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Abstract. Genetic programming (GP) is a heuristic method for auto-
matically generating code. It applies probabilistic-based generation and
mutation of code, combined with “natural selection” principles, using a
fitness function. Often, the fitness is calculated based on a large test suite.
Recently, GP was applied for synthesizing correct-by-design concurrent
code from temporal specification, where model checking was used for cal-
culating the fitness function. A deficiency of this approach is that it uses
a limited number of fitness values, based on a small number of modes
for each verified specification property (e.g., satisfies, does not satisfy a
given property). Furthermore, the need to apply model checking on many
candidate solutions using the genetic process makes using an off-the-shelf
model checker such as Spin prohibitively expensive. The repeated invoca-
tion of such a tool, compiling the code for a new candidate solution and
running it, can render the performance of this approach several orders of
magnitude slower than using an internal model checking. To tackle this
problem, we describe here the use of a combination of statistical model
checking, and a light use of model checking, for calculating the fitness
required by GP.

1 Introduction

The classical approach for synthesis of interactive systems from temporal specifi-
cation uses automata and game theory [25]. Synthesis of distributed or concurrent
programs from temporal specifications is in general undecidable [26]. This calls for
the use of heuristic methods. In particular, genetic programming based on model
checking [15] employs a powerful heuristic search in the state space of candidate
programs, which can be controlled and adjusted by an intelligent user.
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Genetic programming (GP) is an automatic method for generating code. It
is based on beam search, i.e., a search that maintains in each generation a set of
objects, rather than a single object. The search attempts to improve the quality
of candidates from one generation to another, with mutual influence between
candidates. Candidates propagate from one generation to the next one with
probability based on their fitness value, which is an estimation on how close the
candidate is from a correct solution. In addition, it uses the genetic operations
of mutation, i.e., making small random changes to a candidate, and crossover,
i.e., combining elements of two candidates. Since GP does not use backtracking,
the only possibilities to deal with a failed search is to start with a new random
seed or to try searching with a different fitness function.

Classical genetic programming is based on calculating the fitness function
with respect to a large training set of test cases. Recently, using model checking
for calculating the fitness function was studied in [14-18]. Model checking is
a comprehensive approach for checking correctness, hence its use provides a
greater assurance of the correctness of the code than testing. On the other hand,
the number of correctness properties are typically not large, which results in a
small set of fitness values. Additional fitness levels can be provided, e.g., “some
executions satisfy a property”. However, even then, the fitness landscape is far
from being smooth [8], which may sometimes limit the ability of the genetic
search to converge.

Model checking based GP requires performing model checking for all the can-
didate programs generated during the process. Hence, it benefits greatly from
having a dedicated model checker that is implemented within the genetic pro-
gramming tool. Without it, the use of an off-the-shelf model checking tool like
Spin [12] would be several orders of magnitude slower. This motivates using
alternative ways of checking the fitness of candidates such as randomized testing
and statistical model checking. However, these methods only provide a limited
assurance about the correctness of the generated code.

In this work, we suggest to use statistical model checking (SMC) [20,27] to
replace part of the work that is done by model checking. SMC is a simulation-
based solution, which is less time and memory intensive than classical model
checking. The goal of SMC is to check sample execution paths of the system
and use methods like statistical hypothesis testing to calculate the probabili-
ties of the system to satisfy a given property within a given statistical error.
Compared with the model checking verdicts, probability measurement can pro-
vide smoother indication about how much the model satisfies a given property,
which can assist in the convergence of the genetic process. Typical tools for SMC
include Plasma [21] and Uppaal [3].

Applying SMC, which is based on finite executions, we immediately expe-
rience several inherent obstacles. The statistical sampling of the executions is
limited to finite length, hence, the correctness of the generated programs is not
guaranteed by the statistical evaluation. In particular, some properties may fail
in very few executions (rare events), which may be missed in the statistical eval-
uation. Conversely, properties that hold for long or infinite execution sequences
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may not be manifested during some of the finite executions that are checked.
This suggests using a combination of SMC and model checking to achieve the
best of both wofair scheds. Our approach combines SMC with light use of model
checking, based on the Spin model checker, performed at the later stages of the
genetic process.

