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Abstract. Data race freedom ensures the sequentially consistent behav-
iors of concurrent programs under relaxed memory consistency models
(MCMs), and reduces the state explosion problem for software model
checking with MCMs. However, data race freedom is too strong to include
all interesting programs. In this paper, we define small-step operational
semantics for relaxed MCMs, define an observable equivalence using the
notion of bisimulation, and propose the property of local data race free-
dom (LDRF), which requires a kind of race freedom locally instead of
globally. LDRF includes some interesting programs, such as the indepen-
dent reads independent writes program, which is well known to exhibit
curious behaviors under non-multi-copy atomic MCMs, and some concur-
rent copying garbage collection algorithms. In this paper, we introduce
an optimization method called memory sharing for model checking of
LDRF programs, and show that memory sharing optimization mitigates
state explosion problems with non-multi-copy atomic MCMs through
experiments.
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1 Introduction

Memory consistency models (MCMs), which specify how multiple threads use
shared memory, have become extremely important because modern computer
architectures have multiple cores. Their computing performance depends on the
MCMs that the architectures adopt.

Saraswat et al. and Owens provided an insightful definition of MCM [19,25].
Saraswat et al. focused on an earlier study of observable equivalences between
MCMs and data race freedom (DRF) by Gao and Sarkar [11]. Saraswat et al.
defined some relaxed MCMs, and presented the so-called fundamental property
such that DRF programs have only observable and sequentially consistent (SC)
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behaviors [17] on the relaxed MCMs. Saraswat et al. explained that the funda-
mental property ensures that most programmers writing DRF programs only
have to be concerned about SC executions [25]. Owens considered that the fun-
damental property is the essence of MCMs and defined MCMs as rules that are
designed to guarantee that DRF programs do not have non-SC behaviors [19].

The so-called state explosion problem of software model checking of DRF
programs with MCMs is mitigated because non-SC behaviors of DRF programs
on relaxed MCMs can be observably reduced to SC behaviors. However, DRF is
so strong that we cannot expect it for all programs. Software model checking of
data racy programs with MCMs still suffers from the state explosion problem.

Owens moderated a condition of DRF and presented the notion of triangular
race freedom (TRF), which includes the spinlock used in the Linux kernel [19].
Observable behaviors of TRF programs are reduced to SC behaviors on the x86-
TSO [20], which is adopted by Intel architectures. However, TRF is a global
property of a program; that is, all threads in the program must uniformly follow
the TRF condition. TRF is also strongly specific to x86-TSO, which is stricter
than modern MCMs, and cannot reduce behaviors on more relaxed MCMs to
SC behaviors.

In this paper, we provide a formulation to define small-step operational
semantics for relaxed memory consistency models and an observable equiva-
lence on the semantics using the notion of bisimulation (note that Owens used
trace semantics [19]), and propose the novel notion of local data race freedom
(LDRF), which claims that some threads follow a race free condition, but not
all threads follow the condition, unlike DRF and TRF, which require that all
threads must uniformly follow their conditions. LDRF is a variant of DRF in
another direction that is different from the direction of TRF.

LDRF includes the independent reads independent writes (IRIW) program,
which is well known to have curious behaviors under MCMs with non-multi-
copy atomicity, which is more relaxed than x86-TSO. Although the IRIW pro-
gram enjoys TRF, we cannot use the SC reduction for TRF programs on model
checking with relaxed MCMs because TRF is specific to x86-TSO and we can-
not observe the curious behavior on x86-TSO. Some concurrent copying garbage
collection (CCGC) algorithms are typical LDRF programs. There exists no load-
store race in any period between synchronization points at the garbage collection
layer because end-user programmers must write DRF programs in programming
languages with MCMs that require DRF, although it may be the case that a
collector and mutators share variables because a collector communicates with
mutators when collecting objects that have not been used.

In this paper, we also provide an optimization called memory sharing for the
software model checking of LDRF programs with non-multi-copy atomic MCMs,
which do not ensure atomicities among multiple effects (of a store) to multiple
threads. We demonstrate the effectiveness of memory sharing optimization by
conducting experiments for the IRIW program and some CCGC algorithms.

Related Work. To the best of our knowledge, there exists only the follow-
ing one literature to propose an extension of DRF by focusing on locality.
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Dolan et al. proposed a notion of local data race freedom independently, and
showed that data race free portions of programs follow SC behaviors [9]. How-
ever, the MCMs in their paper are stricter than those in this paper. Actually,
their LDRF do not provide any optimization on relaxed MCMs which allow load
buffering and non-multi-copy atomicity.

There exists no relevant literature of an optimization specific to model check-
ing with non-multi-copy atomic MCMs, although there exists a model checker
such as Nidhugg [1] which supports the POWER MCM [12].

Owens used trace semantics and showed that x86-TSO behaviors of DRF
programs can be reduced to SC behaviors [19]. In the present paper, we provide
an alternative formalization of an observable equivalence using the notion of
bisimulation, and show that behaviors of LDRF programs with non-multi-copy
atomicity can be observably simulated by behaviors on a general machine with
memory sharing optimization on a partition of threads.

Partitioning threads is reminiscent of clustered-based partial order reduction,
which clusters multiple threads that are dependent on each other, and utilizes
the independencies between the clusters to improve the efficiency of the partial
order reduction [8]. However, the idea looks different from our memory sharing
optimization, which makes independent threads on an LDRF program to share
a common memory.

Ownership and separation are promising reasoning concepts regarding con-
currency in program logic [18]. The author also proposed the notion of obser-
vation invariants in concurrent program logic [3]. However, this paper studies
model checking, and provides no logic.

