.pdf

61. World Health Organization: Report on the burden of endemic health care-
associated infection worldwide (2011). http://apps.who.int/iris/bitstream/10665/
80135/1/9789241501507 eng.pdf

62. World Health Organization: Clean Care is Safer Care - Five moments for hand
hygiene (2015). http://www.who.int/gpsc/tools/Five moments/en/

63. Xenex: Xenex germ-zapping robots (2015). http://www.xenex.com/

http://sterisafe.eu/about-sterisafe/
http://sterisafe.eu/about-sterisafe/
http://www.sccm.org/Documents/SSC-Guidelines.pdf
http://www.sccm.org/Documents/SSC-Guidelines.pdf
https://www.swipesense.com/
http://tru-d.com/why-uvc-disinfection/
http://www.ultraclenz.com/patient-safeguard-system/
http://www.ultraclenz.com/patient-safeguard-system/
http://www.who.int/csr/resources/publications/whocdscsreph200212.pdf
http://www.who.int/csr/resources/publications/whocdscsreph200212.pdf
http://www.who.int/gpsc/5may/How_To_HandWash_Poster.pdf
http://www.who.int/gpsc/5may/How_To_HandWash_Poster.pdf
http://www.who.int/gpsc/country_work/summary_20100430_en.pdf
http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf
http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.pdf
http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.pdf
http://www.who.int/gpsc/tools/Five_moments/en/
http://www.xenex.com/

Software Engineering

Exploiting Requirements Engineering
to Resolve Conflicts in Pervasive

Computing Systems

Osama M. Khaled(&), Hoda M. Hosny(&), and Mohamed Shalan(&)

Department of Computer Science and Engineering,
The American University in Cairo, Cairo, Egypt

{okhaled,hhosny,mshalan}@aucegypt.edu

Abstract. Pervasive computing systems are complex and challenging. In this
research, a novice statistical approach is introduced to resolve conflicts among
the pervasive system requirements. It is based on a basic requirements model
used in our reference architecture for pervasive computing (PervCompRA-SE).
The approach uses the normal distribution rules to validate the solutions for the
conflicts. It can save time and effort for the business analyst and the software
architect especially when the system scope is too large, the access to the
stakeholders is limited, or when there are constraints on the project’s timelines.

Keywords: Pervasive computing � Ubiquitous computing
Requirements engineering � Software engineering
Requirements conflict resolution

1 Introduction

Requirements Engineering (RE) is an engineering approach to breakdown the com-
plexity of the requirements in an abstract way which explains the needs of the users and
at the same time offers a framework that governs the scope of the software system to
guarantee the success of the software project [1]. A business analyst, who gathers and
elicits requirements, also works on building the functional and quality requirements and
on explaining the use cases which are anticipated by the users. The use cases are also
used to generate the test cases which will, at a later stage, be used to validate the
software implementation [2, 3].

It is a challenging activity which requires a high level of understanding to make
sure that the users’ requirements are captured correctly especially if there are many
stakeholders with contradicting needs. One of the main responsibilities of the business
analyst is to resolve the conflicts between the requirements in order to have a consistent
requirements’ model. The resolution of the conflicts between the functional require-
ments may sometimes be quite clear. In its simplest forms, the conflict could be
resolved by removing one of the contradicting requirements upon agreement with the
stakeholders. But in other times it may be a complex situation.

Accordingly, another important task for the business analyst is to speculate the
priorities and the precedence of the requirements based on how they impact each other.

© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 93–115, 2018.
https://doi.org/10.1007/978-3-319-94135-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_5&domain=pdf

This will drive the implementation by highlighting the requirements which should be
ideally implemented first so that the next ones will be more easily implemented. Even if
there is no sequential implementation of the requirements, it gives hints about the
grouping of the requirements and hence about the candidate technical modules that
may be designed in the high level architecture.

The quality requirements of the system could be treated the same way, especially
that quality requirements could have conflicts by nature. For example, the requirements
to tighten the security of the system will most likely conflict with the requirements to
boost the response time. The tasks of the business analyst, or possibly the software
architect in this case, is more important as it may not be clear, especially for the users,
on how to resolve the conflicts of the quality needs. Users are usually akin to tell their
functional needs more than state their quality requirements [4].

In this research work, the requirements of the quality features pertaining to the
pervasive system are endeavored in order to generate statistical knowledge about the
quality features so that the generation of the architectural model is moderated as well as
the optimization parameters which are refined at runtime. This can also help the
business analyst arrive at the best decisions with the minimal engagement of the
stakeholders.

The paper presents this research study as follows: Sect. 2 presents the related work,
Sect. 3 describes the proposed methodology, Sect. 4 gives details about the tradeoff
analysis of the essential requirements of the studied quality features, Sect. 5 lists the
identified conflicts between the requirements, Sect. 6 presents the resolutions of the
conflicts, and Sect. 7 describes the adopted evaluation techniques. In Sect. 8 the
applicability of the research outcomes is discussed, and Sect. 9 concludes the paper.

2 Related Work

The art of requirements engineering in the field of pervasive computing has recently
received a considerable amount of attention from researchers. The Authors in [5–8]
introduced some interesting elicitation techniques which they presented as peculiar to
pervasive computing Additional contributions could be reviewed from [9].

Some relevant contributions which resolve conflicting requirements are surveyed
through subjective opinions or preset preferences by the users. They simply eliminate a
requirement in favor of another requirement. For example, Salado and Nilchiani [10]
worked on identifying conflicts using a “tension matrix” mechanism using a set of
heuristics. They remove the conflicting requirement according to specific criteria.

Sadana and Liu [11] adopted a similar approach which depicts a hierarchy of
conflicting requirements and potential conflicts among the quality attributes. The
Authors make a link between the quality attributes and the conflicts similar to that
presented in this research work and that will be explained later.

Oster et al. [12] organize stakeholder requirements as preferences. They use a
conditional importance network (CI-Nets) to identify and resolve conflicts between the
stakeholder requirements. If conditions are met then the preferences are kept, else if
there are conflicts among them, then the least preferred ones are removed.

94 O. M. Khaled et al.

Conflict resolution requires the analyst to first assign a priority for every require-
ment in one way or another. A priority of the requirement is made mostly via subjective
methods. Galaster and Eberlein [13] provide such an approach which requires sub-
jective opinion from business and technical stakeholders about every requirement.
They associate different generic attributes with every requirement and ask the stake-
holders to define their values in order to get an overall ranking for the requirement.

Mendizabal and Spier [4] provided a prioritization approach for the performance
optimization requirements based on actual performance statistics. They collected per-
formance data about some pages in a web application and assigned a performance rank
using a ranking formula and then decided with the stakeholders on which pages to
include in the performance enhancement exercise. The authors recognized the disad-
vantage of their empirical choices for the weights of the parameters used in the ranking
formula as they found some least demanded pages still included. This could have been
avoided if the stakeholders, including domain experts, were asked to assign the weights
for these parameters as well.

The surveyed research efforts about conflict resolution usually take simple
approaches by eliminating the least important requirement. To our knowledge, this
work represents the first attempt to introduce balanced solutions for conflicting
requirements through a statistical approach that depends on the strength of these
solutions. It offers a practical guidance to the architects who need to satisfy most of the
conflicting requirements.

3 Methodology

A pervasive system is highly volatile as its users are in continuous movement along
with their devices. Context sensitivity characterizes a pervasive system in order to
detect the surrounding changes, and the pervasive system must adapt to these changes
in order to make a rational response. It is an environment-interactive system [14] given
that visitor devices appear and disappear spontaneously.

Accordingly, an approach was adopted in this research work that is inspired from the
process re-engineering concept [15, 16]. A normal process is practiced after it is
designed whether it is for industrial or business activities. Since changes happen all the
time, it is usually required at some point in time to improve the process. Hence, a process
re-engineering project could be initiated to improve the efficiency of the process.

The main objectives of process re-engineering are to maximize the value of the
tasks which add value to the customer, minimize the tasks which are essential (but do
not add value to the customer), and eliminate the tasks which are a complete waste to
the whole process [17].

Inspired by the process re-engineering concept, the requirements are stated as a set
of maximize, minimize, and eliminate needs for desirable and non-desirable values
[18]. The relationships among the requirements are modeled, if they exist, in a similar
way. Hence, a requirement A could minimize the need of requirement B if requirement
A helps requirement B to minimize the non-desired value. The same is said about
requirement A maximizing requirement B. However, if two requirements have
conflicting needs, then they are modeled as (requirement A conflicts with requirement

Exploiting Requirements Engineering to Resolve Conflicts 95

B). This approach is different from the classical approach [19] of having “positive
correlation”, “negative correlation”, or conflict between two requirements in the sense
that both minimize and maximize relationships are “positive correlation” relationships
and their analysis becomes simpler from the process re-engineering perspective.

A trade-off analysis exercise is included in the form of an intensive statistical study
of the requirements. A subjective study was conducted as well to validate the
statistically-driven priorities with the priorities of the users [20]. The trade-off analysis
is extended to introduce balanced solutions for the identified conflicts between the
requirements [18, 21].

4 Requirements Trade-off Analysis

The most challenging activity in this research work was to identify the basic require-
ments, as listed in the Appendix, which should suffice for a software engineer to draft a
new concrete architecture for a pervasive system. A solid basic list of 55 requirements
was identified as listed in our research work [18, 20]. These requirements were driven
based on the most prevalent and critical quality features in pervasive computing
[22, 23] as shown in Table 1.

Table 1. Pervasive system quality features.

Feature Description

Adaptable
Behavior

The system must respond dynamically to changes in the environment as
needed [20]

Context
Sensitivity

The system must have the ability to sense and retrieve data from its
environment [22]

Experience
Capture

The system must capture and register experiences for later use [22]

Fault Tolerance The system must detect errors and take the appropriate recovery actions
[22]

Heterogeneity
of Devices

The system must use different device technologies seamlessly [22]

Invisibility The system must integrate computing resources and guarantee that the user
has the minimum awareness of them [22]

Privacy and Trust The system must ensure that personal operations confidentiality is protected
and accessed only by trusted entities [22]

Quality of
Service

The system must set expectation for its services by setting constraints on
the provided services. For example, system response may be considered
invalid if it is received after a certain period of time [22]

Safety The system must provide immunity for its users and interacting devices
from harm and damage

Security It is concerned with protecting data from being leaked to unauthorized
individuals, protecting data from corruption and alternation, and ensuring
accessibility to data whenever requested

Service
Omnipresence

The system should give its users the feeling that they carry computer
services wherever they move [22]

96 O. M. Khaled et al.

The requirements were written in a generic way to suit a business reference
architecture. For example, in order to achieve the Service Omnipresence quality fea-
ture, it is essential to distribute computing power, enrich the experience of the highly-
used scenarios, provide Informative messages, use a unique user identifier and utilize
the user’s cell phone. The Heterogeneity of Devices requires another set of require-
ments. Its basic requirements are to maximize the number of device technologies,
provide a unique identifier for every object, and render content on a maximum number
of devices.

It was clear from the initial survey that some requirements do conflict (negative
impact) with each other, and other requirements positively impact each other. Hence, a
relationship matrix was built between all the requirements to emphasize on the kind of
impact, if it exists. For example, it is required to maximize the number of device
technologies in order to provide Heterogeneity of Devices and at the same time, it is
required to minimize conflicting usage of the shared resources in order to guarantee an
overall Safety for the pervasive system. As manufacturers usually do not provide
compatible technologies with each other’s products [18], and even between different
products from the same manufacturer, the probability of conflicts among shared
resources increases. An empirical decision was taken, based on knowledge, to resolve
the conflict for that requirement in the Safety quality feature if a conflict exists. The
results of these decisions were validated as will be explained below.

All the requirements were reviewed and checked against each other to identify
whether they minimize, maximize, or conflict with each other. The weights of the
quality features are calculated according to a simple formula, as shown in Eq. (1),
which calculates the complexity of the quality feature

QFs ¼
Xn

rq¼1

QFrq �
Xz

rl¼0

QFrl �
Xy

ft¼1

QFft ð1Þ

The requirements for every quality feature were counted (
Pn

rq¼1 QFrq), multiplied
it by the sum of the number of relations for the requirements in the quality feature
(
Pz

rl¼0 QFrl) and then multiplied the result by the number of covered quality features
(
Py

ft¼1 QFft). The score was normalized by dividing it by the sum of all the scores to
get the Weight as computed by Eq. (1). The results, shown in Table 2, are sorted by
weight from highest to lowest. It is important to note that the relations and the features
cover self-reference. Hence, if there is a maximize relationship, for example, between
two requirements in one quality feature, it gets counted.

The complexity equation can be explained as follows:

1. The requirements in a feature represent its size.
2. The number of covered features represents the feature coupling.
3. The relationships of the requirements in a feature represent the density of the feature

coupling.

Exploiting Requirements Engineering to Resolve Conflicts 97

5 Requirements Conflict Identification

From the requirements relationship matrix, 12 pairs of conflicts were identified, which
were given IDs as shown in Table 3 where Req A and Req B columns contain the IDs
of the conflicting requirements.

The adopted process to identify the conflicts is as follows:

1. Iterate over every requirement and check if its value contradicts with another
requirement’s value

2. Mark a found pair of requirements as a conflict and give it an ID.

Table 2. Quality features requirements complexity weights.

Feature # Requirements
Pn

rq¼1
QFrq

Relations
Pz

rl¼0
QFrl

Features
Py

ft¼1
QFft

Score
QFs

Weight
QFs/total score

Safety 10 11 4 440 0.209524
Security 8 11 5 440 0.209524
Service
Omnipresence

5 11 6 330 0.157143

Fault Tolerance 6 7 5 210 0.1
Heterogeneity
of Devices

3 11 4 132 0.062857

Privacy and
Trust

4 8 4 128 0.060952

Context
Sensitivity

5 6 4 120 0.057143

Quality of
Service

4 6 4 96 0.045714

Adaptable
behavior

4 7 3 84 0.04

Experience
Capture

3 7 4 84 0.04

Invisibility 4 3 3 36 0.017143
Grand Total 56 88 46 2100 1

Table 3. Conflicting requirements [21].

Conf ID Req A Req B Conf ID Req A Req B

1 54 19 7 18 44
2 10 27 8 45 30
3 53 27 9 5 27
4 18 38 10 44 30
5 18 35 11 49 30
6 18 14 12 21 3

98 O. M. Khaled et al.

3. Justify the conflict in details.
4. Study the conflict deeply to identify the superseding requirement
5. Justify the superseding decision.

The conflicts were reviewed critically to provide a rationale for each conflict as
follows:

1. Conflict #1: The system must be decisive about the identity of the user especially if
there are more than one device joining the system which belong to the same user.

2. Conflict #2: The system should capture personal knowledge about the user if
he/she agrees about that in order to have a better control on private information.

3. Conflict #3: Informative messages must be filtered for confidential information in
order not to cause leakage of private information.

4. Conflict #4: The normal incompatibilities among the manufacturers may generate
conflicts among the shared resources.

5. Conflict #5: Unexpected side effects may increase as the system acquires more
device technologies.

6. Conflict #6: As the number of device joins to the system increases, the probability
of faults increases especially if the device technology is new or has not been tested
before.

7. Conflict #7: Different manufacturers may have different operating systems which
may be vulnerable to attacks, which increases the security threat to the whole
system.

8. Conflict #8: The performance of the system degrades as the security rules over the
data transmission increases which may impact the availability of the system at
some point of time

9. Conflict #9: The system must carefully collect private data about the users from its
sensors in order to minimize the risk of revealing data to unauthorized entities.

10. Conflict #10: The average processing power of the smart devices increases if the
system forces additional security rules over them.

11. Conflict #11: Counter-measure actions add burden on the average processing
power of the system which degrades the performance of the services.

12. Conflict #12: The system should issue wise notifications to the users in a way that
does not lead to unnecessary interactions.

The above analysis shows that there are 16 requirements that have possible conflicts
which represent around 30% of the discovered requirements. They are scattered across
all the quality features as shown in Table 4.

The 12 conflicts are shown among the quality features according to the ownership of
the requirements. For example, the invisibility feature conflicts with the adaptable
behavior feature in a pair of requirements. There are 2 requirements that belong to the
heterogeneity of devices feature and conflict with the safety quality feature. It is also
noticed that Context Sensitivity does not conflict with Adaptable Behavior nor Fault
Tolerance. Another fact that can be detected from this table is that the Device Hetero-
geneity and Security features have the highest percentage of conflict relationships.

Exploiting Requirements Engineering to Resolve Conflicts 99

6 Conflict Resolution

A real challenge that faces the business analyst and software architect is to resolve the
conflicts between the requirements. A simple and direct resolution strategy is to
eliminate one requirement for the sake of the other as long as it is identified as a
superseding one as follows:

1. Conf #1: Requirement #54 supersedes #19 in order to apply user-related rules on
the user’s devices properly.

2. Conf #2: Requirement #27 supersedes #10 because protecting the confidentiality
and the privacy of the information is by far more important than capturing personal
knowledge; otherwise, the probability of leaking information may increase.

3. Conf #3: Requirement #27 supersedes #53 because privacy of the user is more
important as it is protected by law where an uninformative message may cause, in
the worst case, a bad user experience.

4. Conf #4: Requirement #38 supersedes #18 because conflicts of the crucial shared
resources may hinder the safety of the users and the system. Accordingly, the
system must not allow those devices which are not well known and may cause
troubles with shared resources.

5. Conf #5: Requirement #35 supersedes #18 because if the new technology will lead
to expected or unexpected side effects which may risk the safety of the environ-
ment, then it is better to keep it away as the safety of humans, living creatures and
the system itself is far more important.

6. Conf #6: Requirement #18 supersedes #14 because the benefit of increasing device
technologies will shadow the faults that may appear in the environment since the
system can handle them in different ways.

7. Conf #7: Requirement #44 supersedes #18 because security rules are more
important for the sake of the whole environment even if the number of device
technologies does not increase.

8. Conf #8: Requirement #45 supersedes #30 because an increase in the average
processing capability due to securing transmitted data may be accepted if the
system accepts joins from non-trusted devices.

Table 4. Quality features conflicts [21].

100 O. M. Khaled et al.

9. Conf #9: Requirement #27 supersedes #5 because if the sensors are not controlled
properly, this may lead to leakage of confidential data. This is a very high risk
which shadows the benefit of the sensors.

10. Conf #10: Requirement #44 supersedes #30 because an environment is considered
healthy if security rules are applied for the overall protection of the environment.
The wise decision in this case is to accept any additional increase in the average
processing time for the sake of the overall environment’s health.

11. Conf #11: Requirement #49 supersedes #30 because the counter-measures help the
system continue working normally and are of a great value even if the average
processing time may decrease.

12. Conf #12: Requirement #3 supersedes #21 because keeping the users informed all
the time with the changes, even if it entails more interactions, helps protect the
overall safety of the environment.

The overall goal of the reference architecture is not met if conflicts are resolved by
eliminating the requirements. Accordingly, it was decided to identify solutions for
these conflicts in order to satisfy as many requirements as possible. By introducing
functional and architectural solutions, it is guaranteed to enhance the decision making
for the architect in order to generate concrete architectures out of the reference
architecture and that in turn will make them more practical [24].

All the conflicts were reviewed, as explained in Sect. 3, and alternative solutions
proposed. Some solutions were merged to achieve a higher balance. In some other
conflicts, only a single solution is proposed or the superseding requirement is chosen
(Fig. 1).

Fig. 1. Conflict resolution [21].

Exploiting Requirements Engineering to Resolve Conflicts 101

The alternative solutions were analyzed thoroughly and a relationship matrix built
between the solutions and the requirements of the quality features within the scope of
the conflict, maximize, and minimize relationships since this could be adopted as a
cross-cutting concern [24]. The merged solution is designed so that the positive impact
(maximize and minimize) of one solution shadows the negative impact (conflict) of the
other solutions with the same quality feature requirement if it exists. The score of the
solution is calculated using the feature weight of the quality feature in Table 2. The
formula, as mentioned in [21], estimates the positive impact of the solution given the
negative impact and as expressed in formula (2)

Score ¼ Rþ * FRþ
weight � R� * FR�

weight ð2Þ

R+ is the percentage of the minimize (mif) and maximize (mxf) relationships from
all the relationships of the solution with the other requirements. R- is the percentage of
the conflict relationships (cff) of the solution with the other requirements. They are
calculated using formulas (3) and (4), as mentioned in [21], respectively.

Rþ ¼
P11

f¼1 mif þmxf
P11

f¼1 mif þmxf þ cff
ð3Þ

R� ¼
P11

f¼1 cffP11
f¼1 mif þmxf þ cff

ð4Þ

FRþ
weight is the weighted average, an average multiplied by its probability [25], of

the minimize and maximize relationships of the solution with the requirements
belonging to a single feature multiplied by the weight of this feature (weightf) in
Table 2. FR�

weight is the weighted average of the number of conflict relationships of the
solution with the requirements belonging to a single feature multiplied by the weight of
the feature (weightf) in Table 2. They are calculated using formulas (5) and (6) as cited
in [21]

FRþ
weight ¼

X11

f¼1
mxf þmif
� �

* weightf ð5Þ

FR�
weight ¼

X11

f¼1
cff
� �

* weightf ð6Þ

The followed rules in order to devise the formula were that:

1. The generated solution score must be calculated based on the positive and negative
relationships with the requirements of the quality features.

2. The maximize and minimize relationships impact the solution score positively,
while the conflict relationships impact the solution score negatively.

3. The formula must generate a normalized score in order to analyze all the solutions
for all the conflicts on the same scale.

102 O. M. Khaled et al.

4. The weights of the quality features, which are normalized already, must drive the
score of the solution.

The solution score tables in the sub-sections below show only the number of
relations for every feature and then the weighted score is given by applying the for-
mula. A list of the proposed solutions was devised, as shown in Table 5, and the way
solutions will be linked to conflicts is as explained above.

6.1 One Solution

Conflicts 3 and 11 are resolved for the superseding requirement. This decision is taken
because partial fulfillment of the superseding requirements may risk the existence of the
whole system. Conflict 6 is resolved using solution 21, which is used to resolve other
conflicts in the coming sub-sections. It is meaningless to assign a score for the solution
in this case.

Table 5. Solutions list [21].

Sol ID Solution Sol ID Solution

SO-001 Associate device with user SO-002 Authenticate every time
SO-003 Delete unnecessary sensor data SO-004 Disable sensors if not

needed
SO-005 Increase shared resources SO-006 Mediate access through a

middleware
SO-007 Authorize access upon information

request
SO-008 Classify personal

information as a setting
SO-009 Define information access explicitly SO-010 Teach the system (add to its

knowledge base)
SO-011 Declare security rules for the devices

willing to join the system
SO-012 Scan devices before joining

the system
SO-013 Apply less strict security rules on the

private smart environment
SO-014 Apply less strict security

rules on trusted objects
SO-015 Log all changes for later access SO-016 Notify for important

changes only
SO-017 Transfer non-securely if possible SO-018 Use a light-weight

encryption algorithm
SO-019 Use compatible technologies SO-020 A positive merge of

solutions (7, 8, 9)
SO-021 A positive merge of solutions (10, 19) SO-022 A positive merge of

solutions (11, 12)
SO-023 A positive merge of solutions (13, 14) SO-024 A positive merge of

solutions (15, 16)
SO-025 A positive merge of solutions (17, 18)

Exploiting Requirements Engineering to Resolve Conflicts 103

6.2 Alternative Solutions

These are the type of problems that bare different solutions that may not be merged.
A description for every solution is given and the number of relationships is counted
between these solutions and the requirements of the quality features as shown in
Table 6.

The score equation was applied for every solution. For example, Conflict 4 is
between requirement (Maximize the number of device technologies) and requirement
(Minimize conflicting usage of shared resources) can be resolved by solution (Increase
shared resources), solution (Mediate access through a middleware), or solution (Use
compatible technologies).

1. Solution SO-005 (Increase shared resources): Increase the number of shared
resources to decrease conflicts. For example, if there is X number of temperature
sensors and they are not enough to serve the system and cause contention, then it
may be possible to add more sensors to respond to the increased demand. The
condition here is that they have to be from the same technology providers. This is a
classical solution that works in case the devices are not fully tested and there is a
high probability that they may cause problems in working systems. This solution
has a positive impact on 6 features and zero negative impact.

2. Solution SO-006 (Mediate access through a middleware): Shared resources can
be mediated using a middleware-software. The purpose of the middleware is to
ensure proper access to the shared resources even if they are coming from different
technology providers. The middleware has a main benefit which is hiding the
complexity of the different technologies from service requesters leading to better
handling of resources [26]. This solution has a positive impact on 2 features and
zero negative impact.

Table 6. Conflict 4 solutions score [18].

Solution SO-005 SO-006 SO-019
Feature mi mx cf Total mi mx cf Total mi mx cf Total

SY 1 1 2 2 2 2
ST
SO 2 2 1 1
FT 1 1 1 1
HD 1 1 2 2 1 1
PT
CS 1 1 1 1
QoS 1 1
AB 1 1 1 1
EC
IN
Total 2 5 7 3 4 7 3 1 1 5
Score 0.7295 0.7419 0.4341

104 O. M. Khaled et al.

3. Solution SO-019 (Use compatible technologies): There are technologies that were
tested in common solutions and proven to be working with minimal conflicts,
including shared resource conflicts. Hence, by using compatible technologies only,
it will not be possible to add more devices from other technology providers unless
they were tested with the existing ones in the system and proven to be working
without major problems. This solution has a positive impact on 3 features and a
negative impact on one feature.

The same approach was applied for conflicts 1 and 9 and that resulted in defining
alternative solutions as shown in Table 7.

6.3 Merged Solutions

The same approach was followed in defining alternative solutions for the same conflicts
in Sect. 6.2. However, a more solid solution could be found if solutions could be
introduced together. The merged solution eliminates the negative impact (conflict) only
if there is one or more maximize or minimize relationships provided from at least one
solution for the same requirement.

The adopted procedure to decide if a business requirement is satisfied by a merged
solution is as follows:

1. Build a matrix of the solutions as columns and the requirements as rows.
2. Go over every piece of requirements and if there are positive and negative rela-

tionships, then ignore the negative relationship and inherit the positive ones. Hence,
the merged solution will have a single positive relationship with that requirement.

3. If all the relationships of the alternative solutions are negative, then the merged
solution will have a single negative relationship with that requirement.

4. This activity is repeated for all the requirements that are impacted by the alternative
solutions.

5. The requirements that are not addressed by the alternative solutions are ignored.

Table 7. Alternative solutions conflict matrix [21].

Exploiting Requirements Engineering to Resolve Conflicts 105

For example, Conflict 8, as shown in Table 8, is between requirement (Ensure
secure data transmission) and requirement (Minimize average processing time) can be
resolved by solution SO-017 (Transfer non-securely if possible), solution SO-018 (Use
light-weight encryption algorithm), or solution SO-025 which is a merged solution
between them.

1. Solution SO-017 (Transfer non-securely if possible): There are some contexts
that may not require secure transmission. For example, (a) Private systems that are
not accessed from outsiders may transfer normally without encryption, (b) Trans-
mission of an already encrypted material, and (c) public data. The overall response
time in this case will be optimum. This solution has positive impacts on 5 features
and negative impacts on 3 features.

2. Solution SO-018 (Use light-weight encryption algorithm): By using light-weight
encryption algorithms, the system may be able to sustain for a longer period of time,
does not degrade performance as much, and an acceptable level of security is
achieved while transmitting data [27]. This solution has a positive impact on 4
features and zero negative impact.

3. Solution SO-025 (merged solution): a merged solution between the above two
solutions. It has a positive impact on 6 features and zero negative impact.

Table 9 shows all the conflicts and the solutions that make the required balance.

7 Evaluation

Different solutions for the same problem were introduced in order to enrich the
selection process for the architect. They will be ultimately used in the concrete
architecture of the pervasive system in some way or another based on the final decision.

Table 8. Conflict 8 merged alternative solutions [18].

Solution SO-017 SO-018 SO-025
Feature mi mx cf Total mi mx cf Total mi mx cf Total

SY 1 1 1 1 1 1
ST 1 1 1 3 1 1 2 2 1 3
SO 1 1 1 1
FT 1 1 1 1 1 1
HD
PT
CS
QoS 1 1 2 1 1 2 1 1 2
AB 2 2 2 2
EC
IN
Total 3 4 3 10 3 3 6 4 6 10
Score 0.4219 0.8200 1.2667

106 O. M. Khaled et al.

A solution that has a lower score is considered inferior within the scope of the selected
requirements. It could be a good solution within another context which is driven by the
weights of the quality features. If the weights of the quality features are changed, the
scores of the solutions may change as well and the solution with the lower positive
impact may score higher.

Table 10 reveals some facts about the solutions. It reveals that the highest score is
1.6550 for solution SO-020, which merges solutions SO-007, SO-008, and SO-009, for
conflict 2 as shown in Table 10 and the lowest score is −0.1218 for solution SO-004
(Disable sensors if not needed) for conflict 9 as shown in Table 7. The mean of all the
scores l, is 0.6431 and the standard deviation r, is 0.4805. Accordingly, it is inferred
that the solutions that have scores above the mean have a higher positive impact and
those that are below the mean have a lower positive impact. It is important to note that
all the scores are on the same ratio scale and it is possible to calculate the central
tendency of these solutions as will be explained in the next paragraph.

What makes this statistical evaluation powerful is that these solutions are normally
distributed. The normality of the solution scores was tested according to [25] and was
found to be normal with a P-value of 0.536 and confidence level 95% (Fig. 2). In the

Table 9. Merged alternative solutions score matrix [21].

Exploiting Requirements Engineering to Resolve Conflicts 107

probability plot, if the P-Value is greater than 0.5, then it is an indication that the
population is normally distributed. The distribution of the scores in Table 11 shows
that the presented solutions are capable of resolving the conflicts as the model’s
capability index, (Cpk = 1.17), is greater than 1 (and the upper bound is 2.23 and the
lower bound is −0.8). Being normally distributed gives an edge for the architects to:

1. Simplify the decision for alternative solutions by measuring them using the sta-
tistical model as a reference.

2. Standardize the solution scores as z values and use the standard z-table [25].
Z values simplify the interpretation of the scores as the z-value of zero or more has a
higher positive impact than the negative z-values. Z-values could be obtained by
using Eq. (7) [24].

z ¼ score� l
r

ð7Þ

Table 10. Scores of the conflict solutions [21].

Solution FRþ
weight FR�

weight Rþ R� Score

SO-001 1.123 0 1 0 1.123
SO-002 1.058 0.280 0.545 0.455 0.450
SO-003 0.563 0.330 0.636 0.364 0.238
SO-004 0.178 0.347 0.429 0.571 −0.122
SO-005 0.730 0 1 0 0.730
SO-006 0.742 0 1 0 0.742
SO-007 1.415 0.146 0.833 0.167 1.155
SO-008 0.674 0.310 0.818 0.182 0.495
SO-009 0.830 0.034 0.778 0.222 0.638
SO-010 0.936 0 1 0 0.936
SO-011 0.949 0 1 0 0.949
SO-012 1.210 0.046 0.875 0.125 1.054
SO-013 0.355 0.419 0.600 0.400 0.046
SO-014 0.355 0.210 0.750 0.250 0.214
SO-015 0.204 0 1 0 0.204
SO-016 0.118 0.210 0.750 0.250 0.036
SO-017 0.802 0.465 0.700 0.300 0.422
SO-018 0.820 0 1 0 0.820
SO-019 0.582 0.157 0.800 0.200 0.434
SO-020 1.753 0.017 0.944 0.056 1.655
SO-021 0.936 0 1 0 0.936
SO-022 1.577 0.046 0.900 0.100 1.415
SO-023 0.355 0.419 0.600 0.400 0.046
SO-024 0.265 0.210 0.857 0.143 0.197
SO-025 1.267 0 1 0 1.267

108 O. M. Khaled et al.

3. Allow the solutions to follow the system goal which could be controlled by the
weights of the quality features.

The architect can maximize the positive impact of the solutions if he/she selects the
solutions with the highest scores for every problem. The architect must revisit his/her
selections if the weights of the quality features changed.

Since the weights of the quality features are considered quite important for the
correct scores of the solutions, they were validated before starting to analyze the
conflicts. A survey containing the list of all the requirements was published (as shown
in the Appendix), in which some users were asked to give their subjective decision
about the importance of every requirement. The survey received responses from 17
respondents who have different experiences in software development within different
business industries. The responses were grouped by the quality features and the average
importance was then computed, which is equivalent to the complexity weight, for every
quality feature. The responses showed close proximity to our conclusions about the
weights of the quality features with a relatively small standard deviation, 2.3741 [20].

It was interesting to compare our results for the ranking of the quality features
(Table 11) with the results reported by Spínola and Travassos [22], the guiding
research work which lists most of the mentioned quality features. Spínola and
Travassos’s approach was to review the literature and run surveys and workshops with
users to reach for the outcome conclusion. However, our trade-off analysis was made
using pure technical analysis and statistical approaches after the requirements for the
quality features were collected.

Fig. 2. Probability plot of the solutions’ scores [21].

Exploiting Requirements Engineering to Resolve Conflicts 109

8 Discussion

Product Line Architecture tools can embed this statistical model in their frameworks to
automate the generation of the concrete architectures. The weights of the quality fea-
tures drive the recommendations of the solutions. It is a kind of a goal-driven archi-
tecture which the architect can control according to the context by which the concrete
architecture will be used. Similar approaches are applied successfully in product-line
architectures as stated in [28, 29].

The statistical model can be used at runtime to enable or disable solutions according
to the context. This can be applied either by the administrator of the system or by
allowing the system to send feedback about its performance to the adaptation engine in
order to recalculate the weights of the quality features and the solutions subsequently.
Additionally, the architect should further study the rippled effect of the solution vari-
ations on the different architecture components [30].

This approach can be scaled over any number of requirements. It becomes very
difficult to review all the requirements with all the stakeholders all the time. Accord-
ingly, it is also an excellent choice for agile projects that have large number of
requirements, limited access to the required stakeholders, or constrained implementa-
tion time. The presented heuristic approach can provide fast decisions with high
confidence levels in such situations.

On the other hand, the architect may use a simple binary (Boolean) approach to
rank the solutions against the quality features based on their positive and negative
impact within a limited scope to make a quick evaluation. However, this simple model

Table 11. Comparison between our priority results and Spínola and Travassos’ priority results
with respect to the business quality features [18].

Key comparison This research work Spínola and Travassos’s research
work

Service
omnipresence

Service omnipresence is ranked as
one of the top priority features

Service Omnipresence is a key
characteristic that is found in all
ubiquitous projects

Classification of
the Business
Quality Features

Quality features are classified as
enablers and constraints

Classified quality features as
functional and restrictive

Enabler vs.
Functional
Categories

Enabler features are Adaptable
Behavior, Context Sensitivity,
Heterogeneity of Devices, and
Service Omnipresence

Functional characteristics are
context sensitivity, adaptable
behavior, service omnipresence,
heterogeneity of devices, and
experience capture

Constraint vs.
Restrictive
Categories

Constraint features are Privacy and
Trust, Quality of Service, Safety,
Security, Fault Tolerance, and
Experience Capture

Restrictive characteristics are
privacy and trust, fault tolerance,
quality of service, and universal
usability

Invisibility
Quality Feature

Invisibility cannot be classified as
enabler or constraint feature and it is
ranked as the lowest in priority

Invisibility was ranked the lowest
with respect to pertinence level

110 O. M. Khaled et al.

may increase the probability of errors if it is used with the Product Line Architecture to
adopt different solutions at runtime. This statistical model is more accurate because it
starts the analysis from the requirements level which reduces the subjectivity of the
decisions because the selected requirements are proven to be a representative sample of
the population of the requirements in the selected quality features.

9 Conclusion

In this paper, a conflict resolution approach is presented between conflicting require-
ments. We applied this approach in our research project of building a reference
architecture for pervasive computing systems. A basic list of requirements for 11
quality features was presented. The weights of the quality features were calculated
according to a statistical analysis of the relationships between the requirements. The
identified conflicting relationships between the requirements were addressed by
proposing functional or architectural solutions. We analyzed these solutions statisti-
cally and proved they are normally distributed, which gave an early validation about
the correctness of these solutions as design decisions.

This work is a practical guide for architects who are willing to produce systems
categorized as pervasive, ubiquitous, or Internet of Things (IoT). The approach can be
applied in general to solutions in other domains even with a different set of
requirements.

The scope of the solutions can grow if the conflicts increase. The solutions com-
plement the requirements by filling the gaps created by the conflicting requirements.
The list of presented solutions provides guidance to only start a concrete architecture
and may include other future requirements and solutions as well.

The requirements model can be woven inside the software system at runtime. It will
be useful to attribute the performance of the system to the statistical model of the
requirements. It is possible to achieve it by linking the performance indicators of the
system to the quality features and the requirements and the collected statistics are used
to further improve the architecture of the system.

Acknowledgement. We would like to thank the following experts for their help and support in
this research work: Ahmed Ibrahim and Hassan Ali (IBM Egypt), Hany Ouda, (Etisalat Egypt
Telecommunications), Mohamed Hassan Abdelrahman (Vodafone Egypt Telecommunications),
and Soumaia Al-Ayyat (AUC).

Appendix

The following list is a high level summary of the quality features’ requirements as
referenced from [21]:

(a) Adaptable Behaviour (AB): In order to fulfil this feature [31], the system is
required to (1) evaluate/improve adaptive actions (actions taken in response for
the context change), (2) have smart decision rules, (3) notify users with changes,
and (4) possess actuation capabilities.

Exploiting Requirements Engineering to Resolve Conflicts 111

(b) Context Sensitivity (CS): In order to fulfil this feature [14], the system is required
to (5) have sensors, (6) locate interacting objects, (7) provide analytical capability,
(8) provide interpretation rules, and (9) record the object’s lifetime.

(c) Experience Capture (EC): In order to fulfil this feature [22, 32, 33], the system is
required to (10) capture Knowledge about users, (11) correlate information and
knowledge, and (12) capture/change behavioural patterns.

(d) Fault Tolerance (FT): In order to fulfil this feature [34, 35], the system is required
to (13) detect faults quickly, (14) minimize faults, (15) minimize the probability of
a device going offline, (16) reduce error consequences, (17) display a proper error
message, and (18) take the proper corrective action.

(e) Heterogeneity of Devices (HD): In order to fulfil this feature [36, 37], the system
is required to (18) maximize the number of device technologies, (19) provide a
unique identifier for every object, and (20) render content on a maximum number
of devices.

(f) Invisibility (IN): In order to fulfil this feature [33], the system is required to
(21) minimize unneeded interactions, (22) remove unnecessary motions,
(23) conceal the system devices and (24) minimize the use of explicit input.

(g) Privacy and Trust (PT): In order to fulfil this feature [38, 39], the system is
required to (25) certify trusted entities, (26) classify Information, (27) reveal
Information controllably, and (28) track Information.

(h) Quality of Service (QoS): In order to fulfil this feature [14, 40], the system is
required to (29) declare service/quality feature boundaries, (30) minimize average
processing time, (31) monitor and improve QoS boundaries, and (32) specify
hard/soft deadlines.

(i) Safety (SY): In order to fulfil this feature [23, 34], the system is required to
(33) alert the user if safety is about to be/or is compromised, (34) allow the user to
override/cancel system decisions, (35) avoid conflicting side effects (e.g. contra-
dicting actions), (36) avoid invalid operational directives (e.g. wrong directives set
by the users that may cause safety hazards to people and devices), (37) ensure that
generated rules do not conflict with the system’s policy, (38) minimize conflicting
usage of shared resources, (39) override system rules by the regulator (an
authorized entity to set/change the rules of the system), (40) provide maximum
protection (protect the interacting users and devices from injury and damage) for
the environment, (41) resolve conflicts among objects by an administrator, and
(42) respect societal ethics.

(j) Security (ST): In order to fulfil this feature [14, 32, 41, 42], the system is required to
(43) disallow anonymous usage of system, (44) enforce Security rules on all objects,
(45) ensure secure data transmission, (46) maintain data integrity, (47) prevent data
leakage, (48) provide data access rules, (49) take counter-measures to mitigate
security threats, and (50) announce malfunctioning smart objects.

(k) Service Omnipresence (SO): In order to fulfil this feature [42], the system is
required to (51) distribute computing power, (52) enrich the experience of the
highly used scenarios, (53) provide Informative messages, (54) use a unique user
identifier and (55) utilize the user’s cell phone.

112 O. M. Khaled et al.

References

1. Chakraborty, A., Kanti Baowaly, M., Arefin, A., Newaz Bahar, A.: The role of requirement
engineering in software development life cycle. J. Emerg. Trends Comput. Inf. Sci. 3(5),
723–729 (2012)

2. A Guide to the Business Analysis Body of Knowledge, 1.6. International Institute of
Business Analysis (2006)

3. IIBA Business Analysis Competency Model, 3.0. International Institute of Business
Analysis, Toronto, Ontario, Canada, March 2011

4. Mendizabal, O.M., Spier, M., Saad, R.: Log-based approach for performance requirements
elicitation and prioritization. In: 2012 20th IEEE International Requirements Engineering
Conference (RE), pp. 297–302 (2012)

5. Kolos-Mazuryk, L., Poulisse, G.-J., van Eck, P.: Requirements engineering for pervasive
services. In: Second Workshop on Building Software for Pervasive Computing (2005)

6. Afridi, A.H., Gul, S.: Method assisted requirements elicitation for context aware computing
for the field force. Lect. Notes Eng. Comput. Sci. (2008)

7. Muñoz, J., Pelechano, V.: Building a software factory for pervasive systems development.
In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 342–356.
Springer, Heidelberg (2005). https://doi.org/10.1007/11431855_24

8. Pérez, F., Valderas, P.: Allowing end-users to actively participate within the elicitation of
pervasive system requirements through immediate visualization. In: 2009 Fourth Interna-
tional Workshop on Requirements Engineering Visualization, pp. 31–40 (2009)

9. Khaled, O.M., Hosny, H.M., Shalan, M.: A survey of building robust business models in
pervasive computing. In: The Proceedings of the 2014 World Congress in Computer
Science, Computer Engineering, and Applied Computing, Las Vegas, Nevada, USA (2014)

10. Salado, A., Nilchiani, R.: The tension matrix and the concept of elemental decomposition:
improving identification of conflicting requirements. IEEE Syst. J. PP(99), 1–12 (2015)

11. Sadana, V., Liu, X.F.: Analysis of conflicts among non-functional requirements using
integrated analysis of functional and non-functional requirements. In: 31st Annual
International Computer Software and Applications Conference (COMPSAC 2007), vol. 1,
pp. 215–218 (2007)

12. Oster, Z.J., Santhanam, G.R., Basu, S.: Scalable modeling and analysis of requirements
preferences: a qualitative approach using CI-Nets. In: 2015 IEEE 23rd International
Requirements Engineering Conference (RE), pp. 214–219 (2015)

13. Galster, M., Eberlein, A.: Facilitating software architecting by ranking requirements based
on their impact on the architecture process. In: 2011 18th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems, pp. 232–240 (2011)

14. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Concepts and
Design, 5th edn. Addison-Wesley Publishing Company, Boston (2011)

15. Gunasekaran, A., Kobu, B.: Modelling and analysis of business process reengineering. Int.
J. Prod. Res. 40(11), 2521–2546 (2002)

16. Mohapatra, S.: BPR and automation. In: Mohapatra, S. (ed.) Business Process Reengineer-
ing: Automation Decision Points in Process Reengineering, pp. 213–219. Springer, Boston
(2013). https://doi.org/10.1007/978-1-4614-6067-1_10

17. Liu, J., Li, J., Jiang, T.: Research on the reengineering of warehousing process based on
Internet of Things. In: 2014 IEEE International Conference on Progress in Informatics and
Computing, pp. 567–571 (2014)

Exploiting Requirements Engineering to Resolve Conflicts 113

http://dx.doi.org/10.1007/11431855_24
http://dx.doi.org/10.1007/978-1-4614-6067-1_10

18. Khaled, O.M.: Pervasive Computing reference architecture from a software engineering
perspective. Ph.D. thesis dissertation, The American University in Cairo, Cairo, Egypt
(2017)

19. Salado, A., Nilchiani, R.: The concept of order of conflict in requirements engineering. IEEE
Syst. J. 10(1), 25–35 (2016)

20. Khaled, O.M., Hosny, H.M., Shalan, M.: A pervasive computing business reference
architecture: the basic requirements model. Int. J. Softw. Eng. IJSE 10(1), 17–46 (2017)

21. Khaled, O.M., Hosny, H.M., Shalan, M.: A statistical approach to resolve conflicting
requirements in pervasive computing systems. Presented at the 12th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017),
Porto, Purtogal, p. 12 (2017)

22. Spínola, R.O., Travassos, G.H.: Towards a framework to characterize ubiquitous software
projects. Inf. Softw. Technol. 54(7), 759–785 (2012)

23. Yang, H.I., Helal, A.: Safety enhancing mechanisms for pervasive computing systems in
intelligent environments. In: 2008 Sixth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom), pp. 525–530 (2008)

24. Galster, M., Avgeriou, P., Weyns, D., Männistö, T.: Variability in software architecture:
current practice and challenges. SIGSOFT Softw. Eng. Notes 36(5), 30–32 (2011)

25. Moore, D.S., McCabe, G.P., Craig, B.A.: Introduction to the Practice of Statistics: Extended
Version, 6th edn. W.H. Freeman, New York (2009)

26. Dubois, D.J., Bando, Y., Watanabe, K., Holtzman, H.: ShAir: extensible middleware for
mobile peer-to-peer resource sharing. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, New York, NY, USA, pp. 687–690 (2013)

27. Petroulakis, N.E., Askoxylakis, I.G., Tryfonas, T.: Life-logging in smart environments:
challenges and security threats. In: 2012 IEEE International Conference on Communications
(ICC), pp. 5680–5684 (2012)

28. Losavio, F., Ordaz, O.: Quality-based heuristic for optimal product derivation in Software
Product Lines. In: 2015 Internet Technologies and Applications (ITA), pp. 125–131 (2015)

29. Murwantara, I.M.: Hybrid ANP: quality attributes decision modeling of a product line
architecture design. In: 2012 2nd International Conference on Uncertainty Reasoning and
Knowledge Engineering, pp. 30–34 (2012)

30. Oliveira, E., Allian, A.P.: Do reference architectures can contribute to standardizing
variability management tools? In: 2015 1st International Workshop on Exploring
Component-based Techniques for Constructing Reference Architectures (CobRA), pp. 1–4
(2015)

31. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the vision of autonomic
computing. Computer 43(1), 35–41 (2010)

32. Internet of Things Architecture IoT-A Project Deliverable D6.2 – Updated Requirements.
European Lighthouse Integrated Project, January 2011

33. Viana, J.R.M., Viana, N.P., Trinta, F.A.M., de Carvalho, W.V.: A systematic review on
software engineering in pervasive games development. In: 2014 Brazilian Symposium on
Computer Games and Digital Entertainment, pp. 51–60 (2014)

34. Khaled, O.M., Hosny, H.M., Shalan, M.: On the road to a reference architecture for
pervasive computing. In: 2015 International Conference on Pervasive and Embedded
Computing and Communication Systems (PECCS), pp. 98–103 (2015)

35. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley Publishing Company,
Boston (2010)

36. Purao, S., Paul, S., Smith, S.: Understanding enterprise integration project risks: a focus
group study. In: 18th International Workshop on Database and Expert Systems Applications
(DEXA 2007), pp. 850–854 (2007)

114 O. M. Khaled et al.

37. Nosrati, M., Karimi, R., Hasanvand, H.A.: Mobile computing: principles, devices and
operating systems. World Appl. Program 2(7), 399–408 (2012)

38. Joinson, A.N., Reips, U.-D., Buchanan, T., Schofield, C.B.P.: Privacy, trust, and self-
disclosure online. Hum. Comput. Interact. 25(1), 1–24 (2010)

39. Kostakos, V., O’Neill, E., Penn, A.: Designing urban pervasive systems. Computer 39(9),
52–59 (2006)

40. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic low-power
reconfiguration of real-time systems with periodic and probabilistic tasks. IEEE Trans.
Autom. Sci. Eng. 12(1), 258–271 (2015)

41. Ray, A., Cleaveland, R.: An analysis method for medical device security. In: Proceedings of
the 2014 Symposium and Bootcamp on the Science of Security, New York, NY, USA,
pp. 16:1–16:2 (2014)

42. Addo, I.D., Ahamed, S.I., Yau, S.S., Buduru, A.: A reference architecture for improving
security and privacy in Internet of Things applications. In: 2014 IEEE International
Conference on Mobile Services, pp. 108–115 (2014)

Exploiting Requirements Engineering to Resolve Conflicts 115

Assisting Configurations-Based Feature
Model Composition

Union, Intersection and Approximate Intersection

Jessie Carbonnel1, Marianne Huchard1(B), André Miralles2,
and Clémentine Nebut1

1 LIRMM, CNRS and Université de Montpellier,
161 rue Ada, 34095 Montpellier Cedex 5, France

{jessie.carbonnel,marianne.huchard,clementine.nebut}@lirmm.fr
2 TETIS, IRSTEA, 500 rue Jean-François Breton,

34093 Montpellier Cedex 5, France
andre.miralles@teledetection.fr

Abstract. Feature Models (FMs) have been introduced in the domain
of Software Product Lines (SPL) to model and represent product vari-
ability. They have become a de facto standard, based on a logical tree
structure accompanied by textual cross-tree constraints. Other represen-
tations are: (product) configuration sets from concrete software prod-
uct lines, logical representations, constraint programming, or conceptual
structures, coming from the Formal Concept Analysis (FCA) framework.
Modeling variability through FMs may consist in extracting them from
configuration sets (namely, doing FM synthesis), or designing them in
several steps potentially involving several teams with different concerns.
FM composition is useful in this design activity as it may assist FM iter-
ative building. In this paper, we describe an approach, based on a con-
figuration set and focusing on two main composition semantics (union,
intersection), to assist designers in FM composition. We also introduce
an approximate intersection notion. FCA is used to represent, for a prod-
uct family, all the FMs that have the same configuration set through a
canonical form. The approach is able to take into account cross-tree con-
straints and FMs with different feature sets and tree structure, thus it
lets the expert free of choosing a different ontological interpretation. We
describe the implementation of our approach and we present a set of
concrete examples.