2 Genetic Programming

During the 1970s, Holland [11] established the field known as Genetic Algorithms
(GA). Individual candidate solutions are represented as fixed length strings of
bits, corresponding to chromosomes in biological systems. Candidates are evalu-
ated using a fitness function. The fitness approximates the distance of the candi-
date from a desired solution. Genetic algorithms evolves a set of candidates into
a successor set. Each such set forms a generation, and there is no backtracking.
Candidates are usually represented as fixed length strings. They progress from
one generation to the next one according to one of the following cases:

— Reproduction. Part of the candidates are selected to propagate from one gen-
eration to the subsequent one. The reproduction is done at random, with
probability relative to the relation between the fitness of the individual can-
didate and the average of fitness values in the current generation.

— Crossover. Some pairs of the candidates selected at random for reproduction
are combined using the crossover operation. This operation takes parts of bit-
strings from two parent solutions and combines them into two new solutions,
which potentially inherit useful attributes from their parents.

— Mutation. This operation randomly alters the content of a small number of
bits from candidates selected for reproduction (this can also be done after
the crossover). One can decide on mutating each bit separately with some
probability.

Unlike traditional point-by point search such as depth-first search or breadth-
first search, the different candidates in a single generation have a combined
effect on the search; progress tends to promote, improve and combine candidates
that are better than others in the same generation. The process of selecting
candidates from the previous generation and deciding whether to apply crossover
or mutation continues until we complete a new generation. All generations are
of some predefined fixed size N. This can be, typically, a number between 50
and 500. Genetic algorithms thus perform the following steps:

1. Randomly generate N initial candidates.

2. Evaluate the fitness of the candidates.

3. If a satisfactory solution is found, or the number of generations created
exceeds a predefined limit (say hundreds or a few thousands), terminate.

4. Otherwise, select candidates for reproduction using randomization, propor-
tional to the fitness values and apply crossover or mutation on some of them,
again using randomization, until N candidates are obtained.

5. Go to step 2.
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If the algorithm terminates unsuccessfully, we can restart it with a new ran-
dom seed, or change the way we calculate the fitness function.

Genetic programming, suggested by Koza [19], is a direct successor of genetic
algorithms. In GP, each individual organism represents a computer program.
Programs are represented by variable length structures, such as trees (see Fig. 1)
or a sequences of instructions. It is quite easy to transfer between a program and
a syntax tree and vice versa. These trees are well typed. Each node is classified as
code, Boolean, condition or expression. Leaf nodes are variables or constants, and
other nodes have successors according to their type. For example, a while node
(of type code) has one successor of type Boolean or condition and one successor
of type code (for the loop body); a Boolean node and has two successors that
can be of type Boolean or condition, and a condition node < has two successors
of type expression. The genetic operations need to respect these (and possibly
further) types, e.g., expressions cannot be exchanged with Booleans.

Crossover is performed by selecting subtrees on each of the parents, and
then swapping between them. This forms two new syntax trees, having parts
from both of their parents. There are several kinds of mutation operations. In
replacement mutation, one picks at random a node in the tree, which is the
root of a subtree. Then one throws away this subtree and replace it with a
subtree of the same type, generated at random. In Fig.1, the rightmost leaf
node was chosen, which is marked with double ellipse. The subtree consists of
this single node, representing the constant 1. Thus, it needs to be replaced with
another expression, built at random. A new subtree was randomly generated,
consisting of two nodes, representing the expression a[0]. In insertion mutation,
a new node of the same type as the selected subtree is generated and is inserted
just above it (type permitting); then one may need to complete the tree by
constructing another descendant of the newly inserted node. For example, if we
select an expression and insert above it a node that corresponds to addition +,
it can be made one of the descendants to be summed up, say the left, but we
need to complete the tree with a new right descendant. The reduction mutation
has the opposite effect of insertion: the selected node is replaced with one of
its offsprings (type permitting). In deletion mutation we remove the selected
subtree, and recursively update the ancestors to make the program syntactically
correct.