Outline. The remainder of this paper is organized as follows: In Sect. 2, we
present a review of the observable equivalence of DRF programs. In Sect. 3, we
introduce a general machine with non-multi-copy atomicity. In Sect. 4, we pro-
pose the notion of LDRF together with an optimization called memory sharing
for software model checking with non-multi-copy atomic MCMs. In Sect. 5, we
provide formal definitions that are introduced in Sects. 2, 3 and 4, and prove the
validity of memory sharing under appropriate conditions. In Sect. 6, we explain
how to implement memory sharing optimization in model checker VeriDAG that
supports non-multi-copy atomic MCMs [2]. In Sect. 7, we present an assessment
of the effectiveness of memory sharing using experiments. In Sect. 8, we conclude
the paper by identifying future studies.

2 Observable Equivalence of Data Race Free Programs

In this section, we informally explain observable equivalence.
Saraswat et al. and Owens formally proved that non-SC behaviors of DRF

and TRF programs, respectively, can be reduced to SC behaviors [19,25]. This
means that non-SC behaviors do not disappear but cannot be observed. Non-SC
behaviors exist internally on computer architectures.
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Fig. 1. Different behaviors without/with buffers

We can observe non-SC behavior for a data racy program: (x=1; y=1) ‖
(r0=y; r1=x), where ‖ denotes parallel composition, x and y are shared vari-
ables, r0 and r1 are thread-local variables, and all variables are initialized to
0. All six SC executions satisfy r0==1 -> r1==1 when all four instructions
are complete. However, there exists a non-SC execution, x=1 (buffered); y=1
(buffered); y=1 (visible); r0=y; r1=x; x=1 (visible) for which r1==1 &&
r0==0 on modern computer architectures such that each thread might have one
buffer that does not preserve the order of stores, as shown in Fig. 1(b); Fig. 1(a)
shows SC behavior on computer architecture without a buffer.

Consequently, we cannot ignore relaxed MCMs on modern computer archi-
tectures. However, this is not the case for DRF programs. We consider a DRF
program (x=1; y=1) ‖ (r0=y’; r1=x’), where x’ and y’ are shared variables.
Although the buffer can delay the effects of the two stores to the shared memory,
that can be ignored because the first thread cannot recognize whether the effects
of the stores are delayed or the stores are not invoked.

To be precise, we cannot describe an assertion that distinguishes which effects
are delayed in the assertion language; that is, the expressive power of the asser-
tion language is not strong. We can distinguish them by describing an assertion
y==1 -> x==1 if the assertion language enables us to describe arbitrary states on
computer architectures. However, it is reasonable to infer that the assertion lan-
guage does not admit threads to read values of shared variables without loading
the shared variables. The observable equivalence of a DRF program is defined as
the non-existence of assertions that specify a non-SC behavior of the program,
as formally defined in Sect. 5.3.

3 General Machine with Non-multi-copy Atomicity

In this section, we introduce a general machine, which assumes non-multi-copy
atomicity [26].

There exist some computer architectures, such as ARMv7 [6] and
POWER [12,26], that do not always assume multi-copy atomicity, that is,
distinct threads can observe distinct behaviors of threads. We consider the
IRIW program (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1, where r2 and
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Fig. 2. A curious behavior on computer architectures with non-multi-copy atomicity

Fig. 3. General machine consisting of eight threads

r3 are thread-local variables. The first and second threads read x and y,
respectively, in program order. Therefore, the assertion (r0==1 && r2==1) ->
(r1==1 || r3==1) appears to hold when the program ends. However, non-
multi-copy atomic MCMs allow distinct threads to observe distinct behaviors
of threads. For example, the first observes y=1 and is invoked before x=1 is
invoked, whereas the second observes x=1 and is invoked before y=1 is invoked.
This is natural for the computer architecture in Fig. 2.

As described in this paper, we consider a general machine with non-multi-
copy atomicity. Each thread has its own memory. Each thread reads a shared
variable from its own memory. A store to a memory is reflected to the other
memories as shown in Fig. 3.

Every pair of memories is connected directly so that stores are passed through
other memories, and buffers are separated to manage reflects of shared variables
to memories. A question that arises is why no buffer exists in the general machine.
Buffers are unnecessary for representing non-multi-copy atomic MCMs because
each memory at each thread works as a buffer. The operational semantics of the
general machine is formally defined in Sect. 5.2.

4 Memory Sharing and Local Data Race Freedom

In this section, we propose the notion of LDRF and an optimization called
memory sharing for software model checking with non-multi-copy atomic MCMs.

LDRF is based on a simple concept. To introduce LDRF, we first consider
DRF. Figure 4(a) denotes the behavior of a DRF program x=1 ‖ y=1 on com-
puter architecture with buffers. The behavior is often regarded as being reduced
to the behavior of computer architecture without a buffer, as shown in Fig. 4(b).
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Fig. 4. Behaviors of a DRF program on various architectures

Fig. 5. Machine with memory sharing optimization

However, this can be also regarded such that two buffers are merged and inte-
grated into the shared memory. We consider other threads that load x and y (to
r0 and r1, respectively). The loading of x and y from memories, as shown in
Fig. 4(c), can be regarded as that from one shared memory, as shown in Fig. 4(d),
by identifying buffers with memories.

This concept is the origin of the optimization of the general machine for which
each thread has its own memory. If some threads enjoy load-store race freedom,
then the threads can share their memories. Additionally, even if the threads do
not enjoy load-load race freedom in a period between synchronization points, if
there exists no store in the period on the other threads, then the threads can
share their memories. We call that local data race freedom (LDRF). This notion
is formally defined in Sect. 5.

