
María del Mar Gallardo
Pedro Merino (Eds.)

 123

LN
CS

 1
08

69

25th International Symposium, SPIN 2018
Malaga, Spain, June 20–22, 2018
Proceedings

Model Checking
Software



Lecture Notes in Computer Science 10869

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407



María del Mar Gallardo • Pedro Merino (Eds.)

Model Checking
Software
25th International Symposium, SPIN 2018
Malaga, Spain, June 20–22, 2018
Proceedings

123



Editors
María del Mar Gallardo
University of Málaga
Málaga
Spain

Pedro Merino
University of Málaga
Málaga
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94110-3 ISBN 978-3-319-94111-0 (eBook)
https://doi.org/10.1007/978-3-319-94111-0

Library of Congress Control Number: 2018947326

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the proceedings of the 25th International Symposium on Model
Checking Software, SPIN 2018, held in Málaga, Spain, June 20–22, 2018. SPIN is a
well-recognized periodic event started in 1995 around the model checking tool SPIN.
Since 1995, the event has evolved and has been consolidated as a reference symposium
in the area of formal methods related to model checking. The previous edition of the
SPIN symposium took place in Santa Barbara (USA) with a record number of sub-
missions and participants.

The SPIN 2018 edition requested regular papers, short papers, and tool demos in the
following areas: formal verification techniques for automated analysis of software;
formal analysis for modeling languages, such as UML/state charts; formal specification
languages, temporal logic, design-by-contract; model checking, automated theorem
proving, including SAT and SMT; verifying compilers; abstraction and symbolic
execution techniques; static analysis and abstract interpretation; combination of veri-
fication techniques; modular and compositional verification techniques; verification of
timed and probabilistic systems; automated testing using advanced analysis techniques;
combination of static and dynamic analyses; derivation of specifications, test cases, or
other useful material via formal analysis; case studies of interesting systems or with
interesting results; engineering and implementation of software verification and anal-
ysis tools; benchmark and comparative studies for formal verification and analysis
tools; formal methods education and training; and insightful surveys or historical
accounts on topics of relevance to the symposium.

The symposium attracted 28 submissions, although two of them were rejected by the
chairs because they were not within the scope of the symposium. Each of the remaining
submissions was carefully reviewed by three Program Committee (PC) members. The
selection process included further online discussion open to all PC members. Only the
papers with positive global score were considered for acceptance. In addition, within
these papers, only those with no objections from the PC members were accepted. As a
result, 16 papers were selected for presentation at the symposium and publication in
Springer’s proceedings. The program consisted of 14 regular papers, one short paper,
and a demo-tool paper.

In addition to the accepted papers, the symposium included one invited tutorial by
Irina Mariuca Asavoae and Markus Roggenbach entitled “Software Model Checking
for Mobile Security, Collusion Detection in K,” and three invited talks: “Efficient
Runtime Verification of First-Order Temporal Properties” by Klaus Havelund and
Doron Peled, “Applying Formal Methods to Advanced Embedded Controllers” by
Rémi Delmas, and “Program Verification with Separation Logic” by Radu Iosif.

We would like to thank all the authors that submitted papers, the Steering Com-
mittee, the PC, the additional reviewers, the invited speakers, the participants, and the



local organizers for making SPIN 2018 a successful event. We also thank all the
sponsors that provided logistics and financial support to make the symposium possible.

May 2018 María del Mar Gallardo
Pedro Merino

VI Preface



Organization

Steering Committee

Dragan Bosnacki (Chair) Eindhoven University of Technology, The Netherlands
Susanne Graf Verimag, France
Gerard Holzmann Nimble Research, USA
Stefan Leue University of Konstanz, Germany
Neha Rungta Amazon Web Services, USA
Jaco Van de Pol University of Twente, The Netherlands
Willem Visser Stellenbosch University, South Africa

Program Committee

María Alpuente Technical University of Valencia, Spain
Irina Mariuca Asavoae Inria, France
Dragan Bosnacki Eindhoven University of Technology, The Netherlands
Rance Cleaveland University of Maryland, USA
Stefan Edelkamp King’s College London, UK
Hakan Erdogmus Carnegie Mellon, USA
María del Mar Gallardo

(Chair)
University of Málaga, Spain

Stefania Gnesi CNR, Italy
Patrice Godefroid Microsoft Research, USA
Klaus Havelund NASA/Caltech Jet Propulsion Laboratory, USA
Gerard Holzmann Nimble Research, USA
Radu Iosif Verimag, France
Frédéric Lang Inria, France
Kim Larsen Aalborg University, Denmark
Stefan Leue University of Konstanz, Germany
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Pedro Merino (Chair) University of Málaga, Spain
Alice Miller University of Glasgow, UK
Corina Pasareanu CMU/NASA Ames, USA
Charles Pecheur Université catholique de Louvain, Belgium
Doron Peled Bar-Ilan University, Israel
Neha Rungta Amazon Web Services, USA
Antti Valmari University of Jyvskyl, Finland
Jaco Van de Pol University of Twente, The Netherlands
Willem Visser Stellenbosch University, South Africa
Farn Wang National Taiwan University, Taiwan



Additional Reviewers

Peter Aldous
Mihail Asavoae
Giovanni Bacci
Georgiana Caltais
Laura Carnevali
Alessandro Fantechi
Grigory Fedyukovich
Martin Koelbl
Florian Lorber
Eric Mercer
Marco Muniz
Julia Sapiña
Andrea Vandin

Organizing Committee

Carlos Canal University of Málaga, Spain
María del Mar Gallardo University of Málaga, Spain
Pedro Merino University of Málaga, Spain
Laura Panizo University of Málaga, Spain

Sponsors

VIII Organization



Abstracts of Invited Papers



Software Model Checking for Mobile Security
– Collusion Detection in K

Irina Măriuca Asăvoae1, Hoang Nga Nguyen2,
and Markus Roggenbach1

1 Swansea University, UK
{I.M.Asavoae,M.Roggenbach}@swansea.ac.uk

2 Coventry University, UK
Hoang.Nguyen@coventry.ac.uk

Abstract. Mobile devices pose a particular security risk because they hold
personal details and have capabilities potentially exploitable for eavesdropping.
The Android operating system is designed with a number of built-in security
features such as application sandboxing and permission-based access control.
Unfortunately, these restrictions can be bypassed, without the user noticing, by
colluding apps whose combined permissions allow them to carry out attacks that
neither app is able to execute by itself. In this paper, we develop a software
model-checking approach within the K-framework that is capable to detect
collusion. This involves giving an abstract, formal semantics to Android
applications and proving that the applied abstraction principles lead to a finite
state space.



Efficient Runtime Verification of First-Order
Temporal Properties

Klaus Havelund1 and Doron Peled2

1 Jet Propulsion Laboratory, California Institute of Technology, USA
2 Department of Computer Science, Bar Ilan University, Israel

Abstract. Runtime verification allows monitoring the execution of a system
against a temporal property, raising an alarm if the property is violated. In this
paper we present a theory and system for runtime verification of a first-order past
time linear temporal logic. The first-order nature of the logic allows a monitor to
reason about events with data elements. While runtime verification of propo-
sitional temporal logic requires only a fixed amount of memory, the first-order
variant has to deal with a number of data values potentially growing unbounded
in the length of the execution trace. This requires special compactness consid-
erations in order to allow checking very long executions. In previous work we
presented an efficient use of BDDs for such first-order runtime verification,
implemented in the tool DEJAVU. We first summarize this previous work.
Subsequently, we look at the new problem of dynamically identifying when data
observed in the past are no longer needed, allowing to reclaim the data elements
used to represent them. We also study the problem of adding relations over data
values. Finally, we present parts of the implementation, including a new concept
of user defined property macros.

The research performed by the first author was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration. The
research performed by the second author was partially funded by Israeli Science Foundation grant
2239/15: “Runtime Measuring and Checking of Cyber Physical Systems”.



A Sample of Formal Verification Research
for Embedded Control Software at ONERA

Rémi Delmas, Thomas Loquen, and Pierre Roux

ONERA Centre de Toulouse, 2 av. Édouard Belin, 31055 Toulouse, France
{Rémi Delmas,Thomas Loquen,Pierre Roux}@onera.fr

Abstract. This talk presents a sample of research work conducted by the French
Aerospace Lab (ONERA) on tailoring and applying formal methods to advanced
embedded controllers, at various phases of the development and verification
process, illustrated by industrial projects and collaborations. A first line of
work1, carried out in partnership with Airbus, Dassault and LAAS-CNRS, aims
at going beyond simulation for validating advanced hybrid control laws, by
leveraging bounded reachability analysis and robustness analysis from the early
design phases. This requires to bridge the representation gap existing between
hybrid dataflow formalisms used to model control laws (e.g. Simulink,
Scade-Hybrid,…), and the automata-based formalisms used by most hybrid
model-checkers (e.g. SpaceEx, Flow*, dReach,…) and robustness analysis
frameworks. We discuss the steps taken to handle the complexity and size of
typical industrial models. A second line of work1, carried out jointly with
academic lab LRI (Paris-Sud, INRIA) and technology provider OcamlPro,
addresses the sound combination of SMT-solvers and potentially unsound
convex optimization engines to allow proving complex polynomial invariants on
advanced control laws implementations. Such implementations are usually
obtained by automatic time-discretization and code generation from a hybrid
dataflow model. The proposed approach shows a notable performance
improvement on controllers of interest with respect to earlier approaches based
on interval arithmetic or purely symbolic methods such as cylindrical algebraic
decomposition or virtual substitutions. Last, we present research conducted2 in
partnership with Liebherr Aerospace Toulouse and technology provider Systerel
on leveraging model-checking techniques for unit-level test case generation for
an air management system, taking into account the industrial setting and qual-
ification constraints, following DO-178C and D0-333 guidelines.

Keywords: Hybrid dataflow models • Hybrid automata • Reachability analysis
SMT solvers • Convex optimization • SAT solvers • Test case generation

1 with funding from the French Civil Aviation Authority (DGAC) through the SEFA-IKKY program.
2 with funding from the CIFRE program of the National Technological Research Agency (ANRT) and
the RAPID program of the French Government Defense Procurement and Technology Agency
(DGA) (project SATRUCT).



Program Verification with Separation Logic

Radu Iosif

CNRS/VERIMAG/Université Grenoble Alpes, Grenoble, France
Radu.Iosif@univ-grenoble-alpes.fr

Abstract. Separation Logic is a framework for the development of modular
program analyses for sequential, inter-procedural and concurrent programs. The
first part of the paper introduces Separation Logic first from a historical, then
from a program verification perspective. Because program verification eventu-
ally boils down to deciding logical queries such as the validity of verification
conditions, the second part is dedicated to a survey of decision procedures for
Separation Logic, that stem from either SMT, proof theory or automata theory.
Incidentally we address issues related to decidability and computational com-
plexity of such problems, in order to expose certain sources of intractability.



Contents

Tutorial and Invited Papers

Software Model Checking for Mobile Security – Collusion Detection in K . . . 3
Irina Măriuca Asăvoae, Hoang Nga Nguyen, and Markus Roggenbach

Efficient Runtime Verification of First-Order Temporal Properties . . . . . . . . . 26
Klaus Havelund and Doron Peled

Program Verification with Separation Logic . . . . . . . . . . . . . . . . . . . . . . . . 48
Radu Iosif

Regular Papers

Petri Net Reductions for Counting Markings . . . . . . . . . . . . . . . . . . . . . . . 65
Bernard Berthomieu, Didier Le Botlan, and Silvano Dal Zilio

Improving Generalization in Software IC3 . . . . . . . . . . . . . . . . . . . . . . . . . 85
Tim Lange, Frederick Prinz, Martin R. Neuhäußer, Thomas Noll,
and Joost-Pieter Katoen

Star-Topology Decoupling in SPIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Daniel Gnad, Patrick Dubbert, Alberto Lluch Lafuente,
and Jörg Hoffmann

Joint Forces for Memory Safety Checking . . . . . . . . . . . . . . . . . . . . . . . . . 115
Marek Chalupa, Jan Strejček, and Martina Vitovská

Model-Checking HyperLTL for Pushdown Systems. . . . . . . . . . . . . . . . . . . 133
Adrien Pommellet and Tayssir Touili

A Branching Time Variant of CaRet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Jens Oliver Gutsfeld, Markus Müller-Olm, and Benedikt Nordhoff

Control Strategies for Off-Line Testing of Timed Systems . . . . . . . . . . . . . . 171
Léo Henry, Thierry Jéron, and Nicolas Markey

An Extension of TRIANGLE Testbed with Model-Based Testing . . . . . . . . . 190
Laura Panizo, Almudena Díaz, and Bruno García

Local Data Race Freedom with Non-multi-copy Atomicity . . . . . . . . . . . . . . 196
Tatsuya Abe



A Comparative Study of Decision Diagrams for Real-Time
Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Omar Al-Bataineh, Mark Reynolds, and David Rosenblum

Lazy Reachability Checking for Timed Automata with Discrete Variables . . . 235
Tamás Tóth and István Majzik

From SysML to Model Checkers via Model Transformation. . . . . . . . . . . . . 255
Martin Kölbl, Stefan Leue, and Hargurbir Singh

Genetic Synthesis of Concurrent Code Using Model Checking
and Statistical Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Lei Bu, Doron Peled, Dachuan Shen, and Yuan Zhuang

Quantitative Model Checking for a Controller Design . . . . . . . . . . . . . . . . . 292
YoungMin Kwon and Eunhee Kim

Modelling Without a Modelling Language . . . . . . . . . . . . . . . . . . . . . . . . . 308
Antti Valmari and Vesa Lappalainen

Context-Updates Analysis and Refinement in Chisel . . . . . . . . . . . . . . . . . . 328
Irina Măriuca Asăvoae, Mihail Asăvoae, and Adrián Riesco

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

XVI Contents



Tutorial and Invited Papers



Software Model Checking for Mobile
Security – Collusion Detection in K

Irina Măriuca Asăvoae1, Hoang Nga Nguyen2, and Markus Roggenbach1(B)

1 Swansea University, Swansea, UK
{I.M.Asavoae,M.Roggenbach}@swansea.ac.uk

2 Coventry University, Coventry, UK
Hoang.Nguyen@coventry.ac.uk

Abstract. Mobile devices pose a particular security risk because they
hold personal details and have capabilities potentially exploitable for
eavesdropping. The Android operating system is designed with a num-
ber of built-in security features such as application sandboxing and
permission-based access control. Unfortunately, these restrictions can be
bypassed, without the user noticing, by colluding apps whose combined
permissions allow them to carry out attacks that neither app is able to
execute by itself. In this paper, we develop a software model-checking
approach within the K framework that is capable to detect collusion.
This involves giving an abstract, formal semantics to Android applica-
tions and proving that the applied abstraction principles lead to a finite
state space.

Keywords: Mobile-security · Android · Model-checking · K-framework

1 Introduction

Mobile devices, such as smartphones and tablets are pervasive in modern every-
day life. The number of smartphones in use is predicted to grow from 2.6 billion in
2016 to 6.1 billion in 2020 [24]. One reason for this fast adoption is the extensive
ecosystem of apps which enable a wide range of functions. Consequently, smart-
phones hold a great deal of personal information (e.g., photos, financial data,
credentials, messages, location history, health data) making them appealing tar-
gets for criminals who often employ malicious apps to steal sensitive information
[23], extort users [20], or misuse the device services for their own purposes [29].

The Android operating system is designed with a number of built-in security
features such as application sandboxing and permission-based access control.
Unfortunately, these restrictions can be bypassed, without the user noticing, by
colluding apps whose combined permissions allow them to carry out attacks that
neither app is able to execute by itself. The possibility of app collusion was first
described by Schlegel et al. in 2011 [34]. In 2016, Blasco et al. were the first to
report on a discovery of collusion in the wild [11,12].

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 3–25, 2018.
https://doi.org/10.1007/978-3-319-94111-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_1&domain=pdf


4 I. M. Asăvoae et al.

Attackers have a better chance of evading detection in both pre-deployment
and after-deployment scenarios by using app collusion where the malicious activ-
ity is split across multiple apps and coordinated through inter-app communi-
cations. This kind of attack is possible because sandboxed systems, such as
Android, are designed to prevent threats from individual apps. However, they
do not restrict or monitor inter-app communications, and therefore they would
fail to protect from multiple apps cooperating in order to achieve a malicious
goal. Most malware analysis systems, such as antivirus software for smartphones,
also check apps individually only.

Within the ACID project1, we have investigated the phenomenon of collu-
sion with different approaches, including static analysis, machine learning, and
software model-checking [5]. It soon became clear that an effective collusion-
discovery tool must include methods to isolate potential sets which require fur-
ther examination. Here, we developed two different filtering methods: a rule
based one [11], and one based on machine learning [19]. These filters, however,
developed for a first, fast screening, report many false positives. In this paper,
we report on a means for further investigation of sets identified by these filters.
Objectives included (1) to reduce the number of false positives and (2) to provide
evidence of collusion. In particular the second objective was important. Profes-
sional malware systems such as the one from our industrial partner McAfee are
under permanent scrutiny: they are in constant legal battle to prove their claims
that certain software is actually malware.

To perform such program reasoning, we could choose between methods like
model checking, static analysis and dynamic analysis: all of these can be used to
find program bugs, however are complementary in the way they handle the pro-
gram(s) under investigation and the properties to verify. On the one hand, model
checking and static analysis work with abstract models, without executing the
program, while dynamic analysis directly executes the original program. In this
sense, dynamic analysis discovers only real bugs, whereas both model check-
ing and static analysis are sensitive to false bug reports. On the other hand,
model checking and static analysis are more general techniques than dynamic
analysis (which handles one path at a time) as they use abstract program mod-
els to (potentially) represent all the program executions. Model checking and
static analysis mitigate precision and computation time using different strate-
gies to handle abstractions. Model checking computes the run-time states of the
program and could use, for example, local abstractions to verify its properties.
Static analysis works on abstract programs which approximate the original pro-
gram behaviors (i.e., using convenient abstract domains and abstract semantics).
In general, model checking is more precise than static analysis, while being the
more expensive approach.

In this paper, we use the K framework [33] to give an abstract semantics to
Android applications and demonstrate for the subset of non-recursive Android
programs that our abstraction works and can effectively distinguish between

1 http://acidproject.org.uk.

http://acidproject.org.uk


Software Model Checking for Mobile Security – Collusion Detection in K 5

collusion/non-collusion using a model-checking approach. Our discussion of col-
lusion and model checking for collusion builds upon our prior publications [5,7,8].

Related Work. As detecting malware in single apps is well developed, it sug-
gests itself to tackle collusion by merging apps into a single one [22]. There
are also dynamic approaches. For instance, TrustDroid [14] classifies apps into
logical domains (w.r.t. their data). Later, at run-time, any app communication
between different domains is forbidden. In contrast, we analyse sets of apps by
exhaustively unfolding their executions while looking for colluding patterns.

Static approaches to detecting collusion are closest to our work. The tool
Epicc [28] reduces the collusion detection to an interprocedural data-flow envi-
ronment problem that connects sources to sinks (e.g., sensitive data reads and
message passing) but does not address app communication. The app commu-
nication pattern is analysed by a subsequent tool, IC3 [26], which employs a
multi-valued constant propagation solver to produce an accurate string analysis
for Intent evaluation (an intent is a special Android data structure that can be
shared between different apps). The FUSE tool [30] integrates state-of-the-art
pointer analysis of individual apps into building a multi-app information flow
graph on which collusion can be detected. The tool FlowDroid [4] uses taint
analysis to find connections between source and sink. The app inter-component
communication pattern is subsequently analysed using a composite constant
propagation technique [27]. We propose a similar approach, namely to track
(sensitive) information flow and to detect app communication, but using model
checking that gives a witness trace in case of collusion detection. From the proof
effort perspective, we mention CompCert [21] that uses the Coq theorem prover
to validate a C compiler.

The K framework was proposed in [33] as a formalism to facilitate the design
and analysis of programming languages. A number of languages have already
been defined in K, including C [18] and Java [13], facilitating their program
analysis. We contribute to the pool of K-defined real languages by giving formal
semantics to Android byte code. The K framework facilitates program analysis
and verification from two angles: (1) using a Maude back-end [16] to access the
existing infrastructure of the Maude system [15] and (2) building specialized
tools over formal language definitions, e.g., a deductive verifier, which is generic
in the language definition, based on matching logic [32]. Security properties in the
K framework are explored by K-taint [3] with taint analysis. We use the Maude
back-end for model checking the K specification of Android apps. To avoid the
scalability issues of model checking, we specify in K an abstract semantics for
Android apps and employ K to perform abstract model checking on Android
apps for collusion.

2 Android Application and Smali

Android applications are packaged in apk files. Each consists of resources (e.g.,
image and sound files), binary code in dex files and a manifest (named Android-
Manifest.xml) for essential information. The binary code is machine-readable



6 I. M. Asăvoae et al.

and can be executed by Dalvik Virtual Machine (DVM) prior to Android 5.0 or
Android Runtime (ART) since Android 4.4. They can be converted into human-
readable format, Smali, by disassemblers such as baksmali. Note, that Smali code
has a different semantics than Java bytecode, as Smali is executed on a register
based machine, while Java bytecode operates on a stack based architecture. For
the rest of this paper, we shall refer to the binary code as Smali code. Smali,
similar to Java, is an Object-Oriented Programming (OOP) language. Here, we
assume Smali programs to be correctly typed, as they are in general produced
by a compiler rather than written manually.

The Smali code of an Android application consists of a set of classes. Essen-
tially, each class is defined as a collection of fields and methods. A field is a
variable defined by a name, a type and optionally an initial value. A method
is a sequence of bytecodes, which will be referred to as Smali instructions here-
inafter. Fields and methods can either be static or not. Static fields and methods
belong to the class. In other words, all instances of the class share the same copy.
Conversely, each instance has a distinct copy of non-static fields and methods.

Fields are identified by names and types. Types in Smali code are either
primitive and reference. Primitive types are: V (void, only for return types),
Z (boolean), B (byte), S (short), C (char), I (int, 32-bit), J (long, 64-bit), F
(float, 32-bit) and D (double, 64-bit). References types are classes and arrays.
Class types start with “L” while array types with “[”. For example, the class
java.lang.Object is written in Smali code as “Ljava/lang/Object”; an one-
dimensional array of 32-bit integers as “[I”.

Methods are identified by names, parameter types and a return type. In
contrast to Java, methods in Smali are register-based. Each method is associated
with a number of registers which also serve as temporal variables when executed.
The number of registers is declared first in the method body by a directive
.register n or .local n where n is an integer. If the former is used, then the
method has n registers in total; otherwise, it has n + m where m is the number
of parameters. If a method has n registers, they are named v0, . . . , v(n − 1).
If it has m parameters (m ≤ n), the last m registers, i.e. v(n − m), . . . , v(n −
1), can also be referred to as p0, . . . , p(m − 1). When calling a method, values
of its parameters are copied into these last registers. The method body is a
sequence of Smali instructions. They can be grouped into four categories: invoke-
return for calling and ending methods; control for un/conditional jumps; read-
write for accessing/modifying values stored in registers and memory (fields of
instances); and arithmetic for arithmetic calculation. Further detail of these
instructions can be found on [2]. Android comes with a Platform API which
provides a set of predefined classes. Calls to API [1] can be made by invoke
instructions. For example, to broadcast an intent (an abstract data structure
holding descriptions, usually, of actions to be performed; hence, it can be used
to exchange data between applications), an application invokes the API method
sendBroadCast(Intent) defined in the class Context.

The potential entry points of an Android Application are defined by classes
inheriting from the following ones: Activity, Service, BroadcastReceiver and



Software Model Checking for Mobile Security – Collusion Detection in K 7

ContentProvider from Android API. To become actual entry points, they must
be explicitly declared in the manifest so that they can be instantiated and exe-
cuted by either DVM or ART. Once instantiated, they are called App compo-
nents. An activity component is an entry point that provides an interface between
the application and users. For example, when a user clicks on the application
icon, an activity component corresponding to the declaration in the manifest will
be activated. A service component is an entry point to execute the application
in the background. A broadcast receiver component is for processing events that
are broadcast system-wide. Finally, a content provider component of an applica-
tion serves requests for accessing and modifying its data from the applications
it belongs to as well as other applications.

3 Collusion

ISO 27005 defines a threat as “A potential cause of an incident, that may result
in harm of systems and organisations.” For mobile devices, the range of such
threats includes [35]:

– Information theft: without user consent information is sent outside the device
boundaries;

– Money theft: e.g., when – without user consent – an app makes money through
sensitive API calls (e.g. SMS); and

– Service or resource misuse: for example – without user consent – a device is
remotely controlled.

The Android OS runs apps in sandboxes, trying to keep them separate from
each other. However, at the same time Android provides communication chan-
nels between apps. These can be documented ones (overt channels), or undoc-
umented ones (covert channels). An example of an overt channel would be a
broadcast intent; an example of a covert channel would be volume manipulation
(the volume is readable by all apps) in order to pass a message in a special code.

Broadly speaking, app collusion is when, in performing a threat, several apps
are working together, i.e., they exchange information which they could not obtain
on their own. Technically, we consider a threat to be a sequence of actions. Here,
actions are operations provided by the Android API (such as record audio, access
file, write file, send data, etc.).

Definition 1 (Collusion). A threat is realised by collusion if it is distributed
over several apps, i.e., there is a set S consisting of at least two apps such that:

– each app in S contributes to the execution of at least one action of the threat,
– and each app in S communicates with at least one other app in S.

Example 1 (Information theft collusion). This can be illustrated with a contact
app (having no Internet access) that reads the contacts database, passes the data
to a weather app (having no access to the contact database), which then sends
the data outside the device boundaries. For stealth purposes, the communication



8 I. M. Asăvoae et al.

between the apps is performed without any visibility to the user, e.g., through
a broadcast intent. Such examples can easily be realised, see, e.g., the B.Sc.
dissertation by Dicker [17].

Example 2 (App Collaboration). A similar situation to Example 1 is given by a
picture app (having no Internet access), the user chooses a picture to be sent via
email, the picture is passed over an overt Android channel to an email app, the
email app (having no access to the picture database) sends the picture outside
the device boundaries. For user-friendliness, the communication between the
apps is performed without visibility to the user, e.g., through a shared file. This
would be considered as collaboration, and not as collusion.

These two examples show that the distinction between collusion and collab-
oration actually lies in the notion of intention. The pattern in the sequence of
actions is the same: one app reads information that Android protects with a per-
mission, this information is passed to a different app, which then sends it outside
the device boundaries (note that sending information off the device requires a
permission in Android). In the case of the weather app, one can argue that the
intent is malicious (as one might expect a weather app to have no need to deal
with contact data in the first place); in the case of sending the email, one would
expect the intent to be documented and visible to the user.

In this paper, we aim to analyse sequences of actions for patterns, thus leave
out of our definition all aspects relating to psychology, sociology, documentation
etc. Consequently, we speak about collusion potential.

For the rest of the paper, we will focus on the threat of information theft
only. In this context, it is useful to introduce the concept of ‘secret information’.
Here, we take the pragmatic view that a secret is any information that Android
protects with a permission.

Definition 2 (Collusion potential for information theft). A set consisting
of at least two apps has collusion potential for information theft, if

– there is an app reading a secret,
– there is communication among the apps on this secret such that
– another app sends data on this secret outside the device boundaries.

An app set with collusion potential would then require further, possibly man-
ual analysis, involving taking into account further information such as the distri-
bution methods, documentation, transparency to the user, in order to distinguish
between collusion and collaboration. The possible automation of such analysis
with the help of machine learning techniques is discussed in [6].

4 K Framework

The K framework [31,33] proposes a methodology for the design and analysis
of programming languages; the framework comes with a rewriting-based specifi-
cation language and tool support for parsing, interpreting, model-checking and



Software Model Checking for Mobile Security – Collusion Detection in K 9

deductive formal verification. The K framework adheres to the principle that
programming languages ought to have a formal syntax and semantics definition;
and that all their execution and verification tools should be derived from a single,
formal definition of this language. Consequently, the ideal work-flow in the K

framework starts with a formal and executable language syntax and semantics,
given as a K specification, which then is tested on program examples in order
to gain confidence in the language definition. Here, the K framework proposes
model checking, via its compilation into Maude programs (i.e., using the existing
reachability tool and LTL Maude model checker) or deductive verification using
the matching logic prover - a first-order logic for reasoning with patterns and
pattern matching on program structures.

A K specification consists of configurations, computations, and rules, using a
specialised notation to write semantic entities, i.e., K-cells. For example, the K-
cell representing the set of program variables as a mapping from identifiers Id to
values Val is given by 〈Id �→ Val〉vars. In the case of Android apps in their Smali
format, the program states essentially consist of the instructions of the current
method, method registers mapped to values, and the methods’ call-stack. The
configurations in K are labeled and nested K-cells, used to represent the program
state structure. In other words, a programming language configuration is the set
of all semantic entities which are necessary to represent the program states.

The rules in K are of two types: computational and structural. Computa-
tional rules represent transitions in a program execution and are specified as
configuration updates. Structural rules provide internal changes of the program
state such that the configuration form can enable the application of compu-
tational rules. The computations in K are configuration updates based on the
K rules; hence a computation represents an execution of the K specification.
Figure 1 depicts all the executions of a K specification, i.e., its associated tran-
sition system. Note that inside the blue boxes we have various forms of the
program configuration (cfg[pgm]), potentially transformed by the blue arrows
depicting structural rules. The red arrows represent transitions between two
boxes, which are achieved by the computational rules applied on the normal
forms, e.g., t1 . . . tn, of the configuration in the box of origin. For example, the
computational rule may be regarded as triggering the execution of an instruc-
tion while the structural rules prepare the configuration for the execution of the
next instruction. More specifically, a computational rule triggers the execution
of an instruction that adds the values of two registers/variables and deposits the
result into a third one while a structural rule computes the addition of the two

Fig. 1. Transition system produced by a K specification. (Color figure online)



10 I. M. Asăvoae et al.

values. In the rest of the paper we present the configuration, computations, and
rules related to our Android K specification.

5 Concrete Semantics

In this Section, we sketch a first model, a ‘concrete semantics’, of Android in K.
Based upon this concrete semantics, we will then, in Sects. 6 and 7, develop our
abstract semantics, which will be suitable for model checking for security.

5.1 Instrumentation Principles

In order to enable the concrete semantics to discover information theft, we apply
a number of instrumentation principles:

Instrumentation Principle 1
We mark registers and objects by a Boolean flag that indicates if they
are holding sensitive information.

Instrumentation Principle 2
We keep track of the names of those apps which contribute to the gen-
eration of the data held in a register or in an object.

For selected instructions, Examples 8 and 9 in Sect. 6 will demonstrate of how
we realise these principles.

The Instrumentation Principles 1 and 2 allow us to discover collusion poten-
tial for information theft in an easy way. Whenever data is sent outside the
device boundaries, we check if this data

– is sensitive and
– was produced with help from an app with a name different from the name of

the app which is sending the data;

whenever both of these conditions are true, we have discovered an execution of
several apps which leads to potential information theft.

In order to enable the concrete semantics to provide counter example traces
leading to information theft, we apply a further instrumentation principles:

Instrumentation Principle 3
For each app, keep track of the instructions that have been carried out.

Section 8 will present an example of such a trace.



Software Model Checking for Mobile Security – Collusion Detection in K 11

5.2 Configurations

Applying the above three instrumentation principles, we capture Android con-
crete configurations using the cell mechanism of K as depicted in Fig. 2 in the K

typical notation.
Each configuration contains a number of sandbox cells – one cell for each app

belonging to a set of apps which one suspects of collusion. Each sandbox specifies
the state of one app. It has a number of sub-cells: appname (string), activities (a
list of activity class names declared in the manifest) and memory. Additionally,
it also hosts zero or more class and thread cells.

A class cell specifies a class by the following sub-cells: classname, super (the
name of the super class), interfaces (a list of interfaces that this class imple-
ments), fields (a list of fields optionally with initialised values) and zero or more
method cells. Each method models a method of the class by three more sub-cells:

Fig. 2. Cell structure of Android concrete configurations in K.



12 I. M. Asăvoae et al.

methodname (the signature of the method including name and parameter types),
returntype and methodbody (list of instructions of the method).

A thread cell models a currently running thread by the following sub-cells:
k (the remaining instructions to be executed), regs (content of registers), cur-
rentmethod (the complete instructions of the method that is currently executed
in this thread; i.e., the instructions in k are a suffix of this instructions), result
(holding the return value of a method running within this thread), callbacks (a
queue of callback function to be called within this thread), stack (for saving the
context of currently pending methods), and labeltrace (a record of which labels
have been passed during the running of this thread, implementing Instrumenta-
tion Principle 3). The regs cell maps registers to a values.

A memory cell contains class objects that have been instantiated so far. It has
an auxiliary cell, newref, to hold the reference for an object to be created next,
and a number of object cells. Each contains five sub-cells: objectref, objecttype
(its class name), objectfields (mapping from non-static fields to their values),
sensitive (to indicate if any value stored in objectfields is sensitive) and created (a
set of application names that contribute to the creation of any value objectfields).

Furthermore, a concrete configuration contains a single broadcasts cell. It
is used to model Android API methods regarding broadcasting intents across
applications. The broadcasts cell holds the intents that have been broadcast by
the apps. Each broadcast intent is held in a separate cell comprised of action
(action name), extra (a mapping from extra data names (strings) to extra data
(strings)), isensitive (a flag indicating if the extra data are sensitive), icreated (a
set of application names who contribute to the creation of any extra data), and
recipients (a set of application names who have already received this intent).

6 Abstraction Principles Concerning Memory

Given a concrete configuration as described in Sect. 5, we capture its pointer
structure in a so-called memory graph. In a second step, we enrich this memory
graph with additional edges that capture data dependencies that could arise
from code execution. We call this enrichment the data dependency graph. Our
abstract semantics will then perform its computations on equivalence classes of
the nodes of the data dependency graph.

As strings play an important role in Android inter app communications, we
additionally define a history projection that allows us to keep track of the strings
‘seen’ by a register during program execution.

6.1 Memory Graph

Abstraction Principle 1
We abstract from the data held in the memory cell or in register cells by
considering memory regions rather than values and/or pointers.



Software Model Checking for Mobile Security – Collusion Detection in K 13

Definition 3 (Memory graph, memory region). Given the memory cell
and all thread cells that belong to one sandbox S of a concrete configuration
represented in K, we define its memory graph to be the directed graph GS =
(V,E), where

– the set of nodes V comprises of
• all object references to be found in the memory cell, and of
• all registers in the regs cell, the result cell, and all registers of the methods
in the stack cell from each of the thread cells; and where

– there is an edge from a node v to a node w

• if v is a register and w is an object reference with v = (w, , , ), i.e.,
register cell v points to the object with reference w, or

• if v and w are both object references, and the object cell whose cell objectref
is v has a cell objectfields with 〈. . . , . . . �→ w , . . .〉objectfields, i.e., the object
with reference v contains an object field that points to the object with
reference w.

A memory region is a connected component in the un-directed graph under-
lying the memory graph.

Memory regions form a partition of the set of nodes of the memory graph.
Note that our definition of a memory region provides an over-approximation of
the actual pointer structure, as we are ignoring the direction of the edges.

method onChange (Secret)

registers 3

code

1: if-eqz r3,

2: const-string r1, "GPS"

3: iput r1, r3, myF

4: const-string r1, "steal"

5: invoke {r3} getInfoSecret

6: move-result r2

7: invoke {r1, r2} sendBroadcast

8: branch

9: return-void

endmethod

r12: r2 r3

n,”GPS” s,X

result

r13: r2 r3

n,”GPS” s,X

result

myF

Fig. 3. A sample program in Smali and some of its memory graphs.

Example 3. Consider the Smali method onChange in Fig. 3. The same Figure
shows possible memory graphs concerning it. There is one result cell in the thread
that executes it. The method has three registers r1, r2, and r3. After executing
line 1 and 2 of the code, register r1 contains a pointer to a string object containing
the string “GPS” and register r3 contains a pointer to an object containing a



14 I. M. Asăvoae et al.

secret “X”, i.e., we have four memory regions, where we can choose, e.g., result,
r1, r2, and r3 as representatives. In the graph, we depict the sensitivity of data
with “n” for non-sensitive and “s” for sensitive. Execution of line 3 leads to an
edge from the object on the right to the object on the left, as myF is set to point
to this object (iput assigns to the field myF in the object referenced in register
r3 the reference found in register r1), i.e., we have now three memory regions,
where we can choose, e.g., result, r1, and r2 as representatives.

6.2 Data Dependency Graph

Abstraction Principle 2
We abstract from computations by considering data dependencies
rather than concrete values.

In order to undertake a further abstraction, for each instruction we perform a
data dependency analysis among the arguments and result involved. We illustrate
such an analysis first on the example of arithmetic binary operators binop in
Smali, these include, e.g., the commands add, sub, mul.

Example 4 (Data dependency analysis of “binop r1, r2, r3”). The meaning of
these instructions is given by r1 := r2binop r3. After a binop instruction, the
value of register r1 depends on the values of the registers r2 and r3.

A slightly more involved situation is given when we move the result of a
method call, which in Smali is stored in the special result register, into a normal
register r.

Example 5 (Data dependency analysis of “move-result r”). The meaning of this
instruction is given by r := result. After a move-result instruction, the value
of register r depends on the values in the registers of the last method invoca-
tion. Assuming that this call was invoke{r1, r2, ..., rn}m for an unimplemented
method m, the value of r depends on the values of the registers r1, r2, ..., rn –
i.e., we make a worst case assumption in order to be on the ‘safe’ side. The term
‘unimplemented’ means that we have no representation of this method in our K
framework for Android. This can happen, e.g., when an app calls a method from
a library for which we decide to leave it our from our analysis.

Definition 4 (Data dependency graph, data dependency region). A
data dependency graph is a memory graph enriched by data dependency edges.
A data dependency region is a connected component in the un-directed graph
underlying the data dependency graph.

Data dependency regions form a partition of the set of nodes of the data
dependency graph. Like in the definition of memory regions, in our definition
of data dependency regions we over-approximate the actual information. For
instance, in the case of the method invocation, we make a worst case assump-
tion. Another reason of over-approximation is that, again, when forming the
equivalence classes we ignore the direction of the edges.



Software Model Checking for Mobile Security – Collusion Detection in K 15

r15: r2 r3

n,”GPS” s,X

result

n,”steal”
myF

r16: r2 r3

n,”GPS” s,X

result

n,”steal”
myF

Fig. 4. Some data dependency graphs for the program in Fig. 3.

Example 6. Continuing Example 5, we consider some data dependency graphs
for the Smali program of Fig. 3. After invoking the method getInfoSecret in
line 5, the result cell depends on register r3 – indicated by the dashed arrow. On
the implementation level, we realise such dependencies as edges in the memory
graph, thus, the edge from result to the object that is referenced by r3. I.e.,
we have three data dependency regions, where we can choose, e.g., result, r1,
and r2 as representatives. After moving the result into register r2, r2 inherits
the data dependency of the result cell and the result cell is cleared of all data
dependencies, i.e., we have three data dependency regions, where we can choose,
e.g., result, r1 and r2 as representatives.

6.3 History Projection

Projection Principle
We enrich data dependency regions by a set of strings in order to keep
track of ‘values of interest’.

We add a history projection component to the data dependency regions so
that we can detect Android communication channels for intents. For example,
when sending the broadcast intent in the method OnChange, see Fig. 3, the com-
munication channel carries the name “steal”, given through the string object to
which register r1 points – see the data dependency graph after executing line
6 in Fig. 4. An app that wants to receive this information, needs to ‘listen’ on
broadcast channel “steal”, i.e., in collusion analysis we need to have these strings
available in order to see which senders and receivers match. For space reasons,
we simplified the parameters of the broadcast method invocation in line 7.

Definition 5 (History projection). We annotate each data dependency
region of a data dependency graph with a set of strings, which we call the history
projection of this region.

The history projection of a region adds further information and thus makes
the two previous abstractions finer grained. Like with data dependencies, each
Smali instruction needs to be analysed in order to obtain the rules for history
projection. The guiding principle is that the history projection collects all strings
that have ‘appeared’ in the history of a region.



16 I. M. Asăvoae et al.

Example 7 (History projection of “const-string r, s”). This instruction creates
a new object containing the string s, and lets register r point to this object. In
the data dependency graph, this instruction creates a new region consisting of
the register r and the string object only. We annotate this region with the one
element set {s} as its history projection.

We use the values collected in the history projection to perform an over-
approximation of app communication. In our example program in Fig. 3, we
say that the broadcast intent can use any of the strings that register r1 has in
its history projection. We treat receiving a broadcast in a similar way. I.e., we
form the intersection between the history projections of the registers involved: if
the intersection is empty, the apps do not communicate, otherwise they do. For
better results, one could utilize a composite constant propagation technique as
discussed in, e.g., [27].

6.4 Sample Instructions in Abstract Semantics

With the two above abstraction principles, history projection, and the first two
instrumentation principles of sensitivity updates and app-name updates as dis-
cussed in Sect. 5 on concrete semantics, we can give an abstract semantics in K

for nearly all Smali instructions. However, instructions that deal with the control
flow that enable loops and recursive procedure calls, will require the application
of further abstraction principles – see Sect. 7, which discusses loops.

Here, we give two concrete semantic rules. Registers in the abstract semantics
hold enriched data dependency regions ddr, i.e., a symbolic name of the region, a
boolean flag sen which is true if the region might contain sensitive information,
a history projection h, and a set apps containing the names of applications that
might have influenced the region.

Example 8 (Abstract semantics of of “binop A,B,C”). Let (ddrx, hx, senx,
appsx) be the contents of registers x, x ∈ {A,B,C} before execution of binop.
Execution of binop creates a new region name new and updates all three registers
A,B and C to the same values, namely to

– ddr′
x = new,

– h′
x = hB ∪ hC ,

– sen′
x = senB ∨ senC , and

– apps′
x = appsB ∪ appsC

for x ∈ {A,B,C}, i.e., binop creates a new region subsuming the regions to
which the operands B and C were belonging. The new region considers again a
worst case scenario by taking the union of the history projects and the app sets,
and the logical or for sensitivity. Furthermore, all registers belonging to regions
ddrB and ddrC need to be updated to the new region.



Software Model Checking for Mobile Security – Collusion Detection in K 17

Note that the instruction invoke{r1, r2, ..., rn}m in the abstract semantics
behaves in a similar manner to Example 8, namely, the result cell is treated
similarly to register A, while the method parameters r1, r2, ..., rn are treated in
a similar way to registers B and C.

Example 9 (Abstract semantics of “move-result r”). Assume that this instruc-
tion is executed by an app with name n. Let (ddrres, hres, senres, appsres) be the
contents of the result cell before execution of move-result. Execution of move-
result updates the result cell and register r as follows:

– ddr′
res = .K

– ddr′
r = ddrres

– h′
r = hres,

– sen′
r = senres, and

– apps′
r = appsres;

i.e., the result cell is marked as empty with the special value .K and register r
simply holds all values that were held before in the result cell.

6.5 A Theoretical Result on These Abstractions

We conclude by giving an upper bound to the abstract state space:

Theorem 1 (Abstract state space). When applying these two abstractions
as well as instrumentation for sensitivity and app names, the upper bound for the
size of the abstract state space is double exponential in the number of registers
of methods either active or on the stacks in the thread cells.

Proof (Sketch): History projection picks up constants from the program during
execution, there are only finitely many constants in the program. Sensitivity is a
Boolean value. The data dependency graph forms a partition of the finitely many
available registers. There are double exponentially many partitions possible.

Note that the abstract state space grows and shrinks during the execution of
an app, depending on how many threads it has, the number of active registers,
and the size of the stacks in these threads.

7 Selected Abstraction Principles Concerning Execution

In this Section we focus on guiding abstract execution by model checking prin-
ciples. In K we use the search engine, which exhaustively executes the semantics
until it either reaches a colluding state or all executions were unfolded without a
collusion found. However, during the process of unfolding all possible executions
of the semantics, the search engine does not use any model checking techniques.
Hence, we have to insert model checking principles into the abstract semantics
that, in the context of a finite state space, make program executions finite.

We apply these abstraction principles when defining the abstract semantics
of backward jumps, in the case of loops, and method invocation, in the case of
recursive calls. Here we present the case of backward jumps only. To recursive
calls, one can apply similar principles through utilising a call stack.



18 I. M. Asăvoae et al.

method onReceive (Context, Intent)

registers 3

code

1: invoke {r3} getExtras

2: move-result r1

3: whileloop

4: if-eqz r1, exitloop

5: iget r3, r2, next

6: iget r2, r1, next

7: iget r1, r3, next

8: jump whileloop

9: exitloop

10: invoke {r3} publish

11: return void

endmethod

Fig. 5. A Smali method with a while loop.

Example 10 (Execution of loops). Consider the onReceive method shown in
Fig. 5. The method onReceive is activated whenever a message fitting the
Intent parameter of the method arrives in the system. The onReceive method
extracts the details of the received message (by invocation of the getExtras API
method in line 1) and deposits these details in the local register r1. Lines 3–8
describe a loop, where line 3 is the label whileloop marking the beginning of
the loop. Line 4 contains the loop condition, i.e., when the register r1 contains
the null reference, the loop execution stops and the computation continues from
the exitloop label in line 9. The loop body passes information in a round-robin
from r2 to r3 (in line 5), from r1 to r2 (in line 6), and r3 to r1 (in line 7). Note
that we assume that the information passed is available via the field next of the
objects referenced by the registers r1, r2, r3. Finally, in line 10 the information
referenced by the register r3 is sent outside the device via the invocation of the
publish method.

Figure 6 depicts the data dependency graphs of some of its executions and
a representation of the broadcast cell. The condition in line 4 of onReceive
can evaluate either to true or false: in case it is false, we enter the loop, i.e.,
we continue execution in line 5; in case it is true, we leave the loop, i.e., we
continue execution in line 9. The left column of Fig. 6 shows the data dependency
graphs when in the execution of onReceive the condition is always false. The
right column shows the data dependency graphs for never entering the loop, for
exiting the loop after one iteration, and for exiting the loop after two iterations.

Our example is artificial in the sense that ‘normally’ one would not expect a
field next in the objects in the API classes Context and Intent (referenced in
the beginning of the method by the registers r2 and r3, respectively). However,
it is ‘typical’ in the sense that intents are usually read using loop constructs.
For brevity, we decided to skip the ‘typical’ lines before the loop that prepare
registers r2 and r3 to contain objects with a next field, i.e., lists.



Software Model Checking for Mobile Security – Collusion Detection in K 19

Fig. 6. Abstract loop execution using onReceive code.



20 I. M. Asăvoae et al.

Our Abstraction Principle for Loops is based on the lasso principle in model
checking [10]:

Abstraction Principle for Loops
Stop loop execution at a backward jump point when abstract states are
repeated.

Example 11 (Repetition of abstract states). We observe the register contents
when executing the backward jump in line 8 of the method onReceive, c.f.
Fig. 5. The relevant data dependency graphs are shown in Fig. 6. Here we obtain
the sequence

13n | 2s −→ 13s | 2n −→ 13n | 2s,

where the numbers stand for registers, the vertical bar divides partitions, and the
indices n and s stands of non-sensitive and sensitive, resp, i.e., 13n | 2s says that
r1 and r3 belong to the same partition of the data dependency graph which holds
non-sensitive information, while register r2 forms a partition of its own which
holds sensitive information. Applying the above Abstraction Principle for Loops
means that execution is stopped at the third loop iteration since all abstract
states that can occur within this loop have already been passed through during
the first two iterations.

We have analysed our loop example applying a standard approach of static
analysis [25]:

Example 12 (Comparison with static analysis). By comparison, an execution
using static analysis principles is bound to join the abstract states collected at
the level of backward jumps. In our example, where we start the the loop in
the abstract state 1s | 2n |3n, we have the following sequence at the level of the
backward jump: 13s | 2s −→ 13s | 2s.

We observe that in this example static analysis performs a smaller number
of loop iterations than our model checking approach. However, this comes at
the price of less precision. For example, as seen in Fig. 6, registers 1 and 2 are
never sensitive at the same time. If later in the computation this fact becomes
important (e.g., for passing sensitive data that leads to collusion) then static
analysis reports a false positive for collusion while our model checking approach
safely reports no-collusion. Further discussion on this topic can be found in [9].

We conclude this Section by some theoretical results that demonstrate that
our abstractions provide us with a finite state space that – at least from a
theoretical point of view – can be explored by model-checking.

Theorem 2 (Methods have a finite state space in abstract). The number
of partitions of the registers of a method enriched with sensitivity information,
app information, and history information, is always finite.



Software Model Checking for Mobile Security – Collusion Detection in K 21

Proof: This result holds as a method always has only finitely many registers,
sensitivity is a Boolean value, the app sets considered are always finite, and the
number of string constants in a program is finite as well.

Corollary 1 (Loops are finite in abstract). Application of the Abstraction
Principle for Loops leads to finite loop executions.

Corollary 2 (Abstract state space is finite). The abstractions together
result in a finite state space for the abstract semantics, which can be investi-
gated via model-checking.

Proof (Sketch): We are considering non-recursive apps only. Thanks to
Corollary 1, we have only executions of finite length in abstract. A finite exe-
cution has only finitely many branches, can start only finitely many threads,
and leads to finite stacks only. Thus, by Theorem1, the abstract state space is
finite.

8 First Experimental Results

We demonstrate how collusion is detected using our concrete and our abstract
semantics on two Android applications, called LocSender and LocReceiver.
Together, these two apps jointly carry out an “information theft”. They consist
of about 100 lines of Java code/3000 lines of Smali code each. Originally written
to explore if collusion was actually possible (there is no APK of the Soundcomber
example), here they serve as a first test if our model checking approach works.