Syntax trees are not limited to a fixed size. Therefore the candidates can
shrink or grow after mutation and crossover. In GP, there is actually a tendency
of candidates to bloat with unnecessary code, for example, an assignment such as
a[1] := a[1]. The countermeasure for this, called parsimony pressure, is to include
a (small) negative value in the fitness function, corresponding to the length of
the code. As a consequence, the resulting solutions are not expected to have
a perfect fitness value, but instead they need to pass all the tests/verifications
performed.
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while (a[2]<>0) a[me]:=1 while (a[2]<>0) a[me]:=a[0

Fig. 1. Mutation on a syntax tree

3 GP Based on Model Checking and Statistical Model
Checking

We want to employ GP to synthesize concurrent programs from given a tem-
poral specification. We use linear temporal logic, LTL syntax [24]. The input
includes, besides the temporal specification, also a configuration, which restricts
the parameters of the desired solution. The configuration can restrict the depth
of the generated syntax trees, the variable used, the allowed arithmetic and
Boolean operators, and the number of processes. It can also contain a template
that restricts the code, e.g., dictates that the code is embedded within a fixed
loop or contains some fixed parts of code. The template has several uses:

— Using the template we can guarantee part of the behavior of the targeted
code, simplifying the specification.

— We use as specification formalism LTL, which is limited to assert on all the
executions of the code. On top of that, we can use the template to force check-
ing different cases, providing some expressive power of branching temporal
logic such as CTL [2]. Furthermore, templates also provide a testbed environ-
ment with uncontrolled actions, where the code needs to behave under all the
interactions with it. This provides some expressive power of game logics [5].

— The template can be used to limit the state space of the search, e.g., suggesting
that a solution will start with an assignment, or that it is embedded in a main
loop. This can reduce the complexity of the genetic search and improve the
chance and speed of coverage.

In [14-18], GP based on model checking was described and experimented
with. The fitness function was solely calculated based on model checking results.
Using model checking instead of testing to calculate the fitness function for GP
allows a more reliable evidence of the correctness of the code. On the other hand,
model checking is computationally expensive. In [15-18], it was observed that the
number of specification properties is rather small, which creates a small number
of fitness values. Therefore, a few intermediate levels were added on top of the
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obvious satisfies/ does not satisfy verdicts; in particular, levels such as sometimes
satisfies and satisfies with probability 1.

3.1 A Running Example

As a running example, we look at synthesizing a solution for the well known
mutual exclusion problem. Solutions for this problem from temporal specifica-
tions were synthesized using GP, where the fitness function is based on model
checking [15,16]. The configuration provided dictates the following structure:

pl: While W1 do p2: While W2 do
nonCritl:no-op nonCrit2:no-op
preCS1 preCS2
CS1:no-op CS2:no-op
postCS1 postCS2

end while end while

The labels nonCriti represent the actions of the process pi outside the critical
section. The labels CSi represent the critical section, which both processes want
to enter a finite or unbounded number of times. These segments are not part
of the synthesis task, and can be represented by trivial code no-op. The critical
section is controlled by the code that will be synthesized for preCSi and postCSi.
We require the following LTL properties:

Safety: O—(pl in CS1 A pl in CS2), i.e., there is no state where the program
counters of both processes are in the critical section simultaneously.

Liveness: O(pi in preCSi — Opi in CSi), i.e., if a process wants to enter the
critical section, then it will eventually succeed in doing so.

A solution that necessarily alternate between the process in entering their
critical sections would also satisfy these conditions. Then, if one of them ceases
to try entering its critical section, the other one can get blocked. To eliminate
this problem, the variables Wi in the configuration are used to control whether
processes want to keep entering the critical section. We can set different values
to W1 and W2 to control the program behavior in different scenarios, including
both processes want to enter the critical section, or only one wants to enter the
critical section. This part of the code is fixed and not subject to synthesis.

Note that the configuration assures that the duration of the critical sections
CSi are finite. Hence there is no need to require that =¢0Opi in CSi. We assume
no (goto) statements are allowed, hence the synthesized parts are executed to
completion each time they are entered.

3.2 Replacing Model Checking with Statistical Model Checking

Due to the two deficiencies of the use of model checking in genetic programming
mentioned, complexity and lack of smoothness of the fitness value, we were moti-
vated to replace part of its use by statistical model checking. In particular, we
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generate for each GP candidate solution a large set of pseudo random executions;
we check if these executions satisfy related specification properties.