The behavior on the architecture shown in Fig. 2 can be observably simulated
by behaviors on the machine shown in Fig. 5, which consists of four buffers, two
memories, and one shared memory. The stores between writer threads on the
general machine are ignored on the machine shown in Fig. 5. It must be the case
that the curious behavior of the IRIW program can be observed, as shown in
Fig. 6.

It may be considered slightly discouraging that memory sharing optimiza-
tion cannot reduce behaviors on non-multi-copy atomic MCMs to SC behav-
iors; that is, memory sharing optimization does not improve model checking
with non-multi-copy atomicity to a great degree, whereas SC reduction drasti-
cally addresses the state explosion problem; the sequential execution of multiple
threads can simulate all parallel executions of multiple threads. However, LDRF
includes IRIW programs, and memory sharing optimization mitigates the state
explosion problem of model checking for LDRF programs. We demonstrate that
memory sharing optimization is effective through experiments in Sect. 7.
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Fig. 6. Reduced behavior for memory sharing optimization

5 Formal Theory

In this section, we present formal definitions of the notions that were introduced
informally in Sects. 2, 3 and 4, and prove that memory sharing is valid under
appropriate conditions.

5.1 Concurrent Programs

The sets of instructions Ci and sequential programs Si on thread i are defined
as

Ci ::= Nopi | r = MVi e | r = LDi x | x = STi e | r = CASi x e e

Si ::= Ci | Si;Ci,

where r denotes thread-local variables, x denotes shared variables, e denotes
thread-local expressions (e.g., thread-local variables, constant value v, and arith-
metic operations), and superscript i represents an identifier of the thread on
which the associated statement is executed. In the remainder of this paper, this
superscript is omitted when it is readily apparent from the context. The Nop
statement represents an ordinary no-effect statement. We distinguish thread-
local assignment statements from assignment statements to shared memory. MV
denotes ordinary variable substitution. LD and ST denote read and write oper-
ations, respectively, for shared variables. CAS denotes compare-and-swap in a
standard manner.

We adopt compare-and-swap as a primitive to ensure atomicity, whereas
Owens adopted locking [19]. We adopted this approach because fine-grained
synchronization, such as compare-and-swap, is preferred to coarse-grained syn-
chronization, such as locking, on modern many-core computer architectures.

In this section, memory allocation, jump (conditional and loop statements),
function call, and thread creation instructions are omitted, for simplicity. Actu-
ally, the model checker VeriDAG introduced in Sect. 6 and used at the exper-
iments in Sect. 7 supports them by introducing the notions of the so-called
addresses, labels, and basic blocks.

A concurrent program with N threads is defined as

P,Q ::= S0 ‖ S1 ‖ · · · ‖ SN−1,

where ‖ denotes a parallel composition of threads in a standard manner.
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We assume that the number of threads is fixed during program execution.
To represent shared buffers and memories, we introduce the notion of par-

titions of a set of threads. We assume a partition {I(m) | 0 ≤ m < M} of
{0, . . . , N −1}; that is, there exists M such that 0 ≤ M ≤ N , I(m) ∩I(n) = ∅ for
any 0 ≤ m �= n < M , and

⊔{ I(m) | 0 ≤ m < M } = {0, . . . , N − 1}. An element
I(m) of a partition is called a segment.

Threads in a common segment are regarded to share a common memory. For
example, the writer threads (whose identifiers are 2 and 3) in the IRIW pro-
gram (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1 can share a common memory
as shown in Fig. 6. In the case, the partition of thread identifiers {0, 1, 2, 3} is
{{0}, {1}, {2, 3}}.

We define a state. Register ς takes a thread-local variable r and returns
value v. Shared memory σ takes a segment I(m) of the partition and shared
variable x, and returns value v. Buffer Σ takes a pair of thread identifier and
a segment 〈i, I(m)〉, and returns a queue set, where one queue is defined for
each shared variable. Four methods method are defined for a queue set qs. One
method qs.enqueue(x, v) enqueues v at x in qs. Another method qs.dequeue(x, v)
dequeues a value at x in qs, and returns that the value is v. Another method
qs.empty(x) determines that the queue at x in qs is empty. The other method
qs.latest(x) returns the latest value at x in qs without dequeuing any element.

5.2 Operational Semantics

In the following, we assume a partition { I(m) | 0 ≤ m < M } of {0, . . . , N − 1},
and write a meta-variable I as a segment I(m) of the partition.

For brevity, we write σI and Σi,I as σ(I) and Σ(〈i, I〉), respectively. We use
an update operation of function f in a standard manner as follows:

f [a := b](c) =

{
b if a = c

f(c) otherwise.

We also write σ[σI [x := v]] as σ[I := σI [x := v]] because it is read-
ily apparent that the update is about I. Similarly, for brevity, we express
Σ[Σi,I .method ] as Σ[〈i, I〉 := Σi,I .method ]. We respectively write σ[ {σI [x :=
v] | I } ] and Σ[ {Σi,I .method | I } ] as σ[σI(0) [x := v]] · · · [σI(M−1) [x := v]] and
Σ[Σi,I(0) .method ] · · · [Σi,I(M−1) .method ].

Furthermore, we introduce an update of shared memory by a shared buffer
as

σI [Σi,I ](x) =

{
Σi,I .latest(x) if the queue at x is not empty
σI(x) otherwise.