Keywords: Software product line · Feature Model
Feature Model Composition · Feature model merging
Formal Concept Analysis · Union models · Intersection models

1 Introduction

Software Product Line Engineering (SPLE) is a development paradigm which
aims to develop a set of related and similar software systems as a single entity
c© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 116–140, 2018.
https://doi.org/10.1007/978-3-319-94135-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_6&domain=pdf

Assisting Configurations-Based Feature Model Composition 117

rather than developing individually each software system [1]. From a develop-
ment point of view, the core of this methodology is a generic architecture where
off-the-shelf reusable artifacts can be plugged depending a given set of require-
ments, and from which can easily be derived a set of software variants. SPLE is
composed of two phases. Domain engineering consists in analyzing and repre-
senting the domain, developing the off-the-shelf artifacts and implementing the
generic architecture. Application engineering consists in giving the final user the
opportunity to select the characteristics she/he wants in her/his software prod-
uct, and then to derive the corresponding software variant composed with the
matching artifacts.

Variability modeling is a task that takes place during domain representation.
It consists in modeling what varies in the software variants, and how it varies.
It is central to SPLE paradigm, as a substantial part of the method is based
on the variability representation, as for instance designing the generic architec-
ture, or guiding the user to select characteristics. The most common approaches
model variability in terms of features, where a feature is a distinguishable char-
acteristic which is relevant to one or several stakeholders. Feature models (FMs)
are considered the standard to model variability with these approaches. They
are a family of visual/graphical languages which depict a set of features and
dependencies between these features. FMs are used, amongst others, to derive
selection tools for the end product designer.

Nowadays, practitioners have to cope with product lines which are more and
more complex. Managing one, huge feature model representing the whole product
line is unrealistic. A solution to ease the application of the SPLE approach in
these cases is to divide the product line according to various concerns and to
manage a separate and specific feature model for each concern. However, even
though it is easier to manage separate FMs, for some design activities it can
be useful to merge these FMs, as for commonalities analysis between different
concerns. Therefore, defining operations that enable feature model composition
is necessary. Feature model composition also has other purposes, in the context
of Software Product Line reengineering, for feature model reuse and adaptation.

Several approaches for FM composition have been proposed in the past, that
are reported in [2]. The main directions for feature model composition in the
literature are using operators on the feature model structure, or propositional
logic computation. Although these approaches have their advantages, either they
tend to confine the designer in a predefined ontological view, or they produce
approximate results, or they need a significant work to build a feature model
from the result (when the result is a logic formula). Besides, operators on feature
model structure hardly take into account the textual cross-tree constraints.

In this paper, we investigate feature model composition in the contexts where
the product configuration set is known (or can be obtained) and where the entities
to be composed are either several feature models, or a feature model and a prod-
uct configuration set, or several product configuration sets. The paper extends
previous research presented in [3]. The approach uses the framework of Formal
Concept Analysis [4] which provides relevant tools for variability representation.

118 J. Carbonnel et al.

This framework ensures the production of sound and complete compositions,
taking into account the cross-tree constraints. Our approach exploits Formal Con-
cept Analysis properties to produce intermediate canonical and graphical repre-
sentations (Equivalence Class Feature Diagrams, or ECFDs) which give assistance
to a designer to manually derive a feature model. The ECFD contains all the pos-
sible ontological links and avoids confining the designer in a specific ontological
view. Two main composition operations are defined (union and intersection), and,
in this paper, we also study the problem of common sub-configuration extraction
(approximate intersection), which arises when the intersection is empty, but the
feature models have some similarities. Except in extreme cases, the approximate
intersection is not empty. We present a prototype tool which computes union,
intersection, and approximate intersection, and we conduct an evaluation on real
feature models. The results allow us to show concrete situations where the app-
roach is scalable, to draw its scope of applicability and to compare the different
operations.

Next Sect. 2 defines feature models and gives an overview of the approach.
Section 3 introduces the main composition operations (union and intersection).
Section 4 introduces Formal Concept Analysis and shows how the framework
helps to build an intermediate canonical and graphical representation with the
aim to assist a designer in feature model composition. The section also proposes
an assisting approach for the extraction of common sub-configurations (approx-
imate intersection) which is based on the conceptual structure. The prototype
tool and the evaluation are presented in Sect. 5. Related work and a discus-
sion are developed in Sect. 6. Section 7 summarizes the approach and provides
perspectives for this research.

2 Context and Overview

In this section, we define feature models (Sect. 2.1), then we provide an overview
of the compositional approach (Sect. 2.2).

2.1 Feature Models

The most common SPLE approaches model variability in terms of features,
where a feature is a distinguishable characteristic which is relevant to some of
the involved stakeholders. Feature Models (FMs) are considered the standard
to model variability with these approaches [5]. They are a family of visual lan-
guages which depict a set of features and dependencies between these features
[6]. In this way, they define the legal combinations of these features, namely
the possible software variants of the product line (also called product configu-
rations or simply configurations). In FMs, the features are organized in a hier-
archy, where each feature represents a characteristic or a concept at several
levels of increasing details, and where each edge represents an ontological rela-
tion as “is-a-kind-of”, “refines”, “is-a-part-of”, “implements”, etc. Dependencies
are expressed on the edges of the tree with graphical decorations, or in textual

Assisting Configurations-Based Feature Model Composition 119

cross-tree constraints. Figure 1 gives an example of an FM representing an SPL
about e-commerce applications, in the most common formalism (FODA [5]).
The example states that e commerce (root feature) requires a catalog. This
mandatory relation is indicated through an edge ending with a black disk. Also,
it shows that e commerce optionally possesses a basket, and this is indicated
by an edge ending with a white circle. In FMs, the children of a feature may
also be grouped into xor groups (meaning that if the parent feature belongs to
a configuration, exactly one child feature of the group is also present) or into
or groups (meaning that if the parent feature belongs to a configuration, one or
more child features of the group are also present). An xor group is indicated by
a black line connecting the edges going from the parent to the children of this
group. In the example, one can see that an e commerce application proposes a
catalog presentation as a grid or as a list (but not both simultaneously). An
or group is indicated by a black filled zone connecting the edges going from the
parent to the children of this group. We can see in the example that the pro-
posed payment method may be credit card, or check, or both. In Fig. 1, two
cross-tree constraints, shown in the figure caption, indicate a mutual dependency
between payment method and basket.

Fig. 1. Left-hand side: An FM describing the variability in a family of e com-
merce applications in FODA formalism. Two cross-tree constraints come along:
payment method requires basket (and reversely). Right-hand side: Main feature tree
annotations.

An FM owns an ontological semantics. Closeness and correspondences
between FMs and ontologies are studied in [7]. The ontological semantics is
the domain knowledge expressed by the feature tree along with the other fea-
ture dependencies (groups, mutex and constraints). For instance, we can read
in the e-commerce FM that catalog is a mandatory characteristic that refines
the concept of e commerce, and that (pay with) check implements the concept
of payment method. In our work, we also are interested in another semantics of
feature models, the configuration semantics. It is given by the set of valid con-
figurations, which are the combinations of features (feature sets) which respect
all the dependencies given by the FM. The set of configurations of an FM f is
denoted by � f �. Our e-commerce FM here has 8 valid configurations, which
correspond to the description of the 8 possible software variants of the product
line. Equation 1 shows � e commerce �.

120 J. Carbonnel et al.

Ec,Ca,G Ec,Ca, L

Ec,Ca,G, Pm,Cc,B Ec,Ca, L, Pm,Cc,B

Ec,Ca,G, Pm,Ch,B Ec,Ca, L, Pm,Ch,B

Ec,Ca,G, Pm,Cc,Ch,B Ec,Ca, L, Pm,Cc,Ch,B

(1)

2.2 Compositional Approach Overview

Figure 2 illustrates the proposed composition operations. The input can be: two
feature models (top left), one feature model and one configuration set (bottom
left), or two configuration sets (not illustrated). The configuration sets are com-
puted for each input feature model, and then represented in the form of formal
contexts. The composition operations (union and intersection) are made on the
formal contexts. A conceptual structure (here an AC-poset, namely a structure
only containing the concepts introducing the features) is built for the union
(resp. intersection) formal context. The ECFD, which is a canonical and graph-
ical structure is then extracted from the AC-poset; it supports the designer to
compose a new FM. All these notions are explained in the next sections.

Fig. 2. An overview of the FM composition process. The FMs F1 and F2 (top left)
have resp. FC1 and FC2 as associated configuration sets/formal contexts.

3 Feature Model Composition

In this section, we define the union and intersection of feature models (Sect. 3.1),
then we discuss the main existing approaches to implement them in order to
motivate ours (Sect. 3.2).

Assisting Configurations-Based Feature Model Composition 121

3.1 Intersection/Union Based Composition

Nowadays, practitioners have to cope with product lines which are more and
more complex, and managing one, huge feature model representing the whole
product line is unrealistic. To ease the application of the SPL approach in these
cases, a solution is to divide the product line according to separate concerns
and to manage a distinct and more specific feature model for each one of these
concerns. However, even though it is easier to manage, for some design activities
it can be necessary to merge these feature models (or part of them), and therefore
we need operations that enable feature model composition [8]. Among the various
composition operations shown in [8], merge-union and merge-intersection have
a special place for managing FMs that give different views of a system. Merge-
union is an integrated view, while merge-intersection allows to highlight the
common core. They are defined using the configuration semantics as follows.

Definition 1 (Merge-intersection[2]). The merge-intersection operation,
denoted by ∩, builds a feature model FM3 from two feature models FM1 and
FM2 such that �FM3� = �FM1� ∩ �FM2�.

Definition 2 (Merge-union [2]). The merge-union operation, denoted by ∪∼,
builds a feature model FM3 from two feature models FM1 and FM2 such that
�FM3� ⊇ �FM1� ∪ �FM2�. This is an approximate union.

Definition 3 (Merge-strict-union [2]). The merge-strict-union operation,
denoted by ∪, builds a feature model FM3 from two feature models FM1 and
FM2 such that � FM3� = �FM1� ∪ �FM2�.

By definition, the merge-strict-union is a restriction of the merge-union.
Figure 2 illustrates merge-intersection and merge-strict-union on a simple exam-
ple, with �F1� = {{A,B}, {A,B,C}} and �F2� = {{A,B}, {A,B,D}}. Thus
intersection and strict union are as follows: �F1� ∩ �F2� = {{A,B}} and
�F1� ∪ �F2� = {{A,B}, {A,B,C}, {A,B,D}}. An example of a merge-union
is given in next Sect. 3.2.

3.2 Comparing Main Implementations of Composition Operations

Several methods have been proposed for implementing merge-union and merge-
intersection. The two main approaches are based on the feature tree structure or
on the logic formula associated with the FMs [8]. Both take as input two feature
models.

The approach based on logic formulas consists in using the logic formulas
that are equivalent to the FMs to be merged. In our case, a formula for F1 can
be (A∧B)∨ (A∧B∧C), while a formula for F2 can be (A∧B)∨ (A∧B∧D). In
[8], the proposed formula for the merge-intersection (resp. merge-strict-union)
is given by Eq. 2 (resp. Eq. 3). While the approach is sound and complete, and
can be implemented using the FM to derive the logic formula as defined in [9],

122 J. Carbonnel et al.

it needs to be completed by a second step consisting in FM extraction from the
logic formula, for example, using the approach given in [10].

(((A ∧ B) ∨ (A ∧ B ∧ C)) ∧ (¬D)) ∧ (((A ∧ B) ∨ (A ∧ B ∧ D)) ∧ (¬C)) (2)

(((A ∧ B) ∨ (A ∧ B ∧ C)) ∧ (¬D)) ∨ (((A ∧ B) ∨ (A ∧ B ∧ D)) ∧ (¬C)) (3)

For discussing the structural approach based on the feature tree, we need
to introduce a slightly more complicated example, and we use a follow up of
the e-commerce example. Figure 3 presents two feature models representing e-
commerce applications and that are to be merged. Table 1 presents their respec-
tive sets of valid configurations. These configurations are given an identifier (such
as FM1C1) for later use in the paper. The structural approach is based on a set
of composition rules which compute the merge-intersection and the merge-union.
These rules are listed in [8]. Their result is shown in Fig. 4. For example, a rule
for merge-union composition establishes that the xor group below Catalog of
FM2, when merged with the mandatory grid feature of Catalog in FM1, gives
an or group below Catalog in the merge-union (see right-hand side of Fig. 4).
An underlying hypothesis in this approach is that the same set of features is
shared by the two FMs to be merged. In our case, this is not the case and the
rules sometimes produce a non-strict merge-union, as for example configuration
{Ec,Ca,G,L, Pm,Ch} is not in the merge-strict-union of the configurations
appearing in Table 1: this configuration indeed contains L which is not available
in FM1, and Ch which is not available in FM2. A main characteristic of this
approach is that the rules do not reconsider all the ontological semantics and

Fig. 3. Two feature models (left-hand, FM1 and right-hand, FM2) representing e-
commerce applications and that are to be merged.

Table 1. Configuration sets of FM1 and FM2 from Fig. 3.

Ec Ca G Pm Cc Ch
FM1C1 x x x
FM1C2 x x x x x
FM1C3 x x x x x
FM1C4 x x x x x x

Ec Ca G L Pm Cc
FM2C1 x x x
FM2C2 x x x
FM2C3 x x x x x
FM2C4 x x x x x

Assisting Configurations-Based Feature Model Composition 123

Fig. 4. Merge-intersection (left-hand side) and merge-union (right-hand side) of FM1

and FM2 from Fig. 3 using the structural approach of [8].

especially the child-parent relationships. In our example, two different solutions
for attaching payment method may be considered: below e commerce, as it is
preserved by the structural rule or below catalog, which is an alternative that
can be considered by a designer (with a “part-of” semantics in the associated
software components), but is not proposed by the rule. Besides, it is impor-
tant to underline that this approach does not take into account the cross-tree
constraints, if some exist.

This is why, despite the qualities of these approaches, it is useful to have
a complementary point of view, based on the configuration set, which ensures
the soundness and completeness of merge-intersection and merge-strict-union
operations, is able to take into account cross-tree constraints and FMs with
different feature sets, and does not confine the designer in a specific ontological
view (if a FM is badly designed, but its configuration set is correct, our approach
produces a correct result), while assisting her/him in the FM construction. We
propose such a solution in the following section. The solution can be used for
merging two feature models, or one feature model and a configuration set, or
two configuration sets.

4 Formal Concept Analysis for Feature Model
Composition

In Sect. 4.1, we briefly present the notion of formal context. A formal context is
an input data for Formal Concept Analysis (FCA). We define (merge) intersec-
tion and strict union in terms of operations on formal contexts and illustrate the
definitions in the context of variability modeling. The conceptual structures that
are built by FCA are presented in Sect. 4.2. Then, we introduce an intermedi-
ate structure, the Equivalence Class Feature Diagram (ECFD) in Sect. 4.3. The
ECFD associated with a configuration set is a canonical, graphical representa-
tion of variability: all FMs having the same configuration set have a projection
in the ECFD (and can be extracted from it). We show how the ECFD can assist
the designer in building feature models which are consistent with the domain.
At last, we extend the scope of the study by an approach for extracting the
common sub-configurations in Sect. 4.4.

124 J. Carbonnel et al.

4.1 Formal Contexts for Intersection and Strict Union

Formal Concept Analysis (FCA) is a mathematical data analysis framework for
hierarchical clustering and rule extraction [4]. In its basic form, it concentrates
on a restricted application of Galois connection and Galois lattice theory to
binary relationships [11–13]. As input, it takes a set of objects described by a
set of attributes, arranged in a tabular form called a formal context.

Definition 4 (Formal Context). A formal context K is a 3-tuple (G,M, I),
where G is an object (configuration) set, M is an attribute (feature) set, and
I ⊆ G × M is a binary relation which associates objects (configurations) with
attributes (features) they own. Given a context K = (G,M, I), for g ∈ G we will
denote by I(g) the set of features of g, i.e. the set {m ∈ M |(g,m) ∈ I}.

The two binary relationships of Table 1, which presents the configuration sets
of FM1 and FM2, are formal contexts. Each row corresponds to an object (a
configuration) and each column corresponds to an attribute (a feature). The
left-hand side formal context indicates that configuration FM1C1 comprises the
attributes Ec,Ca,G. We present in the next Sect. 4.2 the conceptual structures
that are extracted from a formal context.

For defining the intersection and strict union formal contexts, we first intro-
duce the notion of equality of objects (configurations), denoted by �, as objects
having the same set of attributes. In tables and figures, which are generated by
tools, when applicable, � is denoted by “=”.

Definition 5 (Equality of Objects, �).

g1 � g2 ⇔ g1 ∈ G1, g2 ∈ G2 and I1(g1) = I2(g2)

We then define the formal context associated with intersection as the rows
that are present in the two initial formal contexts (Definition 6). A labeling of
rows is added to indicate their origin. Table 2 shows the formal context associated
with the intersection of FM1 and FM2 formal contexts from Table 1.

Table 2. Formal context associated with the intersection of FM1 and FM2 formal
contexts from Table 1.

Ec Ca G Pm Cc
FM1C1 = FM2C1 x x x
FM1C2 = FM2C3 x x x x x

Definition 6 (Intersection Formal Context). The formal context of inter-
section Inter(K1,K2) is
KInter(K1,K2) = (GInter(K1,K2),MInter(K1,K2), IInter(K1,K2)) such that:

– GInter(K1,K2) = {gg1�g2
| ∃(g1, g2) ∈ G1 × G2, g1 � g2}

– MInter(K1,K2) = M1 ∩ M2

Assisting Configurations-Based Feature Model Composition 125

– IInter(K1,K2) = {(gg1�g2,m) | m ∈ MInter(K1,K2), gg1�g2 ∈
GInter(K1,K2), (g1,m) ∈ I1(or equivalently (g2,m) ∈ I2)}
Definition 7 introduces the formal context associated with strict union.

Table 3 shows the formal context associated with the strict union of FM1 and
FM2 formal contexts from Table 1. It highlights the two common configurations
(first two rows) and the configurations that are specific to one FM (next four
rows).

Definition 7 (Strict Union Formal Context). Let us consider:

– the set of common configurations (from Definition 6) GInter(K1,K2) and the
corresponding relation IInter(K1,K2)

– the set of configurations specific to G1:
SPE(G1) = {g1 | g1 ∈ G1 and �g2 ∈ G2, with gg1�g2 ∈ GInter(K1,K2)}

– the set of configurations specific to G2:
SPE(G2) = {g2 | g2 ∈ G2 and �g1 ∈ G1, with gg1�g2 ∈ GInter(K1,K2)}

The formal context of strict union Union(K1,K2) is:
KUnion(K1,K2) = (GUnion(K1,K2),MUnion(K1,K2), IUnion(K1,K2)) such that:

– GUnion(K1,K2) = GInter(K1,K2) ∪ SPE(G1) ∪ SPE(G2)
– MUnion(K1,K2) = M1 ∪ M2

– IUnion(K1,K2) = IInter(K1,K2)

∪{(g,m) | g ∈ SPE(G1),m ∈ MUnion(K1,K2), (g,m) ∈ I1}
∪{(g,m) | g ∈ SPE(G2),m ∈ MUnion(K1,K2), (g,m) ∈ I2}

Table 3. Formal context associated with the strict union of FM1 and FM2 formal
contexts from Table 1.

Ec Ca G L Pm Cc Ch
FM1C1 = FM2C1 x x x
FM1C2 = FM2C3 x x x x x
FM1C3 x x x x x
FM1C4 x x x x x x
FM2C2 x x x
FM2C4 x x x x x

4.2 Conceptual Structures

From a formal context, specialized algorithms of the FCA framework build for-
mal concepts. A formal concept is a maximal group of objects associated with
the maximal group of attributes they share. It can be read in the table of the
context as a maximal rectangle of crosses (modulo permutations of rows and
columns).

126 J. Carbonnel et al.

Definition 8 (Formal Concept). Given a formal context K = (G,M, I),
a formal concept associates a maximal set of objects with the maximal set of
attributes they share, yielding a set pair C = (Extent(C), Intent(C)) such that:

– Extent(C) = {g ∈ G|∀m ∈ Intent(C), (g,m) ∈ I} is the extent of the concept
(objects covered by the concept).

– Intent(C) = {m ∈ M |∀g ∈ Extent(C), (g,m) ∈ I} is the intent of the
concept (shared attributes).

For example, ({FM1C1 = FM2C1, FM1C2 = FM2C3, FM1C3, FM1C4}, {Ec,
Ca,G}) is a formal concept in strict union of Table 3.

The formal concepts are ordered using inclusion of their extent (or reverse
inclusion of their intent). Given two formal concepts C1 = (E1, I1) and C2 =
(E2, I2) of K, the concept specialization/generalization order �C is defined by
C2 �C C1 if and only if E2 ⊆ E1 (and equivalently I1 ⊆ I2). C2 is a specialization
(a subconcept) of C1. C1 is a generalization (a superconcept) of C2. Due to these
definitions, C2 intent inherits (contains) the attributes from C1 intent, while C1

extent inherits the objects from C2 extent. For example, concept ({FM1C1 =
FM2C1, FM1C2 = FM2C3, FM1C3, FM1C4}, {Ec, Ca,G}) is a superconcept
of concept ({FM1C3, FM1C4}, {Ec, Ca,G, Pm,Ch}) in strict union of Table 3.

Definition 9 (Concept Lattice). If we denote by CK the set of all concepts
of K, LK = (CK ,�C), is the concept lattice associated with K.

The graphical representation of the conceptual structures (as concept lat-
tices) exploits the inclusion property to avoid representing in the concepts the
top-down inherited attributes (features) and the bottom-up inherited objects
(configurations). An attribute appears in the highest concept that possesses this
attribute. We say that this concept introduces the attribute, and it is then an
Attribute-Concept. An object appears in the lowest concept that possesses this
object. We say that this concept introduces the object, and it is then an Object-
Concept. A concept is represented in this document by a three-parts box. The
upper part is the concept name; the middle part contains the simplified intent
(deprived of the top-down inherited attributes); the bottom part contains the
simplified extent (deprived of the bottom-up inherited objects).

Specific suborders, that contain only some concepts, can be isolated in the
concept lattice. In these structures, configurations are organized depending on
the features they share, and dually, the features are structured depending on
the configurations in which they are. Thus, these structures permit to empha-
size and extract information about variability. The difference is that some of
them keep only some of this variability information. The AOC-poset (Attribute
Object Concept partially ordered set) contains only the concepts introducing
at least one object (configuration), or at least one attribute (feature), or both.
In the AOC-poset (as in the concept lattice) a configuration (resp. a feature)
appears only once, thus we have a maximal factorization of configurations and
features. Another interesting conceptual structure to address our problem is the
AC-poset (Attribute-Concept poset) where one configuration may appear sev-
eral times (and be introduced by several lowest concepts), but features remain

Assisting Configurations-Based Feature Model Composition 127

maximally factorized revealing an even more simple structure, focusing on the
representation of the feature hierarchy. The AC-poset is the minimal conceptual
structure necessary to extract logical dependencies between features. The four
structures: formal context, concept lattice, AOC-poset and AC-poset are equiv-
alent, in the sense that each one can be rebuilt from any other one, without
ambiguity.

Left-hand side of Fig. 5 shows the AC-poset associated with the formal
context of Table 3. It emphasizes: co-occurring features, e.g. e commerce and
catalog always appear together in any configuration; implication between fea-
tures, e.g. when a configuration has the feature list it always has the feature
catalog; mutually exclusive features, e.g. list and grid never appear together
in any configuration; and feature groups, e.g. when payment method is in a config-
uration, there is at least check or credit card, or they are both present. As this
kind of information is rather difficult to read in an AC-poset, in the next section,
we propose an canonical diagrammatic representation that we have called the
Equivalence Class Feature Diagram (ECFD) and which is closer to the FM.

Fig. 5. Left-hand side: AC-poset associated with the strict union formal context of
Table 3. Right-hand side: ECFD extracted from the AC-poset.

4.3 Equivalence Class Feature Diagram (ECFD)

The ECFD seeks to be more intuitive than the AC-poset to read variability
information. It depicts the feature dependencies extracted from the initial set of
configurations that are summarized in the AC-poset, in a representation close to
a feature model but without explicit ontological semantics. Therefore it includes
all equivalent feature models, hence its name.

Figure 5 shows the ECFD (right-hand side) extracted from the AC-
poset (left-hand side). Co-occurring features (as e commerce and catalog)
are in a same box. Arrows between boxes represent feature implications
(like check implies grid). Groups of boxes connected by horizontal lines
rooted in an upper feature summarize feature groups (like list and grid
rooted in box e commerce-catalog, or check and credit card rooted in box

128 J. Carbonnel et al.

payment method). Xor groups are marked with a cross. A cross also represents
mutually exclusive features, also called mutex (like list and check) when they
do not belong to a group. The constructs and the semantics of the ECFD are
more generally given in Table 4 and a construction algorithm is available in [14].

If we consider an AC-poset corresponding to a set of feature models with
the same configuration set, all these FMs conform to the AC-poset. This means
that each dependency expressed in these feature models matches a dependency
expressed in the corresponding AC-poset. For instance, if there is a child-parent
(fc, fp) in one FM, it belongs to the AC-poset in this way: let Cc be the concept
introducing fc and let Cp be the concept introducing fp, we have Cc �C Cp.

The ECFD structures the variability information extracted from the config-
uration set, and it can guide the expert in assigning ontological semantics on its
logical dependencies. Figures 6 and 7 show the guidance process. The two FMs
at the right-hand side of the figures have the same configuration-semantics. To
obtain them, first the designer has to choose between e commerce and catalog.
One is the root (e.g. e commerce), and the other (e.g. catalog) is a mandatory
feature connected to the root. The xor group list and grid has to be connected
to e commerce or to catalog. The designer here chooses catalog as the parent
of the group. Then payment method is connected either to catalog (Fig. 6) or

Fig. 6. Left-hand side: ECFD for the strict union formal context of Table 3 annotated
with designer choices. Right-hand side: First extracted FM.

Fig. 7. Left-hand side: Reminder of the ECFD for the strict union formal context of
Table 3 annotated with designer choices. Right-hand side: Second extracted FM.

Assisting Configurations-Based Feature Model Composition 129

Table 4. Equivalence class feature diagram (ECFD): constructs and semantics [3]. The
third column is an example of conform feature model with nA = nB = 3 and nC = 2.

to e commerce (Fig. 7). Feature check can be a child of grid, or it can belong
to the or group (check, credit card, rooted in payment method). The second
choice is made. The cross-tree constraints list � check and check → grid are
added to the FMs.

The left-hand side of Fig. 8 shows the ECFD extracted from the inter-
section AC-poset, built from Table 2. In this very simple case, the difference
between the AC-poset and the ECFD is only that in the AC-poset, the nodes
(concepts) also contain the list of configurations. The right-hand side shows
a possible FM extracted from the ECFD. The top box of co-occurring fea-
tures gives rise to mandatory feature grid refining mandatory feature catalog
refining root e commerce. With the bottom box, the designer chooses to insert

130 J. Carbonnel et al.

Fig. 8. Left-hand side: ECFD for the intersection formal context of Table 2. Right-hand
side: An extracted FM.

payment method as an optional sub-feature of catalog, and credit card as a
mandatory feature refining payment method.

4.4 Extraction of Common Sub-configurations

As we noticed during our evaluation (reported in the next section), while FM
strict union is always informative, FM intersection is often empty, even when the
initial FMs have similarities. We illustrate this issue with a slight modification of
the e-commerce example. To the configurations of FM1, we add UserManagement
(Um) as a mandatory sub-feature of e commerce (Ec) (the new FM is denoted
by FM1e). To the configurations of FM2, we simply add Paypal (Pp) as a
mandatory sub-feature of Credit Card (Cc) (the new FM is denoted by FM2e).
After these additions, there is no more common configuration to FM1e and
FM2e . Table 5 shows the extended formal contexts for FM1e , FM2e and the
strict union formal context. Figure 9 shows the AC-poset built from the union
formal context.

Concepts in the AC-poset highlight different types of information on common
parts and differences between the FMs. Their study allows us to determine a
common core in feature combinations and to categorize the sub-configurations:

• (Specific sub-configuration) When the (complete) extent only contains config-
urations from one feature model, the intent is a sub-configuration or a valid
configuration for this feature model only. In both cases, it is specific to this
feature model and does not belong to a common core.

• (Core sub-configuration) When the (complete) extent contains configurations
from both feature models, the intent is a partial common configuration (in a
broad meaning, namely it can be a valid configuration) and:

– (Configuration) If the simplified extent contains one configuration of both
feature models, the intent is a valid configuration for both and it is in the
intersection which is not empty (it was the case for Concept Union 4 in
Fig. 5).

Assisting Configurations-Based Feature Model Composition 131

Table 5. Top: Configuration sets of FM1e and FM2e from FM1 and FM2 of Fig. 3
extended with UserManagement (Um) and Paypal (Pp). Bottom: Strict union formal
context FM1e

⋃
FM2e .

FM1e Ec Ca G Pm Cc Ch Um
FM1eC1 x x x x
FM1eC2 x x x x x x
FM1eC3 x x x x x x
FM1eC4 x x x x x x x

FM2e Ec Ca G L Pm Cc Pp
FM2eC1 x x x
FM2eC2 x x x
FM2eC3 x x x x x x
FM2eC4 x x x x x x

UnionExt Ec Ca G L Pm Cc Ch Um Pp
FM1eC1 x x x x
FM1eC2 x x x x x x
FM1eC3 x x x x x x
FM1eC4 x x x x x x x
FM2eC1 x x x
FM2eC2 x x x
FM2eC3 x x x x x x
FM2eC4 x x x x x x

Fig. 9. AC-poset associated with the strict union of the configuration sets of FM1e

and FM2e .

– (Strict semi-partial sub-configuration) If the simplified extent only con-
tains configurations from one feature model (as for Concept UnionExt 6
in Fig. 9, whose simplified extent only contains configurations from
FM2e), the intent is a strict partial configuration for the feature model
which has no configuration in the simplified extent (here FM1e) and a
valid configuration for the other (here FM2e).

132 J. Carbonnel et al.

– (Strict partial sub-configuration) If the simplified extent is empty (as for
Concept UnionExt 7 and Concept UnionExt 5 in Fig. 9), the intent is a
strict partial configuration. It is not valid for neither of the feature models,
but it is contained inside some of the configurations of both feature models
and it highlights a similarity between them.

When the intersection is small or empty, the concepts of the core category are
especially useful for exploring more deeply the commonalities between the two
feature models. They represent possibly incomplete configurations, from which
specific features present in only one FM (like Um to Pp), or specific combinations
have been removed. From these concepts, we can build an approximate intersec-
tion (denoted by

⋂∼). The corresponding formal context is built by keeping the
intents of the core concepts and assigning them arbitrary configuration names
(as common sub-configurations, possibly incomplete).

Figure 10 show the formal context (left-hand side) and the AC-poset (right-
hand side) associated with FM1

⋂∼
FM2 and FM1e

⋂∼
FM2e . These two exam-

ples were constructed in such a way that the approximate intersections are iden-
tical in order to simplify the writing. The difference lies in the fact that when
considering FM1

⋂∼
FM2, the formal context contains the configurations of

FM1

⋂
FM2 (which is not empty).

Fig. 10. Left-hand side: Formal context of FM1

⋂∼ FM2 and FM1e

⋂∼ FM2e . Right-
hand side: The corresponding AC-poset.

Figure 11 shows the ECFD extracted from this AC-poset. This is not appro-
priate in this case to build the groups and the mutex. For example, in the intents
of the core concepts, features G and Pm never appear together, while they may
appear together in complete valid configurations. Appropriate information that
can be read is: co-occurring features, mandatory features, optional features and
implications. In this example, two possible FMs can be derived by an expert.
In this specific case, she/he will preferably choose the FM where e commerce is
the root. Here, the approximate intersection is simple, but in the general case,
complex ECFDs can be found and the expert benefits from their full poten-
tial: compared to a logic-based approach, building an FM for an approximate

Assisting Configurations-Based Feature Model Composition 133

Fig. 11. Left-hand side: ECFD of the approximate intersection. Right-hand side: Two
possible FMs extracted from the ECFD.

intersection is guided; compared to a feature tree structure-based approach, no
presupposition is made about the ontological relations.

5 Implementation and Assessment

The approach has been implemented as presented in Fig. 12. It uses two exist-
ing tools. Familiar1 [15] is an executable Domain Specific Language, pro-
vided with an environment allowing to create, modify and reason about FMs.
In the current project, we use it to build the configuration set of an FM.
rcaexplore2 is a framework for Formal Concept Analysis which offers a vari-
ety of analysis kinds. It is used to build the AC-poset from which the ECFD
structure (nodes and edges) is extracted. We also developed specific tools
for this project: ConfigSet2FormalContext builds a formal context (within
input format of rcaexplore) from a configuration set extracted with Famil-
iar; ComputeInterAndUnion builds the intersection and strict union formal con-
texts; ComputeGroupsAndMutex computes the groups Xor, Or and the mutex

Fig. 12. The implemented process (extended from [3]).

1 https://nyx.unice.fr/projects/familiar/.
2 http://dolques.free.fr/rcaexplore/.

https://nyx.unice.fr/projects/familiar/
http://dolques.free.fr/rcaexplore/

134 J. Carbonnel et al.

of the ECFD. To obtain the approximate intersection, an additional tool,
ComputeApprox computes the core concepts of the AC-poset and an ECFD with-
out groups or mutex, which are not appropriate in this case.

We apply the approach on several feature models that own from 4 to 864
configurations, and from 6 to 26 features. Some are taken from the SPLOT
repository3 [16], from the Familiar4 website, or from the literature, and we also
made some variants of these feature models. In Table 6, we give the number of
features, configurations, xor groups, or groups and constraints of each selected
FM. We also compute the ECFD and indicate the number of xor groups, or
groups, mutex, situations where a box in the ECFD has several direct parents
(multi-par.), and nodes. The number of groups, e.g. xor groups, may vary between
the FM and the ECFD. For example, one xor group of the ECFD may combine
several xor groups of the FM when there are additional constraints, or the ECFD
may reveal more possible xor groups than initially indicated in the FM.

Table 7 presents information about intersection, approximate intersection and
strict union. The built ECFDs have reasonable size compared to the input FMs,

Table 6. FMs (and the corresponding ECFDs) used for testing the approach [3]. var.
stands for variant. Cst stands for Constraint. e-commerce FMs are the examples of this
paper, Eshop FMs come from SPLOT, Wiki FMs come from FAMILIAR documenta-
tion (or are variants), Bicycle FMs are variants of Mendonca SPLOT FMs.

FM Feature model ECFD

#feat. #conf. #Xor #Or #Cst. #Xor #Or #mutex #multi-par. #nodes

FM1

(e-com.)

6 4 0 1 0 0 1 0 0 3

FM2

(e-com.)

6 4 1 0 0 1 0 0 0 4

Martini

Eshop

11 8 1 1 1 1 2 1 1 6

Tang Eshop 10 13 1 1 2 1 2 1 1 7

Toacy Eshop 12 48 1 2 0 1 2 0 0 9

Wiki-V1 14 10 4 0 4 3 2 5 2 9

Wiki-V2 (V1

var.)

17 50 4 1 4 6 13 1 1 13

Wiki-V3 (V1

var.)

18 120 3 2 6 2 2 1 0 13

Bicycle1 19 64 2 0 2 1 0 0 0 10

Bicycle2 22 192 5 0 1 6 1 6 0 17

Bicycle3 25 576 4 0 2 5 1 8 0 19

Bicycle4 26 864 5 0 2 6 1 8 0 21

3 http://www.splot-research.org/.
4 http://familiar.variability.io/.

http://www.splot-research.org/
http://familiar.variability.io/

Assisting Configurations-Based Feature Model Composition 135

Table 7. Merge-intersection, approximate intersection, and merge-strict union ECFDs
(extended from [3]). #conf. (resp. #subconf) is the number of different configurations
for intersection and strict-union (resp. sub-configurations for approximate intersection).
na stands for “non applicable”.

FM Formal context ECFD % diff with ∩∼
#feat. #(sub)conf. #Xor #Or #mutex #multi-par. #nodes #feat. #nodes

FM1 ∩ FM2 5 2 0 0 0 0 2 -0% -50%
FM1 ∩∼ FM2 5 4 NA NA NA 0 4 . .
FM1 ∪ FM2 7 6 1 1 1 1 6 +40% +50%
Martini∩Tang 0 0 0 0 0 0 0 -100% -100%

Martini ∩∼ Tang 9 6 NA NA NA 0 6 . .
Martini∪Tang 12 21 1 2 3 1 8 +33% +33%
Martini∩Toacy 0 0 0 0 0 0 0 -100% -100%

Martini ∩∼ Toacy 9 6 NA NA NA 0 6 . .
Martini∪Toacy 14 56 1 1 4 0 10 +56% +67%
Tang∩Toacy 8 5 1 2 0 0 5 -11.1% -16.7%

Tang ∩∼ Toacy 9 6 NA NA NA 0 6 . .
Tang∪Toacy 13 56 1 1 4 1 10 +44% +67%

WikiV1∩WikiV2 0 0 0 0 0 0 0 -100% -100%
WikiV1 ∩∼ WikiV2 11 7 NA NA NA 0 7 . .
WikiV1∪WikiV2 20 60 5 9 26 0 16 +82% +129%
WikiV1∩WikiV3 0 0 0 0 0 0 0 -100% -100%

WikiV1 ∩∼ WikiV3 9 5 NA NA NA 0 5 . .
WikiV1∪WikiV3 23 130 3 4 42 0 18 +156% +260%
WikiV2∩WikiV3 14 50 0 6 0 0 6 -0% -45.5%

WikiV2 ∩∼ WikiV3 14 11 NA NA NA 0 11 . .
WikiV2∪WikiV3 21 120 0 16 8 1 17 +50% +55%
Bicycle1∩Bicycle2 14 8 1 0 0 0 6 -6.7% -40%

Bicycle1 ∩∼ Bicycle2 15 10 NA NA NA 0 10 . .
Bicycle1∪Bicycle2 26 248 6 1 32 2 21 +73% +110%
Bicycle3∩Bicycle4 23 288 5 1 8 0 18 -4.2% -5.3%

Bicycle3 ∩∼ Bicycle4 24 19 NA NA NA 0 19 . .
Bicycle3∪Bicycle4 27 1152 6 1 8 0 22 +13% +16%

with node number ranging from 2 to 22, mutex from 0 to 32, xor and or groups
from 0 to 16, and very few multi-parent situations. This is encouraging if we
consider that experts have to extract FMs, guided by the ECFDs.

The last two columns of Table 7 respectively show the difference between:
intersection and approximate intersection; strict union and approximate inter-
section. For example, if we consider FM1 ∩∼ FM2, we can notice that union
FM1 ∪ FM2 feature number (7) is 40% more than the FM1 ∩∼ FM2 feature
number (5). FM1 ∪ FM2 sub-configurations (or AC-poset node number) (6)
are 50% more than the FM1 ∩∼ FM2 feature number (4). Intersection FM1
∩ FM2 feature number (5) is 0% less than the FM1 ∩∼ FM2 feature number
(5). FM1 ∩ FM2 sub-configurations (or AC-poset node number) (2) are 50%
less than the FM1 ∩∼ FM2 feature number (4). When intersection is empty,
a relatively low difference between approximate intersection and strict union
(like the Martini-Tang case, with 33%) indicates a good similarity between the
FMs, not highlighted by the configuration-semantics. Reversely, when intersec-
tion is empty, but the difference between approximate intersection and union

136 J. Carbonnel et al.

is high (like the WikiV1-WikiV3 case, with more than 150% for features, and
260% for common sub-configurations) reveals a low similarity. When approxi-
mate intersection is close to intersection (like the Bicycle3-Bicycle4 example),
this means that the configuration-semantics is well captured by the common
sub-configurations and features. When approximate intersection feature number
is close to intersection feature number (like the Bicycle1-Bicycle2 example, with
−6.7%), but this is not the case for node number (−40%), this means that there
are many common features, but the configuration-semantics is not well captured
by the common sub-configurations. This information also can guide an expert
in her/his composition process.

6 Related Work and Discussion

Formal Concept Analysis has many applications in software engineering as was
summarized in [17] for the period 1992–2003. Since this period new applica-
tions appeared, that range from fault localization [18] to bad smells and design
patterns detection [19], suggest appropriate refactorings to correct some design
defects [20], or analyzing software version control repositories [21]. In the domain
of SPLE, FCA serves as a foundation for different approaches. Loesch and Ploed-
erer [22] analyze the concept lattice between configurations and features to find
variability information such as the co-occurring features, groups of features that
are never present together, etc. This analysis helps extracting constraints or
reorganizing features, e.g. by merging or removing some of them. These ideas
are deepen and reused in feature model analysis or synthesis in [23–26]. Another
available tool in the framework of FCA is the notion of implicative systems, used
in [24]. This is another logical encoding of the formula which is equivalent to a
concept lattice (or to a feature model), which can be rather compact. The rela-
tionship between scenarios, functional requirements and quality requirements is
studied in [27]. FCA-based identification of features in source code has been
studied for software product line in [28,29], where they use the description of
software variants by source code elements. Finding traceability links between
features and the code is more specifically studied in [30]. In [31], authors analyze
source code parts and scenarios which execute them and use features, with the
purpose to identify parts of the code which correspond to feature implementa-
tion. Carbonnel et al. analyze PCMs from Wikipedia or randomly generated to
evaluate the scale up of FCA on this type of data in [32] and the associated
ECFDs in [14].

Several approaches for FM composition are compared in [2,33]. In [34,35] the
input feature models are maintained separately and links are established between
them through constraints. The approach of [8] establishes, in a first phase, the
matching between similar elements, then an algorithm recursively merges the
feature models with structural rules. Catalogs of local transformation rules are
proposed in [36,37]. Other approaches encode the FMs into propositional formu-
las [9], then compute the formula representing the intersection (resp. the union),
then synthesize a FM from the boolean formula [10]. The logic and structural

Assisting Configurations-Based Feature Model Composition 137

approaches have been illustrated and discussed in Sect. 3.2 and our approach
was illustrated with the example used for illustrating the structural approach.

Compared to the logic approach, our approach also is sound and complete,
and we produce a structure (the ECFD with all feature groups and mutex)
which assists the expert in the extraction of the composed FM. Compared to
the structural approach, ours does not make any presupposition about which
relations are ontological, allowing to fix possible mistakes in the initial FMs. In
our approach, the configuration-semantics and the non-contradictory ontological
child-parent edges are preserved. We accept FMs with different feature sets,
and we take into account cross-tree constraints. Our approach computes the
merge-strict-union, the merge-intersection, and we also compute an approximate
intersection, which is useful when the configuration sets to be merged have an
empty, or small, intersection, and in general, for having a core description of
the two FMs. When there are hierarchy mismatches, the AC-poset manages this
information but the vocabulary (feature names) has to be the same (it can be
aligned before the merge operations).

Our approach needs to know the list of configurations, thus as such, the pro-
posed solution is restricted to some contexts: FMs that have limited number of
configurations; real-world product lines given with configuration sets. Many FMs
have a very large configuration set, as Video player FM from SPLOT, with 71
features and more than 1 billion configurations. We do not address these cases,
as we more specifically address the contexts where the FMs have a reasonable
number of configurations, which corresponds in particular to FMs coming from
real-world product lines. Concerning product lines inducing a number of config-
urations not tractable by FCA, our approach also could benefit from product
line decomposition: dividing a feature model according to scopes, concerns or
teams into less complex interdependent feature models. Besides, the paper [38]
gives a procedure to derive (in a polynomial time) an implicative system directly
from a feature model, thus without using the configuration set which may be an
obstacle in some cases as noticed by [24]. The logical semantics is guaranteed
by the FCA framework. The computational complexity is polynomial for AC-
posets, in the size of the number of configurations and the number of features.
Thus this is very different from the complexity of concept lattices, which may
be exponential in worst cases. As detailed by [24], ECFD group and mutex com-
putation might be exponential in the number of configurations or features but
remains reasonable in typical situations, with an optimized implementation.

7 Conclusion

We have proposed an approach to assist designers in configurations-based FM
composition. We focused on strict union, intersection and approximate inter-
section. FCA was used to represent all the FMs with the same configuration
semantics through a canonical form, the ECFD (Equivalence Class Feature Dia-
gram). Our approach may take into account different feature sets and structures,
as well as cross-tree constraints. It allows to reset the ontological relationships.
We have implemented our approach and we have tested it on concrete examples.

138 J. Carbonnel et al.

As future work, we would like to investigate more the approximate intersec-
tion. More specifically, from the intersection and union AC-posets, we would like
to define similarity metrics, e.g. based on the size of intents and the number of
concepts of each category (strict partial, strict semi-partial, configuration). We
also would like to define a composition approach based on implicative systems, to
discard the limit imposed by the current need to have the configuration set. Let
us notice that having the configuration set is not always a limit, as in concrete
product line, this is the standard data.