The fitness function used in GP needs to be rather smooth in order to pro-
vide good convergence, and the statistical evaluation can provide multiple levels.
Statistical evaluation may also be more affordable for some intricate synthesis
problems. The simplicity of statistical methods is even further apparent for real
time or cyber-physical systems. Another advantage that statistical model check-
ing has over model checking is that it can be used for parametric systems and
systems with infinite state space, where model checking has limited use for these
applications.

For using statistical model checking over finite prefixes, we form a set of
bounded temporal properties over finite prefixes of executions that are related
to the original LTL properties over infinite sequences. Safety properties can be
migrated directly to finite prefixes (A safety property is violated when there is a
finite prefix that does so [1]). We use an additional temporal operator ¢, where
4 ¢ holds in a sequence when ¢ holds at its last state. A finite prefix may present
only partial information, and the property may be violated or satisfied only in a
longer prefix. The properties over finite prefixes that correspond to the original
properties provide support to the case that the original properties hold for the
infinite sequences, but do not always guarantee them. For example, instead of the
liveness property, we use a property that a process enters its critical section some
fixed amount of times. The larger this number is, the more we are convinced that
the liveness property holds. However, a large number will only be manifested in
a long prefix. We pick up these related properties over finite prefixes according
to our intuition (we may fine tune them if the genetic process fails).

At the moment we do not have a way of obtaining these related properties
automatically from the original LTL properties, and this can be the subject of
further research (e.g., using genetic co-evolution [19] or learning). Nevertheless,
we do not expect the synthesis of concurrent programs to be completely auto-
matic, as it was shown to be undecidable [26].

We illustrate the choice of related properties over finite prefixes for the run-
ning example. Suppose that we decide to check n executions, each one of them
is limited to a length of k. We can fine tune the parameters n and k on several
test runs to see what works. We can also try to estimate the size (number of
states) of the desired solution to provide such parameters where errors will be
found with high probability [10].

We split the original liveness property into several bounded properties. The
predicates enter; represent the total number of times process pi entered its
critical section in the current prefix.

— B. The case that both processes want to enter the critical section. We enforce
that by setting (W1AW2). We add two counters enter, and enters to indicate
the times that each process enters the critical section. Out of which we have:

e B;. Both processes succeed entering the critical section multiple times:
pp, = #(enter; > 1 A entery > 1).
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e B5. One process enters the critical section multiple times and the other
only once: pp, = #((entery > 1Aenters = 1)V (entery = 1Aenterg > 1)).

e Bj, Only one process succeeds in entering, or both enter exactly once:
pB, = #(entery + entery > 1 A0 < enter; X enters < 1).

e B,. Both processes do not succeed in entering their critical section pp, =
& (entery + enterg = 0).

— O. Ouly one process p; wants to enter, when forcing (W1 A =W2). Out of
which we have:

e O;. The process p; succeeds entering its critical section multiple times:
po, = #(enter; > 1)

e (3. The process p; succeeds entering its critical section only once: pp, =
¢ (enter; = 1)

e (O3, The process p; does not succeed entering its critical section: pp, =
¢ (enter; =0)

We mark the SMC probabilities (as estimated by an SMC tool, or just the
portions of executions satisfying each property among the randomly generated
test cases) of the model satisfying these given properties by Pg,, Pp,, Pg,,
Pg,, Po,, Po, and Pp, respectively and the safety property by Pps. The fitness
function is based on the above parameters.

We have the following coefficients, which can be assigned various values
between 0 and 1:

— o multiplies Py, the probability that the model satisfies the safety property.

— B1,B2, B3 multiply Pg,, Pp,, Pp,, the probability that the model satisfies
0B, PB, and pp,, respectively.

~ Y1, Y2 multiply Po,, Po, the probability that the model satisfies po, ,and po,,
respectively!.

We enforce that B3 < B2 < B1, y2 < y1. A possible fitness function is
(o x Prg 4B x Pp, + B2 X Pp, +B3 x Pp, +v1 X Po, +v2 x Po,) x 100

We normalize fitness to be between 0 and 100 by requiring that a+ 81 +vy; = 1.