A state is defined as a triple: 〈ς, σ,Σ〉. A configuration is defined as
〈P, 〈ς, σ,Σ〉〉. A small-step operational semantics is defined as shown in Fig. 7.
Transition c→ indicates that an instruction is invoked and that a state is updated.
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Fig. 7. Operational semantics

Specifically, r = MVi e evaluates e at ς and updates ς, where 〈|e|〉ς represents the
valuation of expression e as

〈|v|〉ς = v 〈|r|〉ς = ς(r) 〈|e0 + e1|〉ς = 〈|e0|〉ς + 〈|e1|〉ς . . . .

Instruction r = LDi x evaluates x on Σi,I if Σi,I(x) is defined, and on σI

otherwise, where i ∈ I, and updates ς. Instruction x = STi e evaluates e on ς and
updates not σI but Σi,I for any I. The effect of the store operation is buffered
in Σi,I for any I. Instruction r = CASi x e0 e1 atomically loads x, compares the
evaluation of e0, stores the evaluation of e1 at x, and returns 1 to r if the values
of x and e0 are equal; it returns 0 otherwise. Sequential and parallel compositions
follow standard methods. In this paper, parallel composition is defined as a non-
commutative and non-associative operator because the indices of segments are
sensitive to operational semantics.

Whereas a transition c→ invokes and consumes one instruction, a transition
e→, which represents an effect that is reflected from a buffer to shared memory,
does not invoke or consume any instructions.
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5.3 Assertion Language

The assertion language is defined as

ϕ ::= e = e | e ≤ e | ¬ ϕ | ϕ ⊃ ϕ | ∀ r. ϕ .

Relation ς � ϕ is defined in a standard manner as

ς � e0 = e1 ⇐⇒ 〈|e0|〉ς = 〈|e1|〉ς ς � e0 ≤ e1 ⇐⇒ 〈|e0|〉ς ≤ 〈|e1|〉ς

ς � ¬ ϕ ⇐⇒ ς �� ϕ ς � ϕ ⊃ ϕ′ ⇐⇒ ς � ϕ implies ς � ϕ′

ς � ∀ r. ϕ(r) ⇐⇒ ς � ϕ(v) for any v .

Relation 〈P, 〈ς, σ,Σ〉〉 � ϕ, which indicates that the configuration satisfies
the assertion, is defined as ς � ϕ. An assertion can be inserted anywhere in a
program, while a system in which an assertion must be located at the end of a
program cannot support divergent programs.

The assertion language has no shared variable. The satisfiability is defined
by registers only. Consequently, the assertion language requires the loading of a
shared variable to identify the value of the shared variable.

5.4 Local Data Race Freedom and Observable Equivalence

An objective of in this section is to define a relation ∼ between configurations
satisfying:

1. if cfg0 and cfg1 are related by the memory sharing optimization, then cfg0 ∼
cfg1 holds,

2. if cfg0 ∼ cfg1 holds, then cfg0 � ϕ coincides with cfg1 � ϕ for any ϕ, and
3. the relation ∼ is preserved by transitions on operational semantics.

Claim 1 means that the relation ∼ contains a pair of configurations
〈cfg0, cfg1〉 where cfg0 and cfg1 are related by the memory sharing optimiza-
tion. Claim 2 means that satisfiability of an assertion on cfg0 can be checked
by checking satisfiability of the assertion on cfg1 and vice versa. Claim 3 means
that the relation ∼, in particular, the memory sharing optimization is robust to
transition.

First, let us define a relation ∼ satisfying Claim 1. A set of sequential pro-
grams {S0, . . . , Sn−1} is called load-store race free if R(Sk)∩W (Sl) = ∅ for any
0 ≤ k �= l < n, where

R(S) =
⋃

{R(C) | C ∈ S } R(C) =

{
{x} if C is r = LD x or r = CAS x e0 e1

∅ otherwise.

W (S) =
⋃

{W (C) | C ∈ S } W (C) =

{
{x} if C is x = ST e or r = CAS x e0 e1

∅ otherwise.

A concurrent program P ≡ S0 ‖ · · · ‖ SN−1 is called LDRF with respect to
partition {I(m) | 0 ≤ m < M} of {0, . . . , N − 1} if for any segment I(m)
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– {Si | i ∈ I(m)} is load-store race free, and
– for any x and i �= j ∈ I(m), if x ∈ R(Si) ∩ R(Sj) then x �∈ W (Sk) for any

0 ≤ k < N .

By definition, every DRF program that consists of N threads is LDRF with
respect to discrete partition {{m} | 0 ≤ m < N}, although memory sharing
optimization based on the discrete partition never improves model checking with
non-multi-copy atomicity.

Let R be a relation. Relation R+ represents the transitive closure of R.
Relation R∗ represents the reflexive and transitive closure of R.

Let {Ij,(m) | 0 ≤ m < Mj} be a partition of {0, . . . , N − 1} for any j = 0, 1.
We define an expansion relation as 〈P0, 〈ς, σ0, Σ0〉〉 � 〈P1, 〈ς, σ1, Σ1〉〉 if

– for any j = 0, 1
• Pj ≡ S0 ‖ · · · ‖ SN−1,
• 〈ς, σj , Σj〉 is defined on { Ij,(m) | 0 ≤ m < Mj }, and
• Pj is LDRF with respect to partition {Ij,(m) | 0 ≤ m < Mj},

– {I0,(m) | 0 ≤ m < M0} is a refinement of {I1,(m) | 0 ≤ m < M1}, that is, for
any 0 ≤ m0 < M0, there exists 0 ≤ m1 < M1 such that I0,(m0) ⊆ I1,(m1), and