LocSender obtains the location of the Android device and communicates it
using a broadcast intent. LocReceiver constantly waits for such a broadcast. On
receiving such message, it extracts the location information and finally sends it
to the Internet as an HTTP request. We have two variants of LocReceiver: one
contains a while loop pre-processing the HTTP request while the other does
not. Additionally, we create two further versions of each LocReceiver variant
where collusion is broken by (1) not sending the HTTP request at the end, (2)
altering the name of the intent that it waits for – named LocReceiver1 and
LocReceiver2, respectively. Furthermore, we (3) create a LocSender1 which
sends a non-sensitive piece of information rather than the location. In total, we
will have eight experiments where the two firsts have a collusion while the six
lasts do not2. Figure 7 summarises the experimental results. When collusion is
detected, our implementation provides an output to trace the execution of both
colluding apps. For example, the abstract implementation yields the following
traces for the first experiment from Fig. 7:

LocSender: "0" -> "68" -> "70" -> "71" -> "73" -> "75" -> "77"
-> "79" -> "81" -> "83" -> "85" -> "86" -> "88" -> "cond_54".

2 All experiments are carried out on a Macbook Pro with an Intel i7 2.2 GHz quad-core
processor and 16GB of memory.



22 I. M. Asăvoae et al.

App1 App2 Loop Collusion
Concrete Abstract

Runtime Detected Runtime Detected
LocSender LocReceiver � 55s � 30s �
LocSender LocReceiver � � time-out 33s �
LocSender LocReceiver1 1m13s 31.984s
LocSender LocReceiver1 � time-out 34s
LocSender LocReceiver2 53s 32s
LocSender LocReceiver2 � time-out 33s
LocSender1 LocReceiver 1m11s 32s
LocSender1 LocReceiver � time-out 34s

Fig. 7. Experimental result.

LocReceiver: "0" -> "44" -> "46" -> "48" -> "0" -> "69" -> "71"
-> "72" -> "74" -> "75" -> "77" -> "goto_14" -> "78" -> "79"
-> "goto_14" -> "cond_23" -> "84" -> "85" -> "86" -> "87" ->
"89" -> "try_start_44" -> "90" -> "91" -> "92" -> "93" ->
"try_end_69" -> "100" -> "goto_69" -> "49" -> "52" -> "53"
-> "56" -> "57" -> "58".

In these traces, labels in Smali code are recorded as they were traversed during
the colluded execution. Therefore, it can be used to evidence collusion in the
Smali code.

Evaluation: Our experiments indicate that our approach works correctly: if
there is collusion it is either detected or has a timeout, if there is no collusion
then none is detected. In case of detection, we obtain a trace providing evidence
of a run leading to information theft. The experiments further demonstrate the
need for an abstract semantics, beyond the obvious argument of speed: e.g.,
in case of a loop where the number of iterations depends on an environmental
parameter that can’t be determined, the concrete semantics yields a time out,
while the abstract semantics still is able to produce a result. Model checking with
the abstract semantics is about twice as fast as with the concrete semantics. At
least for such small examples, our approach appears to be feasible.

9 Summary and Future Work

In this paper, we have presented a model-checking approach that is capable to
discover the threat of app-collusion. To this end, we gave a formal definition of
collusion and briefly discussed that it is often a challenge to distinguish between
benign and malicious behavior. Formal methods alone are not capable to distin-
guish between malign collusion and benign collaboration as they need a reference
point, a definition of what a program’s behavior should be. As such reference
points are lacking in the context of mobile apps, the classification that a certain
behavior is malicious remains in the end a decision to be made by humans.



Software Model Checking for Mobile Security – Collusion Detection in K 23

Towards model-checking for collusion potential, we presented an abstract
semantics of Smali within the K framework. As a theoretical result we proved
that our abstractions lead to a finite state space (for non-recursive apps). On the
practical side, we demonstrated that our abstract semantics can effectively detect
collusion potential for information theft. Together with our other work within
the ACID project, this results in a tool chain for dealing with app collusion:

– First, one isolates sets of apps with high collusion risk – this can be done with
some filter mechanism, e.g., the rule based one [11] or the machine learning
based one [19].

– These app sets then need to be investigated further, where it is essential to
provide evidence for collusion potential – this is, where our model-checking
approach from this paper comes into play.

– Finally, there needs to be a decision if the combined effort of the apps is
collusion or collaboration – as discussed above, this needs to be carried out
manually, in the future possibly supported by machine learning [6].

In terms of future work for our approach, we plan to work out the formal
details of how to treat recursion and, in particular, expand our work on infor-
mation theft to other forms of collusion by developing further instrumentation
principles. Furthermore, we want to address the question of scalability, in par-
ticular of how to solve the combinatorial explosion of n colluding apps with
BigData search methods.

For the topic in general, one should note that app collusion is not restricted
to Android OS. In principle, it is also a vulnerability of other mobile platforms
as well as cloud environments. In the context of the Internet of Things (IoT),
malware experts see collusion between devices as ‘threat of the future’: with
increasingly more powerful analysis methods to protect devices against attacks
performed by a single program only, criminals might be forced to move to col-
lusion attacks, though these are technically more involved.

Yet another perspective is that model-checking might develop into a third,
established technique for malware discovery and analysis, besides static analysis
and dynamic analysis.

Acknowledgments. We would like to thank our colleagues and friends Magne Haver-
aaen, Alexander Knapp, and Bernd-Holger Schlingloff who commented on early drafts
and helped us shape this paper; a special thanks goes to Erwin R. Catesbeijana (Jr.)
for pointing out that not all inter app communication leads to collusion.

References

1. Android API reference. https://developer.android.com/reference/classes. Accessed
01 May 2018

2. Android bytecode. https://source.android.com/devices/tech/dalvik/dalvik-
bytecode. Accessed 01 May 2018

3. Alam, M.I., Halder, R., Goswami, H., Pinto, J.S.: K-taint: an executable rewriting
logic semantics for taint analysis in the k-framework. In: ENASE, pp. 359–366.
SciTePress (2018)

https://developer.android.com/reference/classes
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode


24 I. M. Asăvoae et al.

4. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI 2014, p. 29. ACM
(2014)

5. Asavoae, I.M., Blasco, J., Chen, T.M., Kalutarage, H.K., Muttik, I., Nguyen, H.N.,
Roggenbach, M., Shaikh, S.A.: Detecting malicious collusion between mobile soft-
ware applications: the AndroidTM case. In: Carrascosa, I.P., Kalutarage, H.K.,
Huang, Y. (eds.) Data Analytics and Decision Support for Cybersecurity. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59439-2 3

6. Asavoae, I.M., Blasco, J., Chen, T.M., Kalutarage, H.K., Muttik, I., Nguyen, H.N.,
Roggenbach, M., Shaikh, S.A.: Distinguishing between malicious app collusion and
benign app collaboration: a machine learning approach. Virus Bulletin (2018)

7. Asavoae, I.M., Nguyen, H.N., Roggenbach, M., Shaikh, S.A.: Utilising K seman-
tics for collusion detection in Android applications. In: ter Beek, M.H., Gnesi, S.,
Knapp, A. (eds.) FMICS-AVoCS 2016, pp. 142–149 (2016)

8. Asavoae, I.M., Nguyen, H.N., Roggenbach, M., Shaikh, S.A.: Software model check-
ing: a promising approach to verify mobile app security. CoRR abs/1706.04741
(2017). http://arxiv.org/abs/1706.04741

9. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook on Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 16

10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

11. Blasco, J., Chen, T.M., Muttik, I., Roggenbach, M.: Detection of app collusion
potential using logic programming. J. Netw. Comput. Appl. 105, 88–104 (2018).
https://doi.org/10.1016/j.jnca.2017.12.008

12. Blasco, J., Muttik, I., Roggenbach, M.: Wild android collusions (2016). https://
www.virusbulletin.com/conference/vb2016/

13. Bogdănaş, D., Roşu, G.: K-Java: a complete semantics of Java. In: POPL 2015.
ACM (2015)

14. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and lightweight domain isolation on Android. In: SPSM 2011. ACM (2011)

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

16. Şerbănuţă, T.F., Roşu, G.: K-Maude: a rewriting based tool for semantics of pro-
gramming languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp.
104–122. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-
4 8

17. Dicker, C.: Android security: delusion to collusion. B.Sc. dissertation, Swansea
University (2015)

18. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: PLDI
2015. ACM (2015)

19. Kalutarage, H.K., Nguyen, H.N., Shaikh, S.A.: Towards a threat assessment frame-
work for apps collusion. Telecommun. Syst. 66(3), 417–430 (2017). https://doi.org/
10.1007/s11235-017-0296-1

20. Kovacs, E.: Malware abuses Android accessibility feature to steal data (2015).
http://www.securityweek.com/malware-abuses-android-accessibility-feature-
steal-data

https://doi.org/10.1007/978-3-319-59439-2_3
http://arxiv.org/abs/1706.04741
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1016/j.jnca.2017.12.008
https://www.virusbulletin.com/conference/vb2016/
https://www.virusbulletin.com/conference/vb2016/
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-16310-4_8
https://doi.org/10.1007/978-3-642-16310-4_8
https://doi.org/10.1007/s11235-017-0296-1
https://doi.org/10.1007/s11235-017-0296-1
http://www.securityweek.com/malware-abuses-android-accessibility-feature-steal-data
http://www.securityweek.com/malware-abuses-android-accessibility-feature-steal-data


Software Model Checking for Mobile Security – Collusion Detection in K 25

21. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

22. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y.: ApkCombiner: combin-
ing multiple android apps to support inter-app analysis. In: Federrath, H., Goll-
mann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 513–527. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18467-8 34

23. Lipovsky, R.: ESET analyzes first Android file-encrypting, TOR-enabled ran-
somware (2014). http://www.welivesecurity.com/2014/06/04/simplocker/

24. Lunden, I.: 6.1B Smartphone Users Globally By 2020, Overtaking Basic Fixed
Phone Subscriptions. http://techcrunch.com/2015/06/02/6-1b-smartphone-
users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:
RPIH. Accessed 10 Nov 2015

25. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

26. Octeau, D., Luchaup, D., Dering, M., Jha, S., McDaniel, P.: Composite constant
propagation: application to Android inter-component communication analysis. In:
ICSE 2015. IEEE Computer Society (2015)

27. Octeau, D., Luchaup, D., Jha, S., McDaniel, P.D.: Composite constant propagation
and its application to Android program analysis. IEEE Trans. Softw. Eng. 42(11),
999–1014 (2016)

28. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Traon, Y.L.:
Effective inter-component communication mapping in Android: an essential step
towards holistic security analysis. In: Security Symposium. USENIX Association
(2013)

29. Page, C.: MKero: Android malware secretly subscribes victims to premium
SMS services (2015). http://www.theinquirer.net/inquirer/news/2425201/mkero-
android-malware-secretly-subscribes-victims-to-premium-sms-services

30. Ravitch, T., Creswick, E.R., Tomb, A., Foltzer, A., Elliott, T., Casburn, L.: Multi-
app security analysis with FUSE: statically detecting Android app collusion. In:
ACSAC 2014. ACM (2014)

31. Roşu, G.: From rewriting logic, to programming language semantics, to program
verification. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting,
and Concurrency. LNCS, vol. 9200, pp. 598–616. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23165-5 28

32. Roşu, G.: Matching logic. In: RTA 2015. LIPIcs, vol. 36, pp. 5–21. SchlossDagstuhl–
Leibniz-Zentrum fuer Informatik, July 2015

33. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

34. Schlegel, R., Zhang, K., Zhou, X.y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound Trojan for smartphones. In: NDSS,
vol. 11, pp. 17–33 (2011)

35. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Ribagorda, A.: Evolution, detec-
tion and analysis of malware for smart devices. IEEE Commun. Surv. Tutor. 16(2),
961–987 (2014)

https://doi.org/10.1007/978-3-319-18467-8_34
http://www.welivesecurity.com/2014/06/04/simplocker/
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:RPIH
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:RPIH
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:RPIH
https://doi.org/10.1007/978-3-662-03811-6
http://www.theinquirer.net/inquirer/news/2425201/mkero-android-malware-secretly-subscribes-victims-to-premium-sms-services
http://www.theinquirer.net/inquirer/news/2425201/mkero-android-malware-secretly-subscribes-victims-to-premium-sms-services
https://doi.org/10.1007/978-3-319-23165-5_28
https://doi.org/10.1007/978-3-319-23165-5_28


Efficient Runtime Verification
of First-Order Temporal Properties

Klaus Havelund1(B) and Doron Peled2(B)

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Runtime verification allows monitoring the execution of a
system against a temporal property, raising an alarm if the property
is violated. In this paper we present a theory and system for runtime
verification of a first-order past time linear temporal logic. The first-
order nature of the logic allows a monitor to reason about events with
data elements. While runtime verification of propositional temporal logic
requires only a fixed amount of memory, the first-order variant has to
deal with a number of data values potentially growing unbounded in
the length of the execution trace. This requires special compactness con-
siderations in order to allow checking very long executions. In previous
work we presented an efficient use of BDDs for such first-order runtime
verification, implemented in the tool DejaVu. We first summarize this
previous work. Subsequently, we look at the new problem of dynamically
identifying when data observed in the past are no longer needed, allowing
to reclaim the data elements used to represent them. We also study the
problem of adding relations over data values. Finally, we present parts
of the implementation, including a new concept of user defined property
macros.

1 Introduction

Runtime verification (RV) is used to check the execution of a system against a
temporal property, expressed, e.g., in Linear Temporal Logic (LTL), alarming
when it is violated, so that aversive action can be taken. To inspect an execution,
the monitored system is instrumented to report on occurrences of events. The
monitor performs incremental computation, updating its internal memory. It is
important that this operation is efficient in terms of time and space, in order
to be able to keep up with rapid occurrence of events in very long executions.

The research performed by the first author was carried out at Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration. The research performed by the second author was
partially funded by Israeli Science Foundation grant 2239/15: “Runtime Measuring
and Checking of Cyber Physical Systems”.

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 26–47, 2018.
https://doi.org/10.1007/978-3-319-94111-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_2&domain=pdf


Efficient Runtime Verification of First-Order Temporal Properties 27

Even if monitoring is performed offline, i.e. on log files, performance is an issue
when logs are large. For each consumed event, a monitor has to decide whether
the property is violated based on the finite part of the execution trace that
it has viewed so far. Thus, the checked properties are often limited to safety
properties [24]. For a safety property, any violating execution has a prefix that
cannot be completed into an execution that satisfies it [2]. Hence, by definition,
safety properties are those that are finitely refutable. In LTL, safety properties
are those that can be written in the form �ϕ (for always ϕ), where ϕ uses past
operators: � for previous-time and S for since [25]. While it is sufficient to find
one prefix that violates ϕ to deduce that �ϕ does not hold, RV often keeps
monitoring the system and reporting on further prefixes that fail to satisfy ϕ.
We shall henceforth not prefix properties with �.

Two central challenges in RV are to increase the expressiveness of the prop-
erties that can be monitored, and to improve the efficiency of monitoring. Unfor-
tunately, there is often a tradeoff between these goals. Therefore, the combined
goal is to achieve a good balance that would allow checking the property we
want to monitor with a reasonable efficiency. While propositional LTL is useful
for describing some properties, in many cases we want to monitor executions
with events that contain data values that need to be related to each other. Such
properties can be expressed e.g., using first-order temporal logic or paramet-
ric automata. As monitoring may be done without assuming a bound on the
length of the execution or the cardinality of the data elements, remembering an
unbounded amount of elements may be unavoidable. Consider the property that
asserts that each file that is closed was opened before. This can be expressed in a
first-order temporal logic as follows (where P ϕ means: sometime in the past ϕ):

∀f (close(f) −→ P open(f)) (1)

If we do not remember for this property all the files that were opened, then we
will not be able to check when a file is closed whether it was opened before.
This calls, in the first place, for using an algorithm and data structure where
memory growth is often quite moderate, allowing to check large executions. In
previous work [18] we presented an algorithm based on the use of BDDs, and its
implementation in the DejaVu runtime verification tool. In this paper we go a
step further in increasing efficiency (and hence the magnitude of executions that
can be monitored) by presenting an approach for detecting when data elements
that were seen so far do not affect the rest of the execution and can be discarded,
also referred to as dynamic data reclamation. As mentioned, the temporal for-
mula (1) forces a monitor to store information about all the files that were ever
opened so that it can check that no file is closed without being opened. Consider
now a more refined specification, requiring that a file can be closed only if (in
the previous step) it was opened before, and has not been closed since:

∀f (close(f) −→ �(¬close(f)S open(f))) (2)

We can observe that if a file was opened and subsequently closed, then if it is
closed again before opening, the property would be invalidated just as in the



28 K. Havelund and D. Peled

case where it was not opened at all. This means that we can “forget” that a
file was opened when it is closed without affecting our ability to monitor the
formula. Assume that at any time during the execution there are no more than
N files opened simultaneously. Then, in the approach to be presented here, we
need space for only N file names for monitoring the property. This is in contrast
to our original algorithm, where space for all new file names must be allocated.

The contributions of the paper are the following. We present an elegant
algorithm, and its implementation in DejaVu for dynamically reclaiming data
elements that can not affect the value of the property anymore. Our solution is
based on using a non-trivial combination of BDD operations to automatically
detect values that are not further needed for the rest of the monitoring. Note
that the approach does not involve static analysis of formulas. We furthermore
introduce relations between variables (such as x > y) and a distinction between
two forms of quantification: quantification over infinite domains and, as a new
concept in DejaVu, quantification over values seen in the trace.

The remaining part of the paper is organized as follows. Section 2 presents
the syntax and semantics of the logic, while Sect. 3 presents the BDD-based
algorithm. Section 4 introduces the new dynamic data reclaiming algorithm.
Section 5 introduces relations and the new forms of quantification over seen val-
ues. Section 6 outlines the implementation. Section 7 presents an evaluation of
the dynamic data reclamation implementation. Section 8 describes related work,
and finally Sect. 9 concludes the paper.

2 Syntax and Semantics

In this section we present briefly the syntax and semantics of the logic used by
the DejaVu tool. Assume a finite set of domains D1,D2, . . .. Assume further
that the domains are infinite, e.g., they can be the integers or strings1. Let V be
a finite set of variables, with typical instances x, y, z. An assignment over a set
of variables W maps each variable x ∈ W to a value from its associated domain
domain(x). For example [x → 5, y → “abc”] maps x to 5 and y to “abc”.
Let T a set of predicate names with typical instances p, q, r. Each predicate
name p is associated with some domain domain(p). A predicate is constructed
from a predicate name, and a variable or a constant of the same type. Thus,
if the predicate name p and the variable x are associated with the domain of
strings, we have predicates like p(“gaga”), p(“baba”) and p(x). Predicates over
constants are called ground predicates. An event is a finite set of ground predi-
cates. (Some restrictions may be applied by the implementation, e.g., DejaVu

allows only a single ground predicate in an event.) For example, if T = {p, q, r},
then {p(“xyzzy”), q(3)} is a possible event. An execution σ = s1s2 . . . is a finite
sequence of events.

For runtime verification, a property ϕ is interpreted on prefixes of a monitored
sequence. We check whether ϕ holds for every such prefix, hence, conceptually,
check whether �ϕ holds, where � is the “always in the future” linear temporal
1 For dealing with finite domains see [18].



Efficient Runtime Verification of First-Order Temporal Properties 29

logic operator. The formulas of the core logic, referred to as Qtl (Quantified
Temporal Logic) are defined by the following grammar. For simplicity of the
presentation, we define here the logic with unary predicates, but this is not due
to any principle limitation, and, in fact, our implementation supports predicates
with multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ ∧ ϕ) |¬ϕ | (ϕ S ϕ) | � ϕ | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground
predicate p(a) occurs in the most recent event. The formula p(x), for a variable
x ∈ V , holds with a binding of x to the value a if a ground predicate p(a)
appears in the most recent event. The formula (ϕ1 S ϕ2) means that ϕ2 held
in the past (possibly now) and since then ϕ1 has been true. The property � ϕ
means that ϕ was true in the previous event. We can also define the following
additional operators: false = ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ −→ ψ) = (¬ϕ∨ψ),
P ϕ = (true S ϕ) (previously ϕ), H ϕ = ¬P ¬ϕ (historically ϕ, or ϕ always in
the past), and ∀x ϕ = ¬∃x¬ϕ. The operator [ϕ,ψ), borrowed from [23], has the
same meaning as (¬ψ S ϕ), but reads more naturally as an interval.

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ.
Then (γ, σ, i) |= ϕ, where γ is an assignment over free(ϕ), and i ≥ 1, if ϕ holds
for the prefix s1s2 . . . si of the execution σ with the assignment γ. We denote
by γ|free(ϕ) the restriction (projection) of an assignment γ to the free variables
appearing in ϕ and by ε the empty assignment. The semantics of Qtl can be
defined as follows.

– (ε, σ, i) |= true.
– (ε, σ, i) |= p(a) if p(a) ∈ σ[i].
– ([x 
→ a], σ, i) |= p(x) if p(a) ∈ σ[i].
– (γ, σ, i) |= (ϕ ∧ ψ) if (γ|free(ϕ), σ, i) |= ϕ and (γ|free(ψ), σ, i) |= ψ.
– (γ, σ, i) |= ¬ϕ if not (γ, σ, i) |= ϕ.
– (γ, σ, i) |= (ϕS ψ) if (γ|free(ψ), σ, i) |= ψ or the following hold: i > 1,

(γ|free(ϕ), σ, i) |= ϕ, and (γ, σ, i − 1) |= (ϕS ψ).
– (γ, σ, i) |= �ϕ if i > 1 and (γ, σ, i − 1) |= ϕ.
– (γ, σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that2 (γ [x 
→ a], σ, i) |= ϕ.

Set Semantics. It helps to present the BDD-based algorithm by first refining
the semantics of the logic in terms of sets of assignments satisfying a formula.
Let I[ϕ, σ, i] be the semantic function, defined below, that returns a set of assign-
ments such that γ ∈ I[ϕ, σ, i] iff (γ, σ, i) |= ϕ. The empty set of assignments ∅
behaves as the Boolean constant 0 and the singleton set that contains an assign-
ment over an empty set of variables {ε} behaves as the Boolean constant 1. We
define the union and intersection operators on sets of assignments, even if they
are defined over non identical sets of variables. In this case, the assignments are
extended over the union of the variables. Thus intersection between two sets of
assignments A1 and A2 is defined like database “join” operator; i.e., it consists

2 γ [x �→ a] is the overriding of γ with the binding [x �→ a].



30 K. Havelund and D. Peled

of the assignments whose projection on the common variables agrees with an
assignment in A1 and with an assignment in A2. Union is defined as the dual
operator of intersection. Let A be a set of assignments over the set of variables
W ; we denote by hide(A, x) (for “hiding” the variable x) the set of assignments
obtained from A after removing from each assignment the mapping from x to a
value. In particular, if A is a set of assignments over only the variable x, then
hide(A, x) is {ε} when A is nonempty, and ∅ otherwise. Afree(ϕ) is the set of all
possible assignments of values to the variables that appear free in ϕ. We add
a 0 position for each sequence σ (which starts with s1), where I returns the
empty set for each formula. The assignment-set semantics of Qtl is shown in
the following. For all occurrences of i, it is assumed that i > 0.

– I[ϕ, σ, 0] = ∅.
– I[true, σ, i] = {ε}.
– I[p(a), σ, i] = if p(a) ∈ σ[i] then {ε} else ∅.
– I[p(x), σ, i] = {[x 
→ a]|p(a) ∈ σ[i]}.
– I[(ϕ ∧ ψ), σ, i] = I[ϕ, σ, i]

⋂
I[ψ, σ, i].

– I[¬ϕ, σ, i] = Afree(ϕ) \ I[ϕ, σ, i].
– I[(ϕ S ψ), σ, i] = I[ψ, σ, i]

⋃
(I[ϕ, σ, i]

⋂
I[(ϕSψ), σ, i − 1]).

– I[�ϕ, σ, i] = I[ϕ, σ, i − 1].
– I[∃x ϕ, σ, i] = hide(I[ϕ, σ, i], x).

As before, the interpretation for the rest of the operators can be obtained from
the above using the connections between the operators.

3 An Efficient Algorithm Using BDDs

We describe here briefly an algorithm for monitoring first order past time LTL
properties, first presented in [18] and implemented as the first version of the
tool DejaVu.

We shall represent a set of assignments as an Ordered Binary Decision Dia-
gram (OBDD, although we write simply BDD) [10]. A BDD is a compact repre-
sentation for a Boolean valued function of type B

k → B for some k > 0 (where
B is the Boolean domain {0, 1}), as a directed acyclic graph (DAG). A BDD is
essentially a compact representation of a Boolean tree, where compaction glues
together isomorphic subtrees. Each non-leaf node is labeled with one of the
Boolean variables b0, . . . , bk−1. A non-leaf node bi is the source of two arrows
leading to other nodes. A dotted-line arrow represents that bi has the Boolean
value 0, while a thick-line arrow represents that it has the value 1. The nodes
in the DAG have the same order along all paths from the root. However, some
of the nodes may be absent along some paths, when the result of the Boolean
function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either a 0 or a 1, representing
the Boolean value returned by the function for the Boolean values on the path.
Figure 1 contains five BDDs (a)–(e), over three Boolean variables b0, b1, and b2
(referred to by their subscripts 0, 1, and 2), as explained below.



Efficient Runtime Verification of First-Order Temporal Properties 31

Mapping Data to BDDs. Assume that we see p(“ab”), p(“de”), p(“af”) and
q(“fg”) in subsequent states in a trace, where p and q are predicates over the
domain of strings. When a value associated with a variable appears for the first
time in the current event (in a ground predicate), we add it to the set of values
of that domain that were seen. We assign to each new value an enumeration,
represented as a binary number, and use a hash table to point from the value to
its enumeration.

Consistent with the DejaVu implementation, the least significant bit in an
enumeration is denoted in this figure (and in the rest of this paper) by BDD
variable with index 0, and the most significant bit by BDD variable with index
n − 1, where n is the number of bits. Using e.g. a three-bit enumeration b2b1b0,
the first encountered value “ab” can be represented as the bit string 000, “de”
as 001, “af” as 010 and “fg” as 011. A BDD for a subset of these values returns
a 1 for each bit string representing an enumeration of a value in the set, and
0 otherwise. E.g. a BDD representing the set {“de”,“af”} (2nd and 3rd values)
returns 1 for 001 and 010. This is the Boolean function ¬b2∧(b1 ↔ ¬b0). Figure 1
shows the BDDs for each of these values as well as the BDD for the set containing
the values “de” and “af”.

When representing a set of assignments for e.g. two variables x and y with k
bits each, we will have Boolean variables x0, . . . , xk−1, , y0, . . . yk−1. A BDD will
return a 1 for each bit string representing the concatenation of enumerations
that correspond to the represented assignments, and 0 otherwise. For example,
to represent the assignments [x 
→ “de”, y 
→ “af”], where “de” is enumerated as
001 and “af” with 010, the BDD will return a 1 for 001010.

The BDD-based Algorithm. Given some ground predicate p(a) observed in
the execution matching with p(x) in the monitored property, let lookup(x, a)
be the enumeration of a. If this is a’s first occurrence, then it will be assigned a
new enumeration. Otherwise, lookup returns the enumeration that a received
before. We can use a counter, for each variable x, counting the number of dif-
ferent values appearing so far for x. When a new value appears, this counter
is incremented, and the value is converted to a Boolean representation. Enu-
merations that were not yet used represent the values not seen yet. In the next
section we introduce data reclaiming, which allows reusing enumerations for val-
ues that no longer affect the checked property. This involves a more complicated
enumeration mechanism.

The function build(x,A) returns a BDD that represents the set of assign-
ments where x is mapped to (the enumeration of) v for v ∈ A. This BDD
is independent of the values assigned to any variable other than x, i.e., they
can have any value. For example, assume that we use three Boolean variables
(bits) x0, x1 and x2 for representing enumerations over x (with x0 being the
least significant bit), and assume that A = {a, b}, lookup(x, a) = 011, and
lookup(x, b) = 001. Then build(x,A) is a BDD representation of the Boolean
function x0 ∧ ¬x2.



32 K. Havelund and D. Peled

01

0

1

2

(a) BDD for {“ab”}:
¬b2 ∧¬b1 ∧¬b0

0 1

0

1

2

(b) BDD for {“de”}:
¬b2 ∧¬b1 ∧b0

01

0

1

2

(c) BDD for {“af”}:
¬b2 ∧b1 ∧¬b0

0 1

0

1

2

(d) BDD for {“fg”}:
¬b2 ∧b1 ∧b0

01

0

11

2

(e) BDD for {“de”, “af”}:
¬b2 ∧ (b1 ↔ ¬b0)

Fig. 1. BDDs for the trace: p(“ab”).p(“de”).p(“af”).q(“fg”)

Intersection and union of sets of assignments are translated simply to con-
junction and disjunction of their BDD representation, respectively, and com-
plementation becomes negation. We will denote the Boolean BDD operators as
and, or and not. To implement the existential (universal, respectively) oper-
ators, we use the BDD existential (universal, respectively) operators over the
Boolean variables that represent (the enumerations of) the values of x. Thus, if
Bϕ is the BDD representing the assignments satisfying ϕ in the current state
of the monitor, then exists(〈x0, . . . , xk−1〉, Bϕ) is the BDD that represents the
assignments satisfying ∃xϕ in the current state. Finally, BDD(⊥) and BDD(�)
are the BDDs that return always 0 or 1, respectively.

The algorithm, shown below, operates on two vectors (arrays) of values
indexed by subformulas (as in [20]): pre for the state before that event, and
now for the current state (after the last seen event).



Efficient Runtime Verification of First-Order Temporal Properties 33

1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥).
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ

then now(ϕ) is updated before now(ψ).
– now(true) := BDD(�).
– now(p(a)) := if p(a) ∈ s then BDD(�) else BDD(⊥).
– now(p(x)) := build(x,A) where A = {a|p(a) ∈ s}.
– now((ϕ ∧ ψ)) := and(now(ϕ), now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ), pre((ϕSψ)))).
– now(� ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . , xk−1〉, now(ϕ)).

5. Goto step 2.

An important property of the algorithm is that, at any point during monitor-
ing, enumerations that are not used in the pre and now BDDs represent all values
that have not been seen so far in the input. This can be proved by induction on
the size of temporal formulas and the length of the input sequence. We specifi-
cally identify one enumeration to represent all values not seen yet, namely the
largest possible enumeration, given the number of bits we use, 11 . . . 11. We let
BDD(11 . . . 11) denote the BDD that returns 1 exactly for this value. This trick
allows us to use a finite representation and quantify existentially and universally
over all values in infinite domains.

Dynamic Expansion of the BDDs. We can sometimes define the number k
of Boolean variables per domain to be a large enough such that we anticipate no
more than 2k − 1 different values. However, if the number of bits used for repre-
senting enumerations becomes insufficient, we can dynamically expand it during
RV [18]. As explained above, the enumeration 11 . . . 11 of length k represents for
every variable “all the values not seen so far in the input sequence”. Consider
the following two cases:

– When the added (most significant) bit has the value 0, the enumeration still
represents the same value. Thus, the updated BDD needs to return the same
values that the original BDD returned without the additional 0.

– When the added bit has the value 1, we obtain enumerations for values that
were not seen so far in the input. Thus, the updated BDD needs to return
the same values that the original BDD gave to 11 . . . 11.

An increase in one bit allows doubling the number of enumerations, hence,
this, relatively expensive operation does not need to take place frequently (if
at all). We demonstrate the expansion of the enumerations by a single bit on
formulas with three variables, x, y and z, represented using three BDD bits each,
i.e., x0, x1, x2, y0, y1, y2, z0, z1, z2. We want to add a new most significant bit
ynew for representing y. Let B be the BDD before the expansion. The case where



34 K. Havelund and D. Peled

the value of ynew is 0 is the same as for a single variable. For the case where
ynew is 1, the new BDD needs to represent a function that behaves like B when
all the y bits are set to 1. Denote this by B[y0 \ 1, y1 \ 1, y2 \ 1]. This function
returns the same Boolean values independent of any value of the y bits, but it
depends on the other bits, representing the x and z variables. Thus, to expand
the BDD, we generate a new one as follows:

((B ∧ ¬ynew ) ∨ (B[y0 \ 1, y1 \ 1, y2 \ 1] ∧ ynew ))

Expanding the number of bits allowed for enumerations, when needed, has the
disadvantage that memory can grow unbounded. The next section suggests a
method for identifying enumerations of values that can no longer affect the
checked property, and therefore can be reclaimed.

4 Dynamic Data Reclamation

In the previous section, we described an algorithm that implements runtime
verification with data, based on a BDD representation. The algorithm generates
a new enumeration for each value that appears in the input and uses a hash table
to map from a value to its enumeration. It is possible that the set of enumerations
for some variable eventually exceeds the number of bits allocated for the BDD.
In this case, the BDD can be expanded dynamically, as shown in the previous
section. However, this can be very costly, and we may eventually run out of
memory. In this section we study the possibility of reusing enumerations of data
values, when this does not affect the decision whether the property holds or not.
When a value a is reclaimed, its enumeration e can be reused for representing
another value that appears later in the execution.

We saw in the introduction an example of a property where values that
already occurred cannot be reclaimed (1), and a similar property, where there
are values that are not useful any more from some point in the execution (2).
Consider a more complicated example:

∀z (r(z) → ∃y (q(y)Sp(z)) (3)

It asserts that when a ground predicate r(a) appears with some value a, then
there should be at least one value b for which q(b) appeared ever since the
most recent appearance of p(a) (an appearance of p(a) is required). Consider an
execution σ with some prefix ρ that does not contain r(a) since the most recent
appearance of p(a). Furthermore, no ground predicate q(b) commonly appears
since the last occurrence of p(a). In this case, when r(a) later occurs in σ, the
property (3) will be violated. This is indistinguishable from the case where p(a)
never occurred. Thus, after seeing ρ, we can “forget” the value a.

Recall that upon the occurrence of a new event, the basic algorithm uses
the BDD pre(ψ), for any subformula ψ, representing assignments satisfying this
subformula calculated based on the sequence monitored so far. Since these BDDs
sufficiently summarize the information that will be used about the execution



Efficient Runtime Verification of First-Order Temporal Properties 35

monitored so far, reclaiming data can be performed fully automatic, without
user guidance or static formula analysis, solely based on the information the
BDDs contain.

We are seeking a condition for reclaiming values of a variable x. Let A be a set
of assignments over some variables that includes x. Denote by A[x = a] the set
of assignments from A in which the value of x is a. We say that the values a and
b are analogous for variable x in A, if hide(A[x = a], x) = hide(A[x = b], x). This
means that a and b, as values of the variable x, are related to all other values in
A in the same way. A value can be reclaimed if it is analogous to the values not
seen yet, in all the assignments represented in pre(ψ), for each subformula ψ.

As the pre BDDs use enumerations to represent values, we find the enumer-
ations that can be reclaimed and then, their corresponding values are removed
from the hash table, and these enumerations can later be reused to represent
new values. Recall that the enumeration 11 . . . 11 represents all the values that
were not seen so far, as explained in Sect. 3. Thus, we can check whether a value
a for x is analogous to the values not seen so far for x by performing the checks
between the enumeration of a and the enumeration 11 . . . 11 on the pre BDDs.
In fact, we do not have to perform the checks enumeration by enumeration, but
use a BDD expression that constructs a BDD representing (returning 1 for) all
enumerations that can be reclaimed for a variable x.

To simplify the presentation and prevent using many indexes, assume that
a subformula ψ has three free variables, x, y and z, each with k bits, i.e.,
x0, . . . , xk−1, y0, . . . , yk−1 and z0, . . . , zk−1. The following expression returns a
BDD representing all the enumerations of x values that are analogous to 11 . . . 11
in pre(ψ).

Iψ,x = ∀y0 . . . ∀yk−1∀z0 . . . ∀zk−1(pre(ψ)[x0 \ 1, . . . xk−1 \ 1] ↔ pre(ψ))

The available enumerations for the variable x are represented then by the con-
junction of Iψ,x over all subformulas ψ of the specification ϕ. (Note that this
will also include enumerations that are not used, as they are also analogous to
11 . . . 11 in all subformulas.)

To take advantage of reclaimed enumerations, we cannot generate them in
successive order using a counter anymore. Thus we need to keep a set of available
enumerations. This can be represented using a BDD. Let avail(x) be the BDD
that represents the enumerations (given as a Binary encoding x0, . . . , xk−1) that
are available for values of x. Initially at the start of monitoring, we set avail(x) :=
¬BDD(11 . . . 11). Let sub(ϕ) be the set of subformulas of the property ϕ. When
the number of available enumerations becomes short, and we want to perform
data reclamation, we calculate Iψ,x for all the subformulas ψ ∈ sub(ϕ) that
contain x as a free variable, and set:

avail(x) := (
∧

ψ∈sub(ϕ),x∈free(ψ)

Iψ,x) ∧ ¬BDD(11 . . . 11)

This updates avail(x) to denote all available enumerations, including reclaimed
enumerations. When we need a new enumeration, we just pick some enumeration



36 K. Havelund and D. Peled

e that satisfies avail(x). Let BDD(e) denote a BDD that represents only the
enumeration e. To remove that enumeration from avail(x), We update avail(x)
as follows:

avail(x) := avail(x) ∧ ¬BDD(e)

The formula Iψ,x includes multiple quantifications (over the bits used to repre-
sent the free variables other than x). Therefore, it may not be efficient to reclaim
enumerations too frequently. We can reclaim enumerations either periodically or
when avail(x) becomes empty or close to empty. Data reclaiming may sometimes
be time consuming and also result in expanding the BDD. This is based on the
observation that a BDD representing just the Binary enumerations from 1 to n
is much more compact than a BDD representing some n random enumerations.
On the other hand, as we observe in the evaluation section, the ability to use
less Boolean variables for enumerations due to reclaiming data may require less
memory and time.

As the BDD-based algorithm detects an enumeration e that can be reclaimed,
we need to identify the related data value a and update the hash table, so that
a will not point to e. In particular, we need to be able to find the data that
is represented by a given enumeration. To do that, one can use a trie [11]: in
our case this will be a trie with at most two edges from each node, marked with
either 0 or 1. Traversing the trie from its root node on edges labeled according to
the enumeration e reaches a node that contains the value a that is enumerated as
e. Traversing and updating the trie is linear per each enumeration. The current
implementation, however, uses the simpler straightforward strategy of walking
though all values and removing those which point to reclaimed enumerations.

5 Relations and Quantification over Seen Values

Quantification over Seen Values. The Qtl logic allows assertions over infi-
nite domains (for handling finite domains, see [18]). The quantification defined
in Sect. 2 is over all possible domain values, whether they appeared already in
the monitored sequence or not. It is sometimes more natural to quantify only
over values that already appeared in events. Consider the property that asserts
that there exists a session s, such that any user u that has ever logged into any
session (s′) so far, is currently logged into this session s and not logged out yet.
This can be expressed in the following slightly inconvenient manner:

∃s∀u((∃s′ P login(u, s′)) → (¬logout(u, s)S login(u, s))) (4)

One may be tempted to use the following shorter formula with the naive intent
that we quantify over all users u seen in the trace so far:

∃s∀u(¬logout(u, s)S login(u, s)) (5)

Unfortunately, this formula does not have the intended semantics because it
asserts that all potential users have not logged out since they logged into s. For



Efficient Runtime Verification of First-Order Temporal Properties 37

an unbounded domain, this property can never hold, since at any time, only
a finite number of users could have been observed to log in. Property (5) can,
however, be corrected to conveniently quantify only over values u that were seen
so far in the monitored sequence. We extend the logic Qtl with the bounded
quantifiers ∃̃ and ∀̃, quantifying over only seen values, hence we can now express
property (4) as:

∃s∀̃u(¬logout(u, s)S login(u, s)) (6)

The new kind of quantifiers do not extend the expressive power of the logic, as
one can always use the form of property (4) to limit the quantification to seen
values. However, it allows writing shorter formulas, and is also supported by an
efficient implementation.

In order to implement the quantifiers ∃̃ and ∀̃, we keep, for each variable
x that is quantified in this way, a BDD seen(x). seen(x) is initialized to the
empty BDD (BDD(⊥)). Upon seeing an event with a new value a for x, we
update seen(x) such that for the BDD bits representing the new enumeration e
for a it will also return 1. That is, seen(x) := or(seen(x),BDD(e)). We augment
our algorithm with now(∃̃xϕ) := exists(〈x0, . . . , xk−1〉,and(seen(x), now(ϕ))).
For implementing ∀̃x, note that ∀̃xϕ = ¬∃̃x¬ϕ.

Arithmetic Relations. Another extension of the Qtl logic is the ability to
use arithmetic relations. This allows comparing between values that occurred,
as in the following property:

∀x (p(x) → ∃y � (P q(y) ∧ x > y)) (7)

It asserts that if p(x) is seen with some value of x, then there exists a smaller
value y such that q(y) was seen in the past. In order to implement this comparison
along the same lines of the set semantics BDD-based solution, we can represent
a BDD now(x > y) over the enumerations of the variables x and y. Suppose that
x and y are represented using the BDD bits x0, . . . , xk−1, y0, . . . yk−1. Then,
now(x > y) returns a 1 when x0, . . . , xk−1 represents the enumeration for some
seen value a, and y0, . . . , yk−1 represents the enumeration of some seen value b,
where b > a.

The BDD now(x > y) is updated incrementally, when a new value for x or
for y is seen. For property (7), that would be an occurrence of an event that
contains a ground predicate of the form p(a) or q(b). Suppose that a is a new
value for the variable x. We build at this point a temporary BDD Ba>x that
represents the set of assignments {[x 
→ a, y 
→ b] | b ∈ seen(y) ∧ a > b}. Then
we set now(x > y) := or(pre(x > y), Ba>y).

Property (7) guarantees (due to the subformula P q(y)) that the values com-
pared using x > y were already seen. The following property, however, appears
more ambiguous since the domain of y is not completely clear:

∀x (p(x) → ∃y x > y) (8)



38 K. Havelund and D. Peled

For example, assuming standard mathematical reasoning, if y ranges over the
integers, then this property should always hold; if y ranges over the naturals,
then this should hold if x is bigger than 0, although some definitions of the
naturals do not contain 0, in which case this should hold if x is bigger than
1. To solve ambiguity, we chose an alternative implementation; we analyze the
formulas, and if a relation contains an occurrence of a variable x in the scope of a
quantification ∀x or ∃x, we change the quantification into ∀̃x or ∃̃x, respectively.

6 Implementation

Basic Algorithm. DejaVu is implemented in Scala. The current version,
which supports data reclamation, is an augmentation of the tool previously
described in [18]. DejaVu takes as input a specification file containing one or
more properties, and generates a self-contained Scala program (a text file)
- the monitor. This program (which first must be compiled) takes as input
the trace file and analyzes it. The tool uses the following libraries: Scala’s
parser combinator library for parsing [28], the Apache Commons CSV (Comma
Separated Value format) parser for parsing log files [4], and the JavaBDD
library for BDD manipulations [21]. We shall illustrate the monitor generation
using an example. Consider the property Close in Fig. 4, which corresponds to
property 1 on page 2, but in the input format for the tool. The property-specific
part3 of the generated monitor, shown in Fig. 2 (left), relies on an enumeration
of the subformulas, shown in Fig. 2 (right). Specifically, two arrays are declared,

Fig. 2. Monitor (left) and subformula enumeration (right) for property Close

3 An additional 530 lines of property independent boilerplate code is generated.



Efficient Runtime Verification of First-Order Temporal Properties 39

indexed by subformula indexes: pre for the previous state and now for the cur-
rent state. For each observed event, the function evaluate() computes the now
array from highest to lowest index, and returns true (property is satisfied in this
position of the trace) iff now(0) is not false, i.e., not BDD(⊥). At composite
subformula nodes, BDD operators are applied. For example for subformula 3,
the new value is now(4).or(pre(3)), which is the interpretation of the formula P
open(f) corresponding to the law: Pϕ = (ϕ ∨ � Pϕ). As can be seen, for each
new event, the evaluation of a formula results in the computation of a BDD for
each subformula. It turns out that this process, linear in the size of the formula,
is rather efficient.

Dynamic Memory Reclamation. The implementation of dynamic data
reclamation is illustrated with the code snippets in Fig. 3. The method
build(...)(...):BDD (lines 1–3) is called in Fig. 2 (left) for subformulas 2 and 4. It
in turn calls the method getBddOf(v: Any):BDD (line 2) on the Variable object
(the class of which is defined on lines 5–34) denoted by the variable name ‘name’
(looked up in varMap), and with the value v occurring in the current event. This
method (lines 6–17) returns the BDD corresponding to the newly observed value
v. In case the value has previously been encountered (line 7–9), the previously
allocated BDD is returned. Otherwise (line 10), if the variable avail of available
BDDs is False (none available), the data reclamation is activated (explained
below). An Out Of Memory error is thrown in case there still are no available
BDDs (line 11). Otherwise (line 12), we select an available BDD from avail using
JavaBDD’s SAT solver (satOne() which when called on a BDD returns some
bit enumeration for which the BDD returns 1). The selected BDD (result) is
then “removed” from the avail BDD (line 13), and the hash table from values to
the BDDs that represent them is finally updated (line 14). Note that the hash
table maps each data value directly to a BDD representing its enumeration.
The method reclaimData() (lines 19–26) starts with an avail BDD allowing any
assignment different from 11 . . . 11 (line 20), and then refines it by repeatedly
(line 22) computing formula Iψ,x from Sect. 4 for each temporal subformula (the
method getFreeBDDOf(...):BDD computes Iψ,x.), and and-ing the result to avail
(line 23), corresponding to down-selecting with set intersection. The method
removeReclaimedData() (lines 36–42) finally removes those values that map to a
BDD that is included in avail. The test bdd.imp(avail).isOne (line 31) is the logic
formulation of “the BDD avail contains the BDD bdd”.

Relations and Quantification over Seen Values. Relations and quantifica-
tion over seen values are implemented in a straight forward manner as explained
in Sect. 5. We shall explain here just the concrete syntax chosen for relations
and quantifiers. Relations are written exactly as in Sect. 5, e.g. y < x. It is also
possible to compare variables to constants, as in z < 10. Concerning the two
forms of quantifiers (quantification over infinite domains and quantification over
seen values) we use Exists (for ∃) and Forall (for ∀) to quantify over infinite
domains, and exists (for ∃̃) and forall (for ∀̃) to quantify over seen values. For



40 K. Havelund and D. Peled

Fig. 3. Implementation of dynamic data reclamation

example, property (6) in Sect. 5, reading ∃s∀̃u(¬logout(u, s)S login(u, s)) (there
exists a session s such that any user u that has ever logged into a session so far,
is currently logged into session s - and not logged out yet), is expressed as follows
in DejaVu’s concrete syntax: Exists s . forall u . !logout(u,s) S login (u,s).



Efficient Runtime Verification of First-Order Temporal Properties 41

7 Evaluation of Dynamic Data Reclamation

In this section we evaluate the implementation of DejaVu’s dynamic data recla-
mation algorithm. We specifically evaluate the four temporal properties shown
in Fig. 4, written in DejaVu’s input notation, on different sizes and shapes of
traces (auto-generated specifically for stress testing the algorithm), while vary-
ing the number of bits allocated to represent variables in BDDs. The properties
come in two variants: those that do not trigger data reclamation and therefore
cause accumulation of data in the monitor, and those (who’s names have suffix
‘DR’) that do trigger data reclamation, and therefore save memory. The first
two properties model variants of the requirement that a file can only be closed if
has been opened. Property Close corresponds to formula (1), and will not trig-
ger data reclamation as explained previously. Property CloseDR corresponds
to formula (2) and will trigger data reclamation. The next two properties model
variants of the requirement that a file cannot be opened if it has already been
opened. Property Open states that if a file is opened then either (in the previ-
ous step) it must have been closed in the past and not opened since, or it must
not have been opened at all in the past. This latter disjunct causes the formula
not to trigger data reclamation, essentially for the same reason as for Close.
Finally, property OpenDR states this more elegantly by requiring that if a file
was opened in the past, and not closed since then, it cannot be opened. This
property will trigger data reclamation.

// A file can only be closed if has been opened:
prop close : Forall f . close ( f ) → P open(f)
prop closeDR : Forall f . close ( f ) → @ (! close ( f ) S open(f) )

// A file cannot be opened if it has already been opened:
prop open : Forall f . open(f) → @ (((! open(f) S close ( f ) ) ) | ! P open(f) )
prop openDR : Forall f . @ (! close ( f ) S open(f) ) → ! open(f)

Fig. 4. Four evaluation properties

Table 1 shows the result of the evaluation, which was performed on a Mac
OS X 10.10.5 (Yosemite) operating system with a 2.8 GHz Intel Core i7, and
16 GB of memory. The properties were evaluated on traces of sizes spanning from
(approximately) 2 million to 3 million events, with approximately 1–1.5 million
files opened in each log (see table for exact numbers). Traces have the following
general form: initially O files, where O ranges from 0 to 50,000, are opened
in order to accumulate a large amount of data stored in the monitor. This is
followed by a repetitive pattern of closing C files and opening C new files. This
pattern is repeated R times. The shape of each log is shown in the table as
O :C :R. For example, for Log 1 we have that: O :C :R = 50, 000 : 1, 000 : 1, 000.

For each combination of property and log file, we experimented with different
number of bits used to represent observed file values in the traces: 21, 20, 16,



42 K. Havelund and D. Peled

Table 1. Evaluation. For each property, the performance against each log is shown.
For each log, its size in number of events, and number of files opened are shown.
Furthermore the pattern of the log is shown as three numbers O : C : R where O is
the number of events opened initially, C is the number of close events and new open
events in each iteration, and R indicates how many times the C pattern is repeated.
For each experiment is shown how many bits (followed by a ‘b’) per variable, how many
seconds (‘s’) the trace analysis took, and whether there was an out of memory (OOM)
or whether the presented data reclamation was invoked (dr).