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer Science & Business Media, Hei-
delberg (2005). https://doi.org/10.1007/3-540-28901-1

2. Acher, M., Collet, P., Lahire, P., France, R.B.: Comparing approaches to implement
feature model composition. In: 6th European Conference on Modelling Foundations
and Applications (ECMFA), pp. 3–19 (2010)

3. Carbonnel, J., Huchard, M., Miralles, A., Nebut, C.: Feature model composition
assisted by formal concept analysis. In: 12th International Conference on Evalua-
tion of Novel Approaches to Software Engineering (ENASE), pp. 27–37 (2017)

4. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

5. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA): Feasibility Study. Technical report CMU/SEI-
90-TR-21 - ESD-90-TR-222 (1990)

6. Achtaich, A., Roudies, O., Souissi, N., Salinesi, C.: Selecting SPL modeling lan-
guages: a practical guide. In: 3rd IEEE World Conference on Complex Systems
(WCCS), Marrakech, Morocco (2015)

7. Czarnecki, K., Kim, C.H.P., Kalleberg, K.T.: Feature models are views on ontolo-
gies. In: 10th International Conference on Software Product Lines (SPLC), pp.
41–51 (2006)

8. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: van
den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12107-4 6

9. Batory, D.S.: Feature models, grammars, and propositional formulas. In: 9th Inter-
national Conference on Software Product Lines (SPLC), pp. 7–20 (2005)

10. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: there and back again.
In: 11th International Conference on Software Product Lines (SPLC), pp. 23–34
(2007)

11. Birkhoff, G.: Lattice theory. Volume 25 of Colloquium publications. American
Mathematical Society (1940)

12. Barbut, M., Monjardet, B.: Ordre et Classification, vol. 2. Hachette (1970)
13. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-

versity Press, Cambridge (1990)
14. Carbonnel, J., Huchard, M., Nebut, C.: Analyzing variability in product families

through canonical feature diagrams. In: 29th International Conference on Software
Engineering and Knowledge Engineering (SEKE), pp. 185–190 (2017)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-12107-4_6

Assisting Configurations-Based Feature Model Composition 139

15. Acher, M., Collet, P., Lahire, P., France, R.B.: FAMILIAR: a domain-specific lan-
guage for large scale management of feature models. Sci. Comput. Program. (SCP)
78, 657–681 (2013)

16. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: Software Product Lines Online
Tools. In: 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA), pp. 761–762. ACM
(2009)

17. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis
support for software engineering activities. In: Ganter, B., Stumme, G., Wille, R.
(eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer,
Heidelberg (2005). https://doi.org/10.1007/11528784 13

18. Cellier, P., Ducassé, M., Ferré, S., Ridoux, O.: DeLLIS: A data mining process for
fault localization. In: 23rd International Conference on Software Engineering and
Knowledge Engineering (SEKE), pp. 432–437 (2009)

19. Arévalo, G., Ducasse, S., Gordillo, S., Nierstrasz, O.: Generating a catalog of unan-
ticipated schemas in class hierarchies using formal concept analysis. Inf. Softw.
Technol. 52, 1167–1187 (2010)

20. Moha, N., Hacene, A.R., Valtchev, P., Guéhéneuc, Y.: Refactorings of design
defects using relational concept analysis. In: 6th International Conference on For-
mal Concept Analysis (ICFCA), pp. 289–304 (2008)

21. Greene, G.J., Esterhuizen, M., Fischer, B.: Visualizing and exploring software ver-
sion control repositories using interactive tag clouds over formal concept lattices.
Inf. Software Technol. 87, 223–241 (2017)

22. Loesch, F., Ploedereder, E.: Restructuring variability in software product lines
using concept analysis of product configurations. In: 11th European Conference on
Software Maintenance and Reengineering (CSMR), pp. 159–170 (2007)

23. Yang, Y., Peng, X., Zhao, W.: Domain feature model recovery from multiple appli-
cations using data access semantics and formal concept analysis. In: 16th Working
Conference on Reverse Engineering (WCRE), pp. 215–224 (2009)

24. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: 15th International Conference on Software Product Lines (SPLC)
Workshop Proceedings, vol. 2, p. 4 (2011)

25. Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., Vauttier, S.: Reverse engi-
neering feature models from software configurations using formal concept analysis.
In: 11th International Conference on Concept Lattices and Their Applications
(CLA), pp. 95–106 (2014)

26. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering architectural variability of a
family of product variants. In: 14th International Conference on Software Reuse
(ICSR), pp. 17–33 (2015)

27. Niu, N., Easterbrook, S.M.: Concept analysis for product line requirements. In:
8th International Conference on Aspect-Oriented Software Development (AOSD),
pp. 137–148 (2009)

28. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: 19th Working Conference on Reverse Engineering (WCRE), pp. 145–154 (2012)

29. Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Mining features from the object-oriented source code of a collection of software
variants using formal concept analysis and latent semantic indexing. In: 25th Con-
ference on Software Engineering and Knowledge Engineering (SEKE), pp. 244–249
(2013)

https://doi.org/10.1007/11528784_13

140 J. Carbonnel et al.

30. Salman, H.E., Seriai, A., Dony, C.: Feature-to-code traceability in a collection of
software variants: combining formal concept analysis and information retrieval. In:
14th Conference on Information Reuse and Integration (IRI), pp. 209–216 (2013)

31. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Trans. Softw. Eng. 29, 210–224 (2003)

32. Carbonnel, J., Huchard, M., Gutierrez, A.: Variability representation in product
lines using concept lattices: Feasibility study with descriptions from wikipedia’s
product comparison matrices. In: 1st International Workshop on Formal Concept
Analysis and Applications, FCA&A 2015, co-located with 13th International Con-
ference on Formal Concept Analysis (ICFCA), pp. 93–108 (2015)

33. Acher, M., Combemale, B., Collet, P., Barais, O., Lahire, P., France, R.B.: Com-
posing your compositions of variability models. In: Moreira, A., Schätz, B., Gray,
J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 352–369.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41533-3 22

34. Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic semantics of fea-
ture diagrams. Comput. Netw. 51, 456–479 (2007)

35. Heymans, P., Schobbens, P., Trigaux, J., Bontemps, Y., Matulevicius, R., Classen,
A.: Evaluating formal properties of feature diagram languages. IET Software 2,
281–302 (2008)

36. Segura, S., Benavides, D., Cortés, A.R., Trinidad, P.: Automated merging of feature
models using graph transformations. In: Generative and Transformational Tech-
niques in Software Engineering II, International Summer School (GTTSE 2007),
Revised Papers, pp. 489–505 (2007)

37. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P.: Refac-
toring product lines. In: 5th International Conference on Generative Programming
and Component Engineering (GPCE), pp. 201–210 (2006)

38. Carbonnel, J., Bertet, K., Huchard, M., Nebut, C.: FCA for software product
lines representation: mixing product and characteristic relationships in a unique
canonical representation. In: 13th International Conference on Concept Lattices
and Their Applications (CLA), pp. 109–122 (2016)

https://doi.org/10.1007/978-3-642-41533-3_22

A Cloud-Based Service
for the Visualization and Monitoring

of Factories

Guillaume Prévost(B), Jan Olaf Blech, Keith Foster, and Heinrich W. Schmidt

RMIT University, Melbourne, Australia

Abstract. With standard networking technologies gaining access to the
factory floors, remote monitoring and visualization of the collected infor-
mation is an important topic in the field of industrial automation. Infor-
mation may be used for remote operation of a production plant, for
planning and conducting maintenance, for incident analysis, and for opti-
mization purposes.

In this paper, we present a framework for the collection and visu-
alization of data streaming from industrial automation devices such as
machines in factories or robots. An important part of our framework is
the use of cloud-based services to collect data from programmable logic
controllers (PLCs). PLCs are used to control machines such as grippers
and conveyor belts. PLCs send data to our services and clients such as
analysis or visualization services can subscribe to these data channels
in accordance with customer needs. Here, we focus on the visualization
services themselves. In our work, data from industrial automation facil-
ities is associated with formal semantic models. For example, a formal
semantic model can be a mathematical representation of the material
flow in a production plant. In general, the formal semantic models are
used to represent interdependencies between entities, their functional-
ity and other descriptive elements. Formal semantic models are in the
visualization and for reasoning about systems. In order to complement
the visualization and cloud-based services work, we present our demon-
strator. Our demonstrator comprises an example factory, we are using
Raspberry Pi-based controllers as PLCs. These are connected with each
other and to the internet using standard ethernet technology.

This paper is an extended version of a previously published paper [18]
by the same authors.

Keywords: Industrial automation · Cloud-based services
Data visualization

1 Introduction

The connection of controllers in factories such as programmable logic controllers
or robots to internet services can provide a variety of benefits for operation and

c© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 141–157, 2018.
https://doi.org/10.1007/978-3-319-94135-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_7&domain=pdf

142 G. Prévost et al.

maintenance for these facilities. Recent trends are frequently summarized terms
such as Industry 4.0 [14] or smart factories (e.g., [25,26]). Factory automation
controllers communicating with centralized cloud-based services can not only be
used for classical supervisory control and data acquisition (SCADA) tasks, but
can also be a basis for services that are orthogonal to SCADA functionality.
These services can comprise data analytics and longer-term health monitoring.
Visualization and an adequate presentation of findings is a key component to
the success of our remotely interacting with industrial facilities. Web-based front
ends seem an adequate solutions due to their independence of concrete platforms.

In our work, we are focused on remote monitoring, operation and mainte-
nance of production plants. For example the support of mining site operations,
e.g., in the Australian outback is a target area (see [4,5]). The main contributions
of this paper are

– The introduction of a cloud-based framework to gather data from controllers
and visualize the data using a web-based frontend.

– The use of semantic carrying data models.
– The presentation of a demonstrator using a real example factory.

The paper extends a previously published paper [18] by the same authors. We
have added some new figures, extended explanations and a separate related
work section. Both papers feature the use of semantic data models for indus-
trial automation in combination with our cloud-based visualization platform. In
addition, both papers present our demonstrator combining these technologies.
Our demonstrator can be used to analyze production plant operations remotely.

Overview

Section 2 gives an overview on related work. Our data modeling language and
framework is introduced in Sect. 3. The cloud-based data visualization platform
is presented in Sect. 4. Section 5 gives an overview on our demonstrator. A con-
clusion and ideas for future work are presented in Sect. 6.

2 Related Work

In this paper, we introduce a cloud-based framework to gather data from con-
trollers and visualize the data using a web-based frontend. While a variety
of products already exist for visualizing industrial facilities such as Dassault
Systèmes’ Delmia and Enovia [9,10], we focus on the cloud-based architecture
and on a more abstract data visualization view. Visualization is based on formal
models. In particular, we are interested in models that express spatio-temporal
relationships between entities. A variety of formalisms for spatio-temporal mod-
els have been developed. More process algebra-like approaches [7,8] can have
benefits when investigating concurrency. On the modeling side, our approach is
similar to the qualitative predicates of the Region Connection Calculus (RCC)
[2] that can express inclusion, neighborhood and similar spatial properties. Fur-
thermore, the cardinal direction calculus [22], the rectangle algebra [1], and the

A Cloud-Based Service for the Visualization and Monitoring of Factories 143

cross calculus [23] use comparable means of abstracting from concrete geomet-
ric objects in models. On the other hand, semantic descriptions of services in
the industrial automation area have been discussed (see, e.g., [17]) as well as
ontologies for factory automation (e.g. [16]).

Platforms for additional data analytics and visualization functionality such
as ABB’s service port framework1 go beyond traditional SCADA functionality
and are used in industrial practice. Furthermore, we have worked on approaches
such as remote health monitoring (see, e.g., [24]) and cloud-based monitoring of
industrial applications [19] that go into a similar direction. Additional means for
visualization of industrial automation data has been investigated by us in the
virtual reality context [21] and large screen visualization [20].

3 BeSpaceD-Based Data-Models

Semantic models as well as data in production plants play an important role in
our work. Dependencies and data need an adequate representation, our formal-
ization is created using the BeSpaceD framework [6] which has been developed
by us. In this section, we briefly introduce the language then describe the data
structures used in the models.

3.1 Spatio-Temporal Modeling and Reasoning

Our BeSpaceD framework is a key ingredient for spatio-temporal modeling and
reasoning. The framework comprises:

– A language for modeling spatio-temporal systems and representing data. The
language serves as a domain specific language (DSL) and is realized using
abstract datatype constructors provided by the Scala programming language.
The language comprises logical operators such as conjunctions, disjunctions
and implications as well as operators for time and space as basic entities.

– A library-like collection of operations to reason about the BeSpaceD mod-
els as well as import and export functionality. Typical operations comprise
abstractions and property detection (such as collisions in time and space).

In the past, BeSpaceD was successfully applied to domains such as train systems
[13], industrial automation [5], industrial robots [11], communication infrastruc-
ture [12] and smart energy systems [3]. Some of this work integrates with model-
based development tools.

3.2 Representing Industrial Plants

Most of our models for production plants are represented as mathematical graphs
(L,E). Graphs comprise a set of locations L and a set of edges E. Typically L

1 http://new.abb.com/process-automation/process-automation-service/advanced-
services/serviceport.

http://new.abb.com/process-automation/process-automation-service/advanced-services/serviceport
http://new.abb.com/process-automation/process-automation-service/advanced-services/serviceport

144 G. Prévost et al.

can refer to machines, sensors and actuators in a plant while the elements of E
comprise connections between elements of L. They represent interdependencies
such as physical connections, material flow, distances, communication channels.
Both edges and locations can be annotated. To give a look and feel, we have
realized the constructors for graphs in BeSpaceD/Scala which are shown in Fig. 1.

Fig. 1. Graph definition in BeSpaceD (see [18]).

For example, we have modeled different aspects of our factory demonstrator. In
the evaluation of our framework, we are particularly interested in thematerial flow
topology. This represents the expected flow – between sensors and actuators – of
material through the factory. We created a specialized subclass of our graph. The
following provides a small excerpt of our graph-based formal model. The listing
below shows the definition of an edge in a graph and its use in a very small graph
definition comprising a set of two edges. The topology does not need to be static,
it can change over time. To represent this, we can annotate the graphs with time
constraints. This is shown in Fig. 2.

Fig. 2. Graph in BeSpaceD (see [18]).

The nodes (e.g. StackEjectorRetracted) are objects that uniquely identify
a sensor in the demonstrator.

A Cloud-Based Service for the Visualization and Monitoring of Factories 145

3.3 Representing Sensor Data

In addition to the static nature of the plant models, we use BeSpaceD to treat
live sensor data. Sensor data comprises a sensor identifier that should have a
corresponding node in the plant model. Furthermore, it is associated with a
timestamp and the actual sensor value. For example, we use the following con-
struct is used to specify that the sensor StackEjectorRetracted has the value
Obstructed(High) at a timepoint 1479976418130

INSTATE(StackEjectorRetracted, 1479976418130,
Obstructed(High))

The long integers for the time point are recording milliseconds since Epoch
(12:00am, Jan 1st, 1970). Sensor data can be sent using the JSON format. The
example above is encoded as shown in Fig. 3:

Fig. 3. JSON Encoding of graphs (following [18]).

4 Cloud-Based Reporting and Visualization

This section describes the cloud-based software platform for the report genera-
tion and visualization of production plant data and data-models. Data-models
are formalized using the BeSpaceD framework.

4.1 eStoRED Overview

eStoRED is an open source data evaluation and visualization platform that is
used for industrial decision support and risk assessment. Its architecture is shown
in Fig. 4. It enables the joint-visualization of data from various data sources or
workflows in the cloud. The visualization is realized using a scalable platform,
to make sense of the various pieces of data as a whole, and to provide a way
of collaboratively telling a meaningful story about the data. The eStoRED tool
offers a way to connect to data sources, retrieve data and visualize it along with
the possibility to attach metadata.

146 G. Prévost et al.

Fig. 4. eStoRED software architecture (cf. [18]).

Possible data sources comprise streamed data (such as sensor data delivered
over a network connection), web-services, relational databases and file systems.
In eStoRED, users can add their own analysis and risk definition assessment,
thereby enriching and adding further value to the data displayed. This allows
building data-backed comprehensive reports. The eStoRED system can handle
static data extracted from files or databases as well as live data - such as data
coming from sensors - given that there exist a connector to the data source.

Before it was lifted up as a more versatile platform, eStoRED originated as
a decision-support platform for early-stages climate risk assessment and climate
change adaptation training/planning for Australian and south Pacific seaports.
It was gathering data from multiple public authorities and government agen-
cies sources, such as the Bureau of Meteorology (BOM), the Commonwealth

A Cloud-Based Service for the Visualization and Monitoring of Factories 147

Scientific and Industrial Research Organisation (CSIRO), the Australian Bureau
of Statistics (ABS) and the Bureau of Infrastructure, Transport and Regional
Economics (BITRE) to enable climate change experts manipulating and present-
ing this data according to their needs, thus supporting organizational climate
risk management strategies needed by decision-makers.

The platform is currently used within RMIT University to enrich and visu-
alize large research data collections coming from live data sources like Twitter
streaming API feed providing millions of data points, or recorded tracking of
actual movement of couriers from a UK-based delivery company.

eStoRED covers a wide range of possible applications, but we focus on the
role it plays in the context of industrial automation, for visualizing plant data
and data model. In the following, we examine its architecture.

4.2 eStoRED Architecture

In eStoRED, the main entities created by users are called Stories. Stories contain
different Elements: Data Elements are the connected elements visualizing data,
Input Elements are the analysis parts written by the users. At its core, the
eStoRED platform is composed of a web application backed by a relational
database, a message broker and a repository of snippets of code for visualizing
data, called Vislets. We describe eStoRED’s components and how they interact
together:

– On one end, the data sources are the processes, applications and systems
that produce the data. They publish data into messages handled by a pub-
lish/subscribe system that orchestrates and distributes messages to the pro-
cesses that have subscribed. The third-party system chosen for this role is
RabbitMQ2, an open-source, secure, robust and scalable system for software
messaging, using the AMQP protocol3.

– The Java web application is using the Spring MVC framework, Hibernate
ORM to map its data model to a MySQL database storing the internal
eStoRED data (Stories, Data Elements, Input Elements, etc.). When working
on a Story, a user can create Data Elements and define one or more Subscrip-
tions for each of them.

– A Subscription is composed of a subscription expression, the expected format
of the data to be received and the snippet of code, called Vislet that will
handle and visualize the data once it is received. eStoRED is connected via
a REST API to a curated repository of Vislets and can filter them accord-
ing to some metadata attached to each Vislet. The eStoRED graphical user
interface automatically filters the Vislets to only show those that can handle
the expected data format.

– The topic subscription mechanism of RabbitMQ is used for subscribing. The
mechanism uses routing keys to match publishers and subscribers. The sub-
scription expression defined in eStoRED is used as the RabbitMQ routing key,

2 https://www.rabbitmq.com.
3 https://www.amqp.org/.

https://www.rabbitmq.com
https://www.amqp.org/

148 G. Prévost et al.

a sequence of characters up to 255 bytes, defining dot-separated words and
allowing the wildcards characters * (star) substituting for exactly one word
and # (hash) substituting for zero or more words. This enables a powerful and
flexible mechanism to easily create subscription expressions spanning a wide
range of data sources. For example: australia.2016.rainfall, australia.2016.*,
#.rainfall are valid routing keys.

Data sources can also use this mechanism to subscribe to each other via the
messaging system, and this way create data workflows. This is illustrated at the
bottom of Fig. 4 where Data Source #3 is subscribed to Data Source #2, and
Data Source #4 is subscribed to Data Source #3.

Once Data Elements have been defined, whenever a Story is loaded, the
following steps happen, as shown in Figure 4:

1. eStoRED retrieves the Story and the Data Elements it contains.
2. It connects to the Vislet repository and retrieves the Vislets defined in the

Subscriptions of each Data Element.
3. The web application then generates a web page where the Vislets are included.
4. On the web page, a JavaScript client for RabbitMQ is executed directly into

the client’s web browser to subscribe to the expression.

Fig. 5. Some visualized diagrams.

A Cloud-Based Service for the Visualization and Monitoring of Factories 149

5. When a Data source publishes a message, if a Data Element is subscribed to
it, the message broker passes it on, and the Vislet code is called to interpret
the data contained in the message, and act on it by displaying it or performing
specific computations on them.

To provide a look-and-feel, some diagrams visualized by eStoRED are shown
in Fig. 5.

5 Demonstrator and Evaluation

We have created a factory demonstrator and connected it to our framework. An
extended description of a BeSpaceD-based formalization of the factory demon-
strator can be found in [15].

5.1 The Factory Demonstrator

Figure 6 shows an overview of our food-processing factory demonstrator. The
conveyor belt circle for pallets in the middle part and the bottling machinery in
the lower left of the picture are visible.

Fig. 6. Food processing plant demonstrator (cf. [18]).

One of our Raspberry Pi-based controllers is shown in Fig. 7. It features a
Raspberry Pi including network connectivity as well as IO-boards to communi-
cate with the sensor and actuator world.

150 G. Prévost et al.

Fig. 7. Raspberry Pi-based controller (cf. [18]).

5.2 eStoRED - Factory Connection

The Fig. 8 shows how the eStoRED architecture is used in the context of visual-
izing that demonstrator. The topology of the food processing plant demonstrator
is formalized in BeSpaceD as part of the configuration of the program monitoring
the plant. It is converted into the JSON format and sent to the message broker at
initialization. Whenever the sensors’ statuses change over time, the sensors send
signals to their respective Raspberry Pi-based controller. A program to monitor
this is deployed on the Raspberry Pi. After converting these into the BeSpaceD
language, the corresponding events are sent to the message broker via a simple
AMQP client.

At the other end, a Data Element is created in the eStoRED platform, with
two Subscriptions: one for the topology, and one for the sensor events. The
specific visualizers are retrieved and loaded into the web browser. Being in the
same data element, both visualizers are acting on the same graph visualization.
The topology visualizer draws the nodes and edges of the graph representing the
process, and the sensors visualizer re-draws the status of the sensors by colouring
the nodes whenever they get updated.

Figure 9 shows an eStoRED Data Element which has received both topol-
ogy data and sensor data. A timeline control can be observed at the top of the
Data Element, which is updated when receiving new sensor data. Since each sen-
sor signal encompasses the exact time when it happened, the visualizer enables
scrolling through signals received in the past, using this timeline control. At
the bottom of the Data Element are displayed metadata that can optionally be
added to AMQP messages as key-value pairs. Here it only shows metadata as
an example, but this could be important data such as the factory location or

A Cloud-Based Service for the Visualization and Monitoring of Factories 151

Fig. 8. eStoRED in the factory data visualization context (cf. [18]).

Fig. 9. Example of an eStoRED data element including topology and sensor data (cf.
[18]).

152 G. Prévost et al.

Fig. 10. Selection of a node in a graph visualized with eStoRED.

staff responsible for it. To provide a look and feel, Fig. 10 shows the selection of
a node and its connections in a larger graph visualized using eStoRED.

An excerpt of the semantic model represented as a topology in the JSON
format is shown in Fig. 11.

Two edges representing material flow are shown with their annotations in
the excerpt.

A series of figures show another graphical representation factory elements.
These are presented in Figs. 12, 13 and 14. Only a limited number of edges are
shown for readability proposes.

The dashed lines represent parts of the factory and these correspond to their
relative spatial position and size. Squares represent actuators and circles repre-
sent sensors.

Some meta data is shown that is used for configuration, debugging and auto-
matic decision support. Of note is the General Purpose Input Output (GPIO)
Pin number of the Raspberry Pi-based PLC that is mapped to the actuator that
controls and actuator: it extends a stack ejector. The signal mapping defines the
binary voltage level (e.g. zero or 24 volts) that the actuators or sensors accept
or emit. This relates to sensor states in our model (e.g. [de]activate actuator;
[un]obstructed light sensor). Spatial measurements for a tube that holds bot-
tling caps are shown to illustrate the annotation of geometric information. The
symbols are reference points and intermediate values used to formulate absolute
measurements.

A Cloud-Based Service for the Visualization and Monitoring of Factories 153

Fig. 11. JSON Example (following [18]).

Fig. 12. Partial model of a factory element (material flow). (Color figure online)

154 G. Prévost et al.

Fig. 13. Partial model of a factory element (interdependency). (Color figure online)

Fig. 14. Partial model of a factory element (safety). (Color figure online)

A Cloud-Based Service for the Visualization and Monitoring of Factories 155

There are three different qualitative topological aspects that can be distin-
guished in our factory model. One edge from each aspect is added to the diagrams
to illustrate them.

– Material Flow Topology (green)
In the example, this edge is asserting that the stack empty sensor becomes
obstructed exactly one second before the stack ejector extended sensor
becomes unobstructed. In other words, it takes one second to eject the last
cap from the stack.

– Interdependency aspects (blue)
This edge is asserting that the stack ejector extended sensor becomes unob-
structed between 200 to 300 milliseconds after the stack ejector extend actu-
ator is inactivated (passive). In other words, it takes 200–300 ms for the light
sensor to indicate retraction after the actuator starts retracting the stack
ejector.

– Safety aspects (red)
This edge is asserting a constraint that we want the loader to move to the
pick-up position from half a second before to one and a half seconds after the
stack ejector starts extending in order to avoid a collision.

6 Conclusion

This paper described our eStoRED framework with a focus on an industrial
automation application. It extends a previous paper on the same topic [18]. In
particular, we presented a cloud-based data collection and visualization solution
for industrial automation. The framework incorporates spatio-temporal models
from our BeSpaceD framework. Furthermore, we discussed some detailed exam-
ples in the paper and introduced a demonstrator and a visualization application.
The cloud-based software framework and the example factory are integrated with
each other. They serve as a demonstrator platform for our lab.

Our work intends to facilitate monitoring, operation and maintenance of
production plants and mining operations. In particular remote plants and sites
such as mining operations in the Australian outback are a targeted application
area. These remote sites are sometimes more than 1000 km away from larger
population centers and thus are characterized by difficulties to keep a large
number of staff on-site due to limited accessibility, high on-site living costs,
costs of bringing staff to and from the sites and similar reasons.

On the technical side, future work will connect additional services to the
AMQP server in order to establish a common interchange platform for factory
data. Larger demonstrators and advances on the BeSpaceD formalisms could be
another promising direction.

156 G. Prévost et al.

References

1. Balbiani, P., Condotta, J.-F., del Cerro, L.F.: A new tractable subclass of the
rectangle algebra. In: Proceedings of the 16th International Joint Conference on
Artifical Intelligence, vol. 1, pp. 442–447 (1999)

2. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal
logic as a framework for spatio-temporal reasoning. Appl. Intell. 17(3), 239–251
(2002)

3. Blech, J.O., Fernando, L., Foster, K., Abhilash, G., Sudarsan, Sd.: Spatio-temporal
reasoning and decision support for smart energy systems. In: Emerging Technolo-
gies and Factory Automation (ETFA). IEEE (2016)

4. Blech, J.O., Peake, I., Schmidt, H., Kande, M., Ramaswamy, S., Sudarsan, Sd.,
Narayanan, V.: Collaborative engineering through integration of architectural,
social and spatial models. In: Emerging Technologies and Factory Automation
(ETFA). IEEE (2014)

5. Blech, J.O., Peake, I., Schmidt, H., Kande, M., Rahman, A., Ramaswamy, S.,
Sudarsan, SD., Narayanan, V.: Efficient incident handling in industrial automa-
tion through collaborative engineering. In: Emerging Technologies and Factory
Automation (ETFA). IEEE (2015)

6. Blech, J.O., Schmidt, H.: BeSpaceD: Towards a Tool Framework and Methodology
for the Specification and Verification of Spatial Behavior of Distributed Software
Component Systems. http://arxiv.org/abs/1404.3537. arXiv.org (2014)

7. Caires, L., Cardelli, L.: A spatial logic for concurrency (Part I). Inf. Comput.
186(2), 194–235 (2003)

8. Caires, L., Cardelli, L.: A spatial logic for concurrency (Part II). Theor. Comput.
Sci. 322(3), 517–565 (2004)

9. DS DELMIA V6R2013x - Fact Sheet: 3DEXPERIENCES of Global Production
Systems for all stakeholders in the extended supply chain. Dassault Systèmes
(2013)

10. ENOVIA V6R2013x - Fact Sheet. Dassault Systèmes (2013)
11. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Towards verifying safety prop-

erties of real-time probabilistic systems. In: Formal Engineering approaches to
Software Components and Architectures, vol. 147. EPTCS (2014)

12. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Model-based engineering and
analysis of space-aware systems communicating via IEEE 802.11. In: CompSac
2015. IEEE (2015)

13. Hordvik, S., Oseth, K., Blech, J.O., Herrmann, P.: A methodology for model-based
development and safety analysis of transport systems. In: Evaluation of Novel
Approaches to Software Engineering (2016)

14. Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implement-
ing the strategic initiative INDUSTRIE 4.0 - Final report of the Industrie 4.0
Working Group. Acatech (2013)

15. Foster, K., Blech, J.O., Prevost, G.: Towards the Formalization of a Factory
Demonstrator in BeSpaceD. http://arxiv.org/abs/1612.05316. arXiv.org (2016)

16. Lin, H.K., Harding, J.A.: A manufacturing system engineering ontology model on
the semantic web for inter-enterprise collaboration. Comput. Ind. 58(5), 428–437
(2007)

17. Loskyll, M., Schlick, J., Hodek, S., Ollinger, L., Gerber, T., Pirvu, B.: Semantic ser-
vice discovery and orchestration for manufacturing processes. In: 16th Conference
on Emerging Technologies & Factory Automation (ETFA). IEEE (2011)

http://arxiv.org/abs/1404.3537
http://arxiv.org/abs/1612.05316

A Cloud-Based Service for the Visualization and Monitoring of Factories 157

18. Prévost, G., Blech, J.O., Foster, K., Schmidt, H.W.: An architecture for visualiza-
tion of industrial automation data. In: Evaluation of Novel Approaches to Software
Engineering (2017)

19. Peake, I., Blech, J.O.: A candidate architecture for cloud-based monitoring in
industrial automation. In: IEEE International Conference on Software Quality,
Reliability and Security (Companion). IEEE (2017)

20. Peake, I., Blech, J.O., Fernando, L., Schmidt, H., Sreenivasamurthy, R., Sudarsan,
Sd.: Visualization facilities for distributed and remote industrial automation:
VxLab. In: Emerging Technologies and Factory Automation (ETFA). IEEE (2015)

21. Peake, I.D., Blech, J.O., Watkins, E., Greuter, S., Schmidt, H.W.: The virtual
experiences portals — a reconfigurable platform for immersive visualization. In:
De Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 186–197.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40621-3 14

22. Skiadopoulos, S., Koubarakis, M.: On the consistency of cardinal direction con-
straints. Artif. Intell. 163(1), 91–135 (2005)

23. Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A qualitative tra-
jectory calculus and the composition of its relations. In: Rodŕıguez, M.A., Cruz,
I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 60–76.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586180 5

24. Wenger, M., Zoitl, A., Blech, J.O., Peake, I.: Remote monitoring infrastructure for
IEC 61499 based control software. In: 8th International Congress on Ultra Modern
Telecommunications and Control Systems. IEEE (2016)

25. Westkämper, E., Jendoubi, L.: Smart factories–manufacturing environments and
systems of the future. In: Proceedings of the 36th CIRP International Seminar on
Manufacturing Systems (2003)

26. Zuehlke, D.: SmartFactory–towards a factory-of-things. Ann. Rev. Control 34(1),
129–138 (2010)

https://doi.org/10.1007/978-3-319-40621-3_14
https://doi.org/10.1007/11586180_5

An Operational Semantics of UML2.X
Sequence Diagrams

for Distributed Systems

Fatma Dhaou1(B), Ines Mouakher1, J. Christian Attiogbé2, and Khaled Bsaies1

1 Lipah, Faculty of Sciences Tunis, Tunis, Tunisia
2 LS2N, University of Nantes, Nantes, France

dhaoufatma@gmail.com

Abstract. UML2.X sequence diagrams (SD) are equipped with high
structures: the combined fragments (CF) that permit to model complex
behaviours of systems. CF can be nested to allow more sophisticated
behaviours, however they complicate the interpretation of the SD and
the computation of precedence relations between the events.

In a previous work, we proposed a causal semantics for UML2.X
SD. It is based partial order theory, its well-defined relations allow the
computation of all precedence relations for the events of UML2.X SD
with nested CF. We considered the most popular CF of control-flow
alt, opt, loop, seq allowing to model respectively alternative, optional,
iterative and sequential behaviours. In this work, we improve that previ-
ous work to consider a par CF allowing to model parallel behaviours, and
we propose an operational semantics that is based on the causal seman-
tics. The proposed operational semantics is a substantial step towards
the refinement checking and the analysis of some properties of SD.

Keywords: UML2.X sequence diagrams · Operational semantics
Causal semantics · Nested combined fragments

1 Introduction

Context. The speed of design, the intuition and the ease of graphical represen-
tation make UML2.X sequence diagrams (SD) a privileged language often used
by the engineers in the software industries. Although the Object Management
Group (OMG) [1] has defined an official standard semantics for UML2.X SD,
some shortcomings still persist. For instance, we report that the definitions of
the standard semantics are not well suited for an exhaustive computation of all
possible traces of basic SD modelling the behaviours of distributed systems this
is a shortcoming. Moreover, they are not formalized which yields, in some cases,
to the ambiguities of interpretations.

Motivation. The defined rules by the OMG for deriving partial order of a given
basic SD impose to order the events along each lifeline, even if they are received
c© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 158–182, 2018.
https://doi.org/10.1007/978-3-319-94135-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_8&domain=pdf

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 159

from independent lifelines, which do not allow the computation of all possible
valid behaviours. This leads to the emergence of unspecified behaviours in the
implementation. Although we can add coregion operator and additional messages
to establish the required order, however we obtain an overcrowded graphical rep-
resentation that can lead to the interpretation ambiguities. With UML2.X, the
combined fragments allow the modelling of several kind of behaviours. We focus
especially on a subcategory of CF: alt, opt, loop, seq and par; they per-
mit a compact syntactic representation of behaviours. In contrast, they cause
challenges for the determination of precedence relations between the events. To
compute traces for SD equipped with these CF, the OMG standard recom-
mends to compute the traces of each components of the SD independently then
the traces are composed by the weak sequencing operator. This processing is
equivalent in other approaches [2–5] to the flattening of the SDs that are seman-
tically equivalent. However, the benefits of the compact syntactic representation
are lost.

Moreover, the alt and the loop CF have a different meaning than in the
structured programming languages; although, to ease the processing of these
CF, the existing approaches [5–7], restrict their use by interpreting them in the
same way. However, in the standard they have much more flexible interpreta-
tions allowing to model more complex behaviours; for instance the alt CF is not
equivalent to the IF−Then−Else structure, and in the loop CF, weak sequenc-
ing between the iterations is applied, rather than strict sequencing, permitting
the interleaving of the occurrence of the events of different iterations.

In the practical cases, CF can be nested to model more sophisticated
behaviours. All the cited problems are increasing. In the standard semantics,
the notion of nested CF is briefly mentioned. In literature, few works [5–7] deal
with nested CF. In [6] the authors study the issues resulting of the nesting of
some kinds of CF (different of those considered in this paper), and by limiting
the nesting levels of CF [5,6], or by proposing a complicated formalization very
close to the target formalism [7].

Although the existing semantics that are proposed for UML2.X SD are var-
ious [3,8–10], but they are usually based on the definitions of the standard
semantics for the computation of traces of the SD, thus they are not suitable
for SD modelling behaviours of distributed systems. These shortcomings have
motivate our proposal for a causal semantics dedicated for UML2.X SD with
nested CF that models behaviours of distributed systems. Most of the exist-
ing semantics of different kinds (denotational, operational, algebraic) are based
on the definitions of the standard semantics for the computation of precedence
relations between the events, hence they present the same shortcomings as the
standard semantics. Defining an operational semantics for SD facilitates their
operational analysis and permits a better understanding of the language.

Contribution. This paper extends our previous works [11,12]; in [11] we have
extended the semantics that is proposed for UML1.X SD [13]; we have proposed
several formal rules, to compute directly the partial order between the events
of SD with the most popular combined fragments (alt, opt, loop) that are

160 F. Dhaou et al.

sequential, by processing the SD as a whole. In [12], we have extended the
formalization to deal with the nesting of (alt, opt and loop) CF, and we
have generalized the precedence relations of the causal semantics that suit for
UML2.X SD modelling the behaviours of distributed systems and equipped with
nested CF.

We now propose additional contributions that consist in covering an other
important CF that is the parallel1 CF, and we propose an operational seman-
tics permitting a better understanding of the behaviour of the SD by defining
the rules of occurrences of the events.

Organization. The remainder of the article is structured as follows. In Sects. 2
and 3, we provide an overview on our previous work: we explain the formalization
of UML2.X SD and the precedence relations of the causal semantics. Section 4
is devoted to the operational semantics. Before concluding in Sect. 6, we present
some related works in Sect. 5.

2 Causal Semantics

To overcome the shortcomings of the standard semantics, we considered an
existing semantics [13] that is suitable for basic SD modelling behaviours of
distributed systems. Its rules take into account the independence of the compo-
nents, (modelled by lifelines), involved in the interactions. Indeed, in contrast
with the standard semantics that totally order the events on each lifeline even
for the receiving events from independent lifelines, the causal semantics imposes
slighter scheduling constraints on the behaviour of lifelines results in more expres-
sive SDs, since each SD describes a larger number of acceptable behaviours. This
larger expressive power facilitates the task of the designer since a great number
of cases have to be considered, and permits to prevent the issue of the emer-
gence of unspecified behaviours in the implementation. The causal semantics is
founded on a partial order theory. Intuitively, the causal semantics [14] is based
on the idea of ordering events if there is a logical reason to do so. We present the
relations of the causal semantics as defined in [13] in informal way as follows.
Synchronization Relationship <SY NC . Each message m is received only if
it was sent previously.
Reception-Emission Relationship <RE. Receiving a message causes the
sending of the message that is directly consecutive to it.
Emission-Emission Relationship <EE. If two messages are sent by the same
lifeline their sending events are ordered.
Causal order Relation <caus. This relation is defined as follows:

<caus= (<SY NC

⋃
<RE

⋃
<EE)

1 The parallelism is logic, which mean that two events occur in any order.

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 161

The transitive closure of the relation <caus that we note <+
caus permits to

obtain all the causal dependencies between the events of the SD. The event
occurrence depends on the partial order relationship <caus.

The causal semantics is mainly proposed for basics UML1.X SD modelling
behaviours of distributed systems, and the application of its rules causes some
inconsistencies (aberrant relations, deadlock and inadvertent triggers of some
events [11]). Hence in our previous work [12], we proposed a new formalization
of UML2.X SD with nested CF that is based on set theory and the tree struc-
ture. Then, based on this formalization, we proposed the extension of the causal
semantics whose its relations permit the computation of precedence relations for
each event that belong to an UML2.X SD with nested CF modelling behaviours
of distributed systems.

3 Overview on Previous Extension of the Causal
Semantics

3.1 Formalization of UML2.X SD with Nested CF

We consider a sub-set of SD containing combined fragment of control-flow alt,
opt, loop and seq CF. The considered CF are sequential, and can be nested to
model more sophisticated behaviours. We assume that the operands of the CF
do not overlap, but can be nested. For the formalization of sequence diagrams
equipped with nested CF, we choose, on the one hand, the set theory notations2

that is a privileged way due to its several advantages. For instance, although it is
founded on first order logic, it permits to manipulate objects of high order such
as sets and relations of any depth (that is, sets and relations built themselves on
sets and relations, and so on) [15]. On the other hand, we use the tree structure
that is hierarchic by nature and it is convenient to capture the nested structure
of SD, and allow to represent them in an intuitive way.

Sequence Diagram Definitions

Definition 1 (Sequence Diagram)
A sequence diagram SD is a tuple
SD : 〈L,M,EV T, FCT s, FCT r, FCT l,OP, F,<caus, tree OP 〉 where:

– L is a set of not empty lifelines, and card(L) ≥ 2,
– M is a set of asynchronous messages which is well formed and not empty.

The set M is well formed if every message is identified by a pair of events: a
sent event and a received event,

– EV T = E s∪E r is a set of events such that card(EV T) ≥ 23, E s and E r
denotes respectively the set of sent events and the set of received events such
that E s = {!m | m ∈ M}4 and E r = {?m | m ∈ M}5, and E s ∩ E r = ∅,

2 N.B we use the same set theory notation as those of Event-B method.
3 Cardinal of a set E.
4 !m denote the sent event of the m message.
5 ?m denote the received of the m message.

162 F. Dhaou et al.

– for a set of message M we define two bijective functions FCT s and FCT r
that permit to associate to each message respectively one sent event and one
received event: FCT s : M�→E s6, and FCT r : M�→E r

– FCT l : EV T � L7 a total surjective function that associates to each event
one lifeline, the transmitter or the receiver,

– F = {F1, F2, ..., Fn} is the set of n CF, where Fi = 〈OPi, operatori, Li〉 is a
CF that is identified by its operands, an operator, and the set of lifelines that
are covered by it,

– <caus⊆ EV T ↔ EV T denotes the partial order relationship,
– OP : the SD is considered as a set of operands,
– tree OP is a partial function that allows to structure the SD in the form of

a tree of operands.

To obtain the local order within each lifeline noted <SD,l, we project the
causal order relation <+

caus
8 on the lifeline l.

Operands of CF. An SD is abstracted as a tree of operands. Intuitively, a
combined fragment will be viewed as an operator together with its operands;
this will be detailed in the sequel. We consider the following CF seq, alt, opt
and loop. The SD is represented as a set of operands. We associate a label to
each operand. Two operands with the same index i belong to the same combined
fragment: it’s the case of the operands of an alt and par CF for instance, in
Fig. 1, OP21, OP22 and OP23 belong to the same CF alt.

The whole SD is transformed to a root operand that we note OP00; the set
OP is defined as (

⋃
i={1..n}

OPi) ∪ {OP00}; where n is the number of operands

of the considered SD. Each operand in an SD has a weight. For instance, each
operand of seq, alt or opt CF has a weight equal to 1; an operand of a loop CF
has a weight equal to a value max, which is the maximum number of iterations
of the considered loop CF. We assume that each operand of a CF has only one
first event. The first events of the different operands of a same CF do not belong
necessarily to the same lifeline, since some of them came from lower level when
we built the tree.

The general definition of an operand in a combined fragment is given as
follows.

Definition 2 (Operand in Combined Fragment)
We define a set of operands OPi in a CF Fi as:

OPi = {OPi,j={1..k} | OPij =
〈
guardij , weightij , EV T Dij

〉}
where: (i) k is the number of operands in CF Fi, (ii) guardij is the guard of the
operand OPij, (iii) weightij is the weight of the operand OPij, (iv) EV T Dij

are the events that are directly contained in an operand OPij.
6 �→ denotes a bijective function.
7 →→ denotes a total surjection.
8 R+: the transitive closure of R.

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 163

We use the following functions to manipulate the operands:

– EV T D returns the events that are directly contained in each operand9:

EV T D : OP → P(EV T)

– EV T G returns all the events that are contained in an operand including
those which are contained in its nested operands:

EV T G : OP → P(EV T)

– weight returns the weight of each operand:

weight : OP → NAT+

– first gets the first event of each operand. first : OP → EV T ; intuitively,
a first event is an event that has not a preceding events in the considered
operand.

first={(X, e)|X ∈ OP ∧ e ∈ EV T G(X) ∧
(∀ e′)[e′ ∈ EV T ∧ e′ <∗

caus e ⇒ e′ /∈ EV T G(X)]}
The instantiation of the Definition 2 for seq, alt, opt and loop CF is
intuitive and it given in detail in our previous paper [12].

We just present the instantiation of the definition for the par CF;

Definition 3 (Operands in the PAR Combined Fragment)
A parallel combined fragment Fi is composed of a set of k operands:

OP par
i = {OPi1, ..., OPik}

where OPij =
〈
True, 1, EV T Dij

〉

the guard is true and the weight is equal to 1.

The semantics of interactions is explained with an interleaving semantics [1],
i.e. two events may not occur at exactly the same time.

In the same way, we choose an interleaving semantics to support alterna-
tives and concurrency behaviours, since it is more appropriate for SD modelling
behaviours of distributed system. Indeed, if the semantics allows the occurrence
of two events exactly in the same time (like in the true-concurrency semantics10),
in the case of an alt CF, we’ll have a simultaneous occurrence of the events of
different operands, this is not compliant with the standard semantics of this CF
where at most one operand among several potential operands must be chosen.

9
P(EV T) is the set of subsets E.

10 True-concurrency semantics is a non-interleaving semantics, it supports the occur-
rence of two events in the same time.

164 F. Dhaou et al.

Transformation of SD as a Tree of Operands. An SD is encoded as a tree
that is composed by a set of linked operands, such that each operand has at
maximum one direct ancestor. For instance, the Fig. 2 illustrates the associated
tree for the SD of the Fig. 1. A naive way to transform an SD into a tree is to
associate a node to each CF or operand. When building the tree of an SD, we
always have a root node that represents the complete SD; the process is then
breadth-first. Note that the operands of an alt or a par CF are independent, i.e.
they have disjoint executions. Therefore, to simplify the tree representation of
the SD, we substitute the node which should stand for these fragments with the
nodes representing their operands. They are moved to the upper level. However,
to distinguish them, the operands of the same fragment have their indexes built
with the same prefix (OP21, OP22 and OP23). From the node of a current SD, the
consecutive fragments of the SD become the nodes of the current node. Each
fragment is either represented as a node or it is represented by the nodes of
its operands. A node is associated to each CF that has only one operand (for
instance loop or opt). A CF with more than one operand (for instance alt or
par) is replaced with the nodes associated to its operands.

We define the tree structure for SD operands as follows:

Definition 4 (Tree Structure for SD Operands)
The tree structure tree OP related to an SD is defined as a partial function:
tree OP : OP �→ OP which is acyclic and non-reflexive. The root is the only
operand that does not have a parent:

(∀X)[X ∈ OP ∧ X /∈ dom(tree OP) ∧ X ∈ ran(tree OP) ⇒ X = OP00]

Fig. 1. Example of SD with nested CF.

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 165

Fig. 2. Tree associated to the SD of the Fig. 1.

Once an SD is transformed to a tree of operands, we define relations that permit
to get the locations of the operands that are required in the formalizations
of precedence relations. To associate to each operand all the operands where
it is nested (its ancestor operands in the tree OP), we introduce the relation
ancestor. To identify the operands of the same CF alt, par, we introduce the
relation brother. We call brother operands those that belong to the same CF
alt, par. In a given tree: tree OP = {OPi1....OPij}, the brother operands are
the operands that belong to the same level and that have the same index i.
Hence, the operands of the same sibling are not all necessarily brothers, since
some of them came from lower level when built the tree.

• ancestor: a binary transitive relation11 that is defined on OP .

ancestor : OP ↔ OP

For an operand X we compute its ancestors12 as follows:

ancestor[{X}] =
⋃

s∈{1,..,d}
{tree OP s(X)}

where d is the depth of the node X in the tree OP .
Illustration. In Fig. 2, ancestor[{OP00}] = ∅, and ancestor[{OP31}] =

{OP21, OP00}.
• brother: a binary transitive relation that is defined on a set OP .

brother : OP ↔ OP
brother = {(OPij , OPtk)|(OPij , OPtk) ∈ OP × OP

∧(i = t ∧ j �= k)}
Illustration. In Fig. 1, the operands OP31, OP32 belong to the same CF alt, thus

they are brothers. brother[{OP11}] = ∅ and brother[{OP31}] = {OP32}

Weight of an Event. The function weight was defined on an operand, We
overload the function to associate the weight of the path between two operands.

weighte : (OP × OP) → NAT+

11 ↔ denotes a relation.
12 R[{e}]: Relational image; gives the set of images.