– for any x and 0 ≤ i < N ,
• if x ∈ R(Si), then σ0

I0 [Σ0
i,I0 ](x) = σ1

I1 [Σ1
i,I1 ](x),

• if 〈P0, 〈ς, σ0, Σ0〉〉 e→+ 〈P0, 〈ς, σ0
′, Σ0

′〉〉, then there exist σ1
′ and Σ1

′

such that 〈P1, 〈ς, σ1, Σ1〉〉 e→∗ 〈P1, 〈ς, σ1
′, Σ1

′〉〉 and σ0
′I0 [Σ0

′i,I0 ](x) =
σ1

′I1 [Σ1
′i,I1 ](x), and

• if 〈P1, 〈ς, σ1, Σ1〉〉 e→+ 〈P1, 〈ς, σ1
′, Σ1

′〉〉, then there exist σ0
′ and Σ0

′

such that 〈P0, 〈ς, σ0, Σ0〉〉 e→+ 〈P0, 〈ς, σ0
′, Σ0

′〉〉 and σ0
′I0 [Σ0

′i,I0 ](x) =
σ1

′I1 [Σ1
′i,I1 ](x),

where I0 and I1 denote the unique segments such that i ∈ I0 and i ∈ I1,
respectively.

Intuitively, 〈P0, 〈ς, σ0, Σ0〉〉 � 〈P1, 〈ς, σ1, Σ1〉〉 means that 〈P1, 〈ς, σ1, Σ1〉〉 is
the application of the memory sharing optimization to 〈P0, 〈ς, σ0, Σ0〉〉.

It is noteworthy that the third condition is satisfied by executing programs
with initstate ≡ 〈{ �→ 0}, { �→ { �→ 0}}, { �→ ∅}〉 because no effect can be
reflected from the state.

We describe a basic property that expansion relation � is a contextual rela-
tion. This property is useful to check whether two configurations are related
by �, because this property ensures that two configurations which are partially
related by � are totally related by �.

Proposition 1. If 〈P0, 〈ς, σ0�I0, Σ0�(I0×I0)〉〉 � 〈P1, 〈ς, σ1�I1, Σ1�(I1×I1)〉〉
holds, then 〈P0 ‖ SN−1, 〈ς, σ0, Σ0〉〉 � 〈P1 ‖ SN−1, 〈ς, σ1, Σ1〉〉 holds where

– Ij = { Ij,(m) | 0 ≤ m < Mj } is a partition of {0, . . . , N − 2} for any j = 0, 1,
– I = {N − 1},
– σ0 � I = σ1 � I,
– Σ0 � (I × I) = Σ1 � (I × I), and
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– Σ0 � (I0 × I), Σ0 � (I × I0), Σ1 � (I1 × I), and Σ1 � (I × I1) are empty

where dom f is the domain of f , and f � A is the restriction of f on A for any
A ⊆ dom f .

Proof. It is routine to check the conditions of � according to the definitions of
� and the operational semantics in Fig. 7. ��

Next, let us confirm that the relation ∼ satisfies Claim 2. Satisfiabilities of
assertions on configurations are invariant to the memory sharing optimization,
which is shown as follows:

Proposition 2. If cfg0 � cfg1, then for any ϕ, cfg0 � ϕ coincides with cfg1 � ϕ.

Proof. It is obvious because expansion relation � is defined between configu-
rations that have the same register, and � is defined by the register and the
assertion ϕ, which cannot refer to variables on memories and buffers. ��

We define observable equivalence ∼ as the reflexive, symmetric, and transitive
closure of the expansion relation �. Intuitively, cfg0 ∼ cfg1 means that cfg0 and
cfg1 are related by the memory sharing optimization.

Proposition 3. If cfg0 ∼ cfg1, then for any ϕ, cfg0 � ϕ coincides with cfg1 � ϕ.

Proof. It is immediate from the definition of observable equivalence ∼. ��
Finally, let us prove that the relation ∼ satisfies Claim 3. We define a property

by which a relation is preserved by transitions on operational semantics. We
designate R as a bisimulation if cfg0 R cfg1 implies

– if cfg0
c→ cfg0

′, then cfg1
′ exists such that cfg1

c→ cfg1
′ and cfg0

′ R cfg1
′,

– if cfg1
c→ cfg1

′, then cfg0
′ exists such that cfg0

c→ cfg0
′ and cfg0

′ R cfg1
′,

– if cfg0
e→ cfg0, then cfg1

′ exists such that cfg1
e→∗ cfg1

′ and cfg0
′ R cfg1

′,
and

– if cfg1
e→ cfg1

′, then cfg0
′ exists such that cfg0

e→∗ cfg0
′ and cfg0

′ R cfg1
′.

Proposition 4. Let R0 and R1 be bisimulations. The inverse of R0, that is,
{〈cfg1, cfg0〉 | 〈cfg0, cfg1〉 ∈ R0}, and the composition of R0 and R1, that is,
{〈cfg0, cfg2〉 | 〈cfg0, cfg1〉 ∈ R0, 〈cfg1, cfg2〉 ∈ R1 for some cfg1}, are bisimu-
lations. Therefore, the reflexive, symmetric, and transitive closure of R0 is a
bisimulation.

Proof. It is obvious by the definition of bisimulation.