.

Property Log 1 Log 2 Log 3 Log 4
————– ————– ————– ————–

2,052,003 events 3,007,003 events 2,400,009 events 2,000,004 events
1,051,000 files 1,504,000 files 1,200,006 files 1,000,001 files

50,000:1,000:1,000 1,000:500:3,000 6:5:200,000 1:1:1,000,000

CLOSE
21b : 10.2s
20b : 12.5s OOM

21b : 14.3s
20b : 12.5s OOM

21b : 10.6s
20b : 12.8s OOM

20b : 9.5s
2b : 0.6s OOM

CLOSEDR
20b : 13.3s dr
15b : 14.8s dr

21b : 17.0s
20b : 21.2s dr
10b : 10.6s dr

21b : 12.5s
20b : 14.0s dr
10b : 7.6s dr
3b : 5.4s dr

20b : 9.0s
2b : 4.7s dr

OPEN
21b : 15.2s
20b : 17.5s OOM

21b : 25.3s
20b : 18.9s OOM

21b : 17.1s
20b : 17.7s OOM

20b : 11.7s
2b : 0.6s OOM

OPENDR
20b : 15.2s dr
16b : 16.1s dr

20b : 27.4s dr
10b : 10.6s dr

20b : 13.8s dr
10b : 8.2s dr
3b : 5.5s dr

20b : 9.1s
2b : 5.6s dr

15, 10, 3, and 2 bits, corresponding to the ability to store respectively 2097151,
1048575, 65535, 32767, 1023, 7, and 3 different values for each variable (having
subtracted the 11 . . . 11 pattern reserved for representing “all other values”).
The following abbreviations are used: OOM = Out of Memory (the number
of bits allocated for a variable are not sufficient), and dr = data reclamation
according to the algorithm presented in this paper has occurred. Typically when
data reclamation occurs, approximately 1–1.5 million data values are reclaimed.

Table 1 demonstrates that properties Close and Open run out of memory
(bits) if the allocated number of bits is not large enough to capture all opened
files. For these properties, 21 bits are enough, while 20 bits are insufficient in
most cases. On the other hand, the properties CloseDR and OpenDR can be
monitored on all logs without OOM errors, by invoking the data reclamation,
and without substantial differences in elapsed trace analysis time. In fact, we
observe for these latter two properties, that as we reduce the number of bits,
and thereby force the data reclamation to occur more often, the lower are the
elapsed trace analysis times. As a side remark, for logs with an initially large
amount of file openings, specifically logs 1 and 2, a certain minimum amount
of bits are required to store these files. E.g. we cannot go below 15 bits for the
CloseDR property on log 1. In contrast, we can go down to 2 bits for log 4 for
the same property, even though logs 1 and 4 have approximately the same length



Efficient Runtime Verification of First-Order Temporal Properties 43

and the same number of files being opened. In summary, for certain data recla-
mation friendly properties, data reclamation can allow monitoring of traces that
would otherwise not be monitorable. In addition, data reclamation combined
with reducing the number of bits representing variables seems to reduce execu-
tion time, a surprisingly positive result. We had in fact expected the opposite
result.

It is well known that efficiency on BDD-based techniques are sensitive to the
ordering of variables in the BDDs. Currently, as already indicated, the variable
corresponding to the least significant bit always occurs first (at the top), and the
variable corresponding to the most significant bit appears last (at the bottom),
in the BDD. One may consider alternative orderings, either determined statically
from the formula or dynamically as monitoring progresses. We have not explored
such alternatives at the time of writing. Another factor potentially influencing
efficiency may be the structure of monitored data. Consider e.g. the monitoring of
data structures in a program, such as sets, lists, or, generally, objects in an object-
oriented programming language. It is here important to stress that the shape of
data monitored is not reflected in the BDDs themselves, but only concerns the
mapping from data to BDDs using a hash table, which indeed supports complex
data keys. However, as we have only experimented with offline log file analysis,
we have not explored this online monitoring problem.

Macros. A new addition to DejaVu is the possibility to define data parameter-
ized macros representing subformulas, which can be called in properties, without
having any performance consequences for the evaluation. Macros are expanded
at the call site. Macros can call macros in a nested manner, supporting a com-
positional way of building more complex properties. Figure 5 illustrates the use
of macros to define the properties from Fig. 4, and should be self explanatory.
Also, events can be declared up front in order to ensure that properties refer to
the correct events, and with the correct number of arguments (not shown here).

pred isOpen(f ) = ! close ( f ) S open(f)
pred isClosed ( f ) = !open(f) S close ( f )
pred wasOpened(f) = P open(f)

// A file can only be closed if has been opened:
prop close : Forall f . close ( f ) → wasOpened(f)
prop closeDR : Forall f . close ( f ) → @ isOpen(f )

// A file cannot be opened if it has already been opened:
prop open : Forall f . open(f) → @ ( isClosed ( f ) | ! wasOpened(f))
prop openDR : Forall f . @ isOpen(f ) → ! open(f)

Fig. 5. our evaluation properties using macros



44 K. Havelund and D. Peled

8 Related Work

There are several systems that allow monitoring temporal properties with data.
The systems closest to our presentation, in monitoring first-order temporal logic,
are MonPoly [8] and Ltl

FO [9]. As in the current work, MonPoly monitors
first-order temporal properties. In fact, it also has the additional capabilities
of asserting and checking properties that involve progress of time and a lim-
ited capability of reasoning about the future. The main difference between our
system and MonPoly is in the way in which data are represented and manip-
ulated. MonPoly exists in two versions. The first one models unbounded sets
of values using regular expressions (see, e.g., [22] for a simple representation
of sets of values). This version allows unrestricted complementation of sets of
data values. Another version of MonPoly, which is several orders of magnitude
faster according to [8], is based on storing finite sets of assignments, and apply-
ing database operators to these. In that implementation complementation, and
some of the uses of logical and modal operators is restricted, due to the explicit
finite set-representation used. This has as consequence that not all formulas are
monitorable, see [19] for details. The BDD representation in DejaVu provides
full expressiveness, allowing for any arbitrary combination of Boolean operators,
including negation, temporal operators, and quantifiers, and with a fully compo-
sitional interpretation of formulas. In [18] we compared DejaVu to this latter
version of MonPoly and showed performance advantages of DejaVu.

Ltl
FO [9] supports first-order future time LTL, where quantification is

restricted to those elements that appear in the current position of the trace.
The monitoring algorithm is based on spawning automata. Monitoring first-
order specifications has also been explored in the database community [12] in
the context of so-called temporal triggers, which are first-order temporal logic
specifications that are evaluated w.r.t. a sequence of database updates.

An important volume of work on data centric runtime verification is the set of
systems based on trace slicing. Trace slicing is based on the idea of mapping vari-
able bindings to propositional automata relevant for those particular bindings.
This results in very efficient monitoring algorithms, although with limitations
w.r.t. expressiveness. Systems based on trace slicing include TraceMatches [1],
Mop [26], and Qea [27]. Qea is an attempt to increase the expressiveness of
the trace slicing approach. It is based on automata, as is the Orhcids system
[15]. Other systems include BeepBeep [16] and TraceContract [6], which
are based on future time temporal logic using formula rewriting. Very different
kinds of specification formalisms can be found in systems such as Eagle [5],
Ruler [7], LogFire [17] and Lola [3]. The system Mmt [14] represents sets of
assignments as constraints solved with an SMT solver. An encoding of enumera-
tions of values as BDDs appears in [29], where BDDs are used to represent large
relations in order to efficiently perform program analysis expressed as Datalog
programs. However, that work does not deal with unbounded domains.

Concerning reclamation of data values no longer needed in a monitor we
are aware of the following alternative approaches. MonPoly is interesting since
it is part of the monitoring algorithm to get rid of such unnecessary values,



Efficient Runtime Verification of First-Order Temporal Properties 45

and as such data reclamation is not an orthogonal concept. This is possible
due to the explicit representation of sets of assignments. However, as already
mentioned, the explicit representation has as consequence that some formulas
are not monitorable. In Larva [13] it is up to the user to indicate that an
entire monitor can be garbage collected by using acceptance states: when the
monitor enters such an acceptance state it can be discarded, and released for
normal garbage collection. In systems such as Ruler [7], LogFire [17] and
TraceContract [6], monitor states get garbage collected the normal way when
data structures are no longer needed. The last variant occurs in Mop [26], where
monitored data values can be structured objects in the monitored program (such
as a set, a list, an iterator). When such a monitored object is no longer used in
the monitored program, a garbage collector would normally collect it. However,
if the monitor keeps a reference to it, this is not possible. To circumvent this,
Mop monitors use Java’s so-called weak references to refer to objects in the
monitored program. An object referenced only by weak references is considered
to be garbage by the garbage collector. Hence the object is garbage collected
when nothing or only monitors refer to it.

9 Conclusion

We described a BDD-based runtime verification algorithm for checking the exe-
cution of a system against a first-order past time temporal logic property. The
propositional version of such a logic is independent of the length of the prefix
seen so far. The first-order version may need to represent an amount of values
that can grow linearly with the number of data values observed so far. The chal-
lenge is to provide a compact representation that will grow slowly and can be
updated quickly with each incremental calculation that is performed per each
new monitored event, even for very long executions.

We used a BDD representation of sets of assignments for the variables that
appear in the monitored property. While the size of such BDDs can grow lin-
early with the number of represented values, it is often much more compact,
and the BDD functions of a standard BDD package are optimized for speed.
Our representation allows assigning a large number of bits for representing the
encoding of values, so that even extremely long executions can be monitorable.
However, a lower number of bits is still preferable to a larger number of bits. We
presented an algorithm and its implementation for dynamically reclaiming data
no longer used, as a function of all current subformula BDDs, representing sets of
assignments. That is, the specification is not statically analyzed to achieve this
reclamation. Experiments demonstrated that even frequent activation of data
reclamation is not necessarily costly, and in fact in combination with a lower
number of bits needed can reduce the trace analysis time compared to using
more bits and no data reclamation.

We also presented support for numerical relations between variables and
constants, and a new form of quantification over values seen in the trace. Future
work includes support for functions applied to data values seen in the trace, and



46 K. Havelund and D. Peled

real-time constraints. Other future work includes comparison with slicing-based
algorithms, as found in e.g. Mop [26] and Qea [27], which are very efficient,
however at the price of some limited expressiveness.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhotak,
O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching
with free variables to AspectJ. In: OOPSLA 2005, pp. 345–364. IEEE (2005)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

3. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: TIME 2005, pp. 166–174 (2005)

4. Apache Commons CSV parser. https://commons.apache.org/proper/commons-csv
5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-

tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

6. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 7

7. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol.
4839, pp. 111–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77395-5 10

8. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 45 (2015)

9. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 4

10. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

11. Cormen, Th.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company (1989)

12. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995)

13. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time Java
programs (tool paper), 7th IEEE International Conference on Software Engineering
and Formal Methods (SEFM), Hanoi, Vietnam, pp. 33–37. IEEE Computer Society
(2009)

14. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. J. Softw. Tools
Technol. Transf. 18(2), 205–225 (2016)

15. Goubault-Larrecq, J., Olivain, J.: A smell of ORCHIDS. In: Leucker, M. (ed.) RV
2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89247-2 1

16. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

17. Havelund, K.: Rule-based runtime verification revisited. J. Softw. Tools Technol.
Transf. 17(2), 143–170 (2015)

https://commons.apache.org/proper/commons-csv
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1


Efficient Runtime Verification of First-Order Temporal Properties 47

18. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with
BDDs. In: FMCAD 2017, pp. 116–123. IEEE (2017)

19. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
data. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75632-5 3

20. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

21. JavaBDD. http://javabdd.sourceforge.net
22. Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T.,

Sandholm, A.: Mona: monadic second-order logic in practice. In: Brinksma, E.,
Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

23. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assurance tool for
Java. In: Proceedings of the 1st International Workshop on Runtime Verification
(RV 2001). ENTCS, vol. 55(2). Elsevier (2001)

24. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977)

25. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83,
91–130 (1991)

26. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. J. Softw. Tools Technol. Transf. 14, 249–289 (2012)

27. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

28. Scala Parser Combinators. https://github.com/scala/scala-parser-combinators
29. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision

diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467 8

https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/3-540-46002-0_24
http://javabdd.sourceforge.net
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/978-3-662-46681-0_55
https://github.com/scala/scala-parser-combinators
https://doi.org/10.1007/11575467_8


Program Verification with Separation Logic

Radu Iosif(B)

CNRS/VERIMAG/Université Grenoble Alpes, Grenoble, France
Radu.Iosif@univ-grenoble-alpes.fr

Abstract. Separation Logic is a framework for the development of modular pro-
gram analyses for sequential, inter-procedural and concurrent programs. The first
part of the paper introduces Separation Logic first from a historical, then from a
program verification perspective. Because program verification eventually boils
down to deciding logical queries such as the validity of verification conditions,
the second part is dedicated to a survey of decision procedures for Separation
Logic, that stem from either SMT, proof theory or automata theory. Incidentally
we address issues related to decidability and computational complexity of such
problems, in order to expose certain sources of intractability.

1 How It All Started

Separation Logic [Rey02] is nowadays a major paradigm in designing scalable mod-
ular verification methods for programs with dynamic memory and destructive pointer
updates, which is something that most programs written using imperative languages
tend to use. The basic idea that enabled the success, both in academia and in industry, is
the embedding of a notion of resource within the syntax and proof system of the logic,
before it’s now widely accepted semantics was even defined.

Resources are understood as items, having finite volume, that can be split (sepa-
rated) among individuals. Since volumes are finite, splitting reduces the resources in a
measurable way and cannot be done ad infinitum. The story of how resources and sep-
aration ended up in logic can be traced back to Girard’s Linear Logic [Gir87], the first
one to restrict the proof rules of weakening and contraction in natural deduction:

Γ � ψ
Γ,ϕ � ψ (W )

Γ,ϕ,ϕ � ψ
Γ,ϕ � ψ (C)

With them, the sequents Γ,ϕ � ψ and Γ,ϕ,ϕ � ψ can be deduced one from another, but
without them, they become unrelated. Removing the (W) and (C) rules leads to two
distinct conjunction connectives, illustrated below by their introduction rules:

Γ � ϕ Γ � ψ
Γ � ϕ∧ψ (∧I) Γ � ϕ Δ � ψ

Γ,Δ � ϕ∗ψ (∗I)

While ∧ is the classical conjunction, for which (W) and (C) apply, ∗ is a new separating
conjunction, for which they don’t [OP99].
c© Springer International Publishing AG, part of Springer Nature 2018

M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 48–62, 2018.
https://doi.org/10.1007/978-3-319-94111-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_3&domain=pdf


Program Verification with Separation Logic 49

In natural deduction, conjunction and implication are intertwined, the following
introduction rule being regarded as the definition of the implication:

Γ,ϕ � ψ
Γ � ϕ → ψ (→ I)

The connection is given by the fact that the comma on a sequent’s antecedent is inter-
preted as conjunction. However, if now we have two conjunctions, we must distinguish
them in the antecedents, and moreover, we obtain two implications:

Γ;ϕ � ψ
Γ � ϕ → ψ

(→ I)
Γ,ϕ � ψ

Γ � ϕ −−∗ ψ
(−−∗ I)

We use semicolumn and comma for the classical and separating conjunctions, while
→ and −−∗ denote the classical and separating implications, respectively. Antecedents
are no more viewed as sets but as trees (bunches) with leaves labeled by propositions
and internal nodes labeled with semicolumns or commas. Furthermore, (−−∗ I) leads
to consumption of antecedent nodes and cannot be applied indefinitely. This is where
resources became part of the logic, before any semantics was attributed to it.

2 Heaps as Resources

Since the most expensive resource of a computer is the memory, it is only natural to
define the semantics of the logic (initially called BI, for Bunched Implications) with
memory as the resource. There are several memory models and the one on the lowest
level views memory as an array of bounded values indexed by addresses.

However, the model which became widespread is the one allowing to reason about
the shape (topology) of recursive data structures. In this model, the memory (heap) is
viewed as a graph, where nodes represent cells and edges represent pointers between
cells, and there is no comparison between cells, other than equality.

This new logic, called Separation Logic (SL), is equipped with equality and two
atomic propositions, emp for the empty heap and x �→ (y1, . . . ,yk) meaning that x is
the only allocated memory address and there are exactly k pointers from x to y1, . . . ,yk,
respectively. From now on, k is a strictly positive parameter of the logic and SLk denotes
the set of formulae generated by the grammar below:

ϕ := ⊥ | 	 | emp | x ≈ y | x �→ (y1, . . . ,yk) | ϕ∧ϕ | ¬ϕ | ϕ∗ϕ | ϕ −−∗ ϕ | ∃x . ϕ

SLk formulae are interpreted over SL-structures I = (U,s,h), where U is a countable
set, called the universe, the elements of which are called locations, s : Var ⇀ U is a
mapping of variables to locations, called a store and h : U ⇀fin U

k is a finite partial
mapping of locations to k-tuples of locations, called a heap. We denote by dom(h)
the domain of the heap h. A cell � ∈ U is allocated in I if � ∈ dom(h) and dangling
otherwise.



50 R. Iosif

The notion of separable resources is now embedded in the semantics of SL. Two
heaps h1 and h2 are disjoint if and only if dom(h1)∩dom(h2) = /0, in which case h1 �h2

denotes their union (� is undefined for non-disjoint heaps). A heap h is a subheap of
h′ if and only if h′ = h� h′′, for some heap h′′. The relation (U,s,h) |= ϕ is defined
inductively below:

(U,s,h) |= emp ⇔ h= /0
(U,s,h) |= x �→ (y1, . . . ,yk) ⇔ h= {〈s(x),(s(y1), . . . ,s(yk))〉}
(U,s,h) |= ϕ1 ∗ϕ2 ⇔ there exist disjoint heaps h1,h2 such that h= h1 �h2

and (U,s,hi) |= ϕi, for i= 1,2
(U,s,h) |= ϕ1 −−∗ ϕ2 ⇔ for all heapsh′ disjoint fromh such that (U,s,h′) |= ϕ1,

we have (U,s,h′ �h) |= ϕ2

The semantics of equality, boolean and first-order connectives is the usual one and thus
omitted. The question is now what can be expressed in SL and what kind of reasoning1

could be carried out?
First, one defines a single (finite) heap structure up to equality on dangling cells.

This is done considering the following fragment of symbolic heaps:

Π := x ≈ y | x �= y | Π1 ∧Π2

Σ := emp | x �→ (y1, . . . ,yk) | Σ1 ∗Σ2

The Π formulae are called pure as they do not depend on the heap. The Σ formulae are
called spatial. A symbolic heap is a conjunction Σ∧Π, defining a finite set of heaps.

For instance, x �→ (y1,y2)∗y1 �→ (x,y2)∧y1 �= y2 defines cyclic heaps of length two,
in which x and y1 are distinct, x points to y1, y1 points to x and both point to y2. Further,
y2 is distinct from y1, but could be aliased with x. Observe that x �→ (y1,y2) ∗ y1 �→
(x,y2)∧ x ≈ y1 is unsatisfiable, because x �→ (y1,y2) and y1 �→ (x,y2) define separated
singleton heaps, in which x ≈ y1 is not possible.

However, being able to define just bounded heaps is not satisfactory, because one
needs to represent potentially infinite sets of structures of unbounded size, such as the
ones generated during the execution of a program. Since most imperative programmers
are used to working with recursive data structures, a natural requirement is using SL to
define the usual recursive datatypes, such as singly- and doubly-linked lists, trees, etc.
It turns out that this requires inductive definitions. For instance, the following inductive
definitions describe an acyclic and a possibly cyclic list segment, respectively:

̂ls(x,y) ← emp∧ x ≈ y ∨ ¬(x ≈ y)∧∃z . x �→ z∗ ̂ls(z,y) acyclic list segment fromx to y
ls(x,y) ← emp∧ x ≈ y ∨ ∃u . x �→ u∗ ls(u,y) list segment fromx to y

Intuitively, an acyclic list segment is either empty, in which case the head and the
tail coincide [emp∧ x ≈ y], or contains at least one element which is disjoint from the

1 We use the term “reasoning” in general, not necessarily push-button automated decision.



Program Verification with Separation Logic 51

rest of the list segment. Observe that x �→ z and ̂ls(z,y) hold over disjoint parts of the
heap, which ensures that the definition unfolds producing distinct cells. The constraint
¬(x≈ y), in the inductive definition of ̂ls, captures the fact that the tail of the list segment
is distinct from every allocated cell in the list segment, which ensures the acyclicity
condition. Since this constraint is omitted from the definition of the second (possibly
cyclic) list segment ls(x,y), its tail y is allowed to point inside the set of allocated cells.

As usual, the semantics of inductive definitions is given by the least fixed point of
a monotone function between sets of finite SL-structures. To avoid clutter, we omit this
definition, but point out that the reasons why symbolic heaps define monotone functions
are that (i) ∗’s do not occur negated, and (ii) −−∗’s are not used.

In fact, one may wonder, at this point, why only ∗’s are used for specification of
data structures and what is the rôle of −−∗ in reasoning about programs? The answer is
given in the next section.

3 Program Verification

Program verification means providing a proof for the following problem: given a pro-
gram P and a set of states Ψ, is there an execution of P ending in a state from Ψ? More
concretely, Ψ can be a set of “bad” states in which the program ends after attempting to
dereference an unallocated pointer variable, or after leaking memory. A program proof
consist in annotating the program with assertions that (i) must hold each time the con-
trol reaches an assertion site, such that (ii) the set Ψ is excluded from the reachable
states of P.

Ensuring the point (i) requires proving the validity of a certain number of Hoare
triples of the form {φ} C {ψ}, each of which amounts to proving the validity of an
entailment φ ⇒ p̃re(C,ψ), or equivalently, ˜post(C,φ) ⇒ ψ, where p̃re and ˜post are
the weakest precondition and the strongest postcondition predicate transformers. Such
entailments are called verification conditions.

In the seminal papers of Ishtiaq and O’Hearn [IO01] and Reynolds [Rey02], SL was
assigned the purpose of an assertion logic in a Hoare-like logic used for writing correct-
ness proofs of pointer-manipulating programs. This turn from proof theory [OP99] to
program proofs removes a long-standing thorn from the side of Hoare logicians, namely
that the substitution-based assignment rule {φ[E/x]} x= E {φ} [Hoa69] is no longer
valid in the presence of pointers and aliasing.

The other problems, originally identified in the seminal works of Floyd [Flo67] and
Hoare [Hoa69] are how to accomodate program proofs with procedure calls and concur-
rency. Surprisingly, the ∗ connective provides very elegant solutions to these problems
as well, enabling the effective transfer of this theory from academia to industry.

In general, writing Hoare-style proofs requires lots of human insight, essentially
for (i) infering appropriate loop invariants, and (ii) solving the verification condi-
tions obtained from the pre- or postcondition calculus that captures the semantics of
a straight-line program. With SL as an assertion language, automation is possible but
currently at (what we believe are) the early stages.

For instance, the problem (i) can be tackled using abstract interpretation [CC79],
but the (logical) abstract domains currently used are based on the hardcoded ls(x,y)



52 R. Iosif

predicate, making use of specific properties of heaps with a single pointer field, that are
composed of lists, and which can be captured by finitary abstractions [BBH+06]. An
extension to nested lists (doubly-linked lists of . . . of doubly-linked lists) has been since
developed in the SPACEINVADER tool [BCC+07] and later shipped to industry in the
INFER tool [CD11].

Alternatives to invariant inference using fixed point computations are also possible.
These methods use the expressive power of the higher-order inductive definitions of SL
and attempt to define inductive predicates that precisely define loop invariants, using
only a single symbolic execution pass through the loop [LGQC14]. The difficulty of
the verification problem is then shipped to the decision procedure that solves the verifi-
cation condition thus obtained (ii). This is probably the real problem standing in front of
the researchers that aim at developing a fully push-button program verification method
for real-life programs, based on SL. We shall survey this issue at large in Sect. 4

3.1 While Programs

Perhaps the longest lasting impression after reading Ishtiaq and O’Hearn’s paper [IO01]
is that a sound and complete weakest precondition calculus for programs with pointers
and destructive updates has finally been found. But let us first recall the problem with
Hoare’s substitution-based assignment rule. Consider the triple

{(y.data= 2∧ x= y)[1/x.data]} x.data := 1 {y.data= 2∧ x= y}
which is the same as {y.data= 2∧ x= y} x.data := 1 {y.data= 2∧ x= y} because
the substitution has no effect on the precondition. The triple is clearly invalid, because
the assignment x.data := 1 makes the assertion x.data= 2 false.

The solution provided by SL is of great simplicity and elegance. Since pointer
updates alter a small part of the heap, we can “remove” this part using ∗ and “replace” it
with an updated heap, using −−∗, while requiring that the postcondition hold afterwards:

{∃x∃y . u �→ (x,y)∗ ((u �→ (v,y))−−∗ φ)} u.1 := v {φ}

where u.1 := v denotes the assignment of the first selector of the cell referred to by u to
v. We have a similar weakest precondition for memory allocation, where we adopt the
more structured object-oriented constructor cons(v,w) instead of C’s malloc(n):

{∀x. (x �→ (v,w))−−∗ φ[x/u]} u := cons(v,w) {φ}

Observe that this calculus produces preconditions that mix ∗ and −−∗ with quanti-
fiers. Very early, this hindered the automation of program proofs, because at the time,
there was no “automatic theorem prover which can deal with the form of these asser-
tions (which use quantification and the separating implication)” [BCO05]. This issue,
together with a rather coarse undecidability result for quantified SL formulae [CYO01]
made researchers almost entirely forget about the existence of −−∗ and of the weakest
precondition calculus, for more than a decade. During this time, program verifiers used



Program Verification with Separation Logic 53

(and still do) incomplete, overapproximating, postcondition calculi on (inductive def-
initions on top of) ∗-based symbolic heaps. In the light of recent results concerning
decision procedures for the base assertion SL language, we believe this difficulties can
be overcome. A detailed presentation of these results is given in Sect. 4.1.

Before going further, an interesting observation can be made. The weakest pre-
condition of a straight-line program, in which more than one such statement occurs
in a sequence, would be a formula in which first-order quantifiers occur within the
scope of a separating connective. This could potentially be problematic for automated
reasoning because, unlike first order logic, SL formulae do not have a prenex form:
φ∗∀x . ψ(x) �≡ ∀x . φ∗ψ(x) and φ −−∗ ∃x . ψ(x) �≡ ∃x . φ −−∗ ψ(x). However, the follow-
ing notion of precise formulae comes to rescue in this case [OYR04]:

Definition 1. A SL formula φ is precise if and only if, for all SL-structures I = (U,s,h)
there exists at most one subheap h′ of h such that (U,s,h′) |= φ.

If φ is precise, we recover the equivalences φ ∗ ∀x . ψ(x) ≡ ∀x . φ ∗ ψ(x) and
φ −−∗ ∃x . ψ(x) ≡ ∃x . φ −−∗ ψ(x). Moreover, since formulae such as x �→ (y,z) are pre-
cise, one can hoist the first-order quantifiers and write any precondition in prenex form.
As we shall see (Sect. 4.1) prenexisation of formulae is an important step towards the
decidability of the base assertion language.

3.2 Local Reasoning and Modularity

Being able to provide easy-to-write specifications of recursive data structures (lists,
trees, etc.) as well as concise weakest preconditions of pointer updates, were the first
salient features of SL. With separating conjunction ∗ as the main connective, a principle
of local reasoning has emerged:

To understand how a program works, it should be possible for reasoning and
specification to be confined to the cells that the program actually accesses. The
value of any other cell will automatically remain unchanged [ORY01].

The rôle of the separating conjunction in local reasoning requires little explanation. If
a set of program states is specified as ϕ ∗ ψ, and the update occurs only in the ϕ part,
then we are sure that ψ is not affected by the update and can be copied from pre- to
postcondition as it is. This is formalized by the following frame rule:

{ϕ} P {φ}
{ϕ∗ψ} P {φ∗ψ} modifies(P)∩ var(ψ) = /0

where modifies(P) is the set of variables whose value is changed by the program P,
defined recursively on the syntactic structure of P.

The frame rule allows to break a program proof into small pieces that can be speci-
fied locally. However, locality should not be confounded with modularity, which is the
key to scalability of program verification technique. Indeed, most large, industrial-size
programs are built from a large number of small components, such as functions (proce-
dures) or threads, in a concurrent setting.



54 R. Iosif

By a modular program verification we understand a method capable of inferring
specifications of any given program component in isolation, independently on the con-
text in which the other components interact with the component’s environment. Then
the local specifications are combined into a global one, using the frame rule or a variant
thereof. Observe that this is not to be mixed up with program verification algorithms
that store and reuse analysis results.

An example of modular program verification with SL is the compositional shape
analysis based on the inference of footprints [CDOY07]. These are summaries specified
as pairs of pre-/postconditions, that guarantee absence of implicit memory faults, such
as null pointer dereferences or memory leaks. The important point is that footprints can
be inferred directly from the program, without user-supplied pre- or postconditions.

Combining component footprints into a global verification condition is the other
ingredient of a modular verification technique. Since footprints are generated with-
out knowledge of their context, sometimes their combination requires some “adjust-
ment”. To understand this point, consider an interprocedural analysis in which a func-
tion foo(x,y) is invoked at a call site. The summary of the function, inferred by foot-
print analysis, is say ls(x,z)∗ ls(y,nil), using the previously defined inductive predicates
(Sect. 2). Informally, this sais that there is a list segment from x to z and disjointly a nil-
ending list starting with y. Assume further that x �→ z is the assertion at the call site.
Clearly x �→ z does not entail ls(x,z)∗ ls(y,nil), in which case a classical interprocedu-
ral analysis would give up.

However, an SL-based interprocedural analysis uses the frame rule for function
calls and may reason in the following way: find a frame φ such that x �→ z ∗ φ ⇒
ls(x,z)∗ ls(y,nil). In this case, a possible answer (frame) is φ = ls(y,nil). If the cur-
rent precondition of the caller of foo(x,y) is ϕ, we percolate the frame all the way up to
the caller and modify its precondition to ϕ∗φ, as local reasoning allows us to do. This
method is implemented by the INFER analyzer and is used, on an industrial scale, at
Facebook [CD11].

This style of modular verification introduces abductive reasoning as a way to per-
form frame inference. In classical logic, the abduction problem is: given an assumption
φ and a goal ψ, find a missing assumption X such that φ∧X ⇒ ψ. Typically, we aim at
finding the weakest such assumption, which belongs, moreover, to a given language (a
disjunction of conjunctive assertions pertaining to a restricted set). If we drop the latter
requirement, about the allowed form of X , we obtain the weakest solution X = φ → ψ.

Abductive reasoning in SL follows a very similar pattern. An abduction problem
is: given assertions φ and ψ, find an assertion X such that φ ∗X ⇒ ψ. Similar to the
classical case, the weakest solution, in this case is . . . X = φ −−∗ ψ! So the long-forgotten
magic wand comes back to program analysis, this time by way of abduction. However,
since decision procedures for SL still have a hard time in dealing with −−∗, they use
underapproximations of the weakest solutions, that are mostly good enough for the
purposes of the proof [CDOY11].

4 Decision Procedures

As mentioned in the introduction of Sect. 3, the job of a verifier is turning a program ver-
ification problem into a (finite) number of logical entailments of the form φ ⇒ ψ, called



Program Verification with Separation Logic 55

verification conditions. In this section, we survey how one can establish the validity of
such entailments, provided that φ and ψ are SL formulae.

If the fragment of SL to which φ and ψ belong is closed under negation, the entail-
ment φ ⇒ ψ is valid if and only if the formula φ∧¬ψ is unsatisfiable. Usually negation
is part of basic SL assertions, that do not use inductive definitions. These are mostly
discussed in Sect. 4.1. In this case, we reduce the entailment to a satisfiability problem,
that ultimately, can be solved using SMT technology.

If the logic in which φ and ψ are written does not have negation, which is typically
the case of inductive definitions built on top of symbolic heaps, we deal with entailments
directly, either by proof-theoretic (we search for a sequent calculus proof of the entail-
ment) or automata-theoretic (we reduce to the inclusion between the languages of two
automata) arguments. The pros and cons of each approach are discussed in Sect. 4.2.

4.1 Basic Logic

Let us consider the language SLk given in Sect. 2. For k ≥ 2, undecidability of this
logic occurs even if separating connectives are almost not used at all. If one encodes
an uninterpreted binary relation R(x,y) as ∃z . z �→ (x,y) ∗	, undecidability occurs as
a simple consequence of Trakhtenbrot’s result for finite satisfiability of first-order logic
[BGG97]. If k = 1, the logic is still undecidable, but the fragment of SL1 without −−∗
becomes decidable, with a nonelementary recursive complexity lower bound [BDL12].

On the other hand, the quantifier-free fragment of SLk is PSPACE-complete, for
any k ≥ 1 [CYO01]. The crux of this proof is a small model property of quantifier-
free SLk. If a formula φ in this language has a model (U,s,h) then it has a model where
||h||=O(size(φ)). This also provides effective algorithms for the satisfiability problem.
It is possible, for instance, to encode the quantifier-free SLk formula in first-order logic
with bitvectors and use existing SMT technology for the latter [CGH05], or directly
using a DPLL(T )-style algorithm that attempts to build a model of bounded size and
learns from backtracking [RISK16].

The quantifier-free fragment of SLk is also important in understanding the expres-
siveness of SL, relative to that of classical first- and second-order logics. This point
addresses a more fundamental question, relative to the presence of the separating con-
nectives ∗ and −−∗: is it possible to reason about resources and separation in first-order
logic, or does one need quantified relations, as the heap semantics of SLk suggests?

It turns out that, surprisingly, the entire prenex fragment of SLk can be embedded
into uninterpreted first-order logic. This is the set of formulae Q1x1 . . .Qnxn . φ, where
φ is quantifier-free. First, we consider a small set of patterns, called test formulae, that
use ∗ and −−∗ in very restricted ways:

Definition 2. The following patterns are called test formulae:

x ↪→ (y1, . . . ,yk)
def= x �→ (y1, . . . ,yk)∗	 |U | ≥ n

def= ¬(	 −−∗ ¬(|h| ≥ n)), n ∈ N

alloc(x) def= x �→ (x, . . . ,x)
︸ ︷︷ ︸

k times

−−∗ ⊥ |h| ≥ |U |−n
def= |h| ≥ n+1 −−∗ ⊥,n ∈ N

|h| ≥ n
def=

⎧

⎨

⎩

|h| ≥ n−1∗¬emp, ifn > 0
	, ifn= 0
⊥, ifn= ∞



56 R. Iosif

and x ≈ y, where x,y ∈ Var, y ∈ Vark and n ∈ N∞ is a positive integer or ∞.

Observe first that −−∗ is instrumental in defining allocation without the use of existential

quantifiers, as in alloc(x) def= ∃y1 . . .∃yn . x �→ (y1, . . . ,yk) ∗ 	. Second, it can express
cardinality constraints relative to the size of the universe |U | ≥ n and |h| ≥ |U | − n,
assuming that it is finite.

In contrast with the majority of the literature on Separation Logic, here the universe
of available memory locations (besides the ones occurring in the heap, which is finite)
is not automatically assumed to be infinite. In particular, the finite universe hypothesis
is useful when dealing with bounded memory issues, for instance checking that the
execution of the program satisfies its postcondition, provided that there are sufficiently
many available memory cells. Having different interpretations of the universe is also
motivated by a recent integration of SLk within the DPLL(T )-based SMT solver CVC4
[RISK16,RIS17], in which the SL theory is parameterized by the theory of locations,
just like the theories of arrays and sets are parameterized by theories of values.

A first nice result is that any quantifier-free SLk formula is equivalent to a boolean
combination of test formulae [EIP18b]. Then we can define an equivalence-preserving
translation of the quantifier-free fragment of SLk into FO. Let d be a unary predicate
symbol and let fi (for i= 1, . . . ,k) be unary function symbols. We define the following
transformation from quantified boolean combinations of test formulae into first order
formulae:

Θ(x ≈ y) def= x ≈ y

Θ(x ↪→ (y1, . . . ,yk))
def= d(x)∧∧k

i=1 yi ≈ fi(x)
Θ(alloc(x)) def= d(x)

Θ(¬φ) def= ¬Θ(φ)
Θ(φ1 •φ2)

def= Θ(φ1)•Θ(φ2) if • ∈ {∧,∨,→,↔}
Θ(Qx . φ) def= Qx . Θ(φ) if Q ∈ {∃,∀}

Θ(|U | ≥ n) def= ∃x1, . . . ,xn . distinct(x1, . . . ,xn)
Θ(|h| ≥ n) def= ∃x1, . . . ,xn . distinct(x1, . . . ,xn)∧∧n

i=1 d(xi)
Θ(|h| ≥ |U |−n) def= ∃x1, . . . ,xn∀y .

∧n
i=1 y �≈ xi → d(y)

As a result of this translation, any formula of the prenex fragment of SLk is equiv-
alent to a first-order formula that uses one monadic predicate and k monadic function
symbols. Thus, we obtain the decidability of the prenex fragment of SL1 as a conse-
quence of the decidability of first-order logic with one monadic function symbol and
any number of monadic predicate symbols [BGG97]. Moreover, for k ≥ 2, undecid-
ability occurs even for the quantifier prefix of the form ∃∗∀∗, if universally quantified
variables occur under the scope of −−∗. However, if this is not the case, ∃∗∀∗ fragment
of SLk becomes PSPACE-complete [EIP18b].

Interestingly, if k= 1 again, the ∃∗∀∗ fragment is PSPACE-complete independently
of how −−∗ is used [EIP18a]. This result points out the difference between the prenex
fragment of SL1 and SL1 with unrestricted use of quantifiers, which is undecidable: in
fact, the full second-order logic can be embedded within it [BDL12]. For program verifi-
cation, the good news is that, as discussed in Sect. 3, the prenex fragment is closed under



Program Verification with Separation Logic 57

weakest preconditions, making it possible to verify straight-line programs obtained by
loop unfolding, à la Bounded Model Checking.

4.2 Inductive Definitions

Let us now turn to the definition of recursive data structures using inductive definitions
in SLk. As a first remark, the base assertion language is usually that of symbolic heaps
Σ∧Π, where Σ is either emp or a finite ∗-conjunction and Π is either 	 or a nonempty
conjunction of equalities and disequalities between variables. A system of inductive
definitions is a set of rules of the form p(x0)← Σ∧Π∗ p1(x1)∗ . . . pn(xn), where w.l.o.g.
x0, . . . ,xn are pairwise disjoint sets of variables and var(Σ∧Π)⊆ ⋃n

i=0 xi. The examples
below show the inductive definitions of a doubly-linked list dll(hd,p, tl,n) and of a tree
with linked leaves tll(root, ll, lr), respectively:

dll(hd,p, tl,n) ← hd �→ (n,p)∧hd= tl
dll(hd,p, tl,n) ← ∃x . hd �→ (x,p)∗dll(x,hd, tl,n)

...p ltdh n

tll(root, ll, lr) ← root �→ (nil,nil, lr)∧ root= ll
tll(root, ll, lr) ← ∃l∃r∃z . root �→ (l, r,nil)∗ tll(l, ll,z)∗ tll(r,z, lr)

root nil

nil nil

rlll

A solution of an inductive predicate system is a mapping of predicates to sets of
SL-structures and the semantics of a predicate p, denoted [[p]] corresponds to the set
of structures assigned to it by the least solution of the system. The entailment problem
is given a system and two predicates p and q, does [[p]] ⊆ [[q]] hold? In general, this
problem is undecidable [AGH+14,IRV14].

Automata-Based Techniques. As usual, we bypass undecidability by defining a num-
ber of easy-to-check restrictions on the system of predicates:

– Progress: each rule allocates exactly one node, called the root of the rule. This con-
dition makes our technical life easier, and can be lifted in many cases — rules with
more than one allocation can be split by introducing new predicates.

– Connectivity: for each inductive rule of the form Σ ∗ p1(x1)∗ . . .∗ pn(xn)∧ Π, there
exists at least one edge between the root of the rule and the root of each rule of pi,
for all i ∈ [1,n]. This restriction prevents the encoding of context-free languages in
SL, which requires disconnected rules, leading to undecidability.



58 R. Iosif

– Establishment: all existentially quantified variables in a recursive rule are eventu-
ally allocated. This restriction is not required for the satisfiability problem, but it is
essential for entailment.

The fragment of SL obtained by applying the above, rather natural, restrictions, is
denoted SLbtw in the following. The proof of decidability for entailments in SLbtw relies
on three main ingredients:

1. for each predicate p in the system, all heaps from the least solution [[p]] are repre-
sented by graphs, whose treewidth is bounded by a linear function in the size of the
system.

2. we define, for each predicate p, a formula Φp in monadic second-order logic (MSO)
of graphs whose models are exactly the graphs encoding the heaps from the least
solution [[p]].

3. the entailment problem [[p]]⊆ [[q]] is reduced to the satisfiability of an MSO formula
Φp ∧¬Φq. Since all models of p (thus of Φp) have bounded treewidth, this problem
is decidable, by Courcelle’s Theorem [Cou90].

This approach suggests that a direct encoding of the least solution of a system of induc-
tive definitions is possible, using tree automata. That is, for each predicate p, we define
a tree automaton Ap that recognizes the set of structures from [[p]], and the entailment
problem [[p]] ⊆ [[q]] reduces to a language inclusion problem between tree automata
L(Ap) ⊆ L(Aq).

However, there are instances of the entailment problem that cannot be directly
solved by language inclusion between tree automata, due to the following polymor-
phic representation problem: the same set of states can be defined by two different
inductive predicates, and the tree automata mirroring their definitions will report that
the entailment does not hold. For example, doubly-linked lists can also be defined in
reverse:

dllrev(hd,n, tl,p) ≡ hd �→ (p,n)∧hd= tl ∨ ∃x . tl �→ (x,n)∗dllrev(hd, tl,x,p)

A partial solution is to build tree automata only for a restriction of SLbtw, called
the local fragment (SLloc). The structures that are models of predicates defined in this
fragment have the following nice property: whenever the same structure is encoded
by two different spanning trees, the two trees are related by a rotation relation, which
changes the root to an arbitrary internal node, and the orientation of the edges from
the path to the root to that node. We can thus check [[p]] ⊆ [[q]] in this fragment by
checking the inclusion between Ap and Arot

q , where Arot
q is automaton recognizing the

closure of the language of Aq under rotation. Moreover, since the rotation closure of a
tree automaton is possible in polynomial (quadratic) time, the entailment problem for
SLloc can be shown to be EXPTIME-complete [IRV14]. It is still an open question,
whether this tight complexity bound applies to the entire SLbtw logic.

Proof-Based Techniques. An experimental evaluation of SL inductive entailment
solvers, carried out during the SL-COMP 2014 solver competition [SC14], shows the
strengths and weaknesses of automata-based versus proof-based solvers. On one hand,



Program Verification with Separation Logic 59

automata-based solvers can cope with polymorphic representations in a much better
way than proof-based solvers, which require complex cut rules, whose completeness is
far from being understood [CJT15].

On the other hand, proof-based solvers are more flexible in dealing with extensions
of the base theory (symbolic heaps), such as arbitrary equalities and disequalities or
even (limited forms of) data constraints. Moreover, they can easily interact with SMT
solvers and discharge proof obligations belonging to the base logic. However, as the
example below shows, this requires quantifiers.

Consider a fragment of the inductive proof showing that any acyclic list segment is
also a list segment, given below:

̂ls(z,y) � ls(z,y)

¬(x ≈ y)∧ x �→ z∗ ̂ls(z,y) � ∃u . x �→ u∗ ls(u,y)∨ emp∧ x ≈ y

¬(x ≈ y)∧ x �→ z |= ∃u . x �→ u
by instantiation u ← z

̂ls(x,y) � ls(x,y)

The bottom inference rule introduces one of the two cases produced by unfolding the
inductive definitions on both sides of the sequent2. The second inference rule is a reduc-
tion of the sequent obtained by unfolding, to a sequent matching the initial one (by
renaming z to x), and allows to close this branch of the proof by an inductive argument,
based on the principle of infinite descent [BDP11].

The simplification applied by the second inference above relies on the validity of the
entailment ¬(x ≈ y)∧x �→ z |= ∃u . x �→ u, which reduces to the (un)satisfiability of the
formula ¬(x≈ y)∧x �→ z∧∀u . ¬x �→ u. The latter falls into the prenex fragment, defined
by the ∃∗∀∗ quantifier prefix, and can be proved unsatisfiable using the instantiation of
the universally quantified variable u with the existentially quantified variable z (or a
corresponding Skolem constant). In other words, this formula is unsatisfiable because
the universal quantified subformula asks that no memory cell is pointed to by x, which
is contradicted by x �→ z. The instantiation of u that violates the universal condition is
u ← z, which is carried over in the rest of the proof.

This example shows the need for a tight interaction between the decision procedures
for the (quantified) base logic SLk and the entailment provers for systems of inductive
definitions built on top of it. An implementation of an inductive prover that uses SMT
technology to simplify sequents is INDUCTOR [Ser17], which uses CVC4 [BCD+11]
for the reduction step. Just like the CYCLIST prover [BGP12] before, INDUCTOR is
based on the principle of infinite descent [BDP11].

Future plans for INDUCTOR involve adding cut rules that would allow dealing with
polymorphic representations of recursive data structures in a proof-theoretic fashion, as
well as dealing with theories of the data within memory cells.

5 Conclusions

This paper surveys Separation Logic, a logical framework used to design modular and
local analyses for programs that manipulate pointers and dynamically allocated mem-

2 The second case emp∧ x ≈ y � ∃u . x �→ u ∗ ls(u,y)∨ emp∧ x ≈ y is trivial and omitted for
clarity.



60 R. Iosif

ory cells. The essence of the logic is a notion of separable resource, which is embedded
in the syntax and the proof system of the logic, before its nowadays widely accepted
semantics was adopted. Program verifiers based on Separation Logic use local reason-
ing to model the updates in a compact way, by distinguishing the parts of the heap
modified from the ones that are unchanged. The price to be paid for this expressivity
is the difficulty of providing push-button decision procedures for it. However, recent
advances show precisely what are the theoretical limits of decidability and how one can
accomodate interesting program verification problems within them.

References

[AGH+14] Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 27

[BBH+06] Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Pro-
grams with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006). https://doi.org/10.1007/
11817963 47

[BCC+07] Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-73368-3 22

[BCD+11] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

[BCO05] Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575467 5

[BDL12] Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf. Comput. 211, 106–
137 (2012)

[BDP11] Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22438-6 12

[BGG97] Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997)

[BGP12] Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In:
Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2 25

[CC79] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL,
pp. 269–282. ACM (1979)

[CD11] Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5 33

https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.1007/11817963_47
https://doi.org/10.1007/11817963_47
https://doi.org/10.1007/978-3-540-73368-3_22
https://doi.org/10.1007/978-3-540-73368-3_22
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33


Program Verification with Separation Logic 61

[CDOY07] Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint analysis: a shape
analysis that discovers preconditions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74061-2 25

[CDOY11] Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis
by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

[CGH05] Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic. In:
Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 395–409. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31982-5 25

[CJT15] Chu, D.-H., Jaffar, J., Trinh, M.-T.: Automatic induction proofs of data-structures
in imperative programs. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR, USA, 15–17
June 2015, pp. 457–466. ACM, New York (2015)

[Cou90] Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput. 85(1), 12–75 (1990)

[CYO01] Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a
spatial assertion language for data structures. In: Hariharan, R., Vinay, V., Mukund,
M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45294-X 10

[EIP18a] Echenim, M., Iosif, R., Peltier, N.: The complexity of prenex separation logic with
one selector. CoRR, abs/1804.03556 (2018)

[EIP18b] Echenim, M., Iosif, R., Peltier, N.: On the expressive completeness of bernays-
schönfinkel-ramsey separation logic. CoRR, abs/1802.00195 (2018)

[Flo67] Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in
Applied Mathematics, vol. 19, pp. 19–32 (1967)

[Gir87] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
[Hoa69] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576–580 (1969)
[IO01] Ishtiaq, S.S., O’Hearn, P.W.: Bi as an assertion language for mutable data structures.

In: ACM SIGPLAN Notices, vol. 36, pp. 14–26 (2001)
[IRV14] Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation

logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 15

[LGQC14] Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 4

[OP99] O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Log. 5(2),
215–244 (1999)

[ORY01] O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

[OYR04] O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. SIG-
PLAN Not. 39(1), 268–280 (2004)

[Rey02] Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS
2002, pp. 55–74. IEEE Computer Society (2002)

[RIS17] Reynolds, A., Iosif, R., Serban, C.: Reasoning in the bernays-schönfinkel-ramsey
fragment of separation logic. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017.
LNCS, vol. 10145, pp. 462–482. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52234-0 25

https://doi.org/10.1007/978-3-540-74061-2_25
https://doi.org/10.1007/978-3-540-74061-2_25
https://doi.org/10.1007/978-3-540-31982-5_25
https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-319-52234-0_25
https://doi.org/10.1007/978-3-319-52234-0_25


62 R. Iosif

[RISK16] Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separa-
tion logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 244–261. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 16

[SC14] Sighireanu, M., Cok, D.: Report on sl-comp 2014. J. Satisfiability Boolean Model.
Comput. 1 (2014)

[Ser17] Serban, C.: Inductor: an entailment checker for inductive systems (2017). https://
github.com/cristina-serban/inductor

https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-319-46520-3_16
https://github.com/cristina-serban/inductor
https://github.com/cristina-serban/inductor


Regular Papers



Petri Net Reductions for Counting
Markings

Bernard Berthomieu, Didier Le Botlan(B), and Silvano Dal Zilio

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
{bernard,dlebotla,dalzilio}@laas.fr

Abstract. We propose a method to count the number of reachable
markings of a Petri net without having to enumerate these first. The
method relies on a structural reduction system that reduces the number
of places and transitions of the net in such a way that we can faith-
fully compute the number of reachable markings of the original net from
the reduced net and the reduction history. The method has been imple-
mented and computing experiments show that reductions are effective
on a large benchmark of models.