166 F. Dhaou et al.

For two operands X and Y , we compute the weight of their paths as follows:
{
weighte(X,Y) = 1 if X = Y
weighte(X,Y) =

∏
s∈{0,..,d}

weight(tree OP s(Y))

}

with d the length of the path between the operand X and the operand Y .
We overload the function weight that permits to associate to each event its

maximal number of occurrence.

weight : EV T → NAT+

For an event evt of an operand X, such that evt ∈ EV T D(X), we compute its
weight as follows:

weight(evt) =
weight(X) ∗ weight(tree OP (X))∗
weight(tree OP 2(X) ∗ ... ∗ weight(tree OP d(X)︸ ︷︷ ︸

OP00

))

=
∏

s∈{0,d}
weight(tree OP s(X))

= weighte(OP00,X), (with d = depth of X)

The new formalization is used as a basis for the extension of the causal
relationships that permits to compute the partial order between the events of
the SD.

3.2 Extension of the Causal Semantics

The relations <Sync, <RE , <EE and <RR permit to compute the precedence
relations for each event of an SD. The structuring of SD with nested CF in
form of tree permits an obvious identification of the preceding events, they are
grouped by operand, for each event that belongs to this kind of SD.

In this section, we generalize these relations. The synchronisation relation-
ship (<Sync) is unchangeable. The formalizations of <RE and <EE relationships
permit to order two events that belong to the same lifeline and that are succes-
sive. We define a new relationship <RR to consider some particular cases of the
ordering of receiving of events in the context of distributed components.

To detail a bit, and to alleviate the presentation of the formalization of <RE

and <EE relationships, we introduce three binary relations not in brother, succ1
and succ2. In the following, we first give the intuition of each of them before
their formalizations.

Two successive events that belong to distinct operands of an alt or a par
CF must not be ordered. The relation not in brother expresses this intuition:
the successive events of an alt CF to be ordered must neither belong to brother

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 167

operands nor to operands where in their respective ancestors exist a brother
operands.

not in brother={(e, e′)|(e, e′) ∈ EV T 2 ∧ (∀X)(∀Y)
[X ∈ (ancestor[{EV T D−1(e)}] ∪ {EV T D−1(e)})
∧Y ∈ (ancestor[{EV T D−1(e′)}] ∪ {EV T D−1(e′)})
⇒ (X,Y) /∈ brother]}

Illustration: In Fig. 1, the event !m4 ∈ OP31, the event !m6 ∈ OP32, however
we have OP32 ∈ brother[{OP31}], hence the events !m4 and !m6 should not be
ordered.

Formally, we define that two events are successive in two manners with two
distinct relations succ1 and succ2. These relations are used respectively in the
formalization of <EE and <RE relationships. The relation succ1 relates two
events that belong to the same lifeline and which are successive. Nevertheless,
we admit between them, events that must necessarily belong to an operand that
can be omitted (i.e. the events between successive events do not belong to any
operand ancestor of the operands of the considered events).

succ1={(e, e′)|(e, e′) ∈ EV T 2∧
(∃l)[l ∈ L ∧ e <∗

SD,l e
′

∧ (∀e”)[e” ∈ EV T ∧ (e <∗
SD,l e” ∧ e” <∗

SD,l e
′)

⇒ EV T D−1(e”) /∈ (ancestor[{EV T D−1(e)}]
∪ ancestor[{EV T D−1(e′)}])]]}

The relation succ2 expresses the same conditions and effects as those defined
in succ1 relationships, moreover it expresses that we admit between the succes-
sive events received events.

succ2= {(e, e′)|(e, e′) ∈ EV T 2∧
(∃l)[l ∈ L ∧ e <∗

SD,l e
′ ∧ (∀e”)[e” ∈ EV T ∧

(e <∗
SD,l e” ∧ e” <∗

SD,l e
′)

⇒ e” ∈ ran(FCT r) ∨
EV T D−1(e”) /∈ (ancestor[{EV T D−1(e)}]
∪ ancestor[{EV T D−1(e′)}])]]}

The relationship <EE permits to order two sent events that satisfy the con-
ditions expressed in not in brother and succ1 relations.

<EE= {(e, e′)|[(e, e′) ∈ (EV T)2 ∧
e ∈ ran(FCT s) ∧ e′ ∈ ran(FCT s) ∧
(e, e′) ∈ not in brother ∧ (e, e′) ∈ succ1]}

The relationship <RE permits to order two events such that the first one is a
received event and the second one is a sent event, and both of them satisfy the
conditions expressed in not in brother and succ2 relations.

<RE={(e, e′)|[(e, e′) ∈ (EV T)2 ∧
e ∈ ran(FCT r) ∧ e′ ∈ ran(FCT s) ∧
(e, e′) ∈ not in brother ∧ (e, e′) ∈ succ2]}

168 F. Dhaou et al.

In a distributed system context, the components are independent and the
communication between them is carried out according to protocols, each of them
guarantees properties semantics concerning the reception of messages. In case
the considered protocol ensures a First in First Out (FIFO) delivery order, the
receptions of two messages coming from the same lifeline are received in the
same order of their emission. The <RR relationship permits to compute these
precedence relations.

<RR={(e, e′) | [(e, e′) ∈ E2
r ∧

(∃e1,∃e2)[(e1, e2) ∈ E2
s ∧

Fct s−1(e1) = Fct r−1(e) ∧
Fct s−1(e2) = Fct r−1(e′) ∧
e1 <∗

EE e2 ∧ Fct l(e1) = Fct l(e2)]}

In the previous work [12], we showed that in loop CF as well as in nested
CF that contains loop CF the determination of the precedence relations for
each event is not obvious.

3.3 Hidden Precedence Relations in LOOP Combined Fragment

The events inside a loop operand can have as preceding events that can be
located:

– for the first iteration: (i) either outside the loop operand and/or, (ii) inside
the loop operand of the same iteration.

– from the second iteration: (i) either outside the loop operand and/or, (ii)
inside the loop operand of the same iteration and/or of the previous itera-
tions.

We call hidden relations the relations between the events of loop operand
of the current iteration and the events of the previous iterations (Fig. 3). These
relations appear when the loop operand is flatten at least one time. Hence, the
necessity of defining a new relation <Hcaus in which we express the constraints
of precedence between the events of the current iteration and the events of
the previous iteration. In order to compute the hidden precedence relations, we
propose the following steps: we flatten the loop operand only once whatever is
the number of iterations; we obtain an intermediate sequence diagram SD’.

In SD’, we rename the operands as well as the events of the second iteration
with the same name as those of the preceding iteration by labelling them with
a single quote (Fig. 3). We define the set EV T ′ to represent the events of the
next iteration. <′

RE and <′
EE are respectively the reception-emission, and the

emission emission relationships associated to the SD’. In an SD we can have
several loop operand that can be sequenced or nested. In this case, the same
processing is applied by computing for each loop operand its hidden relation-
ships; we note <HcausX , the hidden relations of a given loop operand named

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 169

SD'SD

m1

[5]loop

m4

m3

m2

m1

m4

m3

m2

m4

m3'

m2'

'

loop

L1 L2L2L1

Fig. 3. Processing of an SD with loop operand.

X. The formalization of the hidden relationships for a loop operand X is given
as follows.

<HcausX=
{(e, e′)|e ∈ EV T ∧ e′ ∈ EV T ′∧
(e, e′) ∈<′

RE ∨(e, e′) ∈<′
EE}

Illustration1. Consider the SD in Fig. 3, the SD’ represents the flattening of
the loop operand only once. In the SD’, in the first iteration, the !m2 has as
preceding event the event !m1 that is located outside the loop operand; the
event !m3 has as preceding events, the event ?m1 (that is located outside the
loop operand) and the ?m2 (that belongs to the same iteration). In the second
iteration, the event !m2′ has as preceding event the event !m4 which belongs to
the first iteration; the event !m3′ has as preceding events the events ?m4 and
?m2′, which belong respectively to the first and the second iteration.

Illustration2. As aforementioned, for an alt CF, only one operand must be
executed, hence the events that belong to distinct operands must not be ordered,
otherwise we’ll have deadlocks of some events.

However, in some particular cases of nested structure, especially for an alt
that is nested in a loop CF, we can face a problem that the events of distinct
operands of the same alt CF (brother operands) can have precedence rela-
tions. Figure 5 represents the flattening of the loop operand of the SD of Fig. 4.
Figure 6 represents a possible execution of the SD (depicted in Fig. 4) containing
nested CF. In the first iteration of the loop CF, the first operand of the alt
CF is executed; in the second iteration of the loop CF, the third operand of the
alt CF is executed. According to the <EE relationship, the event !m2 precedes
the event !m7′, although they respectively belong to brother operands OP21
and OP22. Likewise for the events !m3 and !m6′. This is problematic, since the
events of brother operands should not be ordered. This justifies the renaming of
the events and the operands of the next iteration to avoid this issue.

In an SD we can have several loop operand that can be sequenced or nested.
In this case, the same processing is applied by computing for each loop operand

170 F. Dhaou et al.

L2

loop

alt

[G1][0,5]

[G2]

[G3]

[G4]

m1

m2 m3

m4 m5

m6m7

OP00

OP11

OP21

OP22

OP23

L1 L3

Fig. 4. SD with nested CF.

its hidden relationships; the entire hidden relation is the union of the hidden
relations of each loop operand. Now, the causal relationships is computed as
follows.

<caus=<SY NC ∪ <RE ∪ <EE ∪ <RR ∪ <Hcaus

That means the ordering of events depends on the cumulative rules of the
relationships. The valid traces are those which can be generated satisfying these
orders.

The defined rules (<RE , <EE , <RE and <Hcaus) may be applied to the
standard semantics by restoring the constraints that we relaxed. In the same
way, these rules can be adapted for any kind of semantics by strengthening or
weakening some constraints. The causal semantics can be exploited for several
purposes, it can used as basis for the computation of all possible valid traces of
SD modelling behaviours of distributed systems as it can be the basis for the
definition of an operational semantics that facilitates its implementation and
then the analysis of the SD and several properties of systems for instance safety,
liveness, fairness or reachability properties.

4 Operational Semantics

The most of the existing semantics are trace-based semantics, they require a
meticulous work that consists in generating all possible traces of an SD then
in their categorisation depending on the aim of the semantic, and they do not
propose tools to ensure this task [3,16]. Moreover, most of them ignore interac-
tion constraint that guards combined fragments, which are essential to ensure
soundness of refinement relation [16]. In the approach of [16], the authors con-
sider the interaction constraint in a non-intuitive way. Indeed, they propose to
include the guard as an element in the standard definition of trace.

The motivation behind the definition of an operational semantics is the inten-
tion of the use of existing refinement relations that are well defined on transition

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 171

L2

loop

alt

[G1][0,5]

[G2]

[G3]

[G4]

m1

m2 m3

m4 m5

m6m7

OP00

OP11

OP21

OP22

OP23

alt [G2]

[G3]

[G4]

m2' m3'

m4' m5'

m6'm7'

OP21'

OP22'

OP23'

L1 L3

Fig. 5. Processing of the OP11 loop
operand of Fig. 4.

L2

m1

m2 m3

m6'm7'

L1 L3

loop

Fig. 6. Possible execution of the SD
of Fig. 4.

systems, since an operational semantics is concretely given as a transition sys-
tem. Moreover, in the operational semantics, we define execution strategies of
the events of an SD with nested CF. They include on the one hand, the order of
the occurrence of the events in a nested structure (CF) as well as the conditions
under which those executions can take place, on the other hand their execution
effects that they produce. These strategies allow for better understanding and
analysis of the behaviour of a sequence diagram.

Moreover, the guard is straightforwardly expressed. Formally, it is given as
a guarded transition system:

Sem(SD) = 〈S, S0,�〉
where S is the set of possible states of the SD, S0 is the initial state and � is
the transition relation.

4.1 State

Each state of an SD is expressed with two variables (state, current instance):
state expresses the states of all events of SD, current instance expresses the
lifeline of the current event.

The state of an Event. An event which belongs to a basic SD can have two
obvious basic states: executed or not yet executed. In our semantics, we support
sequence diagrams with sequential CF that can be nested. The basic states
are not sufficient to express the state of an event in an SD with sophisticated

172 F. Dhaou et al.

structures (nested CF). Indeed, each event in such SD can be: not yet occurred,
occurred, consumed one or several times. Then, the variable state is defined as
follows.

state : EV T → NAT

The state of an event is decreased whenever it is occurred or ignored. To describe
the state of an event e, we use the following vocabulary:

– not yet occurred: when state(e) = weight(e),
– occurred: if the event e is executed or ignored one or several times and 0 <
state(e) < weight(e),

– consumed: when state(e) = 0.

During its execution, an SD can be in one state among the following states:

– an initial state S0, when all its events are not yet occurred,
– an intermediate state of S,
– a final state, when all its events are consumed: state = EV T × {0}.

The notion of state is very important, indeed, it constraints the occurrence
of a given event (for instance we decrement the state of an event whenever it is
occurred, or if we want to prohibit its occurrence); it also serves to indicate the
location of the considered event; this information is useful especially when we
have several nested loop CF.

4.2 Transition Rules

For each event evt in an SD we associate the following transition:

p
[g]evt−→ q

def≡ ((p, [g] evt, q) ∈ � ∧ g)

An event is enabled only when its trigger conditions, (labelled TCi), hold.
When the enabled event occurs, it produces execution effects (labelled EEi)
that update the SD from the state p to the state q.

In the following, we define rules for the guarded transition system which
constraint the occurrence of the events (the trigger conditions and the executions
effects). The rules of our operational semantics have the following shape.

evt =
CD1 ∧ CD2 ∧ ...CDi

EE1, EE2, ..., EEi

4.3 Occurrence of the Events

For each event the trigger conditions must be checked conjointly and the execu-
tions effects are produced simultaneously.

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 173

Trigger Conditions. Some trigger conditions have a simple shape: they are
atomic formulas where others trigger conditions are composed by the conjunction
of several conditions. Indeed, some conditions must be strengthened in order to
take into account of some particular cases and to prevent some issues that result
of the presence, the disposition of the nesting of some CF (for instance the
nesting CF that contains loop CF that induces hidden relations).

• First trigger condition related to satisfaction of precedence constraints

In our causal semantics, we first transform the considered SD in the form of
a tree of operands. This transformation allows us to identify easily the preceding
events of each event that are grouped by operand. Then the defined relations
permit the computation of the precedence relations between the events.

The first trigger condition TC1 necessary to the occurrence of each event
consists in checking that its preceding events were occurred. This is made by
comparing the states of the considered event and those of its preceding events.
Remind that each event has a state which is initialized to its weight correspond-
ing to its maximal number of occurrence. Depending on the kind of combination
of CF ((alt-loop), (alt -loop), (loop-loop)....) to nest and the location of
the considered events (these informations is given in the states of the events),
the shape of the first trigger condition varies.

Consider an event evt that belongs to an UML2.X SD. To facilitate the
reasoning, we assume that the event evt has only one preceding event e. The
occurrence of the event evt depends on the state of the event e.

If the considered events e and evt have the same weight, then the trigger
condition is simply expressed in the form of an inequality on the respective
states of evt and e, hence it is enough to check that:

state(e) < state(evt)

However, in an SD, we can have several combinations of different kinds of CF.
The combinations and the nesting of some kinds CF, especially those that contain
loop CF complicate the form of the first trigger condition. Indeed if the events
have distinct weights that are >1, it is the case where the events belong to
nested CF that contain loop CF. The weight is a term making the product from
the root to the event. The weight of an intermediate operand is a multiplicative
factor of the events contained in the child operands.

Therefore, the comparison of the states of two events is based on their weights
relative to a common node (operand) or the first shared node that encompasses
the events, which is the lowest common ancestor (LCA). Indeed, the terms of
the weight derived from the ancestors are the multiplicative factors common.

For instance in the Fig. 9, consider the events ?m1 and !m2 that belong
respectively to OP21 and OP11 operands, the LCA is the operand OP11, hence
weight(?m1) = 3 ∗ 5 and weight(!m2) = 5. In the Fig. 13, consider the events
!m1 and !m2 that belong respectively to OP21 and OP31 operands, the LCA is
the operand OP11, hence weight(!m1) = 5 ∗ 3 and weight(!m2) = 5 ∗ 4.

Consider the operands X et Y of the events e and evt : X = EV T D−1(e),
Y = EV T D−1(evt) and Z is the lowest common ancestor of the operands X

174 F. Dhaou et al.

and Y : Z = LCA(X,Y). Depending on the weights of the events of e and evt,
we distinguish the following cases:

1. Case1: each of the event e and evt has a weight that is equal to 1. In this case
None of the operands X Y or Z is a loop operand. Moreover their respective
ancestors are not loop operands.

2. Case2: each of the events e et evt has a weight that is different of 1. In this
case, we have to argue with regard to the lowest common ancestor (Z) of the
operands X and Y of the events e and evt. Indeed, we distinguish 4 possible
cases:
2.1 Case2.1: There is no loop operand neither in the path from the operand

Z to the operand X nor in the path from the operand Z to the operand
Y (i.e. weight(Z,X) = 1 and weight(Z, Y) = 1),

2.2 Case2.2: there is a loop operand only in the path from the operand Z
to the operand X (i.e. weight(Z,X) > 1 and weight(Z, Y) = 1),

2.3 Case2.3: there is a loop operand only in the path from the operand Z
to the operand Y (i.e. weight(Z,X) = 1 et weight(Z, Y) > 1),

2.4 Case2.4: in each path from the operand Z to the operand X and from the
operand Z to the operand Y there is a loop operand (i.e. weight(Z,X) >
1 et weight(Z, Y) > 1).

In the sequel, we illustrate each case with an example et we give the appro-
priate trigger condition.
• Case1. The weight of event e and evt is equal to 1. We distinguish two possible
cases: (i) both events e and evt are located in the same operand:

X = EV T D−1(e) = EV T D−1(evt) (see Fig. 7(a)), and (ii) the events are
located in distinct operands: EV T D−1(e) �= EV T D−1(evt) (see Fig. 7(b)).

In this case it is enough to check that:

CD11 : state(e) = 0 < state(evt) = 1

Illustration: In both Fig. 7(a) and (b), according to the < EE relation, the
events !m1 and !m2 are ordered, they are respectively located in the same
operand (Fig. 7(a)) and in distinct operands 7(b). Both events have a weight
equal to 1. The event !m2 can occur only if the event !m1 was consumed. Hence
we must check the condition

state(!m1) = 0 ∧ state(!m2) = 1

Fig. 7. Illustration case1.

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 175

• Case2.1. The weight of the events e and evt are different of 1. We distinguish
two cases: (i) the events are located in the same operand:

X = EV T D−1(e) = EV T D−1(evt) (see Fig. 8(a)), and (ii) the events
evt and e are located in distinct operands: EV T D−1(e) �= EV T D−1(evt)
(Fig. 8(b)). We consider only the case where the paths from the operand Z
to the operand X and from the operand Z to the operand Y did not contain a
loop operand (i.e. weight(Z,X) = 1 and weight(Z, Y) = 1). In this case, either
the operand Z or at least one of its ancestors is a loop operand.

Illustration1: In the Fig. 8(a), the weight of each event !m1 and ?m1 is equal
to 4, hence each of them can occur 4 times. For each iteration, the message m1
can be received only if it is sent (the event !m1 was occurred) This conditions
constraints the occurrence of the event ?m1, it is expressed as follows:

state(!m1) < state(?m1)

Illustration2: In the Fig. 8(b), the weight of each event !m1 and ?m1 is equal
to 4, hence each of them can occur 4 times. For each iteration, the event ?m2
can occur only if the event !m1 was occurred. This condition constraints the
occurrence of the event ?m1, it is expressed as follows:

state!(m1) < state(!m2)

Hence in these cases the trigger condition can be expressed as follows:

CD12 : state(e) < state(evt)

• Case2.2. The weights of the events e and evt are different of 1. Moreover,
they are located in distinct operands: EV T D−1(e) �= EV T D−1(evt). We have
only a loop operand in the path from the operand Z to the operand X (i.e.
weight(Z,X) > 1 and weight(Z, Y) = 1)

Illustration: Consider the Fig. 9, for each iteration of the operand OP11, the
event !m2 can occur only if the event ?m1 was occurred 3 times. The table
represented in Fig. 10 illustrates the 5 states for which the event !m2 can occur.

Fig. 8. Illustration case2.1.

176 F. Dhaou et al.

Fig. 9. SD5: ?m1 <!m2. Fig. 10. Variation of states values
with iteration of the SD of Fig. 9.

[state(?m1)/3 < state(!m2)] ∧ [(state(?m1)mod 3 = 0)]

In this case, the trigger condition of the event evt is expressed in form of a
conjunction of predicates. Such that the first predicate is an inequality on states
of the event evt and its preceding event e where the state of the preceding event
is weighted with the coefficient 1/weight(Z,X). The second predicate permits
to the event evt iterate once the event e was occurred weight(Z,X) times.

CD13 : [state(e)/weight(Z,X) < state(evt)] ∧[(state(e) mod weight(Z,X) = 0)]

• Case2.3. The weights of the events e and evt are different of 1. Moreover,
they are located in distinct operands: EV T D−1(e) �= EV T D−1(evt).

We have only a loop operand in the path from the operand Z to the operand
Y (i.e. weight(Z,X) = 1 et weight(Z, Y) > 1).
Illustration: In the Fig. 11, the event ?m1 precedes the event !m2. For each
iteration of the operand OP11, the event !m2 occurs 4 times. For each occurrence
of the event ?m1, the event !m2 occurs 4 times. The table represented in Fig. 12
illustrates the 20 states for which the event !m2 can occur. Hence the trigger
condition of the event !m2 can be expressed as follows.

(state(!m2) mod 4 = 0) =⇒ (state(?m1) < state(!m2)/4)
Hence, in this case, the trigger condition of the event evt is expressed as

follows.
CD14 : (state(evt) mod weight(Z, Y) = 0) =⇒ (state(e) < state(evt)/

weight(Z, Y))

• Case2.4. The weights of the events e and evt are different of 1. Moreover,
they are located in distinct operands: EV T D−1(e) �= EV T D−1(evt).

In each path (from the operand Z to the operand X and from the operand
Z to the operand Y), it exists a loop operand (i.e. weight(Z,X) > 1 et
weight(Z, Y) > 1).

Illustration: In the Fig. 13, the event !m1 precedes the event !m2. For each
execution of the operand OP11 the event !m2 occurs 4 times. After each 3

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 177

Fig. 11. SD8: ?m1 <!m2. Fig. 12. Variation of states values
with iteration of the SD of Fig. 11.

occurrences of the event !m1, the event !m2 occurs 4 times. The table represented
in Fig. 14 illustrates the 20 states where the event !m2 can occur.

state(!m2) mod 4 = 0 ⇒ state(!m1)/3 < state(!m2)/4 ∧(state(!m1) mod 3 = 0)

Fig. 13. SD7: !m1 <!m2. Fig. 14. Variation of states values
with iteration of the SD of Fig. 13.

In this case, the trigger condition of the event evt is expressed as follows.

CD15 : (state(evt) mod weight(Z, Y) = 0) ⇒
[state(e)/weight(Z,X) < state(evt)/weight(Z, Y)] ∧
[(state(e) mod weight(Z,X) = 0)]

Generalization of the Trigger Condition TC1. Thenceforth, we can deduce
the general form of the first trigger condition. We check the occurrence of the pre-
ceding events that are computed receptively from the relation (<caus \ <Hcaus)
and from the relation <Hcaus independently in two distinct trigger conditions.

– (e, evt) ∈ (<caus \ <Hcaus) (TC1)
– (e, evt) ∈<Hcaus (TC1′)

178 F. Dhaou et al.

• Hence, when we have:
∀(e)(∃X)(∃Z)[(e, evt) ∈ (<caus \ <Hcaus) ∧ X = EV TD−1(e)
∧ Y = EV TD−1(evt) ∧ Z = LCA(X,Y)

Then, the first trigger condition is expressed as follows:

TC1:
(state(evt) mod weight(Z, Y) = 0) =⇒
((state(e)/weight(Z,X) < state(evt)/weight(Z, Y)
∧ (state(e) mod weight(Z,X) = 0)))

• For each event evt of a loop operand or that belong to a nested CF that
contains a loop operand and that has hidden preceding events that appear
from the second iteration.

Hence, when we have: (∀e)(∃X)(∃Z)[(e, evt) ∈<Hcaus ∧ X = EV TD−1(e)
∧ Y = EV TD−1(evt) ∧ Z = LCA(X,Y) We define the following trigger

condition TC1’.

TC1’:
(state(e) mod (weight(Z, Y) ∗ weight(Z) <> 0)) =⇒
((state(e)/weight(Z,X) = state(evt)/weight(Z, Y)
∧ (e, evt) ∈ not in brother))

• the second trigger condition consists in checking that the event can still be
occurred: it is not yet consumed (TC2). It is formally defined as follows:

TC2 : state(evt) ≥ 1

• for the events that belong to a guarded CF we add a third trigger condition
that permits to check the value of the guard.

Execution Effects. The execution effects of an event should simultaneously:

– update the state of the current event by decreasing its state (EE1);
the execution effect EE1 is to update the state with: EE1: state(evt) − 1

– update the lifeline of the current event (EE2); the execution effect EE2 is to
set current instance with: EE2: current instance := FCT l(evt) Remind
the FCT l(evt) gives the lifeline of the event.

Particular Cases: for the guarded alt, we assume that the evaluation of the
guard is made on the first event. If the guard is evaluated to true (TC3) then
the first event must synchronize the events of the other operands of the same
CF by decrementing their states (remind that the standard semantics of the alt
CF impose that only one operand must be executed among several potential

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 179

operands having simultaneously a true guard). Otherwise, if the guard is eval-
uated to false (TC3’), the first event must decrement the states of the events
of the same operand in order to prohibit their occurrence. Hence, in addition to
the trigger conditions TC1 and/or TC1’, we must add a third trigger condition
TC3 for the first event of each operand of an alt CF.

TC3 : guard := true

TC3’ : guard := false

If the guard is evaluated to true, in addition to the executions effects EE1
and EE2, we must add a third execution effect EE3 to modify the states of
the events of the brother operands. When we have [evt ∈ EV T D(X) ∧ e ∈
EV T D(Y) ∧ e ∈ EV T G(Z)],

EE3: state(e) − weight(Z, Y), where Z = brother(X) If the guard is evalu-
ated to false, in addition to the executions effects EE1 and EE2, we must add
a third execution effect EE3’ to decrement the states of the events of the same
operand. When we have evt ∈ EV T D(X) ∧ e ∈ EV T D(Y) ∧ e ∈ EV T G(X),
then EE3’: state(e) − weight(X,Y)

All the operands of any kind of CF can be guarded, in this case in addition to
the trigger conditions TC1 and/or TC1’, we must add a third trigger condition
TC3 for the first event of the considered operand. If the guard is evaluated
to false, in addition to the executions effects EE1 and EE2, we must add a
third execution effect EE3’ to decrement the states of the events of the same
operand. N.B In a nested CF, we assume that the guard evaluation of a child
operand should be made after a True guard evaluation of the parent operand.
This is compliant with the hypothesis we made in Subsect. 3.1, which states that
each operand has one first event. Moreover, if the guard of the parent operand
is evaluated to False, its events including the events of its child operands are
ignored.

All these rules define the operational semantics of UML2.X SD with nested
combined fragments. They are not linked to any target formalism and they can
be implemented in various ways and by any formalism doted with tools for its
checking.

5 Related Works

In the literature, there are several semantics approaches to define a semantics for
UML2.X SD. Among them we cite the most popular: (i) denotational semantics
[3,16], (ii) transformational semantics [9], and (iii) operational semantics [10,17].
They are mainly proposed to overcome some issues of the standard semantics,
or to adapt the use of the SD to the modelling of different systems, and for
other purposes. For instance, in [3,16], the authors defined a trace semantics
based on denotational semantics to distinguish between mandatory and required
behaviours. In [10], the authors proposed a denotational semantics based on
partially ordered multisets or pomsets that deals with language constructs for

180 F. Dhaou et al.

specifying negative traces. In the works of [9], the authors proposed a transfor-
mational semantics based on the translation of SD into Büchi automata in order
to verify liveness and safety properties of reactive systems. In [17], the authors
proposed an operational semantics for SD that supports negative behaviours
and that distinguishes between possible and required behaviours. In [10], the
authors proposed an operational semantics for SD, which is compliant with the
semantics proposed in [18], for capturing the composition operators from High
Message Sequence Charts (HMSC) and neg assert CF.

We underlined that a few of the existing semantics, [3,9,16,18], can be used to
formalize the refinement relation while the others do not allow it [2,4,17,19,20].

For this purpose, the trace-based semantics, [3,9,16], are not very convenient,
indeed they permit to verify only some kinds of refinement relations (trace inclu-
sion, trace equivalence...), this require a meticulous preprocessing on all traces
of the considered SD, knowing that most of them did not propose tools that ease
this arduous task; moreover they ignore the guards of CF which are essential to
ensure soundness of refinement relation. Although, in the work of [16], the pro-
posed trace-based semantic refinement considers guard, but in a non-intuitive
way, by modifying the standard definition of the trace.

In contrast to trace-based semantics, with an operational semantics several
kinds of well-defined refinement relations can be expressed (simulation trace,
inclusion trace, equivalence trace...). Moreover the operational facilitates the
analysis of the behaviours of the modelled systems.

Most of the existing semantics [3,4,9,16–18] are usually based on the defini-
tions of the standard for the computation of traces, thus they are not suitable
for SD modelling behaviours of distributed systems. Moreover most of the work,
[5,6,21,22] did not deal properly with some CF and the nested CF. Indeed they
impose strict hypothesis to avoid inconsistencies due to the use of these CF. In
our last work we have well explained these restrictions that limit the expressive
power of these CF. To overcome these insufficiencies, we proposed an operational
semantics that is, on the one hand, based on an extended causal semantics, suit-
able for UML2.X SD equipped with the most popular CF modelling distributed
systems, on the other hand, it supports guards straightforwardly since it is given
as a guarded transition system. The operational semantics can be easily imple-
mented and can be used as a basis for refinement checking purpose for our
ongoing work.

6 Conclusion

To help in preliminaries design steps of distributed systems, we have equipped
UML2.X sequence diagrams with a causal semantics that is based on par-
tial order theory and tree structure. Its relations permit the determination of
the precedence relations straightforwardly for SD with nested CF that model
behaviours of a distributed system, by avoiding its flattening, hence the com-
pact syntactic representation is preserved. The causal semantics can serves for
several purposes, in this paper we have proposed an operational semantics in

An Operational Semantics of UML2.X Sequence Diagrams for Distributed 181

which we define execution strategies of the events of an SD with nested CF. The
proposed operational semantics is not linked to a specific target formalism. We
currently implement the operational semantics with the Event-B method [11,23].
Transforming SD into corresponding B specifications enables rigorous model
analysis using the formal techniques of Event B and its various tools Rodin:
(with a theorem-prover, and with ProB model-checker). Meanwhile, the oper-
ational semantics serves as the basis of our ongoing work on the verification
of the refinement relation between sequence diagrams. Indeed the operational
semantics is concretely given as a transition system since refinement relations
are well defined on the transition system as a simulation relation. This is used
for investigating whether or not a sequence diagram specification is a correct
refinement of another sequence diagram specification. In addition, we currently
study theoretical properties that are derived from the proposed semantics.

References

1. Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure Version 2.2 (2015)

2. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T.
(ed.) MODELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69489-2 6

3. Runde, R.K., Haugen, Ø., Husa, K.E.: STAIRS towards formal design with
sequence diagrams. Softw. Syst. Model. 4, 355–357 (2005)

4. Störrle, H.: Semantics of interactions in UML 2.0. In: HCC, pp. 129–136 (2003)
5. Hammal, Y.: Branching time semantics for UML 2.0 sequence diagrams. In:

Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,
vol. 4229, pp. 259–274. Springer, Heidelberg (2006). https://doi.org/10.1007/
11888116 20

6. Égel, Z., Kövi, A., Micskei, Z., Huszerl, G., Waeselynck, H. (eds.): Refined Design
and Testing Framework, Methodology and Application Results (2008)

7. Shen, H.: A formal framework for analyzing sequence diagram. Ph.D. thesis (2013)
8. Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for UML

sequence diagrams. Softw. Syst. Model. 7(2), 237–252 (2008)
9. Grosu, R., Smolka, S.A.: Safety-liveness semantics for UML 2.0 sequence diagrams.

In: 5th International Conference on Application of Concurrency to System Design,
pp. 6–14 (2005)

10. Cengarle, M.V., Graubmann, P., Wagner, S.: Semantics of UML 2.0 Interactions
with Variabilities. Technische Universität München (2005)

11. Dhaou, F., Mouakher, I., Attiogbé, C., Bsaies, K.: Extending causal semantics of
UML2.0 sequence diagram for distributed systems. In: ICSOFT-EA 2015 - Pro-
ceedings of the 10th International Conference on Software Engineering and Appli-
cations, Colmar, Alsace, France, pp. 339–347 (2015)

12. Dhaou, F., Mouakher, I., Attiogbé, C., Bsäıes, K.: A causal semantics for UML2.0
sequence diagrams with nested combined fragments. In ENASE 2017 - Proceed-
ings of the 12th International Conference on Evaluation of Novel Approaches to
Software Engineering, Porto, Portugal, 28–29 April 2017, pp. 47–56 (2017)

13. Sibertin-Blanc, C., Tahir, O., Cardoso, J.: A causality-based semantics for UML
sequence diagrams. In: 23rd IASTED International Conference on Software Engi-
neering, pp. 106–111. Acta Press (2005)

https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1007/11888116_20
https://doi.org/10.1007/11888116_20

182 F. Dhaou et al.

14. Sibertin-Blanc, C., Tahir, O., Cardoso, J.: Interpretation of UML sequence dia-
grams as causality flows. In: Ramos, F.F., Larios Rosillo, V., Unger, H. (eds.)
ISSADS 2005. LNCS, vol. 3563, pp. 126–140. Springer, Heidelberg (2005). https://
doi.org/10.1007/11533962 12

15. Abrial, J.-R.: The B Book. Cambridge University Press, Cambridge (1996)
16. Kim, D.-K., Lu, L.: Required behavior of sequence diagrams: semantics and refine-

ment. In: 16th IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS), pp. 127–136 (2011)

17. Lund, M.S., Stølen, K.: A fully general operational semantics for UML 2.0 sequence
diagrams with potential and mandatory choice. In: Misra, J., Nipkow, T., Sekerin-
ski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 380–395. Springer, Heidelberg (2006).
https://doi.org/10.1007/11813040 26

18. Cengarle, M.V., Alexander, K.: UML 2.0 interactions: semantics and refinement,
pp. 85–99. Technische Universitat Munchen (2004)

19. Aredo, D.B.: A framework for semantics of UML sequence diagrams. PVS J. Univ.
Comput. Sci. (JUCS) 8(7), 674–697 (2002)

20. Cho, S.M., Kim, H.H., Cha, S.D., Bae, D.H.: A semantics of sequence diagrams.
Inf. Process. Lett. 84(3), 125–130 (2002)

21. Cavarra, A., Küster-Filipe, J.: Formalizing liveness-enriched sequence diagrams
using ASMs. In: Zimmermann, W., Thalheim, B. (eds.) ASM 2004. LNCS, vol.
3052, pp. 62–77. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24773-9 6

22. Maoz, S., Harel, D., Kleinbort, A.: A compiler for multimodal scenarios: transform-
ing LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol. 20(4), 1–41 (2011)

23. Dhaou, F., Mouakher, I., Attiogbé, C., Bsäıes, K.: Refinement of UML2.0 sequence
diagrams for distributed systems. In: Proceedings of the 11th International Joint
Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA,
Lisbon, Portugal, 24–26 July 2016, pp. 310–318 (2016)

https://doi.org/10.1007/11533962_12
https://doi.org/10.1007/11533962_12
https://doi.org/10.1007/11813040_26
https://doi.org/10.1007/978-3-540-24773-9_6
https://doi.org/10.1007/978-3-540-24773-9_6

Fast Prototyping of Web-Based
Information Systems Using a Restricted

Natural Language Specification

Jean Pierre Alfonso Hoyos(B) and Felipe Restrepo-Calle(B)

Department of Systems and Industrial Engineering,
Universidad Nacional de Colombia, Bogotá, Colombia

{jpalfonsoh,ferestrepoca}@unal.edu.co

Abstract. Early phases of the Software Development Life Cycle
(SDLC) like requirements elicitation and model design are often critical
for the project success. These phases are also linked to several project
problems and failure causes, delaying the project finalization and increas-
ing its total cost. Several strategies to mitigate the effects of errors in
these early stages have been proposed. Some of these include: GUI based
fast prototyping; agile software development methodologies; and, as in
this work, automatic model (or source code) generation from a natural
language specification. Although these approaches can reduce production
time and costs, they can also be slow and imprecise leading to develop-
ment difficulties. This work proposes an approach to obtain a functional
prototype of a web-based process-oriented information system, using only
a restricted natural language specification as an input. This approach
allows the processing of the input to be faster and more precise than the
approaches proposed previously. Two case studies are presented in order
to validate the proposal and demonstrate its applicability.

Keywords: Fast prototyping · Software requirements
Natural language specification · Compilers
Software construction automation · Restricted natural language
Web applications · BPMN · E-R

1 Introduction

Requirements elicitation tasks induce errors in the Software Development Life
Cycle (SDLC) mainly due to incompleteness, ambiguities or incongruence in
the written requirements [1]. Developers lack of knowledge about the customer
application domain and business operations, and limited communication with
the stakeholders are some of the causes of this situation [1,2]. Errors in these
early phases usually have large impact in the project duration and budget [1].

To mitigate some of the effects of these problems, various strategies like
fast prototyping and agile software development methodologies have been pro-
posed [3]. However, agile methodologies are more suitable for small teams
c© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 183–207, 2018.
https://doi.org/10.1007/978-3-319-94135-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_9&domain=pdf

184 J. P. Alfonso Hoyos and F. Restrepo-Calle

and small-scale value-oriented software projects, and left behind big scale or
mission critical software [4,5]. Moreover, fast prototyping approaches attempt
to make SDLC faster, less prone to human errors, and less sensible to natural
language inherent ambiguities and specification incompleteness. Therefore, they
can reduce production costs, time to market delivery and prototyping costs [6]. In
exchange of this speed, elements like technical debt, used languages and tools,
and project quality are often not taken into account rigorously. Some exam-
ples of these fast prototyping tools are: Bizzagi1, which uses graphical interac-
tions and model-based specification languages to develop information systems;
JustInMind2 that creates interactive UI prototypes of mobile applications and
web pages; OpenXava3 that creates web applications from a set of Java classes.
In addition, other approaches use a specification written in natural language
(restricted or unrestricted) to automate the construction of models from texts
[7,8]. These approaches permit a fast validation of the software models, obtaining
feedback from stakeholders more frequently [9,10].

This chapter presents a fast prototyping scheme that uses a restricted natural
language specification and generates the source code of a web application. This
is a functional prototype that is capable of executing process tasks over some
domain data classes definition. This prototyping scheme is meant to be used dur-
ing a live meeting with the stakeholders, showing and validating results in very
short time and in an interactive way. To achieve this purpose, a transformation is
proposed between two well-known modeling languages (i.e., BPMN4 and E-R5)
and a new restricted natural language that is proposed as the input of the pro-
totyping scheme. This allows the scheme to use the expressiveness and concepts
of the two modeling languages, and also to complement their capabilities.

This work extends the paper recently published in [11], which presents some
preliminary results. The main contributions of this chapter are:

– A new specification language for software requirements: restricted natural
language.

– A fast prototyping method for web applications running business processes
using a restricted natural language specification.

– An automated source code generation method from the proposed specification
language.

The rest of this chapter is structured as follows. Next section describes the
background of the work including the related works. Section 3 presents the pro-
posed fast prototyping scheme. Section 4 explains the implementation details.
Later, Sect. 5 presents and discusses the results of two different case studies.
Finally, Sect. 6 summarizes some concluding remarks and suggests the future
works.

1 https://www.bizagi.com/.
2 https://www.justinmind.com/.
3 http://openxava.org.
4 Business Process Model and Notation.
5 Entity-Relationship.

https://www.bizagi.com/
https://www.justinmind.com/
http://openxava.org

Fast Prototyping of Web-Based Information Systems 185

2 Background

2.1 Software Requirements

The collection and analysis of requirements are the initial steps for any software
development process. Requirements are usually written in natural language and
they can be seen as the first model of the system to be built. A requirement is
defined as follows [12]: “a condition or capability that must be met or possessed
by a system, system component, product, or service to satisfy an agreement,
standard, specification, or other formally imposed documents”. The process of
writing this specification or document is the requirements elicitation.

A taxonomy of software requirement errors is presented in [13]. It classifies
errors in three categories: people errors, which are failures of the people involved
in the project; process errors that are caused by errors in the way of achieving
objectives, and are mainly related to the requirements elicitation stage; and
documentation errors, which are errors in the specification.

In addition, [14] describes the types of ambiguities that are present in the
requirements documents as follows: lexical, terms with more than one meaning;
syntactical, more than one syntax tree per requirement; semantical, more that
one meaning in a context; pragmatical, the meaning of a phrase depends on
where it is placed; induced by vagueness, no analysis can assign a meaning; and
induced by generality, the phrase can not be interpreted precisely.

Moreover, several strategies to aid the requirements elicitation process and
to reduce errors associated with it have been proposed. Some of these are: to
use software tools [15]; to use requirements templates [16]; to use restricted
languages [17,18]; to use translations to formal specification languages [19]; to
use Natural Language Processing (NLP) techniques to enhance the requirements
quality [20,21]; and to use requirements elicitation methodologies [22].

2.2 Related Works

Many work has been done on the extraction of software models from texts. Efforts
have been mainly focused on: design attributes mining from texts written in
natural language, the use of templates to write requirements, and specification
languages inspired by natural languages. Figure 1 shows the three main ways
that are commonly used to achieve this goal.

At the top of Fig. 1 is shown a schema aimed at extracting design information
from textual specifications written in unrestricted natural language. Abbott [9]
and Saeki et al. [23] originally proposed manual procedures back in the 80’s.
Words in the description matching certain parts of speech and phrase structures
were used to build a model. This procedure latter was extended and automa-
tized using natural language processing tools. Some general steps of this method
include: stemming, Part-Of-Speech (POS) tagging, sentence splitting, resolve
references and anaphoras, use ontologies to determine implicit relationships, use
wordnet to find synonyms and not explicit stated relationships, rule based design
information extraction, and finally, a production of a model (or a set of models).

186 J. P. Alfonso Hoyos and F. Restrepo-Calle

U
nr

es
tr

ic
te

d
Te

xt
Re

st
ric

te
d

to

te
m

pl
at

es
Re

st
ric

te
d

na
tu

ra
l

la
ng

. g
ra

m
m

ar

Text

-The
syste
m X
has..

X is a Y.
X
needs a
J.
….

NLP
Subproce

sses

External
data

usage

Design
information
Extraction

Model to
source code

transformation

Models
production

Specificatio
n pattern

Design
information

selection

Match
with

template

Processing

Stemming,
sentence splitting,
Solve references,
tokenize, POS tagging,
Parsing

Wordnet, ontologies

External Tools,
Visual paradigm,

No functional
prototype(Masuda et al., 2016)(Ben Abdessalem et al., 2015)(Abbott, 1983)

(Popescu et al., 2008) (Dahhane et al., 2015)(Almeida & Silva, 2013)

(Schwitter, 2002) (Njonko & El Abed, 2012)(OMG, 2008)

Fig. 1. Alternatives to generate models from natural language texts.

Some works within this field include: [24–27]. Furthermore, [28] recently pro-
posed a transformation framework between natural language to domain specific
languages (DSLs) using machine learning techniques to generate a set of possible
programs.

This group of approaches facilitates to any person the description of the
desired functionality of software. Even with a few writing errors, information
still can be used [7]. In the downside, it is necessary some predefined knowledge
(ontologies, wordnet, . . .) in order to properly extract relationships between
terms [29]. Sometimes a training data set [24] and/or a set of ontologies [30]
might be needed to achieve acceptable results. Moreover, current NLP tools can
be imprecise sometimes leading to induce misinterpretations of the specification
[24]. In addition, this method is the slowest of the three types of approaches due
to its high processing requirements [24].

At the middle of Fig. 1 is shown the general approach where authors restrict
the way requirements are written using templates. This approach keeps design
information stored in a way that can be easily extracted from requirements lists
to generate a model [31–37]. Table 1 shows some examples of templates used in
these works.

Although using templates to write the specification of the software is more
difficult, when done, it is as easy to understand by the stakeholders as in the
first approach [38]. The use of templates facilitates processing tasks, making
this approach faster than the first one. However, its main disadvantage is that

Fast Prototyping of Web-Based Information Systems 187

Table 1. Templates examples for requirements specification.

Proposal Template example

Nishida et al. [10]

Zapata [33]

Zeaaraoui et al.
[36]

Videira et al. [34]

Konrad and
Cheng [32]

Dahhane et al.
[37]

designers must be very careful writing requirements or some information may
be lost. It is necessary to define each template in order to extend the proposed
solution, and requirements not matching any template will be discarded leaving
information outside of the final model [39].

The bottom of Fig. 1 corresponds to approaches that restrict the grammar
of a natural language such as English. That restriction can lead to overcome the
ambiguity and imprecision of such languages. For instance, Attempto [40] is an
executable specification language in which the English grammar is restricted to
only a few grammar elements. In this way, writing requirements is very similar
to work with a programming language, which avoids ambiguities and facilitates
the processing effort [41]. Nonetheless, having to learn an artificial language is
an inconvenient for the designers and the stakeholders [40]. This approach is
slower generating code than the second one but faster than the first one.

We propose the use of templates within the context of an specification lan-
guage, this is, a hybrid between the second and the third approaches explained
before.

3 Fast Prototyping of Web Applications Running
Business Processes

This work proposes a fast prototyping method for web applications running
business processes using a restricted natural language specification. To do so, we
use the model-view-controller design pattern, implementing business processes
operating over a set of domain classes, using only the restricted specification.

Figure 2 presents a general schema of the proposed workflow. Firstly, during
a live meeting with stakeholders, a designer writes down a software specification
using the restricted English grammar, which is proposed in this paper (restricted
natural language). This process will be supported by an IDE and auto comple-
tion tools to avoid common mistakes. Although the specification in restricted

188 J. P. Alfonso Hoyos and F. Restrepo-Calle

natural language could be understood by a non-technical user, the target user
of the proposed method is a designer with technical background. This is needed
because the relationships and concepts expressed within the restricted language
are not easy to understand to a non-technical stakeholder due to the required
abstraction level. Secondly, our code generation engine produces the source code
of the web application. Next, the stakeholders are able to revise and validate the
generated application prototype. If a modification is required then the specifica-
tion is changed, the code is generated and validated again in an iterative way.
In this way, it is possible to obtain direct feedback from the stakeholders and
achieve fast validation of the software prototype.

Fig. 2. General workflow proposed for fast prototyping of web applications.

3.1 Restricted Natural Language - RNL

To work with a Restricted Natural Language (RNL) to generate web application
prototypes without human intervention, we focus only on the English constructs
of interest for this task. To do so, we use the reasoning presented previously
in [11], which is as follows: we first consider two different transformations from
commonly used software design models, i.e. E-R diagrams and BPMN models,
to a restricted natural language. Next, we build a language capable of defining
the operations and combine the previous two specifications. This is illustrated
in Fig. 3, where Te−r is the transformation of E-R diagrams, TBPMN is the
transformation of BPMN models, and TN is the part of the language responsible
for mixing both. These are the three parts of the RNL language.

BPMN is a graphical specification language designed to show the flow of
activities, decisions and events that occur in an organization in order to generate
some form of business value.