LDRF is necessary to define � as a bisimulation. For example, 〈x = ST0 1 ‖
r = LD1 x ‖ r′ = LD2 x, 〈{ �→ 0}, σ0, Σ0〉〉 �� 〈x = ST0 1 ‖ r = LD1 x ‖ r′ = LD2 x, 〈{ �→
0}, σ1, Σ1〉〉, where
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σ0 = { {0} �→ { �→ 0}, {1} �→ { �→ 0}, {2} �→ { �→ 0}}
Σ0 = {〈0, {0}〉 �→ ∅, 〈0, {1}〉 �→ ∅, 〈0, {2}〉 �→ ∅, 〈1, {0}〉 �→ ∅, 〈1, {1}〉 �→ ∅,

〈1, {2}〉 �→ ∅, 〈2, {0}〉 �→ ∅, 〈2, {1}〉 �→ ∅, 〈2, {2}〉 �→ ∅}
σ1 = { {0} �→ { �→ 0}, {1, 2} �→ { �→ 0}}
Σ1 = {〈0, {0}〉 �→ ∅, 〈0, {1, 2}〉 �→ ∅, 〈1, {0}〉 �→ ∅, 〈1, {1, 2}〉 �→ ∅,

〈2, {0}〉 �→ ∅, 〈2, {1, 2}〉 �→ ∅}

because 〈r = LD1 x ‖ r′ = LD2 x, 〈{ �→ 0}, σ′
0, Σ

′
0〉〉 �� 〈r = LD1 x ‖ r′ = LD2 x, 〈{ �→

0}, σ′
1, Σ1〉〉, where

σ′
0 = { {0} �→ {x �→ 1, �→ 0}, {1} �→ {x �→ 1, �→ 0}, {2} �→ { �→ 0}}

Σ′
0 = {〈0, {0}〉 �→ ∅, 〈0, {1}〉 �→ ∅, 〈0, {2}〉 �→ x = 1, 〈1, {0}〉 �→ ∅, 〈1, {1}〉 �→ ∅,

〈1, {2}〉 �→ ∅, 〈2, {0}〉 �→ ∅, 〈2, {1}〉 �→ ∅, 〈2, {2}〉 �→ ∅}
σ′
1 = { {0} �→ {x �→ 1, �→ 0}, {1, 2} �→ {x �→ 1, �→ 0}}

after x = ST0 1 is invoked.

Lemma 5. Expansion relation � is a bisimulation.

Proof. Each shared variable has its own queue. Therefore, any pair of e-
transitions related to distinct shared variables can be reordered.

Let 〈P0, 〈ς0, σ0, Σ0〉〉 � 〈P1, 〈ς1, σ1, Σ1〉〉. Assume that Sj belongs to a com-
mon segment with Si on 〈P1, 〈ς1, σ1, Σ1〉〉. If R(Si) ∩R(Sj) = ∅ holds, then the
first item of the third condition of � does not matter. If x ∈ R(Si)∩R(Sj), then
there exists no x=STk e according to LDRF; the first item of the third condition
of � also does not matter.

Otherwise, the queues of Si and Sj are separated; any e→ on P0 can be
simulated by e→∗ on P1. The second and third items of the third condition of �
can be checked easily because it is sufficient to consider effects except those by
invoking the x = STi e instruction.

The case of CAS is similar. The other cases related to the c-transition are
routine because Σ remains unchanged. The c-transition of P1 is similar. The
cases of e-transitions are readily apparent by definition. ��
Theorem 6. Observable equivalence ∼ is a bisimulation.

Proof. It is immediate from Proposition 4 and Lemma 5. ��
Thus, the objective has been accomplished because Claim 1 is satisfied by

the definition of observable equivalence, Claim 2 is satisfied by Proposition 3
and Claim 3 is satisfied by Theorem 6.
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6 Implementation of Memory Sharing Optimization

In this section, we explain the implementation of memory sharing optimization.
We implemented memory sharing optimization on a stateful model checker

VeriDAG, which performs model checking not only with multi-copy atomicity,
but also non-multi-copy atomicity [2]. VeriDAG takes a concurrent program
written in the C programming language (or a sequence of LLVM-IRs) and an
MCM as inputs, and generates a directed acyclic graph called a program graph as
an intermediate representation, which was introduced in [4]. Program graphs are
defined to support various MCMs, such as relaxed memory ordering (RMO) [5]
that allows load-load reordering. Furthermore, the definition of program graphs
was extended to support non-multi-copy atomicity [2]. Operational semantics for
program graphs can simulate the general machine introduced in Sect. 3, and the
formal discussion in Sect. 5 can be applied to program graphs and its operational
semantics.

A node of a program graph corresponds to an instruction or an effect of an
instruction from thread i to a set of threads I written as x = Ei,I v, which makes
the execution of the instruction visible to the other threads. For example, an
effect means a reflect from the store buffer on thread i to shared memory under
x86-TSO. An effect also means a reflect from the memory on thread i to the
other memories on threads I under the POWER MCM.

Figures 8(a) and (b) depict program graphs that consist of x = ST1 3 and its
effects on three threads under multi-copy atomicity and non-multi-copy atom-
icity, respectively. The edges of the program graph denote dependencies. In the
figures, x = E1,{0,1,2} 3, x = E1,{0} 3, x = E1,{1} 3, and x = E1,{2} 3 are necessarily
invoked after x = ST1 3 is invoked.

One method to implement memory sharing optimization is as follows: We
introduced a partition of threads that corresponded to memory sharing by
extending E to take not only the set of threads that corresponded to multi-
copy atomicity or a singleton that corresponded to non-multi-copy atomicity,
but also any segment of the partition. For example, x = ST1 3 on an LDRF pro-
gram that consists of three threads was represented as shown in Fig. 8(c), where
the two threads share one memory. Another method is to abandon unnecessary
effects, although it was not adopted in this work. Because VeriDAG was well-
designed to address reflected stores partially, the implementation of memory
sharing optimization was straightforward.