3.3 Problems and Solutions in Using SMC for Fitness Function

We need to pay attention to some issues in transforming SMC probabilities into
fitness results. We will first list the difficulties, and then suggest some solutions.

Limited Distinction of the Probabilistic Approach. Although providing a
smooth fitness value range, SMC based fitness function is only a rough estimate.
In particular, it is hardly reasonable to assume that a solution that has 75%
of its sampled prefixes satisfy some properties is uniformly worse than one in
which 85% of the sampled prefixes satisfy them. However, the use of stochastic

! The coefficients for Pgp, and Po, are both 0, as these cases correspond to an inept
solution.
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selection of candidates for propagation by the genetic programming algorithm,
where the given fitness only affects the probability of selecting the candidate,
rather than directly selecting the best fitted ones, somewhat smoothens out the
difference between such similar cases.

False Positives: Failure of Properties that Appear as Rare Events. The
executions where an error is demonstrated may be rare; in which case one may
need a lot of experiments and would, by chance, not catch the bad executions.
For mutual exclusion, the processes may enter the critical section simultaneously,
but on many executions they just independently enter and then exit, where the
simultaneous stay within the critical section is not manifested on the selected
random prefixes.

False Negatives: Negative Bias Due to Scheduling. Another problematic
situation is where some liveness properties would not show up on a substantial
number of prefixes due to scheduling. In a particular finite execution, a pro-
cess may fail to enter the critical section since the other process is scheduled
more frequently, although it could do so in a longer prefix or under a different
scheduling.

Fairness. Many solutions of the mutual exclusion are based on some fairness
assumption [23]; there, without allowing both processes ample opportunities to
progress, the liveness will not hold. In particular, this is the case for the classical
Dekker solution for mutual exclusion, presented by Dijkstra [4]. However, fairness
is defined over infinite executions, and SMC checks only finite ones.

In order to tackle the above issues, wcich stem from the randomness and
finiteness of the checked prefixes, we used a combination of the following ideas.

Extending the Measurements. Depending on the checked property, we may
want to extend the measurements. For example, for the safety property, we can
check more executions to increase the probability that we find the violation. For
the liveness property, we may want to use longer executions to diminish the effect
of unfair scheduling. These parameters are adjusted after some initial failures to
synthesize correct solutions.

Using Combination of Cases. Because we cannot rely on fairness, and our
tested sequences are finite, we should learn about the satisfaction of a property
from observing the combination of the random checks. Take for example the case
where we want to check that a process is not prohibited from entering the critical
section. There may exist some prefixes where it fails to do so. However, if in a large
percentage of the executions, it succeeds in entering the critical section, this can
be used as evidence that the failure in the minority of the executions is due to unfa-
vored scheduling. Then, given a certain threshold, we may apply “majority rules”
to conclude that the liveness property holds. Accordingly, we may decide that
when at least, say, 70% of the executions are satisfy pp,, the fitness treats all the
executions in B as if they all satisfy pp, . Accordingly, in that case we use a simpler
fitness function (a0 X Py + B1 X (Pp, + P, + Pp,) +v1 X Po, +v2 X Po,) x 100.

However, this is not the only possible conclusion for this measurement: it may
not be the discrimination of the scheduling that makes a process fail to enter
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its critical section, but rather some scheduling that subsequently prevents the
entrance to the critical section. Such a situation of multiple possible conclusions
from the same statistical experiments can be resolved by the combined use of
both majority rules and the light use of model checking (see below); model
checking will catch such rare event errors that may otherwise not affect the
fitness function.

Biasing the Probabilistic Selection. If we identify cases that may happen
rarely, we can use biasing of the different choices in order to inspect them closer.
For example, since catching violation of the safety property may be rare, we
can reduce the probability of transitions that exit the critical section in favor of
transitions of the other process that is outside the critical section. In essence, we
are “waiting” for the other process to enter the critical section. For promoting
liveness and providing more “fair” scheduling, we can decrease the probability
of a transition of some process to be selected relative to the number of states
where the other process has been waiting. A related technique for handling rare
events, in the context of statistical model checking, is importance splitting [13],
which split the test sequences into cases. Then one can zoom into checking cases
where the rare events are believed to appear more frequently. This can also be
a potential technique to handle the rare events problem.