Equations (1) to (6) were previously published in [11] and can be explained
as follows. Let BPMN be the set of all well constructed BPMN models. Also,

Fast Prototyping of Web-Based Information Systems 189

entity- relationship

Business processes modeling notation

Create,
Read,
Update,
Delete

Restricted
Natural
Language

Fig. 3. Restricted Natural Language - RNL - components.

let b ∈ BPMN . f(b) = S1 (Eq. 1) will be a function that maps b to source
code in some destination language (s1). In addition, note that a generalization
of several works like [42,43] can be made, resulting in a function of the form
g(t1) = b where t1 is a restricted (or unrestricted) natural language specification
and g is a function transforming the input text into a BPMN model (Eq. 2).

f(b) = s1 (1)

g(t1) = b (2)

Moreover, for this work we will also use E-R diagrams. These are graphical
models that show the relationships between information entities and its contents.
A model is always in the context of a single system and in a single knowledge
domain.

Similarly, let E−R be the set of all well constructed E-R models and e ∈ E−R
a representative of that set. Let h(e) (Eq. 3) a function that generates source code
(s2) from the original model e. A generalization of some works can also be done
here. Works like [44–46] try to get a model from texts and can be expressed in
an abstract way as j(t2) = e (Eq. 4). With j being a function that maps some
natural language text t2 to an E-R model e.

h(e) = s2 (3)

j(t2) = e (4)

Using the Eqs. 1, 2, 3, and 4, we get that the evaluation of functions f(g(t1))
and h(j(t2)) will return source code from two independent restricted natural
language specifications. Note that t1 and t2 could also be unrestricted specifica-
tions and the general formula could still be true. However, for the purposes of
this paper, we will restrict the natural language constructs to avoid ambiguities
and different context-dependent interpretations. Also, the proposed language
will focus on a single knowledge domain to avoid using several external sources
of information that can induce more ambiguities.

190 J. P. Alfonso Hoyos and F. Restrepo-Calle

Suppose the existence of a pair of inverse functions: g−1(b) and j−1(e). This
means that there is a projection of the design models into natural language
(Eqs. 5 and 6). The construction of these functions can be viewed as a “design
or construction” process starting from the model space to the natural language
space.

g−1(b) = t1 (5)

j−1(e) = t2 (6)

Although there is no reason to these projections to be unique, some subset
of natural language constructs and grammar elements can be selected in a way
that it is not ambiguous and can be used to transform both models to a single
common representation.

By having both models in the same space, it is possible to combine them in
a way that exceeds the code generation capabilities of both models separately.
Moreover, in this case we will extend the language obtained by merging the
languages g−1 and j−1 by adding a set of task definition non terminals. Further-
more, with no ambiguity restrictions, a traditional parser can be used to process
the natural language specification.

It is worth mentioning that unrestricted natural language is not used because
the process described in Sect. 2.2 will induce errors or generate more than one
system [28], making difficult to validate every possible system.

From E-R Diagrams to Restricted Natural Language (j−1(e)). To
achieve a textual representation of an E-R diagram, we propose to restrict the
natural language constructs as shown in Fig. 4.

Fig. 4. Grammar for the Restricted Natural Language representing E-R diagrams,
presented originally in [11].

To define an entity, an entity name (childname) is required. Also, a set of
relationships and a set of properties (DefinitionItem) are defined. Note that the
entity name can be in singular and plural forms, thus, needing a mechanism to
identify them both as the same noun. This grammar fragment can be used to
generate a class diagram including properties, relationships, and also, the forms
associated with this class at the visualization time.

Furthermore, notice that some defaults need to be configured including both
data types and their respective memory size. For instance, properties having a
VARCHAR data type are assumed to be maximum of 255 in length.

Fast Prototyping of Web-Based Information Systems 191

From BPMN to Restricted Natural Language (g−1(b)). In order allow
our restricted natural language and code generation tool to represent and execute
business processes, we propose to use the following BPMN representation trans-
formed in grammar elements. Note that these representations include the most
common BPMN constructs and some are left behind, also, only the processes
diagrams are translated. Figure 5 shows the mappings from a BPMN model to
EBNF grammar rules written in Xtext6 format.

Fig. 5. Grammar for the Restricted Natural Language representing BPMN models,
presented originally in [11].

Notice that for the gateway and frontier event elements, the rule is split in
two parts: one defined within task list rule, and another defined in a separated
paragraph. This allows the specification to take more than a paragraph in the
textual representation. Finally, observe that returning to a previously defined
task is done with a special rule “go back to”.

Task Definition Language. This part of the grammar emerges due to in
previous works was identified that some method to define the actions to be
performed in each task was necessary. The previous approach was to generate
controllers an views based in a template-per-verb approach. This was difficult

6 http://www.eclipse.org/Xtext/.

http://www.eclipse.org/Xtext/

192 J. P. Alfonso Hoyos and F. Restrepo-Calle

to maintain and required many templates to be executed properly and generate
a prototype as near to the final product as possible.

This part of the grammar involves the definition of each task in each process
to generate the views and controllers for the desired system prototype. This
definition must involve some sort of operations in some of the defined domain
classes. The approach used to define this operations is using one of the four
CRUD (Create, Read, Update or Delete) operations. In addition, two extra
operations (“single selection” and “multiple selection”) are included as well. This
operations solve problems like showing a single instance (that must be selected
beforehand), and selecting a list of instances to operate over them.

Furthermore, operations like creation and edition over multiple instances of
the domain classes may be useful in several applications. The grammar created
to fulfill these requirements is shown in Fig. 6.

Fig. 6. Grammar for task definition, presented originally in [11].

The previous two grammar fragments g−1(b) and j−1(b) can be functionally
merged using this new fragment. This is done by making relationships between
tasks in a process and domain classes defined previously, and performing some
action in the instances of these classes. This is more efficient at the maintain-
ability level than using a single template per each verb.

Overall, the Restricted Natural Language permits to specify not only struc-
tural information, but also functional requirements of the software. Thus, it
allows the designer to build a textual specification of the required software in
conjunction with the stakeholders.

3.2 Code Generation Approach

After the software specification is written in Restricted Natural Language, the
source code of the target web application is generated as depicted in Fig. 7.

The input of the code generation process is a file or string with the textual
specification of the software written in the Restricted Natural Language. The
first steps consist of traditional lexical and syntactic analyses performed to the
specification. Next, the phase of design information extraction is performed,

Fast Prototyping of Web-Based Information Systems 193

Lexical
Analysis

Syntactic
Analysis

Design
Attributes
Extraction

Process Task
Code (views

and controllers)

Domain
Classes and

Forms

Web App
template

placement

Input
Specification Code Database

Web
Application/Proto

type Code

Fig. 7. Code generation process.

where the names of the parts of the system are extracted. Then, this information
and its context are used to generate source code for the web application.

Previous to this process, a database containing code templates must be devel-
oped. The content of this database is a series of specification types related to
several templates. These templates represent a code fragment to be executed
during a task, front-end HTML fragments, complete view examples, controllers
for the different BPMN elements and fields of domain classes with its respective
representations for the selected frameworks. Also this database contains the web
application template that will be used as the final destination of all the generated
source code.

Thanks to the Restricted Natural Language, the lexer, parser, and payload
extraction phases can be performed using a traditional top-down parser. This
avoids the inherent ambiguity of natural languages, having to validate multiple
solutions or interpretations [28] or simply getting an incomplete model [47].

After this processing, the code for the domain classes and forms is created. To
match expected relationships, we check for the following cases: (1) an attribute
has a known data type (its in the database its a database field); (2) an attribute
references another class in the specification (previously defined in the input file,
a many-to-one relationship); (3) a class has an attribute of the form many (a
one to many relationship); and (4) a class has an attribute of the form many
and the another class has the first class referenced back in other attribute of the
form many (a many to many relationship); (5) an attribute references another
class of the specification and that class references back the first class both of the
singular (a, an) way (a one-to-one relationship).

In the first case (1), we use the code database to generate the desired field;
in the second case (2), we assign the data type of the attribute to a foreign key
referencing the class. In third case (3), we understand this as an one-to-many
relationship, thus, we alter the referenced class inserting a foreign key attribute
referencing the class that has a set of the other class. For the fourth case (4), this
is interpreted as a many-to-many relationship, therefore, we insert an additional
table referencing the two involved classes and the respective foreign keys in each
class. Finally for the fifth case (5) we insert references in one of the classes and
a foreign key and a reference in the other one.

194 J. P. Alfonso Hoyos and F. Restrepo-Calle

Next, the code for the process is generated. For each element of each process
a template in the database is fetched and resolved. If the controller generated
needs a view the file is generated also. If the process element is a SimpleTask
then the following process is performed:

1. Check for the definition in other paragraph of the specification.
2. If the definition exists, then resolve the controller and view code.
3. If it is not defined, use a default controller and view.

This SimpleTask definition methods use the “TaskRedefinition” non-terminal
to generate the code for its view and controller. It uses code fragments defined
in the database to generate only the needed code to query, update, create or
delete the domain classes instances.

From previous experiences developing this idea, we determined that is easier
to control the flow of activities and elements using a centralized control method.
This method will be in charge of determining the path to follow given the current
task/element. It will use the information of order of elements present in the
TaskList non-terminals across the paragraphs in the specification. Also, this will
help to solve the gateways by validating that the conditions for each output path
are met.

The code for the exclusive gateways will be a method where a snippet of
HTML is rendered asking the defined question. Then, after a POST request to
a controller, use the previously defined controller method to determine the task
to be done next.

Finally, these pieces of code are placed in a template prepared to execute the
web application as desired in the specification.

4 Implementation

To explain the implementation that was performed for this proposal, we should
first clarify the boundaries between the source code generation/prototyping tool
and the final result of the execution of it over an input. Both of them use different
languages and tools to execute its required tasks. For the source code generation
tool, we use a set of Java based tools, and for the prototype itself we use a set
of Python based tools.

This implementation is the second that was made. The first one evidenced
serious limitations at the code production level because it depended on several
templates made for each one of the verbs of a single specification. This weakness
was solved by implementing the Tn grammar fragment. Also, limitations were
shown at the start of the process because some domain class instances needed
to be selected and there was not a way to select the instance, this was solved
by introducing the “single selection” and “multiple selection” capabilities. In
addition, the tool set was changed for this second implementation to generate
an IDE integration.

For the code generation tool we used the Xtext (See footnote 6) toolkit includ-
ing the Xtend language, adding a database of specifications and code templates

Fast Prototyping of Web-Based Information Systems 195

using SqlLite, and a micro ORM framework called OrmLite7. Code templates
stored in this database were created using the Freemarker8 engine.

According to the process illustrated in Fig. 8, which is the specialization of
the general code generation process shown in Fig. 7. We use Xtext to generate the
lexical analyzer, the parser, and the design information extractor. We implement
the previously shown grammars. Also, Xtext creates a set of classes containing
the required design information from each rule.

Fig. 8. Implementation work flow.

Prior to generate code for domain classes, the fields that reference another
specifications are resolved, determining the case they belong (as described previ-
ously), or simply fetched and resolved from the code template database. Notice
that it is necessary to take into account the respective transformations between
the plural and singular forms of the nouns (entity names) to find the relation-
ships. This can be done having a predefined set of rules and a dictionary for
irregular nouns.

When the references are determined, a set of previously written code tem-
plates is used to transform the design information into the target code. For
the entities, a SQLalchemy9 (an ORM system) class, and also to class in a
WTForms10 (a web forms processor). Note that more than one code fragment
can be generated in one template and this can be useful to generate code that
requires the same design information. An example of the templates used to gen-
erate the domain classes code is shown in Fig. 9.

After this code is ready, the views and controller methods for each task are
created. Again using templates (but this time several of them), we generate code
for each one of the non-terminals that are options of the non-terminal “Task”.

7 http://ormlite.com/sqlite java android orm.shtml.
8 http://freemarker.org/.
9 http://www.sqlalchemy.org/.

10 https://wtforms.readthedocs.io/.

http://ormlite.com/sqlite_java_android_orm.shtml
http://freemarker.org/
http://www.sqlalchemy.org/
https://wtforms.readthedocs.io/

196 J. P. Alfonso Hoyos and F. Restrepo-Calle

Fig. 9. Domain class template example.

The process of generating a view changes if there is a redefinition for a “Sim-
pleTask” non-terminal. Then, the process uses information given in the “TaskRe-
definition” non-terminal. It uses the information within its parse tree to deter-
mine the code result in both controller and view. To do so, we use templates to
generate partial results of the source code of the method, and then, merge them
in a helper template.

Moreover, there must be templates used to generate edition controllers with
or without selections, and only to show previously created elements. It is also
possible to create a template that takes into account all the possibilities but it will
soon render too complex to be treated by a template engine. Following the same
idea, we use templates to create the HTML template that the web application
needs to render its UI. This UI rendered code can also be a template, but this
time for the result system engine.

Furthermore, we iterate over the “Process” non-terminal instances again to
create the helper method. This task is carried out with recursive calls of the
“Tasklist” non-terminal within the process and gateway definitions. It generates
a single method which takes as an input the URL of the current task and returns
the next task.

After all the source code is generated, using the same template system, the
resultant strings are placed directly into a web application template assuming
that the needed imports and dependencies are resolved.

The template system used to render the views of the result web application
was Jinja2 11. Moreover, a small database in SQLite312 is used to deploy and
test the result of the proposed method.

11 http://jinja.pocoo.org/docs/dev/.
12 https://www.sqlite.org/.

http://jinja.pocoo.org/docs/dev/
https://www.sqlite.org/

Fast Prototyping of Web-Based Information Systems 197

In summary, the tool chain used for the implementation of our proposal is
comprised of: Programming languages: Python 2.7, Xtend ; Parser generator:
Xtext ; Template systems: Jinja 2, Freemarker ; Web framework: Flask ; ORM
systems: SqlAlchemy, OrmLite; Web forms processor: WTforms; HTML, CSS,
and JS framework for developing responsive applications on the web: Boot-
strap13, and the SB Admin 2 Bootstrap14 admin theme; Database: SQLite3.

5 Results and Discussions

In order to validate and demonstrate the applicability of the proposal, this
section includes the presentation of the results of two case studies, and the
comparison of this work to related works. The case studies are titled: Question
Cycle, and Odoo Sales Clone.

5.1 Case Study: Question Cycle

The objective of the prototype presented in this section is to work as a quiz gen-
erator in an academic context. In this application an anonymous user generates
the quiz by selecting questions from a list. The BPMN process that models this
behavior is presented in Fig. 10.

Fig. 10. BPMN model for “Question Cycle”.

Initially the user selects a course and a level, after this a set of questions is
shown, each one with n possible answers. The original requirement stated that
the questions must be filtered by the course and level selected beforehand. Each
question also belongs to an extra classification called “DBA” o “Basic Learning
Right”. The user selects the questions, and then, the first one of the selected

13 getbootstrap.com/.
14 https://startbootstrap.com/template-overviews/sb-admin-2/.

http://getbootstrap.com/
https://startbootstrap.com/template-overviews/sb-admin-2/

198 J. P. Alfonso Hoyos and F. Restrepo-Calle

questions is asked. The questions could contain math equations and should be
showed in LATEX format. When there is no more questions to answer, the user
is asked if he/she really wants to leave. Finally, after the quiz is complete, the
feedback is shown.

The representation in Restricted Natural Language of this process is shown
in Fig. 11. In addition, some resultant screen-shots are shown in Fig. 12.

Nevertheless, this prototype has some limitations with respect to the original
requirements. These include: questions are not filtered as requested; the gateways
can be replaced by source code that determines these conditions automatically;
the question order randomization cannot be achieved using our restricted lan-
guage; equations are not shown in LATEX format. Therefore, these requirements

Fig. 11. Restricted Natural Language representation for Question Cycle.

The process ends

Fig. 12. Question Cycle result screen-shots.

Fast Prototyping of Web-Based Information Systems 199

should be implemented manually by the developers after the prototyping cycle
is completed.

5.2 Case Study: Odoo Clone

Odoo15 is an open ERP and CRM system. For the purpose of this work, some
modules of this system are developed using our restricted language. The selected
modules are: sales and projects. The selected version of Odoo is 9.0. To support
these modules, some core features of Odoo must be implemented first, which
include: user management, language, and sales teams configurations.

The sales module has five processes. Each one of them consists in a couple
of tasks. There are three creation processes including: Client, Opportunity, and
Product; and two additional processes to list opportunities and products, and
select and edit them.

The project module consists in a series of projects, each one with a set of
associated tasks. Also there are processes for the selection, presentation, and
creation of tasks and projects.

The resultant software requirements can be specified using the Restricted
Natural Language as shown in Fig. 13.

Resulting in a set of views linked as shown in Fig. 16. These views contain
the creation processes and the two selection and posterior detail processes. In
addition, as an example of the generated code, the controller for the “Show
Selected Project” task is shown in Fig. 14. This controller renders the view shown
in Fig. 15, which is also a template written to be compatible with the Jinja2
template system. In this view, each one of the fields of the “project” domain
class and all the “tasks” associated with the selected “project” are shown.

Some of the limitations of the generated prototype include: the card-like
layout of the original Odoo is lost in the transcription, the same happens with
its state based card list; the images of the products are not shown but they are
uploaded; the project labels and their auto-complete field are omitted; and the
labels of the form fields are not configurable without editing the source code.
These are general limitations of this scheme, these configurations (and also GUI
customizations) would require a bigger RNL language.

On the other hand, the fast processing of the specification and its proto-
type generation allows the stakeholders to see within seconds changes made to
the project. The textual specification permits to the designer a rapid specifi-
cation and its corresponding validation after learning the restricted language
constructs. Results can be seen in short time after a live meeting starts with the
stakeholders, and changes to specifications at this stage are painless and eco-
nomical. Furthermore, some tools like auto-completion, highlight syntax, and
IDE integration were integrated to facilitate the prototyping process.

15 https://www.odoo.com/.

https://www.odoo.com/

200 J. P. Alfonso Hoyos and F. Restrepo-Calle

Fig. 13. Restricted Natural Language representation for Odoo Clone.

Fig. 14. Code example of a generated controller.

Fast Prototyping of Web-Based Information Systems 201

Fig. 15. Code example of a generated view.

Fig. 16. Odoo clone result views.

5.3 Comparative to Similar Works

Table 2 presents a comparative of related works, including this proposal. It
includes: the main differences with respect to the starting point of the work-
flow, i.e., templates, (un)restricted natural language, or specification language;

202 J. P. Alfonso Hoyos and F. Restrepo-Calle

Table 2. Comparison to related works.

Work Start point Result Human

intervention

Type of processing Intermediate

representation

[40] Specification

language

Executable No Compiler (Prolog) AST

[48] Unrestricted

natural language

UML diagrams Rewriting Stanford Parser +

Rule Matching

-

[42] Unrestricted

natural language

BPMN diagram No Stanford Parser

(factored model)

-

[49] Templates UML class and

sequence diagrams

Completes

missing

information

Match Template Use case table

[9] Unrestricted

natural language

ADA Executable

(manual process)

Manual

process

Manual -

[44,46] Unrestricted

natural language

E-R diagram No Grammar parsing XML

[29] Templates UML class

diagram

Review final

model

Match Template Textual OAAM

[26] Unrestricted

natural language

OSMs No Shallow parser -

[27] Unrestricted

natural language

UML class

diagram

Chose classes

and attributes

POS tagging -

[28] Unrestricted

natural language

DSLs Select Best Fit Machine Learning Ml features

[38] Unrestricted

paragraphs

SBVR No GATE Multiple SBVR

[36] Sentences From

Templates

UML (classes) No Match Template User history

[50,51] Sentences From

Templates

UML (states,

classes)

Write in

tabular

notation and

enclose certain

words

Match Template -

[52] Sentences From

Templates

LSC or UML

(sequence)

Resolve

ambiguities

Match Template

+ POS tagging

LSC

[53] Unrestricted

paragraphs

UML (classes) No Stanford Parser

(Deep parse)

-

[47] Unrestricted

paragraphs

UML (classes) No Pattern matching XML

[6] Unrestricted

sentences

Verilog No Recursive descent

syntactic parser

-

[54] Unrestricted

sentences

State chart Manual

process

Manual Table

representation

This

Work

Restricted natural

language +

Templates

Executable Web

application

prototype

No LL(*) Parser AST

the final result of each work, e.g., executable program, UML models, E-R dia-
grams, etc.; if the work needs human intervention after the computational process
stars; the type of computational tool used to process the input of the process;
and finally, if the processing requires an intermediate representation in order to
be completed.

One can see that most related works manage some form of natural language
as starting point for the process. In addition, most of the works end up with
a model constructed in some specification language like BPMN, UML (some

Fast Prototyping of Web-Based Information Systems 203

subset of the possible diagrams), or E-R. Further translations are limited for
external tools like Rational Rose or Visual Paradigm. Furthermore, some of the
works also need a manual intervention of the user to select the design attributes
and even rewriting requirements or complete missing information. It is also com-
mon in these works that the processing of the input text is a NLP parser or a
traditional compiler depending on the input text features. Intermediate repre-
sentations are often present in works that pretend to do this job with aid of
external software, multiple stages or, using a special capability of this interme-
diate representation. In this work, we obtain a working prototype closer to a
final product without intervention from the user or external software using as
intermediate representation the abstract syntax tree of the written specification
produced by Xtext.

Only a few proposals obtain executable programs as an output. Among them,
the work in [9] involve a manual process, and the proposal in [40] requires to
work with previously defined code fragments in order to obtain a command-line
based program, just like the work presented in this chapter.

6 Conclusions

In this paper a fast prototyping method was presented. This method produces a
web application that implements the business processes ideas present in BPMN.
As input, it only uses a specification written in a Restricted Natural Language to
generate the source code of a prototype. To achieve this restricted representation
two transformations were proposed between design models (E-R and BPMN) and
a common natural language (English). With this approach, the expressiveness
and ideas behind this two languages are maintained and, by putting them in
a single common representation they can be merged to overcome limitations
regarding to source code generation capabilities.

The source code template usage in order to generate a prototype resulted in
a very useful approach when maintenance and construction of the prototyping
tool should be taken into account. This template approach also helped to extend
the available fields of the Te−r model. As a downside, templates can get complex
very fast in order to extend the functionality of a single template.

Moreover, the previously discussed limitations show a relationship between
the complexity of the specification and the proximity of the prototype with
the final product. This trade-off affects the difficulty of generating source code.
A more complex specification language will have more design details and non-
terminal types to generate more details in the prototype. Also, there is a relation
between complexity in language and learning difficulties.

The most relevant advantages of the proposed approach are related to proto-
typing speed and specification expressiveness. These allow the designer to gen-
erate and execute software prototypes in a very short time, which permits the
software development process to be performed in a live meeting with the stake-
holders. Specification modifications and additions can generate results almost
instantly thanks to the code generation approach selected. In addition, the IDE

204 J. P. Alfonso Hoyos and F. Restrepo-Calle

integration and support of auto-completion and highlight syntax tools facilitate
the development of the specification. The result of this prototyping method is
the source code of a prototype ready to be used as part of the final product.
Overall, this approach can reduce common errors associated with requirements
and design stages in the software development life cycle.

Finally, we can devise some paths to be followed in order to achieve a better
fast prototyping schema in the future works. Some of these include: to propose a
sub-grammar/method for automatic gateway resolution; to add more models to
the restricted representation using the same translate and mix schema; to alter
task execution based on previous tasks; to add a language/method to generate
statistics and reports; to generate new visualizations of special types of fields
(geo-references, videos, special types of images, etc.); and finally, to add restric-
tions between domain classes (arity restrictions, restrictions involving queries).

References

1. Walia, G.S., Carver, J.C.: A systematic literature review to identify and classify
software requirement errors (2009)

2. Fairley, R.E.: Managing and Leading Software Projects. IEEE Computer Soci-
ety/Wiley, Los Alamitos/Hoboken (2009)

3. Augustine, S., Martin, R.C.: Managing Agile Projects. Robert C. Martin Series.
Prentice Hall Professional Technical Reference, Upper Saddle River (2005)

4. Githens, G.: Managing agile projects by Sanjiv Augustine. J. Prod. Innov. Manag.
23(5), 469–470 (2006)

5. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 28–35 (2001)
6. Harris, I.G.: Extracting design information from natural language specifications.

In: Proceedings of the 49th Annual Design Automation Conference on - DAC 2012,
p. 1256 (2012)

7. Ibrahim, M., Ahmad, R.: Class diagram extraction from textual requirements using
natural language processing (NLP) techniques. In: 2nd International Conference
on Computer Research and Development, ICCRD 2010, pp. 200–204 (2010)

8. Bhatia, J., Sharma, R., Biswas, K.K., Ghaisas, S.: Using grammatical knowledge
patterns for structuring requirements specifications. In: 2013 3rd International
Workshop on Requirements Patterns, RePa 2013 - Proceedings, pp. 31–34 (2013)

9. Abbott, R.J.: Program design by informal English descriptions. Commun. ACM
26(11), 882–894 (1983)

10. Nishida, F., Takamatsu, S., Fujita, Y., Tani, T.: Semi-automatic program construc-
tion from specifications using library modules. IEEE Trans. Softw. Eng. 17(9),
853–871 (1991)

11. Hoyos, J.P.A., Restrepo-Calle, F.: Automatic source code generation for web-based
process-oriented information systems. In: Proceedings of the 12th International
Conference on Evaluation of Novel Approaches to Software Engineering - Volume
1: ENASE, pp. 103–113. INSTICC, ScitePress (2017)

12. ISO/IEC and IEEE: ISO/IEC/IEEE 24765:2010 - Systems and Software Engineer-
ing - Vocabulary. ISO/IEC IEEE, vol. 2010, p. 410 (2010)

13. Walia, G.S., Carver, J.C.: A systematic literature review to identify and classify
software requirement errors. Inf. Softw. Technol. 51(7), 1087–1109 (2009)

Fast Prototyping of Web-Based Information Systems 205

14. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements
elicitation interviews. Requir. Eng. 21(3), 333–355 (2016)

15. Li, K., Dewar, R., Pooley, R.: Computer-assisted and customer-oriented require-
ments elicitation. In: 13th IEEE International Conference on Requirements Engi-
neering (RE 2005), pp. 479–480. IEEE (2005)

16. Fatwanto, A.: Specifying translatable software requirements using constrained nat-
ural language. In: 2012 7th International Conference on Computer Science & Edu-
cation (ICCSE), no. ICCSE, pp. 1047–1052 (2012)

17. Fockel, M., Holtman, J.: ReqPat: efficient documentation of high-quality require-
ments using controlled natural language. In: IEEE International Requirements
Engineering Conference, vol. 23, pp. 280–281 (2015)

18. Aiello, G., Di Bernardo, R., Maggio, M., Di Bona, D., Re, G.L.: Inferring business
rules from natural language expressions. In: Proceedings - IEEE 7th International
Conference on Service-Oriented Computing and Applications, SOCA 2014, pp.
131–136 (2014)

19. Yan, R., Cheng, C.-H., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 1677–1682 (2015)

20. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of confor-
mance to requirements templates using natural language processing. IEEE Trans.
Softw. Eng. 41(10), 944–968 (2015)

21. Dzung, D.V., Ohnishi, A.: Evaluation of ontology-based checking of software
requirements specification. In: Proceedings - International Computer Software and
Applications Conference, pp. 425–430 (2013)

22. Soares, H.A., Moura, R.S.: A methodology to guide writing Software Requirements
Specification document. In: Proceedings - 2015 41st Latin American Computing
Conference, CLEI 2015 (2015)

23. Saeki, M., Horai, H., Enomoto, H.: Software development process from natural
language specification. In: Proceedings of the 11th International Conference on
Software Engineering, pp. 64–73 (1989)

24. Bellegarda, J.R., Monz, C.: State of the art in statistical methods for language and
speech processing. Comput. Speech Lang. 35, 163–184 (2015)

25. Cambria, E., White, B.: Jumping NLP curves: a review of natural language pro-
cessing research [Review Article]. IEEE Comput. Intell. Mag. 9, 48–57 (2014)

26. Chioac, E.V.: Using machine learning to enhance automated requirements model
transformation. In: Proceedings - International Conference on Software Engineer-
ing, pp. 1487–1490 (2012)

27. Overmyer, S., Benoit, L., Owen, R.: Conceptual modeling through linguistic anal-
ysis using LIDA. In: Proceedings of the 23rd International Conference on Software
Engineering, ICSE 2001, pp. 401–410 (2001)

28. Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare, A., Marron, M., R, S.,
Roy, S.: Program synthesis using natural language. In: Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, pp. 345–356. ACM
(2016)

29. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M.: Reducing ambiguities in
requirements specifications via automatically created object-oriented models. In:
Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 103–
124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89778-1 10

30. Zhou, N., Zhou, X.: Auto-generation of class diagram from free-text functional
specifications and domain ontology, no. 2, pp. 1–20 (2008)

https://doi.org/10.1007/978-3-540-89778-1_10

206 J. P. Alfonso Hoyos and F. Restrepo-Calle

31. Smith, R., Avrunin, G., Clarke, L.: From natural language requirements to rigor-
ous property specifications. In: Workshop on Software Engineering for Embedded
Systems (SEES 2003) From Requirements to Implementation, pp. 40–46 (2003)

32. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: 13th IEEE International Conference on Requirements Engi-
neering RE05, no. August, pp. 329–338 (2005)

33. Zapata, C.M.: UN Lencep: Obtención Automática de Diagramas UML a partir de
un Lenguaje Controlado. Memorias del VII Encuentro Nacional de Computación
ENC 2006, pp. 254–259 (2006)

34. Videira, C., Ferreira, D., Da Silva, A.R.: A linguistic patterns approach for require-
ments specification. In: Proceedings - 32nd Euromicro Conference on Software
Engineering and Advanced Applications, SEAA, vol. 2004, pp. 302–309 (2006)

35. Ilić, D.: Deriving formal specifications from informal requirements. In: Proceed-
ings - International Computer Software and Applications Conference, vol. 1, no.
Compsac, pp. 145–152 (2007)

36. Zeaaraoui, A., Bougroun, Z., Belkasmi, M.G., Bouchentouf, T.: User stories tem-
plate for object-oriented applications. In 2013 3rd International Conference on
Innovative Computing Technology, INTECH 2013, pp. 407–410 (2013)

37. Dahhane, W., Zeaaraoui, A., Ettifouri, E.H., Bouchentouf, T.: An automated
object-based approach to transforming requirements to class diagrams. In: 2014
2nd World Conference on Complex Systems, WCCS 2014, pp. 158–163 (2015)

38. Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural lan-
guage specifications using a cognitive linguistic/configuration based approach. Inf.
Syst. 54, 191–208 (2015)

39. Granacki, J.J., Parker, A.C.: PHRAN-SPAN: a natural language interface for
system specifications. In: 24th ACM/IEEE Conference Proceedings on Design
Automation Conference - DAC 1987, pp. 416–422 (1987)

40. Schwitter, R.: Attempto-from specifications in controlled natural language towards
executable specifications. Arxiv preprint cmp-lg/9603004 (1996)

41. Bryant, B.R., Lee, B.S.: Two-level grammar as an object-oriented requirements
specification language. In: Proceedings of the Annual Hawaii International Confer-
ence on System Sciences, vol. 2002-Janua, no. c, pp. 3627–3636 (2002)

42. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol.
6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21640-4 36

43. Steen, B., Pires, L.F., Iacob, M.-e.: Automatic generation of optimal business pro-
cesses from business rules, pp. 117–126 (2010)

44. Geetha, S., Mala, G.: Extraction of key attributes from natural language require-
ments specification text. In: IET Chennai Fourth International Conference on Sus-
tainable Energy and Intelligent Systems (SEISCON 2013), pp. 374–379. Institution
of Engineering and Technology (2013)

45. Meziane, F., Vadera, S.: Obtaining E-R diagrams semi-automatically from natural
language specifications, pp. 638–642 (2004)

46. Geetha, S., AnandhaMala, G.S.: Automatic database construction from natural
language requirements specification text. ARPN J. Eng. Appl. Sci. 9(8), 1260–
1266 (2014)

47. Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A., Dey, N., Ashour, A.S.,
Ben Ghazala, H.: Automatic builder of class diagram (ABCD): an application of
UML generation from functional requirements. Softw. Pract. Exp. 39(7) (2015)

https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1007/978-3-642-21640-4_36

Fast Prototyping of Web-Based Information Systems 207

48. Deeptimahanti, D.K., Sanyal, R.: Semi-automatic generation of UML models from
natural language requirements. In: Proceedings of the 4th India Software Engi-
neering Conference on - ISEC 2011, pp. 165–174 (2011)

49. Liu, D., Subramaniam, K., Eberlein, A., Far, B.H.: Natural language requirements
analysis and class model generation using UCDA. In: Orchard, B., Yang, C., Ali, M.
(eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 295–304. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24677-0 31

50. Fatwanto, A.: Software requirements translation from natural language to object-
oriented model. In: Proceedings of 2012 IEEE Conference on Control, Systems and
Industrial Informatics, ICCSII 2012, pp. 191–195 (2012)

51. Fatwanto, A.: Translating software requirements from natural language to formal
specification. In: Proceeding - 2012 IEEE International Conference on Computa-
tional Intelligence and Cybernetics, CyberneticsCom 2012, pp. 148–152 (2012)

52. Gordon, M., Harel, D.: Generating executable scenarios from natural language. In:
Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 456–467. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00382-0 37

53. Vidya Sagar, V.B.R., Abirami, S.: Conceptual modeling of natural language func-
tional requirements. J. Syst. Softw. 88(1), 25–41 (2014)

54. Rui, S.: Translating software requirement from natural language to automaton.
In: Proceedings 2013 International Conference on Mechatronic Sciences, Electric
Engineering and Computer (MEC), pp. 2456–2459 (2013)

https://doi.org/10.1007/978-3-540-24677-0_31
https://doi.org/10.1007/978-3-642-00382-0_37

Model-Based Analysis
of Temporal Properties

Maria Spichkova(B)

RMIT University, Melbourne, Australia
maria.spichkova@rmit.edu.au

Abstract. In our previous work, we introduced a framework for
property-based testing applied on formal models with temporal prop-
erties. In this paper, we discuss model-based approaches for analysis of
temporal properties of safety-critical systems more deeply. We also dis-
cuss the core features of FocusST , framework for formal specification and
analysis of temporal and spatial properties of safety-critical systems. To
illustrate the feasibility of the framework, we demonstrate how to imple-
ment on its basis time-triggered and event-based view on systems with
temporal properties.

Keywords: Formal methods · Verification · Testing
Temporal properties

1 Background

Safety-critical systems, e.g., in the automotive domain [18], become more and
more software-intensive with every year. While specifying such systems, a precise
formal model, i.e., a mathematical model at some level of abstraction, might be
essential to eliminate ambiguity and to detect possible errors early in the software
development life-cycle (SDL). Verification and testing of the temporal aspects is
crucial, as the properties of safety-critical systems have to be analysed in relation
to the time in many cases.

In this paper, we are going to focus of the analysis of temporal properties
using Formal Methods (FMs). Despite all the advantages of FMs, software engi-
neers are not keen to include them into the software development process. This
problem was discussed 15–20 years ago, e.g., in [16]. This problem is still unsolved
now. Lack of readability and usability is one of the reasons for very limited use
of FMs in industrial projects [38]. However, in some cases even simply imple-
mentable improvements can make an FM more readable and understandable,
cf. [22].

In our previous work [3,4], we presented a framework for property-based
testing applying for temporal formal models. Property-based testing allows for
the use of randomly generated tests based on systems properties to test systems
against their specifications, where one test case can be executed hundreds of

c© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 208–223, 2018.
https://doi.org/10.1007/978-3-319-94135-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_10&domain=pdf

Model-Based Analysis of Temporal Properties 209

Fig. 1. Framework for property-based testing that we proposed in [4].

times with different input values. An example of such library in Haskell pro-
gramming language is QuickCheck [12].

The core idea of the framework proposed in [4] is illustrated by Fig. 1. We
start by specifying the system using human-oriented formal modelling tech-
niques. The model can be also verified wrt. system properties. The system under
test is then designed according to this formal model. The framework then gen-
erates random test cases (based on system properties) to check that the system
runs according to the specification. If a test fails, the corresponding parts of the
system and specification have to be analysed to identify the error. If the test
passes, the system under test meets the specification.

The workflow within the framework includes the following steps:

– To specify system requirements using natural language;
– To transform the requirements specification to a formal specification (model)

of the system, e.g., in FocusST [30];
– To verify formal model, e.g., using Isabelle/HOL theorem prover [20];
– To translate the formal model to Scala using the provided translation schema;
– To add the specified in Scala model to the extended ScalaCheck library;
– To check the extended ScalaCheck library against the behaviour generated

from the formal specification.

In our current work, we would like to discuss the first steps of the workflow in
more details, focusing on readability of formal models with timing aspects.

Outline: The rest of the paper is structured as follows. Section 2 discusses the
core features of FocusST language and presents time-triggered view on systems
with temporal properties. Section 3 presents event-based view on systems with
temporal properties. Section 4 concludes the paper by highlighting the main
contributions, and introduces the future work directions.

210 M. Spichkova

2 Time-Triggered View: FocusST

The FocusST [30] language was inspired by Focus [8], a framework for formal
specification and development of interactive systems. In both languages, spec-
ifications are based on the notion of streams. However, in the original Focus
input and output streams of a component are mappings of natural numbers N

to single messages, whereas a FocusST stream is a mapping from N to lists
of messages within the corresponding time intervals. Moreover, the syntax of
FocusST is particularly devoted to specify spatial (S) and timing (T) aspects in
a comprehensible fashion, which is the reason to extend the name of the language
by ST .

The FocusST specification layout is similar to Focus (which layout was
inspired by Z specification language, cf. [34,35]), but it has many new fea-
tures to increase the readability and understandability of the specification. The
FocusST specification layout is based on human factor analysis within formal
methods [22,23,31]. It allows to create concise but easily understandable specifi-
cations and is appropriate for application of the specification and proof method-
ology presented in [27]. This methodology allows to create specifications in a way
that carrying out proofs is quite simple and scalable to practical problems. In
particular, a specification of a system can be translated to a Higher-Order Logic
and verified by the interactive semi-automatic theorem prover Isabelle [20] also
applying its component Sledgehammer [5]. Sledgehammer employs resolution
based first-order automatic theorem provers and satisfiability modulo theories
solvers to discharge goals arising in interactive proofs. Other advantages of Focus
on Isabelle are

– well-developed theory of composition;
– representation of processes within a system [29];
– feasibility demonstrated by number of auto motive case studies, also formal-

ising the core aspects of the FlexRay communication protocol [11,13,14,17,
19,24–26,32].

In FocusST specifications, input and output streams of a component are
always timed, as spatio-temporal aspects are the core of the framework. The
(timed) streams are mappings from N to lists of messages within the corre-
sponding time intervals. Thus, these streams are infinite per default, but they
could be empty completely or from a certain point which is represented by empty
time intervals 〈〉. More precisely, FocusST has streams of two kinds:

– Infinite timed streams (denoted by M∞) are used to represent the input and
the output streams;

– finite timed streams (denoted by M ∗) are used to argue about a timed stream
that was truncated at some point of time.

Infinite timed streams of type T are defined by a functional type

N → T ∗

Model-Based Analysis of Temporal Properties 211

Finite timed streams of type T are defined by list of lists over this type, i.e.,

(T ∗) ∗

where T ∗ denotes a list of elements of type T .
We specify every component using assumption-guarantee-structured tem-

plates, to avoid the omission of unnecessary assumptions about the system’s
environment: the component has to fulfil the guarantee part of the specification
only if its environment behaves in accordance with the assumption part of the
specification.

To make our formal language better understandable for programmers, we
use in FocusST so-called implicit else-case constructs: If a variable is not listed
in the guarantee part of a transition, it implicitly keeps its current value, cf.
also [29]. An output stream not mentioned in a transition will be empty.

Specifying a component we often have that for some cases both hold: local
variables (i.e., the current system state) still be unchanged and there is no out-
put. This can occur, e.g., if at this time interval the component receives no
input or if some preconditions (that are necessary to produce the corresponding
output) don’t hold. In classical Focus we need to specify such cases explicitly,
otherwise we get an underspecified component that has no information how it
must act if it gets no input or if some preconditions don’t hold. However, this
optimization is not applicable to component representing functionality of timers
or counters, because a counter-variable must be also changed even if the com-
ponent gets no input.

The formal background on FocusST is presented in [27,30], but we would
like to mention very shortly a small number of operators we used in the paper:

– 〈〉 – denotes an empty stream,
– 〈x 〉 – denotes one element stream consisting of the element x ,
– ft.l – returns the first element of an untimed stream l (e.g., the first element

of a list),
– s i – returns the ith time interval of the stream s,
– msgn(s) – returns true, if the stream s has at most n messages at each time

interval (an n-bounded stream),
– ts(r) – returns true, if the stream r has exactly one message at each time

interval (so called time-synchronous stream).

To represent real objects that can physically change their location in space,
we define so-called sp-objects. An sp-object is defined not only by its behavioural
specification but also by a tuple

<location, speed , direction, radius, occupiedspace>

In FocusST this tuple is specified using

– a special global (in the scope of the system specification) constant rad asso-
ciated with an elementary so-object to represent the radius of the maximal

212 M. Spichkova

space the sp-object can “cover” in the worst case; In the case an sp-object
S is a composition (system) of a number of other sp-objects, we calculate
its rad by analysing which space its subcomponents can occupy in the worst
case:

S .rad = max (WCX ,WCY)/2

WCX and WCY being the maximum extensions of all of the subcomponents
of S in direction x respective y ;

– four special global (in the scope of the system specification) variables to store
for each sp-object its

• current location ∈ Space (i.e., central point of the sp-object),
• current speed ∈ N,
• current direction ∈ Directions, and
• current rzone ∈ Zone.

The type Space is a tuple of two Cartesian coordinates defined over N:

Space def= N × N

The type Directions represents an angle in the Cartesian coordinate system:

Directions def= {0, . . . , 359}

The type Zone is a tuple of Cartesian coordinates of two spatial points X and y
(minX ,minY ,maxX ,maxY) defined over N, where X correspond to the upper
left corner and Y corresponds to the upper right corner of the corresponding
zone.

Space def= N × N × N × N

The behavioural specification of the corresponding component can contain con-
strains on the speed, direction, and location of the so-object as well as on spatio-
temporal dependencies among the so-objects in the system. While verifying the
corresponding properties we can ensure, for example, that the object does not
exceed its speed limit, does enter specific areas or does not collide with another
so-object.

For composite so-objects we also have additional constraints:

∀S , C : C ∈ subcomp(S) →
(S .rzone.minX ≤ S .C .rzone.minX ∧ S .rzone.minY ≤ S .C .rzone.minY) ∧
(S .rzone.maxX ≥ S .C .rzone.maxX ∧ S .rzone.maxY ≥ S .C .rzone.maxY)

∀ k , S ,C : C ∈ subcomp(S) →
(k ≤ S .rzone.minX → (k + S .C .rad) ≤ S .C .location.xx)

Model-Based Analysis of Temporal Properties 213

2.1 TSTD

Alur and Dill [1,2] introduced timed automata that are nowadays one of the most
well-established models for the specification and verification of real-time system
design. Timed automata have many advantages and many application areas, but
they assume perfect continuity of clocks which may not suit to specification of
embedded system with instantaneous reaction times. Timed automata also do
not prevent Zeno runs [15]: an infinite number of transitions in a finite period
of time cannot be excluded. This problem was solved in an extended version
of timed automata presented [7,21]. FocusST provides a completely different
solution to this problem: the Zeno runs are excluded on the syntactical level.

The FocusST specifications are a special form of timed automata that we
name Timed State Transition Diagrams (TSTDs). A TSTD can be described
in both diagram and textual form. For easier argumentation, we can further
represent it by a special kind of tables including a number of new operators that
work on time intervals.

For any real-time system S with syntactic interface (IS �OS), where IS is
a set of input timed streams i1 ∈ I∞

1 , . . . , im ∈ I∞
m , and OS is a set of output

timed streams o1 ∈ O∞
1 , . . . , on ∈ O∞

n , we can define the corresponding timed
state transition diagram TSTD(S) by a tuple

(State, state0, IS ,OS ,→),

where State is a set of states, state0 ∈ State is the initial state, and the function→
⊆ State × IS × State × OS represents the transition function of the TSTD.

Thus, an input action for a TSTD is the set of current time intervals of the
input streams of the system, where the output action is the set of corresponding
time intervals of the input streams of the system: in the case of a weak-causal
system the output must be produced within the same time interval the input
is consumed, but in the case of a strongly causal system the output must be
produced within a delay in at least one time unit – this delay must be defined
according to the timing requirements on the specified system.

A tiTable for a system S looks in general as follows:

tiTable STable (univ u1, . . . , uk) : ∀ t ∈ N where a1, . . . , aw

i1 . . . im o1 . . . on v ′
1 . . . v ′

p Preconditions

1

2

. . .

N

N is here the number of table lines in the table, v1, . . . , vp denote the local
variables of the system S , while u1, . . . , uk and a1, . . . , aw represent respectively
universal variables and some abbreviations used within the system. By v ′

i we
denote the value of the local variable vi after the transition, i.e., the value at the
time interval t + 1.

214 M. Spichkova

If it is not enough to use the weak causality and the strong causality is needed,
i.e., a component should have a delay of k (k > 0) time units, the following
notation for the tiTable-head must be used: if the column of an output stream
oi is labelled by ok

i , then the corresponding output will be produced with the
delay k . Arguing about time intervals we can ensure the causality property of a
defined component (or system), specifying time interval values of output streams
via input and local values from the previous (in the case of strong causality) or
the same (in the case of weak causality) time intervals.

A TSTD can be also rewritten in a purely textual manner: each table line
(in the case of a diagram, each transition) can be specified as a single formula
in the gar-part of the specification, the rewriting scheme is straightforward.

Example 1. Let us discuss a simple timer specification. The component Timer
is strongly-causal with a delay of one time unit, and has two input channels,
both of type N: set to set the timer, and dataIn to get the input data: if the
timer is off, the data can be transmitted via the output channel dataOut . The
second output channel resp of type {timeout} is used to signal the timeout. The
FocusST specification of this component is presented in Fig. 2.

Timer
set , dataIn : N

resp : N; dataOut : {timeout}

locCounter ∈ N

k ∈ N, x ∈ N
∗

locCounter = 0

1(set)

TimerTable

Fig. 2. FocusST specification of a simple timer.

At every time interval this component can receive at most one message of
type N via the channel set and a finite sequence of natural numbers via the
channel dataIn. If the timer receives a number k , k > 0 via the channel set , it
waits k time intervals (counts down starting from k) and gives out the timeout
signal timeout . During countdown the input data on channel dataIn are ignored.
If any time a new set-message comes, the timer will be restarted, however, if
this message is 0, timer is set to 0 and gives out the timeout-signal immediately.
Below you can see the tiTable representation of TimerTSTD.

Model-Based Analysis of Temporal Properties 215

tiTable TimerTable (univ x : N∗, k : N) : ∀ t ∈ N

set dataIn resp dataOut locCounter ′ Preconditions

1 〈〉 x 〈〉 x 0 locCounter = 0

2 〈0〉 x 〈timeout〉 x 0

3 〈k〉 x 〈〉 x k locCounter = 0, k > 0

4 〈k〉 x 〈〉 〈〉 k locCounter > 0, k > 0

5 〈〉 x 〈〉 〈〉 locCounter − 1 locCounter > 1

6 〈〉 x 〈timeout〉 x 0 locCounter = 1

Finally, we present the timer specification in textual style: Fig. 3 demon-
strates a FocusST specification TimerInTextualStyle, where Fig. 4 demonstrates
how the same specification would look like without any optimisations discussed
at the beginning of Sect. 2 (the additional Formulas 1 and 2 in the guarantee-part
of this specification, define initial output values).