1 Introduction

Structural reductions are an important class of optimization techniques for the
analysis of Petri Nets (PN for short). The idea is to use a series of reduction rules
that decrease the size of a net while preserving some given behavioral properties.
These reductions are then applied iteratively until an irreducible PN is reached
on which the desired properties are checked directly. This approach, pioneered
by Berthelot [2,3], has been used to reduce the complexity of several problems,
such as checking for boundedness of a net, for liveness analysis, for checking
reachability properties [10] or for LTL model checking [5].

In this paper, we enrich the notion of structural reduction by keeping track of
the relation between the markings of an (initial) Petri net, N1, and its reduced
(final) version, N2. We use reductions of the form (N1, Q,N2), where Q is a
system of linear equations that relates the (markings of) places in N1 and N2.
The reductions are tailored so that the state space of N1 (its set of reachable
markings) can be reconstructed from that of N2 and equations Q. In particular,
when N1 is totally reduced (N2 is then the empty net), the state space of N1

corresponds with the set of non-negative integer solutions to Q. Then Q acts as
a symbolic representation for sets of markings, in much the same way one can
use decision diagrams or SAT-based techniques.

In practice, reductions often lead to an irreducible non-empty residual net.
In this case, we can still benefit from an hybrid representation combining the
state space of the residual net (expressed, for instance, using a decision diagram)
and the symbolic representation provided by linear equations. This approach can
provide a very compact representation of the state space of a net. Therefore it
is suitable for checking reachability properties, that is whether some reachable
c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 65–84, 2018.
https://doi.org/10.1007/978-3-319-94111-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_4&domain=pdf


66 B. Berthomieu et al.

marking satisfies a given set of linear constraints. However, checking reachability
properties could benefit of more aggressive reductions since it is not generally
required there that the full state space is available (see e.g. [10]). At the
opposite, we focus on computing a (symbolic) representation of the full state
space. A positive outcome of our choice is that we can derive a method to count
the number of reachable markings of a net without having to enumerate them
first.

Computing the cardinality of the reachability set has several applications.
For instance, it is a straightforward way to assess the correctness of tools—all
tools should obviously find the same results on the same models. This is the
reason why this problem was chosen as the first category of examination in
the recurring Model-Checking Contest (MCC) [6,7]. We have implemented our
approach in the framework of the TINA toolbox [4] and used it on the large set of
examples provided by the MCC (see Sect. 7). Our results are very encouraging,
with numerous instances of models where our performances are several orders of
magnitude better than what is observed with the best available tools.

Outline. We first define the notations used in the paper then describe the reduc-
tion system underlying our approach, in Sect. 3. After illustrating the approach
on a full example, in Sect. 4, we prove in Sect. 5 that the equations associated
with reductions allow one to reconstruct the state space of the initial net from
that of the reduced one. Section 6 discusses how to count markings from our
representation of a state space while Sect. 7 details our experimental results. We
conclude with a discussion on related works and possible future directions.

2 Petri Nets

Some familiarity with Petri nets is assumed from the reader. We recall some basic
terminology. Throughout the text, comparison (=, ≥) and arithmetic operations
(−, +) are extended pointwise to functions.

A marked Petri net is a tuple N = (P, T,Pre,Post,m0) in which P , T are
disjoint finite sets, called the places and transitions, Pre,Post : T → (P → N)
are the pre and post condition functions, and m0 : P → N is the initial marking.

Figure 1 gives an example of Petri net, taken from [18], using a graphical
syntax: places are pictured as circles, transitions as squares, there is an arc from
place p to transition t if Pre(t)(p) > 0, and one from transition t to place p if
Post(t)(p) > 0. The arcs are weighted by the values of the corresponding pre or
post conditions (default weight is 1). The initial marking of the net associates
integer 1 to place p0 and 0 to all others.

A marking m : P → N maps a number of tokens to every place. A transition
t in T is said enabled at m if m ≥ Pre(t). If enabled at m, transition t may fire
yielding a marking m′ = m−Pre(t)+Post(t). This is written m

t→m′, or simply
m → m′ when only markings are of interest. Intuitively, places hold integers and
together encode the state (or marking) of a net; transitions define state changes.

The reachability set, or state space, of N is the set of markings R(N) =
{m | m0

∗→ m }, where ∗→ is the reflexive and transitive closure of →.



Petri Net Reductions for Counting Markings 67

t0

p1

t1

p2

t3

p5

t4

p6

p7

t5

p8

t6

p0

p4

t2

p3

p9

Fig. 1. An example Petri net

A firing sequence σ over T is a sequence t1, . . . , tn of transitions in T such
that there are some markings m1 . . . ,mn+1 with m1

t1→ m2 ∧ . . . ∧ mn
tn→ mn+1.

This can be written m1
σ→ mn+1. Its displacement, or marking change, is Δ(σ) =

Σn
i=1(Post(ti) −Pre(ti)), where Δ : P → Z, and its hurdle H(σ) is the smallest

marking (pointwise) from which the sequence is firable.
Displacements (or marking changes) and hurdles are discussed in [8], where

the existence and uniqueness of hurdles is proved. As an illustration, the dis-
placement of sequence t2t5t3 in the net Fig. 1 is {(p2,−1), (p5, 1), (p9, 1)} (and 0
for all other places, implicitly), its hurdle is {(p2, 1), (p3, 1), (p7, 1)}.

The postset of a transition t is t• = { p | Post(t)(p) > 0 }, its preset is
•t = { p | Pre(t)(p) > 0 }. Symmetrically for places, p• = { t | Pre(t)(p) > 0 }
and •p = { t | Post(t)(p) > 0 }.

A net is ordinary if all its arcs have weight one; for all transition t in T , and
place p in P , we have Pre(t)(p) ≤ 1 and Post(t)(p) ≤ 1. Otherwise it is said
generalized.

A net N is bounded if there is an (integer) bound b such that m(p) ≤ b for
all m ∈ R(N) and p ∈ P . The net is said safe when the bound is 1. All nets
considered in this paper are assumed bounded.

The net in Fig. 1 is ordinary and safe. Its state space holds 14 markings.

3 The Reduction System

We describe our set of reduction rules using three main categories. For each
category, we give a property that can be used to recover the state space of a net,
after reduction, from that of the reduced net.

3.1 Removal of Redundant Transitions

A transition is redundant when its effects can always be achieved by firing instead
an alternative sequence of transitions. Our definition of redundant transitions
slightly strengthens that of bypass transitions in [15]. It is not fully structural
either, but makes it easier to identify special cases structurally.



68 B. Berthomieu et al.

Definition 1 (Redundant transition). Given a net (P, T,Pre,Post,m0), a
transition t in T is redundant if there is a firing sequence σ over T \ {t} such
that Δ(t) = Δ(σ) and H(t) ≥ H(σ). �

There are special cases that do not require to explore combinations of tran-
sitions. This includes identity transitions, such that Δ(t) = 0, and duplicate
transitions, such that for some other transition t′ and integer k, Δ(t) = k.Δ(t′).
Finding redundant transitions using Definition 1 can be convenient too, provided
the candidate σ are restricted (e.g. in length). Figure 2(left) shows some exam-
ples of redundant transitions. Clearly, removing a redundant transition from a
net does not change its state space.

Theorem 1. If net N ′ is the result of removing some redundant transition in
net N then R(N) = R(N ′)

Fig. 2. Some examples of redundant transitions (left) and places (right)

3.2 Removal of Redundant Places

A place is redundant if it never restricts the firing of its output transitions.
Removing redundant places from a net preserves its language of firing sequences
[3]. We wish to avoid enumerating marking for detecting such places, and fur-
ther be able to recover the marking of a redundant place from those of the
other places. For these reasons, our definition of redundant places is a slightly
strengthened version of that of structurally redundant places in [3] (last clause
is an equation).

Definition 2 (redundant place). Given a net (P, T,Pre,Post,m0), a place
p in P is redundant if there is some set of places I from P \{p}, some valuation
v : (I ∪ {p}) → (N − {0}), and some constant b ∈ N such that, for any t ∈ T :



Petri Net Reductions for Counting Markings 69

1. The weighted initial marking of p is not smaller than that of I:
b = v(p).m0(p) − Σq∈Iv(q).m0(q)

2. To fire t, the difference between its weighted precondition on p and that on I
may not be larger than b: v(p).Pre(t)(p) − Σq∈Iv(q).Pre(t)(q) ≤ b

3. When t fires, the weighted growth of the marking of p is equal to that of I:
v(p).(Post(t)(p) − Pre(t)(p)) = Σq∈Iv(q).(Post(t)(q) − Pre(t)(q)) �

This definition can be rephrased as an integer linear programming prob-
lem [17], convenient in practice for computing redundant places in reasonably
sized nets (say when |P | ≤ 50). Like with redundant transitions, there are spe-
cial cases that lead to easily identifiable redundant places. These are constant
places—those for which set I in the definition is empty—and duplicated places,
when set I is a singleton. Figure 2(right) gives some examples of such places.

From Definition 2, we can show that the marking of a redundant place p
can always be computed from the markings of the places in I and the valu-
ation function v. Indeed, for any marking m in R(N), we have v(p).m(p) =
Σq∈Iv(q).m(q) + b, where the constant b derives from the initial marking m0.
Hence we have a relation kp.m(p) = ρp(m), where kp = v(p) and ρp is some
linear expression on the places of the net.

Theorem 2. If N ′ is the result of removing some redundant place p from net
N , then there is an integer constant k ∈ N

∗, and a linear expression ρ, such
that, for all marking m: m ∪ {(p, (1/k).ρ(m))} ∈ R(N) ⇔ m ∈ R(N ′).

3.3 Place Agglomerations

Conversely to the rules considered so far, place agglomerations do not preserve
the number of markings of the nets they are applied to. They constitute the
cornerstone of our reduction system; the purpose of the previous rules is merely
to simplify the net so that agglomeration rules can be applied. We start by
introducing a convenient notation.

Definition 3 (Sum of places). A place a is the sum of places p and q, written
a = p � q, if: m0(a) = m0(p) + m0(q) and, for all transition t, Pre(t)(a) =
Pre(t)(p) + Pre(t)(q) and Post(t)(a) = Post(t)(p) + Post(t)(q). �

Clearly, operation � is commutative and associative. We consider two cate-
gories of place agglomeration rules; each one consisting in the simplification of a
sum of places. Examples are shown in Fig. 3.

Definition 4 (Chain agglomeration). Given a net (P, T,Pre,Post,m0), a
pair of places p, q in P can be chain agglomerated if there is some t ∈ T such
that: •t = {p}; t• = {q}; Pre(t)(p) = Post(t)(q) = 1; •q = {t}; and m0(q) = 0.
Their agglomeration consists of replacing places p and q by a place a equal to
their sum: a = p � q. �



70 B. Berthomieu et al.

Fig. 3. Agglomeration examples: chain (top), loop (for n = 3, bottom)

Definition 5 (Loop agglomeration). A sequence of n places (πi)n−1
i=0 can be

loop agglomerated if the following condition is met:

(∀i < n)(∃t ∈ T )(Pre(t) = {(πi, 1)} ∧ Post(t) = {(π(i+1)(mod n), 1)}).

Their agglomeration consists of replacing places π0, . . . , πn−1 by a single place,
a, defined as their sum: a = �n−1

i=0 πi. �

Clearly, whenever some place a of a net obeys a = p � q for some places p
and q of the same net, then place a is redundant in the sense of Definition 2. The
effects of agglomerations on markings are stated by Theorem 3.

Theorem 3. Let N and N ′ be the nets before and after agglomeration of some
set of places A as place a. Then for all markings m over (P \ A) and m′ over A
we have: (m ∪ m′) ∈ R(N) ⇔ m ∪ {(a,Σp∈Am′(p)} ∈ R(N ′).

Proof. Assume N is a net with set of places P . Let us first consider the case
of the chain agglomeration rule in Fig. 3(top). We have to prove that for all
marking m of P \ {p, q} and for all values x, y in N:

m ∪ {(p, x), (q, y)} ∈ R(N) ⇔ m ∪ {(a, x + y)} ∈ R(N ′)

Left to Right (L): Let N+ be net N with place a = p � q added. Clearly,
a is redundant in N+, with v(a) = v(p) = v(q) = 1. So N and N+ admit the
same firing sequences, and for any m ∈ R(N+), we have m(a) = m(p) + m(q).
Next, removing places p and q from N+ (the result is net N ′) can only relax



Petri Net Reductions for Counting Markings 71

firing constraints, hence any σ firable in N+ (and thus in N) is also firable in
N ′, which implies the goal.

Right to Left (R): we use two intermediate properties (∀m,x, u, v implicit).
We write m ∼ m′ when m and m′ agree on all places except p, q and a, and
m ≈ m′ when m ∼ m′ ∧ m(p) = m′(a) ∧ m(q) = 0.
Property (1): m ∪ {(a, x)} ∈ R(N ′) ⇒ m ∪ {(p, x), (q, 0)} ∈ R(N).

Since Δ(t) = 0, any marking reachable in N ′ is reachable by a sequence
not containing t, call these sequences t-free. Property (1) follows from a simpler
relation, namely (Z): whenever m ≈ m′ (m ∈ R(N), m′ ∈ R(N ′)) and m′ δ→ w′,
(δ t-free), then there is a sequence ω such that m

ω→ w and w ≈ w′.
Any t-free sequence firable in N ′ but not in N can be written σ.t′.γ, where

σ is firable in N and transition t′ is not firable in N after σ. Let w, w′ be the
markings reached by σ in N and N ′, respectively. Since σ is firable in N , we
have w ≈ w′, by (L) and the fact that σ is t-free (only t can put tokens in q).
That t′ is not firable at w but firable at w′ is only possible if t′ is some output
transition of a since w ∼ w′ and the preconditions of all other transitions of N ′

than a are identical in N and N ′. That is, t′ must be an output transition of
either or both p or q in N . If t′ has no precondition on q in N , then it ought to
be firable at w in N since w(p) = w′(a). So t′ must have a precondition on q; we
have w(q) �≥ Pre(t′)(q) in N and w′(a) ≥ Pre′(t′)(a) in N ′. Therefore, we can
fire transition t n times from w in N , where n = Pre(t′)(q), since w′(a) = w(p)
and t′ is enabled at w′, and this leads to a marking enabling t′. Further, firing
t′ at that marking leaves place q in N empty since only transition t may put
tokens in q. Then the proof of Property (1) follows from (Z) and the fact that
Definition 4 ensures m0 ≈ m′

0.

Property (2): if m ∪ {(p, x), (q, 0)} ∈ R(N) and (u + v = x) then m ∪
{(p, u), (q, v)} ∈ R(N).

Obvious from Definition 4: the tokens in place p can be moved one by one
into place q by firing t in sequence v times.

Combining Property (1) and (2) is enough to prove (R), which completes the
proof for chain agglomerations. The proof for loop agglomerations is similar. ��

3.4 The Reduction System

The three categories of rules introduced in the previous sections constitute the
core of our reduction system. Our implementation actually adds to those a few
special purpose rules. We mention three examples of such rules here, because they
play a significant role in the experimental results of Sect. 7, but without technical
details. These rules are useful on nets generated from high level descriptions, that
often exhibit translation artifacts like dead transitions or source places.

The first extra rule is the dead transition removal rule. It is sometimes pos-
sible to determine statically that some transitions of a net are never firable. A
fairly general rule for identifying statically dead transitions is proposed in [5].
Removal of statically dead transitions from a net has no effects on its state space.



72 B. Berthomieu et al.

A second rule allows us to remove a transition t from a net N when t is the
sole transition enabled in the initial marking and t is firable only once. Then,
instead of counting the markings reachable from the initial marking of the net,
we count those reachable from the output marking of t in N and add 1. Removing
such transitions often yields structurally simpler nets.

Our last example is an instance of simple rules that can be used to do away
with very basic (sub-)nets, containing only a single place. This is the case, for
instance, of the source-sink nets defined below. These rules are useful if we want
to fully reduce a net. We say that a net is totally reduced when its set of places
and transitions are empty (P = T = ∅).

Definition 6 (Source-sink pair). A pair (p, t) in net N is a source-sink pair
if •p = ∅, p• = {t}, Pre(t) = {(p, 1)} and Post(t) = ∅. �

Theorem 4 (Source-sink pairs). If N ′ is the result of removing a source-sink
pair (p, t) in net N then (∀z ≤ m0(p))(∀m)(m∪{(p, z)} ∈ R(N) ⇔ m ∈ R(N ′)).

Omitting for the sake of clarity the first two extra rules mentioned above,
our final reduction system resumes to removal of redundant transitions (referred
to as the T rule) and of redundant places (R rule), agglomeration of places (A
rules) and removal of source-sink pairs (L rule).

Rules T have no effects on markings. For the other three rules, the effect on
the markings can be captured by an equation or an inequality. These have shape
vp.m(p) =

∑
q �=p vq.m(q) + b for redundant places, where b is a constant, shape

m(a) = Σp∈Am(p) for agglomerations, and shape m(p) ≤ k for source-sink pairs,
where k is some constant. In all these equations, the terms m(q) are marking
variables; variable m(q) is associated with the marking of place q. For readability,
we will often use the name of the place instead of its associated marking variable.
For instance, the marking equation 2.m(p) = 3.m(q) + 4, resulting from a (R)
rule, would be simply written 2.p = 3.q + 4.

We show in Sect. 5 that the state space of a net can be reconstructed from
that of its reduced net and the set of (in)equalities collected when a rule is
applied. Before considering this result, we illustrate the effects of reductions on
a full example.

4 An Illustrative Example — HouseConstruction

We take as example a model provided in the Model Checking Contest (MCC,
http://mcc.lip6.fr), a recurring competition of model-checking tools [6]. This
model is a variation of a Petri net model found in [14], which is itself derived
from the PERT chart of the construction of a house found in [11]. The model
found in the MCC collection, reproduced in Fig. 4, differs from that of [14] in that
it omits time constraints and a final sink place. In addition, the net represents the
house construction process for a number of houses simultaneously rather than a
single one. The number of houses being built is represented by the marking of
place p1 of the net (10 in the net represented in Fig. 4).

http://mcc.lip6.fr


Petri Net Reductions for Counting Markings 73

Fig. 4. HouseConstruction-10 example net.

We list in Fig. 5 a possible reduction sequence for our example net, one for
each line. To save space, we have omitted the removal of redundant transitions.
For each reduction, we give an indication of its kind (R, A, . . . ), the marking
equation witnessing the reduction, and a short description. The first reduction,
for instance, says that place p19 is removed, being a duplicate of place p20. At
the second step, places p11 and p7 are agglomerated as place a1, a “fresh” place
not found in the net yet.

Fig. 5. Reduction traces for net HouseConstruction-10

Each reduction is associated with an equation or inequality linking the mark-
ings of the net before and after application of a rule. The system of inequalities



74 B. Berthomieu et al.

gathered is shown below, with agglomeration places ai eliminated. We show in
the next section that the set of solutions of this system, taken as markings, is
exactly the set of reachable markings of the net.

p19 = p20 p4 = p6 + p15 + p11 + p7
p12 = p10 + p8 p9 + p5 = p6 + p8
p13 = p10 + p9 p21 + p18 = p22 + p20 + p23
p27 = p23 + p26

p25 + p16 + p15 + p11 + p7 = p26 + p23 + p22 + p20 + p17 + p14 + p10 + p8
p26 + p23 + p22 + p20 + p17 + p14 + p10 + p8 + p6 + p3 + p2 + p1 ≤ 10

This example is totally reduced using the sequence of reductions listed. And
we have found other examples of totally reducible net in the MCC benchmarks.
In the general case, our reduction system is not complete; some nets may be
only partially reduced, or not at all. When a net is only partially reducible, the
inequalities, together with an explicit or logic-based symbolic description of the
reachability set of the residual net, yield a hybrid representation of the state
space of the initial net. Such hybrid representations are still suitable for model
checking reachability properties or counting markings.

Order of Application of Reduction Rules. Our reduction system does not
constrain the order in which reductions are applied. Our tool attempts to apply
them in an order that minimizes reduction costs.

The rules can be classified into “local” rules, detecting some structural pat-
terns on the net and transforming them, like removal of duplicate transitions
or places, or chain agglomerations, and “non-local” rules, like removal of redun-
dant places in the general case (using integer programming). Our implementa-
tion defers the application of the non-local rules until no more local rule can be
applied. This decreases the cost of non-local reductions as they are applied to
smaller nets.

Another issue is the confluence of the rules. Our reduction system is not
confluent: different reduction sequences for the same net could yield different
residual nets. This follows from the fact that agglomeration rules do not preserve
in general the ordinary character of the net (that all arcs have weight 1), while
agglomeration rules require that the candidate places are connected by arcs of
weight 1 to the same transition.

An example net exhibiting the problem is shown in Fig. 6(a). Agglomeration
of places p3 and p4 in this net, followed by removal of identity transitions, yields
the net in Fig. 6(b). Place a1 in the reduced net is the result of agglomerating p3
and p4; this is witnessed by equation a1 = p3+p4. Note that the arcs connecting
place a1 to transitions t0 and t1 both have weight 2.

Next, place p2 in the reduced net is a duplicate of place a1, according to
the definitions of Sect. 3.2, the corresponding equation is 2.p2 = a1. But, from
the same equation, a1 is a duplicate of p2 as well. But removing p2 or a1 have
differents effects:



Petri Net Reductions for Counting Markings 75

Fig. 6. Non confluence example

– If a1 is removed, then we can fully reduce the net by the following sequence
of reductions:

A |- a2 = p1 + p2 agglomeration

A |- a3 = a2 + p0 agglomeration

R |- a3 = 1 constant place

– If p2 is removed instead, then the resulting net cannot be reduced further:
places p0, a1 and p1 cannot be agglomerated because of the presence of arcs
with weight larger than 1.

Confluence of the system could be easily obtained by restricting the agglom-
eration rules so that no arcs with weight larger than 1 could be produced. But
it is more effective to favour the expressiveness of our reduction rules.

5 Correctness of Markings Reconstruction

We prove that we can reconstruct the markings of an (initial) net, before appli-
cation of a rule, from that of the reduced net. This property ensues from the
definition of a net-abstraction relation, defined below.

We start by defining some notations useful in our proofs. We use U ,V, . . .
for finite sets of non-negative integer variables. We use Q,Q′ for systems of
linear equations (and inequalities) and the notation V(Q) for the set of variables
occurring in Q. The system obtained by concatenating the relations in Q1 and
Q2 is denoted (Q1;Q2) and the “empty system” is denoted ∅.

A valuation e of NV is a solution of Q, with V = V(Q), if all the relations
in Q are (trivially) valid when replacing all variables x in V by their value e(x).
We denote 〈Q〉 the subset of NV(Q) consisting in all the solutions of Q.



76 B. Berthomieu et al.

If E ⊆ N
V then E ↓ U is the projection of E over variables U , that is the

subset of NU obtained from E by restricting the domain of its elements to U .
conversely, we use E ↑ U to denote the lifting of E to U , that is the largest
subset E′ of NU such that E′ ↓ V = E.

Definition 7 (Net-abstraction). A triple (N1, Q,N2) is a net-abstraction, or
simply an abstraction, if N1, N2 are nets with respective sets of places P1, P2

(we may have P1 ∩ P2 �= ∅), Q is a linear system of equations, and:

R(N1) = ((R(N2) ↑ V) ∩ (〈Q〉 ↑ V)) ↓ P1 where V = V(Q) ∪ P1 ∪ P2 .

Intuitively, N2 is an abstraction of N1 (through Q) if, from every reachable
marking m ∈ R(N2), the markings obtained from solutions of Q—restricted to
those solutions such that x = m(x) for all “place variable” x in P2—are always
reachable in N1. The definition also entails that all the markings in R(N1) can
be obtained this way.

Theorem 5 (Net-abstractions from reductions). For any nets N , N1, N2:

1. (N, ∅, N) is an abstraction;
2. If (N1, Q,N2) is an abstraction then (N1, Q

′, N3) is an abstraction if either:
(T) Q′ = Q and N3 is obtained from N2 by removing a redundant transition

(see Sect. 3.1);
(R) Q′ = (Q; k.p = l) and N3 is obtained from N2 by removing a redundant

place p and k.p = l is the associated marking equation (see Sect. 3.2);
(A) Q′ = (Q; a = Σp∈A(p)), where a �∈ V(Q) and N3 is obtained from N2 by

agglomerating the places in A as a new place, a (see Sect. 3.3);
(L) Q′ = (Q; p ≤ k) and N3 is obtained from N2 by removal of a source-sink

pair (p, t) with m0(p) = k (see Sect. 3.4).

Proof. Property (1) is obvious from Definition 7. Property (2) is proved by case
analysis. First, let V = V(Q) ∪ P1 ∪ P2 and U = V ∪ P3 and notice that for
all candidate (N1, Q

′, N3) we have V(Q′) ∪ P1 ∪ P3 = U . Then, in each case,
we know (H) : R(N1) = (R(N2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1 and we must prove
(G) : R(N1) = (R(N3) ↑ U ∩ 〈Q′〉 ↑ U) ↓ P1.
Case (T) : Q′ = Q. By Theorem 1, we have P3 = P2, hence V = U , and R(N3) =
R(N2). Replacing R(N2) by R(N3) and V by U in (H) yields (G).
Case (R) : By Theorem 2 we have : R(N2) = R(N3) ↑ P2 ∩ 〈k.p = l〉 ↑ P2.
replacing R(N2) by this value in (H) yields R(N1) = ((R(N3) ↑ P2 ∩ 〈k.p = l〉 ↑
P2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1. Since P2 ⊆ V, we may safely lift to V instead of P2, so:
R(N1) = (R(N3) ↑ V ∩ 〈k.p = l〉 ↑ V ∩ 〈Q〉 ↑ V) ↓ P1. Which is equivalent to:
R(N1) = (R(N3) ↑ V ∩ 〈Q; k.p = l〉 ↑ V) ↓ P1, and equal to (G) since P3 ⊆ V
and Q′ = (Q; k.p = l).
Case (A): Let Sp denotes the value Σp∈A(p). By Theorem 3 we have: R(N2) =
(R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↓ P2. Replacing R(N2) by this value



Petri Net Reductions for Counting Markings 77

in (H) yields: R(N1) = (((R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↓ P2) ↑
V ∩ 〈Q〉 ↑ V) ↓ P1. Instead of V, we may lift to U since U = V ∪ {a}, a �∈ V(Q)
and a �∈ P1, so: R(N1) = (((R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↓ P2) ↑
U ∩ 〈Q〉 ↑ U) ↓ P1. Projection on P2 may be omitted since P2 ∪ P3 = P2 ∪ {a}
and a �∈ V(Q), leading to:

R(N1) = ((R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↑ U ∩ 〈Q〉 ↑ U) ↓ P1.
Since P2 ∪ P3 ⊆ U , this is equivalent to: R(N1) = (R(N3) ↑ U ∩ 〈a = Sp〉 ↑
U ∩ 〈Q〉 ↑ U) ↓ P1. Grouping equations yields: R(N1) = (R(N3) ↑ U ∩ 〈Q; a =
Sp〉 ↑ U) ↓ P1, which is equal to (G) since Q′ = (Q; a = Sp).
case (L): The proof is similar to that of case (R) and is based on the relation
R(N2) = R(N3) ↑ P2 ∩ 〈p ≤ k〉 ↑ P2, obtained from Theorem4. ��

Theorem 5 states the correctness of our reduction systems, since we can com-
pose reductions sequentially and always obtain a net-abstraction. In particular,
if a net N is fully reducible, then we can derive a system of linear equations Q
such that (N,Q, ∅) is a net-abstraction. In this case the reachable markings of N
are exactly the solutions of Q, projected on the places of N . If the reduced net,
say Nr, is not empty then each marking m ∈ R(Nr) represents a set of markings
〈Q〉m ⊂ R(N): the solution set of Q in which the places of the residual net are
constrained as in m, and then projected on the places of N . Moreover the family
of sets { 〈Q〉m | m ∈ R(Nr)} is a partition of R(N).

6 Counting Markings

We consider the problem of counting the markings of a net N from the set of
markings of the residual net Nr and the (collected) system of linear equations
Q. For totally reduced nets, counting the markings of N resumes to that of
counting the number of solutions in non negative integer variables of system Q.
For partially reduced nets, a similar process must be iterated over all markings
m reachable in Nr (a better implementation will be discussed shortly).

Available Methods. Counting the number of integer solutions of a linear sys-
tem of equations (inequalities can always be represented by equations by the
addition of slack variables) is an active area of research.

A method is proposed in [1], implemented in the tool Azove, for the particular
case where variables take their values in {0, 1}. The method consists of building a
Binary Decision Diagram for each equation, using Shannon expansion, and then
to compute their conjunction (this is done with a specially tailored algorithm).
The number of paths of the BDD gives the expected result. Our experiments
with Azove show that, although the tool can be fast, its performances on larger
system heavily depend on the ordering chosen for the BDD variables, a typical
drawback of decision diagram based techniques. In any case, its usage in our
context would be limited to safe nets.

For the general case, the current state of the art can be found in the work
of De Loera et al. [12,13] on counting lattice points in convex polytopes. Their



78 B. Berthomieu et al.

approach is implemented in a tool called LaTTe; it relies on algebraic and geo-
metric methods; namely the use of rational functions and the decomposition of
cones into unimodular cones. Our experiments with LaTTe show that it can
be conveniently used on systems with, say, less than 50 variables. For instance,
LaTTe is strikingly fast (less than 1s) at counting the number of solutions of
the system computed in Sect. 4. Moreover, its running time does not generally
depend on the constants found in the system. As a consequence, computing the
reachability count for 10 or, say, 1012 houses takes exactly the same time.

An Ad-hoc Method. Though our experiments with LaTTe suffice to show that
these approaches are practicable, we implemented our own counting method. Its
main benefits over LaTTe, important for practical purposes, are that it can
handle systems with many variables (say thousands), though it can be slower
than LaTTe on small systems. Another reason for finding an alternative to LaTTe
is that it provides no builtin support for parameterized systems, that is in the
situation where we need to count the solutions of many instances of the same
linear system differing only by some constants.

Our solution takes advantage of the stratified structure of the systems
obtained from reductions, and it relies on combinatorial rather than geomet-
ric methods. While we cannot describe this tool in full details, we illustrate our
approach and the techniques involved on a simple example.

Consider the system of equations obtained from the PN corresponding to
the dashed zone of Fig. 4. This net consists of places in the range p18–p27 and is
reduced by our system to a single place, a13. The subset of marking equations
related to this subnet is:

R � p19 = p20 R � p27 = p23 + p26
A � a4 = p21 + p18 A � a11 = p23 + a5

A � a5 = p22 + p20 A � a13 = a11 + p26
R � a4 = a5 + p23

(Q)

Assume place a13 is marked with n tokens. Then, by Theorem 5, the number of
markings of the original net corresponding with marking a13 = n in the reduced
net is the number of non-negative integer solutions to system (Q, a13 = n). Let
us define the function A13 : N −→ N that computes that number.

We first simplify system (Q). Note that no agglomeration is involved in the
redundancy (R) equations for p19 and p27, so these equations have no effects
on the marking count and can be omitted. After elimination of variable a5 and
some rewriting, we obtain the simplified system (Q′):

A � a4 = p21 + p18 R � a4 = a11

A � a11 = p23 + p22 + p20 A � a13 = a11 + p26
(Q′)

Let ((k))(x) denote the expression
(
x+k−1

k−1

)
, which denotes the number of ways to

put x tokens into k slots. The first equation is a4 = p21+p18. If a4 = x, its number
of solutions is ((2))(x) = x + 1. The second equation is a11 = p23 + p22 + p20. If
a11 = x, its number of solutions is ((3))(x) = (x+2)(x+1)

2 .



Petri Net Reductions for Counting Markings 79

Now consider the system consisting of the first two equations and the redun-
dancy equation a4 = a11. If a11 = x, its number of solutions is ((2))(x) × ((3))(x)
(the variables in both equations being disjoint). Finally, by noticing that a11 can
take any value between 0 and n, we get:

A13(n) =
n∑

a11=0

((2))(a11) × ((3))(a11)

This expression is actually a polynomial, namely 1
8n4+ 11

12n3+ 19
8 n2+ 31

12n+1.
By applying the same method to the whole net of Fig. 4, we obtain an expression
involving six summations, which can be reduced to the following 18th-degree
polynomial in the variable X denoting the number of tokens in place p1.

11
19401132441600X18 + 1

16582164480X17 + 2491
836911595520X16 + 1409

15567552000X15

+ 3972503
2092278988800X14 + 161351

5535129600X13 + 32745953
96566722560X12 + 68229017

22353408000X11

+ 629730473
29262643200X10 + 83284643

696729600X9 + 3063053849
5852528640X8 + 74566847

41472000X7

+ 1505970381239
313841848320 X6 + 32809178977

3353011200 X5 + 259109541797
17435658240 X4 + 41924892461

2594592000 X3

+ 4496167537
381180800 X2 + 62925293

12252240X1 + 1

In the general case of partially reduced nets, the computed polynomial is a
multivariate polynomial with at most as many variables as places remaining in
the residual net. When that number of variables is too large, the computation
of the final polynomial is out of reach, and we only make use of the intermediate
algebraic term.

7 Computing Experiments

We integrated our reduction system and counting method with a state space
generation tool, tedd, in the framework of our TINA toolbox for analysis of
Petri nets [4] (www.laas.fr/tina). Tool tedd makes use of symbolic exploration
and stores markings in a Set Decision Diagram [19]. For counting markings in
presence of agglomerations, one has the choice between using the external tool
LaTTe or using our native counting method discussed in Sect. 6.

Benchmarks. Our benchmark is constituted of the full collection of Petri nets
used in the Model Checking Contest [6,9]. It includes 627 nets, organized into 82
classes (simply called models). Each class includes several nets (called instances)
that typically differ by their initial marking or by the number of components
constituting the net. The size of the nets vary widely, from 9 to 50 000 places,
7 to 200 000 transitions, and 20 to 1 000 000 arcs. Most nets are ordinary (arcs
have weight 1) but a significant number are generalized nets. Overall, the col-
lection provides a large number of PN with various structural and behavioral
characteristics, covering a large variety of use cases.

www.laas.fr/tina


80 B. Berthomieu et al.

Reduction Ratio and Prevalence. Our first results are about how well the
reductions perform. We provide two different reduction strategies: compact, that
applies all reductions described in Sect. 3, and clean, that only applies removal
of redundant places and transitions. The reduction ratios on number of places
(number of places before and after reduction) for all the MCC instances are
shown in Fig. 7, sorted in descending order. We overlay the results for our two
reduction strategies (the lower, in light color, for clean and the upper, in dark,
for compact). We see that the impact of strategy clean alone is minor compared
to compact. Globally, Fig. 7 shows that reductions have a significant impact on
about half the models, with a very high impact on about a quarter of them.
In particular, there is a surprisingly high number of models that are totally
reducible by our approach (about 19% of the models are fully reducible).

Fig. 7. Distribution of reduction ratios (place count) over the 627 PN instances. (Color
figure online)

Computing Time of Reductions. Many of the reduction rules implemented
have a cost polynomial in the size of the net. The rule removing redundant places
in the general case is more complex as it requires to solve an integer programming
problem. For this reason we limit its application to nets with less than 50 places.
With this restriction, reductions are computed in a few seconds in most cases,
and in about 3 min for the largest nets. The restriction is necessary but, because
of it, we do not reduce some nets that would be fully reducible otherwise.

Impact on the Marking Count Problem. In our benchmark, there are 169
models, out of 627, for which no tool was ever able to compute a marking count.
With our method, we could count the markings of at least 14 of them.

If we concentrate on tractable nets—instances managed by at least one tool in
the MCC 2017—our approach yields generally large improvements on the time
taken to count markings; sometimes orders of magnitude faster. Table 1(top)
lists the CPU time (in seconds) for counting the markings on a selection of fully
reducible instances. We give the best time obtained by a tool during the last
MCC (third column) and compare it with the time obtained with tedd, using
two different ways of counting solutions (first with our own, native, method
then with LaTTe). We also give the resulting speed-up. These times also include
parsing and applying reductions. An absent value (−) means that it cannot be
computed in less than 1 h with 16 Gb of storage.



Petri Net Reductions for Counting Markings 81

Table 1. Computation times (in seconds) and speed-up for counting markings on some
totally (top) and partially (bottom) reduced nets

Net instance Size MCC
(best)

tedd
native

tedd
LaTTe

Speed up

� places � states

BART-050 11 822 1.88e118 2 800 346 - 8

BART-060 14 132 8.50e141 - 496 - ∞
DLCround-13a 463 2.40e17 9 0.33 - 27

FlexibleBarrier-22a 267 5.52e23 5 0.25 - 20

NeighborGrid-d4n3m2c23 81 2.70e65 330 0.21 44 1571

NeighborGrid-d5n4m1t35 1 024 2.85e614 - 340 - ∞
Referendum-1000 3 001 1.32e477 29 12 - 2

RobotManipulation-00050 15 8.53e12 94 0.1 0.17 940

RobotManipulation-10000 15 2.83e33 - 102 0.17 ∞
Diffusion2D-50N050 2 500 4.22e105 1 900 5.84 - 325

Diffusion2D-50N150 2 500 2.67e36 - 5.86 - ∞
DLCshifumi-6a 3 568 4.50e160 950 6.54 - 145

Kanban-1000 16 1.42e30 240 0.11 0.24 2182

HouseConstruction-100 26 1.58e24 630 0.4 0.85 1575

HouseConstruction-500 26 2.67e36 - 30 0.85 ∞
Airplane-4000 28 019 2.18e12 2520 102 - 25

AutoFlight-48a 1127 1.61e51 19 3.57 - 5

DES-60b 519 8.35e22 2300 364 - 6

Peterson-4 480 6.30e8 470 35.5 - 13

Peterson-5 834 1.37e11 - 1200 - ∞

Concerning partially reducible nets, the improvements are less spectacular in
general though still significant. Counting markings in this case is more expensive
than for totally reduced nets. But, more importantly, we have to build in that
case a representation of the state space of the residual net, which is typically
much more expensive than counting markings. Furthermore, if using symbolic
methods for that purpose, several other parameters come into play that may
impact the results, like the choice of an order on decision diagram variables or the
particular kind of diagrams used. Nevertheless, improvements are clearly visible
on a number of example models; some speedups are shown in Table 1(bottom).
Also, to minimize such side issues, instead of comparing tedd with compact
reductions with the best tool performing at the MCC, we compared it with tedd
without reductions or with the weaker clean strategy. In that case, compact
reductions are almost always effective at reducing computing times.



82 B. Berthomieu et al.

Finally, there are also a few cases where applying reductions lower per-
formances, typically when the reduction ratio is very small. For such quasi-
irreducible nets, the time spent computing reductions is obviously wasted.

8 Related Work and Conclusion

Our work relies on well understood structural reduction methods, adapted here
for the purpose of abstracting the state space of a net. This is done by repre-
senting the effects of reductions by a system of linear equations. To the best of
our knowledge, reductions have never been used for that purpose before.

Linear algebraic techniques are widely used in Petri net theory but, again,
not with our exact goals. It is well known, for instance, that the state space of
a net is included in the solution set of its so-called “state equation”, or from a
basis of marking invariants. But these solutions, though exact in the special case
of live marked graphs, yield approximations that are too coarse. Other works
take advantage of marking invariants obtained from semiflows on places, but
typically for optimizing the representation of markings in explicit or symbolic
enumeration methods rather than for helping their enumeration, see e.g. [16,20].
Finally, these methods are only remotely related to our.

Another set of related work concerns symbolic methods based on the use
of decision diagrams. Indeed they can be used to compute the state space size.
In such methods, markings are computed symbolically and represented by the
paths of some directed acyclic graph, which can be counted efficiently. Crucial
for the applicability of these methods is determining a “good” variable ordering
for decision diagram variables, one that maximizes sharing among the paths.
Unfortunately, finding a convenient variable ordering may be an issue, and some
models are inherently without sharing. For example, the best symbolic tools
participating to the MCC can solve our illustrative example only for p1 ≤ 100,
at a high cost, while we compute the result in a fraction of a second for virtually
any possible initial marking of p1.

Finally, though not aimed at counting markings nor relying on reductions,
the work reported in [18] is certainly the closest to our. It defines a method for
decomposing the state space of a net into the product of “independent sets of
submarkings”. The ideas discussed in the paper resemble what we achieved with
agglomeration. In fact, the running example in [18], reproduced here in Fig. 1,
is a fully reducible net in our approach. But no effective methods are proposed
to compute decompositions.

Concluding Remarks. We propose a new symbolic approach for representing
the state space of a PN relying on systems of linear equations. Our results show
that the method is almost always effective at reducing computing times and
memory consumption for counting markings. Even more interesting is that our
methods can be used together with traditional explicit and symbolic enumeration
methods, as well as with other abstraction techniques like symmetry reductions
for example. They can also help for other problems, like reachability analysis.



Petri Net Reductions for Counting Markings 83

There are many opportunities for further research. For the close future, we
are investigating richer sets of reductions for counting markings and application
of the method to count not only the markings, but also the number of transi-
tions of the reachability graph. Model-checking of linear reachability properties
is another obvious prospective application of our methods. On the long term, a
question to be investigated is how to obtain efficiently fully equational descrip-
tions of the state spaces of bounded Petri nets.

References

1. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: 9th
Workshop on Algorithm Engineering and Experiments. SIAM (2007)

2. Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg, G.
(ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986). https://
doi.org/10.1007/BFb0016204

3. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 13

4. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA-construction of abstract
state spaces for Petri nets and Time Petri nets. Int. J. Prod. Res. 42(14), 2741–2756
(2004)

5. Esparza, J., Schröter, C.: Net reductions for LTL model-checking. In: Margaria,
T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310–324. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44798-9 25

6. Kordon, F., et al.: Complete Results for the 2017 Edition of the Model Checking
Contest, June 2017. http://mcc.lip6.fr/

7. Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L.,
Rodŕıguez, C., Hulin-Hubard, F.: MCC’2015–the fifth model checking contest. In:
Koutny M., Desel J., Kleijn J. (eds.) Transactions on Petri Nets and Other Models
of Concurrency XI. LNCS, vol 9930, pp. 262–273. Springer, Heidelberg (2016)

8. Hack, M.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts Insti-
tute of Technology (1976)

9. Hillah, L.M., Kordon, F.: Petri nets repository: a tool to benchmark and debug
petri net tools. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS,
vol. 10258, pp. 125–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57861-3 9

10. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 16

11. Levy, F.K., Thompson, G.L., Wiest, J.D.: Introduction to the Critical-Path
Method. Industrial Scheduling. Prentice-Hall, Englewood Cliffs (1963)

12. De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the
Theory of Discrete Optimization. SIAM, Philadelphia (2013)

13. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point
counting in rational convex polytopes. J. Symbolic Comput. 38(4), 1273–1302
(2004)

14. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River (1981)

https://doi.org/10.1007/BFb0016204
https://doi.org/10.1007/BFb0016204
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/3-540-44798-9_25
http://mcc.lip6.fr/
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-662-53401-4_16


84 B. Berthomieu et al.

15. Recalde, L., Teruel, E., Silva, M.: Improving the decision power of rank theorems.
In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Com-
putational Cybernetics and Simulation, vol. 4, pp. 3768–3773 (1997)

16. Schmidt, K.: Using petri net invariants in state space construction. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 473–488. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 35

17. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 19

18. Stahl, C.: Decomposing petri net state spaces. In: 18th German Workshop on
Algorithms and Tools for Petri Nets (AWPN 2011), Hagen, Germany, September
2011

19. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical set decision
diagrams and regular models. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 1

20. Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73094-1 5

https://doi.org/10.1007/3-540-36577-X_35
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/978-3-642-00768-2_1
https://doi.org/10.1007/978-3-642-00768-2_1
https://doi.org/10.1007/978-3-540-73094-1_5
https://doi.org/10.1007/978-3-540-73094-1_5


Improving Generalization in Software IC3

Tim Lange1(B), Frederick Prinz1, Martin R. Neuhäußer2, Thomas Noll1,
and Joost-Pieter Katoen1

1 RWTH Aachen University, Aachen, Germany
{tim.lange,noll,katoen}@cs.rwth-aachen.de

2 Siemens AG, Munich, Germany
martin.neuhaeusser@siemens.com

Abstract. Generalization is a key feature to support state-space
abstraction in IC3-based algorithms for software model checking, such as
Tree-IC3 or IC3CFA. This paper introduces several improvements that
range from efficient caching of generalizations over variable reductions to
syntax-oriented generalization. Our techniques are generic in that they
are independent of the underlying theory, and some of them are even
applicable to IC3 in general. Their evaluation on multiple benchmarks,
including a significant subset of the SV-COMP 2017 benchmarks, yields
promising results.

1 Introduction

IC3 [3] is one of the most prominent state-of-the-art model-checking algorithms
designed for bit-level verification of hardware systems, represented as finite-state
transition systems. The IC3 algorithm tries to prove the correctness of an invari-
ant property by iteratively deriving overapproximations of the reachable state
space until a fixpoint is reached. Its impressive impact on the model-checking
community and its superior performance base on two important aspects: In con-
trast to most other (bounded) model-checking algorithms, IC3 does not rely on
unrolling the transition relation, but instead generates clauses that are inductive
relative to stepwise reachability information. In addition, IC3 applies aggressive
abstraction to the explored state space, so-called generalization.

An adaptation of IC3 to software model checking, called IC3CFA, was pre-
sented in [14]. In IC3CFA, the control-flow of a program is represented as
control-flow automaton (CFA) while the data space is handled symbolically.
This explicit structure can further guide the reachability analysis of IC3 when
dealing with software. While IC3CFA was originally developed in the context
of Programmable Logic Controller code verification, it is successfully applied to
the verification of C programs, too, as shown in Sect. 4.

As the author of the original IC3 algorithm [3] states, “one of the key com-
ponents of IC3 is inductive generalization” [12]. Even though IC3 is sound and
complete without generalization, by explicitly enumerating models in a finite
state space, it largely depends on its ability to abstract from specific states in

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 85–102, 2018.
https://doi.org/10.1007/978-3-319-94111-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_5&domain=pdf


86 T. Lange et al.

order to scale to huge state spaces. While the original procedure of literal elim-
ination on the Boolean skeleton can be applied to IC3 in the first-order setting
[5], generalization in IC3CFA still offers a large potential for improvements.

Our contributions are five small and elegant modifications of the general-
ization procedure of IC3CFA that improve the overall performance of IC3CFA
by up to two orders of magnitude for certain benchmarks and allow us to ver-
ify ten instances more than using IC3-style generalization, with a verification
time that is in total 10% lower. In addition, our improvements are general in
the sense that the presented algorithms are independent of the underlying SMT
theory and support existing generalization methods, such as unsatisfiable cores
[3], obligation ordering [11] and interpolation [2].

Related Work. Another approach to software model checking with IC3 is Tree-
IC3 [5], which iteratively derives a tree-like structure given in terms of an
abstract reachability tree (ART) and computes abstractions of candidate coun-
terexamples. However, generalization is not discussed in [5]. [19] presents an
algorithm to apply IC3 to software model checking using the theory of quantifier-
free bitvector formulas, thereby lifting standard IC3 from one-dimensional to
multi-dimensional Boolean variables. Due to this restriction to bit vectors, the
algorithm is highly theory-aware and cannot be applied to other theories such
as unbounded integers. It utilizes the standard generalization of IC3. [13] also
addresses IC3-style software model checking, but focuses on pushdown automata
and general Horn clauses, as well as linear real arithmetic. [2] utilizes the ideas
of IC3 to enhance a predicate abstraction/refinement-based analysis of infinite-
state systems by using counterexamples to induction to guide the refinement
process of the predicates. In [6], the authors use the Tree-IC3 algorithm [5] and
combine it with implicit predicate abstraction. By abstracting the exact tran-
sition relation, they are able to verify a software system in terms of a purely
abstract state space by executing a Boolean IC3 algorithm, using only the basic
generalization of IC3.

Overview. In the remainder we provide basic concepts for IC3CFA generalization
in Sect. 2, present our contributions to the generalization procedure in Sect. 3,
and show their evaluation in Sect. 4. We conclude with a short summary and
outlook in Sect. 5. Proofs are provided in the appendix.

2 Preliminaries

To abstract from different input languages and to maintain a small set of com-
mands, we use a guarded command language (GCL) for loop-free code.

Definition 1 (GCL commands). The syntax of the Guarded Command Lan-
guage (GCL) is defined as

C :: = Assume b | x := a | C1; C2 | C1�C2,



Improving Generalization in Software IC3 87

where x is a variable and

a :: = z | x | a1 � a2

b :: = true | false | a1 ◦ a2 | b1 ∧ b2

with z ∈ Z, � ∈ {+,−, ∗, /,%}, and ◦ ∈ {=, �=,≤,≥, <,>}.
For our modifications to the generalization algorithm, we disallow disjunction

and negation in Boolean expressions of Assume commands. We can compensate
this restriction by nondeterministic branching using the � operator and pushing
negations into relational expressions, which are closed under negation. While this
may seem overly restrictive, it is necessary to enable some of our improvements,
in particular those presented in Sect. 3.1. GCL only supports loop-free code. To
manipulate control flow we use a control-flow automaton [14]:

Definition 2 (Control-flow automaton). A control-flow automaton (CFA)
is a tuple A = (L,G, �0, �E) of locations L = {�0, . . . , �n}, edges G ⊆ L×GCL×
L, initial location �0 ∈ L and error location �E ∈ L.