Light Use of Model Checking as Certification or as Part of the Fit-
ness. When candidates that receive very high fitness values are produced, in late
generations, model checking can be used to certify that they indeed satisfy the
desired properties. One can apply model checking sparingly, late on the genetic
process, on candidates with already very high fitness value. We then may inte-
grate the result of the model checking into the fitness and allow it to participate
in additional generations.

Checking Ultimately Periodic Executions. We can replace checking finite
executions by ultimately periodic ones. This can be done as in [7]. However,
checking ultimately periodic sequences is more expensive than checking finite
prefixes, as states on a sequence need to be hashed in order to detect cycles.
This part was not implemented in our prototype.

4 Experiments

For each of the synthesis problems described above we performed experiments
with SMC using Plasma [21]. Plasma uses Approximate Probabilistic Model
Checking (APMC) [9] to provide a controlled accuracy on the statistical results?.
For accelerating the performance, we have also implemented an ad-hoc statistical
evaluation algorithm which shares some of the merits of SMC. This implemen-
tation selects a given number of finite execution sequences and calculates the

2 The configuration of running Plasma in our experiment includes the approximation
threshold € = 0.05, and the confidence threshold § = 0.01. Please refer to [9] for
detailed explanation of these parameters.
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ratio of executions that satisfy a given property. However, it does not provide a
significance level [6] for the measurement result.

The model checking is performed by Spin. Spin works here as separate soft-
ware interfacing with ours, which needs to prepare its own (multiple) files and
performs compilation on each candidate it checks, in order to make the verifica-
tion; each activation of Spin by our code is slower than the statistical evaluations
we make per candidate, hence we applied it sparingly. The Spin model checker
was invoked when the fitness value reaches some threshold, which we set as 98. If
model checking fails, we continue the genetic process, since the failed candidate
solutions may still contain good “genetic material” so we can proceed from this
point based on the SMC fitness calculations.

4.1 Synthesis of Solutions for Mutual Exclusion

The first set of experiments we conducted is to use GP to synthesize solutions of
mutual exclusion. Without using Spin in the last stage to do the certification, our
implementation can generate dozens of solutions that reach the highest fitness
value easily. For example, three representative solutions (a), (b) and (c) are
shown below. The processes are symmetric. The variables me and other can be
concretized to i and (¢ + 1) mod 2 for process p; (1 < i < 2) respectively.

While W1 do While W1 do While W1 do
v[me]=1 v[me]=1 v[me]=1
While (v[2]!=me) do While (v[2]==other) do While (v[other]!=0) do
v[2]=0 v[2]=1 While (v[other]|==other) do
if(v[other]l=me) if(v[other]!=other) v[me]=0
v[2]=1 v[2]=0 end while
end while end while v[me]=1
CS CS end while
v[2]=other v[2]=other cs
end while end while v[me]=0
(a) (b) end while

(c)

In the random simulations, both the processes show no violation of the mutual
exclusion, starvation or deadlock. However, if we investigate the two solutions
(a) and (b), we can find that they fail to satisfy the safety requirement. In some
execution sequences, two processes can enter the critical section at the same
time. Actually, for solution (a), among 10000 simulations, we could observe only
139 failures to satisfy the safety requirement. The unsafe scenario happened even
fewer times in scenario (b): 4 times in 100000 simulations.

Solution (¢) does not satisfy the liveness property. Actually, this solution
represents the scenario where only if both processes want to enter the critical
section indefinitely, then the liveness is satisfied; however, if one process decides
to stop, then the other process will eventually be blocked forever. These exam-
ples demonstrate the problems raised in Sect. 3.3, where one may need a lot of
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experiments and may, by chance, not catch the bad rare events. This leads us to
the next experiment, where we used model checking as certification in the last
generation of the genetic process.

For candidates that received fitness value of at least 98, we used the model
checker Spin [12] to certify whether the desired properties are satisfied. To do
that, we implemented an automatic generator to translate the solution generated
by GP into the modeling language PROMELA of Spin. If the model checking
confirmed correctness, the procedure was stopped. Otherwise, we continued the
GP process (until the limit on the number of generations has been reached).