TimerInTextualStyle
set , dataIn : N

resp : N; dataOut : {timeout}

locCounter ∈ N

locCounter = 0

1(set)

∀ t ∈ N :
1 set t = 〈〉 ∧ locCounter = 0 dataOut t = dataInt

2 set t = 〈0〉 respt = 〈timeout〉 ∧ dataOut t = dataInt ∧ locCounter ′ = 0

3 set t �= 〈〉 ∧ locCounter > 0 0

0

∧ set t >
dataOut t = dataInt ∧ locCounter ′ = set t

4 set t �= 〈〉 ∧ locCounter = 0 ∧ set t > locCounter ′ = set t

5 set t = 〈〉 ∧ locCounter > 1 locCounter ′ = locCounter − 1

6 set t = 〈〉 ∧ locCounter = 1
respt = 〈timeout〉 ∧ dataOut t = dataInt ∧ locCounter ′ = 0

Fig. 3. FocusST specification of a simple timer: Textual style with optimisation.

216 M. Spichkova

The component is strongly causal, therefore we need to define not only the
initial value of the local variable, but also the output of the component during
the first time interval. We can easily change the delay of the component to some
natural number l , l > 1: we just replace t + 1 in the specification of the output
streams by t + l and add the specification of the initial outputs (component
outputs at time intervals 0, . . . , l − 1). Moreover, we can define this delay as a
parameter of the component. �

TimerInTextualStyleWithoutOptimizations
set , dataIn : N

resp : N; dataOut : {timeout}

locCounter ∈ N

locCounter = 0

1(set)

1 resp0 = 〈〉
2 dataOut0 = 〈〉

∀ t ∈ N :
3 set t = 〈〉 ∧ locCounter = 0

respt = 〈〉 ∧ dataOut t = dataInt ∧ locCounter ′ = 0

4 set t = 〈0〉 respt = 〈timeout〉 ∧ dataOut t = dataInt ∧ locCounter ′ = 0

5 set t �= 〈〉 ∧ locCounter > 0 ∧ set t > 0
respt = 〈〉 ∧ dataOut t = dataInt ∧ locCounter ′ = set t

6 set t �= 〈〉 ∧ locCounter = 0 ∧ set t > 0
respt = 〈〉 ∧ dataOut t = 〈〉 ∧ locCounter ′ = set t

7 set t = 〈〉 ∧ locCounter > 1
respt = 〈〉 ∧ dataOut t = 〈〉 ∧ locCounter ′ = locCounter − 1

8 set t = 〈〉 ∧ locCounter = 1
respt = 〈timeout〉 ∧ dataOut t = dataInt ∧ locCounter ′ = 0

Fig. 4. FocusST specification of a simple timer: Textual style without optimisation.

Model-Based Analysis of Temporal Properties 217

2.2 Operating over Time Intervals

Arguing over time intervals we can use predefined operators to make specification
more readable. In this section we present only a small number of these operators
to give a better feeling how our approach can be used to specify a system.

An often used operation over timed streams is concatenation of a number of
time intervals (� is a standard Focus operator to concatenate two sequences).
The operator tik (s,n) denotes the sequence of messages that are present on the
channel s at the time interval between ticks n − 1 and n + k :

tik (s,n) = sn � . . . � sn+k

We define this operator formally as follows:

tik (s,n) def=

{
sn if k = 0

tik−1(s,n) � sn+k otherwise
(1)

The timed merge operator mergeti(s, r) concatenates the sequences of messages
that are present on the channels (streams) s and r at the same time interval:

∀ t . mergeti(s, r)t = st �r t (2)

Example 2. Applying the timed merge operator to the timed streams s1 and s2,

s1 = 〈〈a1〉, 〈a2, a3〉, 〈〉, 〈a4, a5, a6〉, 〈a7, a8, a9, a10〉, 〈〉, . . . 〉, and

s2 = 〈〈b1, b2〉, 〈〉, 〈b3〉, 〈〉, 〈b4〉, 〈〉, 〈b5〉, 〈〉, . . . 〉,
we get the following timed stream

mergeti(s1, s2) = 〈〈a1, b1, b2〉, 〈a2, a3〉, 〈b3〉, 〈a4, a5, a6〉, 〈a7, a8, a9, a10, b4〉, 〈〉, . . . 〉
Zeno runs are excluded in the streams s1 and s2 by definition. This holds also
for a stream we get after applying the merge operator. �

Using operators over time intervals we can also represent such properties as
changing time granularity, (un)timed simulation, etc.

2.3 Changing Time Granularity

In many cases it is useful to change time granularity of the specification (also
named frequency of the streams or time raster, see [9,10]).

The operator s �n refines the time granularity splitting every time interval
of the stream s into n time intervals in such a way that all messages from the
original time interval belong to the first of the n new intervals:

�∈ M ω × N → M ω

s �t
n

def=

{
st/n mod(t ,n) = 0

〈〉 otherwise

(3)

218 M. Spichkova

Surely, ones can define other versions of time refinement, e.g., (i) all messages
from the time interval of the original stream belong to the last of the n corre-
sponding intervals; (ii) the messages from the time interval of the original stream
are distributed to the n corresponding intervals. We choose this one because in
our experience, the mostly used kind of streams are 1-bounded streams (which
can have at most one message at each time interval).

The operator s �n makes the time granularity more coarse – it joins n time
intervals of the stream s into a single time interval:

�∈ M ω × N+ → M ω

s �t
n

def= tin−1(s,n ∗ t)
(4)

Theorem 1. For any infinite timed stream x and for any natural number n > 0
the following equation holds:

(x �n) �n= x �

Example 3. Let discuss the case of duplication of the time raster illustrated by
Fig. 5. It is easy to see that applying operators � and � we always get a timed
stream where Zeno runs are excluded.

Streams x and y are defined here as simplification of Eqs. 3 and 4, i.e., the
relations y = x �2 and y �2= x hold.

x �t
2

def=

{
x t/2 even(t)

〈〉 otherwise

y �t
2

def= y2∗t �y2∗t+1 �

x

y
1 54320 6

ti(x,0) ti(x,2)

ti(y,0)

ti(x,1)

ti(y,1)

ti(x,3)

ti(y,2)

ti(x,5)ti(x,4)

Fig. 5. Duplicated time raster.

2.4 Untimed Causal Simulation

Using the representation via time intervals we can also define a simulation rela-
tion defining the property of untimed equivalence of two streams. The untimed
causal simulation of the streams x and y , denoted x ��� y , in comparison to

Model-Based Analysis of Temporal Properties 219

the equivalence of the untimed versions of these streams, takes into account the
causality property.

We define the untimed causal simulation x ��� y of two streams x and y by

x ��� y def= x
0��� y (5)

where x
i��� y is defined for all i ∈ N as follows:

x
0��� y ∧ x 1 = 〈〉 ⇒ y1 = 〈〉 ∧ x ↑1 0��� y ↑1

x
i��� y ∧ x 1 = 〈〉 ∧ i �= 0

⇒ y1 = 〈〉 ⇒ x ↑1 i��� y ↑1 ∧ y1 �= 〈〉 ⇒ x ↑1 i−1��� y

x
i��� y ∧ x 1 �= 〈〉

⇒ (y1 = 〈〉 ⇒ x
i+1��� y ↑1) ∧ (y1 �= 〈〉 ⇒ x ↑1 i��� y ↑1 ∧y1 = x 1)

Theorem 2. For any two infinite timed streams x and y the following relation
holds (x and y denote the untimed versions of streams x and y respectively):

x ��� y ⇒ x = y

�

Please note that the implication does not hold in the opposite direction, i.e., the
relation x ��� y ⇐ x = y does not hold in general.

Theorem 3. For any two infinite timed streams x and y the following relation
holds:

x ��� y ∧ y ��� x ⇔ x = y

�

Example 4. Let x , y and z be infinite timed streams and let s1, s2, s3 denote
the sequences of message that represents some time intervals of these streams.

time interval 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

x 〈〉 s1 〈〉 s2 〈〉 s3 〈〉 〈〉 s1 〈〉 s2 〈〉 s3 〈〉 . . .

y 〈〉 〈〉 〈〉 s1 s2 〈〉 s3 〈〉 〈〉 〈〉 s1 s2 〈〉 s3 . . .

z s1 〈〉 s2 〈〉 〈〉 〈〉 s3 s1 〈〉 s2 〈〉 〈〉 〈〉 s3 . . .

The untimed versions of these streams are equal

x = y = z = 〈s1, s2, s3, s1, s2, s3, . . . 〉
however, the untimed causal simulation holds only for the pair of streams x and
y , and for the pair of streams z and y : x ��� y and z ��� y , while the relations
x ��� z , y ��� x , y ��� z , and z ��� x do not hold. �

220 M. Spichkova

3 Event-Based View: FocusE

To deal with event based systems, we suggest inheriting the FocusST syntax
accompanied with different semantics. For simplicity, we call the new version of
the language FocusE . In FocusE , input and output streams of a component are
mappings of natural numbers N to lists of messages, like in FocusST . However,
in FocusE these lists represent not the messages within the corresponding time
intervals, but messages within the same causality intervals. We can see causality
intervals as an abstract view of time intervals (cf. also Fig. 6):

– If messages belong to the same causality interval, this means that according
to the system’s clock these messages come simultaneously,

– If some message a belongs to the causality interval i (from the timed point of
view it belongs to some time interval t), and some message b belongs to the
causality interval i + 1, this does not necessary mean that B should belong
to the time interval t + 1, because the causality property insure only the fact
“event b happens after event a”. Thus, b should belong to the time interval
t + δ, where δ > 0.

In special case, a causality intervals of a stream can be equal to time interval of
this stream.

Each message can be seen as a single event, but we can also have an additional
view on the streams, where a set of messages (single events) from the same
causality interval can be denoted as a combined event.

s

0 1 2 3 4 5 6

a

time

indices of time
intervals

0 1 2 3 4 5

b, c d a

indices of
causality
intervals

0 1 2 3

Fig. 6. Time intervals vs. causality intervals.

We suggest the following notation for FocusE an additional operator s�i� to
represent the ith time interval of the stream s.

For the example presented on Fig. 6, we have that

s0 = 〈〉, s1 = 〈a〉, s2 = 〈b, c〉, s3 = 〈〉, s4 = 〈d〉, s5 = 〈a〉,
and

s�0� = 〈a〉, s�1� = 〈b, c〉, s�2� = 〈d〉, s�3� = 〈a〉.

Model-Based Analysis of Temporal Properties 221

From purely syntactical point of view, if we take a timed (FocusST) stream and
remove all empty timed intervals from it, we obtain an event (FocusE) stream.

Correspondingly, we can define operators over events’ causality, e.g., to
denote that the ith causality interval of a stream s1 occurs before the j th causal-
ity interval of a stream s2, to denote that events of some type should occur in
the stream always before some instances of messages of other type, etc.

4 Conclusions

In this paper, we discuss model-based approaches for analysis of temporal prop-
erties of safety-critical systems, to expand the ideas presented in our previous
works [3,4] on property-based testing and its application on formal models with
temporal properties.

One of the core parts of our approach for property-based testing, FocusST ,
framework for formal specification and analysis of temporal and spatial proper-
ties of safety-critical systems. In this paper we discuss the features of FocusST

more deeply. To illustrate the feasibility of the framework, we demonstrate how
to implement on its basis time-triggered and event-based view on systems with
temporal properties.

The following directions of the future work might be especially promising:

– To combine the presented ideas with analysis of cloud computing tasks, e.g.,
with Chiminey Computing and Data Management Platform [37],

– To apply the framework for property-based testing to the analysis of cyber-
virtual Systems [6], as well as

– To expand human-centred features of FocusST by combining with
approaches presented in [28,33,36].

References

1. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 1

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

3. Alzahrani, N., Spichkova, M., Blech, J.O.: Spatio-temporal models for formal anal-
ysis and property-based testing. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
STAF 2016. LNCS, vol. 9946, pp. 196–206. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-50230-4 14

4. Alzahrani, N., Spichkova, M., Blech, J.O.: From temporal models to property-based
testing. In: 11th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE), pp. 241–246. SCITEPRESS (2017)

5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS
(LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22438-6 11

https://doi.org/10.1007/978-3-540-30080-9_1
https://doi.org/10.1007/978-3-319-50230-4_14
https://doi.org/10.1007/978-3-319-50230-4_14
https://doi.org/10.1007/978-3-642-22438-6_11
https://doi.org/10.1007/978-3-642-22438-6_11

222 M. Spichkova

6. Blech, J.O., Spichkova, M., Peake, I., Schmidt, H.: Visualization, simulation and
validation for cyber-virtual systems. In: Maciaszek, L.A., Filipe, J. (eds.) ENASE
2014. CCIS, vol. 551, pp. 140–154. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27218-4 10

7. Bouyer, P., Markey, N., Sankur, O.: Robust model-checking of timed automata via
pumping in channel machines. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS
2011. LNCS, vol. 6919, pp. 97–112. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24310-3 8

8. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2001). https://doi.
org/10.1007/978-1-4613-0091-5

9. Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)
10. Broy, M.: Time, abstraction, causality and modularity in interactive systems:

extended abstract. Electr. Notes Theor. Comput. Sci. 108, 3–9 (2004)
11. Broy, M., Fox, J., Hölzl, F., Koss, D., Kuhrmann, M., Meisinger, M., Penzenstadler,

B., Rittmann, S., Schätz, B., Spichkova, M., Wild, D.: Service-oriented modeling of
CoCoME with Focus and AutoFocus. In: Rausch, A., Reussner, R., Mirandola, R.,
Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp.
177–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85289-
6 8

12. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. SIGPLAN Not. 46(4), 53–64 (2011)

13. Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Rittmann, S., Scheidemann, K.,
Spichkova, M., Trachtenherz, D.: A top-down methodology for the development of
automotive software. Technical report TUM-I0902 (2009)

14. Feilkas, M., Hlzl, F., Pfaller, C., Rittmann, S., Schtz, B., Schwitzer, W., Sitou,
W., Spichkova, M., Trachtenherz, D.: A refined top-down methodology for the
development of automotive software systems - the KeylessEntry-system case study.
Technical report TUM-I1103, TU München (2011)

15. Gómez, R., Bowman, H.: Efficient detection of Zeno runs in timed automata. In:
Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 195–
210. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1 15

16. Hinchey, M.G.: Confessions of a formal methodist. In: Safety Critical Systems and
Software, pp. 17–20. ACS (2003)

17. Kühnel, C., Spichkova, M.: Upcoming automotive standards for fault-tolerant com-
munication: FlexRay and OSEKtime FTCom. In: Proceedings of EFTS 2006 Inter-
national Workshop on Engineering of Fault Tolerant Systems (2006)

18. Kühnel, C., Spichkova, M.: Fault-tolerant communication for distributed embedded
systems. In: Pelliccione, P. (ed.) Software Engineering of Fault Tolerance Systems,
vol. 19, p. 175. World Scientific Publishing, Singapore (2007)

19. Kühnel, C., Spichkova, M.: FlexRay und FTCom: Formale Spezifikation in FOCUS.
Technical report TUM-I0601, TU München (2006)

20. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

21. Puri, A.: Dynamical properties of timed automata. Discrete Event Dyn. Syst. 10(1–
2), 87–113 (2000)

22. Spichkova, M.: Human factors of formal methods. In: IADIS Interfaces and Human
Computer Interaction 2012 (2012)

23. Spichkova, M.: Design of Formal Languages and Interfaces: “Formal” Does Not
Mean “Unreadable”. IGI Global, Hershey (2013)

https://doi.org/10.1007/978-3-319-27218-4_10
https://doi.org/10.1007/978-3-319-27218-4_10
https://doi.org/10.1007/978-3-642-24310-3_8
https://doi.org/10.1007/978-3-642-24310-3_8
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-3-540-85289-6_8
https://doi.org/10.1007/978-3-540-85289-6_8
https://doi.org/10.1007/978-3-540-75454-1_15
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Model-Based Analysis of Temporal Properties 223

24. Spichkova, M.: Stream processing components: Isabelle/HOL formalisation and
case studies. Arch. Formal Proofs, 1–142 (2013)

25. Spichkova, M.: Compositional properties of crypto-based components. Arch. For-
mal Proofs, 1–42 (2014)

26. Spichkova, M.: FlexRay: verification of the FOCUS specification in Isabelle/HOL.
A case study. Technical report TUM-I0602, TU München (2006)

27. Spichkova, M.: Specification and seamless verification of embedded real-time sys-
tems: FOCUS on Isabelle. Ph.D. thesis, Technical University Munich (2007)

28. Spichkova, M.: Architecture: requirements + decomposition + refinement.
Softwaretechnik-Trends 31(4), 1–4 (2011)

29. Spichkova, M.: Focus on processes. Technical report (TUM-I1115), TU München
(2011)

30. Spichkova, M., Blech, J.O., Herrmann, P., Schmidt, H.W.: Modeling spatial aspects
of safety-critical systems with FocusST . In: MoDeVVa, pp. 49–58 (2014)

31. Spichkova, M., Liu, H., Laali, M., Schmidt, H.W.: Human factors in software reli-
ability engineering. In: Workshop on Applications of Human Error Research to
Improve Software Engineering (2015)

32. Spichkova, M., Simic, M.: Towards formal modelling of autonomous systems. In:
Damiani, E., Howlett, R., Jain, L., Gallo, L., De Pietro, G. (eds.) Intelligent Inter-
active Multimedia Systems and Services, pp. 279–288. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19830-9 25

33. Spichkova, M., Zamansky, A., Farchi, E.: Towards a human-centred approach in
modelling and testing of cyber-physical systems. In: 2015 IEEE 21st International
Conference on Parallel and Distributed Systems (ICPADS), pp. 847–851. IEEE
(2015)

34. Spivey, M.: Understanding Z - A Specification Language and Its Formal Semantics.
Cambridge Tracts in Theoretical Computer Science, vol. 3. Cambridge University
Press, Cambridge (1988)

35. Spivey, M.: The Z Notation: A Reference Manual. Prentice-Hall International Series
in Computer Science, 2 Ausgabe edn. Prentice-Hall, New York (1992)

36. Vo, P.T.N., Spichkova, M.: Model-based generation of natural language specifica-
tions. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946,
pp. 221–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50230-
4 16

37. Yusuf, I.I., Thomas, I.E., Spichkova, M., Androulakis, S., Meyer, G.R., Drumm,
D.W., Opletal, G., Russo, S.P., Buckle, A.M., Schmidt, H.W.: Chiminey: reliable
computing and data management platform in the cloud. In: 37th International
Conference on Software Engineering (ICSE 2015). IEEE Press (2015)

38. Zamansky, A., Rodriguez-Navas, G., Adams, M., Spichkova, M.: Formal methods
in collaborative projects. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering. IEEE (2016)

https://doi.org/10.1007/978-3-319-19830-9_25
https://doi.org/10.1007/978-3-319-50230-4_16
https://doi.org/10.1007/978-3-319-50230-4_16

Towards a Java Library to Support
Runtime Metaprogramming

Ignacio Lagartos, Jose Manuel Redondo, and Francisco Ortin(&)

Computer Science Department, University of Oviedo, 33007 Oviedo, Spain
{uo196684,redondojose,ortin}@uniovi.es

Abstract. Statically typed languages such as Java offer two key advantages:
robustness increase due to compile time error detection, and better runtime
performance caused by the reduction of runtime type checking. However,
dynamic languages are sometimes preferred in scenarios where runtime adapt-
ability is a strong requirement, such as building software capable of adapting to
runtime changing environments. The metaprogramming features of dynamic
languages allow the runtime adaptation of class and object structures, modifying
inheritance relationships, and the evaluation of dynamically generated code. In
this position paper, we describe the steps we are following to add to Java some
of the metaprogramming services provided by most dynamic languages. The
objective is to provide the runtime flexibility of structural intercession, dynamic
inheritance and dynamic code evaluation, without losing the robustness of
compile-time type checking. The metaprogramming services are provided as a
library so, unlike other existing systems, any standard virtual machine and
language implementation could be used.

Keywords: Java � Metaprogramming � Structural intercession
Dynamic inheritance � Dynamic code evaluation � Static typing
Early type error detection � Reflection API � Introspection

1 Introduction

Dynamic languages have turned out to be suitable for specific scenarios such as rapid
prototyping, Web development, interactive programming, dynamic aspect-oriented
programming, and runtime adaptive software [1]. Most dynamic languages provide
metaprogramming services that allow treating programs like data, and modify them at
runtime [2]. Fields and methods can be added and removed dynamically from classes
and objects (structural intercession), and new pieces of code can be generated and
evaluated at runtime, without stopping the application execution [3]. These services
make it easier to develop runtime adaptable software in dynamic languages [4].

In order to provide that runtime adaptability, dynamic languages commonly imple-
ment a dynamic type system, postponing type checking until runtime. One limitation of
this approach is that every type error is detected at runtime. On the contrary, statically
typed languages such as Java and C# commonly detect many type errors at compile time,
when the programmer is writing the code. This lack has been recognized as one of
the limitations of dynamically typed languages [5]. The absence of compile-time type

© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 224–242, 2018.
https://doi.org/10.1007/978-3-319-94135-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_11&domain=pdf

information also involves fewer opportunities for compiler optimizations, and the extra
runtime type checking commonly implies performance costs [6].

In previous works, we have inferred type information at compile time to provide
early type error detection in dynamically typed code [7, 8]. In this work, we aim to
provide metaprogramming services to the statically typed Java language. The objective
is to increase the runtime adaptability of Java, without losing the early type error
detection and runtime performance of its static type system.

The main contribution of this position paper is the description of a Java library
aimed at providing metaprogrammning services, maintaining its static type system.
Particularly, we intend to add structural intercession of classes and its existing objects
at runtime, allowing the dynamic modification of their structure. We also provide the
evaluation of dynamically generated Java code and changing the base class and the
interfaces implemented by another class. This paper is an extension of the one pub-
lished in [9], including how we plan to provide dynamic inheritance and a modification
of the Java reflection API.

The rest of the paper is structured as follows. Section 2 describes the library
interface with some excerpts of an example program. The different elements of the API
are depicted in Sect. 3. Section 4 describes the related work, and the conclusions and
future work are discussed in Sect. 5.

2 Library Interface

The metaprogramming services are provided as a library of the Java platform. We
modify neither the Java Virtual Machine (JVM) nor the language implementation.
Thus, unlike other approaches [10, 11], any standard JVM and Java compiler can be
used.

To describe the interface of the library, this section presents an example that
dynamically modifies the structure of the class shown in Fig. 1 [9].

2.1 Structural Intercession

The code in Fig. 2 [9] modifies the Dog class at runtime using structural intercession
(read and write reflection) [12]. We add a name field to every Dog instance at runtime,

1. public class Dog {
2. public void bark(){
3. System.out.println("Woof!!");
4. }
5. public void shake(){
6. System.out.println("Shakes");
7. }
8. }

Fig. 1. Example Java class [9].

Towards a Java Library to Support Runtime Metaprogramming 225

evolving the structure of the class. Besides this new field, we also add two new
getName and setName methods. Moreover, the implementation of the existing
bark and shake methods are modified, so that they consider the new name field.

The proposed library allows performing the five operations individually. Addi-
tionally, it also provides the execution of all the operations at the same time with the
concept of transaction. Figure 2 creates one transaction (line 2) with the five operations
(lines 4 to 10). Then, the transaction is executed atomically in line 12. If all the
operations can be executed, the program continues; otherwise, no operation is per-
formed. For example, if the body of setName has a type error (line 7) a Compi-
lationFailedException exception error will be thrown and none of the five
operations will be executed.

If we want to invoke a newly added method (e.g., setName), we should provide a
new mechanism because that method is added later, when the application is running.
A direct invocation to setName will not be compiled because that method does not
exist at compilation time. For this purpose, our library provides the getInvoker
method (line 14). It returns the standard BiConsumer interface added to Java 8 [13].
Its accept method executes setName, which was added at runtime. Unlike the Java
reflection API, we generate statically typed code (at runtime), so we expect to obtain a
significant performance benefit [14].

1. // Create transaction
2. IntercessorTransaction transaction = new IntercessorTransaction();
3. // Add field name
4. transaction.addField(Dog.class, String.class, "name");
5. // Add get/set
6. transaction.addMethod(Dog.class, "getName", MethodType.methodType(String.class),

"return name;");
7. transaction.addMethod(Dog.class, "setName", MethodType.methodType(void.class,

String.class),"name = value;", "value");
8. // Modify existing methods
9. transaction.replaceImplementation(Dog.class, "bark",

"System.out.println(this.name + \": Woof!!\");");
10. transaction.replaceImplementation(Dog.class, "shake",

"System.out.println(this.name + \": Shakes\");");
11. // Execute transaction
12. transaction.commit();
13. // Get invoker for ‘setName’
14. BiConsumer<Dog, String> setName = Intercessor.getInvoker(Dog.class, "setName",
15. BiConsumer.class, Dog.class, String.class);
15. // Check name field
16. String name = readLine("Name: ");
17. Dog dog = new Dog();
18. setName.accept(dog, name);
19. dog.bark();

Name: Rufus
Buddy: Woof!!

Fig. 2. Example adaptation of the Dog class using a transaction collecting 5 intercesive
operations [9].

226 I. Lagartos et al.

2.2 Dynamic Code Evaluation

We have just shown how the library provides structural intercession; we now describe
how to obtain dynamic code evaluation (i.e., the eval function in Lisp, Python and
JavaScript languages). Figure 3 [9] shows this capability.

Line 21 first adds another implementation of the bark method. This line shows
how to perform a single intercesive operation without using a transaction. It also shows
that methods could be overloaded at runtime, without breaking the rules of the type
system. The following statements in Fig. 3 (lines 23 to 26) perform the dynamic
evaluation of the string “dog.bark(nTimes)”. It is important to notice that the
code is represented as a string, and hence it can be built dynamically, depending on the
runtime environment. That is to say, the code is evaluated dynamically (dog refers to
the dynamic state of the dog object created in line 19, the same as nTimes).

We have just seen how to evaluate an expression dynamically. The proposed
library also provides the evaluation of multiple statements, and even the creation of a
whole class. Figure 4 [9] shows an example of that. A new TrainedDog class is
added at runtime (line 29). This class extends the existing Dog class, which was
modified at runtime (Figs. 2 and 3).

Line 28 in Fig. 4 asks for the code to be evaluated. The user dynamically writes the
code with gray background color, which generates the new TrainedDog class. This
class implements the train method that receives a function as a parameter (the
standard Consumer Java 8 interface allows passing lambda expressions as argu-
ments). Those functions can later be asked to the trained dog with the order method.

Line 36 creates an instance of a trained dog, trains it with the “shake” order
(line 42) and orders it to shake (line 43). The output in Fig. 4 shows how the actions of
the dog depend on its training. It also shows how a newly added class can extend
another class defined statically, which in turn was modified dynamically.

All the metaprogramming operations are statically typed. If the code has a type
error, the library dynamically throws a CompilationFailedException

20. // Overload ‘bark’ method
21. Intercessor.addMethod(Dog.class, "bark",

MethodType.methodType(void.class, int.class),
"for (int i = 0; i < times; i++) bark();", "times");

22. // Evaluate the call to overloaded method
23. BiConsumer<Dog, Integer> barkN =

Evaluator.generateEvalInvoker("dog.bark(nTimes)",
BiConsumer.class, new String[] {"dog", "nTimes" },
Dog.class, int.class);

24. // Invoke overloaded method
25. int nTimes = readNumber("Times: ");
26. barkN.accept(dog, nTimes);

Times: 3
Buddy: Woof!!
Buddy: Woof!!
Buddy: Woof!!

Fig. 3. Dynamic evaluation of a single expression [9].

Towards a Java Library to Support Runtime Metaprogramming 227

describing the compiler error. Besides, the dynamically generated code does not use
reflection, so we avoid its runtime performance cost [15].

2.3 Dynamic Inheritance

Figure 5 shows how to use the some of the dynamic inheritance features provided by
our library. We first create a transaction to both make Dog implement the Compa-
rable <Dog> interface (line 48) and override the compareTo(Dog) method
(line 50). The transaction is executed with no type errors. Since Dog instances are now
Comparable, they can be ordered by name with Collections.sort (line 56).

The second paragraph of code in Fig. 5 changes the base class of Dog with the
setSuperclass method (line 58). In this case, the Pet class is known statically,
but it could be generated after executing the program. Class.forName should be
used in that case. Since Dog now inherits age from Pet, lines 60-62 sort the dogs
collection by age.

2.4 Introspection API

To provide the metaprogramming services, our library creates new versions of the
existing classes at runtime (detailed in Sect. 3). Unfortunately, this implementation
technique does not follow the programmer abstraction that classes are actually

27. // Add a subclass
28. String sourceClass = readLine("Code: ");
29. Class<?> TrainedDog = Evaluator.exec(sourceClass);
30. // Obtain invokers for subclass methods
31. TriConsumer<Dog, String, Consumer> train = Intercessor.getInvoker(TrainedDog,

"train", TriConsumer.class, TrainedDog, String.class, Consumer.class);
32. BiConsumer<Dog, String> order = Intercessor.getInvoker(TrainedDog, "order",

BiConsumer.class, TrainedDog, String.class);
33. // New order to train
34. Consumer<Dog> shake = Evaluator.generateEvalInvoker("dog.shake()",

Consumer.class, new String[] { "dog" }, Dog.class);
35. // Create a TrainedDog instance
36. Dog trainedDog = (Dog)

TrainedDog.newInstance();
37. // Set dog name
38. name = readLine("Name: ");
39. setName.accept(trainedDog, name);
40. // Test new functionality
41. order.accept(trainedDog, "shake");
42. train.accept(trainedDog, "shake", shake);
43. order.accept(trainedDog, "shake");

1. package example;
2.
3. import java.util.Map;
4. import java.util.HashMap;
5. import java.util.function.Consumer;
6.
7. public class TrainedDog extends Dog {
8.
9. private Map<String, Consumer<Dog>> trainedOrders =

new HashMap<String, Consumer<Dog>>();
10.
11. public void train(String order,

Consumer<Dog> action){
12. trainedOrders.put(order, action);
13. System.out.println(this.name + " learned "

+ order + " order");
14. }
15. public void order(String order){
16. Consumer<Dog> action = trainedOrders.get(order);
17. if(action != null) action.accept(this);
18. else System.out.println(this.name + " does nothing");
19. }
20. }

Code:
Name: Toby
Toby does nothing
Toby learned shake order
Toby: Shakes

Fig. 4. Dynamic evaluation of a Java file [9].

228 I. Lagartos et al.

modified. Although we modify the class implementation to provide the expected
abstraction, the implementation details (i.e., different class versions) are shown when
the programmer uses the Java reflection API.

We support an alternative reflection API to allow the use of introspection, main-
taining the abstraction provided to the user. Figure 6 shows an example use. The
Introspector class returns a Class instance reflecting the structure of the mod-
ified Dog. The rest of the code prints the interface implemented (Comparable) and
its super class (Pet). As shown in Fig. 6, the code is the same as with the Java
reflection API except for line 64. Besides, if the programmer needs to use the original
reflection API, it is still available.

45. // Create transaction
46. IntercessorTransaction addInterfaceTransaction = new IntercessorTransaction();
47. //Adds the Comparable<Dog> interface, specifying generic types
48. addInterfaceTransaction.addInterface(Dog.class, (Class<Comparable<Dog>>)Comparable.class);
49. //Adds a compareTo() method compatible with the Comparable<Dog> interface
50. addInterfaceTransaction.addMethod(Dog.class, "compareTo", MethodType.methodType(int.class,

Dog.class), "return this.name.compareTo(otherDog.name);", "otherDog");
51. // Execute transaction
52. addInterfaceTransaction.commit();

53. //Obtain a Dog list
54. List<Dog> dogs = getDogList();
55. //Sort as a Comparable (by dog name)
56. Evaluator.generateEvalInvoker(

"Collections.sort(dogs);",
Consumer.class, new String[] { "dogs" },
List.class).accept(dogs);

57. //Change the superclass of Dog
58. Intercessor.setSuperclass(Dog.class, Pet.class);
59. //Lambda expression to sort using pet age
60. Comparator<Pet> sortCriteria = (pet1, pet2) -> pet1.getAge() – pet2.getAge();
61. //Sort using Pet attributes, since now is our parent class
62. Evaluator.generateEvalInvoker("Collections.sort(pets, criteria);", BiConsumer.class,

new String[] { "pets", "criteria" }, List.class, Comparator.class).accept(dogs, sortCriteria);

1. public class Pet {
2. private String ownerName;
3. public String getOwnerName() {…}
4. public void setOwnerName(
5. String ownerName) {…}
6. private int age;
7. public int getAge() {…}
8. public void setAge(int age) {…}
9. }

Fig. 5. Dynamic inheritance.

63. //Access a dog class information
64. Class dogClass = Introspector.getClass(dogs.get(0));
65. try {
66. //Get current Dog implemented interfaces
67. Class [] introspectionInterfaces = dogClass.getInterfaces();
68. System.out.println(introspectionInterfaces[0]);
69. //Get current Dog superclass
70. Class introspectionSuperclass = dogClass.getSuperclass();
71. System.out.println(introspectionSuperclass);
72. } catch (Exception e) {
73. e.printStackTrace();
74. }

interface java.lang.Comparable
class Pet

Fig. 6. Alternative reflection API.

Towards a Java Library to Support Runtime Metaprogramming 229

3 Elements of the Library

3.1 Metaprogramming Services

After presenting an example, we detail the functionalities of the proposed library.
Regarding the dynamic modification of class structures, we provide:

• Adding, deleting and updating fields of classes and, thus, of all their running
instances. The update action means changing the field type.

• Replacing method implementations. Without modifying their signature, the body of
methods (their code) is replaced with a new one.

• Adding, deleting and updating methods (including their implementations). As with
fields, updating means changing the method signature. Adding methods include
overloading their implementation (as in Fig. 3).

• Adding and removing interfaces implemented by a class. To successfully add an
interface, the class must implement all the declared methods in the interface. If so,
the class type will promote to the interface type (polymorphism).

• Changing and removing the super class of a concrete class. After changing the base
class, the compiler dynamically ensures that the type system rules are fulfilled (e.g.,
avoid accessing the methods inherited from its previous base class). Removing a
base class means changing the existing one to Object.

• Introspection. All these primitives are complemented by an additional implemen-
tation of the Java reflection API, which considers the new fields, methods, base
class and implemented interfaces of the classes adapted at runtime.

The metaprogramming services are applied to classes. Evolving a class implies the
dynamic adaptation of its instances. Since Java is a class-based language [16], we do
not provide the dynamic adaptation of a single object. That possibility is not included
in the Java type system and, as mentioned, we want to take advantage of the benefits of
its static type system.

Regarding dynamic code evaluation, our library provides the following services:

• Dynamic evaluation of expressions. This is the traditional eval functionality
provided by most dynamic languages. Only one single expression is evaluated, and
its value is returned. The expression may access any element of the running
application.

• Dynamic execution of Java code. We provide the execution of either a sequence of
statements or the contents of a Java file. As before, the code may depend on the
runtime environment.

3.2 Runtime Adaptation

To describe the elements of the library, we explain how the system behaves at runtime,
when the example in Sect. 2 is executed. Figure 7 [9] shows the runtime steps for that
example.

One of the issues when implementing the proposed library is that the JVM does not
allow reloading classes dynamically [17]. Once a class is loaded into memory, its code

230 I. Lagartos et al.

cannot be changed. The only exception is the capability of modifying method imple-
mentations, added in Java 5 with the instrument package (HotSwap). For this
reason, we propose a system based on creating new class versions at runtime.

Every time a class is modified with our library, a new class version is created and
loaded at runtime. The new class version holds all the changes made to the previous
version. If those changes are collected in one transaction, only one new version is
created regardless the number of class modifications.

Every class should provide a link to its last updated version, so we add a
_newVersion private field to all the classes (Fig. 7). To perform this field
addition transparently to the user, we customize the Java ClassLoader with new
ClassFileTransformers to modify all the classes at load time, using the Java
Agents API added to Java 5 [18]. This process is done at load time, so there is no
runtime performance penalty when the JVM reaches a steady state [19].

The first prototype of our library requires the source code of the applications (once
it is mature enough, we will work at the JVM binary code level). Figure 7 shows how
the source code of every class version is stored. Using this source code storage,
changes to the classes are implemented by changing the source code, recompiling and
loading them into memory.

When the user modifies the Dog class, a new version Dog_NewVersion_1 is
generated. This new class holds the last version of the original Dog class. The
_newVersion field of Dog instances will be updated at runtime. This field update is
performed lazily, when the object is first accessed after class adaptation. In that
moment, the _newVersion reference is updated, and the object state is transferred to
the new class version (Dog_NewVersion_1). This process consumes extra execu-
tion time, but it is performed only once per instance.

One issue is how we manage to replace the existing code accessing Dog fields with
code that accesses the corresponding fields in the last class version. This is done by
using the invokedynamic bytecode added to Java 7 [20]. Our ClassLoader

Fig. 7. Runtime steps for adapting the Dog class [9].

Towards a Java Library to Support Runtime Metaprogramming 231

replaces all the field access bytecodes with invokedynamic. Therefore, we can
change the functionality of field access with Java 7 MutableCallSites. We use the
JINDY API to utilize invokedynamic from the Java language, getting rid of writing
JVM assembly code [15].

Another issue is how we manage to replace method invocations with invocations to
the new class version (recall that the last version holds the actual state of the objects,
i.e. the appropriate this). We first modify the implementation of every method in
Dog, using the instrument Java 5 package. The new code will simply invoke
another method in Dog_NewVersion_1: bark calls _bark_invoker, shake
calls _shake_invoker, and so on (see Fig. 8). The purpose of those invoker
methods is to implement the lazy object state transfer and _newVersion update
described above. After doing this update (only once per instance), the last method
version (e.g., bark and shake) is called in Dog_NewVersion_1. In this way, if a
method in an updated class is called, it will call the corresponding invoker in the last
class version; if necessary, object state is transferred; and then the last method version
is called.

When the programmer adapts an already adapted class (e.g., Fig. 3) a new
Dog_NewVersion_2 is created, compiled and loaded (Fig. 7). The _newVersion
of both the original Dog and Dog_NewVersion_1 will be lazily updated to the last
class version. Similarly, all the method bodies will be replaced with direct invocations
to the invokers in the last class version. The purpose is that, once instance states have
been transferred, the runtime performance cost does not depend on the number of class
versions. Figure 8 [9] shows the runtime structure of classes after performing the two
class modifications in Figs. 2 and 3. After updating all the instances of the first version,
Dog_NewVersion_1 is useless.

3.3 Dynamic Code Evaluation

Figures 3 and 4 show how our library provides dynamic code evaluation. If we just
need the dynamic evaluation of an expression (Fig. 3), the library creates a temporary
class with a method that implements that expression. We need to provide a mechanism

Dog
+ _newVersion

+ bark()
+ shake()

Dog_NewVersion_1
+ _newVersion
+ name

+ _name_fieldGetter(Dog)
+ _name_fieldSetter(Dog, String)
+ bark()
+ _bark_invoker(Dog)
+ shake()
+ _shake_invoker(Dog)
+ _creator(Dog)

TrainedDog
+ trained

+ train(String, Consumer)
+ order(String)

Dog_NewVersion_2
+ _newVersion
+ name

+ _name_fieldGetter(Dog)
+ _name_fieldSetter(Dog, String)
+ bark()
+ _bark_invoker(Dog)
+ bark(int)
+ _bark_invoker(Dog, int)
+ shake()
+ _shake_invoker(Dog)
+ _creator(Dog)

Fig. 8. Runtime structure of the existing class versions after using structural intercession [9].

232 I. Lagartos et al.

to execute that dynamically generated code, following the Java type system. For this
purpose, we make the dynamically generated class to implement one of the “func-
tional” interfaces added in Java 8 (function package) [13]. In this way, the interface
provides the specific type of the expression to be evaluated.

For evaluating a sequence of statements, we follow a similar approach: the method
body is the code provided by the user, and void is the returned type. For a whole class
(Fig. 4), we just place the code in a Java source file and compile it.

As mentioned, class adaptation is achieved by modifying the application source
code. However, code manipulation is not an easy task. To distinguish the elements in a
program, code should be represented with tree- or graph-based data structures such as
AST (Abstract Syntax Trees) [21]. To manipulate classes (add, remove or update fields
and methods) we used the JavaParser tool (Fig. 7) [22]. It allows us to take Java code,
obtain its AST, modify it, and regenerate the output Java code. Then, we simply call the
JavaCompiler class added in Java 6.

In the dynamic evaluation of code, there is an important issue that should be
considered. When programmers are writing code to be evaluated dynamically, they are
not aware of the different class versions. Our library provides programmers the
abstraction that the Dog class is being dynamically changed. For example, the pro-
grammer may be interesting in running the code dog.setName(“Rufus”). How-
ever, if this code is evaluated, it will prompt a type error since Dog has no setName
method (Dog_NewVersion_1 does).

Therefore, we need to perform some changes in the code to be evaluated at runtime.
Those changes are related to the types: if the code is accessing a new member added to a
type, its last version must be used instead of the original one. We, thus, need to know the
type of every expression to be evaluated dynamically (the type of dog in our example).
At the implementation level, we just replace setName with setName_invoker,
since the latter method always calls the last version.

To perform these changes when code is about to be dynamically evaluated, we use
the Polyglot front-end compiler for building Java language extensions [23]. Following
the Visitor design pattern [24], we traverse the AST and replace those method invo-
cations which types have evolved. Finally, we generate the modified code, compile it
and load it into memory.

3.4 Dynamic Inheritance

Dynamic inheritance allows changing both the interfaces implemented by one class and
its super class. We implement these two functionalities by extending the class ver-
sioning mechanism described in the previous section.

Figure 9 shows the runtime adaptation for the code in Fig. 5. When the
addInterface method is called, a new Dog version (Dog_NewVersion_3)
implementing Comparable is created. Dog instances will be updated to this new
version, using the lazy state transfer mechanism described in Sect. 3.2. The new Dog
version now promotes to Comparable. Dynamically evaluated code uses this last
version, utilizing the Polyglot source code program transformations described in the
previous section.

Towards a Java Library to Support Runtime Metaprogramming 233

removeInterface is implemented following the same mechanism. The Java
type system ensures that a class does not promote to an interface that is no longer
implemented.

Figure 9 also shows how the Dog super class is changed to Pet. Its version 4 is
implemented with another new class, inheriting from Pet. This new version can access
and override the inherited members. The new fields are initialized with the default
values described in the Java language specification [25].

3.5 Introspection Services

We create a new version when a class is modified, giving the abstraction that the class
structure is actually changed. However, the Java reflection API reflects the imple-
mentation level of existing classes. If the Java reflection API is used to inspect an
adapted class, different class versions will be reflected instead of the last version of the
modified class.

We propose a new introspection API supporting the high-level abstraction of
modifiable classes. To this aim, we use the Decorator design pattern that provides the
same classes as the original API (e.g., Class, Field and Method) with an extended
behavior (Fig. 10). Our reflection API provides its services through the Intro-
spector class, which consults the information of the existing class versions in
memory. Once the last version of the class is obtained, its runtime structure is consulted
with the Java reflection API. If the class has not been modified, the decorator simply
calls the original class representation in the Java reflection API, following the Proxy
design pattern [24].

Dog_NewVersion_3
+ _newVersion
+ name
+ bark()
+ bark(int)
+ shake()
+ compareTo(Dog)
...

Pet
+ ownerName
+ age
+ getName()
+ setName(String)
+ getAge()
+ setAge(int)

Dog_NewVersion_4
+ _newVersion
+ name
+ bark()
+ bark(int)
+ shake()
+ compareTo(Dog)
...

Comparable<Dog>
+ compareTo(Dog)

Dog
+ _newVersion

+ bark()
+ shake()

Fig. 9. Runtime structure of the existing class versions after using dynamic inheritance.

234 I. Lagartos et al.

4 Related Work

4.1 Structural Intercession

There are different works aimed at adding structural intercession to Java. Most of them
are based on modifying the implementation of the JVM.

Würthinger et al. modify the JVM to allow the dynamic addition and deletion of
class members [26]. They also support changing the class hierarchy at runtime. They
ensure the type rules of the Java type system, and they verify the correct state of the
program execution. After the adaptation, runtime performance is penalized by 15%, but
this value converges to 3% when the JVM reaches a steady state [10]. This is currently
the reference implementation of the HotSwap functionality included in JSR 292, which
was not finally included in the standard platform [27].

JVOLVE is another implementation of the JVM to support evolving Java applications
to fix bugs and add features [28]. JVOLVE allows adding, deleting and replacing fields
and methods anywhere within the class hierarchy. They modify the class loader, JIT
compiler and garbage collector of the JVM to provide those services. To adapt the
running applications, JVOLVE stops program execution in a safe point and then performs
the update. Class adaptation is controlled by transformer functions that can be cus-
tomized by the user.

Iguana/J extends the JVM to provide behavioral reflection at runtime [29]. The
programmer may intercept some Java operations such as object creation, method
invocation and field access. The new behavior is specified by the user, and a

ClassVersions

+ getLastVersionOf(String):Class

java.lang.reflect

Method

Field

Class

jmplib.reflect

<<Decorator>>

Method

<<Decorator>>

Field

<<Decorator>>

Class

//Obtain the Class object
Class dogClass = Introspector.getClass(dogs.get(0));
...
Method m = dogClass.getMethod("bark", int.class);
...

Introspector
getClass(Object):Class

jmplib.sourcecode
Dog_NewVersion_1

Dog_NewVersion_4

..
.

Fig. 10. Alternative reflection API.

Towards a Java Library to Support Runtime Metaprogramming 235

Meta-Object Protocol (MOP) adapts the application execution at runtime. When a
MOP is associated to an object, it handles the operations against that object and
provides the services to adapt its execution. Each modifiable operation is represented
with one MOP class that the programmer has to extend to define the expected runtime
adaptations. The MOP classes and objects are compiled following the Java type
system.

Java Distributed Runtime Update Management System (JDRUMS) is a client-server
system that allows changing a runtime program and adding more functionality to it
[30]. Servers provide the update services to the clients, which run in the JDRUMS virtual
machine. That virtual machine is a JVM extension that provides distributed dynamic
updates [31]. Those updates modify the existing classes distributed as a deployment kit.
For each updated class, a new version is created. Every time an instance of an old
version is used, a new instance of the new version is created, its state is transferred to
the new object, and the reference is updated. Object migration is controlled by a class
that is included in the deployment kit.

In [32], class structures are dynamically modified, by changing the implementation
of the JVM and creating a new ClassLoader. That new class loader provides the
dynamic loading of modified classes, replacing the existing ones (a functionality that is
not included in the standard JVM). The instances of the adapted classes can evolve in
three different ways: no instance is modified, some of them are (depending on user-
defined criteria), and all of them are adapted.

The following works provide some runtime adaptability with frameworks, without
modifying the JVM. Pukall et al. propose unanticipated runtime adaptation, adapting
running programs depending on unpredictable requirements [17]. They propose a
system based on class wrappers and two roles: caller (service clients) and callee
(service providers). A callee is a class wrapper that provides runtime adaptation. They
provide services to access the original class. The implementation of those services are
changed using the instrument Java 5 package. The callers are aimed at replacing
invocations to an object with invocations to the appropriate callee wrapper.

DUSC (Dynamic Updating through Swapping of Classes) is a technique is based on
the use of proxy classes, requiring no modification of the runtime system [33]. As in the
previous paragraph, the main Java technology used to change method implementation
at runtime is HotSwap. DUSC performs the static modification of classes to allow its
later adaptation (making them swapping-enabled). They allow adding and deleting
classes, but modified ones must maintain their interface (private methods and fields
can be modified). Another noteworthy limitation is that non-public fields cannot be
accessed from outside the class.