Furthermore we use the GCL command C of edge e = (l, C, l′) ∈ G to define
the quantifier-free first-order term Te of e, i.e. the term representing the seman-
tics of C, transforming unprimed current states ϕ to primed successor states ϕ′

by replacing every variable x in ϕ by x′. Given a subset V of variables in CFA
edges, a cube c ∈ Cube over V is defined as a conjunction of literals, each literal
being a variable or its negation in the propositional case and a theory atom or
its negation in the quantifier-free first-order case. The negation of a cube, i.e.
a disjunction of literals, is called a clause. A frame F ∈ Frame is defined as a
conjunction of clauses. For simplicity, we will refer to cubes and frames as sets
of implicitly conjoined literals and clauses, respectively. To facilitate this rea-
soning, we will distinguish between two different, converse perspectives: Given
two cubes c1 and c2, then c1 ⊆ c2 holds if the set of literals of c1 is a subset of
the literals of c2. However, if we think of a cube as a symbolic representation of
states, then c1 represents more states than c2. To take this converse perspective
into account, we introduce the partial order �:

Definition 3. Given two cubes c1 and c2, let c2 � c1 iff c1 ⊆ c2.

Similar to the definition of relative inductivity [3], [14] defines relative induc-
tivity for single edges of a CFA as follows:

Definition 4 (Edge-relative inductivity [14]). Assuming frame F and cube
c at location �′, we define inductivity of c edge-relative to F along edge e =
(�, C, �′) with transition formula Te (based on semantics of C) by

F ∧ Te ⇒ ¬c′, if � �= �′ (1)
F ∧ ¬c ∧ Te ⇒ ¬c′, if � = �′. (2)

We define the predicate relInde(F, c) to hold iff c is inductive edge-relative to F
along e.



88 T. Lange et al.

While this holds for IC3CFA without generalization, (2) cannot be applied
in the presence of generalization any more, as stated by the following lemma.

Lemma 1. Given two distinct edges e1 = (�1, C1, �
′) and e2 = (�2, C2, �

′) with
�1 �= �2, two frames F1 and F2 and two respective cubes g1, g2, generalization
does not necessarily preserve (2):

(F1 ∧ Te1 ⇒ ¬g′
1) ∧ (F2 ∧ ¬g2 ∧ Te2 ⇒ ¬g′

2)
�=⇒ ((F1 ∧ Te1) ∨ (F2 ∧ ¬ (g1 ∧ g2) ∧ Te2)) ⇒ ¬ (g′

1 ∧ g′
2)

As a result of Lemma 1, we will only use (1) for all inductivity queries in the
remainder. Like [3], we verify validity of (1) by checking whether

F ∧ T�1→�2 ∧ c′

is unsatisfiable.
Analogously to a Boolean generalization of IC3 [3], we can define a general-

ization that preserves edge-relative inductivity.

Definition 5 (Edge-relative inductive generalization). We call a function
gen : Frame ×Cube ×GCL → Cube an edge-relative inductive generalization for
edge e if the following holds for every cube c and every frame F :

1. gen(F, c, e) ⊆ c
2. relInde(F, c) ⇒ relInde(F, gen(F, c, e)).

Note that 1. and 2. together imply that

gen(F, c, e) ⇔ relInde(F, c)

IC3
Let S = (X, I, T ) be a transition system over a finite set X of Boolean vari-
ables, and I(X) and T (X,X ′) two propositional formulas describing the initial
condition over variables in X, and the transition relation over X and next-state
primed successors X ′, respectively. Given a propositional formula P (X), we want
to verify that P is an S-invariant, i.e. that every state in S that is reachable from
a state in I satisfies P . Sometimes also an inverted formulation is used like in [8]
where ¬P states are bad states and we want to show that no bad state is reach-
able from any of the initial states. The main idea of the IC3 algorithm [3] is to
show that P is inductive, i.e. that I ⇒ P and P ∧T ⇒ P ′ hold, which entails that
P is an S-invariant. However, the reverse implication does generally not apply.
Therefore the goal of IC3 is to produce a so-called inductive strengthening F of
P , s.t. F ∧P is inductive. In contrast to its predecessor FSIS [4], IC3 constructs
F incrementally. This incremental construction is based on a dynamic sequence
of frames F0, . . . , Fk for which

I ⇒ F0 (3)
Fi ⇒ Fi+1, for 0 ≤ i < k (4)
Fi ⇒ P, for 0 ≤ i ≤ k (5)

Fi ∧ T ⇒ F ′
i+1, for 0 ≤ i < k (6)



Improving Generalization in Software IC3 89

has to hold in order to produce an inductive invariant. Note that k is a dynamic
bound that will be extended by IC3 on demand. Due to the usage of a satisfi-
ability (SAT) solver, [3] uses the implication F ⇒ F ′ to compare frames. This
semantic check covers the syntactic check whether F � F ′. The algorithm starts
with initial checks for 0- and 1-step reachable states in ¬P and afterwards ini-
tializes the first frame F0 to I. The rest of the algorithm can be divided into
an inner and an outer loop, sometimes referred to as blocking and propagation
phases.

The outer loop iterates over the maximal frame index k, looking for states
in Fk that can reach ¬P , so-called counterexamples to induction (CTI). If such
a CTI exists, it is analyzed in the inner loop, the blocking phase. If no such CTI
exists, IC3 tries to propagate clauses learned in frame Fi forward to Fi+1, for
0 ≤ i < k. In the end it checks for termination, which is given if Fi = Fi+1 for
some 0 ≤ i < k.

The blocking phase decides whether a CTI is reachable from I or not. For this
purpose, it maintains a set of pairs of frame index and symbolic states in form of
a cube, called proof obligations. From this set it picks a pair (i, c) with smallest
frame index i. For (i, c), IC3 checks whether ¬c is inductive relative to Fi−1. If it
is, we can block c in frames Fj for 0 ≤ j ≤ i + 1. But rather than just adding ¬c,
IC3 tries to obtain a clause cl ⊆ ¬c excluding more states. This generalization
of ¬c is added to the frames. If ¬c is not inductive relative to Fi−1, this means
that there exists an Fi−1-predecessor p reaching c. IC3 therefore adds (i−1, p)
as proof obligation. The blocking phase terminates at obligation (0, p), in which
case there exists a counterexample path, or when for every proof obligation (i, c)
it holds that i > k, i.e. every predecessor of the CTI is relative inductive.

IC3CFA [14] adapts IC3 to software model checking, based on the idea to
exploit the structure of the CFA of a program to guide the search of IC3. For
this purpose we have to split the frame at index i, i.e. Fi into a set of frames,
one for each location �, i.e. F(i,�). [14] proposes an algorithm similar to the original
IC3: It starts searching for CTIs by computing states in every predecessor location
of the error location �E (representing all bad states) using weakest preconditions.
Those states at their respective index and location are stored as proof obligations.
As long as the obligation queue is non-empty, the algorithm picks an obligation
with minimal index and checks whether the obligation is inductive edge-relative
to the location-specific predecessor frame on every incoming edge. If the inductiv-
ity check succeeds, the cube is generalized and blocked by adding it to the frame
matrix at the respective index and location. If the check does not succeed, a prede-
cessor is computed and added to the obligation queue. If at some point the initial
location �0 is reached, a counterexample can be reported. If, on the other hand,
the obligation queue becomes empty, the strengthening of frames up to bound k is
complete and termination is checked. The termination condition verifies that for
some i, at every location the frame with index i is equal to the frame with index
i + 1. If this condition is not met, the algorithm proceeds by increasing its bound
to k +1. In [14] it is shown that the original IC3CFA algorithm, without any gen-
eralization, already outperforms some other IC3 algorithms for software, such as
Tree-IC3 and the trivial lifting to IC3SMT [5].



90 T. Lange et al.

3 Generalization

This section presents five improvements to the IC3CFA algorithm that pave the
way towards a powerful, efficient generalization. Since IC3CFA as published in
[14] does not include generalization, we must first take a look at how a gener-
alization for a location can be computed while using the positive effects of only
considering individual edges. In Lemma 1 and Definition 5, we have shown how
inductivity and generalization work on a single CFA edge. Given some �’ with
predecessor locations �1, . . . , �n, we can compute edge-relative generalizations
g1, . . . , gn and merge them to a generalization to be blocked at �’ by construct-
ing the cube g that contains all literals appearing in each gi (1 ≤ i ≤ n). Using
this merge to lift the syntactic generalization based on dropping literals will be
referred to as IC3-style generalization in the remainder.

As mentioned before, IC3 uses the model generated by the SAT solver as a
set of predecessor states of a non-inductive state set for further backward search.
If such a cube c, or more precisely its negation, is shown to be inductive relative
to a frame F , it is generalized to a subcube g that is still inductive relative to
F . While this method is complete for Boolean IC3, its application to IC3 for
software, such as Tree-IC3 [5] or IC3CFA [14], has two main consequences that
will be driving forces behind the contributions of this section: (1) there may
exist infinitely many predecessor states, so model enumeration is not complete,
and (2) the generalization should ideally be theory-unaware to support its use
with different backend theories. While this may seem counter-intuitive, since
theory-aware implementations may be more performant, the independence from
any theory allows a modular, flexible approach to backend theories that enables
us to solve many more problem domains. For example, a generalization that
uses Linear Real Arithmetic (LRA) is only able to solve a limited number of
problems, whereas we can switch from LRA to Floating Point (FP) depending
on whether we need bit-precise arithmetic, including overflows, or not. Note that
in contrast to IC3, IC3CFA does not use the global transition relation but only
single transitions between control-flow locations.

3.1 Predecessor Computation

A solution to (1) is presented in [5,14]: The computation of the weakest pre-
condition (WP) yields an exact pre-image and thus provides a suitable way to
extract predecessor states. While various definitions of WPs can be found in
the literature [9,15], the most commonly used is the demonic version [7]. For
non-deterministic choices this variant only covers states that reach a state in
the postcondition under all possible executions. However, in safety verification
we are not only interested in those states that must lead to a failure, but also
in states that may lead to a failure under certain conditions, which corresponds
to the angelic interpretation of weakest preconditions. In contrast to [5], [14]
splits the semantics of an edge into GCL commands and SMT expressions. By
applying standard GCL predicate transformer semantics [7] and rewriting the
SMT expressions, our angelic WP computation does not introduce quantifiers



Improving Generalization in Software IC3 91

and thus there is no need to eliminate those. Based on the four types of GCL
commands (Definition 1), the angelic WP is defined according to the following
rules:

wp(Assume b, ϕ) = ϕ ∧ b

wp(x := a, ϕ) = ϕ[x �→ a]
wp(C1; C2, ϕ) = wp(C1, wp(C2, ϕ))

wp(C1�C2, ϕ) = wp(C1, ϕ) ∨ wp(C2, ϕ).

where ϕ[x �→ a] equals ϕ with all free occurrences of x replaced by a. When
applying this WP to a state set represented symbolically, it yields a first-order
term whose structure is highly dependent on the structure of the transition. How-
ever, this ambiguity exacerbates the structured processing of proof obligations
and generalization. In our experiments we found that a restricted representation
like cubes, which are used in [3], offers two-fold advantages: The simpler data
structures improve the performance of our implementation while at the same
time the generalization is able to drop more literals. To employ the cube struc-
ture of [3], we can translate the results of WP computations into disjunctive
normal form (DNF), resulting in a number of cubes that can potentially lead
into the target states. While this translation has exponential worst-case runtime,
our experiments have revealed an overall beneficial effect.

After closer inspection of the decomposition of the WP into DNF, we found
that we can organize the conversion to DNF as a translation on the GCL struc-
ture. We call this operation split, as it splits a single choice command into a set
of parallel commands that can be represented as parallel edges in the CFA.

Definition 6 (Split). The function spl : GCL → 2GCL is given by:

spl(C) =

⎧
⎪⎨

⎪⎩

spl(C1) ∪ spl(C2) if C = (C1�C2)
{c1; c2 | ∀i ∈ {1, 2}. ci ∈ spl(Ci)} if C = (C1; C2)
{C} otherwise.

Applying the function spl to the commands along edges in G yields a refined
set of control-flow edges

G′ = {(�, C′, �′) | (�, C, �′) ∈ G, C′ ∈ spl(C)}.

Intuitively, an edge e = (�, C, �′) ∈ G labeled with C including a choice, is split
into multiple edges between the same locations. Each new edge contains no choice
command any more, such that it models a deterministic, sequential behaviour.
This in turn means that the result of a WP computation of a cube with respect
to a split edge is now guaranteed to be a cube again.

Theorem 1. For any GCL command C and cube c:

dnf(wp(C, c)) =
∨

{wp(C′, c) | C′ ∈ spl(C)}
where dnf(ϕ) converts the given quantifier-free first-order formula ϕ into DNF.



92 T. Lange et al.

To prove the correctness of Theorem 1, we use the following auxiliary lemma:

Lemma 2. For each GCL command C without � and cube c: dnf(wp(C, c)) =
wp(C, c), where dnf(ϕ) converts the quantifier-free first-order formula ϕ into
DNF.

Proof. Note that the GCL command C contains no choice. We prove the lemma
by structural induction over C without the choice case.

C = (Assume b): C = (x := a): C = (C1; C2):

dnf (wp(Assume b, c)) dnf (wp(x := a, c)) dnf (wp(C1; C2, c))
= dnf (c ∧ b) = dnf (c[x �→ a]) = dnf (wp(C1,wp(C2, c)))
= c ∧ b = c[x �→ a] = wp(C1,wp(C2, c))
= wp(Assume b, c) = wp(x := a, c) = wp(C1; C2, c)

Proof (Theorem 1).

dnf (wp(C, c))

= dnf (
∨

{wp(C′, c) | C′ ∈ split(C)})

=
∨

{dnf (wp(C′, c)) | C′ ∈ split(C)}
=

∨
{wp(C′, c) | C′ ∈ split(C)} (Lemma 2)

Using the spl function, we can split the WP transformer into a number of
transformers that directly yield cubes, rather than arbitrarily structured formu-
las. The disjunction of those partial WPs is equal to the DNF of the original WP,
as shown in Theorem 1. While this additional split operation is not beneficial on
its own, it enables a subsequent optimization that has the potential to statically
derive a generalization of good quality without any SMT calls.

3.2 Predecessor Cubes

This approach computes the generalization of a given cube c based on a syntactic
check of the predecessor frame. If the predecessor frame F(i−1,�) contains a clause
¬c̄ which blocks at least wp(C, c), i.e. c̄ ⊆ wp(C, c) with respect to edge e =
(�, C, �′) ∈ G, then the cube c is inductive edge-relative to F(i−1,�) w.r.t. e. This
static test can be applied to every inductivity check of IC3CFA, not only to
those used in generalization.

Lemma 3. Let (L,G, �0, �E) be a CFA with edge e = (�, C, �′) ∈ G, and cube c
to be blocked at �′ ∈ L and index i. For frame F(i−1,�):

(∃c̄ ∈ Cube.
(¬c̄ ∈ F(i−1,�)

) ∧ (c̄ ⊆ wp(C, c))
)

=⇒ relInde(F(i−1,�), c).



Improving Generalization in Software IC3 93

Proof.

∃c̄ ∈ Cube. ¬c̄ ∈ F(i−1,�) ∧ c̄ ⊆ wp(C, c)
⇒ ∃c̄ ∈ Cube. unsat(F(i−1,�) ∧ c̄) ∧ c̄ ⊆ wp(C, c)
⇒ unsat(F(i−1,�) ∧ wp(C, c))
⇒ relIndWPe(F(i−1,�), c) (Definition 7)
⇔ relInde(F(i−1,�), c) (Lemma 3)

Given such a predecessor cube c̄, we can also derive the generalization g ⊆ c
of the original cube c.

Lemma 4. Let C be a choice-free GCL command. Given two cubes c1, c2, it
holds that

wp(C, c1 ∧ c2) ⇐⇒ wp(C, c1) ∧ wp(C, c2).

Proof. We prove Lemma 4 by structural induction over GCL command C without
choice.

C = Assume b: C = x := a:

wp(Assume b, c1 ∧ c2) wp(x := a, c1 ∧ c2)
= (c1 ∧ c2) ∧ b = (c1 ∧ c2)[x �→ a]
= (c1 ∧ b) ∧ (c2 ∧ b) = c1[x �→ a] ∧ c2[x �→ a]
= wp(Assume b, c1) ∧ wp(Assume b, c2) = wp(x := a, c1)∧wp(x := a, c2)

C = C1; C2:

wp(C1; C2, c1 ∧ c2)
= wp(C1,wp(C2, c1 ∧ c2))
= wp(C1,wp(C2, c1) ∧ wp(C2, c2))
= wp(C1,wp(C2, c1))∧wp(C1,wp(C2, c2))
= wp(C1; C2, c1) ∧ wp(C1; C2, c2)

Given that wp distributes over conjunction for choice-free GCL commands,
we can decompose cube c into its literals l1, . . . , ln and construct the wp for each
li, i ∈ {1, . . . , n} individually. The result of wp(C, c), a conjunction of n WPs
of the literals li, is w = w1 ∧ · · · ∧ wn. If we now encounter a predecessor cube
c̄ ⊆ w, we map each wi ∈ c̄ back to its original literal li ∈ c and obtain a new
cube g = {li | wi ∈ c̄, wi = wp(C, li)}. Since our approach obviously satisfies
monotonicity for choice-free GCL commands that do not contain disjunctions
according to Definition 1, it holds that

c̄ ⊆ w =⇒ g ⊆ c.

Furthermore, since ¬wp(C, li) ∈ F(i−1,�) for each li ∈ g, g is inductive relative to
F(i−1,�) and thus g is a valid generalization for c. Note that semantically g is a
strongest postcondition of c̄, but differs in the syntactic structure.



94 T. Lange et al.

Theorem 2. Let (L,G, �0, �E) be a CFA with edge e = (�, C, �′) ∈ G, and cube
c be blocked at �′ ∈ L and index i. For frame F(i−1,�) and cube g:

(∀C′ ∈ spl(C).¬wp(C′, g) ∈ F(i−1,�) ∧ wp(C′, g) ⊆ wp(C′, c)
)

=⇒ gen(F(i,�′), c, e) = g.

Proof. Let ĉ be a cube and C be a GCL command without a choice

¬wp(C, ĉ) ∈ F(i−1,�) ∧ wp(C, ĉ) ⊆ wp(C, c)
⇒ relInde(F(i−1,�), ĉ) ∧ wp(C, ĉ) ⊆ wp(C, c) (Lemma 3)
⇒ relInde(F(i−1,�), ĉ) ∧ ĉ ⊆ c (Monotonicity)
⇒ gen(F(i,�′), c, e) = ĉ (Definition 5)

We execute the static check for predecessor cubes, as given in Lemma 3,
in the generalization of IC3CFA whenever deriving a generalization from the
methods proposed in Sects. 3.4 and 3.6 fails. If we find a predecessor cube, we can
immediately use that to construct a generalization and skip the generalization
phase entirely.

3.3 WP Inductivity

Like the original IC3 algorithm, IC3CFA makes heavy use of the underlying
solver, such that small optimizations in its usage can have significant effect on
the overall performance. As we compute exact pre-images by taking weakest
preconditions in each step anyway, we may replace the transition part of the
relative inductivity check (cf. implication (1) in Definition 4) by the simpler test
whether the frame and the WP share common states. Since the resulting formula
only reasons about unprimed variables, we reduce the number of variables in the
SMT query by half in best case, and also decrease the size of the formula in gen-
eral. However, since the inductivity check happens before the WP construction,
we never know whether we can actually reuse the constructed WP afterwards.
To avoid unnecessary overhead we introduce an additional step: Given a failed
inductivity query, IC3CFA constructs the WP and decomposes it into a set of
cubes. However, not all cubes from the set of WP cubes may be of interest. In
fact, the likelihood that some of the cubes are already excluded by the respec-
tive frame is very high. Here we can use the modified inductivity check to filter
those cubes that are actually causing the failed inductivity. An experimental
evaluation is given in Sect. 4.

Definition 7 (WP-based inductivity). Let (L,G, �0, �E) be a CFA with edge
e = (�, C, �′) ∈ G and i ∈ N, i ≥ 1. Given the frame F(i−1,�) and a cube c, we
define the predicate relIndWPe(F(i−1,�), c) by

relIndWPe(F(i−1,�), c) ⇔ unsat(F(i−1,�) ∧ wp(C, c)).

Cube c is inductive relative to frame F(i−1,�) and edge e iff relIndWPe(F(i−1,�), c)
holds. In the following we will also refer to relIndWP as relInd.



Improving Generalization in Software IC3 95

The correctness of WP-based relative inductivity is given by:

Theorem 3. Let (L,G, �0, �E) be a CFA with edge e = (�, C, �′) ∈ G and
i ∈ N, i ≥ 1. For every frame F(i−1,�) and cube c:

relIndWPe(F(i−1,�), c) ⇔ relInde(F(i−1,�), c).

Proof.

relIndWPe(F(i−1,�), c)
⇔ unsat(F(i−1,�) ∧ wp(C, c)) (Definition 7)
⇔ unsat(F(i−1,�) ∧ Te ∧ c′) (WP)
⇔ relInde(F(i−1,�), c) (Definition 4)

3.4 Caching of Generalization Context

For IC3 software model checking algorithms that determine predecessor cubes
using weakest preconditions, cubes and thus generalizations often reappear, but
so far they are always recomputed. This approach of recomputing generalizations
again and again is obviously not very efficient, as has been shown in other areas,
such as SMT calls [18]. While we also use caching of SMT calls, we aim to
store the information that is obtained during a generalization of a cube in order
to reuse this information in subsequent generalizations. In contrast to caching
only SMT calls, this enables us to reuse not only exact generalization attempts,
but also slightly different ones. To do so, not only do we need to store the
generalization g, we also have to store all other aspects of the used inductivity
query: the cube c that the generalization was derived from as well as the frame F
and the edge e relative to which it was determined. We call this set of information
the context of the generalization or simply generalization context.

Definition 8 (Generalization context). The generalization context GCi of
a CFA (L,G, �0, �E) at index i is a set of quadruples

GCi ⊆ Cube × G × Frame × Cube

where

(c, e, F, g) ∈ GCi with e = (�, C, �′)

=⇒ (∃j ≤ i. gen(F(j,�′), c, e) = g and F = F(j−1,�)

)
.

Following Definition 8, each generalization g of a cube c at index j and edge e
relative to frame F is stored as one generalization context (c, e, F, g) available in
all sets GCi (i ≥ j). In our implementation we use a least-recently-used cache for
this purpose such that generalizations that are older and less likely to reappear
are replaced.



96 T. Lange et al.

3.5 Upper Bounds from Generalization Context

Given a cube c to be generalized along edge e ∈ G, our aim is to derive a
generalization based on previous generalizations of c along e (if any) relative
to frame F . Due to the monotonically growing behaviour of frames in IC3, a
generalization of a fixed cube c along fixed edge e with only a shrinked frame
F � F ′ will yield a result that contains at most the literals of the previous
attempt. In other words, by excluding states from a frame, the set of states
unreachable from that frame can only grow but never shrink. Therefore the old
generalization gives an upper bound on the literals of the new generalization.

Theorem 4. Let (L,G, �0, �E) be a CFA with edge e = (�, C, �′) ∈ G and c a
cube to be generalized at index i ≥ 1 and location �′. Given the frame F(i−1,�), it
holds that

(
(c, e, F, g) ∈ GCi ∧ F(i−1,�) � F

)
=⇒ g = gen(F(i,�′), c, e).

Proof.

(c, e, F, g) ∈ GCi ∧ F(i−1,�) � F

⇒ ∃j ≤ i. gen(F(j,�′), c, e) = g

∧ F = F(j−1,�) ∧ F(i−1,�) � F (Definition 8)
⇔ relInde(F(j−1,�), g) ∧ F = F(j−1,�) ∧ F(i−1,�) � F (Definition 5)
⇒ relInde(F(i−1,�), g)
⇒ gen(F(i,�′), c, e) = g (Definition 5)

So far, we might reuse a generalization g based on the generalization context
(c, e, F, g) if we encounter the exact same cube c along e again, but relative to
a shrinked frame F ′ � F . We extend the use of generalization contexts to cover
those cases when we encounter a similar cube ĉ. More precisely, ĉ has to be a
superset of the previous generalization g with respect to the literals, i.e. g ⊆ ĉ.
If this is the case and the frame condition F(i−1,�) � F also holds, then we
also get g as generalization of ĉ. As a result, we avoid even more computations.
Corollary 1 shows the effect of the improved upper bounds.

Corollary 1. Let (L,G, �0, �E) be a CFA with edge e = (�, C, �′) ∈ G, and ĉ
a cube to be generalized at index i and location �′. Given the frame F(i−1,�), it
holds that

((c, e, F, g) ∈ GCi) ∧ (
F(i−1,�) � F

) ∧ (g ⊆ ĉ)
=⇒ gen(F(i,�′), ĉ, e) = g.

While this caching of generalizations may seem counter-intuitive for SAT-
based IC3, it drastically improves the performance of certain types of IC3 for
software verification: Due to the pseudo-random choice of predecessor cubes
based on the SAT model, lazily resetting the SAT solver and re-generalizing



Improving Generalization in Software IC3 97

cubes prevents IC3 from investigating bad paths too deeply [10]. However, if
we swap the model-based predecessor extraction for WP-based predecessors, the
computed cubes will be deterministic in every iteration, making resets and re-
generalizations less useful while caching becomes more effective.

3.6 Lower Bounds from Generalization Context

Generalization contexts are used to derive a generalization based on previous
computations. More precisely, if there exists a matching generalization context
gc, then it will yield all literals that will at most be contained in the new gen-
eralization, i.e. an upper bound on the literals of the generalization. In this
section we use generalization contexts to determine all literals that will at least
be contained in the generalization, i.e. lower bounds on the literals.

Let (c, e, F, g) be a generalization context. For this previous generalization,
c has been generalized to the cube g ⊆ c, thus it follows that all proper subsets
ĝ ⊂ g are not inductive relative to F . If we later encounter c with a larger frame
F ′, i.e. F � F ′, every cube larger than g will not be inductive relative to F ′.
However, there might be a state f that is part of F ′, but not part of F , i.e.
f |= F ′ ∧ ¬F , such that f enables a transition to a g-state. Thus, the resulting
generalization ḡ will be somewhere between g and c, i.e. g ⊆ ḡ ⊆ c, making g
a lower bound1 of the literals of the new generalization. Theorem 5 shows the
correctness of necessary literals based on the generalization context.

Theorem 5. Let (L,G, �0, �E) be a CFA with e = (�, C, �′) ∈ G, and c a cube to
be generalized at �′. It holds for i ≥ 1:

((c, e, F, g) ∈ GCi) ∧ (
F � F(i−1,�)

) ∧ (ĝ ⊂ g)
=⇒ gen(F(i,�′), c, e) �= ĝ

=⇒ g ⊆ gen(F(i,�′), c, e) ⊆ c.

Proof.

(c, e, F, g) ∈ GCi ∧ F(i−1,�) � F ∧ ĝ ⊂ g

⇒ ∃j ≤ i. gen(F(j,�′), c, e) = g

∧ F = F(j−1,�) ∧ F(i−1,�) � F ∧ ĝ ⊂ g (Definition 8)
⇒ ∃j ≤ i. gen(F(j,�′), c, e) �= ĝ

∧ F = F(j−1,�)) ∧ F(i−1,�) � F

⇔ ¬relInde(F(j−1,�), ĝ) (Definition 5)
⇒ ¬relInde(F(i−1,�), ĝ)
⇒ gen(F(i,�′), c, e) �= ĝ (Definition 5)

1 Note that g is a lower bound but not necessarily the greatest one, as states in F ′∧¬F
may have a transition into g.



98 T. Lange et al.

Using the generalization context we have shown that we can store old gen-
eralization results and their corresponding context to give both an upper and
a lower bound for the new generalization. This means that for a cube c to be
generalized, cube g with g ⊆ c as upper bound and cube g′ with g′ ⊆ g ⊆ c as
lower bound, we effectively only have to check whether we can drop the literals
of g\g′ from c.

4 Evaluation

We implemented our optimizations to IC3CFA on top of an existing proprietary
model checker with bit-precise analysis. The input C file is processed by the
CIL Parser [16] and translated into an intermediate language. We apply static
minimizations, construct the CFA, apply Large-Block Encoding [1] and execute
IC3CFA. All results are obtained using Z3 4.6.1.

To evaluate the performance of our proposed improvements, we use a bench-
mark set consisting of 99 benchmarks from [5] and 254 SV-COMP 2017 bench-
marks [17] from the ReachSafety category with the subcategories: ReachSafety-
BitVectors, ReachSafety-ControlFlow and ReachSafety-Loops. Note that in some
subsets of these categories, all files contain constructs, e.g. function pointers, that
our parser and bit-precise memory model do not support. We therefore excluded
the subsets ntdrivers and ssh and evaluated our contributions on the remaining
353 instances. All our results are obtained on an Intel Xeon CPU E5-2670 v3 @
2.30 GHz with a timeout of 1800 s and a memory limit of 3 GB, using one core
per instance, executed in Benchexec 1.16.

We evaluate the improvements of each optimization using scatter plots with
logarithmic axes (see Fig. 1), where every mark below/right of the diagonal indi-
cates that the given optimization pays off, with points on the dashed line indi-
cating a variation of one order of magnitude. To evaluate the isolated effect of
each modification, we ran a Baseline configuration with every optimization dis-
abled and separate configurations Pre-Cubes2 and WP Inducitivity where we
enable just the specific modification. Due to the close relation between our pro-
posed methods for using generalization contexts as upper and lower bounds, we
evaluate these in a stepwise fashion: Baseline disables lower and upper bounds
from generalization contexts; Upper Bounds enables upper bounds, while lower
bounds are disabled; All Bounds enables upper and lower bounds, thus eval-
uating the isolated effect of lower bounds when compared to Upper Bounds
and evaluating the overall effect of generalization contexts when compared to
Baseline. To further compare the overall effect of all contributions the All con-
figuration has all proposed optimizations enabled. To evaluate the performance
of our new IC3CFA implementation with generalization and the presented mod-
ifications against the version presented in [14], we add the No Generalization
configuration.

2 Note that, as mentioned in Sect. 3.1, we apply split only in combination with the
search for predecessor cubes and thus also evaluate their effect together.



Improving Generalization in Software IC3 99

0.1 1 10 100 1 000
0.1

1

10

100

1 000

CPU time for Baseline (s)

C
P

U
ti

m
e

w
it

h
pr

e-
cu

be
s

(s
)

(a) Effect of Pre-Cubes

0.1 1 10 100 1 000
0.1

1

10

100

1 000

CPU time for Baseline (s)

C
P

U
ti

m
e

w
it

h
W

P
in

du
ct

iv
it
y

(s
)

(b) Effect of WP Inductivity

0.1 1 10 100 1 000
0.1

1

10

100

1 000

CPU time for Baseline (s)

C
P

U
ti

m
e

on
ly

up
pe

r
bo

un
ds

(s
)

(c) Effect of Upper Bounds

0.1 1 10 100 1 000
0.1

1

10

100

1 000

CPU time only upper bounds (s)

C
P

U
ti

m
e

up
pe

r+
lo

w
er

bo
un

ds
(s

)

(d) Effect of Lower Bounds

0.1 1 10 100 1 000
0.1

1

10

100

1 000

CPU time for Baseline (s)

C
P

U
ti

m
e

up
pe

r+
lo

w
er

bo
un

ds
(s

)

(e) Effect of Generalization Caching

0.1 1 10 100 1 000
0.1

1

10

100

1 000

CPU time for Baseline (s)

C
P

U
ti

m
e

fo
r

A
ll

(s
)

(f) Effect of all Optimizations

Fig. 1. Isolated effect of individual optimizations and total effect of all optimizations



100 T. Lange et al.

Configuration # Solved Time(s)

Baseline 234 12340
Pre-Cubes 238 9992
WP Inductivity 236 11925
Upper Bounds 234 11571
Upper+Lower Bounds 242 11913
All 244 11160
No Generalization 161 6075

Fig. 2. Summary of all configurations

Considering the configuration Pre-Cubes, the scatter plot (Fig. 1a) shows
a strong positive impact of enabling the extraction of a generalization based
on subcubes in the predecessor frame. While a very small number of instances
exhibit negative performance with enabled Pre-Cubes, multiple benchmarks are
found near the dashed line, indicating a verification time that is one order of
magnitude faster with Pre-Cubes enabled, with the most notable case resulting
in a verification time of 1200 s without and 72 s with Pre-Cubes. We conclude
that the proposed method is highly favorable and improves the verification time
of IC3CFA dramatically. Figure 2 shows that IC3CFA with Pre-Cubes is able to
solve four more instances than without.

The proposed WP inductivity (Fig. 1b) yields a more ambivalent result. We
achieve a speedup for almost all small instances with runtime up to 10 s. For
instances between 10 and 100 s runtime, we see an indeterminate situation with
results equally spread to both sides. For larger/harder benchmarks, enabling
WP-Inductivity clearly yields a worse runtime than Baseline. Interestingly, Fig. 2
reveals that WP-Inductivity can solve two more instances than Baseline.

As mentioned, our proposed caching of generalization contexts enables mul-
tiple optimizations, allowing us to identify literals that can be dropped, as well
as literals that cannot be dropped. Due to the strong connection, we evaluate
the performance in a three-fold way:

We start with the effect of upper bounds (Fig. 1c), i.e. we store generaliza-
tion contexts, but only use them to identify literals that can be removed, and
compare the results to Baseline. Except for three outliers, Upper Bounds shows
a small improvement in performance for all benchmarks. As shown in Fig. 2, the
number of solved instances is identical to Baseline and the total verification time
improves slightly. We conclude that the overhead of managing and searching the
cache entries almost outweighs the saved solver calls if we use generalization
contexts for upper bounds only.

Next, we evaluate the effect of lower bounds (Fig. 1d) by comparing the
results of the Upper Bounds configuration with one where upper and lower
bounds are activated, i.e. we use cached generalization contexts to identify which
literals can be dropped and which cannot. In contrast to upper bounds, also
enabling lower bounds enables a massive performance improvement with all
instances being solved faster than without lower bounds.



Improving Generalization in Software IC3 101

Finally, we evaluate the performance of generalization caching, i.e. the total
effect of upper and lower bounds against Baseline (Fig. 1e). We can see that
no instance is being solved slower with generalization caching than without and
some instances can be solved almost one order of magnitude faster. In partic-
ular the few instances that perform worse with just upper bounds are being
compensated by the massive improvement that lower bounds yield.

To evaluate the overall effect of all contributions, we compare a configuration
with all improvements activated (All) against Baseline. Figure 1f shows the large
potential that our improvements to the generalization procedure of IC3CFA
yield. The few instances with negligible deterioration are all simpler instances
that are executed in less than 100 s. On the other hand, the majority of instances
benefit heavily from our generalization with multiple instances performing about
one order of magnitude better. For the most noticeable instance, the runtime
is reduced from 1200 s to only 28 s, a gain of almost two orders of magnitude.
Enabling all optimizations, we are able to solve 10 more out of all 353 benchmark
instances.

5 Conclusion

In this paper we presented a number of simple and easy to implement improve-
ments of the generalization procedure in IC3CFA software model checking.
As evaluated in Sect. 4, these straight-forward improvements offer performance
improvements of up to two orders of magnitude and enable 10 more benchmarks
to be solved. In addition, we are able to solve 35% more benchmarks than the
original IC3CFA algorithm [14]. According to our experiments, the amendments
of predecessor cubes and generalization contexts turned out to be the most ben-
eficial. Predecessor cubes that extract a generalization based on an occurrence of
a sub-cube in the previous frame are tailored towards software IC3 with weakest
preconditions and can also be applied to other IC3 software model checkers that
use weakest preconditions, like Tree-IC3. Our small and elegant amendment of
generalization contexts is simple in the sense that it caches generalizations and
the context in which they appeared to give upper as well as lower bounds for
the current generalization and therefore drastically reduce the number of literals
that are tested for dropping. It is also general in the sense that it can be applied
to any IC3 algorithm as it operates on the elementary data structures cube and
frame, which are identical in IC3CFA thanks to our DNF-based decomposition,
and IC3 algorithms for word- and bit-level verification [2,3,6,8,11] that operate
on cubes and clauses.



102 T. Lange et al.

References

1. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD, pp. 25–32. IEEE (2009)

2. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 55

3. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

4. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD, pp. 173–180. IEEE (2007)

5. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Form. Methods Syst. Des. 49(3), 190–218
(2016)

7. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

8. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. FMCAD Inc. (2011)

9. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: POPL, pp. 193–205. ACM (2001)

10. Griggio, A., Roveri, M.: Comparing different variants of the IC3 algorithm for
hardware model checking. IEEE Trans. CAD Integr. Circuits Syst. 35(6), 1026–
1039 (2016)

11. Gurfinkel, A., Ivrii, A.: Pushing to the top. In: FMCAD, pp. 65–72. IEEE (2015)
12. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD,

pp. 157–164. IEEE (2013)
13. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,

Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

14. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow
automata. In: FMCAD, pp. 97–104. IEEE (2015)

15. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

16. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

17. Competition on software verification (SV-COMP). https://sv-comp.sosy-lab.org/
2017/. Accessed 23 Jan 2017

18. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: SIGSOFT FSE, p. 58. ACM (2012)

19. Welp, T., Kuehlmann, A.: QF BV model checking with property directed reacha-
bility. In: DATE, pp. 791–796. EDA Consortium (2013)

https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/


Star-Topology Decoupling in SPIN

Daniel Gnad1(B), Patrick Dubbert1, Alberto Lluch Lafuente2,
and Jörg Hoffmann1

1 Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
{gnad,hoffmann}@cs.uni-saarland.de, patrick@dexpot.de

2 Technical University of Denmark, Kongens Lyngby, Denmark
albl@dtu.dk

Abstract. Star-topology decoupling is a state space search method
recently introduced in AI Planning. It decomposes the input model into
components whose interaction structure has a star shape. The decoupled
search algorithm enumerates transition paths only for the center compo-
nent, maintaining the leaf-component state space separately for each leaf.
This is a form of partial-order reduction, avoiding interleavings across
leaf components. It can, and often does, have exponential advantages
over stubborn set pruning and unfolding. AI Planning relates closely to
model checking of safety properties, so the question arises whether decou-
pled search can be successful in model checking as well. We introduce
a first implementation of star-topology decoupling in SPIN, where the
center maintains global variables while the leaves maintain local ones.
Preliminary results on several case studies attest to the potential of the
approach.

1 Introduction

AI Planning develops algorithms that, given an initial state s0 (an assignment to
a vector of state variables), a goal formula G, and a set A of actions (transition
rules), find an action sequence that transforms s0 into a state s s.t. s |= G. In
other words, AI Planning addresses reachability checking in compactly described
transition systems. This relates closely to model checking of safety properties,
a well-known connection (e.g. [3,6,27–29]) that has been exploited to transfer
techniques. In the context of the SPIN model checker [24], AI Planning heuris-
tic search methods have been adapted to SPIN [9,10], and compilations from
Promela to AI Planning languages have been designed [8].

Here we adapt a new method from AI Planning, star-topology decoupling
[14,15], to model checking. Contrary to other methods developed in AI, which
typically aim at finding solution paths quickly, the major strength of star-
topology decoupling lies in proving unreachability: in a model checking setting,
verifying correctness of safety properties. We provide a first implementation in
SPIN, and initial empirical results.

Star-topology decoupling decomposes the input problem into components
identified by a partition of state variables. Two components interact if there is
c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 103–114, 2018.
https://doi.org/10.1007/978-3-319-94111-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_6&domain=pdf


104 D. Gnad et al.

an action reading or updating state variables from both of them. Star-topology
decoupling chooses components whose interactions take a star shape, where there
is a center component to which all interactions are incident. All other compo-
nents are then referred to as leaves. Given such a topology, the leaves depend
only indirectly on each other, via the center. The decoupled search algorithm
exploits this through a two-level search, where only the center is considered at
the primary level, while each leaf is considered separately at the secondary level.
Multiplication of states across leaf components is avoided.

Star-topology decoupling relates to partial-order reduction (e.g. [12,19,32,
34,37]), in that it avoids interleavings of leaf paths. It can be viewed as a variant
of unfolding, exploiting star shapes by organizing the unfolding in terms of tran-
sition paths over the center, which ensures by design that there are no cross-leaf
conflicts. Star-topology decoupling can have exponential advantages over other
partial-order reduction methods. Consider the following excerpt of Gnad and
Hoffmann’s [15] results (Fig. 1):

Benchmark # Exp SSS Unf STD Exp SSS Unf STD

Elevators 100 21 17 3 41 1,941.8 1,941.5 543.3 36.3
Logistics 63 12 12 11 27 1,121.2 1,121.2 118.4 12.1
Miconic 150 50 45 30 145 154.6 152.3 143.1 .7
NoMystery 40 11 11 7 40 266.2 248.8 101.3 3.9
TPP 30 5 5 4 11 192.5 192.5 12.4 .2
Woodworking 100 11 20 22 16 109,174.4 199.9 1.2 4,274.2

(over all) 1144 202 196 123 435

Fig. 1. Left: #state spaces successfully exhausted in 30 min/4 GB memory. Right:
State-space representation size (#integer variables, in thousands, used in the final rep-
resentation). Exp: explicit-state search without enhancements. SSS: strong stubborn
sets (as per [39]). Unf: unfolding (using Cunf [34] given the presence of read arcs).
STD: star-topology decoupling.

Here we observe that, in automata networks such as described in Promela,
decoupled search can be applied by viewing “local” transitions, affecting only
a single process P , as being part of a leaf component P ; while viewing non-
local transitions, affecting more than one process, as being part of the center
component. In the simplest case, where processes communicate only via global
variables, this takes the global variables as the center and takes the local variables
of each process as a leaf. But also more general forms of communication, via
channels, can be viewed in this way. The decoupled search then explores non-
local transitions at the primary level, and local transitions at the secondary level.
We supply initial empirical evidence suggesting that this form of decomposition
can be useful in the verification of safety properties.



Star-Topology Decoupling in SPIN 105

2 Star-Topology Decoupling

We first describe star-topology decoupling in the context of AI Planning where
it was invented. We give a brief outline and refer to Gnad and Hoffmann [15]
for details. In Sect. 2.2, we prove correctness of star-topology decoupling for
reachability checking. Finally, we show complementarity to previous state-space
reduction methods.

2.1 Decoupling in AI Planning

An AI Planning task is a tuple (V,A, s0, G). V is a finite set of state variables
v, each with a finite domain Dv. A state s is an assignment to V and s0 is the
initial state. The goal G is a partial assignment to V , interpreted as a conjunctive
formula where s |= (v, d) iff s(v) = d. A is a set of actions, each action a
associated with two partial assignments to V namely the precondition pre[a]
and effect eff [a]. An action is applicable to s if s |= pre[a]. If so, the outcome
state of applying a in s, denoted s�a�, is defined by s�a�(v) = eff [a](v) where
eff [a] is defined, and s�a�(v) = s(v) where not. The applicability and outcome
s�π� of an action sequence π is defined accordingly. The planning problem is to
decide whether there exists π such that s0�π� |= G.

sC0 = l

sC1 = r

sC2 = l

SL[sC0 ] = {(p1 = l)
loadp1 l−−−−−→ (p1 = T ), . . . , (pn = l)

loadpn l−−−−−→ (pn = T )}

SL[sC1 ] = {(p1 = l), (p1 = T )
unloadp1 r−−−−−−−→ (p1 = r), . . . , (pn = l), (pn = T )

unloadpn r−−−−−−−→ (pn = r)}

SL[sC2 ] = {(p1 = l), (p1 = T ), (p1 = r), . . . , (pn = l), (pn = T ), (pn = r)}

drivelr

driverl

Fig. 2. The decoupled state space of our transportation example, one decoupled state

per row. Center states and transitions are highlighted in blue. Transitions a
l−→ b within

a leaf state set are used to illustrate that a new leaf state b becomes reachable via
leaf action l. Dashed lines indicate leaf states that remain reachable in the successor
decoupled state (i.e., are compatible with aC).

As an example, simple yet enough to show exponential separations from pre-
vious methods, say that V = {t, p1, . . . , pn} where t encodes the position of a
truck on a map with two locations l, r; and each pi encodes the position of a
package. We have Dt = {l, r} and Dpi

= {l, r, T} where T stands for being in
the truck. In s0, all variables have value l. The goal is to bring all packages to
r, i.e., G = {(p1, r), . . . , (pn, r)}. The actions drive, e.g. drivelr with precondi-
tion {(t, l)} and effect {(t, r)}; or load a package, e.g. loadp1l with precondition



106 D. Gnad et al.

{(t, l), (p1, l)} and effect {(p1, T )}; or unload a package, e.g. unloadp1r with pre-
condition {(t, r), (p1, T )} and effect {(p1, r)}. The decoupled state space of the
example, which we define next, is illustrated in Fig. 2.

Let P = {P1, P2, . . . } be a partitioning of V , i.e.
⊎

Pi∈P Pi = V . Consider
the undirected graph with vertices P and an arc (P1, P2) for P1 �= P2 if there
exists a ∈ A s.t. the set Va of variables touched by a (defined in either pre[a] or
eff [a]) intersects both P1 and P2. We say that P is a star-topology decomposition
if there exists a unique C ∈ P s.t. all arcs in the graph are incident to C. In
that case, C is the center and all other L ∈ P are leaves. In the example,
P = {{t}, {p1}, . . . , {pn}} is a star-topology decomposition with center C = {t}
and leaves Li = {pi}.

Refer to value assignments to C as center states sC , and to value assign-
ments to a leaf L as leaf states sL. These are the atomic composites of the
search graph built by decoupled search. The search starts with the center state
sC0 := s0|C . It then augments sC0 with a full exploration of leaf states reachable
given sC0 : it iteratively applies all leaf actions aL, affecting only some L, where
sC0 |= pre[aL]|C . Denote the set of all sL reached this way by SL[sC0 ]. Then sC0
together with SL[sC0 ] forms a decoupled state. In the example, sC0 = {(t, l)} and
SL[sC0 ] = {(pi, l), (pi, T ) | 1 ≤ i ≤ n}. Observe that, given the star-topology
decomposition, the leaves do not interact with each other, so any combination
of leaf states sL1 , . . . , sLn ∈ SL[sC0 ] is jointly reachable. Intuitively, fixing the
center, the leaves – which interact only via the center – become independent.

Given a decoupled state (sC , SL[sC ]), the successor center states rC are those
reached from sC by some center action aC , affecting C, that is applicable: sC |=
pre[aC ]|C , and for every leaf L there exists sL ∈ SL[sC ] s.t. sL |= pre[aC ]|L. Each
such rC reached by aC is added to the search graph. Then rC is augmented into a
decoupled state by (1) selecting from SL[sC ] the subset SL[sC , aC ] of leaf states
compatible with aC , and (2) setting SL[rC ] to be all leaf states reachable from
rC and SL[sC , aC ].

The goal G is reached if, for some decoupled state (sC , SL[sC ]) in the search
graph, sC |= G|C and for every leaf L there exists sL ∈ SL[sC ] s.t. sL |= G|L.

In the example, the only successor center state of (sC0 , SL[sC0 ]) is sC1 =
{(t, r)} reached by the center action aC = drivelr. We get SL[sC1 ] =
{(pi, l), (pi, T ), (pi, r) | 1 ≤ i ≤ n}, because (1) all sL ∈ SL[sC0 ] are compati-
ble with drivelr, and (2) given sC1 we can unload each package at r. Thus the
goal is reached in the decoupled state (sC1 , SL[sC1 ]). The complete decoupled state
space SF of the task containes a third decoupled state (sC2 , SL[sC2 ]) that results
from applying driverl in (sC1 , SL[sC1 ]).

2.2 Correctness of Decoupling for Reachability Analysis

Given the star-topology decomposition, any decoupled state (sC , SL[sC ]) repre-
sents exactly the states s reachable in the original task using the same center-
action sequence πC that led to (sC , SL[sC ]). Those s are exactly the ones where
s|C = sC and, for every leaf L, s|L ∈ SL[sC ]. In particular, the goal is reach-
able in decoupled search iff it is reachable in the original task. When the goal is



Star-Topology Decoupling in SPIN 107

reached in (sC , SL[sC ]), a solution can be extracted by backchaining from the
leaf states G|L ∈ SL[sC ]. Duplicate decoupled states can be pruned, so explor-
ing the set of reachable decoupled states in any order leads to a finite decoupled
search space SF . In consequence, star-topology decoupling guarantees correct-
ness for reachability checking. The claim of Theorem 1 follows directly from
previous results of Gnad and Hoffmann [15].

Theorem 1. Star-topology decoupling captures reachability exactly, i.e., a state
s is reachable in a task iff there exists a decoupled state in SF in which s is
represented. A path to s can be extracted in time linear in |SF |. Checking if a
conjunctive property c is reachable in SF is linear in the number of decoupled
states.

Proof (sketch). Every decoupled state (sC , SL[sC ]) captures exactly those states
that are reachable via the center-action subsequence πC that led to (sC , SL[sC ]).
Thus, all states reachable in the task are represented by a decoupled states in
SF . A path to an s in (sC , SL[sC ]) can efficiently be obtained by augmenting πC

with leaf action sequences for each leaf component by backchaining from the leaf
states that compose s. Reachability of a conjunctive property c in a decoupled
state is done by checking, for each partition P separately, if the projection of c
onto P is reached. ��

2.3 Complementarity from Other Methods

Several other methods relate to star-topology decoupling in that they can also
lead to exponential reductions in search effort. Decoupling can still be exponen-
tially more efficient, as our transportation example shows:

There are exactly three reachable decoupled states: the initial state
(sC0 , SL[sC0 ]), its successor (sC1 , SL[sC1 ]) from drivelr, plus the only successor of
(sC1 , SL[sC1 ]), reached via driverl (which differs from (sC0 , SL[sC0 ]) because (pi, r)
is reached for each pi).