Program graphs on VeriDAG have been modified from the original ones
described in a previous paper [4], for performance improvement. An atomic edge,
denoted by =⇒, means that if its source node is consumed, then its target node
is preferably chosen at one of the roots of the updated program graph in the next
step; that is, a pair of instructions related by an atomic edge is invoked instan-
taneously. Atomic edges are carefully implemented to not disturb the so-called
partial order reduction based on the notion of ample sets [21] using invisibility
that is already implemented in VeriDAG.

The previous program graphs in Fig. 8 were modified, as shown in Fig. 9.
The validity of the optimization was ensured because there was no necessity to
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Fig. 8. Program graphs with multi-copy atomicity, non-multi-copy atomicity, and
memory sharing optimization

Fig. 9. Program graphs with atomic edges

consider interleavings between these nodes because every thread i used its own
σI , and every σI was always used via Σi,I in the form of σI [Σi,I ], where i ∈ I.
Note that thread 2 did not read x in the last program graph according to the
LDRF condition. Additionally, note that the first program graph had no atomic
edge because the graph was generated with multi-copy atomicity.

7 Experiments

In this section, we demonstrate the effectiveness of memory sharing optimiza-
tion by conducting model checking of the IRIW program and CCGC algorithms.
We used VeriDAG, on which memory sharing optimization was implemented, as
explained in Sect. 6. MCMs were RMO with and without multi-copy-atomicity.
RMO with multi-copy-atomicity corresponds to the SPARC RMO MCM. RMO
with non-multi-copy-atomicity corresponds to the POWER MCM. The exper-
imental environment was as follows: the CPU was Intel Xeon E5-1620 v4 3.50
GHz, the memory was DDR4-2400 256 GB, the OS was Ubuntu 17.10, and
VeriDAG was compiled using Glasgow Haskell Compiler 8.0.2.

7.1 Independent Reads Independent Writes Program

The IRIW program is (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1, and an
assertion to observe curious behaviors under non-multi-copy atomicity is (r0==1
&& r2==1) -> (r1==1 || r3==1), as explained in Sect. 3. We used acquire loads
in the IRIW program, which prohibit load-load reordering because the IRIW
program has curious behaviors with non-multi-copy atomicity even if load-load
reordering is prohibited.

We increase the number of writer threads in the IRIW because memory
optimization should be more effective when the number of threads whose buffers
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Table 1. Experimental results of the IRIW programs

# of Ws Multi-copy atomicity Non-multi-copy atomicity Memory sharing optimiz.

States Memory Time States Memory Time States Memory Time

(K) (MB) (s) (K) (MB) (s) (K) (MB) (s)

2 1 2 0.02 2 3 0.08 1 2 0.05

3 3 3 0.16 35 9 2.06 10 4 0.54

4 17 5 1.15 718 142 63.91 79 17 5.83

5 92 20 12.14 16650 3339 2526.31 666 125 84.07

6 463 87 71.00 407439 80912 88382.43 5100 941 847.56

are shared is larger. The number of writer threads in the original IRIW program
is two. Additionally, we conducted model checking with the IRIW programs
with three to six writer threads. The additional writer threads wrote integer 1
to additional shared variables. The two reader threads read additional values
from the shared variables. For example, in a case that the number of writer
threads is 3, the program is (r0=z; r1=y; r2=x) ‖ (r3=x; r4=y; r5=z) ‖
x=1 ‖ y=1 ‖ z=1. The number of interleavings should have increased drastically.

Table 1 presents the experimentally obtained results for the IRIW programs.
The first column shows the number of writer threads (denoted by Ws). The
second, third, and fourth columns refer to multi-copy atomicity. Model checking
with multi-copy atomicity was conducted to represent the difficulty of model
checking with non-multi-copy atomicity. Of course, model checking with multi-
copy atomicity does not ensure the correctness of programs with non-multi-copy
atomicity. There might exist a counterexample with non-multi-copy atomicity
even if model checking with multi-copy atomicity detects no counterexample.

The second, third, and fourth columns list the numbers of states visited,
memory consumed, and time elapsed, respectively. Even if a counterexample was
detected, model checking continued until an exhaustive search was complete. The
command-line option of VeriDAG includes -c0, which denotes that an exhaustive
search is complete even if a counterexample is detected and printed out, whereas
the default is -c1, which denotes that if a counterexample is detected, model
checking stops and returns the counterexample. Similarly, the fifth, sixth, and
seventh columns refer to non-multi-copy atomicity, and the eighth, ninth, and
tenth columns refer to memory sharing optimization.

Model checking with multi-copy atomicity was completed more rapidly than
the others with non-multi-copy atomicity and memory sharing optimization.
However, they printed out no counterexamples because the assertion (r0==1 &&
r1==1) -> (r2==1 || r3==1) holds with multi-copy atomicity when the IRIW
program (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1 is complete. They are just
experiments to compare model checking with multi-copy atomicity with model
checking with non-multi-copy atomicity.

The numbers of states increased drastically during model checking with non-
multi-copy atomicity. Accordingly, the consumed memories and elapsed times
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Table 2. Experimental results of the CCGC algorithms

CCGC
algorithm

Non-multi-copy atomicity Memory sharing optimization

States (K) Memory (MB) Time (s) States (K) Memory (MB) Time (s)

Schism 1744 320 205.17 1131 210 128.80

Sapphire 159052 28576 22312.51 41926 7589 5503.61

increased. Memory sharing optimization mitigated the state explosion problem.
The greater the number of writer threads, that is, the larger the shared buffer,
the more effective it is because of the combinatorial explosion.