Rubah is another framework for the dynamic adaptation of Java applications [34].
When a new dynamic update is available, they load the new versions of added or
changed classes at runtime, and perform a full garbage collection (GC) of the program
to modify the running instances. The JVM is not modified. Instead, they implement an
application-level GC traversal using reflection and some class-level rewriting. To
update an application with Rubah, the programmer has to specify the update points,
write the control flow migration, and detail the program state migration.

JRebel is a tool to skip the time-consuming build and redeploy steps in the Java
development process, allowing programmers to see the result of code changes instantly,

236 I. Lagartos et al.

without stopping application execution [35]. Modified classes are recompiled and
reloaded in the running application. JRebel allows changes in the structure of classes.
Classes are instrumented with a native Java agent using the JVM Tool Interface, and a
particular class loader. Each class is changed to a master class and different support
anonymous classes that are dynamically JIT compiled [36]. JRebel does not check that
the whole application has no type errors. Thus, application execution crashes when
changes in a class imply errors in a program (e.g., a method is removed and it is later
invoked).

MetaML is a statically typed programming language that supports program
manipulation [37]. It allows the programmer to construct, combine and execute code
fragments in a type safe manner. In this way, dynamically evaluated programs do not
produce type errors. MetaML does not support the manipulation of dynamically
evaluated code; i.e., evaluation of code represented as a string, unknown at compile
time. Therefore, its metaprogramming features cannot be used to adapt applications to
new requirements emerged after their execution.

4.2 Dynamic Inheritance

CLOS (Common Lisp Object System) is a Lisp extension for object-oriented pro-
gramming. It is part of the ANSI Common Lisp and provides intercession and dynamic
inheritance [38]. Classes can be redefined by evaluating a new defclass form. When
a class is redefined, the changes are propagated to its instances and to the instances of
any of its subclasses. Class redefinition provides the functionality of changing the
inheritance tree by declaring a different parent. Instance updating occurs using an eager
or a lazy approach depending on the language implementation [39].

The Smalltalk approach to implementing class-based dynamic inheritance is quite
similar to that of CLOS. The superclass: message is used to dynamically modify
the class inheritance tree [40]. When a class definition changes, the existing instances
are also structurally modified (by the Class-Builder class) in order to match the
definition of their new class. Smalltalk also provides the functionality to change the
type of an object with the changeClassTo method. However, this semantics is not
followed in every implementation. Both VisualWorks [41] and Dolphin Smalltalk [42]
impose the same restriction on the type change primitive: both the new and old classes
must define the same physical structure for their instances [43].

The concept of wide classes is an extension of the class-based model, allowing
instances to be temporarily widened, extending their structure and behavior [44]. The
widening operation on a single instance allows it to be temporarily transformed into an
instance of a special subclass (a wide class). This approach also defines the opposite
operation (shrinking an instance), which reshapes the instance to its original class.
Widened objects preserve the subtyping relationship, since wide classes are always
derived from the original class of the instance. It is possible to widen an object with two
disjoint sets of messages and, depending on runtime values, to pass those recently
added messages. Since wide classes should be explicitly declared, the type of an
instance cannot be widened to an arbitrary subclass. This approach was implemented in
the Bigloo programming language, an open implementation of Scheme [45].

Towards a Java Library to Support Runtime Metaprogramming 237

FickleII is a small class-based language that supports the type change primitive of
dynamic inheritance to demonstrate how this feature could be introduced in an
imperative, statically typed, class-based, object-oriented language [46]. They define a
type change primitive as dynamic object reclassification: a programming language
feature that allows an object to change its class membership at runtime while retaining
its identity. In FickleII, a class definition may be preceded by the keywords root or
state. Class reclassification can only occur within a hierarchy rooted with a root
class. state classes are subclasses of root classes and they are the only ones that can
be reclassified. Classes that are neither root nor state are respected by reclassifi-
cation [47]. The FickleII implementation of object reclassification offers an advantage
over similar approaches (such as wide classes): FickleII is type-safe, i.e., any type-
correct program (in terms of the type system) is guaranteed never to attempt to access
non-existing fields or methods [48].

ЯRotor [16] extends the object model of an efficient class-based virtual machine
with prototype-based semantics, so that it can directly support both prototype- and
class-based object oriented languages. Consequently, an important runtime perfor-
mance improvement is obtained by using the virtual machine JIT compiler, while
providing a direct interoperation between languages. By using this hybrid object model
this virtual machine allows modifying the structure of both classes and objects.
Additionally, dynamic inheritance primitives such as changes in the class inheritance
tree and instance type changes are also implemented for both class- and prototype-
based languages. Any language can take benefit of these additional VM features when
implemented over this virtual machine. Access to these functionalities are provided to
legacy languages using a library [6].

4.3 Java Reflection API

There exist some projects that enhance the capabilities of the Java reflection API.
Reflections is able to scan a project classpath to perform queries against class
metainformation at runtime [49]. These queries allow managing class information in
ways that are not provided by the standard reflection API. Examples are getting the
subtypes of a certain class, the types and members annotated with a concrete annota-
tion, the resources matching a regular expression, and the methods with a specific
signature, parameters, annotations and return type.

XStream is a library to serialize and deserialize Java objects to XML documents
[50]. The developers detected that the Java reflection API does not provide all the
information required to allow the later deserialization of classes and objects. For that
reason, they implemented an enhanced version of the Java API. This enhanced version
uses undocumented internal Java runtime classes to recreate more types of instances. Its
implementation access internal native representations of the JVM, making it specific to
a few virtual machine versions and implementations [50].

Cglib is a high-level library to generate and transform Java byte code [51]. It has
been used to implement some AOP and testing tools. Its Enhancer class provides the
dynamic generation of new classes deriving from existing classes, aimed to modify the
behavior of the types overridden. The new dynamically generated classes allow method
interception by means of the dynamic binding implemented by the Java platform. The

238 I. Lagartos et al.

reflection API is replicated by another one that provides similar types (e.g., Fas-
tClass and FastMethod) with better runtime performance [52].

5 Conclusions

We propose the design of a library aimed at providing structural intercession, dynamic
inheritance, and dynamic code evaluation services for the Java platform and language.
Our approach uses standard Java libraries, so we modify neither the Java virtual
machine nor the language implementation. The metaprogramming services increase the
runtime adaptability of Java without losing the benefits of its static type system. In this
way, our library allows programmers to adapt their running applications while main-
taining the robustness of the Java type system. Runtime adaptation has a runtime
performance penalty that we are now measuring. We think that penalty will nearly
negligible when the JVM reaches a steady state after application adaptation.

We have already implemented a proof-of-concept prototype that successfully
executes the structural intercession and dynamic code evaluation examples shown in
this article. Currently, it requires the use of Java source code.

Our next step is to add dynamic inheritance allowing the runtime adaptability of
class hierarchies, and add the proposed modifications to the reflection API. Then, apply
heavy optimizations to improve its steady state execution. The last step of the project is
to allow the dynamic adaptation of whole applications that have been modified and
recompiled, adapting running Java applications with a new recompiled version.

Acknowledgements. This work has been funded by the European Union, through the European
Regional Development Funds (ERDF); and the Principality of Asturias, through its Science,
Technology and Innovation Plan (grant GRUPIN14-100). We have also received funds from the
Banco Santander through its support to the Campus of International Excellence.

References

1. Redondo, J.M., Ortin, F.: A comprehensive evaluation of widespread python implemen-
tations. IEEE Softw. 32(4), 76–84 (2015)

2. Ortin, F., Cueva, J.M.: Implementing a real computational-environment jump in order to
develop a runtime-adaptable reflective platform. ACM SIGPLAN Not. 37(8), 35–44 (2002)

3. Ortin, F., Cueva, J.M.: Non-restrictive computational reflection. Comput. Stand. Interfaces
25(3), 241–251 (2003)

4. Paulson, L.D.: Developers shift to dynamic programming languages. IEEE Comput. 40(2),
12–15 (2007)

5. Meijer, E., Drayton, P.: Dynamic typing when needed: the end of the cold war between
programming languages. In: Proceedings of the OOPSLA Workshop on Revival of Dynamic
Languages (2004)

6. Ortin, F., Labrador, M.A., Redondo, J.M.: A hybrid class- and prototype-based object model
to support language-neutral structural intercession. Inf. Softw. Technol. 56(2), 199–219
(2014)

Towards a Java Library to Support Runtime Metaprogramming 239

7. Garcia, M., Ortin, F., Quiroga, J.: Design and implementation of an efficient hybrid dynamic
and static typing language. Softw. Pract. Experience 46(2), 199–226 (2016)

8. Quiroga, J., Ortin, F., Llewellyn-Jones, D., Garcia, M.: Optimizing runtime performance of
hybrid dynamically and statically typed languages for the .Net platform. J. Syst. Softw. 113,
114–129 (2016)

9. Lagartos, I., Redondo, J.M., Ortin, F.: Towards the integration of metaprogramming services
into Java. In: Proceedings of the 12th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), Porto, Portugal, pp. 277–284 (2017)

10. Würthinger, T., Wimmer, C., Stadler, L.: Unrestricted and safe dynamic code evolution for
Java. Sci. Comput. Program. 78(5), 481–498 (2013)

11. Redondo, J.M., Ortin, F., Cueva, J.M.: Optimizing reflective primitives of dynamic
languages. Int. J. Softw. Eng. Knowl. Eng. 18(6), 759–783 (2008)

12. Ortin, F., Diez, D.: Designing an adaptable heterogeneous abstract machine by means of
reflection. Inf. Softw. Technol. 47(2), 81–94 (2005)

13. Oracle, function package, Java Platform SE 8 https://docs.oracle.com/javase/8/docs/api/java/
util/function/package-summary.html. Accessed 23 June 2017

14. Ortin, F., Conde, P., Fernandez-Lanvin, D., Izquierdo, R.: The runtime performance of
invokedynamic: an evaluation with a Java library. IEEE Softw. 31(4), 82–90 (2014)

15. Conde, P., Ortin, F.: Jindy: a Java library to support invokedynamic. Comput. Sci. Inf. Syst.
11(1), 47–68 (2014)

16. Redondo, J.M., Ortin, F.: Efficient support of dynamic inheritance for class- and prototype-
based languages. J. Syst. Softw. 86(2), 278–301 (2013)

17. Pukall, M., Kästner, C., Saake, G.: Towards unanticipated runtime adaptation of Java
applications. In: 15th Asia-Pacific Software Engineering Conference, pp. 85–92 (2008)

18. Oracle, instrument package, Java Platform SE 8. https://docs.oracle.com/javase/8/docs/api/
java/lang/instrument/package-summary.html. Accessed 23 June 2017

19. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance evaluation.
In: Object-Oriented Programming Systems and Applications, OOPSLA 2007, NY, USA,
pp. 57–76 (2007)

20. Oracle, Java Virtual Machine Support for Non-Java Languages. http://docs.oracle.com/
javase/7/docs/technotes/guides/vm/multiple-language-support.html. Accessed 23 June 2017

21. Ortin, F., Zapico, D., Cueva, J.M.: Design patterns for teaching type checking in a compiler
construction course. IEEE Trans. Educ. 50(3), 273–283 (2007)

22. JavaParser, Process Java code programmatically. http://javaparser.org. Accessed 23 June
2017

23. Polyglot, A compiler front end framework for building Java language extensions. https://
www.cs.cornell.edu/projects/polyglot. Accessed 23 June 2017

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional (1994)

25. Oracle, Java Language and Virtual Machine Specifications. https://docs.oracle.com/javase/
specs. Accessed 23 June 2017

26. Würthinger, T., Wimmer, C., Stadler, L.: Dynamic code evolution for Java. In: Proceedings
of the 8th International Conference on the Principles and Practice of Programming in Java,
NY, USA, pp. 10–19 (2010)

27. Oracle, JSR 292, supporting dynamically typed languages on the Java platform. https://
www.jcp.org/en/jsr/detail?id=292. Accessed 23 June 2017

240 I. Lagartos et al.

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html
http://javaparser.org
https://www.cs.cornell.edu/projects/polyglot
https://www.cs.cornell.edu/projects/polyglot
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://www.jcp.org/en/jsr/detail?id=292
https://www.jcp.org/en/jsr/detail?id=292

28. Subramanian, S. Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-centric
approach. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, NY, USA, pp. 1–12 (2009)

29. Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of application
behaviour. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 205–230. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7_9

30. Andersson, J., Ritzau, T.: Dynamic code update in JDrums. In: Proceedings of the ICSE
2000 Workshop on Software Engineering for Wearable and Pervasive Computing (2000)

31. Andersson, J.: A deployment system for pervasive computing. In: International Conference
on Software Maintenance Proceedings, pp. 262–270 (2000)

32. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Fritz Barnes, J.: Runtime support for type-safe
dynamic Java classes. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 337–361.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45102-1_17

33. Orso, A., Rao, A., Harrold, M.J.: A technique for dynamic updating of Java software. In:
Proceedings of the International Conference on Software Maintenance, pp. 649–658 (2002)

34. Pina L., Hicks, M.: Rubah: efficient, general-purpose dynamic software updating for Java.
In: The 5th Workshop on Hot Topics in Software Upgrades (2013)

35. JRebel, Zero Turnaround JRebel, Reload code changes instantly, https://zeroturnaround.
com/software/jrebel. Accessed 23 June 2017

36. Kabanov, J.: Reloading Java Classes 401: HotSwap and JRebel — Behind the Scenes. Zero
Turnaround. https://zeroturnaround.com/rebellabs/reloading_java_classes_401_hotswap_
jrebel. Accessed 23 June 2017

37. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annotations.
Theor. Comput. Sci. 248(1–2), 211–242 (2000)

38. DeMichiel, Linda G., Gabriel, Richard P.: The common lisp object system: an overview. In:
Bézivin, J., Hullot, J.-M., Cointe, P., Lieberman, H. (eds.) ECOOP 1987. LNCS, vol. 276,
pp. 151–170. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47891-4_15

39. Miller, F.P., Vandome, A.F., McBrewster, J.: Common Lisp: Lisp (programming language).
In: Programming Language, American National Standards Institute, Specification (Technical
Standard), Free and Open Source Software, Programming Paradigm. Alphascript publishing,
Mauritius (2010)

40. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation. Addison-
Wesley Longman Publishing Co. Inc., Boston (1983)

41. Cincom, Visualworks Smalltalk Homepage. http://www.cincomsmalltalk.com/main/
products/visualworks. Accessed 23 June 2017

42. ObjectArts, Dolphin Smalltalk Official Homepage. http://www.object-arts.com. Accessed 23
June 2017

43. Rivard, F.: Smalltalk: a reflective language. In: Proceedings of Reflection 1996, pp. 21–38
(1996)

44. Serrano, M.: Wide classes. In: Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 391–
415. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48743-3_18

45. Serrano, M.: Bigloo: A Practical Scheme Compiler. User Manual for Version 3.8a (2012).
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo.pdf

46. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: Fickle: dynamic object
re-classification. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 130–149.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7_8

Towards a Java Library to Support Runtime Metaprogramming 241

http://dx.doi.org/10.1007/3-540-47993-7_9
http://dx.doi.org/10.1007/3-540-45102-1_17
https://zeroturnaround.com/software/jrebel
https://zeroturnaround.com/software/jrebel
https://zeroturnaround.com/rebellabs/reloading_java_classes_401_hotswap_jrebel
https://zeroturnaround.com/rebellabs/reloading_java_classes_401_hotswap_jrebel
http://dx.doi.org/10.1007/3-540-47891-4_15
http://www.cincomsmalltalk.com/main/products/visualworks
http://www.cincomsmalltalk.com/main/products/visualworks
http://www.object-arts.com
http://dx.doi.org/10.1007/3-540-48743-3_18
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo.pdf
http://dx.doi.org/10.1007/3-540-45337-7_8

47. Ancona, D., Anderson, C., Damiani, F., Drossopoulou, S., Giannini, P., Zucca, E.: A type
preserving translation of Flickle into Java. Electron. Notes Theor. Comput. Sci. 62, 69–82
(2002)

48. Ancona, D., Anderson, C., Damiani, F., Drossopoulou, S., Giannini, P., Zucca, E.: A
provenly correct translation of Fickle into Java. ACM Trans. Program. Lang. Syst. 29, 1–67
(2007)

49. Reflections, Java runtime metadata analysis. https://github.com/ronmamo/reflections.
Accessed 23 June 2017

50. XStream, XStream Homepage. http://x-stream.github.io/index.html. Accessed 23 June 2017
51. Cglib, Byte Code Generation Library Homepage. https://github.com/cglib/cglib. Accessed

23 June 2017
52. Winterhalter, R.: Cglib: the missing manual. http://mydailyjava.blogspot.com.es/2013/11/

cglib-missing-manual.html. Accessed 23 June 2017

242 I. Lagartos et al.

https://github.com/ronmamo/reflections
http://x-stream.github.io/index.html
https://github.com/cglib/cglib
http://mydailyjava.blogspot.com.es/2013/11/cglib-missing-manual.html
http://mydailyjava.blogspot.com.es/2013/11/cglib-missing-manual.html

Design Approaches for Critical Embedded
Systems: A Systematic Mapping Study

Daniel Feitosa1, Apostolos Ampatzoglou1, Paris Avgeriou1(&),
Frank J. Affonso2, Hugo Andrade3, Katia R. Felizardo4,

and Elisa Y. Nakagawa5

1 Department of Mathematics and Computer Science,
University of Groningen, Groningen, The Netherlands

{d.feitosa,a.ampatzoglou}@rug.nl, paris@cs.rug.nl
2 Department of Statistics, Applied Mathematics and Computation,

São Paulo State University (UNESP), Rio Claro, Brazil
frank@rc.unesp.br

3 Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden

sica@chalmers.se
4 Department of Computing, Federal Technological University of Paraná,

Cornélio Procópio, Brazil
katiascannavino@utfpr.edu.br

5 Department of Computer Systems, University of São Paulo, São Carlos, Brazil
elisa@icmc.usp.br

Abstract. Critical Embedded Systems (CES) are systems in which failures are
potentially catastrophic and, therefore, hard constraints are imposed on them. In
the last years the amount of software accommodated within CES has consid-
erably changed. For example, in smart cars the amount of software has grown
about 100 times compared to previous years. This change means that software
design for these systems is also bounded to hard constraints (e.g., high security
and performance). Along the evolution of CES, the approaches for designing
them are also changing rapidly, so as to fit the specialized needs of CES. Thus, a
broad understanding of such approaches is missing. Therefore, this study aims to
establish a fair overview on CESs design approaches. For that, we conducted a
Systematic Mapping Study (SMS), in which we collected 1,673 papers from five
digital libraries, filtered 269 primary studies, and analyzed five facets: design
approaches, applications domains, critical quality attributes, tools, and type of
evidence. Our findings show that the body of knowledge is vast and overlaps
with other types of systems (e.g., real-time or cyber-physical systems). In
addition, we have observed that some critical quality attributes are common
among various application domains, as well as approaches and tools are
oftentimes generic to CES.

Keywords: Systematic mapping study � Critical embedded system
Design

© Springer International Publishing AG, part of Springer Nature 2018
E. Damiani et al. (Eds.): ENASE 2017, CCIS 866, pp. 243–274, 2018.
https://doi.org/10.1007/978-3-319-94135-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94135-6_12&domain=pdf

1 Introduction

Critical Embedded Systems (CESs) are among the most significant types of software-
intensive systems, since they are extremely pervasive in modern society, being used
from cars to power plants [1]. CESs are embedded systems in which runtime errors can
potentially be catastrophic [2], causing serious damage to the environment or to human
lives, or non-recoverable material and financial losses [3, 4]. Due to the criticality of
such systems, the satisfaction of multiple quality constraints must be guaranteed. This
is far from trivial, as it entails complex trade-offs, which to a large extent concern
safeguarding the levels of critical against other non-critical qualities [5, 6]. As critical
quality attributes (CQAs), we characterize qualities that, when not satisfied, may lead to
catastrophic failures, as the aforementioned ones; typical examples are performance,
security and reliability.

Engineering CES is particularly challenging, since it needs to guarantee the satis-
faction of various critical qualities. One of the key solutions to alleviate this challenge
is to design a sound architecture and validate it against the critical quality attributes. To
this end, multiple approaches have been proposed, solving a variety of specific design
problems. However, the plethora and diversity of available solutions has led to a
difficulty on understanding, applying or even extending and combining such approa-
ches. Thus, in order to support researchers and practitioners on CES design, it is
important to have a comprehensive understanding of this field. To contribute towards a
better understanding of design approaches for CES, we have conducted a systematic
mapping study; this is a commonly used approach for assessing and describing the state
of the art in a specific domain or problem (see Sect. 3 for more details). The contri-
butions of this study are the following: (a) a classification of the existing approaches to
design CES; (b) a list of tools for supporting existing approaches; (c) a list of domains
for which approaches have been developed and used; (d) a list of the most commonly
identified CQAs in the CES design; and (e) a classification of these approaches, based
on the level of their empirical evidence.

2 Related Work

This section describes related Systematic Literature Reviews (SLRs) or Systematic
Mapping Studies (SMSs), also known as secondary studies. To the best of our
knowledge, there are no studies that focus on exactly the same topic as ours, i.e.,
designing of CESs. Thus, we searched for related work such as SMSs and SLRs that
cover the entire software development process of CES, or a specific phase.

2.1 Development Processes

We identified two studies that discuss software development processes and are related
to CESs [7, 8]. Although such processes do not focus or limit themselves to the design
phase, they do have impact on the design phase. Cawley et al. [7] investigated
Lean/Agile development processes on safety-critical systems, focusing on medical
devices. For this purpose, an SLR based on the guidelines of Kitchenham and Charters

244 D. Feitosa et al.

[9] was performed. The results of the SLR suggest that Lean/Agile methodologies are
appropriate for the development of safety-critical systems, as they support several
practices for regulated safety-critical domains (e.g., traceability and testing). However,
the results also suggest a lack of adoption of Lean/Agile methods in these domains.
This is not surprising as regulated environments typically involve activities that are not
commonly used in these processes. Eklund and Bosch [8] investigated a holistic model
for aligning software development processes with the architecture of embedded soft-
ware. As part of this study, an SMS on development approaches for embedded systems
was performed (based on the guidelines of Kitchenham and Charters [9]). The results
of the study suggest that there is no single most common approach (or set of
approaches) but, approaches are tailored for specific domains or products and may have
different characteristics (e.g., incorporating agile practices). Despite the high cus-
tomization of processes, the authors have been able to identify some similarities, e.g.
activities are often executed sequentially and follow a V-model - [10] or stage-gate-like
[11] process. In addition, the architectures created from these processes are often
focused on supporting specific quality attributes, which are typically domain-specific
(e.g., dependability for the space domain). Based on the identified approaches, the
authors derived five archetypical developments processes, with their respective char-
acteristics, aiming to support selection or migration between concrete archetypal
development approaches.

2.2 Verification and Validation

Not all activities in the verification and validation of critical embedded software (V&V)
are related to its design. However, a significant part concerns the verification and
validation of design and are, therefore, relevant to the design phase. We identified two
secondary studies that discuss aspects of V&V and are related to CES [12, 13]. Barbosa
et al. [12] investigated software testing of CESs, checking the compliance level with
the standard DO-178B, for the aviation industry. The aim was to identify primary
studies that could be used to create a methodology for testing of CES. For this purpose,
a SLR, based on Dybå and Dingsøyr [14], was performed to identify studies that
implemented or applied V&V techniques in the context of CES. The results suggest
that four techniques (functional, structural, mutation and model-based testing) are
widely applied for testing of CES, from which the most recurrent technique is func-
tional testing. In addition, all testing requirements of DO-178B have been investigated,
with “structural coverage analysis” (e.g., dead code and deactivated code) being the
most addressed requirement, likely due to its inherent complexity. Elberzhager et al.
[13] investigated quality assurance techniques (i.e., analysis or test approaches) applied
to Matlab Simulink models. These models are used in embedded software design,
especially in critical domains. The aim was to develop an approach able to integrate
different quality assurance techniques. For this purpose, an SMS was performed based
on the guidelines of Petersen et al. [15], which presented different analysis and test
techniques as well as some combined approaches. The results of the study suggest that
formal methods, properties checking (e.g., rule-based analysis) and automatic test
generation are the most common approaches for performing quality assurance for

Design Approaches for Critical Embedded Systems 245

embedded systems. The results also suggest a lack of research on combining analysis
techniques with testing techniques for such models.

2.3 Software Architecture

The activity of architecture design for embedded systems was investigated by Antonio
et al. [16], which aimed at establishing the state of the art on the topic by analyzing
proposed architectures, available on the literature. For that, a SMS based on the
guidelines of Petersen et al. [15] was performed. To understand the activity, various
characteristics were collected from the architectures, and used for classifying them.
Firstly, the architectures were grouped according to the type of modeling technique
used to design them, namely formal, semi-formal and informal. Next, further classes
were identified based on recurrent characteristics, e.g., level of abstraction and whether
it is domain-specific. The results of the SMS suggest that the Architecture Analysis and
Design Language (AADL) is the most used formal modeling approach, whereas UML
stands out among the semi-formal and informal approaches. In addition, the most
recurrent characteristic of these architectures is that they are designed to specific
application domains.

Similar to the previous study, Guessi et al. [17] investigate the modeling of soft-
ware architectures for embedded systems. However, this study focuses on architecture
description languages (ADLs), as well as the concerns (e.g., quality attributes) being
addressed and information (e.g., components, events) being represented in the designed
architectures. The investigation was performed via a SLR based on the guidelines of
Kitchenham and Charters [9]. The results suggest that UML is the most common
language, while safety is the concern that is more often addressed. Despite the variety
of approaches that currently exist, the results also suggest that more attention should be
placed on the description of embedded system architectures. Among the reasons,
Guessi et al. argue that there is a lack of consensus about the most adequate approach
(es) for describing architecture, as well as whether existing approaches are sufficient for
representing the variety of embedded systems.

Nakagawa et al. [18] present the state of the art on architecting approaches for
systems of systems1 (SoS), of which CES are among the most common examples. For
that, an SLR based on the guidelines of Kitchenham and Charters [9] was performed,
investigating the creation, representation, evaluation and evolution of these architec-
tures. The results suggest the existence of several approaches, although most of them
lack maturity and are neither adequately adapted nor widely adopted. In addition,
several application domains (e.g., avionics and space) and quality attributes (e.g.,
security, reliability and performance) are common between SoS and CES.

1 SoS are integrated solutions comprising operationally independent (non-trivial) systems, which are
orchestrated in order to provide a more complex functionality.

246 D. Feitosa et al.

2.4 Comparative Analysis

After presenting related work, it is important to highlight the differences between these
studies and our work. To illustrate these differences, we compare them w.r.t. six
characteristics (Table 1): review type; number of included primary studies; whether the
study focuses on CES or is only indirectly related (i.e., with partial applicability to
CES); whether it considered quality attributes (QA) in the investigation; whether it
considered application domains in the investigation; and the main topic of the inves-
tigation. The review type is an indication of whether the study presents an overview or
a detailed analysis over the main topic (SMS) or it examines more in-depth research
questions (SLR). As presented in Table 1, three other SMSs were performed, although
they were focused in different, yet related, topics. However, these three studies were
not focused on CESs, which reinforces the purpose of our study, as it complements
existing knowledge. Other important aspects of our study include the larger body of
knowledge that has been investigated (due to the broader topic of research), as well as
the consideration of quality attributes and application domains in the investigation.
CESs are used in a variety of application domains and multiple factors affect the
decision-making to select or reuse a design approach. Quality constraints are among the
most relevant factors, as also suggested by related work [8, 17, 18]. Application
domains may also play an important role, as each domain groups a set of common
requirements, that are in turn related to specific quality attributes [8].

Table 1. Comparison between related work and our study.

Study Review
type

Number
of studies

Focus
on
CES?

Investigated
QAs?

Focus on
domains

Main topic

[7] SLR 19 Yes No No Development
process

[8] SMS 23 No Yes Yes Development
process

[12] SLR 97 Yes No No Verification
and validation

[13] SMS 44 No No No Verification
and validation

[16] SMS 104 No No No Software
architecture

[17] SLR 24 No Yes No Software
architecture

[18] SLR 60 No Yes Yes Software
architecture

Ours SMS 258 Yes Yes Yes Design

Design Approaches for Critical Embedded Systems 247

3 Review Methodology

Systematic Mapping Studies (SMSs) and Systematic Literature Reviews (SLRs) have
been broadly adopted as systematic research methods to aggregate knowledge. As this
study aims to outline the state-of-the-art on design approaches for CES in a broad
sense, we decided to perform an SMS [15]. The rest of this section describes the
protocol of our SMS, based on the guidelines of Petersen et al. [15].

3.1 Research Scope

The goal of this SMS is described using the Goal-Question-Metrics (GQM) approach
[19], as follows: “analyze existing software engineering literature for the purpose of
characterizing the state of the art with respect to approaches (e.g., processes, methods
and tools) for designing critical embedded systems from the point of view of
researchers and practitioners in the context of software-intensive systems engineer-
ing”. Based on the goal we defined the following research questions (RQs):

RQ1 - What are the proposed approaches for designing CES?
RQ1.1 - Is the nature of these approaches industrial, academic or mixed?
RQ1.2 - What is the purpose of the approach?
RQ2 - What are the application domains where these approaches are applied?
RQ3 - What are the most common critical quality attributes identified in CES
design?
RQ4 - What tools have been used to support CES design?
RQ5 - What are the types of evidence provided in CES design research?

To achieve the aforementioned goal, we must analyze and present the existing body
of knowledge from different perspectives. The most important outcome of this SMS is
the identification and characterization of the approaches that were created and/or used
to design CES (RQ1). As a first step in characterizing the approaches, we consider their
nature and purpose. Next, we look at the application domain (RQ2) which influences
CES design as it often imposes a number of constraints. For example, several appli-
cation domains are bounded by international standards (e.g., DO-178B for aviation).
In addition, these constraints commonly aim at defining critical quality values (e.g.,
safety); thus, design approaches are often targeting those values (e.g., fault tree anal-
ysis). Therefore, investigating the addressed quality attributes (RQ3) is of paramount
importance. Furthermore, multiple tools have been proposed or tailored to support the
design of CES. As the number of CES grows, it is interesting to investigate how this
reflects on the tooling (RQ4), e.g., leading to news tools and adaptation of existing
ones. Finally, it is important to not only classify the approaches, but also assess their
maturity level to inform researchers and practitioners. For that, we analyze the types of
evidence provided within the literature (RQ5).

248 D. Feitosa et al.

3.2 Search Strategy

Considering the research questions, we defined the search strategy, which comprises
the selection of sources for collecting primary studies, as well as the definition of the
scope for the collection.

Sources Selection. We decided to perform an automated search, as a manual search
would be very time-consuming, thus not allowing us to search as many venues. In
addition, by considering digital libraries (through an automated search) we might also
include venues that otherwise we would not be aware of. The following criteria were
adopted to select search sources (i.e., digital libraries): content update (publications are
regularly updated); availability (full text of the papers is available); quality of results
(accuracy of the results returned by the search); and versatility export (since a lot of
information is returned through the search, a mechanism to export the results is
required). These criteria are also discussed by Dieste et al. [20]. The selected sources
for our SMS are: ACM Digital Library, IEEE Xplore, Science Direct, Springer Link
and Scopus. According to Dybå et al. [21], the first four digital libraries are sufficient to
conduct SMSs in the context of software engineering. Furthermore, Scopus was added,
since it is considered to be the largest database of abstracts and citations [9].

Search Scope. As CESs have been the subject of research for a long time, we decided
to not limit the start of the search period based on date of publication. However, we
limit the end date of the search period in order to measure influence of the primary
studies (see Sect. 3.5), considering primary studies published up to two years before
the date of collection. We performed the data collection on March of 2015 and, thus,
collected primary studies published up to March of 2013. Moreover, only primary
studies written in English will be processed in this SMS. Due to automated search, we
also defined a search string for filtering the studies to those that can be potentially
included in the SMS. As we are interested in approaches for CES design, we selected
two main keywords, “Critical Embedded System” and “Approach”, with the respective
related terms. The keywords were chosen to be simple enough to yield a large number
of results and, at the same time, rigorous to cover only the desired research topic. The
final search string is: (“Critical Embedded System” OR “Critical Embedded Systems”
OR “Critical Embedded Software”) AND (“Approach” OR “Approaches” OR
“Method” OR “Methods” OR “Framework” OR “Frameworks” OR “Technique” OR
“Techniques” OR “Process” OR “Processes” OR “Tool” OR “Tooling” OR
“Guideline” OR “Guidelines”).

We clarify that we do not include terms such as “real-time”, “hard real-time” or
“cyber-physical systems”, as they describe a broader range of systems, which
extrapolates the scope of this SMS, and would make the paper selection process
impractical. To validate the search string and, consequently, the papers collected by the
automated search, we performed a manual search in a small number of venues, simi-
larly to determining a quasi-gold standard as proposed by Zhang and Babar [22]. We
selected the venues for the manual search based on their likelihood to publish studies
on CES design: Real-time Systems journal, Digital Avionics Systems Conference
(DASC), and International Conference on Computer Safety, Reliability, and Security
(SAFECOMP). To filter the primary studies for the quasi-gold standard, we considered

Design Approaches for Critical Embedded Systems 249

the metadata (i.e., title, keywords and abstract) and full text (when necessary), resulting
in the collection of 23 primary studies. Based on the quasi-gold standard, we adapted
the search string to ensure that all 23 primary studies were included.

3.3 Study Selection

Based on the previously mentioned search strategy, we defined the procedure for
filtering the results of the automated search, selecting the primary studies to be ana-
lyzed in the SMS. The study selection comprises the definition of the criteria for
filtering the papers, both inclusion and exclusion criteria, as well as steps for applying
them. We include a primary study if it: (a) proposes an approach to design CESs;
(b) reports on the use of an approach to design CESs; (c) evaluates an approach to
design CESs; or (d) discusses approach(es) to design CESs. A primary study is
excluded if it is an editorial, position paper, keynote, opinion paper, tutorial, poster or
panel. To promote a common understanding of the selection criteria among the three
involved researchers, we performed a pilot selection on a small subset (50) of the
papers collected from the sources. In this pilot, during a first review round, all
researchers analyzed title, keywords and abstract of all papers and Cohen’s Kappa was
calculated between every pair of researchers (see Fig. 1). We clarify that no previous
discussion was performed in order to evaluate the inclusion and exclusion criteria.
Next, all researchers and authors discussed the criteria and their interpretation. Main
points of this discussion included the boundaries of the design phase, hardware design
and the inclusion of papers that do not propose approaches (e.g., use or discussion).
Finally, in a second review round, the papers are analyzed again, but this time also
considering introduction and conclusion sections (if necessary), and a new calculation
of Cohen’s Kappa was performed (see Fig. 1).

To select the primary studies, we defined a three-step procedure. In every step, the
papers were divided into three sets and three researchers were responsible for reviewing
the papers of two sets. By doing this, we guarantee that every paper was reviewed by
two different people while avoiding all three having to read all papers. When an
inclusion/exclusion decision was conflicting or dubious (e.g., one or both reviewers

Fig. 1. Study selection.

250 D. Feitosa et al.

were not confident), the case was discussed among all authors. The selection steps were
the following: (1) Initial selection: the search string was customized and applied to
each publication source listed in Sect. 3.2. The string terms were searched in the title,
abstract and keywords of all primary studies available in each database and search
engine. As a result, a set of primary studies possibly related to the research topic was
obtained. Based on this set, the title and the abstract of each primary study were read
and evaluated based on the inclusion and exclusion criteria. The introduction and the
conclusion may also be considered when necessary; (2) Second selection: each of the
previously selected primary studies were read in full-text and analyzed according to
inclusion and exclusion criteria. This step also included the data extraction, which is
discussed in Sect. 3.5; and (3) Snowballing: the references of the studies selected in
step 2 were used to identify extra literature, for which steps 1 and 2 are repeated.

3.4 Keywording

During the first two steps of the selection procedure (see Sect. 3.3), a set of keywords
was collected from each primary study. As proposed by Petersen et al. [15], the
keywording process occurs in two steps:

(1) Identification of Context: While reading the paper, the reviewer identifies any
keywords and concepts that are relevant to describe that particular study. For
example, words that describe the purpose of the approach, code of standards and
names of quality attributes or tools were collected. During this step, reviewers
share topics of keywords (e.g., code of standards) to maintain consistency and
optimize the collection. Differently from Petersen et al. [15], we extended the
searching of keywords to the whole paper, as some relevant keywords have been
identified within the full text at early stages of the study.

(2) Summarization: The keywords are combined in order to create abstractions that
support understanding the body of knowledge under investigation. Examples of
such abstractions are the topics mentioned in the previous step (e.g., standards).
The abstractions also support identifying categories and create a classification
scheme for the primary studies.

We applied keywording not only to classify the primary studies but also to identify
relevant concepts for all research questions, e.g., purpose of tools, application domains
standards and safety integrity levels (SILs).

3.5 Data Extraction and Mapping

During the second selection procedure (see Sect. 3.3), a set of variables were collected
from each primary study to answer the research questions. Similar to selection pro-
cedure, the data collection of every paper involved two researchers and conflicts were
discussed among all authors. The extracted variables are described in Table 2.

The mapping between variables and research questions is provided in Table 3,
accompanied by the analysis method used on the data. The type of evidence (V14)
evaluates the level of evidence of the proposed approach. For that, we adopted the
classification proposed by Alves et al. [23] in order to make the assessment more

Design Approaches for Critical Embedded Systems 251

Table 2. Extracted variables.

Variable Description Variable Description

V1 Author(s) V8 Type of paper (conference/journal/book)
V2 Year V9 SMS keywords
V3 Title V10 Approaches to design CES
V4 Source V11 Application domain(s)
V5 Venue V12 Critical quality attributes
V6 Author(s) keywords V13 Nature of the approaches

(industrial/academic/mixed)
V7 Number of citations

per year
V14 Tools to support the approaches
V15 Type of evidence used to develop the

approach

Table 3. Mapping of variables to RQs.

Research
question

Variables
used

Analysis method

RQ1

(Approaches)
V1–V3, V6,
V7, V9–V10

Descriptive Statistics (sum, average, frequency
analyses, etc.)
Classification based on keywording
Heatmap based on classification and year
Crosstabs on classification vs. nature

RQ2 (Application
domains)

V1–V3, V10,
V11

Descriptive Statistics (sum, average, frequency
analyses, etc.)
Heatmap based on application domain and year
Crosstabs on application domain vs. approaches
(classification)

RQ3 (Critical
quality attributes)

V1–V3,
V9–V12

Descriptive Statistics (sum, average, frequency
analyses, etc.)
Heatmap based on critical quality attribute and year
Bubble chart on critical quality attribute vs. approaches
(classification) vs. application domain
Spearman correlation between critical quality attribute
and approaches (classification), and application
domain

RQ4 (Tools) V1–V3, V9,
V10, V14

Descriptive Statistics (sum, average, frequency
analyses, etc.)
Classification based on keywording

RQ5 (Evidence
type)

V1–V3, V9,
V10, V15

Descriptive Statistics (sum, average, frequency
analyses, etc.)
Heatmap based on type of evidence and year
Bubble chart on type of evidence vs. approaches
(classification) vs. application domain
Spearman correlation between type of evidence and
approaches (classification), and application domain

252 D. Feitosa et al.

practical. From weakest to strongest, the classes are: (i) no evidence; (ii) evidence
obtained from demonstration or working out toy examples; (iii) evidence obtained from
expert opinions or observations; (iv) evidence obtained from academic studies (e.g.,
controlled lab experiments); (v) evidence obtained from industrial studies (i.e., studies
are done in industrial environments, e.g., causal case studies); and (vi) evidence
obtained from industrial application (i.e., actual use in industry).

4 Results

In this section, we present the results of the mapping study, highlighting the most
important observations. We note that the complete information from data extraction is
publicly available as part of the supplementary material for this paper [24]. We clarify
that, when necessary, we cite specific primary studies using an “S” (e.g., [S134]). Due
to space limitations, we do not provide the list the primary studies in this manuscript,
but we have made it available as a supplementary material [24].

4.1 Demographic Overview

The distribution of studies, per year, among the different types of publication (con-
ference, journal and book) is depicted in Fig. 2. We clarify that we collected studies
published up to March of 2013 (see Sect. 3.2), resulting on the observed smaller
number in that year. We notice a linear growth in the number of conference papers. The
number of journal articles experiences a growth as well, but not as high. We note that
conference proceedings published as books were counted as conferences, explaining
the small number of book chapters in the chart.

To investigate further potential reasons for the aforementioned growth, we looked
at the venues and checked whether they focus on CES alone, or have a broader scope
(e.g., embedded systems) and only include CES as one of the topics of interest. We
observed that, although a few venues do focus on CES (e.g., Brazilian symposium on
CES), most of the studies were published in other venues, suggesting a shift or growing
interest of the respective (broad) communities towards CES. In addition, we can try to

Fig. 2. Number of filtered studies per year, per type of paper.

Design Approaches for Critical Embedded Systems 253

identify the most relevant venues, by looking at their distribution according to two
metrics: number of included studies (Fig. 3a), and number of citations (Fig. 3b). We
chose these metrics, because they reflect distinct features that may draw the attention of
researchers to venues: the size of the CES community within the venue, and the
potential visibility of the study. To investigate the venues, we analyzed how they are
distributed statistically, identifying the high outliers, which in this case indicate popular
venues for CES. We used the software IBM SPSS Statistics to create the box-plots as
well as to identify the outliers, using the stem-and-leaf diagram.

On the one hand, Fig. 3a shows that the vast majority of venues contributed with
one or two papers only, respectively 111 (approx. 70%) and 28 (17.5%). The analysis
suggests that venues that contributed with four papers or more (nine venues) are
exceptional in our dataset. On the other hand, Fig. 3b shows that most venues (85%)
exhibit a maximum average of four citations per paper per year. The analysis of this
metric suggests that venues with an average citation rate of 6.2 or more (15 venues in
total) are also exceptional. Thus, we identified a set of 22 exceptional venues, which,
due to space limitations, is presented in the supplementary material [24].

4.2 Design Approaches

As shown in the previous section we were able to collect a large number of studies.
Therefore, it is infeasible to present all collected approaches here. For that reason, we
decided to present the results as a summary based on the types of approaches that were
found, which are based on a classification scheme (presented below). In addition, we
present some details on the most relevant approaches, i.e., those with the most citations,
identified by using the number of citations according to Google Scholar. To avoid
omitting relatively new papers (i.e. those that did not have enough time to receive
citations), we considered the number of citations per year. In the next subsections, we
elaborate on this classification scheme and results.

Classification Scheme. The design phase in a development lifecycle is often elusive,
in the sense that it is typically hard to determine the boundaries of design with respect
to the other lifecycle phases. In embedded systems development, including systems

Fig. 3. Box-plot of venues based on (a) number of studies and (b) citations per paper per year.

254 D. Feitosa et al.

with harder constraints such as CES, this is no exception. However, in order to classify
the design approaches, it is necessary to identify the parts of the development lifecycle
that approaches belong to, i.e., their purpose. It is widely accepted that the design phase
includes activities that translate requirements into software/hardware elements, with
their respective responsibilities, excluding the actual implementation of these elements
(source code) [1, 25, 26]. To initialize our classification scheme, we collected the
keywords obtained from the keywording process (see Sect. 3.4) and filtered those that
regard the purpose of approaches. Next, we grouped the keywords by similarity, trying
to organize them in a hierarchical fashion, also creating a generic design flow2.
However, it was not possible to derive such hierarchical organization, as we were not
able to identify or define a flow that was sufficiently generic to accommodate the
extracted approaches. This is due to the high heterogeneity of domains, requirements,
and platforms for which CES are designed [1]. Therefore, we decided to organize our
keywords based on a simplified design flow proposed by Marwedel [1], which is meant
to generically represent the design activities of an ES.

To create our classification scheme, we successfully mapped the identified key-
words into some elements of the design flow proposed by Marwedel [1], and assessed
whether or not the relationship between the keywords were consistent with the
description of the simplified design flow. By the end of the keyword mapping, we were
able to derive five types of activity representing general purposes, as well as scope
them and their relationships. The final classification scheme is presented in Fig. 4, in
which rectangles represent each general purpose, and arrows show the flow of design
artifacts. Moreover, smaller rectangles (i.e., Optimization and Test) represent auxiliary
purposes that are special for the design of embedded systems. The approaches are
grouped according to how they modify the system’s design, rather than based on a
logical sequence of activities. In addition, common activities in embedded system
design are also clearly placed within the classification (e.g., scheduling is placed within
Application mapping). The main characteristic of this kind of classification is that it is
artifact-centric, i.e., the artifacts dictate what activities may be performed (i.e., what

Fig. 4. Classification scheme.

2 A design flow is the sequence of specific activities (with respective approaches) to design a system.

Design Approaches for Critical Embedded Systems 255

purposes they serve), rather than the other way around [1]. The five general purposes
are described as follows:

• Specification: these activities formalize constraints (e.g., safety requirements) in the
design. They define the scope/boundaries of the design. To draw a parallel, this type
of activity is similar to the analysis in a software architecture design flow [27].
Common examples are formal specification languages, such as Z.

• Application Mapping: these activities generate new (partial) design information.
A series of mappings are applied in order to refine the design from a more abstract
representation to platform-specific design. In a software architecture design flow,
this type of activity is similar to architecture synthesis [27]. Common approaches
encompass: mapping of operations to concurrent tasks; mapping of operations to
HW/SW; compilation; or scheduling.

• Evaluation & Validation: similarly to the evaluation in a software architecture
design flow [27], these activities evaluate design elements w.r.t. the objectives (e.g.
provide a proper scheduling of tasks) and validate a design description against other
descriptions. Examples of approaches are algorithms or analysis frameworks for
comparing models that tackle different quality attributes, as well as simulations.

• Optimization: these activities perform design tuning according to stated objectives.
Examples of approaches are HL transformation and energy optimizations.

• Test: these activities include test generation and testability evaluation. They are
included in design iterations if testability issues are already considered during the
design steps. Tests are run after the design phase.

This classification is sufficiently robust for expressing different software, hardware
and SW/HW design flows, including prominent ones such as the V-Model [28] and the
design flow provided with SpecC [29]. Finally, it is important to clarify that approaches
may serve several purposes. For example, some architecture modeling languages are
able to perform both application mapping and specification.

Summary of Design Approaches. To analyze the extracted approaches, we classified
each of them into one or more of the aforementioned general purposes. In addition,
some studies presented entire design flows and, therefore, we also considered it as a
category for the classification. Figure 5 depicts a heat map that shows the number of
studies, per year, discussing approaches from each category.

Fig. 5. Number of studies, per year, containing approaches from each category.

256 D. Feitosa et al.

In this heat map, darker shades of grey represent bigger numbers, which are pre-
sented as well. For example, in 2011, 23 studies that contain approaches for application
mapping were published. One can notice that most attention has been given to
approaches for Application Mapping and Evaluation & Validation, which is under-
standable because approaches that serve this purpose encompass most of the design
flow of an embedded system. Approaches for Specification of CES design were also
presented in a considerable number of studies. Such interest is explained by the
necessity of unambiguously representing the different aspects of CES (e.g., safety,
components, security) in a variety of platforms (e.g., time/event-triggered and mixed
architectures, and communication protocols). Table 4 presents the number of studies in
each category, grouped by nature (i.e., academic, industrial or mixed). The table also
presents the number of citations per year, for the entire set of studies. By exploring this
table, one can notice that most of the studies were performed in an academic setting,
followed by mixed and industrial settings, respectively; this is understandable as the
included venues are more academic than industrial. In addition, solutions are normally
proposed and explored in academic studies before they are applied in industry.
However, there is one interesting observation to highlight. The mixed setting does not
follow the same trend of the academic and industrial settings (which are in accordance
to Fig. 5): studies performed in collaboration between academia and industry were
mostly focused on Evaluation & Validation approaches, rather than Application
Mapping, suggesting that the main interest of academic-industrial collaborations may
be for evaluation & validation approaches. This finding may be partially explained by
analyzing the number of citations per year. This number tends to follow the number of
studies in the categories (i.e., more studies would result in more citations). However,
there is one exception to that: industrial studies have more citations than mixed studies,
w.r.t. approaches for Application Mapping, possibly due to increased industrial interest.
By investigating the approaches we observed that: (a) almost all studies propose or
consider formal approaches; (b) model-driven and component-based approaches are

Table 4. Classification of included studies by type of activity and nature.