The separation into partial component states may be reminiscent of abstrac-
tion methods, which over-approximate the set of reachable states given one such
component (e.g. [4,7,22,23]). Star-topology decoupling is very different, par-
titioning the variables to avoid enumerating combinations of independent leaf
component assignments. Given this particular structure, star-topology decou-
pling captures reachability exactly.

The search space under strong stubborn set (SSS) pruning has size exponen-
tial in the number of packages. This is because an SSS on the initial state must
include a loadpil action to make progress to the goal, must include drivelr as
that interferes with loadpil, and must then include all other loadpj l actions as
these interfere with drivelr. So all subsets of packages that may be loaded at l
are enumerated.

In unfolding, the non-consumed preconditions of load actions on the truck
position induce read arcs. Both ways of encoding these (consuming and produc-
ing the truck position, or place replication) result in an unfolding enumerating



108 D. Gnad et al.

all subsets of loaded packages. In contextual Petri nets that support read arcs
natively [2], the same explosion arises in the enumeration of “event histories”.

Symmetry breaking (e.g. [5,11,13,33,35]) is complementary to star-topology
decoupling, simply because the leaf partitions do not need to be symmetric. In
our example, where the leaves are symmetric, even perfect symmetry breaking
keeps track of the number of packages at every location, enumerating all possible
combinations.

3 Implementation in SPIN

We implemented star-topology decoupling in the most recent version of SPIN
(6.4.7). We focus on reachability properties only (more general properties are a
topic for future work). Our current implementation is preliminary in that it does
not handle the full Promela language accepted by SPIN itself. We specify the
handled fragment below. Let us first describe the star-topology decomposition
and the modified search algorithms.

In Promela models, a star-topology decomposition arises directly from the
formulation as interacting processes. Each process becomes a leaf component on
its own; but anything that affects more than a single process is grouped into
the center component. Concretely, each of the statements st in a process type t
corresponds to either a local transition, affecting only local variables or advanc-
ing the process location; or a global transition, namely a channel operation, a
statement that affects a global variable, or a run command invoking a new pro-
cess. Then the instantiations of t can be made leaf processes if t contains at
least one local transition. All remaining processes, global variables, as well as
channels, together form the center component. This partitioning ensures that
every interaction across processes involves the center component. Center and
leaf states are defined as assignments to the respective parts of the model, and
center (resp. leaf) transitions are ones that affect the center (resp. only that
leaf). The annotation of statements to become leaf or center transitions is done
fully automatic.

Our implementation of decoupled search is minimally intrusive. We keep
SPIN’s current state now to store the center state sC . Alongside now , we main-
tain a data structure storing the associated set SL[sC ] of reached leaf states. The
decoupled search algorithm is then adopted as follows. The primary search only
branches over center transitions, i.e., center processes and center transitions in
leaf processes. We loop over SL[sC ] to determine the center transitions enabled
by the reached leaf states. A center transition tC applied to a decoupled state
(sC , SL[sC ]) can have updates on leaf processes, so we need to compute the
set SL[sC , tC ] as before, and apply the leaf updates of tC to the states in that
set. Afterwards, SL[sC , tC ] is augmented by all reachable leaf states to obtain
the successor decoupled state (rC , SL[rC ]). We perform duplicate checking over
decoupled states, testing the center states first to save runtime.

The remaining issue with our implementation is SPIN’s parsing process. Due
to the generation of model-specific code, the distinction between local (leaf)



Star-Topology Decoupling in SPIN 109

and global (center) transitions cannot be identified anymore within the verifier
itself, but must be identified at Promela level. SPIN’s parsing process must be
extended to identify the leaf-vs-center information, and to communicate that to
the verifier. Currently, our implementation supports this for assignments, con-
ditions, basic control constructs (do. . . od, if. . . fi), all unary and binary opera-
tors, channel operations (send/receive, both synchronous and buffered), and run
commands. We do not yet support timeout, unless, and channel polling state-
ments (empty/full/. . . ), nor the process constraints priority and provided,
nor more complex constructs like c-code and inline. For atomic and d step
sequences, we handle basic compounds of statements, series of conditions, assign-
ments, and channel operations, but not more complex control flows.

Regarding the relation to other search methods used in SPIN, partial-order
reduction is orthogonal, and potentially exponentially worse, as we have already
shown in the planning context. The same is true of statement merging, which
can only reduce the number of states local to a process, merging statements
that only touch local variables. It cannot merge statements that have conditions
on global variables, and thus cannot tackle the exponential search space size
in our transportation example. Similar arguments apply to reduction methods
based on τ -confluence (e.g. [20,21]). Note also that leaf transitions, while local
to a process, may be relevant to the property being checked (e.g. be part of a
conjunctive reachability property as in planning).

4 Experiments

We performed experiments on several case studies, selected to suit the Promela
fragment we can currently handle, and selected to showcase the potential of star-
topology decoupling. We emphasize that the experiments are preliminary and
we do not wish to make broad claims regarding their significance. Our imple-
mentation and all models used in the below are available at https://bitbucket.
org/dagnad/decoupled-spin-public.

We run the scalable variant of Peterson’s Mutex algorithm from Lynch [31],
an elevator control model developed by Armin Biere and used as benchmark in
several papers (e.g. [9,10]), the X.509 protocol from Jøsang [26], and a client-
server communication protocol. The latter is a toy example we created for the
purpose of this study, as a simple pattern to highlight the kind of structure rele-
vant to star-topology decoupling. The model consists of a server process handling
requests from a scalable number of client processes. Communication is via two
channels. In star-topology decoupling all processes become leaf components, and
the technique is beneficial if there is local content within each client. To show
this, we experiment with two variants, EmptyC where the clients do nothing
other than communicating with the server, and NonEmptyC where each client
increments a local variable from 0 to 1. For illustrative purposes, we also include
the transportation planning example described earlier. Modeling this in Promela
is straightforward. We scale the number of packages from 1 to 50.

https://bitbucket.org/dagnad/decoupled-spin-public
https://bitbucket.org/dagnad/decoupled-spin-public


110 D. Gnad et al.

SPIN -M -POR SPIN Star-topology decoupling (STD)
Model Time Mem #S D Time Mem #S D Time Mem #S D

Peterson 3 0.04 0.13 33434 6924 0 0.13 2999 615 0 0.13 274 120
4 19 1.14 8886434 1703147 0.53 0.21 533083 165342 0.1 0.13 6698 1615
5 - - - - 124 10.08 76620358 25309679 4.16 0.27 153548 27392
6 - - - - - - - - 157 4.79 3503908 473228

Elevator 3 0.23 0.14 99057 4609 0.12 0.13 78284 4950 0.06 0.13 7081 590
4 3.15 0.19 685169 29487 1.49 0.17 498676 30239 0.42 0.16 37095 1643
5 15.5 0.44 3620470 28638 5.02 0.33 2354211 27634 2.38 0.26 115077 1630
6 95.7 1.86 18813600 30818 26.7 1.13 10868993 29712 7.35 0.65 359163 1728
7 676 10.31 97574250 32998 153 5.56 49636481 31790 25.5 2.08 1119285 1826
8 - - - - 782 26.62 224704000 33868 95.5 7.51 3483243 1924
9 - - - - - - - - 360 27 10825893 2022

X.509 1.58 0.18 403311 91 0 0.13 3054 57 0 0.13 1090 35

Client- 6 0.72 0.15 141312 16235 0.08 0.13 32296 6830 0.15 0.14 13128 755
Server- 7 4.84 0.21 745472 63236 0.42 0.15 143741 27442 0.74 0.19 51037 1607
EmptyC 8 31.3 0.59 3801088 263835 2.05 0.24 507967 104759 3.3 0.42 192464 3297

9 199 2.83 18874368 1062399 8.53 0.44 2206702 370926 14.6 1.36 708597 6274
10 1160 12.38 91750400 4252067 35 1.66 8140911 1277049 63.2 5.34 2558800 13414
11 - - - - 149 4.45 29856762 4335070 256 21.11 9093557 28150
12 - - - - 609 21.06 109424300 14937082 - - - -

Client- 5 2.69 0.18 450560 65354 0.05 0.13 23614 6209 0.04 0.13 3245 324
Server- 6 30.2 0.73 4816896 518833 0.33 0.15 132210 32645 0.21 0.15 13128 755
NonEmptyC 7 416 7.6 49545216 4256969 2.12 0.27 708019 172048 1.04 0.21 51037 1607

8 - - - - 14 0.74 3813278 882008 4.86 0.53 192464 3297
9 - - - - 83.8 3.79 19384754 4254923 20.4 1.87 708597 6274
10 - - - - 480 22.14 95568530 19967819 87.1 7.57 2558800 13414
11 - - - - - - - - 369 30.39 9093557 28150

Transport- 4 0.22 0.13 112735 329 0 0.13 31018 311 0 0.13 18 8
Planning 5 3.85 0.19 1240092 978 0.36 0.14 237249 892 0 0.13 21 9

6 47.8 0.95 13641019 2923 3.14 0.24 1815310 2698 0 0.13 24 10
7 728 12.8 150051220 8756 29 1.07 13954478 6404 0 0.13 27 11
8 - - - - 269 8.03 107967020 19740 0 0.13 30 12
50 - - - - - - - - 0.01 0.13 156 54

Fig. 3. Performance of SPIN with default options (SPIN), disabling statement merging
(-M) and partial-order reduction (-POR), and with star-topology decoupling (STD).
We show runtime (in seconds) and memory consumption (in GB), as well as the number
of stored states (#S), and the maximum search depth (D) reported by SPIN. Best
runtime/memory is highlighted in bold face.

We compare our decoupled-search SPIN (STD) to SPIN 6.4.7 with standard
settings, providing no additional command line options (SPIN), and to a config-
uration disabling statement merging (-M) and partial-order reduction (-POR).
All configurations exhaust the entire state space, using the verifier options -A
-E. Restricting ourselves to safety properties, we removed any never claims from
the models. We use runtime (memory) limits of 60 min (32 GB). Figure 3 shows
the results, scaling each case study until all configurations run out of memory
(indicated by a “-”).

STD works very well in Peterson, significantly reducing memory consumption
and runtime. To a lesser extent, STD also has advantages in Elevator and X.509.
In Client-Server, as expected STD is beneficial only if there is local content in the
clients. In the transportation case study adopted from planning, STD excels. This
is not a relevant observation in model checking per se, but points to the power
star-topology decoupling may in principle have over previous search methods in
SPIN.



Star-Topology Decoupling in SPIN 111

The number of decoupled states is consistently smaller than the number
of states in SPIN (and, e.g., by 2 orders of magnitude in Peterson). Where the
reduction is relatively small, it is outweighed by the runtime overhead of handling
decoupled states. Regarding the search depth, keep in mind that the maximum
depth of STD is that of the center transitions only. The depth bound can, thus,
in general be kept significantly smaller for STD, leading to a reduced memory
consumption for the search stack.

5 Conclusion

Star-topology decoupling is a novel approach to reduce state space size in check-
ing reachability properties. Our implementation in SPIN is still preliminary, but
exhibits encouraging performance on some case studies. As work in the planning
domain has already shown, star-topology decoupling is orthogonal to, and may
have exponential advantages over, partial-order reduction, symmetry breaking,
symbolic representations, and heuristic search. It can also be fruitfully combined
with all of these [15–18].

We believe that the technique’s application to model checking is promising,
and we hope that our preliminary study will have an impact in this direction.
Foremost, more realistic case studies are required. Client-server architectures,
and concurrent programs under weak memory constraints (e.g. [1,25,30,36]),
carry promise insofar as such models might exhibit relevant local structure
to be exploited in leaf components: client/process parts that may read the
server/shared memory state, and that may have indirect effects thereupon, but
that do not update it directly.

An important research challenge is the extension to liveness properties. This
can be approached by encoding the property that is to be checked as a finite
automaton that is added to the center component. We can then perform a lasso
search in the decoupled state space. This should work similar as in explicit state
search, yet potentially leads to more interaction between center and leaves, which
has a negative influence on the performance of star-topology decoupling. Further
research topics include the combination with other search techniques like (lossy)
state compression, and application to other model checking frameworks.

Acknowledgments. Daniel Gnad was partially supported by the German Research
Foundation (DFG), as part of project grant HO 2169/6-1, “Star-Topology Decoupled
State Space Search”.

References

1. Abd Alrahman, Y., Andric, M., Beggiato, A., Lafuente, A.L.: Can we efficiently
check concurrent programs under relaxed memory models in maude? In: Escobar,
S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 21–41. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12904-4 2

2. Baldan, P., Bruni, A., Corradini, A., König, B., Rodŕıguez, C., Schwoon, S.: Effi-
cient unfolding of contextual Petri nets. Theoret. Comput. Sci. 449, 2–22 (2012)

https://doi.org/10.1007/978-3-319-12904-4_2
https://doi.org/10.1007/978-3-319-12904-4_2


112 D. Gnad et al.

3. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003)

4. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334
(1998)

5. Domshlak, C., Katz, M., Shleyfman, A.: Enhanced symmetry breaking in cost-
optimal planning as forward search. In: Bonet, B., McCluskey, L., Silva, J.R.,
Williams, B. (eds.) Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS 2012). AAAI Press (2012)

6. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. In: Valmari [38], pp. 19–34

7. Edelkamp, S.: Planning with pattern databases. In: Cesta, A., Borrajo, D. (eds.)
Proceedings of the 6th European Conference on Planning (ECP 2001), pp. 13–24.
Springer (2001). https://www.aaai.org/ocs/index.php/ECP/ECP01/paper/view/
7280

8. Edelkamp, S.: Promela planning. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003.
LNCS, vol. 2648, pp. 197–213. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-44829-2 13

9. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45139-0 5

10. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit-state model checking
in the validation of communication protocols. Int. J. Softw. Tools Technol. Transf.
5(2–3), 247–267 (2004)

11. Emerson, E.A., Sistla, A.P.: Symmetry and model-checking. Formal Methods Syst.
Des. 9(1/2), 105–131 (1996)

12. Esparza, J., Römer, S., Vogler, W.: An improvement of Mcmillan’s unfolding algo-
rithm. Formal Methods Syst. Des. 20(3), 285–310 (2002)

13. Fox, M., Long, D.: The detection and exploitation of symmetry in planning prob-
lems. In: Pollack, M. (ed.) Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI 1999), pp. 956–961. Morgan Kaufmann, Stock-
holm, Sweden, August 1999

14. Gnad, D., Hoffmann, J.: Beating LM-cut with hmax (sometimes): Fork-decoupled
state space search. In: Brafman, R., Domshlak, C., Haslum, P., Zilberstein, S.
(eds.) Proceedings of the 25th International Conference on Automated Planning
and Scheduling (ICAPS 2015). pp. 88–96. AAAI Press (2015)

15. Gnad, D., Hoffmann, J.: Star-topology decoupled state space search. Artif. Intell.
257, 24–60 (2018)

16. Gnad, D., Torralba, Á., Hoffmann, J.: Symbolic leaf representation in decoupled
search. In: Fukunaga, A., Kishimoto, A. (eds.) Proceedings of the 10th Annual
Symposium on Combinatorial Search (SOCS 2017). AAAI Press (2017)

17. Gnad, D., Torralba, Á., Shleyfman, A., Hoffmann, J.: Symmetry breaking in star-
topology decoupled search. In: Proceedings of the 27th International Conference
on Automated Planning and Scheduling (ICAPS 2017). AAAI Press (2017)

18. Gnad, D., Wehrle, M., Hoffmann, J.: Decoupled strong stubborn sets. In: Kamb-
hampati, S. (ed.) Proceedings of the 25th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2016), pp. 3110–3116. AAAI Press/IJCAI (2016)

19. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Lecture Notes in Computer
Science, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60761-7

https://www.aaai.org/ocs/index.php/ECP/ECP01/paper/view/7280
https://www.aaai.org/ocs/index.php/ECP/ECP01/paper/view/7280
https://doi.org/10.1007/3-540-44829-2_13
https://doi.org/10.1007/3-540-44829-2_13
https://doi.org/10.1007/3-540-45139-0_5
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7


Star-Topology Decoupling in SPIN 113

20. Groote, J.F., van de Pol, J.: State space reduction using partial τ -confluence. In:
Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 383–393. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44612-5 34

21. Groote, J.F., Sellink, M.P.A.: Confluence for process verification. In: Lee, I.,
Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 204–218. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-60218-6 15

22. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent
construction of pattern database heuristics for cost-optimal planning. In: Howe, A.,
Holte, R.C. (eds.) Proceedings of the 22nd National Conference of the American
Association for Artificial Intelligence (AAAI 2007), pp. 1007–1012. AAAI Press,
Vancouver, BC, Canada, July 2007

23. Helmert, M., Haslum, P., Hoffmann, J., Nissim, R.: Merge and shrink abstraction:
a method for generating lower bounds in factored state spaces. J. Assoc. Comput.
Mach. 61(3) (2014)

24. Holzmann, G.: The Spin Model Checker - Primer and Reference Manual. Addison-
Wesley, Reading (2004)

25. Jonsson, B.: State-space exploration for concurrent algorithms under weak memory
orderings. SIGARCH Comput. Architect. News 36(5), 65–71 (2008)

26. Jøsang, A.: Security protocol verification using spin. In: The First SPIN Workshop,
Montreal, Quebec, Canada (1995)

27. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI plan-
ning heuristic for directed model checking. In: Valmari [38], pp. 35–52

28. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski,
A., Behrmann, G.: Uppaal/DMC – abstraction-based heuristics for directed model
checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
679–682. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 52

29. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via
Russian doll abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 203–217. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 15

30. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 339–353. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36742-7 24

31. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
32. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-

fication of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-56496-9 14

33. Rintanen, J.: Symmetry reduction for SAT representations of transition systems.
In: Giunchiglia, E., Muscettola, N., Nau, D. (eds.) Proceedings of the 13th Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2003), pp.
32–41. Morgan Kaufmann, Trento, Italy (2003)

34. Rodŕıguez, C., Schwoon, S.: Cunf: a tool for unfolding and verifying petri nets with
read arcs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
492–495. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8 42

35. Starke, P.: Reachability analysis of petri nets using symmetries. J. Math. Model.
Simul. Syst. Anal. 8(4/5), 293–304 (1991)

https://doi.org/10.1007/3-540-44612-5_34
https://doi.org/10.1007/3-540-60218-6_15
https://doi.org/10.1007/978-3-540-71209-1_52
https://doi.org/10.1007/978-3-540-71209-1_52
https://doi.org/10.1007/978-3-540-78800-3_15
https://doi.org/10.1007/978-3-540-78800-3_15
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/3-540-56496-9_14
https://doi.org/10.1007/3-540-56496-9_14
https://doi.org/10.1007/978-3-319-02444-8_42


114 D. Gnad et al.

36. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
311–326. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 21

37. Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1(4),
297–322 (1992)

38. Valmari, A. (ed.): SPIN 2006. LNCS, vol. 3925, pp. 19–34. Springer, Heidelberg
(2006). https://doi.org/10.1007/11691617 2

39. Wehrle, M., Helmert, M.: Efficient stubborn sets: generalized algorithms and selec-
tion strategies. In: Chien, S., Do, M., Fern, A., Ruml, W. (eds.) Proceedings of the
24th International Conference on Automated Planning and Scheduling (ICAPS
2014). AAAI Press (2014)

https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1007/11691617_2


Joint Forces for Memory Safety Checking

Marek Chalupa(B), Jan Strejček, and Martina Vitovská

Masaryk University, Brno, Czech Republic
{xchalup4,strejcek,xvitovs1}@fi.muni.cz

Abstract. The paper describes a successful approach to checking com-
puter programs for standard memory handling errors like invalid pointer
dereference or memory leaking. The approach is based on four well-
known techniques, namely pointer analysis, instrumentation, static pro-
gram slicing, and symbolic execution. We present a particular very effi-
cient combination of these techniques, which has been implemented in
the tool Symbiotic and won by a large margin the MemSafety category
of SV-COMP 2018. We explain the approach and provide a detailed
analysis of effects of particular components.

1 Introduction

A popular application of formal methods in software development is to check
whether a given program contains some common defects like assertion violations,
deadlocks, race conditions, or memory handling errors. In this paper, we focus
on the last mentioned group consisting of the following types of errors:

– invalid dereference (e.g. null pointer dereference, use-after-free)
– invalid deallocation (e.g. double free)
– memory leak

We present the approach to memory safety checking of sequential C programs
implemented in Symbiotic [7], the winner of the MemSafety category of SV-
COMP 2018. The official competition graph in Fig. 1 shows that Symbiotic

(represented by the rightmost line) won by a considerable margin. One can also
see that the tool is impressively fast: it would win even with its own time limit
lowered to 1 s for each benchmark (the competition time limit was 900 s).

In general, our approach to memory safety checking combines static data-
flow analysis with compile-time instrumentation. Static data-flow analyses for
memory safety checking [11,14,35] proved to be fast and efficient. However, they
typically work with under- or over-approximation and thus tend to produce false
alarms or miss some errors. Instrumentation, usually used for runtime monitor-
ing, extends the program with code that tracks the memory allocated by the
program and that checks correctness of memory accesses and absence of mem-
ory leaks. If a check fails, the instrumented program reaches an error location.

The research is supported by The Czech Science Foundation, grant GA18-02177S.

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 115–132, 2018.
https://doi.org/10.1007/978-3-319-94111-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_7&domain=pdf


116 M. Chalupa et al.

1

10

102

103
C
P
U

ti
m
e
[s
]

2LS
CBMC

CPA-Seq
DepthK

ESBMC-incr
ESBMC-kind

Forester
Map2Check
PredatorHP
Symbiotic

UAutomizer
UKojak
UTaipan

-200 -100 0 100 200 300 400 500
Accumulated score

Fig. 1. The quantile plot taken from https://sv-comp.sosy-lab.org/2018/results/ rep-
resenting the results of SV-COMP 2018 in the category MemSafety. For each tool, the
plot shows what accumulated score would the tool achieve if the time limit for checking
a single benchmark is set to a given time. The scoring schema assigns 1 point for every
detected error provided that the tool generates an error witness which is confirmed by
an independent witness checker, 1 point for the verification of a safe program (and 1
additional point if a correctness witness is generated and confirmed), and a high penalty
(−16 or −32 points) for an incorrect answer. Further, the overall score is weighted by
the size of subcategories. Precise description can be found at: https://sv-comp.sosy-
lab.org/2018/rules.php

We combine both approaches along with static program slicing to get a
reduced instrumented program that contains a reachable error location if and
only if the original program contained a memory safety error. Reachability anal-
ysis is then performed to reveal possible errors in manipulation with the memory.
This is the most expensive step of our approach.

The basic schema of our approach is depicted in Fig. 2. First, the program
is instrumented. The instrumentation process has been augmented such that
it reduces the amount of inserted code with the help of a data-flow analysis,
namely an extended form of pointer analysis. We reduce the inserted code by
the following three improvements:

(I1) We do not insert a check before a pointer dereference if the pointer anal-
ysis guarantees that the operation is safe. For example, when the pointer
analysis says that a given pointer always refers to the beginning of a global
variable and a dereference via this pointer does not use more bytes than
the size of the global variable, we know that the dereference is safe and we
do not insert any check before it.

(I2) If the pointer analysis cannot guarantee safety of a pointer dereference, but
it says that the pointer refers into a memory block of a fixed known size,
we insert a simpler check that the dereference is within the bounds of the
block.

https://sv-comp.sosy-lab.org/2018/results/
https://sv-comp.sosy-lab.org/2018/rules.php
https://sv-comp.sosy-lab.org/2018/rules.php


Joint Forces for Memory Safety Checking 117

program

staged
instrumentation

extended
pointer analysis

slicing

symbolic execution

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

– no error
– error found:

• invalid dereference
• invalid deallocation
• memory leak

– other (unknown, timeout, . . . )

instrumentation needed?

yes/no

Fig. 2. The schema of our approach.

(I3) We track only information about memory blocks that can be potentially
used by some of the inserted checks.

Note that interconnecting the instrumentation with a pointer analysis is not
completely straightforward. Since typical pointer analyses do not care whether
a memory block was freed or its lifetime has ended, a pointer analysis could
mark some parts of programs as safe even when they are not (e.g. dereferencing
a freed memory). For this reason, we needed to extend pointer analysis such
that it takes into account information about freeing heap-allocated memory and
the lifetime of local variables. Due to (I3), we perform the instrumentation in
two stages. During the first stage we insert checks and remember which memory
blocks are relevant for these checks. The second stage inserts the code tracking
information about the relevant blocks.

After instrumentation, the program is statically sliced in order to remove the
parts that are irrelevant for the reachability of inserted error locations. Finally,
we use symbolic execution to perform the reachability analysis.

Our instrumentation extends the program with real working code, not just
with calls to undefined functions that are to be interpreted inside a verifier tool.
The advantage of instrumenting the whole machinery for checking memory safety
into the analyzed program (instead of inserting calls to place-holder functions
interpreted by a verifier or instead of monitoring the memory inside the tool) is
that the program is extended in tool-independent manner and any tool (working
with the same program representation) can be used to perform the reachability
analysis. Moreover, the instrumented program can be even compiled and run
(provided the original program was executable). The disadvantage is that the
reachability analysis tools that have problems with precise handling of compli-
cated heap-allocated data structures may struggle with handling the inserted
functions since these typically use structures like search trees for tracking the
state of memory blocks.



118 M. Chalupa et al.

The approach is implemented in the tool Symbiotic, which builds upon
the llvm framework [22,24]. Hence the analyzed C program is compiled into
llvm before the instrumentation starts. llvm is an intermediate representation
language on the level of instructions that is suitable for verification for its sim-
plicity. Examples contained in this paper are also in llvm, which is slightly
simplified to improve readability. For the needs of presentation, we explain few
of the llvm instructions: alloca instruction allocates memory on the stack and
returns its address, load reads a value from the address given as its operand,
store writes a given value to the memory on the address given as the other
operand. Finally, call instruction is used to call a given function. When there
is any other instruction used in the paper, its semantics is described in relevant
places in the text.

This paper focuses mainly on the instrumentation part, as we use a standard
static program slicing based on dependency graphs [12] and a standard symbolic
execution [20]. The rest of the paper is organized as follows. Section 2 describes
the basic version of code instrumentation for checking memory safety that does
not use any auxiliary analysis. Section 3 introduces the extended pointer analysis
and explains the instrumentation improvements (I1)–(I3). Section 4 is devoted
to the implementation of our approach in Symbiotic. Section 5 presents exper-
imental results comparing Symbiotic with state-of-the-art tools for memory
safety checking and illustrating the contribution of instrumentation improve-
ments and program slicing to the overall performance. Related work is discussed
in Sect. 6.

2 Basic Instrumentation

To check memory safety, our basic instrumentation inserts a code that tracks
all allocated memory blocks (including global and stack variables) and checks
all memory accesses at run-time. Similarly as Jones and Kelly [19], for every
allocated block of memory we maintain a record with its address and size. The
records are stored in three lists:

– StackList for blocks allocated on the stack
– HeapList for blocks allocated on the heap
– GlobalsList for global variables

Additionally, we maintain DeallocatedList for blocks on the heap that were
already deallocated. This list can be safely omitted as it serves only to provide
more precise error descriptions. For example, the information in this list enables
us to distinguish double free from generic invalid deallocation, or use-after-free
from vague invalid dereference error.

To maintain the three lists, after each allocation we call one of
the functions remember stack(addr , size) or remember heap(addr , size) or
remember global(addr , size). Before every deallocation, we call function
handle free(addr) that checks that addr points to the beginning of a mem-
ory block allocated on the heap and removes the corresponding record from



Joint Forces for Memory Safety Checking 119

1. %p = alloca i32*

call remember stack(%p, 8)

call check pointer(%p, 8)

2. store null to %p

3. %addr = call malloc(20)

call remember heap(%addr, 20)

call check pointer(%p, 8)

4. store %addr to %p

call handle free(%addr)

5. call free(%addr);

check pointer(%p, 8)

6. %tmp = load %p

check pointer(%tmp, 4)

7. store i32 1 to %tmp

%p = alloca i32*

call remember stack(%p, 8)

store null to %p

%addr = call malloc(20)

call remember heap(%addr, 20)

store %addr to %p

call handle free(%addr)

call free(%addr);

%tmp = load %p

check pointer(%tmp, 4)

store i32 1 to %tmp

Fig. 3. Instrumentation of a code with an invalid pointer dereference on line 7. The
code on the left is instrumented by the basic instrumentation while the code on the
right is instrumented using the improvement (I1) described in Sect. 3. We assume that
the width of a pointer is 8 bytes and the width of an integer (in llvm denoted as the
type i32) is 4 bytes.

HeapList . Since local variables on the stack are destroyed when a function
finishes, we call function destroy stack() to remove relevant records from
StackList right before returning from a function. Further, before every instruc-
tion loading or storing n bytes from/to the address addr we call function
check pointer(addr , n) to check that the memory operation is safe. Finally,
we insert check leaks() at the end of main function to check that HeapList is
empty.

During runtime, there can be situations when a pointer is incorrectly shifted
to a different valid object in memory (e.g. when two arrays are allocated on the
stack one next to the other, a pointer may overflow from the first one to the sec-
ond one). In this case, the checking function finds a record for the object pointed
to by the pointer and it does not raise any error even though the pointer points
outside of its base object. To overcome this problem, some approaches instru-
ment also every pointer arithmetic operation [9,19,31]. We do not instrument
pointer arithmetic as we do not execute the code but pass it to a verification
tool that keeps strict distinction between objects in memory. Therefore, a pointer
derived from an object cannot overflow to a different object.

An example of a basic instrumentation is provided in Fig. 3 (left). Allo-
cations on lines 1 and 3 are instrumented with calls to remember stack and
remember heap, respectively. The address of the memory allocated by the call
to malloc is stored to %p on line 4. This memory is then freed and handle free is
called in reaction to this event. The call of check pointer before line 7 reveals
use-after-free error as the value of %p loaded on line 6 is the address of the
memory allocated on line 3 and freed on line 5.



120 M. Chalupa et al.

3 Instrumentation Improvements

All suggested instrumentation improvements rely on an extended pointer analy-
sis. Hence, we first recall the standard pointer analysis and describe its extension.

3.1 Extended Pointer Analysis

Roughly speaking, a standard pointer analysis computes for each pointer vari-
able its points-to set containing all memory locations the variable may point to.
Here a memory location is an abstraction of a concrete object located in mem-
ory during runtime. A frequent choice used also by our analysis is to abstract
these objects by instructions allocating them. For example, the object allocated
on line 3 in Fig. 3 is represented by memory location 3:malloc(20) referring
to the function call that allocates the memory and its line number. Note that
one memory location can represent more objects, for example when the allo-
cation is within a program loop. Besides the memory locations, points-to sets
can also contain two special elements: null if the pointer’s value may be null,
and unknown if the analysis fails to establish information about any referenced
memory location.

The precision of pointer analysis can be tuned in several directions. We
focus on flow-sensitivity and field-sensitivity. A pointer analysis is called flow-
sensitive [16] if it takes into consideration the flow of data in the program and
computes specific points-to information for every control location in the pro-
gram. On the contrary, flow-insensitive analyses ignore the execution order of
instructions and compute summary information about a pointer that holds at
any control location in the program. For instance, in Fig. 3 a flow-insensitive anal-
ysis would tell us that %tmp may point either to null or to the memory location
3:malloc(20) due to the assignments on lines 2 and 4. The flow-sensitive anal-
ysis can tell us that %tmp may point only to 3:malloc(20). In the context of
standard programming languages, one has to specify a control location when ask-
ing a flow-sensitive pointer analysis for the points-to set of some pointer variable.
When working with llvm, we do not do that as llvm programs are in the SSA
form [8] where every program variable is assigned at a single program location
only. A pointer analysis is called field-sensitive if it differentiates between indi-
vidual elements of arrays and structures. We achieve field-sensitivity by refining
information in points-to sets with offsets (e.g. p points to memory location A at
offset 4).

Standard pointer analyses ignore information whether a memory block was
freed or whether the lifetime of a local variable has ended because of the end
of its scope. Even though such events do not change pointer values, they are
crucial if we want to use pointer analysis to optimize the instrumentation process.
Consider the dereference on line 7 in Fig. 3. Usual flow- and field-sensitive pointer
analysis tells us that the pointer %tmp points to the location 3:malloc(20) at
offset 0 and thus writing 4 bytes to that memory seems to be safe. However, it
is not as this memory has been already freed on line 5.



Joint Forces for Memory Safety Checking 121

There exist sophisticated forms of pointer analysis that can model the heap
and the stack and provide information about deallocation and ceased lifetime
of memory objects (e.g. shape analysis [16,29]), but these are too expensive for
our use case. Instead, we extended a simple flow- and field-sensitive Andersen’s
style [1] pointer analysis so that it can track whether a pointer variable can
possibly point to an invalidated memory (i.e. a memory that was freed or its
lifetime ended). In such a case, it includes invalidated in its points-to set. The
extension is straightforward. Whenever the pointer analysis passes the end of
a function, we traverse the points-to information and to all pointers that may
point to a local object we add the invalidated element. Similarly, when free
is called, we add invalidated element to the points-to set of pointers that may
point to the freed object.

More formally, the extended pointer analysis assigns to every pointer variable
p the corresponding points-to set

ptset(p) ⊆ (Mem × Offset) ∪ {null, unknown, invalidated},

where Mem is the set of memory locations and Offset = N0 ∪ {?} is the set of
non-negative integers extended with a special element ‘?’ denoting an unknown
offset. In the following, we assume that the information computed by the pointer
analysis is sound, i.e. every address that can be assigned to a pointer variable p
during runtime has a corresponding element in ptset(p) (where unknown pointer
covers any address).

(I1) Reduce the Number of Checks

The extended pointer analysis can often guarantee that each possible memory
dereference performed by a particular instruction is safe. Let us assume that
an instruction reads or writes n bytes from/to the memory pointed by a pointer
variable p. The extended pointer analysis guarantees its safety if ptset(p) contains
neither null nor unknown nor invalidated, and for every (A, offset) ∈ ptset(p)
it holds that every object represented by memory location A contains at least
offset + n bytes. Formally, the access is safe if

– ptset(p) ∩ {unknown, null, invalidated} = ∅ and
– for each (A, offset) ∈ ptset(p) it holds that offset �= ? and offset+n ≤ size(A),

where size(A) denotes the minimum size of the memory objects represented by
A if it is known at compile time, otherwise it denotes 0 (and thus the condition
does not hold as n ≥ 1).

Before instrumenting a memory access with a check, we query the extended
pointer analysis. If the analysis says that the memory access is safe, the check is
not inserted. For example, in Fig. 3 the dereferences of the variable %p on lines
2, 4, and 6 are safe and thus need not be instrumented with a check. However,
we insert a check before line 7 because the analysis says that %tmp may point to
an invalidated memory. Figure 3 (right) provides the example code instrumented
using the improvement (I1).



122 M. Chalupa et al.

1. %array = alloca [10 x i32]

call remember stack(%array, 10*4)

2. %m = call input()

3. %tmp = getelementptr %array, %m

call check bounds(%tmp, 4, %array, 0, 40)

4. store 1 to %tmp

Fig. 4. Instrumentation of a code using the simpler, constant-time check. Recall that
we assume that the width of an integer (i32) is 4 bytes.

(I2) Simplify Checks When Possible

The function check pointer(addr , n) used by our instrumentation approach to
check validity of memory accesses is not cheap. It searches the lists of records
(StackList , HeapList , and GlobalsList) for the one that represents the memory
block where addr points to. Hence, it has a linear complexity with respect to
the number of records in the lists. Here we present an improvement that can
sometimes replace this check with a simpler, constant-time check.

Let us assume that there is an instruction accessing n bytes at the memory
pointed by a pointer variable p1 and such that the extended pointer analysis can-
not guarantee its safety. Further, assume that the value of p1 has been computed
as a pointer p0 shifted by some number of bytes. Instead of a possibly expensive
call check pointer(p1, n), we can insert a simpler check if we know the size of
the memory block referred by p0 and where precisely p0 points into the object
(i.e. its offset). Formally, we insert the simpler check before a potentially unsafe
dereference of p1 if

– ptset(p0) ∩ {unknown, null, invalidated} = ∅ and
– there exist size0 > 0 and offset0 �= ? such that, for each (A, offset) ∈ ptset(p0),

it holds that size(A) = size0 and offset = offset0.

Indeed, in this case we can compute the actual offset of p1 as offset1 = offset0 +
(p1 −p0) and we know the size of the object that p1 points into. The dereference
is safe iff all the accessed bytes are within the bounds of the memory object,
i.e. 0 ≤ offset1 and offset1 +n ≤ size0. This constant-time check is implemented
by the function check bounds(p1, n, p0, offset0, size0).

Figure 4 provides an example where the simpler check is applied before
the last instruction. In this example, an array of ten integers is allocated on
line 1. The instruction %tmp = getelementptr %array, %m on line 3 returns
the address of the m-th element of the array, i.e. the address %array increased
by 4m bytes. Line 4 stores integer 1 on this address. The extended pointer anal-
ysis cannot determine the offset of this address as it depends on the user input.
However, it can determine that %array points to the beginning (i.e. at offset 0)
of the block of the size 40. Hence, the call to check bounds is inserted instead
of the usual check pointer.



Joint Forces for Memory Safety Checking 123

(I3) Extension with Staged Instrumentation

Although the previous two instrumentation improvements eliminate or simplify
checks of dereference safety, the approach still tracks all memory allocations.
However, it is sufficient to track only memory blocks that are relevant for some
check. For example, the code in Fig. 3 (right) remembers records for both alloca-
tions on lines 1 and 3, but no record corresponding to the allocation on line 1 is
ever used: handle free(%addr) searches only HeapList and the extended pointer
analysis tells us that the pointer checked by check pointer(%tmp, 4) can never
point to the location 1:alloca i32*. Hence, the call to remember stack inserted
after line 1 can be safely omitted. Note that we always track all allocations on
heap as they are relevant for the memory leaks checking.

In order to insert only relevant calls to remember stack and remember global
functions, we perform the instrumentation in two stages.

1. In the first stage, checks are inserted as described before. Additionally, for
every inserted check pointer call, we remember its first argument, i.e. the
pointer variable. In the first stage, we also insert all calls to remember heap,
handle free, and destroy stack.

2. The second stage inserts calls to remember stack and remember global. For
every memory location A corresponding to a global variable or some alloca-
tion on the stack, we check whether any pointer variable remembered in the
first stage can point into the memory location A. Formally, we check that
there exists some remembered pointer p such that (A, offset) ∈ ptset(p) for
some offset , or unknown ∈ ptset(p). We insert the call to remember stack or
remember global only if the answer is positive. Further, we insert the call to
check leaks at the end of main function only if some call to remember heap
was inserted in the first stage.

Note that in the first stage we do not remember arguments of check bounds
introduced by (I2) as this function does not search the lists of records.

In Figs. 3 (right) and 4, the presented staged instrumentation would not insert
any call to remember stack.

In general, inserting fewer calls to functions that create records has a positive
effect on the speed of reachability analysis since StackList and GlobalsList are
shorter. All the described extensions together can significantly reduce the amount
of inserted code. This has also a positive effect on the portion of code possibly
removed by program slicing before the reachability analysis.

4 Implementation

The described approach was implemented in Symbiotic [7]. The tool consists
of three main parts, namely instrumentation module, slicing module and the
external state-of-the-art open-source symbolic executor Klee [5]. Moreover, the
instrumentation and slicing modules rely on our library called dg that pro-
vides dependence graph construction and various pointer analyses including the
extended pointer analysis described in Sect. 3.



124 M. Chalupa et al.

Instead of implementing a single-purpose instrumentation for memory safety
checking, we developed a configurable instrumentation module [34]. The instru-
mentation process is controlled by a configuration file provided by the user. A
configuration can specify an arbitrary number of instrumentation stages, each
defined by a set of instrumentation rules. Every rule describes which instructions
should be matched and how to instrument them. At the moment, the instrumen-
tation can insert only call instructions as it is sufficient for most use-cases. An
instrumentation rule can trigger an additional action like setting a flag or remem-
bering values or variables used by the matched instructions. Further, a rule can
be guarded by conditions of several kinds. A condition can claim that

– a given flag has a particular value,
– a given value or a variable has been already remembered (or not),
– an external plugin returns a particular answer on a given query constructed

with parts of matched instructions.

A rule with conditions is applied only if all conditions are satisfied. For example,
in memory safety checking we use the extended pointer analysis as a plugin in
order to instrument only dereferences that are not safe due to (I1).

Besides a configuration, the user has to also provide definitions of functions
whose calls are inserted into the program. For checking memory safety, these
functions are written in C and translated to llvm. After a successful instrumen-
tation, these functions are linked to the instrumented code.

We implemented a static backward slicing algorithm based on dependence
graphs [12] as we have not found any suitable program slicer for llvm bitcode.
The algorithm has been extended to a simple form of inter-procedural slicing,
where dependence graphs for procedures are connected by inter-procedural edges
and the slice is obtained by one backward search instead of using the traditional
two-pass algorithm introduced in [18].

Symbiotic applies code optimizations provided by the llvm framework after
instrumentation and again after slicing. Finally, Klee is executed on the sliced
and optimized code to check for reachability of the inserted error locations.

The tool Symbiotic and its components are licensed under the MIT and
Apache-2.0 open-source licenses and can be found at:

https://github.com/staticafi/symbiotic

Klee is licensed under the University of Illinois license.

5 Experimental Evaluation

The section is divided into two parts. First, we compare several setups of the
described approach in order to show which ingredients are essential for good
performance. The second part provides a closer comparison of Symbiotic with
the other two winning tools in the MemSafety category of SV-COMP 2018.

https://github.com/staticafi/symbiotic


Joint Forces for Memory Safety Checking 125

Table 1. For each instrumentation configuration, the table shows the total numbers of
inserted calls of check pointer, check bounds, and rememeber* functions. Further, it
shows the total numbers of instructions in instrumented benchmarks (as sent to Klee)
with and without slicing, together with their ratio in the column relative size. Finally,
the table shows the numbers of solved benchmarks with and without slicing.

Inserted calls Number of instruct. Solved benchmarks

check

pointer

check

bounds

remember* w/o

slicing

with

slicing

relative

size

w/o slicing with slicing

safe unsafe safe unsafe

Basic 32333 0 10511 575k 343k 60% 116 132 118 131

(I1) 4930 0 10511 538k 303k 56% 119 132 125 132

(I1) + (I2) 4750 180 10511 538k 301k 56% 119 132 126 132

(I1) + (I3) 4930 0 830 478k 174k 36% 130 132 180 132

(I1) + (I2) + (I3) 4750 180 792 478k 171k 36% 132 132 181 132

5.1 Contribution of Instrumentation Improvements and Slicing

We evaluated 10 setups of the approach presented in this paper. More precisely,
we consider five different configurations of instrumentation referred as basic,
(I1), (I1)+(I2), (I1)+(I3), and (I1)+(I2)+(I3), each with and without slicing.
The basic instrumentation is the one described in Sect. 2 and the other four
configurations employ the corresponding improvements presented in Sect. 3. We
do not consider other configurations as they are clearly inferior.

For the evaluation, we use 390 memory safety benchmarks from SV-COMP
20181, namely 326 benchmark from the MemSafety category and another 64
benchmarks of the subcategory TerminCrafted, which was not included in the
official competition this year. The benchmark set consists of 140 unsafe and 250
safe benchmarks. The unsafe benchmarks contain exactly one error according to
the official SV-COMP rules. All experiments were performed on machines with
Intel(R) Core(TM) i7-3770 CPU running at 3.40 GHz. The CPU time limit for
each benchmark was set to 300 s and the memory limit was 6 GB. We used the
utility Benchexec [4] for reliable measurement of consumed resources.

The results are presented in Table 1 and Fig. 5. The numbers of inserted
calls in the table show that the extended pointer analysis itself can guarantee
safety of approximately 85% of all dereferences. In other words, (I1) reduces the
number of inserted checks to 15%. Further, (I2) can replace a relatively small
part of these checks by simpler ones. The improvement (I3) reduces the number
of inserted memory-tracking calls to around 8% in both configurations (I1)+(I3)
and (I1)+(I2)+(I3).

The numbers of instructions show that (I3) not only reduces the instrumented
program size, but also substantially improves efficiency of program slicing. Alto-
gether, all instrumentation improvements and slicing reduce the total size of
programs to 30% comparing to the basic instrumentation without slicing.

Obviously, the most important information is the numbers of solved bench-
marks. We can see that all setups detected 132 unsafe benchmarks except the

1 https://github.com/sosy-lab/sv-benchmarks/, revision tag svcomp2018.

https://github.com/sosy-lab/sv-benchmarks/


126 M. Chalupa et al.

Fig. 5. Quantile plot of running times of the considered setups (excluding timeouts and
errors). The plot depicts the number of benchmarks (x-axis) that the tool is able to
solve in the given configuration with the given time limit (y-axis) for one benchmark.
We omitted the lines for (I1) with and without slicing as they almost perfectly overlap
with the corresponding lines for (I1)+(I2).

basic configuration with slicing, where the slicing procedure did not finish for
one benchmark within the time limit. As the considered benchmark set contains
only 140 unsafe benchmarks, this confirms the generic observation that for ver-
ification tools, finding a bug is usually easy. The situation is different for safe
benchmarks. All considered setups verified between 116 and 132 safe benchmarks
except (I1)+(I3) with slicing and (I1)+(I2)+(I3) with slicing, which verified 180
and 181 benchmarks, respectively. This performance gap is also well illustrated
by Fig. 5. The lines clearly show that even though the instrumentation improve-
ments help on their own, it is the combination of (I1), (I3) and program slicing
that helps considerably. The effect of (I2) is rather negligible.

5.2 Comparison of Symbiotic, PredatorHP, and UKojak

Now we take a closer look at the performance of the top three tools in Mem-
Safety category of SV-COMP 2018, namely Symbiotic, PredatorHP [17], and
UKojak [28]. What we present and interpret are the official data of this cate-
gory available on the competition website https://sv-comp.sosy-lab.org/2018/.
Note that SV-COMP 2018 used 900 s timeout and memory limit of 15 GB per
benchmark.

Table 2 shows the numbers of solved safe and unsafe benchmarks in each
subcategory and total time needed to solve these benchmarks. None of the tools
reported any incorrect answer. Symbiotic was able to solve the most bench-
marks (almost 80%) in very short time compared to the other two tools. More-
over, all unsafe benchmarks solved by PredatorHP and UKojak were also
solved by Symbiotic. PredatorHP is better in solving safe instances of Heap
and LinkedLists subcategories. Let us note that while Symbiotic and UKo-

jak are general purpose verification tools, PredatorHP is a highly specialized
tool for shape analysis of C programs operating with pointers and linked lists.

https://sv-comp.sosy-lab.org/2018/


Joint Forces for Memory Safety Checking 127

Table 2. Numbers of bechmarks solved by the three considered tools in each subcate-
gory of MemSafety. The last row shows total CPU time spent on all solved benchmarks.

Symbiotic PredatorHP UKojak

subcategory
number of

solved
safe

solved
safe

solved
safe

benchmarks unsafe unsafe unsafe

Arrays 69 62
44

7
0

44
27

71781

Heap 180 145
55

148
66

51
26

90 82 25

LinkedLists 51 27
3

43
19

4
0

44242

Other 26 26
23

18
16

23
23

023

total 326 260
125

216
101

122
76

135 115 46

CPU time [s] 310 2100 11000

In particular, it uses an abstraction allowing to represent unbounded heap-
allocated structures, which is something at least Symbiotic cannot handle.

Scatter plots in Fig. 6 provide another comparison of the tools. On the left,
one can immediately see that running times of UKojak are much longer than
these of Symbiotic for nearly all benchmarks. The fact that UKojak is written
in Java and starting up the Java Virtual Machine takes time can explain a fixed
delay, but not the entire speed difference. Moreover, there are 141 benchmarks
solved by Symbiotic and unsolved by UKojak, compared to only 3 benchmarks
where the situation is the other way around. In many of these cases, UKojak

gave up or crashed even before time limit.
The plot on the right shows that PredatorHP outperforms Symbiotic on

simple benchmarks solved by both tools within one second. Further, there are 34
benchmarks where Symbiotic timed out but which were successfully solved by
PredatorHP. On the other hand, Symbiotic decided 78 benchmarks that were
not decided by PredatorHP. For most of these benchmarks, PredatorHP

gave up very quickly as its static analysis is unable to decide. Moreover, many
benchmarks were solved by Symbiotic within a second whereas PredatorHP

computed much longer. To sum up, it seems that the benefits of Symbiotic and
PredatorHP are complementary to a large extent.



128 M. Chalupa et al.

Fig. 6. Scatter plots comparing Symbiotic with UKojak (left) and with Preda-

torHP (right) by their running times (in seconds) on individual benchmarks. The
symbols × represent benchmarks solved by both tools, ◦ are benchmarks solved by
Symbiotic but not by the other tool, � are benchmarks solved by the other tool but
not by Symbiotic, and � are benchmarks that were solved by neither of the tools.

6 Related Work

There is plenty of papers on runtime instrumentation for detecting memory
errors, but very little that optimize this process for the context of software verifi-
cation. Nevertheless, the basic principles and ideas are shared no matter whether
the instrumented code is executed or passed to a verification tool. Therefore, we
give an overview of tools that perform compile-time instrumentation although
they do not verify but rather monitor the code. Further, an overview of tools for
verification of memory safety is also provided.

6.1 Runtime Monitoring Tools

Our instrumentation process is similar to the one of Kelly and Jones [19] or
derived approaches like [9,31]. The difference is that we do not need to instru-
ment also every pointer arithmetic (as explained in Sect. 2) and we use simple
singly-linked lists instead of splay trees to store records about allocated memory.