After integrating Spin to the GP process, we started to obtain correct solu-
tions. One such solution is (d) below. This is a perfect solution that shares a
similar structure with Dekker’s algorithm. Another representative solution, (e),
is similar to Peterson’s algorithm. The difference between (e) and (d) is that (e)
allows Boolean operators and and or in the conditions.

While W1 do While W1 do
v[me]=1 v[me]=1
While (v[other]==1) do v[2]=me
While (v[2]!=other) do While((v[other]!=0) && (v[2]==me)) do

v[me]=0 end while
end while CS
v[me]=1 v[2]=other
end while v[me]=0
CS end while
v[me]=0 (e)
v[2]=me
end while

(d)

4.2 Synthesizing Solutions for Round Robin Scheduling

In this example, there are three processes pg, p1 and ps, each with a critical
section. The processes need to enter their critical sections in round robin order.
That is, py before p;, then ps, and repeating that order with pg, etc. The pro-
cesses always want to enter the critical section (there is no flag Wi that restricts
a process from wishing to enter). A trivial solution is that the processes would
use a turn variable with three values, 0, 1 and 2, and each process will enter only
when turn points to it and then increment it modulo 3. However, to make things
less trivial, we require that we use only Boolean variables.

We allow solutions that are asymmetric in the sense that different values will
be assigned in different processes. To allow that but still generate one candidate
that will be concretized into three processes, we introduced to the generated
process template as a syntactic construct an assignment statement of the form
“[i]=bob1bs”, where b; € {0,1},0 < ¢ < 3. This dictates that for the actual
process p;, the concretized statement will be v[i|=b;. The variables which can
show up in the solution are v[0] to v[3], and also v[me], v[otherl], and v|other2].
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For each process p;, me is concretized to 4, otherl is concretized as (i+ 1) mod 3,
and other2 is concretized to (i + 2) mod 3.

Our GP based synthesizer generated several solutions similar to the following
solution (f).

While true do While true do
v[3]=010 While(v[me]==001) do
While(v[me]==001) do end while
v[3]=101 cs
v[3]=010 v[me]=001
end while v[otherl]=101
S end while
v[me]=001 (8)
v[other1]=101
end while

(

We can see that each process in solution (f) refers to v[me] and v|[otherl].
There are also assignments to v[3] among the statements. However, as v[3] is
not used in any conditions at all, such statements can be safely removed. This
is done here manually to demonstrate the solution, resulting in solution (g), and
we did not implement parsimony pressure.

Let us concretize the solution of the three process pg, p1, and p2 to (go), (g1),
and (go) respectively. Observe that only three variables are used in the solution,
which makes this solution simple and elegant.

While true do While true do While true do
While(v[0]==0) do While(v[1]==0) do While(v[2]==1) do
end while end while end while
CS () CS
v[0]=0 v[1]=0 v[2]=1
v[1]=1 v[2]=0 v[0]=1

end while end while end while

(90) (91) (92)

4.3 Synthesizing Solutions for Dining Philosopher

This synthesis problem involves several philosophers sit around a table; a philoso-
pher can take the fork on his right or the one on his left as they become available.
If a philosopher wants to eat, she must have both left and right forks and if he
finishes eating, she needs to put the forks back and these forks will be available
again. The problem is to design a concurrent algorithm with no deadlock and,
under fair scheduling [22], no philosopher will starve.

To support this problem, we extend the basic variable library with semaphore
variables, and also add semaphore-related operations such as wait and signal into
the expression library. Two representative solutions generated by our method
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are shown below in (h) and (). It is interesting to see that although the GP
synthesis processes allowed different kinds of programming constructs, including
while loop, if condition and variable assignments in the expression library, the
generated solutions are composed by only manipulation of semaphores. In these
solutions, each philosopher (process) waits for the semaphore “mutex” to be
free. Then she takes both the forks by capturing the semaphores “left” and
“right”; these semaphores are be translated to ¢ mod m and i + 1 mod m, for
the ith philosopher. After finishes eating, a philosopher frees the semaphores she
captured.

Both solutions (k) and (¢) can pass the verification of Spin. In (h), when one
philosopher is eating, all the other philosophers are blocked. Solution (%) permits
more concurrency, as only philosophers that share forks with the dining ones
will be blocked.