Type of activity Metric Nature Total
Academic Industrial Mixed

Design flow Number of studies 16 6 6 28
Citations/year 65,05 8,71 18,48 92,25

Specification Number of studies 44 11 16 71
Citations/year 181,84 31,30 39,50 252,64

Application mapping Number of studies 97 21 32 150
Citations/year 298,42 85,97 72,33 456,72

Evaluation & validation Number of studies 74 17 36 127
Citations/year 232,66 22,33 73,50 328,49

Optimization Number of studies 11 1 2 14
Citations/year 28,81 0,12 3,19 32,11

Testing Number of studies 7 2 4 13
Citations/year 31,96 2,40 6,83 41,19

Design Approaches for Critical Embedded Systems 257

preferred for tackling CES problems, specially due to the facilitation of (semi-) auto-
matic verification and code generation; and (c) one of the most prominent challenges in
designing CES, is the design of systems with mixed-criticality (i.e., critical and non-
critical elements co-existing within the same system). In the following, we present the
most important observations regarding each of the categories.

Multiple design flows have been proposed so far, which is in accordance to the high
heterogeneity of CES. Each design flow aims at tackling specific problems, such as
multi-tasking in multi-periodic synchronization [S206] or reliability-driven design in
CES with mixed criticality [S257]. The most important observation is that the majority
of the design flows didn’t provide a complete lifecycle. They rather described how to
tackle the specific issue within the system design. These incomplete flows are not
surprising because every single CES entails a rather unique set of requirements that are
tackled by combining different approaches. The most relevant studies are a generic
design flow (from 1997) that served as inspiration to other flows [S16] and a safety-
oriented and component-based design flow for vehicular systems [S102]. Approaches
for design specification consist mostly of (semi-)formal languages or notations for
representing different types of problems, such as specific forms of scheduling [S117,
S225], or classes of constraints (commonly related to quality attributes such as safety or
reliability) [S87, S244]. We highlight that most studies presenting specification
approaches (approx. 80%) also presented approaches with other purposes (e.g.,
application mapping or evaluation & validation). The most relevant studies include the
specification of time constraints in systems with mixed criticality [S225] and formal
specification of safety constraints on higher-level design [S180].

The majority of the studies involve a variety of approaches for Application Map-
ping. Among these studies, approx. 30% proposed architectural approaches, i.e.,
architectures [S35, S94] or approaches for designing architectures (e.g., styles or pat-
terns) [S121, S166]. We highlight that in the context of CES, communication archi-
tecture (e.g., time-triggered architecture [S35]) is a more relevant kind of architecture,
due to its relevance on evaluating the hard constraints CES are subject to. In fact, this
relevance is also evident by another common topic: scheduling of tasks/components,
which corresponds to approx. 21% of the studies. Scheduling poses several challenges,
from guaranteeing of time allocation to specific components, to integration with other
models (e.g., fault-tolerance) to provide more accurate scheduling. Another common
topic is software patterns, corresponding to approx. 9% of the studies, among which,
design patterns were the most investigated [S105, S106, S137, S160, S259], followed
by architectural [S121, S201], fault-tolerance [S191] and process patterns [S240]. As
for the remainder of the studies, other scattered topics can be observed, from which the
most recent/recurrent encompass approaches for modeling components w.r.t. various
critical constraints (e.g., safety) and integration of models. The most relevant studies
include the time-triggered architecture [S35], remote agent architecture [S13], a
component-based approach for modeling safety [S102] and an approach for scheduling
of mixed-criticality workload [S164].

Approaches for Evaluation & Validation comprise mostly formal methods for
evaluating specific aspects of the design, such as scheduling of tasks [S51, S140,
S225], fault-tolerance [S151, S192] and safety requirements [S74, S102]. In addition,
there is a growing interest on model-driven approaches and object-oriented design.

258 D. Feitosa et al.

Classical approaches for verifying safety and reliability (e.g., fault-tree analysis – FTA
– and failure mode and effects analysis) have been adapted to new design paradigms.
For example, a component-based FTA was proposed in [S128] aiming at facilitating
the certification of systems by reusing certified components. In addition, exploratory-
based evaluation approaches (e.g., prototyping and simulation) are also broadly
explored in order to evaluate designs [S21, S102, S168, and S216]. The most relevant
studies present formal approaches for evaluating reliability and safety [S8, S225], as
well as safety evaluation based on simulation [S102].

Finally, regarding Optimization and Testing approaches, the approaches are used
for the same reason: improving the evaluation & validation of the designed systems
[S51, S186, and S261]. Most of the approaches, including the most relevant approa-
ches, tackle time constraints [S51, S248] and fault-tolerance issues [S48, S151].

4.3 Application Domains

The results on application domains suggest that the most studies (approx. 57%) report
generic approaches, from which approx. 9% showed examples on specific application
domains, e.g., automotive [S149, S257] and avionics [S225, S166]. Figure 6 presents
the distribution of the studies, per year, according to the application domains. For
comparison purposes, we plot the amount of studies reporting generic approaches. We
note that studies that report approaches for specific domains often refer to more than
one domain, e.g., support the design of avionic and space systems [S161].

By observing Fig. 6, we notice that, besides constituting the majority, the number
of studies reporting generic approaches is growing more than for any specific domain.
This may suggest a trend or intention to work on unified technologies for developing
CES. However, we also notice that the combined number of studies that focus on
specific domains comprise almost half (approx. 48%) of the papers. Among the specific
domains: avionics and automotive present the biggest growth. On the one hand,
avionics is historically among the first application domains of CES and contains special
regulations, which make the interchange of approaches more difficult. On the other
hand, the automotive industry has been going through a series of technological inno-
vations to provide several new features such as autonomous driving.

Fig. 6. Number of studies per application domain, per year.

Design Approaches for Critical Embedded Systems 259

To further analyze the influence of application domains on design approaches, we
classified the primary studies according to their purpose. Table 5 presents the distri-
bution of studies in each application domain among the five general purposes. We note
that approaches serving more than one general purpose are counted for each of them.
Based on Table 5, we observe that the distribution of studies on the application
domains tend to be similar to the general distribution (Table 4). However, there is an
exception for the medical and defense domains, as most studies report approaches for
evaluation & validation rather than for application mapping. This may be either related
to the low number of studies, or suggests a focus on this type of activity, perhaps
motivated by specific industry standards or requirements of these domains. Another
exception is that in the robotics domain the number of approaches for application
mapping is quite higher (almost double) compared to evaluation & validation. Such
disparity may be related to a larger variety of potential systems designs (large design
space), which could result in more possibilities for mapping elements of the system.
The disparity may also be related to a less regulated application domain that could in
turn facilitate new design ideas to be implemented or experimented with.

4.4 Quality Attributes

CES are subject to constraints on critical quality attributes (CQA). In this section, we
report on the CQAs that are tackled within each primary study, using the original terms
of CQAs that are used in the studies (i.e. those terms used by the authors). Even though
some qualities are similar (e.g. dependability, fault-tolerance and reliability) we have
not tried to merge them. Our goal is not to create a new quality model, but to simply
present how authors express the hard-constraints of CES. However, we checked
whether each term has the same or similar definition among the authors (e.g., if security
is always used to convey the same concerns). We further discuss the relationship
between CQAs and their definition in Sect. 5.1. We note that each study may tackle
one or more CQAs. In Fig. 7, we present the number of studies, per year, tackling each
critical quality attribute. We excluded two CQAs from this chart (power constraints and
correctness) due to low number of papers (6 and 7, respectively).

Table 5. Classification of primary studies by domain and purpose.

Domain Purpose
Design
flow

Specification Application
mapping

Evaluation &
validation

Optimization Test

Automotive 7 11 31 22 2 2
Avionics 7 20 32 30 0 4
Defense 0 1 1 4 0 1
Medical 0 1 1 3 0 0
Railway 3 5 7 7 0 2
Robotics 2 3 13 6 0 1
Space 5 8 13 12 0 3
Generic 13 36 77 61 13 5

260 D. Feitosa et al.

By observing Fig. 7, one can notice that the interest in the different CQAs has
grown in a similar fashion, except for safety, which shows higher growth. Such interest
is not surprising, as safety is a very common and challenging concern among CQAs. In
addition, the emergence and/or growth of application domains such as automotive,
home automation, unmanned vehicles (e.g., drones) that are intrinsically centered on
safety, have likely contributed to the observed growth. It is also relevant to point out
that, although less intense, the interest in timeliness and reliability has also grown more
than the remaining CQAs. The aforementioned arguments regarding safety, may also
explain this observation. For example, the interest in multi-core platforms, as well as
systems with mixed-criticality requires careful scheduling of tasks, and assurance that
no interference between system parts with different criticality.

To further characterize the primary studies, we investigate them with respect to
purpose and application domain. In Fig. 8, we present a bubble chart that depicts the
distribution of the studies, based on CQAs (Y axis), with regards to the general purpose

Timeliness includes timing, and time-behavior
Fault-tolerance includes error-tolerance

Fig. 7. Number of studies tackling quality attributes, per year.

Fig. 8. Classification of studies based on quality attribute, purpose, and application domain.

Design Approaches for Critical Embedded Systems 261

(X axis—left side) and the application domain (X axis—right side). The size of the
bubble represents the number of studies, which is shown inside the bubble. On the one
hand, the distribution of studies among purposes, for each CQA, is similar compared to
each other as well as compared to the general data (see Sect. 4.2). To confirm that, we
calculated the spearman correlation between every pair of CQA and against the general
data. All results were statistically significant and showed strong correlation (minimum
coefficient of 0.899). This suggests that the distribution of research effort among dif-
ferent purposes is independent of CQAs. On the other hand, it is possible to observe a
variation in the distribution of studies among application domains. For example, we
notice that dependability displays a higher interest on the automotive domain (i.e.,
approx. 20% of the papers tackle this CQA), when compared against the average
number of papers on dependability across domains (9%). We further investigated this
observation by calculating the correlation between every pair of CQA, which showed
that dependability has a weaker correlation with other CQAs (e.g., 0.667 with per-
formance). This may suggest that these application domains are characterized by dif-
ferent constraints for the respective CQAs.

4.5 Tools

During the data extraction, we observed that approx. 53% of the papers either proposed
or explicitly mentioned the use of specific tools. We also identified several Reference
Technology Platforms (RTPs) [30], which consist of a set of approaches (e.g., methods,
workflows) and tools providing a generic solution that can be tailored to various
applications. The RTPs extracted in our study are all part of large projects involving
multiple partners from both academia and industry. In total, we identified 147 tools of
different kinds (e.g., CAD, model checkers, tool suites, etc.) and with various purposes
(e.g., specification, application mapping, etc.). In addition, we noticed that some
specification and/or modeling languages are an important part for many of these tools,
e.g., serving as input format and base of the tool, or as exchange format between
different tools. Therefore, we considered it relevant to include these languages in the
results. Due to the number of identified tools, we summarized the results based on the
general purposes presented in Sect. 4.2.

Table 6 shows the number of tools identified for each category (i.e., purpose).
Within each category, we were able to define certain subcategories of tools representing
specific purposes. We note that we include RTPs and IDEs (Integrated Development
Environment), into the Design Flow category, as they support entire sets of activities.
We also note that similar to approaches every tool may be classified in more than one
category, e.g., a modeling tool that can import and export different models (i.e.,
Application Mapping category) as well as analyze them (i.e., Evaluation & Verification
category). Furthermore, we note that the number of tools for subcategories do not
necessarily add up to the number of the parent category. On the one hand, we only
present subcategories with at least 3 tools (i.e. there were more subcategories with only
1 or 2 tools). On the other hand, tools may serve more than one purpose, which also
affects subcategories. For example, SPIN is a verification tool with model checking and
simulation capabilities, thus, counting for two subcategories. In the following we
provide a brief description and the purpose of some relevant tools/languages, which we

262 D. Feitosa et al.

identified based on the number of studies referring to the tool/language, as well as on
the amount of citations these studies have. Due to space limitations a detailed dis-
cussion of tools and languages is omitted from this manuscript, but discussed in detail,
in the supplementary material [24].

Summary of Languages. In Table 7, we list the top five recurrent languages within
the primary studies, i.e., those discussed by three or more papers. We consider these
languages relevant also due to the amount of citations obtained by the studies that refer
to them. We observed that most languages are mentioned indirectly, i.e. not being the
focus of the paper. For example, the Promela language is recurrent because researchers
are interested in the SPIN verification tool, which defines models in Promela. In
addition, most languages are also not specific to CES, although they are heavily used
for this class of systems. Languages (e.g., Z) were created to enable representation of
formal/mathematical constraints, which are common to CES.

Summary of Tools. The top five tools according to the number of studies and citations
are presented in Table 8. We observe that most tools are not specific to designing CES.
We believe this is related to the fact that most tools in this list have Evaluation &
Validation purposes. Tools from this category, are mainly focused on ensuring the hard

Table 6. Summary of identified tools.

Purpose Number of tools

Design flow 12
IDE 6
RTP 6
Specification 15
Notation/specification language 12
Programming language 3
Application mapping 35
Cad 14
Model transformation 5
Evaluation & validation 32
Simulation 9
Model checking 9
Optimization 1
Testing 2

Table 7. Highlighted languages.

Language Number of studies Number of citations CES specific

AADL 20 294 Yes
Promela 7 162 No
SystemC 7 51 No
Z 5 153 No
EAST-ADL 3 19 Yes

Design Approaches for Critical Embedded Systems 263

constrains imposed w.r.t. meeting critical quality attributes; such CQAs are not par-
ticular to CES only. Finally, we notice that the tools focused on CES are mostly
(a) from the Application Mapping category (e.g., modelling tools and schedulers),
which are specialized for one or a group of application domains; and (b) RTPs and
IDEs, which are tailored for this class of systems, and normally include some tools that
are not specific to CES (e.g., verification tools).

4.6 Evidence Type

To investigate the maturity of the primary studies, we considered the type of evidence
they provide. For that, we use the classification proposed by Alves et al. [23], as
mentioned in Sect. 3.5. At the lowest level, the primary study does not provide any
evidence, whereas at the highest level, the study provides evidence from actual use of
the approach within an industrial application. In Fig. 9, we present the distribution of
the primary studies, per year, according to the evidence type. By observing Fig. 9, one
can notice that the amount of studies that provide evidence from academic studies has
been growing considerably, exhibiting the highest growth among the six types of
evidence. This also reflects the fact that most primary studies (approx. 55%) are sup-
ported by such type of evidence. This result is understandable, as studies performed in
academic settings usually have a lower threshold to conduct than those performed in
industrial settings. In addition, considering the hard constraints of CES, multiple
studies may need to take place before a mature technology emerges and industrial
studies can be performed. Interestingly, the second most common type of evidence is
industrial studies (approx. 20%), which is one step further according to the classifi-
cation of Alves et al. [23], and may suggest successful transition of a fair number of
technologies to industrial maturity level.

Table 8. Highlighted tools.

Tool Number of studies Number of citations CES specific

Simulink 15 132 No
UPPAAL 8 79 No
DECOS 7 164 Yes
SPIN 7 162 No
NuSMV 4 112 No

Fig. 9. Number of studies per type of evidence, per year.

264 D. Feitosa et al.

Another interesting observation is that most studies are distributed among higher
levels of evidence (academic studies, industrial studies and industrial applications).
This may be, again, a consequence of the hard constraints imposed to CES, as tackling
them would require stronger evidence to support the reported results. Another com-
plimentary reason may be that embedded systems have been extensively investigated
already, and management of hard constraints is not a new research topic for this class of
system. Therefore, much of the exploratory research that has been done for embedded
systems is now reused to investigate CES. To further investigate the evidence type, we
classified the studies according to the purpose that their approaches serve, as well as the
application domain. Similar to Figs. 8, Fig. 10 depicts the distribution of the studies,
based on evidence type (Y axis), with respect to the purpose (X axis—left side) and the
application domain (X axis—right side).

When verifying the distribution according to purpose, we observe that it follows a
similar trend to that of the general data (presented in Sect. 4.2). We checked this
hypothesis by calculating the correlation between each pair of evidence type, which
showed a minimum correlation coefficient of 0.900. Conversely, while a visual
inspection of the distribution according to domain suggests similarities between evi-
dence types, the statistical correlation reveals minor differences between types of
evidence, with coefficients varying from 0.500 to 0.927. These minor differences
suggest that the application domain may affect what kind of research is performed.

Fig. 10. Classification of studies based on evidence type, purpose, and application domain.

Design Approaches for Critical Embedded Systems 265

5 Discussion

5.1 Relationship Between Quality Attributes

The approaches investigated in this mapping study tackle various CQAs, as presented
in Sect. 4.4. While investigating this research question (RQ3), we recorded the CQAs
as used by the authors, i.e., we neither grouped nor merged any quality attributes, based
on the definition used or implied in the primary studies. However, it is undeniable that
some CQAs are related and, therefore, the identified quality attributes should be further
investigated/synthesized. In this subsection, we group CQAs that have a similar or
related meaning and map them to a quality model. For this purpose, we consider:
(a) the SQuaRE quality model [31] which is a well-known quality model adopted by
both researchers and practitioners; and (b) the ISO/IEC/IEEE vocabulary for system
and software engineering [32], which is used within SQuaRE and provides additional
definitions. We note that other quality models could be used to map the CQAs and that
we do not assume that SQuaRE is the best model. We selected this model due to our
experience with it and the possibility to fit all our recorded CQAs and observed
terminologies. In Table 9 we present the CQAs identified in this study (presented in
Sect. 4.4) on the right, and the characteristic (i.e., quality attribute) from SQuaRE to
which they are mapped on the left. We note that SQuaRE presents a set of charac-
teristics (left column of Table 9) and sub-characteristics (e.g. sub-characteristics of
Performance Efficiency are Time Behavior, Resource Utilization and Capacity), which
were both used to map CQAs. In addition, a CQA can be directly related if the terms
are equivalent (e.g., safety maps to freedom from risk), or indirectly related if it is one
of the aspects of the main quality attribute (e.g., correctness is a sub-characteristic of
Functional suitability) or if it is related to one of them (e.g., energy efficiency regards
Resource utilization, i.e., sub-characteristic of performance).

Correctness and security are directly mapped, since they similarly referred in the
primary studies. However, the grouping of the remainder CQAs is not as straightfor-
ward. Performance efficiency is defined as the degree to which functionalities are
delivered within given constraints [31], i.e., how well the system uses its resources to

Table 9. Grouping and mapping of critical quality attributes.

CQA from SQuaRE Identified CQA

Functional suitability Correctness
Security Security
Performance efficiency Performance

Energy efficiency
Timeliness

Reliability Reliability
Fault tolerance
Dependability

Freedom from risk Safety

266 D. Feitosa et al.

accomplish the designed functions. This definition encompasses the interpretations of
performance, energy efficiency, and timeliness among the primary studies. Fault tol-
erance is a well-known aspect of reliability and the interpretations of the authors meet
the definition of the sub-characteristic in SQuaRE (also named Fault tolerance).
Although dependability is commonly addressed as a separate quality attribute, we
decided to map it to Reliability. Dependability is not part of SQuaRE but it is explained
within the description of reliability. It comprises a more subjective definition, which is
not easily quantifiable, and reflects whether or not a system can be trusted [32]. Due to
its subjective definition, dependability is commonly improved through addressing
other, more objective, quality attributes that can contribute to the trustworthiness of the
system, in particular, reliability, maintainability, and availability. By observing the
primary studies of our mapping, it is also clear that dependability is commonly used as
proxy to other quality attributes, in particular, aspects of reliability, such as fault
tolerance. Therefore, since the primary studies exploit dependability mostly as a proxy
to reliability, we decided to group them together. Safety is another subjective CQAs,
which is mentioned within SQuaRE’s model for quality in use, i.e., how well the
product can be used by specific users [31]. Similar to dependability, safety is com-
monly used as a proxy to other quality attributes, although not always the same ones.
Particularly, safety is related to the avoidance of hazardous situations (i.e., that lead to
endangerment of humans, environment or properties), which can originate from various
sources, depending on the system. In our study, we identified connections between
safety and various aspects: security [S215], performance, correctness [S50, S198] and
fault-tolerance [S50, S84]. For example, when using a Time-Triggered Architecture
(TTA) for communication (instead of an event-triggered one), timeliness become a
safety threat.

In summary, CQAs as defined in primary studies are uniformly understood (i.e.
their definitions are the same or similar across the studies) and that some can be
grouped based on similarity. This culminated into the identification of five attributes:
Functional Suitability, Security, Performance efficiency, Reliability, and Safety
(Freedom from risk). We acknowledge that other CQAs may exist in individual cases
depending on application-specific constraints. However, these five QA are by far the
most recurrent ones. We also noticed that Safety is more abstract, since it depends on
other CQAs. Therefore, is achieved by meeting requirements related to other CQAs.
Furthermore, we note that identifying these CQAs is not always a trivial task as
different components in the same systems may pose different constraints, i.e., may be
subject to different kinds of hazards. A common approach to handle this mixed criti-
cality is the use of integrity levels [33], which reflect the degree of compliance within a
certain characteristic. Components with different integrity levels will be subject to
different safety checks, which may also reflect the different concerns of that level. For
example, the drive-by-wire feature is subject to hard reliability checks, while GPS
navigation should only be assured to not interfere with the critical components.
Therefore, it is important to identify and monitor the CQAs that are tightly related to
safety.

Design Approaches for Critical Embedded Systems 267

5.2 Domain-Specific Research for CES

In Sect. 4.3 through Sect. 4.6, we presented an overview of the primary studies with
respect to application domains, as well as how other facets (e.g., evidence type) related
to domains. In summary, we did not notice major differences across application
domains regarding which CQAs are the most relevant. This observation might be an
indication that CQA-related challenges in CES are common to all application domains
and have similar relevance. The only difference we observed was that studies focused
on the automotive domain seem more concerned about dependability rather than
reliability. However, these two fall under the umbrella quality of reliability in the
SQuaRE model (see Sect. 5.1). Furthermore, we also notice that domains may influ-
ence the kind of research that is performed; for example, most studies on medical and
defense domains focused on approaches for evaluation & validation rather than
application mapping (as the general trend).

The difference between domains becomes clearer when looking at the type of
evidence that studies provide (see Sect. 4.6). We separated the studies into three groups
and verified their distribution among the different types of evidence (see Fig. 11). The
three groups consist of studies that: (a) focus on a specific domain; (b) do not focus on
any domain but present an example of application on a specific domain; and (c) neither
focus nor present an example on specific domains. We notice that application domains
become more relevant when a technology is being transferred to industry, as the two
rightmost types of evidence (Industrial Study and Industrial Application) account
mostly for studies that focus on application domains.

It is understandable that studies conducted with industrial partners or in an
industrial setting are focused on specific domains, as companies are by and large
interested into applying approaches on certain products, which in turn fall under
specific domains. As expected, generic approaches that solve domain-independent
problems are first validated in academic settings, and subsequently find applications in
industry that in turn customize and validate them in specific application domains. The
opposite is also possible: there are also technologies that initially emerge as domain-
specific solutions and are later applied to other domains. For example, the Architecture

Fig. 11. Distribution of studies according to type of evidence and application domain.

268 D. Feitosa et al.

Analysis and Design Language (AADL) was standardized by the Society of Auto-
motive Engineers (SAE) with focus on the avionics domain3 and is currently being
applied in other CES domains.

5.3 Relationships Among Approaches, Tools, and Languages

The data analysis in this SMS resulted in the identification of many concepts related to
the research questions, namely approaches, tools, languages, critical quality attributes,
and application domains, as well as relationships between them. While we were able to
present and discuss all CQAs and application domains found in the primary studies (see
Sects. 4.3, 4.4, 5.1 and 5.2), the amounts of approaches, tools and languages was too
large to present and discuss all concepts and relationships. To tackle this issue, we
created a concept map to help us visualize these approaches, tools, and languages and
identify relevant findings.

The concept map was created as a webpage that features an interactive interface,
which is available4. To avoid loss of information, we also created a text version of the
concept map. The text version and source code of the web version are available within
the supplementary material [24]. In Fig. 12, we show a screenshot of the concept map
and its interface. The concept map consists of a network in which nodes represent
concepts and edges relationships. Each type of concept (i.e., approach, tool or lan-
guage) is represented by an icon for easy identification. Upon clicking on a concept, an
information panel is prompted on the right side, showing: (a) name of the concept,
which is a link if a URL (Uniform Resource Locator) is available (shown by the chain
icon next to the name); (b) a brief description of the concept; (c) the list of purposes,
according to our classification scheme; and (d) a list of relationships (i.e., links)
attributed to the concept. The relationship between concepts can be of two types:

Fig. 12. Screenshot of the concept map interactive interface. (Color figure online)

3 Note that SAE does not limit itself to the automotive domain.
4 http://feitosa-daniel.github.io/sms-ces-design.

Design Approaches for Critical Embedded Systems 269

http://feitosa-daniel.github.io/sms-ces-design

“use/is used” (e.g., “Polychrony uses Sigale to provide specification … of discrete
controllers”), or “is kind of” (e.g., “SystemC is a subset of C++”).

The interface also provides a feature to filter concepts based on name, type of
concepts, or purpose. Upon typing on the name field or selecting type of concept or
purpose, the filtered items are highlighted in red (see Fig. 12). For example, in the
screenshot we typed “sigali” and the tool “Sigali” was automatically highlighted (the
search looks for partial matches and is not case sensitive). After that, we clicked on the
node, which prompted the information panel on the right. Finally, the interface is
responsive, i.e., it adapts to different screen sizes (e.g., smartphones), which improves
the usability of the concepts map.

Based on the concept map, we can make several observations. However, due to
space limitations, we provide only one of them, also explaining how we identified it.
We note that the main purpose of the concept map is to support the investigation of its
concepts by third-parties and, therefore, we encourage the reader to further analyze it.
The Architecture Analysis and Design Language (AADL) appears to be a rather mature
technology. The results of the study showed that AADL is cited in multiple papers (see
Sect. 4.5). In addition, by looking at the concept map we notice a fair number of related
concepts (see Fig. 13) when compared against the average of 2.13 edges per node, and
we notice that there are related concepts that serve different purposes: (a) specification,
(b) application mapping, and (c) evaluation & validation. In particular, there is a toolset
that is able to read AADL models, tools to evaluate AADL models and a language
(EAST-ADL) that is partially derived from AADL.

5.4 Implications to Researchers and Practitioners

The results and discussion presented in this SMS have potential value for both
researchers and practitioners. The information compiled in this study may support
readers that want to get acquainted with the design process of CES or may be interested
in specific outcomes, e.g., identified CQAs and how they are tackled by primary
studies. Researchers can use the information in this SMS to identify work that is related
or that can contribute to theirs, as well as identify opportunities for future work. For
example, researchers interested in a specific application domain have access pointers to

Fig. 13. Part of the concept map surrounding AADL.

270 D. Feitosa et al.

the existing literature, as well as how studies are distributed within the domain. We
envisage similar learning opportunities to practitioners, through a more practical per-
spective. For example, practitioners can investigate a tool that is being considered for
the designing of a new system or investigate the ecosystem around an approach, i.e.,
tools and related approaches.

In addition, we specifically aimed at the reuse of the information collected during
our SMS when we created the concept map, which contains the complete set of
approaches, tools and languages. Based on the information and features provided by
the user interface, we believe that the concept map is valuable to both practitioners and
researchers. Regarding practitioners, it can be used to support the exploration of
problem and solution spaces while designing CESs. For example, using filters, one is
able to search for approaches and or tools that fit the requirements of the systems (e.g.,
model-checking of models specified in SIGNAL). Also, if one has decided for a
specific approach or tool, she can also explore related concepts and identify alternatives
or tools that support the approach (e.g., tools that evaluate Binary Decision Diagrams).
Regarding researchers, the concept map helps identifying potential links between
different research results. For example, researchers interested into investigating a cer-
tain approach can use the concept map to easily visualize some of the involved
approaches and tools that support it. We note that despite our great effort on collecting
and analyzing the selected studies, the concepts and relationships presented in this map
do not present the entire set of approaches, tools and languages available to design
CES. Therefore, we hope that by providing access to the concept map, we can support
others on developing it even further.

6 Threats to Validity

Concerning studies identification, the main threat is that the automatic search may not
have been able to collect all relevant primary studies, i.e., the search string was not as
inclusive as necessary or the considered digital libraries did not include all relevant
venues. To mitigate this risk, we defined a gold standard and ensured that the automatic
search returned all papers in the gold standard. In addition, we included digital libraries
of the main publishers in the topic, and Scopus, which indexes papers from additional
venues. Another potential threat is that the inclusion and exclusion criteria may have
left relevant studies out of the final set of primary studies. This was mitigated not only
by the usage of the gold standard but also by having key points of our protocol (e.g.,
inclusion and exclusion criteria) inspected by other external researchers with experi-
ence in CES. To mitigate risks related to data collection and analysis, we considered
several strategies. The filtering of papers and data extraction involved at least two
researchers on every step, while there were extensive discussions on topics such as
selection criteria and understanding of CES terminology. In addition, the alignment of
researchers involved in these steps where verified by calculating the Cohen’s kappa
coefficient between them. For data analysis, we applied frequency analysis, cross-
tabulation and statistical tests, which are less prone to researcher bias. However, we
acknowledge that our results are limited to the set of design approaches, CQAs, and
application domains that were discussed in the collected primary studies. Although

Design Approaches for Critical Embedded Systems 271

considering non-peer-reviewed literature was out of the scope of our SMS, we argue
that the digital libraries we considered, do catalog most of the work relevant to the
research of CES design.

Finally, to mitigate replicability threats, the steps of our study were clearly stated in
our protocol and can be reproduced by other researchers. However, we acknowledge
that the reproduction of the SMS by other researchers may lead to slight different sets
of primary studies due to biases, e.g., when applying the inclusion and exclusion
criteria. We mitigated this threat to some extent by comprehensively documenting
faced challenges and decisions made upon them. Thus, despite some potential minor
differences, we believe that the results and observations would be predominantly
similar in replication studies.

7 Conclusions

In this paper, we presented a Systematic Mapping Study (SMS) on designing Critical
Embedded Systems (CES) that investigated five facets: (a) approaches for designing
CES; (b) application domains for which these approaches are developed; (c) Critical
Quality Attributes (CQAs) considered on these approaches; (d) tools used for designing
CES; and (e) type of evidence provided by these approaches. We considered five digital
libraries and collected an initial amount of 1673 primary studies, which were then
filtered, resulting in 269 selected primary studies. Subsequently, we extracted and
analyzed all data necessary to answer our research questions.

The results of our SMS show that the body of knowledge on designing CES is vast,
and this is partially due to the overlap of knowledge with other classes of systems such
as hard real-time systems. Results also suggest that the CQAs that are relevant to the
design of CES, are common for this whole class of systems, i.e. they are mostly
independent of application domain. The main contributions of our work are the clas-
sification scheme for approaches and tooling, the provided collection of CQAs and
approaches (with associated tools), as well as the webpage that supports exploring this
information. We believe that both researchers and practitioners can benefit from these
contributions, taking advantage of our provided overview of this vast body of
knowledge; they can thus focus on more relevant tasks such as identification of related
and future work, and exploration of problem and solution spaces. Based on our results
and observations we envisage several opportunities for future work. Among them, we
highlight the possibility of investigating approaches that might be potentially beneficial
to CES and have not being thoroughly explored yet, like using design patterns to
improve levels of CQAs. The body of knowledge presented in this SMS has consid-
erable overlap with other classes of system, thus we find it relevant to continue
exploring such related classes (e.g., hard-real time systems) and seek approaches that
can be applied to the designing of CES.

Acknowledgements. The authors would like to thank the financial support from the Brazilian
and Dutch agencies CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.: 204607/2013-2), as well
as the INCT-SEC (Grant N.: 573963/2008-8 and 2008/57870-9).

272 D. Feitosa et al.

References

1. Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems. Springer, Dordrecht (2010). https://doi.org/10.1007/978-94-007-0257-8

2. Bate, I.: Systematic approaches to understanding and evaluating design trade-offs. J. Syst.
Softw. 81, 1253–1271 (2008)

3. Medikonda, B.S., Panchumarthy, S.R.: A framework for software safety in safety-critical
systems. ACM SIGSOFT Softw. Eng. Notes. 34, 1 (2009)

4. Aguiar, A., Filho, S.J., Magalhães, F.G., Casagrande, T.D., Hessel, F.: Hellfire: a design
framework for critical embedded systems’ applications. In: 11th International Symposium on
Quality Electronic Design, pp. 730–737 (2010)

5. Ampatzoglou, A., Gkortzis, A., Charalampidou, S., Avgeriou, P.: An embedded multiple-
case study on OSS design quality assessment across domains. In: Seventh ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, pp. 255–
258. IEEE (2013)

6. Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A., Poshyvanyk, D., Guéhéneuc, Y.-G.:
Domain matters: bringing further evidence of the relationships among anti-patterns, application
domains, and quality-related metrics in Java mobile apps. In: 22nd International Conference on
Program Comprehension, pp. 232–243. ACM Press (2014)

7. Cawley, O., Wang, X., Richardson, I.: Lean/agile software development methodologies in
regulated environments – state of the art. In: Abrahamsson, P., Oza, N. (eds.) LESS 2010.
LNBIP, vol. 65, pp. 31–36. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16416-3_4

8. Eklund, U., Bosch, J.: Archetypical approaches of fast software development and slow
embedded projects. In: 39th Euromicro Conference Series on Software Engineering and
Advanced Applications, pp. 276–283 (2013)

9. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Engineering 2, 1051 (2007)

10. Karlström, D., Runeson, P.: Integrating agile software development into stage-gate managed
product development. Empir. Softw. Eng. 11, 203–225 (2006)

11. Selim, G.M.K., Wang, S., Cordy, James R., Dingel, J.: Model transformations for migrating
legacy models: an industrial case study. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E.,
Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 90–101. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9_9

12. Barbosa, J.R., Delamaro, M.E., Maldonado, J.C., Vincenzi, A.M.R.: Software testing in
critical embedded systems: a systematic review of adherence to the DO-178B standard. In:
Third International Conference on Advances in System Testing and Validation Lifecycle,
pp. 126–130 (2011)

13. Elberzhager, F., Rosbach, A., Bauer, T.: Analysis and testing of matlab simulink models: a
systematic mapping study. In: 2013 International Workshop on Joining AcadeMiA and
Industry Contributions to testing Automation, pp. 29–34 (2013)

14. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic
review. Inf. Softw. Technol. 50, 833–859 (2008)

15. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: 12th international conference on Evaluation and Assessment in Software
Engineering, pp. 68–77 (2008)

16. Antonio, E.A., Ferrari, F.C., Ferraz Fabbri, S.C.P.: A systematic mapping of architectures for
embedded software. In: Second Brazilian Conference on Critical Embedded Systems,
pp. 18–23 (2012)

Design Approaches for Critical Embedded Systems 273

http://dx.doi.org/10.1007/978-94-007-0257-8
http://dx.doi.org/10.1007/978-3-642-16416-3_4
http://dx.doi.org/10.1007/978-3-642-16416-3_4
http://dx.doi.org/10.1007/978-3-642-31491-9_9

17. Guessi, M., Nakagawa, E.Y., Oquendo, F., Maldonado, J.C.: Architectural description of
embedded systems: a systematic review. In: Third International ACM SIGSOFT Symposium
on Architecting Critical Systems, pp. 31–40. ACM (2012)

18. Nakagawa, E.Y., Gonçalves, M., Guessi, M., Oliveira, L.B.R., Oquendo, F.: The state of the
art and future perspectives in systems of systems software architectures. In: 1st International
Workshop on Software Engineering for Systems-of-Systems, pp. 13–20 (2013)

19. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal question metric paradigm. In: Marciniak, J.
J. (ed.) Encyclopedia of Software Engineering, pp. 528–532. Wiley, New York (1994)

20. Dieste, O., Grimán, A., Juristo, N.: Developing search strategies for detecting relevant
experiments. Empir. Softw. Eng. 14, 513–539 (2009)

21. Dybå, T., Dingsøyr, T., Hanssen, G.K.: Applying systematic reviews to diverse study types:
an experience report. In: First International Symposium on Empirical Software Engineering
and Measurement, pp. 225–234 (2007)

22. Zhang, H., Babar, M.A.: On searching relevant studies in software engineering. In: 14th
International Conference on Evaluation and Assessment in Software Engineering, pp. 111–
120. British Computer Society, Keele (2010)

23. Alves, V., Niu, N., Alves, C., Valença, G.: Requirements engineering for software product
lines: a systematic literature review. Inf. Softw. Technol. 52, 806–820 (2010)

24. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Affonso, F.J., Andrade, H., Felizardo, K.R.,
Nakagawa, E.Y.: Supplementary Material: “Design Approaches for Critical Embedded
System: A Systematic Mapping Study”. https://doi.org/10.5281/zenodo.996480

25. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional, Upper Saddle River (2012)

26. Sommerville, I.: Software Engineering. Addison Wesley, Boston (2000)
27. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A general model

of software architecture design derived from five industrial approaches. J. Syst. Softw. 80,
106–126 (2007)

28. Bartelt, C., Bauer, O., Beneken, G., Bergner, K., Birowicz, U., Bliß, T., Cordes, N., Cruz,
D., Dohrmann, P., Friedrich, J., Gnatz, M., Hammerschall, U., Hidvegi-Barstorfer, I.,
Hummel, H., Israel, D., Klingenberg, T., Klugseder, K., Küffer, I., Kuhrmann, M., Kranz,
M., Kranz, W., Meinhardt, H.-J., Meisinger, M., Mittrach, S., Neußer, H.-J., Niebuhr, D.,
Plögert, K., Rauh, D., Rausch, A., Rittel, T., Rösch, W., Saas, E., Schramm, J., Sihling, M.,
Ternité, T., Vogel, S., Wittmann, M.: V-Modell XT Gesamt 1.3 (2010)

29. Gajski, D.D., Zhu, J., Dömer, R., Gerstlauer, A., Zhao, S.: SPECC: Specification Language
and Methodology. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-4515-6

30. Kacimi, O., Ellen, C., Oertel, M., Sojka, D.: Creating a reference technology platform -
performing model-based safety analysis in a heterogeneous development environment. In:
Second International Conference on Model-Driven Engineering and Software Development,
pp. 645–652 (2014)

31. ISO/IEC: ISO/IEC 25010:2011 - Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models
(2011)

32. ISO/IEC/IEEE: ISO/IEC/IEEE 24765-2010 - Systems and software engineering – Vocab-
ulary (2010)

33. ISO/IEC: ISO/IEC 15026-3:2015 Systems and software engineering – Systems and software
assurance – Part 3: System integrity levels (2015)

274 D. Feitosa et al.

http://dx.doi.org/10.5281/zenodo.996480
http://dx.doi.org/10.1007/978-1-4615-4515-6

Author Index

Affonso, Frank J. 243
Alfonso Hoyos, Jean Pierre 183
Ampatzoglou, Apostolos 243
Andrade, Hugo 243
Attiogbé, J. Christian 158
Avgeriou, Paris 243

Blech, Jan Olaf 141
Bocicor, Maria Iuliana 70
Bsaies, Khaled 158

Carbonnel, Jessie 116

Dascălu, Maria 70
Dhaou, Fatma 158

Feitosa, Daniel 243
Felizardo, Katia R. 243
Foster, Keith 141

Gaczowska, Agnieszka 70
García S., Alberto 3

Hamza, Haitham 23
Hassan, Hoda 23
Hosny, Hoda M. 93
Hostiuc, Sorin 70
Huchard, Marianne 116

Iñiguez-Jarrín, Carlos 3, 48

Jamaluddin, Tashreen Shaikh 23

Khaled, Osama M. 93

Lagartos, Ignacio 224

Miralles, André 116
Moldoveanu, Alin 70
Molina, Antonio 70
Molnar, Arthur-Jozsef 70
Mouakher, Ines 158

Nakagawa, Elisa Y. 243
Nebut, Clémentine 116
Negoi, Ionuţ 70

Ortin, Francisco 224

Pastor López, Óscar 3
Pastor, Óscar 48
Prévost, Guillaume 141

Racoviţă, Vlad 70
Redondo, Jose Manuel 224
Restrepo-Calle, Felipe 183
Reyes Román, José F. 3, 48

Schmidt, Heinrich W. 141
Shalan, Mohamed 93
Spichkova, Maria 208

	Preface
	Organization
	Contents
	Service Science and Business Information Systems
	Guidelines for Designing User Interfaces to Analyze Genetic Data. Case of Study: GenDomus
	Abstract
	1 Introduction
	2 Related Works
	3 Genetic Diagnosis Scenario
	4 GenDomus
	4.1 Graphical User Interface

	5 Motivating Scenario: The Collaborative Room
	5.1 Motivating Scenario

	6 Design Guidelines
	6.1 Design Guidelines for User Interfaces
	6.2 Platform Design Guidelines

	7 Conclusions and Future Work
	Acknowledgements
	References

	Biologically Inspired Anomaly Detection Framework
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Work
	3.1 BADF Interaction in the SOA
	3.2 Biologically Inspired Anomaly Detection Framework (BADF)
	3.3 Complexity Analysis of BADF
	3.4 Security as a Service Based on BADF

	4 Evaluation
	4.1 The Development Environment
	4.2 The Types of Attacks
	4.3 Evaluating the SECaaS Architecture
	4.4 Preliminary Work on CP

	5 Conclusion
	References

	Genomic Tools*: Web-Applications Based on Conceptual Models for the Genomic Diagnosis
	Abstract
	1 Introduction
	2 Related Work
	2.1 Precision Medicine (PM) and Genetic Tests
	2.2 Genetic Tools for Annotating Variations

	3 BPMN: Genomic Diagnosis Process
	3.1 Exploitation Tasks 10 and 11 (T10–T11)

	4 Genetic Tools Based on Conceptual Models
	4.1 GenesLove.Me (GLM)
	4.2 VarSearch (Prototype)
	4.2.1 First Steps
	4.2.2 Design and Implementation of VarSearch

	5 Case Studies
	5.1 Using the VarSearch Prototype
	5.2 Improved Efficiency and Time in Finding Variations with VarSearch

	6 Conclusions and Future Research
	Acknowledgements
	References

	Technological Platform for the Prevention and Management of Healthcare Associated Infections and Outbreaks
	1 Introduction
	2 State of the Art
	2.1 Monitoring Hand Hygiene
	2.2 Disinfection Robots
	2.3 Infections and Outbreak Management

	3 HAI-OPS - Platform Overview
	4 Modelling Clinical Processes
	4.1 General Practitioner
	4.2 Minor Surgery
	4.3 Known Challenges

	5 The Wireless Sensor Network
	5.1 Communication Infrastructure

	6 Software Components
	6.1 Server Modules
	6.2 Client Components

	7 Conclusions
	References

	Software Engineering
	Exploiting Requirements Engineering to Resolve Conflicts in Pervasive Computing Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Requirements Trade-off Analysis
	5 Requirements Conflict Identification
	6 Conflict Resolution
	6.1 One Solution
	6.2 Alternative Solutions
	6.3 Merged Solutions

	7 Evaluation
	8 Discussion
	9 Conclusion
	Acknowledgement
	Appendix
	References

	Assisting Configurations-Based Feature Model Composition
	1 Introduction
	2 Context and Overview
	2.1 Feature Models
	2.2 Compositional Approach Overview

	3 Feature Model Composition
	3.1 Intersection/Union Based Composition
	3.2 Comparing Main Implementations of Composition Operations

	4 Formal Concept Analysis for Feature Model Composition
	4.1 Formal Contexts for Intersection and Strict Union
	4.2 Conceptual Structures
	4.3 Equivalence Class Feature Diagram (ECFD)
	4.4 Extraction of Common Sub-configurations

	5 Implementation and Assessment
	6 Related Work and Discussion
	7 Conclusion
	References

	A Cloud-Based Service for the Visualization and Monitoring of Factories
	1 Introduction
	2 Related Work
	3 BeSpaceD-Based Data-Models
	3.1 Spatio-Temporal Modeling and Reasoning
	3.2 Representing Industrial Plants
	3.3 Representing Sensor Data

	4 Cloud-Based Reporting and Visualization
	4.1 eStoRED Overview
	4.2 eStoRED Architecture

	5 Demonstrator and Evaluation
	5.1 The Factory Demonstrator
	5.2 eStoRED - Factory Connection

	6 Conclusion
	References

	An Operational Semantics of UML2.X Sequence Diagrams for Distributed Systems
	1 Introduction
	2 Causal Semantics
	3 Overview on Previous Extension of the Causal Semantics
	3.1 Formalization of UML2.X SD with Nested CF
	3.2 Extension of the Causal Semantics
	3.3 Hidden Precedence Relations in LOOP Combined Fragment

	4 Operational Semantics
	4.1 State
	4.2 Transition Rules
	4.3 Occurrence of the Events

	5 Related Works
	6 Conclusion
	References

	Fast Prototyping of Web-Based Information Systems Using a Restricted Natural Language Specification
	1 Introduction
	2 Background
	2.1 Software Requirements
	2.2 Related Works

	3 Fast Prototyping of Web Applications Running Business Processes
	3.1 Restricted Natural Language - RNL
	3.2 Code Generation Approach

	4 Implementation
	5 Results and Discussions
	5.1 Case Study: Question Cycle
	5.2 Case Study: Odoo Clone
	5.3 Comparative to Similar Works

	6 Conclusions
	References

	Model-Based Analysis of Temporal Properties
	1 Background
	2 Time-Triggered View: FocusST
	2.1 TSTD
	2.2 Operating over Time Intervals
	2.3 Changing Time Granularity
	2.4 Untimed Causal Simulation

	3 Event-Based View: FocusE
	4 Conclusions
	References

	Towards a Java Library to Support Runtime Metaprogramming
	Abstract
	1 Introduction
	2 Library Interface
	2.1 Structural Intercession
	2.2 Dynamic Code Evaluation
	2.3 Dynamic Inheritance
	2.4 Introspection API

	3 Elements of the Library
	3.1 Metaprogramming Services
	3.2 Runtime Adaptation
	3.3 Dynamic Code Evaluation
	3.4 Dynamic Inheritance
	3.5 Introspection Services

	4 Related Work
	4.1 Structural Intercession
	4.2 Dynamic Inheritance
	4.3 Java Reflection API

	5 Conclusions
	Acknowledgements
	References

	Design Approaches for Critical Embedded Systems: A Systematic Mapping Study
	Abstract
	1 Introduction
	2 Related Work
	2.1 Development Processes
	2.2 Verification and Validation
	2.3 Software Architecture
	2.4 Comparative Analysis

	3 Review Methodology
	3.1 Research Scope
	3.2 Search Strategy
	3.3 Study Selection
	3.4 Keywording
	3.5 Data Extraction and Mapping

	4 Results
	4.1 Demographic Overview
	4.2 Design Approaches
	4.3 Application Domains
	4.4 Quality Attributes
	4.5 Tools
	4.6 Evidence Type

	5 Discussion
	5.1 Relationship Between Quality Attributes
	5.2 Domain-Specific Research for CES
	5.3 Relationships Among Approaches, Tools, and Languages
	5.4 Implications to Researchers and Practitioners

	6 Threats to Validity
	7 Conclusions
	Acknowledgements
	References

	Author Index