A different approach than remembering state of the memory in records is
taken by Tag-Protector [32]. This tool keeps records and a mapping of memory
blocks to these records only during the instrumentation process (the resulting
program does not maintain any lookup table or list of records) and insert ghost
variables into the program to keep information needed for checking correctness
of memory accesses (e.g. size and base addresses of objects). These variables are
copied along with associated pointers. We believe a similar technique could be
used to speed up our approach.



Joint Forces for Memory Safety Checking 129

AddressSanitizer [33] is a very popular plugin for compile-time instrumenta-
tion available in modern compilers. It uses shadow memory to keep track of the
program’s state and it is highly optimized for direct execution.

To the extent of our knowledge, none of the above-mentioned approaches use
static analysis to reduce the number or the runtime cost of inserted instructions.

CCured [27] is a source-to-source translator for C programming language
that transforms programs to be memory safe and uses static analysis to reduce
the complexity of inserted runtime checks. Static analysis is used to divide point-
ers into three classes: safe, sequential, and wild pointers, each of them deserv-
ing gradually more expansive tracking and checking mechanism. CCured does
not use a lookup table but extends the pointer representation to keep also the
metadata (the so-called “fat” pointers). The static analysis used by CCured is
less precise as it uses unification-based approach opposed to our analysis which
is inclusion-based. Therefore, our analysis can prune the inserted checks more
aggressively.

NesCheck [26] uses very similar static analysis as CCured to reduce the num-
ber of inserted checks, but does not transform the pointer representation while
instrumenting. Instead, it keeps metadata about pointer separately in a dense,
array-based binary search tree.

SAFECode [10] is an instrumentation system that uses static analyses to
reduce the number of runtime checks. In fact, they also suggest to use this
reduction in the context of verification. SAFECode does not try to eliminate the
tracking of memory blocks as our tool does. However, it employs automatic pool
allocation [23] to make lookups of metadata faster.

As far as we known, the idea of using pointer analysis to reduce the fragment
of memory that needs to be tracked appeared only in [36]. Even though the high-
level concept of this work seems similar to our approach, they focus on runtime
protection against exploitation of unchecked user inputs.

6.2 Memory Safety Verification Tools

In the rest of this section, we move from runtime memory safety checkers to
verification tools. Instrumentation is common in this context as well, but using
static analysis to reduce the number of inserted checks has not caught as much
attention as we believe it deserves.

Modern verification tools also support checking memory safety usually
through some kind of instrumentation, but the instrumented functions are
interpreted directly by the tool (they are not implemented in the program).
CPAchecker [3] and UltimateAutomizer [15] insert checks for correctness of mem-
ory operations directly into their internal representation. SMACK [6] and Sea-
Horn [13] instrument code on llvm level. SeaHorn uses ghost variables for check-
ing out-of-bound memory accesses via assertions inserted into code, and shadow
memory to track other types of errors. SMACK inserts a check before every
memory access. Map2Check [30] is a memory bug hunting tool that instruments
programs and then uses verification to find possible errors in memory operations.
It used bounded model checking as the verification backend, but it has switched



130 M. Chalupa et al.

to llvm and Klee recently [25]. All these tools use no static analysis to reduce
inserted checks.

One of few publications that explore possibilities of combination of static
analysis and memory safety verification is [2], where authors apply CCured to
instrument programs and then verify them using BLAST. The main goal was to
eliminate as much inserted checks as possible using model checking.

Finally, CBMC [21] injects checks into its internal code representation.
Checking its source code reveals that it uses a kind of lightweight field-insensitive
taint analysis to reduce the number of inserted checks.

7 Conclusion

We have presented a technique for checking memory safety properties of pro-
grams which is based on a combination of instrumentation with extended pointer
analysis, program slicing, and symbolic execution. We describe how the extended
pointer analysis can be used to reduce the number of inserted checks and showed
that in some cases these checks can be further simplified. We introduced an
instrumentation improvement that allows us to dramatically reduce also the
number of tracked memory blocks. These instrumentation enhancements com-
bined with program slicing result in much faster analysis of error location reach-
ability that is performed by symbolic execution. We implemented this technique
in the tool Symbiotic that has consequently won the MemSafety category of
Software Verification Competition 2018 and thus proved to be able to compete
with state-of-the-art memory safety verification tools.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. Ph.D thesis, DIKU, University of Copenhagen (1994)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9 2

3. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

4. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23404-5 12

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008, 8–10 December
2008, San Diego, California, USA, Proceedings, pp. 209–224. USENIX Association
(2008)

6. Carter, M., He, S., Whitaker, J., Rakamarić, Z., Emmi, M.: SMACK software verifi-
cation toolchain. In: Proceedings of the 38th IEEE/ACM International Conference
on Software Engineering (ICSE) Companion, pp. 589–592. ACM (2016)

https://doi.org/10.1007/978-3-540-31984-9_2
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23404-5_12


Joint Forces for Memory Safety Checking 131

7. Chalupa, M., Vitovská, M., Strejček, J.: SYMBIOTIC 5: boosted instrumentation.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 442–446.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 29

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient
method of computing static single assignment form. In: Conference Record of the
Sixteenth Annual ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, 11–13 January 1989, pp. 25–35. ACM (1989)

9. Dhurjati, D., Adve, V.: Backwards-compatible array bounds checking for C with
very low overhead. In: Proceedings of the 28th International Conference on Soft-
ware Engineering, ICSE 2006, pp. 162–171. ACM (2006)

10. Dhurjati, D., Kowshik, S., Adve, V.: SAFECode: enforcing alias analysis for weakly
typed languages. In: PLDI 2006: Proceedings of the 2006 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 144–157. ACM
(2006)

11. Dor, N., Rodeh, M., Sagiv, M.: Detecting memory errors via static pointer analysis
(preliminary experience). In: Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE 1998,
pp. 27–34. ACM (1998)

12. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. In: Paul, M., Robinet, B. (eds.) Programming 1984. LNCS,
vol. 167, pp. 125–132. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
12925-1 33

13. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

14. Guyer, S.Z., Lin, C.: Error checking with client-driven pointer analysis. Sci. Com-
put. Program. 58(1), 83–114 (2005)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

16. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software
Tools and Engineering, PASTE 2001, Snowbird, Utah, USA, 18–19 June 2001, pp.
54–61. ACM (2001)

17. Hoĺık, L., Kotoun, M., Peringer, P., Šoková, V., Trt́ık, M., Vojnar, T.: Predator
shape analysis tool suite. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol.
10028, pp. 202–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49052-6 13

18. Horwitz, S., Reps, T.W., Binkley, D.W.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

19. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: AADEBUG, pp. 13–26 (1997)

20. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

21. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-642-54862-8_26


132 M. Chalupa et al.

22. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: 2nd IEEE / ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20–24 March 2004, San Jose, CA, USA,
CGO 2004, pp. 75–88. IEEE Computer Society (2004)

23. Lattner, C., Adve, V.: Automatic pool allocation: Improving performance by con-
trolling data structure layout in the heap. SIGPLAN Not. 40(6), 129–142 (2005)

24. The LLVM compiler infrastructure (2017). http://llvm.org
25. Map2check tool (2018). https://map2check.github.io/
26. Midi, D., Payer, M., Bertino, E.: Memory safety for embedded devices with

nesCheck. In: Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS 2017, pp. 127–139. ACM (2017)

27. Necula, G.C., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy
code. SIGPLAN Not. 37(1), 128–139 (2002)

28. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: ULTIMATE KOJAK with
memory safety checks. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol.
9035, pp. 458–460. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46681-0 44

29. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In:
Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 133–149. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45306-7 10

30. Rocha, H.O., Barreto, R.S., Cordeiro, L.C.: Hunting memory bugs in C programs
with Map2Check. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 934–937. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 64

31. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2004, San
Diego, California, USA, pp. 159–169. The Internet Society (2004)

32. Saeed, A., Ahmadinia, A., Just, M.: Tag-protector: an effective and dynamic detec-
tion of out-of-bound memory accesses. In: Proceedings of the Third Workshop on
Cryptography and Security in Computing Systems, CS2 2016, pp. 31–36. ACM
(2016)

33. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: a fast
address sanity checker. In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC 2012, pp. 28–28. USENIX Association (2012)

34. Vitovská, M.: Instrumentation of LLVM IR. Master’s thesis, Masaryk University,
Faculty of Informatics, Brno (2018)

35. Xia, Y., Luo, J., Zhang, M.: Detecting memory access errors with flow-sensitive
conditional range analysis. In: Yang, L.T., Zhou, X., Zhao, W., Wu, Z., Zhu, Y.,
Lin, M. (eds.) ICESS 2005. LNCS, vol. 3820, pp. 320–331. Springer, Heidelberg
(2005). https://doi.org/10.1007/11599555 32

36. Yong, S.H., Horwitz, S.: Protecting C programs from attacks via invalid pointer
dereferences. In: Proceedings of the 9th European Software Engineering Conference
Held Jointly with 11th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-11, pp. 307–316. ACM (2003)

http://llvm.org
https://map2check.github.io/
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/3-540-45306-7_10
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/11599555_32


Model-Checking HyperLTL for Pushdown
Systems

Adrien Pommellet1(B) and Tayssir Touili2(B)

1 LIPN and Université Paris-Diderot, Paris, France
pommellet@irif.fr

2 LIPN, CNRS, and Université Paris 13, Villetaneuse, France
touili@lipn.fr

Abstract. Temporal logics such as LTL are often used to express safety
or correctness properties of programs. However, they cannot model com-
plex formulas known as hyperproperties introducing relations between
different execution paths of a same system. In order to do so, the logic
HyperLTL adds existential and universal quantifications of path vari-
ables to LTL. The model-checking problem, that is, determining if a
given representation of a program verifies a HyperLTL property, has been
shown to be decidable for finite state systems. In this paper, we prove
that this result does not hold for Pushdown Systems nor for the sub-
class of Visibly Pushdown Systems. We therefore introduce an algorithm
that over-approximates the model-checking problem with an automata-
theoretic approach. We also detail an under-approximation method based
on a phase-bounded analysis of Multi-Stack Pushdown Systems. We then
show how these approximations can be used to check security policies.

1 Introduction

The analysis of execution traces of programs can be used to prove correctness
properties often expressed with the unifying framework of the linear temporal
logic LTL. However, a LTL formula only quantifies a single execution trace of a
system; LTL can’t express properties on multiple, simultaneous executions of a
program.

These properties on sets of execution traces are known as hyperproperties.
Many safety and security policies can be expressed as hyperproperties; this is in
particular true of information-flow analysis. As an example, the non-interference
policy states that if two computations share the same public inputs, they should
have identical public outputs as well, even if their private inputs differ. This
property implies a relation between computations that can’t be expressed as a
simple LTL formula.

HyperLTL is an extension of LTL introduced by Clarkson et al. in [6] that
allows the universal and existential quantifications of multiple path variables
that range over traces of a system in order to define hyperproperties. As an
example, the formula ∀π1,∀π2, (aπ1 ∧ aπ2) ⇒ X ((bπ1 ∧ bπ2) ∨ (cπ1 ∧ cπ2)) means

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 133–152, 2018.
https://doi.org/10.1007/978-3-319-94111-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_8&domain=pdf


134 A. Pommellet and T. Touili

that, given two path variables π1 and π2 in the set Tracesω(S) of infinite traces
of a system S, if π1 and π2 verify the same atomic property a at a given step,
then they should both verify either b or c at the next step.

Clarkson et al. have shown that the model-checking problem S |= ψ of Hyper-
LTL, that is, knowing if the set of traces of a system S verifies the HyperLTL
formula ψ, can be solved when S is a finite state transition system (i.e. equivalent
to a finite state automaton). However, simple transition models cannot accu-
rately model programs with infinite recursion and procedure calls. Pushdown
Systems (PDSs) that can simulate the call stack of a program are commonly
used instead. The call stack stores information about the active procedures of a
program such as return addresses, passed parameters and local variables.

Unfortunately, we show in this paper that the model-checking problem of
HyperLTL for PDSs is undecidable: the set of traces of a PDS is a context-free
language, and deciding whether the intersection of two context-free languages
is empty or not remains an undecidable problem that can be reduced to the
model-checking problem by using a HyperLTL formula that synchronizes traces.

On the other hand, determining the emptiness of the intersection of two
visibly context-free languages is decidable. This class of languages is generated
by Visibly Pushdown Automata (VPDA), an input-driven subclass of pushdown
automata (PDA) first introduced by Alur et al. in [1]: at each step of a computa-
tion, the next stack operation will be determined by the input letter in Σ read,
depending on a partition of the input alphabet. We study the model-checking
problem of HyperLTL for Visibly Pushdown Systems (VPDSs), and prove that
it is also undecidable, as it happens to be a reduction of the emptiness problem
for Two-Stack Visibly Pushdown Automata (2-VPDA), which has been shown
to be undecidable by Carotenuto et al. in [4].

To overcome these undecidability issues, since the emptiness of the inter-
section of a context-free langage with regular sets is decidable, one idea is to
consider the case where only one path variable of the formula ranges over the set
of traces Tracesω(P) of a PDS or VPDS P, while the other variables range over
a regular abstraction α(Tracesω(P)). Using an automata-theoretic approach,
this idea allows us to over-approximate the model-checking problem of Hyper-
LTL formulas that only use universal quantifiers ∀ with the exception of at most
one path variable: if the HyperLTL formula holds for the over-approximation, it
holds for the actual system as well.

On the other hand, under-approximations can be used to discover errors in
programs: if a HyperLTL formula does not hold for an under-approximation of
the model-checking problem, it does not hold for the actual system as well. We
show that the model-checking problem for PDSs of HyperLTL formulas that only
use universal quantifiers ∀ can be under-approximated by relying on a bounded-
phase model-checking of a LTL formula for a Multi-Stack Pushdown System
(MPDS), where a phase is a part of a run during which there is at most one
stack that is popped from, as defined by Torre et al. in [16].



Model-Checking HyperLTL for Pushdown Systems 135

Related Work. Clarkson and Schneider introduced hyperproperties in [7] to
formalize security properties, using second-order logic. Unfortunately, this logic
isn’t verifiable in the general case.

However, fragments of it can be verified: in [6], Clarkson et al. formalized the
temporal logics HyperLTL and HyperCTL*, extending the widespread and flex-
ible framework of linear time and branching time logics to hyperproperties. The
model-checking problem of these logics for finite state systems has been shown
to be decidable by a reduction to the satisfiability problem for the quantified
propositional temporal logic QPTL defined in [15].

Proper model-checking algorithms were then introduced by Finkbeiner
et al. in [9]. These algorithms follow the automata-theoretic framework defined
by Vardi et al. in [17], and can be used to verify security policies in circuits. How-
ever, while circuits can be modelled as finite state systems, actual programs can
feature recursive procedure calls and infinite recursion. Hence, a more expressive
model such as PDSs is needed.

In [3,8], the forward and backward reachability sets of PDSs have been shown
to be regular and effectively computable. As a consequence, the model-checking
problem of LTL for PDSs is decidable; an answer can be effectively computed
using an automata-theoretic approach. We try to extend this result to HyperLTL.

Multi-Stack Pushdown Systems (MPDSs) are unfortunately Turing powerful.
Following the work of Qadeer et al. in [13], La Torre et al. introduced in [16]
MPDSs with bounded phases: a run is split into a finite number of phases during
which there is at most one stack that is popped from. Anil Seth later proved
in [14] that the backward reachability set of a multi-stack pushdown system
with bounded phases is regular; this result can then be used to solve the model-
checking problem of LTL for MPDSs with bounded phases. We rely on a phase-
bounded analysis of a MPDS to under-approximate an answer to the model-
checking problem of HyperLTL for PDSs.

Paper Outline. In Sect. 2 of this paper, we provide background on Push-
down Systems (PDSs) and Visibly Pushdown Systems (VPDSs). We define in
Sect. 3 the hyper linear time logic HyperLTL, and prove that its model-checking
problem for PDSs and VPDSs is undecidable. Then, in Sect. 4, we solve the
model-checking problem of HyperLTL on constrained sets of traces then find an
over-approximation of the model-checking problem for PDSs. In Sect. 5, we use
Multi-Stack Pushdown Systems (MPDSs) and bounded phase analysis to under-
approximate the model-checking problem. Finally, in Sect. 6, we apply the logic
HyperLTL to express security properties. Due to a lack of space, detailed proofs
of some theorems can be found in the appendix.

2 Pushdown Systems

2.1 The Model

Pushdown systems are a natural model for sequential programs with recursive
procedure calls [8].



136 A. Pommellet and T. Touili

Definition 1 (Pushdown System). A Pushdown System (PDS) is a tuple
P = (P,Σ, Γ,Δ, c0) where P is a finite set of control states, Σ a finite input
alphabet, Γ a finite stack alphabet, Δ ⊆ P × Γ × Σ × P × Γ ∗ a finite set of
transition rules, and c0 ∈ P × Γ ∗ an initial configuration.

If d = (p, γ, a, p′, w) ∈ Δ, we write d = (p, γ) a−→ (p′, w). We call a the label
of Σ. We can assume without loss of generality that Δ ⊆ P × Γ × Σ × P × Γ≤2

and that c0 is of the form 〈p0,⊥〉, where ⊥ ∈ Γ is a special bottom stack symbol
shared by every PDS on the stack alphabet Γ and p0 ∈ P . A configuration of P
is a pair 〈p,w〉 where p ∈ P is a control state and w ∈ Γ ∗ a stack content.

For each a ∈ Σ, we define a transition relation a−→P on configurations as
follows: if (p, γ) a−→ (p′, w) ∈ Δ, for each w′ ∈ Γ ∗, 〈p, γw′〉 a−→P 〈p′, ww′〉. We
then consider the immediate successor relation →P= ∪

a∈Σ

a−→P . We may omit

the variable P when only a single PDS is being considered.
A run r is a sequence of configurations r = (ci)i≥0 such that ∀i ≥ 0, ci

ai−→P
ci+1, c0 being the initial configuration of P. The word (ai)i≥0 is then said to be
the trace of r. Traces and runs may be finite or infinite. Let Tracesω(P) (resp.
Traces(P)) be the set of all infinite (resp. finite) traces of P.

A Büchi Pushdown Automaton (BPDA) is a pair BP = (P, F ), where P =
(P,Σ, Γ,Δ, c0) is a PDS and F ⊆ P a set of final states. An infinite run r =
(ci)i≥0 of BP and its matching trace (ai)i≥0 are said to be accepting if there
exists at least one infinitely often occurring state f in r such that f ∈ F . The
language Lω(BP) accepted by BP is the set of all accepting traces of BP, and
is said to be ω context-free.

2.2 Visibly Pushdown Systems

We consider a particular subclass of PDSs introduced by Alur et al. in [1]. Let
〈Σc, Σr, Σl〉 be a partition of the input alphabet, where Σc, Σr, and Σl stand
respectively for the call, return, and local alphabets.

Definition 2 (Visibly Pushdown System). A Visibly Pushdown System
(VPDS) over a partition 〈Σc, Σr, Σl〉 of Σ is a PDS P = (P,Σ, Γ,Δ, c0) verify-
ing the following properties:

– if (p, γ1)
a−→ (p′, γ2) ∈ Δ, then a ∈ Σl, γ1 = γ2, and ∀γ ∈ Γ , (p, γ) a−→ (p′, γ) ∈

Δ;
– if (p, γ) a−→ (p′, ε) ∈ Δ, then a ∈ Σr;
– if (p, γ1)

a−→ (p′, γ2γ1) ∈ Δ, then a ∈ Σc, and ∀γ ∈ Γ , (p, γ) a−→ (p′, γ2γ) ∈ Δ;

VPDSs are an input driven subclass of PDSs: at each step of a computa-
tion, the next stack operation will be determined by the input letter in Σ read,
depending on which subset of the partition 〈Σc, Σr, Σl〉 the aforementioned letter
belongs to.

Visibly Pushdown Automata accept the class of visibly pushdown languages.
If a BPDA BP is visibly pushdown according to a partition of Σ, we say it’s a



Model-Checking HyperLTL for Pushdown Systems 137

Büchi Visibly Pushdown Automata (BVPDA). The class of languages accepted
by BVPDA is called ω visibly pushdown languages.

Unlike context-free languages, the emptiness of the intersection of visibly
pushdown languages is a decidable problem and the complement of a visibly
pushdown language is a visibly pushdown language that can be computed. The
same properties also hold for ω visibly pushdown languages.

3 HyperLTL

3.1 The Logic

Let AP be a finite set of atomic propositions used to express facts about a
program; a path is an infinite word in (2AP )ω = T . Let V be a finite set of
path variables. The HyperLTL logic relates multiple paths by introducing path
quantifiers.

Definition 3 (Syntax of HyperLTL). Unquantified HyperLTL formulas are
defined according to the following syntax equation:

ϕ:: = ⊥ | (a, π) ∈ AP × V | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ |
ϕ U ϕ | G ϕ | F ϕ

From then on, we write aπ = (a, π). HyperLTL formulas are defined according
to the following syntax equation:

ψ:: = ∃π, ψ | ∀π, ψ | ϕ such that ϕ is a LTL formula.

where π ∈ V is a path variable.

The existential ∃ and universal quantifiers ∀ are used to define path variables,
to which atomic propositions in AP are bound. A HyperLTL formula is said to
be closed if there is no free variable: each path variable is bound by a path
quantifier once.

As an example, the closed formula ∀π1,∃π2, ϕ means that for all paths π1,
there exists a path π2 such that the formula ϕ holds for π1 and π2. Simple LTL
formulas can be considered as a subclass of closed HyperLTL formulas of the
form ∀π, ϕ with a single path variable.

Let Π : V → T be a path assignment function of V that matches to each
path variable π a path Π(π) ∈ T . If Π(π) = (tj)j≥0, for all i ≥ 0, we define the
i-th value of the path Π(π)[i] = ti and a suffix assignment function Π[i,∞] such
that Π[i,∞](π) = (tj)j≥i.

We first define the semantics of this logic for path assignment functions.

Definition 4 (Semantics of unquantified HyperLTL formulas). Let ϕ be
an unquantified HyperLTL formula. We define by induction on ϕ the following
semantics on path assignment functions:



138 A. Pommellet and T. Touili

Π |= aπ ⇔ a ∈ Π(π)[0]
Π |= ¬ϕ ⇔ Π �|= ϕ

Π |= ϕ1 ∨ ϕ2 ⇔ (Π |= ϕ1) ∨ (Π |= ϕ2)
Π |= ϕ1 ∧ ϕ2 ⇔ (Π |= ϕ1) ∧ (Π |= ϕ2)

Π |= X ϕ ⇔ Π[1,∞] |= ϕ

Π |= ϕ U ψ ⇔ ∃j ≥ 0,Π[j,∞] |= ψ and ∀i ∈ {0, . . . , j − 1} ,Π[i,∞] |= ϕ

Π |= G ϕ ⇔ ∀i ≥ 0,Π[i,∞] |= ϕ

Π |= F ϕ ⇔ ∃i ≥ 0,Π[i,∞] |= ϕ

Π |= ϕ if ϕ holds for a given assignment of path variables defined according
to Π.

Let T : V → 2T be a set assignment function of V that matches to each path
variable π ∈ V a set of paths T (π) ⊆ T . We can now define the semantics of
closed HyperLTL formulas for set assignment functions.

Definition 5 (Semantics of closed HyperLTL formulas). We consider a
closed HyperLTL formula ψ = χ0π0, . . . , χnπn, ϕ, where each χi ∈ {∀,∃} is
an universal or existential quantifier, and ϕ an unquantified HyperLTL formula
using trace variables π0, . . . , πn.

For a given set assignment function T , we write that T |= ψ if for χ0t0 ∈
T (π0), . . ., χntn ∈ T (πn), we have Π |= ϕ, where Π is the path assignment
function such that ∀i ∈ {0, . . . , n}, Π(πi) = ti.

As an example, if ψ = ∀π1,∃π2, ϕ is a closed HyperLTL formula and T is a
set assignment function of V, then T |= ψ if ∀t1 ∈ T (π1), ∃t2 ∈ T (π2) such that
Π |= ϕ, where Π(π1) = t2 and Π(π2) = t2. Intuitively, T |= ψ if, assuming path
variables belong to path sets defined according to T , the closed formula ψ holds.
From then on, we assume that every HyperLTL formula considered in this paper
is closed.

3.2 HyperLTL and PDSs

Let P be a PDS on the input alphabet Σ = 2AP and ψ a closed HyperLTL
formula. We write that P |= ψ if and only if T |= ψ where the set assignment
function T is such that ∀π ∈ V, T (π) = Tracesω(P). Determining whether
P |= ψ for a given PDS P and a given HyperLTL formula ψ is called the model-
checking problem of HyperLTL on PDSs. The following theorem holds:

Theorem 1. The model-checking problem of HyperLTL for PDSs is
undecidable.

The Intuition. We can prove this result by reducing the emptiness of the inter-
section of two context-free languages, a well-known undecidable problem, to the
model-checking problem. Our intuition is to consider two context-free languages
L1 and L2 on the alphabet Σ. As HyperLTL formulas apply to infinite words, we



Model-Checking HyperLTL for Pushdown Systems 139

define two BPDA BP1 and BP2 that accept L1f
ω and L2f

ω respectively, where
f /∈ Σ is a special ending symbol. We then define a PDS P that can simulate
either BP1 or BP2.

We now introduce the formula ψ = ∃π1,∃π2, ϕstart ∧ ϕsync ∧ ϕend: ϕstart

expresses that trace variables π1 and π2 represent runs of BP1 and BP2 respec-
tively, ϕsync means that the two traces are equal from their second letter
onwards, and ϕend implies that the two traces are accepting. Hence, if P |= ψ,
then BP1 and BP2 share a common accepting run, and L1 ∩ L2 �= ∅.

On the other hand, if L1 ∩ L2 �= ∅, there is an accepting trace π common
to BP1 and BP2 and we can define two traces π1 and π2 of P such that the
formula ϕstart ∧ϕsync ∧ϕend holds. Since the emptiness problem is undecidable,
so must be the model-checking problem.

Proof of Theorem 1. Let L1 and L2 be two context-free languages, and
P1 = (P1, Σ ∪ {f}, Γ,Δ1, 〈p10,⊥〉, F1) and P2 = (P2, Σ ∪ {f}, Γ,Δ2, 〈p20,⊥〉, F2)
two PDA accepting L1 and L2 respectively. Without loss of generality, we can
consider that P1 ∩ P2 = ∅. Let e1 /∈ P1, e2 /∈ P2, and f /∈ Σ.

We define two BPDA BPi = (Pi, 2Σ∪{f}, Γ,Δ′
i, 〈pi

0,⊥〉, {ei}) for i = 1, 2,

where Δ′
i is such that (ei, γ)

{f}−−→ (ei, γ) ∈ Δi and (pf , γ)
{f}−−→ (ei, γ) ∈ Δi for

all γ ∈ Γ and pf ∈ Fi, and if (p, γ) a−→ (p′, w) ∈ Δi, then (p, γ)
{a}−−→ (p′, w) ∈ Δ′

i.
If we consider that {a} is equivalent to the label a ∈ Σ ∪ {f}, BP1 and BP2

accept L1f
ω and L2f

ω respectively. Since HyperLTL formulas apply to infinite
words in 2AP , for i = 1, 2, we have designed a BPDA BPi that extends words
in Li by adding a final dead state ei from which the automaton can only output
an infinite sequence of a special ending symbol f .

We consider the PDS P = ({p0} ∪ P1 ∪ P2, {{ι1}, {ι2}} ∪ 2Σ∪{f}, Γ,Δ, c0),

where p0 /∈ P1 ∪ P2, ι1, ι2 /∈ Σ ∪ {f}, c0 = 〈p0,⊥〉, and Δ = {(p0,⊥)
{ι1}−−−→

(p10,⊥), (p0,⊥)
{ι2}−−−→ (p20,⊥)}∪Δ′

1 ∪Δ′
2. The PDS P can simulate either BP1 or

BP2, depending on whether it applies first a transition labelled by {ι1} or {ι2}
from the initial configuration c0.

We introduce the formula ψ = ∃π1,∃π2, ϕstart ∧ ϕsync ∧ ϕend on AP =
{ι1, ι2} ∪ Σ ∪ {f}, where ϕstart = ι1π1

∧ ι2π2
, ϕsync = XG

∧

a∈AP

(aπ1 ⇔ aπ2), and

ϕend = FG (fπ1 ∧ fπ2). We suppose that P |= ψ; ϕstart expresses that trace
variables π1 and π2 represent runs of BP1 and BP2 respectively. ϕsync means
that the two traces are equal from their second letter onwards. ϕend implies that
the two traces are accepting runs.

Therefore, if P |= ψ, then B1 and B2 share a common accepting run and
L1 ∩ L2 �= ∅. On the other hand, if L1 ∩ L2 �= ∅, there is an accepting run π
common to B1 and B2, and we can then find two traces π1 and π2 of P such
that the formula ∃π1,∃π2, ϕstart ∧ϕsync ∧ϕend holds. The emptiness problem is,
however, undecidable, and therefore so must be the model-checking problem. ��

As a consequence of Theorem 1, determining whether T |= ψ for a generic
set assignment function T and a given HyperLTL formula ψ is an undecidable
problem.



140 A. Pommellet and T. Touili

3.3 HyperLTL and VPDSs

Since the emptiness of the intersection of visibly pushdown languages is decid-
able, the previous proof does not apply to VPDSs and one might wonder if the
model-checking problem of HyperLTL for this particular subclass is decidable.
Unfortunately, we can show that this is not the case:

Theorem 2. The model-checking problem of HyperLTL for VPDSs is
undecidable.

The Intuition. In order to prove this theorem, we will rely on a class of two-
stack automata called 2-visibly pushdown automata (2-VPDA) introduced in [4].
In a 2-VPDA, each stack is input driven, but follows its own partition of Σ. The
same input letter may result in different pushdown rules being applied to the
first and second stack: as an example, a transition can push a word on the first
stack and pop the top letter of the second stack, depending on which partition
is used by each stack. Moreover, in a manner similar to VPDA, transitions of
2-VPDA do not depend on the top stack symbols unless they pop them.

It has been shown in [4] that the emptiness problem is undecidable for 2-
VPDA. Our intuition is therefore to prove Theorem 2 by reducing the emptiness
problem for 2-VPDA to the model-checking problem of HyperLTL for VPDSs.
To do so, for a given 2-VPDA D, we define a VPDS P and a HyperLTL formula
ψ on two trace variables such that P |= ψ if and only if D has an accepting run.

P is such that it can simulate either stack of the 2-VPDA. However, both
stacks must be synchronized in order to properly represent the whole automaton:
the content of one stack can lead to a control state switch that may enable a
transition modifying the other stack. The HyperLTL formula ψ determines which
trace variable is related to which stack, synchronizes two runs of P in such a
manner that they can be used to define an execution path of D, and ensure that
this path is an accepting one.

Introducing 2-Visibly Pushdown Automaton. Let Σ be a finite input
alphabet with two partitions Σ = Σcj ∪Σrj

∪Σlj , j ∈ {1, 2}. We then introduce
a 2-pushdown alphabet ℵ = 〈(Σc1 , Σr1 , Σl1) , (Σc2 , Σr2 , Σl2)〉 on Σ.

Definition 6 (Carotenuto et al. [4]). A 2-visibly pushdown automaton (2-
VPDA) over ℵ is a tuple D = (P,Σ, Γ,Δ, c0, F ) where P is a finite set of control
states, Σ a finite input alphabet, Γ a finite stack alphabet, Δ ⊆ (P × Γ × Γ ) ×
Σ × (P × Γ ∗ × Γ ∗) a finite set of transition rules, c0 = 〈p0,⊥,⊥〉 ∈ P × Γ × Γ
an initial configuration, and F ⊆ P a set of final states. Moreover, Δ is such
that ∀d ∈ Δ, and for i ∈ {1, 2}:

– if d is labelled by a letter in Σci , d pushes a word on the i-th stack regardless
of its top stack symbol;

– if d is labelled by a letter in Σri
, d pops the top letter of the i-th stack;

– if d is labelled by a letter in Σli , d does not modify the i-th stack.



Model-Checking HyperLTL for Pushdown Systems 141

The semantics of 2-VPDA is defined in a manner similar to PDA, and so are
configurations, runs, execution paths, languages, and 2-Büchi visibly pushdown
automata (2-BVPDA). The following theorem holds:

Theorem 3 (Carotenuto et al. [4]). The emptiness problem for 2-VPDA is
undecidable.

Proof of Theorem 2. Let D = (P,Σ, Γ,Δ, 〈p0,⊥,⊥〉, F ) be a 2-VPDA on an
input alphabet Σ according to a partition ℵ = 〈(Σc1 , Σr1 , Σl1), (Σc2 , Σr2 , Σl2)〉.
We introduce a 2-BVPDA BD = (P, 2Σ∪{f}, Γ,Δ′, 〈p0,⊥,⊥〉, {e}) such that

(e, γ, γ′)
{f}−−→ (e, γ, γ′) ∈ Δ′ and (pf , γ, γ′)

{f}−−→ (e, γ, γ′) ∈ Δ′ for all γ, γ′ ∈ Γ

and pf ∈ F , and if (p, γ, γ′) a−→ (p′, w, w′) ∈ Δ, then (p, γ, γ′)
{a}−−→ (p′, w, w′) ∈

Δ′ on the input alphabet Σ ∪{f}. Obviously, BD is visibly if we add the symbol
f to Σl1 and Σl2 and accepts L(D)fω, assuming the label {a} is equivalent to
the label a ∈ Σ ∪ {f}.

Let P 1 and P 2 (resp. Δ1 and Δ2) be two disjoint copies of P (resp. Δ′). To
each p ∈ P (resp. d ∈ Δ′), we match its copies p1 ∈ P 1 and p2 ∈ P 2 (resp. d1 ∈
Δ1 and d2 ∈ Δ2). We define a PDS P = ({σ}∪P 1 ∪P 2, {{ι1}, {ι2}, {f}}∪2Δ1 ∪
2Δ2

, Γ, δ, 〈σ,⊥, 〉). The set δ is such that, for each transition d = (p, γ1, γ2)
a−→

(p′, w1, w2) ∈ Δ, a �= f , we add two transitions (p1, γ1)
{d1}−−−→ (p′1, w1) and

(p2, γ2)
{d2}−−−→ (p′2, w2) to δ. If a = f , we add instead (p1, γ1)

{f}−−→ (p′1, w1) and

(p2, γ2)
{f}−−→ (p′2, w2). Transitions in δ are projections of the original transitions

of the 2-BVPDA on one of its two stacks; their label depends on the original

transition in Δ, unless they are labelled by f . Moreover, (σ,⊥)
{ι1}−−−→ (p10,⊥) and

(σ,⊥)
{ι2}−−−→ (p20,⊥) both belong to δ.

P is such that it can either simulate the first or the second stack of the 2-
BVPDA BD, depending on which transition was used first. P is indeed a VPDS:
a suitable partition of its input alphabet can be computed depending on which
operation on the i-th stack transitions in Δ perform. As an example, if d ∈ Δ
pushes a symbol on the first stack and pops from the second, d1 belongs to the
call alphabet and d2, to the return alphabet.

Given a set of trace variables V = {π1, π2} and a predicate alphabet AP =
{ι1, ι2, f} ∪ Δ1 ∪ Δ2, we then consider an unquantified HyperLTL formula ϕ of
the form ϕ = ϕstart ∧ϕsync ∧ϕend, where ϕ’s sub-formulas are defined as follows:

Initialization Formula: ϕstart = ι1π1
∧ ι2π2

; Π |= ϕstart if and only if for
i ∈ {1, 2}, Π[1,∞](πi) is a run that simulates the i-th stack of BD;

Synchronization Formula: ϕsync = XG
∧

d∈Δ

(d1π1
⇔ d2π2

); Π |= ϕstart ∧ ϕsync

if and only if Π[1,∞](π1) and Π[1,∞](π2) can be matched to a common run
of the 2-BVPDA BD;

Acceptation Formula: ϕend = FG (fπ1 ∧ fπ2); Π |= ϕstart ∧ ϕsync ∧ ϕend if
and only if Π[1,∞](π1) and Π[1,∞](π2) can be used to define an accepting
run of the 2-BVPDA BD.



142 A. Pommellet and T. Touili

Therefore, if Π |= ϕ, we have Π(πi) = (ιi, di
1, d

i
2 . . .) for i = 1, 2, and the sequence

of transitions (d1, d2, . . .) ∈ Δω defines an accepting run on BD. Therefore, we
can solve the model-checking problem P |= ∃π1,∃π2, ϕ, if and only if we can
determine whether L (BD) is empty or not, hence, L (D) as well. By here is a
contradiction and the former problem is undecidable. ��

4 Model-Checking HyperLTL with Constraints

Theorem 1 proves that the model-checking problem of HyperLTL for PDSs is
undecidable. Intuitively, this issue stems from the undecidability of the inter-
section of context-free languages. However, since the emptiness problem of the
intersection of a context-free language with regular sets is decidable, one can
think of a way to abstract the set of runs of a PDS for some - but not all - path
variables of a HyperLTL formula as a mean of regaining decidability.

As shown in [2,12], runs of a PDS can be over-approximated in a regular
fashion. Hence, for a given PDS P, if we consider a regular abstraction of the set
of runs α(Tracesω(P)), we can change the set assignment function for a path
variable π in such a manner that T (π) = α(Tracesω(P)) instead of T (π) =
Tracesω(P).

For a set assignment function T on a set of path variables V and a variable
π ∈ V, we say that π is context-free w.r.t. to T if T (π) = Tracesω(P) for a PDS
P. We define regular and visibly pushdown variables in a similar manner.

Let ψ = χ0π0, . . . , χnπn, ϕ be a closed HyperLTL formula on the alphabet
AP with n + 1 trace variables π0, . . . , πn, where χ0 . . . , χn ∈ {∀,∃}. In this
section, we will present a procedure to determine whether T |= ψ in two cases.

1. If the variable π0 is context-free w.r.t. T , and all the other variables are
regular, then we can determine whether T |= ψ or not. We can then
apply this technique in order to over-approximate the model-checking prob-
lem if T (π0) = Tracesω(P), T (πj) = α(Tracesω(P)) for j = 1 . . . n, and
χ1, . . . , χn = ∀. The last n variables can only be universally quantified.
T |= ψ then implies that P |= ψ: indeed, the universal quantifiers on the path
variables that range over the abstracted traces are such that, if the formula
ϕ holds for every run in the over-approximation, then it also holds for every
run in the actual set of traces. This is an over-approximation of the actual
model-checking problem.

2. If there exists a variable πi such that πi is visibly context-free w.r.t. T , and all
the other variables are regular, then we can determine whether T |= ψ or not.
A single path variable at most can be visibly context-free (not necessarily
π0, though), and all the others must be regular. We can then apply this
technique in order to over-approximate the model-checking problem if P is a
VPDS, T (πi) = Tracesω(P), T (πj) = α(Tracesω(P)) and χj = ∀ for j �= i.
Each path variable with the exception of the visibly context-free one must be
universally quantified.



Model-Checking HyperLTL for Pushdown Systems 143

Because of the universal quantifiers on the regular path variables, T |= ψ
implies again that P |= ψ. This is another over-approximation of the model-
checking problem.

Moreover, these over-approximations are accurate for at least one variable in
the trace variable set, as the original, ω context-free (or ω visibly pushdown) set
of runs is assigned to this variable instead of an ω regular over-approximation.

4.1 With One Context-Free Variable and n Regular Variables

Let P be a PDS such that T (π0) = Tracesω(P), and K1, . . . ,Kn, finite state
transition systems (i.e. finite automata without final states) such that for i =
1, . . . , n, T (πi) = Tracesω(Ki).

Theorem 4. If π0 is context-free w.r.t. T and the other variables are regular,
we can decide whether T |= χ0π0, . . . , χnπn, ϕ or not.

To do so, we use the following well-known result:

Lemma 1. Let ϕ be an LTL formula. There exists a Büchi automaton Bϕ on
the alphabet 2AP such that L(Bϕ) = {w ∈ (2AP )ω | w |= ϕ}. We say that Bϕ

accepts ϕ.

An unquantified HyperLTL formula with m trace variables π1, . . . , πm can
be considered as a LTL formula on the alphabet (2AP )m: given a word w on
(2AP )m and a ∈ AP , we say that w |= aπi

if a ∈ wi(0), where wi is the i-th
component of w. We then apply Lemma 1 and introduce a Büchi automaton Bϕ

on the alphabet (2AP )n+1 accepting ϕ. We denote Σ = 2AP .
We then compute inductively a sequence of Büchi automata Bn+1, . . . ,B1

such that:

– Bn+1 is equal to the Büchi automaton Bϕ on the alphabet Σn+1;
– if the quantifier χi is equal to ∃ and Bi+1 = (Q,Σi+1, δ, q0, F ) is a Büchi

automaton on the alphabet Σi+1, let Ki = (S,Σ, δ′, s0) be the finite state
transition system generating T (πi); we now define the Büchi automaton
Bi = (Q × S,Σi, ρ, (q0, s0), F × S) where the set ρ of transitions is such

that if q
(a0,...,ai)−−−−−−→ q′ ∈ δ and s

ai−→ s′ ∈ δ′, then (q, s)
(a0,...,ai−1)−−−−−−−−→

(q′, s′) ∈ ρ. Intuitively, the Büchi automaton Bi represents the formula
∃πi, χi+1πi+1, . . . , χnπn, ϕ; its input alphabet Σi depends on the number of
variables that are not quantified yet;

– if the quantifier χi is equal to ∀, we consider instead the complement B′
i+1 of

Bi+1 and compute its product with Ki in a similar manner to the previous
construction; Bi is then equal to the complement of this product; intuitively,
∀π, ψ = ¬(∃π,¬ψ).

Having computed B1 = (Q,Σ, δ, q0, F ), let P = (P,Σ, Γ,Δ, 〈p0,⊥〉) be
the PDS generating T (π0). We assume that χ0 = ∃. Let BP = (P ×



144 A. Pommellet and T. Touili

Q,Σ,Δ′, 〈(p0, q0),⊥〉, P × F ) be a Büchi pushdown automaton, where the set
of transitions Δ′ is such that if q

a−→ q′ ∈ δ and (p, γ) a−→ (p′, w) ∈ Δ,
then ((p, q), γ) a−→ ((p′, q′), w) ∈ Δ′. BP represents the fully quantified formula
∃π0, χ1π1, . . . , χnπn, ϕ. Obviously, B is not empty if and only if T |= ψ.

If χ0 = ∀, we consider instead the complement B′
1 of B1, then define a Büchi

pushdown automaton BP in a similar manner. B is empty if and only if T |= ψ.
It has been proven in [3,8] that the emptiness problem is decidable for Büchi

pushdown automata. Hence, given our initial constraints on T and ψ, we can
determine whether T |= ψ or not. ��

The Büchi automaton Bϕ has O(2|ϕ|) states; if we assume that all variables
are existentially quantified, the BPDS BP has ν = O(2|ϕ||P||K1| . . . |Kn|) states.
According to [8], checking the emptiness of BP can be done in O(ν2k) operations,
where k is the number of transitions of BP, hence, in O(ν4|Γ |2).

Complementation of a Büchi Automaton may increase its size exponentially,
hence, this technique may incur an exponential blow-up depending on the num-
ber of universal quantifiers.

Application. If we consider that π0 range over Tracesω(P) and that π1, . . . , πn

range over a regular abstraction α(Tracesω(P)) of the actual set of traces, and
we assume that χ1, . . . , χn = ∀, we can apply this result to over-approximate
the model-checking problem, as detailed earlier in this section.

It is worth noting that the complement of an ω context-free language is
not necessarily an ω context-free language. Hence, we can’t use the previous
procedure to check a HyperLTL formula of the form ψ = ∃π,∀π′ϕ where π′

is a context-free variable and π is regular. We know, however, that ω visibly
pushdown languages are closed under complementation. We therefore consider
the case of a single visibly pushdown variable in the following subsection.

4.2 With One Visibly Pushdown Variable and n Regular Variables

Let P be a VPDS such that T (πi) = Tracesω(P), and (Kj)j 	=i finite state
transition systems such that for j �= i, T (πj) = Tracesω(Kj). Unlike the previous
case, the visibly context-free variable no longer has to be the first one π0.

Theorem 5. If a variable πi is visibly pushdown w.r.t. T and the other variables
are regular, we can decide whether T |= χ0π0, . . . , χnπn, ϕ or not.

The proof of this theorem is similar to the proof of Theorem 4. We first build
a sequence of Büchi automata Bn+1, . . . ,Bi+1 in a similar manner to the proof of
Theorem 4, starting from a finite state automaton Bn+1 = Bϕ on the alphabet
Σn+1 representing the unquantified formula ϕ then computing products with
the transition systems Kn+1, . . . ,Ki+1 until we end up with a Büchi automaton
Bi+1 on the alphabet Σi+1.

Having computed Bi+1 = (Q,Σi+1, δ, q0, F ), let P = (P,Σ, Γ,Δ, 〈p0,⊥〉)
be the VPDS generating T (πi). We assume that χi = ∃. Let BPi = (P ×
Q,Σi+1,Δ′, 〈(p0, q0),⊥〉, P ×F ) be a visibly Büchi pushdown automaton, where



Model-Checking HyperLTL for Pushdown Systems 145

Δ′ is such that if q
(a0,...,ai−1,a)−−−−−−−−−→ q′ ∈ δ and (p, γ) a−→ (p′, w) ∈ Δ, then

((p, q), γ)
(a0,...,ai−1,a)−−−−−−−−−→ ((p′, q′), w) ∈ Δ′. BPi is indeed a BVPDA on the alpha-

bet Σi+1 as its stack operations only depend on its i + 1-th variable. If χi = ∀,
we consider instead the complement B′

i+1.
From the i-th variable onwards, we compute a sequence of visibly Büchi

pushdown automata BPi, . . . ,BP0 on the alphabets Σi+1, . . . , Σ1 respectively.
For i ≥ k ≥ 1, if BPk = (P ′, Σk+1,Δ′, 〈p′

0,⊥〉, F ′), Ki = (S,Σ, δ, s0), and χk =
∃, let BPk−1 = (P ′×S,Σk,Δ′′, 〈(p′

0, s0),⊥〉, F ′′×S) be a visibly Büchi pushdown

automaton, where the set of transitions Δ′′ is such that if (p, γ)
(a0,...,ak−1,ai)−−−−−−−−−−→

(p′, w) ∈ Δ′ and q
ak−1−−−→ q′ ∈ δ, then ((p, q), γ)

(a0,...,ak−2,ai)−−−−−−−−−−→ ((p′, q′), w) ∈
Δ′′. The last letter of each tuple always stands for the visibly pushdown path
variable πi: BPk−1 is visibly pushdown as its stack operations only depend on
this variable. If χk = ∀, we consider the complement BP ′

k of BPk instead, which
is a visibly pushdown automaton as well.

We can check the emptiness of BP0. If it is indeed empty, then T |= ψ. ��
It has been proven in [1] that the complement of a VPDA incurs an exponen-

tial blow-up in terms of states. Hence, the technique shown here is exponential
(in terms of time) in the size of P and ϕ.

Application. If we consider that πi range over Tracesω(P) and that πj , j �= i
range over a regular abstraction α(Tracesω(P)) of the actual set of traces, and
we assume that χj = ∀ for j �= i, we can apply this result to over-approximate
the model-checking problem, as detailed earlier in this section.

5 Model-Checking HyperLTL with Bounded Phases

In this section, we use results on Multi-Stack Pushdown Automata to define an
under-approximation of the model-checking problem of HyperLTL formulas with
universal quantifiers for PDSs.

Multi-stack pushdown systems (MPDSs) are pushdown systems with multiple
stacks. Their semantics is defined in a manner similar to PDSs, and so are
configurations, traces, runs, Multi-Stack Pushdown Automata (MPDA), and the
semantics of LTL. MPDA are unfortunately Turing powerful even with only
two stacks. Thus, La Torre et al. introduced in [16] a restriction called phase-
bounding :

Definition 7 (Phases of runs). A run r of a MPDS M is said to be k-phased
if it can be split in a sequence of k runs r1, . . . , rk of M (i.e. r = r1 . . . rk) such
that during the execution of a given run ri, at most a single stack is popped from.

For a given integer k, this restriction can be used to define a phase-bounded
semantics on MPDSs: only traces matched to runs with at most k phases are
considered. It has been proven in [14] that the backward reachability set of
MPDSs with bounded phases is regular and can be effectively computed; this
property can then be used to show that the following theorem holds:



146 A. Pommellet and T. Touili

Theorem 6 (Model-checking with bounded phases [14]). The model-
checking problem of LTL for MPDSs with bounded phases is decidable.

Phase-bounding can be used to under-approximate the set of traces of a
MPDS. If a given LTL property ϕ does not hold for a MPDS M with a phase-
bounding constraint, it does not hold for the MPDS M w.r.t. the usual semantics
as well. We write M |=k ϕ if the LTL formula ϕ holds for traces of M with at
most k phases.

We can use decidability properties of MPDSs with bounded phases to
under-approximate the model-checking problem for pushdown systems. Let
P = (P,Σ, Γ,Δ, c0) be a PDS on the input alphabet Σ = 2AP , and ψ =
∀π1, . . . ,∀πn, ϕ, a HyperLTL formula on n trace variables with only universal
quantifiers.

Our intuition is to define a MPDS M such that each stack represents a path
variable of the HyperLTL formula. This MPDS is the product of n copies of
P. Because ψ features universal quantifiers only, the model-checking problem of
the LTL formula ϕ for M is then equivalent to the model-checking problem of
ψ for P: M simulates n runs of P simultaneously, hence, LTL formulas on M
can be used to synchronize these runs. We can therefore use a phase-bounded
approximation of the former problem to under-approximate the latter.