Memory sharing optimization mitigated the state explosion problem. When
the number of writer threads was two, memory sharing optimization improved
performance approximately twice. When the number of writer threads was six,
memory sharing optimization improved performance by 79–105 times. Thus,
we confirmed that memory sharing optimization was more effective when the
number of threads whose memories were shared was larger.

7.2 Concurrent Copying Garbage Collection Algorithms

Some CCGC algorithms are typical LDRF programs. CCGCs consist of muta-
tors, which correspond to threads in user programs, and a collector. We can
assume that there exists no load-store race in any period between synchroniza-
tion points because threads in user programs that do not exist at the garbage
collection layer must be DRF in programming languages with MCMs that require
DRF. However, it may be the case that mutators share variables because a col-
lector communicates with mutators when collecting objects that have not been
used.

We conducted model checking of popular CCGC algorithms [15] that were
modeled in the paper [27]. We extended the models to those whose mutators
consisted of two threads, whereas the number of mutators in the original models
was one. The original models have restrictions that their behaviors are fixed to
read-write or write-read flows. Details of the restrictions are in the paper [27].
We modified the models to include both the flows by adding non-deterministic
choice statements to the models. The modified models are more realistic than
the original models. Table 2 presents the experimentally obtained results of the
CCGC algorithms. The first column shows the names of the CCGC algorithms.
The remaining columns are similar to those in Table 1.

Table 2 shows that the experimental results for Schism [22] and Sapphire [24],
even those that were real applications, had a similar feature to that for the IRIW
program, which is a litmus test for multi-copy-atomicity. The experiment for the
other larger CCGCs was not complete in half a day (= 43, 200 s).
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8 Conclusion, Discussion, and Future Work

In this paper, we provided small-step operational semantics for relaxed mem-
ory consistency models with store buffers, defined observable equivalence on the
semantics, and proposed LDRF, a local property of concurrent programs, which
runs on non-multi-copy atomic MCMs. LDRF includes the IRIW programs that
DRF cannot include. We also introduced memory sharing optimization on model
checking of LDRF programs, and demonstrated that memory sharing optimiza-
tion mitigates state explosion problems with non-multi-copy atomic MCMs.

Multi-copy atomicity, also known as remote write atomicity, has been stud-
ied [6,13]. Although ARM adopted non-multi-copy atomicity until ARMv8 [7],
Pulte et al. reported that ARMv8 will be revised to prohibit non-multi-copy
atomicity because they claim that the complexity derived from non-multi-copy
atomicity has a cost, particularly for architectures implemented by multiple ven-
dors [23]. In contrast, Vafeiadis argued that multi-copy atomicity did not seem
relevant because its enforcement of global orders between instructions prevents
scalability of verification [28]. Thus, multi-copy atomicity is a topic of debate.
We hope that the present paper helps to elucidate non-multi-copy atomicity, and
therefore contributes to decisions to adopt various multi-copy atomicities.

The experimental results demonstrated that the performance of VeriDAG
with the memory sharing optimization was not substantially high. This is
because VeriDAG is a stateful model checker that adopts classical partial order
reduction optimization [21], differently from Nidhugg [1] with the POWER
MCM [12] and RCMC [16] with the repaired version of C/C++11 MCM [14]
which adopt dynamic partial order reduction [10]. However, this is independent
of the goal of demonstrating the effectiveness of memory sharing optimization.

Because TRF and LDRF are variants of DRF in different directions, it might
be expected that a novel property can be defined by combining the two prop-
erties. However, this appears to be difficult because TRF is strongly specific
to x86-TSO, which preserves the order of stores of different shared variables,
whereas LDRF requires that store buffers consist of multiple queues.

This work has a few limitations. LDRF is syntactically and conservatively
defined while DRF is defined by observing execution traces, because local data
race detection has not been implemented yet.

It seems reasonable that LDRF should be defined as a pair-wise property
because the locality may be a pair-wise property. For example, let us consider a
case that threads 0 and 1 do not race, threads 0 and 2 do not race, but threads
1 and 2 do. However, LDRF in this paper cannot capture the case since LDRF
is defined as a property for a partition of the set of threads.

The memory sharing optimization that mitigates the state explosion problem
is not a scalable method for increasing the number of threads. We would like
to revise LDRF as a pair-wise property, find any better characterization for
scalability, and provide local data race detection.



214 T. Abe

Acknowledgments. The author thanks Toshiyuki Maeda and Tomoharu Ugawa. The
motivation of this work was fostered through discussions with them. The author also
thanks the anonymous reviewers for several comments to improve the paper. This work
was supported by JSPS KAKENHI Grant Number 16K21335.

References

1. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model check-
ing for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS,
vol. 9780, pp. 134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 8

2. Abe, T.: A verifier of directed acyclic graphs for model checking with mem-
ory consistency models. Hardware and Software: Verification and Testing. LNCS,
vol. 10629, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70389-3 4

3. Abe, T., Maeda, T.: Observation-based concurrent program logic for relaxed mem-
ory consistency models. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp.
63–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47958-3 4

4. Abe, T., Maeda, T.: Concurrent program logic for relaxed memory consistency
models with dependencies across loop iterations. J. Inf. Process. 25, 244–255 (2017)

5. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

6. ARM Limited: ARM Architecture Reference Manual (ARMv7-A and ARMv7-R
edition) (2012)

7. ARM Limited: ARM Architecture Reference Manual (ARMv8, for ARMv8-A archi-
tecture profile) (2017)
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