While true do While true do
think think
wait(mutex) wait(mutex)
wait(right) wait(right)
wait(left) wait(left)
eat signal(mutex)
signal(left) eat
signal(right) signal(right)
signal(mutex) signal(left)

end while end while

(h) (7)

4.4 Performance Evaluation

We run the experiments on the SMC guided GP synthesis using Plasma, and
using our own implementation of statistical evaluation. The corresponding data
are marked with SMC and SE, respectively. The data for mutual exclusion,
round robin and dining philosopher problems are marked as ME, RR, and DP,
respectively.

In the experiment, we have 100 seeds for each generation, and if the GP does
not generate a correct solution in 2000 generations, we abandon the current GP
search. As the GP process involves randomness, we repeated the experiments
for each problem 100 times. We record the average time each execution takes,
the number of successful executions which generate perfect solution, the average
number that the GP calls model checker per execution, and the average number
of generations per execution. The performance data is given below in Table 1.

The built-in statistical evaluation (SE) algorithm basically implements a sim-
plified method of SMC. We can see the success ratio of SE for each problem aligns
with SMC, but performs almost two orders of magnitude faster. However, our
built-in SE diminished the effect of having most of the overhead due to the invo-
cation and repeated use of the tool. In fact, given that Plasma was used in this
mode, its use should be considered very efficient. Moreover, the light need to
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Table 1. Performance data

Problem | Method | Total Average Success Success Average Spin | Average
executions | time executions rate call generations
ME SMC 21 7h53m 0 0 280 2000
SE 100 341.4s 15 15% 378.3 1754
RR SMC 22 7h25m 8 36.4% 502 1751
SE 100 479.4s 41 41% 436.3 1389
DP SMC 11 15h23m 9 81.8% 1178 687
SE 100 34m6s 65 65% 1287 116

invoke Spin (in both modes), also as an external tool, did not make the entire
synthesis process prohibitively expensive.

This experiments seem to support that our proposed SMC guided genetic
synthesis method can be applicable and efficient in concurrent code synthesis
with the help of a built-in implementation of SMC and model checking proce-
dures. It can generate a correct solution with high success ratio within reasonable
time overhead. Moreover, allowing SMC tools such as Plasma or Uppaal [3], and
model checking tools such as Spin, to be integrated into a GP tool would make
the genetic synthesis both efficient and powerful.

We do not compare our experiments directly to the results in [15-18] since
there, an internal tool for performing model checking was used, which was tai-
lored to provide additional levels besides the yes/no (4counterexample) that
standard model checkers provide. But a powerful internal model checking is
hard to implement, and can hardly compete with the breadth of a tool like Spin.
Moreover, even with the additional model checking levels, the fitness function
may not be smooth enough in some cases.

5 Conclusions

We described here the use of genetic programming based on statistical model
checking for synthesizing concurrent code from its temporal specifications. Using
statistical model checking for defining the fitness function has several advantages
over using model checking. In particular, it can be more efficient, can be used
in domains where model checking is not applicable, and can provide a smoother
function, which helps to converge. We presented different ideas and parameters
for defining statistical based fitness function.

We implemented these ideas and conducted experiments of synthesizing con-
current code. One of the main lessons we learned is that some common properties,
such as mutual exclusion or eventual progress, may happen to be quite elusive
in a model. This makes the tradeoff between efficiency and reliability. This also
calls for using model checking to verify the generated solutions.

We used a hybrid approach, where we used statistical model checking for
most of the duration of the genetic process, but involved model checking at the
later part of the genetic process to certify the potential solution.
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Our research on the combination of genetic programming, synthesis, statisti-
cal model checking and model checking already shows some encouraging results,
but also calls for several follow ups. Besides improving our implementation (in
particular, using built-in verification, as the connection with Spin and Plasma
is quite time consuming) there are some interesting theoretical /practical direc-
tions. One direction is the use of biasing of the randomized experiments. Finally,
we intend to make more experiments in synthesizing code, in particular of timed,
probabilistic and cyber physical systems, where statistical approaches, such as
statistical model checking, are found to be quite efficient.
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