We introduce the MPDS M = (Pn, Σn, Γn, n,Δ′, c′
0), with an initial configu-

ration c′
0 = 〈(p0, . . . , p0),⊥, . . . ,⊥〉 ∈ Pn ×Γn and a set of transitions Δ′ defined

as follows: ∀d1, . . . , dn ∈ Δn where di = (pi, γi)
ai−→ (p′

i, wi) for i = 1, . . . , n, the

transition ((p1, . . . , pn), γ1, . . . , γn)
(a1,...,an)−−−−−−→ ((p′

1, . . . , p
′
n), w1, . . . , wn) belongs

to Δ′. The following lemma then holds:

Lemma 2. M |= ϕ if and only if P |= ψ.

As a consequence, if M �|= ϕ, then P �|= ψ. We can then consider a phase-
bounded analysis of M: for a given integer k, if M �|=k ϕ, then M �|= ϕ, hence
P �|= ψ. We can therefore under-approximate the model-checking problem of
HyperLTL formulas with universal quantifiers only.

6 Applications to Security Properties

We apply in this section our results to information flow security, and remind how,
as shown in [6], security policies can be expressed as HyperLTL formulas. If we
model a given program as a PDS or a VPDS P following the method outlined in
[8], we can then either over-approximate or under-approximate an answer to the
model-checking problem P |= ψ of a policy represented by a HyperLTL formula
ψ for this program, or even try both if the first method used does not provide a
definitive answer to the model-checking problem.



Model-Checking HyperLTL for Pushdown Systems 147

6.1 Observational Determinism

The strict non-interference security policy is the following: an attacker should
not be able to distinguish two computations from their outputs if they only vary
in their secret inputs. Few actual programs meet this requirement, and different
versions of this policy have thus been defined.

We partition variables of a program into high and low security variables,
and into input and output variables. The observational determinism property
holds if, assuming two starting configurations have identical low security input
variables, their low security output variables will be equal as well and can’t be
used to guess high security variables. It is a weaker property than the actual
strict non-interference.

We model the program as a PDS P on the input alphabet 2AP , where atomic
propositions in AP contain variable values: if a variable x can take a value a,
then (x, a) ∈ AP . We can express the observational determinism policy as the
following HyperLTL formula:

ψOD = ∀π1,∀π2, (
∧

a∈LSi

(aπ1 ⇔ aπ2)) ⇒ G (
∧

b∈LSo

(bπ1 ⇔ bπ2))

where LSi (resp. LSo) is the set of low security input (resp. output) variables
values. Using our techniques detailed in Sects. 5 and 4.1, we can both under-
approximate and over-approximate the model-checking problem P |= ψOD that
is otherwise undecidable.

A Context-Free Example. Let AP = {i, o, h1, h2}, LSi = {i}, LSo = {o},
and let HSi = {h1, h2} be a set of high security inputs. We suppose we are given
a program that can be abstracted by the following PDS P on the alphabet Σ =
2AP , the stack alphabet Γ = {γ,⊥}, and the set of states P = {p0, p1, p2, p3, p4},
with the following set of transitions, as represented by Fig. 1:

(init) (p0,⊥)
{i}−−→ (p0, γ⊥) (μ2) (p2, γ)

{h1}−−−→ (p3, ε)

(λ1) (p0, γ)
{h1}−−−→ (p1, γγ) (μ3) (p3, γ)

{o}−−→ (p2, γ)

(λ2) (p0, γ)
{h2}−−−→ (p1, γγ) (ν1) (p3,⊥)

{o}−−→ (p4,⊥)

(λ3) (p1, γ)
{o}−−→ (p0, γ) (ν2) (p4,⊥)

{o}−−→ (p4,⊥)

(μ1) (p1, γ)
{o}−−→ (p2, γ)

p0

p1 p2 p3 p4

⊥ → γ⊥ : {i}

γ → γγ : {h1},
γ → γγ : {h2} γ → γ : {o}

γ → γ : {o} γ → ε : {h1}

γ → γ : {o}

⊥ → ⊥ : {o}

⊥ → ⊥ : {o}

Fig. 1. The PDS P



148 A. Pommellet and T. Touili

We would like to check if P |= ψOD, where ψOD is the observational deter-
minism HyperLTL formula outlined above. Intuitively, it will not hold: two runs
always have the same input i but, if they do not push the same number of
symbols on the stack, their low-security outputs will differ.

Since transitions of P are only labelled by singletons, we can write ρ instead
of {ρ} when describing traces. The set Tracesω(P) of infinite traces of P is equal
to

⋃

n∈N

i · ((h1 + h2) · o)n · (h1 · o)n+1 · o∗: from the bottom symbol ⊥, rules (init),

(λ1), (λ2), and (λ3) push n+1 symbols γ on the stack, rules (μ1), (μ2), and (μ3)
pop these (n+1) symbols, then rule (ν2) loop in state p4 once the bottom of the
stack is reached again and rule (ν1) has been applied. Tracesω(P) is context-free,
hence, we can’t model-check the observational determinism policy on P using
the algorithms outlined in [7].

Using the under-approximation technique outlined in Sect. 5, we can show
that ψOD does not hold if we bound the number of phases to 2: we find a
counter-example π1 = i ·h2 ·o ·h1 ·o ·o∗ and π2 = i · (h2 ·o)2 · (h1 ·o)2 ·o∗. We can
therefore reach the conclusion that P �|= ψOD; the observational determinism
security policy therefore does not hold for the original program.

6.2 Declassification

The strict non-interference security policy is very hard to enforce as many pro-
grams must, one way or another, leak secret information during their execution.
Thus, we must relax the previously defined security properties.

We introduce instead a declassification policy: at a given step, leaking a
specific high security variable is allowed, but the observational determinism must
otherwise holds. As an example, let’s consider a program accepting a password
as a high security input in its initial state, whose correctness is then checked
during the next execution step. The program’s behaviour then depends on the
password’s correctness. We express this particular declassification policy as the
following HyperLTL formula:

ψD = ∀π1,∀π2, ((
∧

a∈LSi

(aπ1 ⇔ aπ2)) ∧ X (ρπ1 ⇔ ρπ2)) ⇒ G (
∧

b∈LSo

(bπ1 ⇔ bπ2))

where ρ is a high security atomic proposition specifying that an input password
is correct. Again, using our techniques detailed in Sects. 5 and 4.1, we can both
under-approximate and over-approximate the model-checking problem P |= ψD.

Checking a Password. We consider a program where the user can input a
low-security username and a high-security password, then get different outputs
depending on whether the password is true or not.

Let AP = {u, pw1, pw2, pw3, o, ρ, h1, h2}, LSi = {u}, LSo = {o}, let ρ be
a variable that is allowed to leak, and let HSi = {pw1, pw2, pw3, h1, h2} be a
set of high security inputs. Assuming there is only a single username u and
three possible passwords pw1, pw2, pw3, pw3 being the only right answer, we can
consider the following PDS P on the alphabet Σ = 2AP , the stack alphabet



Model-Checking HyperLTL for Pushdown Systems 149

Γ = {γ,⊥}, the set of states P = {p0, p1, p2, p3, ptrue, pfalse}, with the following
set of transitions, as represented by Fig. 2:

(init1) (p0,⊥)
{u,pw1}−−−−−→ (pfalse,⊥) (μ1) (p1,⊥)

{o}−−→ (p1,⊥)

(init2) (p0,⊥)
{u,pw2}−−−−−→ (pfalse,⊥) (μ2) (p2, γ)

{h1}−−−→ (p2, γγ)

(init3) (p0,⊥)
{u,pw3}−−−−−→ (ptrue,⊥) (μ3) (p2, γ)

{h2}−−−→ (p3, γ)

(pwtrue) (ptrue,⊥)
{ρ}−−→ (p1,⊥) (μ4) (p3, γ)

{h2}−−−→ (p3, ε)

(pwfalse) (pfalse,⊥)
{o}−−→ (p2, γ⊥) (μ2) (p3,⊥)

{h1}−−−→ (p3,⊥)

p0 ptrue

pfalse

p1

p2 p3

⊥ → ⊥ : {u, p1},
⊥ → ⊥ : {u, p2}

⊥ → ⊥ : {u, p3} ⊥ → ⊥ : {ρ} ⊥ → ⊥ : {o}

⊥ → γ⊥ : {o}

γ → γγ : {h1}

γ → γ : {h2}
γ → ε : {h2}

⊥ → ⊥ : {h1}

Fig. 2. The PDS P

We would like to check if P |= ψD, where ψD is the declassification HyperLTL
formula outlined above. Obviously, if we consider that ρ ∈ LSo, then observa-
tional determinism does not hold: given the same username u, depending on
whether the high-security password pi chosen is right or not, the low-security
output will differ. However, intuitively, the declassification policy should hold:
given two different input passwords, the PDS will behave in the same manner
as long as both are either true or false.

The set Tracesω(P) of infinite traces of P is equal to ({u, p3} · {ρ} · {o1}∗)∪⋃

n∈N

(({u, p1}+{u, p2})·{o}·{h1}n ·{h2}n+2 ·{h1}∗): from the bottom symbol ⊥, if

the right password pw3 has been input, rules (init3) and (ptrue) lead to state p1
where the PDS loops; otherwise, if the password is wrong, rules (init1), (init2)
and (pfalse) push a symbol γ and lead to state p2, where rule (μ2) pushes n
symbols γ on the stack, then the PDS switches to state p3 where it pops these
(n + 1) symbols with rules (μ3) and (μ4) then loops with rule (μ5) once the
bottom of the stack has been reached. Tracesω(P) is context-free, hence, we
can’t model-check the declassification policy on P using the algorithms outlined
in [7].

Using the over-approximation techniques detailed in Sect. 4.1, we can con-
sider the regular abstraction α(Tracesω(P)) = ({u, p3}·{ρ}·{o1}∗)∪ (({u, p1}+



150 A. Pommellet and T. Touili

{u, p2}) ·∅·{h1}∗ ·{h2}∗ ·{h1}∗) of the actual set of traces. We can then reach the
conclusion that P |= ψD, since this property holds for the over-approximation
as well; the declassification security policy therefore holds for this example.

6.3 Non-inference

Non-inference is a variant of the non-interference security policy. It states that,
should all high security input variables be replaced by a dummy input λ, the
behaviour of low security variables should not change and cannot therefore be
used to guess the values of the aforementioned high security inputs.

We express this property as the following HyperLTL formula:

ψ = ∀π1,∃π2,G (
∧

x∈V h
i

(x, λ)π2) ∧ G (
∧

b∈LS

(bπ1 ⇔ bπ2))

where LS stands for the set of all low security variables values, V h
i for the set of

high security input variables, and (x, λ) means that variable x has value λ. We
can’t rely on the method outlined in Sect. 4.1 because π2 is existentially quan-
tified, but an over-approximation can nonetheless be found using the method
detailed in Sect. 4.2, if we model the program as a VPDS P, choose π2 as the
visibly context-free path variable, and make it so that π1 ranges over a regular
abstraction of the traces.

7 Conclusion and Future Works

In this paper, we study the model-checking problem of hyper properties expressed
by the logic HyperLTL for PDSs. We show that it is undecidable, even for
the sub-class of visibly pushdown automata. We therefore design an automata-
theoretic framework to abstract the model-checking problem given some con-
straints on the use of universal quantifiers in the HyperLTL formula. We also
use phase-bounding constraints on multi-stack pushdown automata to under-
approximate the actual answer. Finally, we show some relevant examples of
security properties that cannot be expressed with LTL but can be checked using
our approximation algorithms on a HyperLTL formula.

An implementation of these algorithms would be a valuable addition to exist-
ing model-checking software. We plan to design a new tool that would take as
an input either a binary program or a Java program. We could perform in the
former case a static analysis of the binary code with the tool Jakstab [11] that
allows us to model the program as a control flow graph (CFG). By parsing this
CFG, we could design a PDS model of the original code. In the latter case, we
could use the PDS generated by the tool JimpleToPDSolver [10]. We could also
handle C and C++ programs if we translate them into boolean programs with
the tool SATABS [5].



Model-Checking HyperLTL for Pushdown Systems 151

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp.
202–211. ACM, New York (2004)

2. Bermudez, M.E., Schimpf, K.M.: Practical arbitrary lookahead LR parsing. J.
Comput. Syst. Sci. 41(2), 230–250 (1990)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

4. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–144.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73208-2 15

5. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1 40

6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

8. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

9. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

10. Hague, M., Ong, C.-H.L.: Analysing mu-calculus properties of pushdown systems.
In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 187–192.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16164-3 14

11. Kinder, J., Veith, H.: Jakstab: a static analysis platform for binaries. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70545-1 40

12. Pereira, F.C.N., Wright, R.N.: Finite-state approximation of phrase structure
grammars. In: Proceedings of the 29th Annual Meeting on Association for Com-
putational Linguistics, ACL 1991, pp. 246–255. Association for Computational
Linguistics, Stroudsburg (1991)

13. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

14. Seth, A.: Global reachability in bounded phase multi-stack pushdown systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 615–628.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 53

15. Prasad Sistla, A., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theoret. Comput. Sci. 49(2), 217–
237 (1987)

https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-540-73208-2_15
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-642-16164-3_14
https://doi.org/10.1007/978-3-540-70545-1_40
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-642-14295-6_53


152 A. Pommellet and T. Touili

16. Torre, S.L., Madhusudan, P., Parlato, G.: A robust class of context-sensitive lan-
guages. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pp. 161–170, July 2007

17. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

https://doi.org/10.1007/3-540-60915-6_6


A Branching Time Variant of CaRet

Jens Oliver Gutsfeld(B), Markus Müller-Olm, and Benedikt Nordhoff

Institut für Informatik, Westfälische Wilhelms-Universität Münster,
Einsteinstraße 62, 48149 Münster, Germany

{jens.gutsfeld,markus.mueller-olm,benedikt.nordhoff}@wwu.de

Abstract. A shortcoming of traditional logics like LTL and CTL on
Pushdown Systems is their inability to express specifications about the
call-/return-behavior or the stack content. A natural approach to this
problem is the logic CaRet. CaRet adds modalities to LTL that allow
specifications to navigate over calls and returns of procedures. In this
paper, BranchCaRet, a natural CTL-like variant of CaRet is defined
that provides existentially and universally quantified CaRet modalities.
We prove that BranchCaRet model checking is decidable and EXPTIME-
complete by extending a known CTL model checking algorithm for Push-
down Systems based on Alternating Büchi Pushdown Systems.

1 Introduction

In recent years, model checking has been ported from finite state systems to
a plethora of other models. One of these model classes are Pushdown Systems
(PDSs) which offer a natural abstraction of recursive programs [27]. Unlike finite
Kripke structures, they represent a possibly infinite state space and allow us to
track procedure calls using a call stack. In the last two decades, the well-known
logics LTL and CTL as well as the full modal μ-calculus have been considered for
PDSs [9,13,27,29,31]. However, these logics lack the ability to specify properties
about the call-/return-behaviour or the stack content. An example property
one would like to express is: “Every call has a matching return.” The logic
CaRet (Call and Return) [5] provides a solution to this problem. It extends the
logic LTL by two types of modalities: abstract modalities and caller modalities.
Intuitively, abstract modalities inspect the local behaviour of procedures, while
caller modalities inspect the call chain. However, just like LTL, CaRet only
defines properties for paths and cannot specify CTL-like requirements such as
“There is a path arising from this configuration satisfying φ” or “For all paths
arising from this configuration, φ holds”.

In this paper, we propose the novel logic BranchCaRet, a CTL-style vari-
ant of CaRet, that combines the ability of CaRet to specify call/return-related
properties with the ability of CTL to specify branching time properties. We show
that the BranchCaRet model checking problem can be solved by reduction to

This work was partially funded by the DFG under project IFC4MC (MU 1508/2)
in the priority program RS3 (SPP 1496).

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 153–170, 2018.
https://doi.org/10.1007/978-3-319-94111-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_9&domain=pdf


154 J. O. Gutsfeld et al.

the emptiness problem of Alternating Büchi Pushdown Systems and prove that
it is EXPTIME-complete, like CTL model checking on PDSs [9].

This paper is organised as follows: In Sect. 2, we introduce several well-known
classes of automata. In particular, we define Pushdown Systems as our model of
systems, Alternating Büchi Pushdown Systems as our main tool of analysis as
well as Büchi Pushdown Systems and Multiautomata.

Then, in Sect. 3, we formally introduce the logics BranchCaRet∗, CaRet,
and BranchCaRet and explain their potential usefulness as well as their rela-
tion to each other. In Sect. 4, we show how the BranchCaRet model checking
problem can be decided using Alternating Büchi Pushdown Systems (ABPDSs)
by extending the model checking algorithm of Song and Touili for CTL [29] to
BranchCaRet. Finally, in Sect. 5, we summarise this paper and offer suggestions
for future work.

Related Work. The logic CaRet was introduced by Alur et al. [5] for Recur-
sive State Machines and ported to PDSs by Nguyen and Touili [24]. Several
extensions of CaRet have later been proposed in the literature. These include
past-time operators [10,25], a “Within”-modality [1] and a variant for multi-
threaded programs [21,22]. The practical usefulness of CaRet model checking
for malware detection has been demonstrated by Nguyen and Touili [22,23].
Approaches to pushdown model checking have been conceptually unified by
the frameworks of visibly pushdown languages [6] and nested words [4,7]. A
generalisation of the modal μ-calculus called visibly pushdown μ-calculus that
can express all CaRet properties is given by Alur et al. [3]. We should men-
tion that the translation of CaRet is not direct but works via an encoding of a
non-deterministic Büchi Visibly Pushdown Automaton computed from a given
CaRet formula. Further logics for visibly pushdown languages were introduced
by Bozzelli et al. [11] and Weinert et al. [32].

ABPDSs were introduced by Song and Touili [29] and our approach for the
construction of the ABPDS from a BranchCaRet formula is based on their app-
roach for CTL, as mentioned already. Model checking for classical logics such
as LTL, CTL and the modal μ-calculus has been studied for some time in the
literature [12,16,18]. A general overview of model checking techniques for PDSs
can be found in Schwoon’s Phd thesis [27].

On a practical level, the tools Moped [19] and PuMoC [28] are available for
model checking pushdown systems.

2 Preliminaries

In this section, we introduce Pushdown Systems as our system model class and
several language acceptor models. Let AP denote a finite, non-empty set of
atomic propositions. A Pushdown System [8,29] is a tuple P = (P, Γ,Δ, λ, I)
consisting of a finite, non-empty set of control locations P , a finite, non-empty
stack alphabet Γ , a transition relation Δ ⊆ (P × Γ ) × (P × Γ ∗), a labelling
function λ : P × Γ → 2AP , and a non-empty set of initial configurations I ⊆
P × Γ . We write (p, γ) → (p′, ω) to denote ((p, γ), (p′, ω)) ∈ Δ. By slight abuse



A Branching Time Variant of CaRet 155

of notation, we also write (p, γ) → (p′, ω) ∈ Δ. For simplicity, we assume that
Δ is total. We say that a rule (p, γ) → (p′, ω) ∈ Δ pushes symbols onto the
stack if |ω| ≥ 2 and pops a symbol from the stack if ω = ε. We also presume the
existence of a bottom of stack symbol # ∈ Γ . This symbol may never be pushed
or popped and only self-loops (rules of the form (p,#) → (p,#)) are allowed
from it. We also require the existence of these self-loops since Δ is total. In the
following, we use variants of γ, β and τ to denote symbols of Γ and variants of ω
to denote elements of Γ ∗. Following a widely used convention, we allow only the
following types of rules in Δ: (p, γ) → (p′, γ′) (Internal actions), (p, γ) → (p′, βτ)
(Calls) and (p, γ) → (p′, ε) (Returns).

A configuration of P is a tuple (p, ω) ∈ P × Γ ∗ and consists of a control
location p and a stack ω. A configuration can be thought of as a snapshot of an
execution of P. We say (p, γ) is the configuration head of a configuration (p, ω)
if ω = γω′. We use the same terminology for our other model classes.

The reachability relation ⇒P ⊆ (P × Γ+) × Δ∗ × (P × Γ ∗) for a PDS P
is defined as follows: (p, ω) ε=⇒P (p, ω), (p, γω) r1w==⇒P (p′, ω′) if r1 = (p, γ) →
(p′′, ω′′) ∈ Δ and (p′′, ω′′ω) w=⇒P (p′, ω′). We sometimes omit the rules and write
(p, ω) ⇒P (p′, ω′) if there is a sequence of rules w such that (p, ω) w=⇒P (p′, ω′)
for w ∈ Δ∗. Furthermore, we write (p, ω) +=⇒P (p′, ω′) for (p, ω) w=⇒P (p′, ω′) with
w ∈ Δ+. From the reachability relation, we naturally obtain a function Pre∗ :
2P×Γ ∗ → 2P×Γ ∗

with Pre∗(C) = {(p, ω) | ∃(p′, ω′) ∈ C : (p, ω) ⇒P (p′, ω′)}.
The function Pre∗ returns the set of configurations from which a given set of
configurations is reachable.

We model the executions of Pushdown Systems by Kripke structures. The
Kripke structure KP = (Q,Q0, κ, δ) for a PDS P = (P , Γ , Δ, λ,I) consists of the
set of states Q = P ×Γ+, the set of initial states Q0 = {(p, γ#) | (p, γ) ∈ I}, the
labelling function κ : P × Γ ∗ → 2AP with κ(p, γω) = λ(p, γ), and the transition
relation δ = {(q, q′) ∈ Q × Q | ∃r ∈ Δ : q

r=⇒P q′}. A path of a Kripke structure
is an infinite sequence π = π0π1 . . . such that π0 ∈ Q0 and (πi, πi+1) ∈ δ for
all i. We write π(i) for the configuration πi. For a configuration π(i) = (p, ω) of
a path π of KP , we write |π(i)| to denote the size of the stack |ω|. We denote
the set of paths of KP by ΠP . Furthermore, we denote by Ext(π, i) the set
{π′ ∈ ΠP | ∀j ≤ i : π′(j) = π(j)} of possible extensions of π at index i.

In order to analyse executions of PDSs, we need three types of successor
functions: global successors, abstract successors and callers. We define these
successor functions following Alur et al. [5]. The function succg : ΠP × N → N

defined by succg(π, i) = i+1 is the global successor function. The global successor
is the next index in the execution. succg is a total function as all executions of
PDSs are infinite and the configuration at the position i + 1 can thus never be
undefined. In order to denote that a function is partial, we use the symbol �.
The partial function succa : ΠP × N � N with

succa(π, i) =

{
inf {j | j > i ∧ |π(i)| = |π(j)|}, |π(i + 1)| ≥ |π(i)|,
undefined, otherwise



156 J. O. Gutsfeld et al.

is the abstract successor function. Unlike the global successor, it behaves differ-
ently for different types of configurations. If the configuration at index i + 1 is
obtained by an internal rule, the abstract successor is equal to the global suc-
cessor. If the configuration at index i + 1 is obtained by a call rule, the abstract
successor is the corresponding return (or undefined if that return does not exist).
If the global successor of the configuration at index i is a return, the abstract
successor is always undefined.

Fig. 1. A sample execution of a PDS P = (P, ΓΔ, λ, I) where P = {p}, Γ =
{γ, #}, Δ = {((p, γ), (p, γγ)), ((p, γ), (p, γ)), ((p, γ), (p, ε)), ((p, #), (p, #))}, λ(p, γ) =
λ(p, #) = {}, and I = {(p, γ)}.

Finally, for π ∈ ΠP and i ∈ N, let Mπ,i = {j | j < i ∧ |π(j)| < |π(i)|}. The
partial function succ− : ΠP × N � N defined by

succ−(π, i) =

{
sup Mπ,i, Mπ,i �= ∅
undefined, otherwise

is the caller function. This function assigns to an index i the index of the last
pending call before it, if there is one. Figure 1 illustrates the three different kinds
of successor functions.

In order to find configurations from which calls without matching returns are
possible, we use Büchi Pushdown Systems. A Büchi Pushdown System (BPDS)
[27] is a tuple BPS = (P , Γ , Δ, G) consisting of a finite, non-empty set of
control locations P , a finite, non-empty stack alphabet Γ , a transition relation
Δ ⊆ (P × Γ ) × (P × Γ ∗), and a set of accepting control locations G ⊆ P .

The reachability relation and the function Pre∗ for BPDSs are defined just
as for PDSs, and we write (p, ω) w=⇒BPS (p′, ω′) and (p, ω) ⇒BPS (p′, ω′). To
avoid ambiguities, we also differentiate between Pre∗

P and Pre∗
BPS .

A run c = (c0, c1 . . . ) of a BPDS BPS = (P , Γ , Δ, G) is an infinite sequence
of configurations with c0 = (p, ω#) and ci

ri=⇒BPS ci+1 for transition rules ri ∈ Δ.
A run is accepting if it visits control locations from G infinitely often (Büchi
condition). BPS accepts a configuration (p, ω#) if there is an accepting run
starting from (p, ω#).

For two configurations c and c′ of a BPDS BPS = (P, Γ,Δ,G), we write
c � c′ to denote c ⇒BPS (g, ω) +=⇒BPS c′ for g ∈ G. Let (p, γ) ∈ P × Γ be a
head. We say that (p, γ) is a repeating head iff (p, γ) � (p, γω) for some ω ∈ Γ ∗.
We denote the set of repeating heads by R.



A Branching Time Variant of CaRet 157

Two well-known theorems guide our analysis of BPDSs:

Theorem 1 ([27]). There is an accepting run from (p, γω) iff ω = ω′′# and
(p, γω) ⇒BPS (p′, γ′ω′) for a repeating head (p′, γ′).

Theorem 2 ([16]). The repeating heads of a BPDS BPS = (P, Γ,Δ,G) can be
computed in time O(|P |2 · |Δ|) and space O(|P | · |Δ|).
In conjunction with Theorem 5, these theorems allow us to efficiently compute
the configurations accepted by a BPDS.

For model checking our logic, we also need a variant of BPDSs with the ability
to branch existentially and universally. This variant is given by Alternating Büchi
Pushdown Systems. An Alternating Büchi Pushdown System (ABPDS) BP =
(P, Γ,Δ, F ) consists of a finite, non-empty set of control locations P , a finite, non-
empty stack alphabet Γ , a function Δ : (P × Γ ) → φP×Γ ∗ that maps elements
of P × Γ to positive boolean formulae over P × Γ ∗ in disjunctive normal form,
and a non-empty set of final states F ⊆ P .

For any configuration head (p, γ), the associated formula φ = Δ(p, γ) has
the form

∨n
j=1

∧mj

i=1(p
j
i , ω

j
i ). We can consider each conjunction as a rule (p, γ) →

{(pj
1, ω

j
1), . . . (p

j
mj

, ωj
mj

)} and φ as a whole to be the set consisting of the right
hand sides of these rules. This allows us to express logical conditions that we
want to be true as transition rules and vice versa. We always implicitly assume
that there are two control locations p, p′ ∈ P such that p ∈ F and p′ /∈ F
and for these states, the only possible transition rules are (p, γ) → {(p, γ)} and
(p′, γ) → {(p′, γ)} for all γ ∈ Γ . For some fixed γ ∈ Γ , we use true to denote
(p, γ) and false to denote (p′, γ). Furthermore, we mostly provide the transition
rules for ABPDSs by enumeration. Whenever we do not provide a transition rule
for a head (p, γ), we implicitly assume Δ(p, γ) = false to ensure Δ is defined for
all heads. A run ρ of an ABPDS BP is an infinite tree of configurations that has
a root node c0 and if the configurations ci+1, . . . , ck are the children of a node
ci = (p, γω), then there is a rule (p, γ) → {(pi+1, ωi+1), . . . , (pk, ωk)} ∈ Δ such
that ci = (pi+1, ωi+1ω), . . . , ck = (pk, ωkω) holds.

A path of a run ρ is a sequence r0r1 . . . of configurations such that r0 = c0
and ri+1 is a child node of ri. Such a run ρ of BP is accepting if every path
of ρ visits control locations in F infinitely often. We say that BP accepts a
configuration (p, ω) iff there is an accepting run from (p, ω). By construction,
all runs arising from a configuration with configuration head true are always
accepting and all runs arising from a configuration with configuration head false
are not accepting.

The reachability relation for an ABPDS BP ⇒BP ⊆ (P ×Γ )×2P×Γ ∗
is given

by the following rules: (p, ω) ⇒BP {(p, ω)} and (p, γω) ⇒BP {(p1,ω1ω),. . . ,
(pn,ωnω)} if (p, γ) → {(p1, ω1), . . . , (pn, ωn)} ∈ Δ, (p, γω) ⇒BP

⋃
Ci if (p,

γω) ⇒BP {(p1, ω1), . . . , (pn, ωn)} and (pi, ωi) ⇒BP Ci.
For our model checking algorithm, we need to compute the configurations

accepted by an ABPDS. This can be done, for instance, by exploiting corre-
sponding constructions for Parity Pushdown Games (PPG). For a PPG, an
Alternating Multiautomaton (AMA) can be computed that recognises whether



158 J. O. Gutsfeld et al.

a configuration belongs to the winning region of a given player in time exponen-
tial in the number of control locations and the maximum priority of the PPG
[20]. Since an ABPDS corresponds to a PPG with maximum priority two and
since there is an algorithm that checks whether an AMA accepts a configuration
in time polynomial in the size of the AMA [15], we obtain the following:

Theorem 3. For a configuration c of an ABPDS BP, we can determine whether
BP accepts c in time exponential in |P | and polynomial in all other parameters.

Finally, we need a class of automata that assists in reachability analysis and
the definition of regular valuations. This class is given by Multiautomata. Let
P = (P, Γ,Δ, λ, I) be a PDS. A Multiautomaton (MA) [8,29] for P is a tuple
A = (Q,Γ, δ,Qf ) such that Q is a finite, non-empty set of states with P ⊆ Q,
Γ , the input alphabet of A, is the finite, non-empty stack alphabet of P, δ ⊆
Q × Γ × Q is a transition relation and Qf ⊆ Q is a set of final states. We write
q

γ−→ q′ to denote (q, γ, q′) ∈ δ.
→δ ⊆ Q×Γ ∗×Q is the reachability relation for an MA given by the following

rules: q
ε−→δ q and q

γω−−→δ q′ if q
γ−→δ q′′ and q′′ ω−→δ q′ for some q′′ ∈ Q. We say

that an MA A accepts (p, ω) if p
ω−→ q′ for some q′ ∈ Qf . We define the language

of A as
L(A) = {(p, ω) ∈ P × Γ ∗ | A accepts (p, ω)}.

A set of configurations is called regular if there is an MA that recognises it.
It is well-known that MAs are closed under union, intersection and comple-

mentation [8].

Theorem 4 ([14]). For an MA A and a configuration (p, ω), it can be deter-
mined in time O(|δ| · |ω|) whether (p, ω) ∈ L(A) holds.

We can now state the following theorem which guides our analysis of possible
abstract successors in PDSs:

Theorem 5 ([27]). Let P = (P, Γ,Δ, λ, I) be a PDS and A = (Q,Γ, δ,Qf ) be
an MA for P. An MA APre∗ = (Q,Γ, δ′, Qf ) with L(APre∗) = Pre∗(L(A)) can
be computed in time O(|Q|2 · |Δ|) and space O((|Q| · |Δ|) + |δ|).

3 CaRet and BranchCaRet

In this section, we briefly present the well-known logic CaRet and introduce the
new logic BranchCaRet. In order to consider both logics in a common framework,
we first introduce the novel logic BranchCaRet∗ that includes both logics as
subsets in order to allow for a more concise definition. Intuitively, BranchCaRet∗

is analogous to CTL∗ while CaRet and BranchCaRet are analogous to LTL and
CTL respectively.

A BranchCaRet∗ formula φ is a formula that can be built from the following
context-free grammar:

φ := ap | ¬φ | φ ∧ φ | φ ∨ φ | Eφ | Aφ | ©fφ | ©l
Wφ | φ Uf φ | φ Ua

W φ | φ Rf φ |
φ Ra

W φ



A Branching Time Variant of CaRet 159

for f ∈ {g, a,−}, l ∈ {a,−} and ap ∈ AP . Since AP is non-empty, we can define
true ≡ ap ∨ ¬ap and false ≡ ap ∧ ¬ap for a fixed ap ∈ AP . We also define ⇒ in
the usual way. The semantics of BranchCaRet∗ is defined as follows. Let P be a
PDS. P fulfills a formula φ (written P � φ) if and only if π � φ for all π ∈ ΠP
where π � φ is inductively defined by the following rules:

1. π � φ iff (π, 0) � φ,
2. (π, i) � ap iff ap ∈ κ(π(i)), ap ∈ AP ,
3. (π, i) � ¬φ iff (π, i) � φ,
4. (π, i) � φ1 ∧ φ2 iff (π, i) � φ1 ∧ (π, i) � φ2,
5. (π, i) � φ1 ∨ φ2 iff (π, i) � φ1 ∨ (π, i) � φ2,
6. (π, i) � ©fφ1 iff ∃k : succf (π, i) = k ∧ (π, k) � φ1, f ∈ {g, a,−},
7. (π, i) � ©f

W φ1 iff ∀k : succf (π, i) = k ⇒ (π, k) � φ1, f ∈ {a,−},
8. (π, i) � φ1 Uf φ2 iff ∃k : (π, succk

f (π, i)) � φ2∧
∀0 ≤ l < k : (π, succl

f (π, i)) � φ1, f ∈ {g, a,−},
9. (π, i) � φ1 Ua

W φ2 iff ((π, i) � φ1 Ua φ2)∨
(∃k : succk

a(π, i) is undefined ∧
∀0 ≤ l < k : (π, succl

a(π, i)) � φ1),
10. (π, i) � φ1 Rf φ2 iff ∀k : (succk

f (π, i) is undefined ∨
(π, succk

f (π, i)) � (¬φ2)) ⇒
(∃n < k : (π, succn

f (π, i)) � φ1),
11. (π, i) � φ1 Ra

W φ2 iff ((π, i) � φ1 Ra φ2)∨
(∃k : succk

a(π, i) is undefined ∧
∀0 ≤ l < k : (π, succl

a(π, i)) � φ2),
12. (π, i) � Eφ1 iff ∃π′ ∈ Ext(π, i) : (π′, i) � φ1,
13. (π, i) � Aφ1 iff ∀π′ ∈ Ext(π, i) : (π′, i) � φ1.

The BranchCaRet∗ model checking problem is to check whether P � φ for a
given PDS P and a BranchCaRet∗ formula φ. We sometimes need to consider
the equivalence of formulae and write φ ≡ φ′ for two BranchCaRet∗ formulae iff
for any P and any π ∈ ΠP , π � φ ⇐⇒ π � φ′.

The modalities ©g, Ug and Rg are just the usual LTL modalities, i.e. they
navigate over sequences of global successors. On the other hand, the modalities
©a, Ua and Ra navigate over abstract successors and the modalities ©−, U−

and R− navigate over callers.
The modalities ©f

W , Rf
W and Uf

W are called weak modalities. For a formula
©f

W φ involving the weak successor modality, it is required that either the respec-
tive successor fulfill φ or be undefined. Formulae with a weak Until-Operator,
i.e. φ1 Uf

W φ2, are fulfilled if either φ2 holds at some point in the respective
sequence or the respective successor is undefined at some point, and in both
cases, all configurations before that point in the sequence fulfill φ1. The weak
Release-operator is defined analogously. Notice that the weak modalities can be
derived from the normal modalities and we only introduce them for the purpose



160 J. O. Gutsfeld et al.

of constructing formulae in Negation Normal Form (NNF). The term weak is
used only for modalities which also allow undefined successors in this paper and
not for constructs such as the well-known weak Until from the literature that
allows φ1 to hold forever.

For caller modalities, the existential and universal variant have the same
semantics because there is only one caller path anyway. We therefore consider
only existential caller modalities in the following.

From the basic modalities, we can derive other well-known modalities such as
F fφ = true Uf φ (Future) or Gfφ = ¬(true Uf ¬φ) (Generally). Furthermore,
we can define φ1 U−

W φ2 = φ1 U− (φ2 ∨ (φ1 ∧ ©−
W false)) and φ1 R−

W φ2 =
(φ1 ∨ ©−

W false) R− φ2. Therefore, we did not include the modalities U−
W and

R−
W in the syntax or semantics of BranchCaRet∗.
The logic CaRet is the set of BranchCaRet∗ formulae which do not contain

any quantifiers. For instance, formula ©a(φ1 U− φ2) is a CaRet formula, while
©a(E ©g ψ) is not because CaRet does not allow for quantifiers. CaRet was
originally introduced in [5] for the model of Recursive State Machines (RSMs).
However, it is well-known that the dynamic behaviour of RSMs can be rep-
resented by PDSs [2] and, indeed, CaRet has recently been ported to PDSs
explicitly [24]. We therefore restrict our analysis to PDSs.

CaRet can be considered an extension of LTL with modalities for navigating
over sequences of abstract successors and callers instead of only global successors
(as in LTL).

3.1 BranchCaRet

The logic BranchCaRet is the set of BranchCaRet∗ formulae in which quantifiers
are only present in front of modalities and all modalities are quantified. As
an example, the formula Eφ1U

g(A ©a φ2) is a BranchCaRet formula, while
©a(A ©g φ1) is not because the first modality is not quantified. The difference
between CaRet and BranchCaRet is analogous to the difference between LTL
and CTL: LTL and CaRet only allow modalities without quantifiers, CTL and
BranchCaRet only allow quantified modalities. Therefore, CaRet is a logic that
talks about linear properties of paths, while BranchCaRet is a branching-time
logic.

Naturally, BranchCaRet can express branching time variants of CaRet prop-
erties such as the ones presented in [5]. Furthermore, it can express classical
CTL properties in a local manner, i.e. on abstract paths and caller paths. It is
well-known, for instance, that pushdown systems can be used for interprocedural
dataflow analysis e.g. to identify live variables, very busy expressions or available
expressions [3,17,26,27,30]. In BranchCaRet, we can now express specifications
for these problems not just for global variables, but also for local variables using
abstract modalities. In order to illustrate this, we assume that the variables of a
program are divided into global (G) and local (L) variables with G ∩ L = ∅. We
call a variable x live at a control location u if there exists a path that, after vis-
iting u, encounters a use of x without encountering a definition of x in between.



A Branching Time Variant of CaRet 161

Now, to check whether a global variable x is live at a designated control loca-
tion labelled Atu, we can use the specification EFg(Atu ∧ E(¬defx Ug usex)),
where the atomic proposition defx is valid just for the control locations where
the variable x is defined and usex for those where it is used. Liveness of a local
variable x can now be specified in BranchCaRet very similarly by the formula
EFg(Atu ∧E(¬defx Ua usex)). Note that the abstract until modality Ua ensures
that the uses and definitions of x are not confused with uses and definitions of
other variables with the same name x, e.g. in recursively called instances of the
same procedure. Similarly, recall that an expression e is very busy at a control
location u if it is evaluated on all paths emerging from u before any of its free
variables are redefined. To check whether an expression e that may contain local
as well as global variables is very busy at u, we use the formula AGg(Atu ⇒
A((

∧
x∈FV (e)∩G ¬defx) Ug evale) ∧ A((

∧
x∈FV (e)∩L ¬defx) Ua evale)), where

FV (e) denotes the free variables of e. Furthermore, we can express stack-related
liveness properties in BranchCaRet. An example is the property that the stack
can always fully be emptied which can be expressed by the following specification:
AGg( E Fg (E ©−

W false). Another example is the property that for every call,
it is possible to return later. Assuming that control locations from which calls
are possible are labelled call and no other actions are possible from these control
locations, we can describe this property by the formula AGg(call ⇒ E ©a true).
In this setting, the same property can be expressed by AGg(E ©−

W (E ©a true))
without the assumption that calls are labelled.

For the relation between CaRet and BranchCaRet, we have the following
theorem since we can consider both logics on Kripke structures (treated as PDSs
without stack action) only and they then reduce to LTL and CTL respectively:

Theorem 6. The expressive power of BranchCaRet and CaRet is incomparable.

4 Model Checking

4.1 Computing Abstract Successors and Loops

In addition to the well-known CTL modalities, BranchCaRet allows us to refer-
ence callers and abstract successors. In order to cope with the latter in a model
checking procedure, two problems need to be considered. First of all, we have to
compute all possible abstract successors for a given configuration. Secondly, we
need to find the heads from which a call without a matching return is possible.
This is necessary for handling abstract modalities correctly.

The first problem is solved by precomputing the heads of possible abstract
successors. It is easy to see that the head of a possible abstract successor depends
only on the head of the current configuration. Hence we can reduce the analysis
of abstract successors of configurations to the analysis of abstract successors of
heads. For this purpose, we introduce the function PSReturnsH : P ×Γ → 2P×Γ

defined by

PSReturnsH(p, γ) = {(p′, τ)|(p, γ) → (p′′, βτ) ∧ (p′′, β#) ⇒P (p′,#)}.

This function associates every head with heads of possible returns.



162 J. O. Gutsfeld et al.

Theorem 7. Let π ∈ ΠP and π(i) = (p, γω). There is π′ ∈ Ext(π, i) such
that (π′, i) is a call and succa(π′, i) = k and π′(k) = (p′, τω) iff (p′, τ) ∈
PSReturnsH(p, γ).

Theorem 7 implies we solely need PSReturnsH to find the possible heads of
returns for a call.

Algorithm 1. An algorithm for computing PSReturnsH .
1: Input: A PDS P = (P, Γ, Δ, λ, I)
2: Output: The function PSReturnsH as a set
3: Calls = {(p, γ) → (p′′, βτ) ∈ Δ};
4: for all (p, γ) ∈ P × Γ do
5: PSReturnsH(p, γ) = ∅;

6: while Calls �= ∅ do
7: Choose and remove a rule (p, γ) → (p′′, βτ) from Calls;
8: for all p′ ∈ P do
9: if ((p′′, β#) ∈ Pre∗({(p′, #)})) then

10: PSReturnsH(p, γ) = PSReturnsH(p, γ) ∪ {(p′, τ)};

11: return PSReturnsH ;

From the definition of PSReturnsH , we can directly infer a procedure to
compute it. This procedure is given by Algorithm 1.

Using Theorems 4 and 5 for the complexity of the computation of Pre∗ and
the membership check in the MA generated by the Pre∗ algorithm, we obtain
the following complexity:

Theorem 8. Algorithm 1 computes PSReturnsH in time O(|Δ|2 · |P |).
We now turn to the analysis of possibly undefined abstract successors. For a

PDS P = (P, Γ,Δ, λ, I), let PSLoopsH ⊆ P × Γ be the set such that (p, γ) ∈
PSLoopsH iff there is (p, γ) → (p′, βτ) ∈ Δ and an infinite sequence c0c1 . . .

with c0 = (p′, β#). For each ci we require a rule ri ∈ Δ such that ci
ri=⇒P ci+1 and

|ci| ≥ |c0| must hold for all i. The set PSLoopsH thus characterises the heads
from which a call with an undefined abstract successor is possible. The name
PSLoopsH for configurations with calls without matching returns is chosen in
the spirit of infinite loops in computer programs.

Theorem 9. Let P = (P, Γ,Δ, λ, I) be a PDS, π ∈ ΠP and π(i) = (p, γω)
for i ∈ N. There is π′ ∈ Ext(π, i) such that (π′, i) is a call and succa(π′, i) is
undefined iff (p, γ) ∈ PSLoopsH .

Let P = (P, Γ,Δ, λ, I) be a PDS. Then BPSP = (P ′, Γ,Δ′, G) is the
associated BPDS with P ′ = P ∪̇{ploop}, Δ′ = (Δ \ {(p,#) → (p,#) | p ∈
P}) ∪ {(p,#) → (ploop,#) | p ∈ P ′} and G = P .

Theorem 10. For any head (p, γ), (p, γ) ∈ PSLoopsH iff there is (p, γ) →
(p′, βτ) ∈ Δ and there is an accepting run from (p′, β#) in BPSP .



A Branching Time Variant of CaRet 163

Algorithm 2. An algorithm for computing PSLoopsH .
1: Input: A PDS P = (P, Γ, Δ, λ, I)
2: Output: The set PSLoopsH
3: Calls = {(p, γ) → (p′, βτ) ∈ Δ};
4: PSLoopsH = ∅;
5: Construct BPSP ;
6: Compute the repeating heads R of BPSP ;
7: while Calls �= ∅ do
8: Remove a rule (p, γ) → (p′, βτ) from Calls;
9: if (p′, β#) ∈ Pre∗

BPS({(p′′, γ′′ω) | (p′′, γ′′) ∈ R}) then
10: PSLoopsH = PSLoopsH ∪ {(p, γ)};

11: Return PSLoopsH ;

Algorithm 2 uses the observation from Theorem 10 that PSLoopsH can be
computed by analysing accepting runs from heads in BPSP . Using Theorems 2,
4 and 5, we obtain the following complexity result:

Theorem 11. Algorithm 2 computes the set PSLoopsH in time O(|Δ|2 · |P |2).

4.2 Configurations with Call Histories

In order to check formulae involving caller modalities, we need to know the last
call without a matching return that was made before a configuration. However,
there is in general no way to infer this call just from the configuration itself
because different calls can lead to the same configuration. In order to solve this
problem, we store the caller’s head in the stack. For this, we use special stack
symbols of the form (γ, (p′, γ′)). More concretely, for a call rule (p, γ) → (p′, βτ),
we switch to (p′, β(τ, (p, γ))) instead of (p′, βτ). For this purpose, we introduce
configurations with call histories. Let Σ = (P × Γ ) be the set of possible caller
heads and Ξ = Γ ∪ (Γ × Σ) be the set of stack symbols and stack symbols
equipped with caller heads. We call the elements of P × Ξ+ configurations with
call histories. In the following, we use variants of ξ for elements of Ξ, variants of
σ to denote elements of Σ and variants of Ω to denote elements of Ξ∗. In each
configuration with call history, the symbol from Γ is the usual stack symbol as
in a normal configuration and the symbol from Ξ denotes the head of the caller.

In order to employ configurations with call histories for model checking, we
need a method to construct a configuration with call history from a configura-
tion in a path. The function Conf serves this purpose. Let π ∈ ΠP , π(i) =
(p, γ1 . . . γn#) and π(succm

− (π, i)) = (p′
m, γ′

mωm) for 1 ≤ m < n. Then
Conf : (ΠP × N) → (P × Ξ+),

Conf(π, i) =

⎧⎪⎨
⎪⎩

(p, γ1(γ2, (p′
1, γ

′
1)) . . . (γn, (p′

n−1, γ
′
n−1))#), n > 1

(p, γ1#), n = 1
(p,#), n = 0



164 J. O. Gutsfeld et al.

is the function that assigns to each (π, i) the corresponding configuration with
call history.

Configurations with call histories now enable us to handle caller modali-
ties very easily. Whenever we need to reason about the caller of (π, i) and
Conf(π, i) = (p, γ(γ′, (p′, γ′′))Ω), we can just pop the symbol γ from the stack
and afterwards switch to (p′, γ′′Ω) to restore the caller.

For the analysis of configurations with call histories, we introduce two types
of successor relations. These relations lift the global and the abstract successor
to configurations with call histories. The relation ↪→g⊆ (P × Γ ) × (P × Ξ∗) is
the smallest relation for which the following conditions hold:

1. If (p, γ) → (p′, γ′) ∈ Δ, then (p, γ) ↪→g (p′, γ′).
2. If (p, γ) → (p′, ε) ∈ Δ, then (p, γ) ↪→g (p′, ε).
3. If (p, γ) → (p′, βτ) ∈ Δ, then (p, γ) ↪→g (p′, β(τ, (p, γ))).

The relation ↪→g lifts the global successor to configurations with call histories.
For internal moves, the transition is the same as in Δ. For calls, the control
location and top of stack symbol are updated, but additionally, the head of the
caller is saved in the second stack symbol. This enables us to reconstruct the
caller at any point of time. The relation ↪→a⊆ (P ×Γ )× (P ×Ξ∗) is the smallest
relation for which the following conditions hold:

1. If (p, γ) → (p′, γ′) ∈ Δ, then (p, γ) ↪→a (p′, γ′).
2. If (p′, τ) ∈ PSReturnsH(p, γ), then (p, γ) ↪→a (p′, τ).

The relation ↪→a lifts the abstract successor to configurations with call histories.
If a possible abstract successor is given by an internal move, it works exactly as
↪→g. On the other hand, if a call from the current configuration is possible and
a matching return exists, ↪→a can jump directly to that successor.

We now introduce ADF (Always Def ined) sets that indicate whether suc-
cessors of different types are always defined for configurations.

– ADFa = {(p, γΩ) | (p, γ) → (p′, ε) /∈ Δ ∧ (p, γ) /∈ PSLoopsH} is the set of
configurations with call histories such that succa(π, i) is always defined iff
Conf(π, i) ∈ ADFa.

– ADFg = P × Ξ+ is the set of configurations with call histories such that
succg(π, i) is always defined iff Conf(π, i) ∈ ADFg.

Notice that since succg(π, i) is always defined, we introduce the set ADFg for
mere notational convenience to simplify rules in our ABPDS.

4.3 Negation Normal Form

In order to check whether a formula holds in a given PDS, we need to transform
the formula to a special form for the construction of the ABPDS. A BranchCaRet
formula is in Negation Normal Form (NNF) iff the operator ¬ occurs only in
front of atomic propositions.



A Branching Time Variant of CaRet 165

Since the existential quantifier is dual to the universal quantifier and ©W ,
UW and RW are dual to ©, R and U respectively, we can drive the negations
inwards to obtain a BranchCaRet formula φ′ in NNF for any BranchCaRet
formula φ. Hence, we have:

Theorem 12. For every BranchCaRet formula φ, there is an equivalent
BranchCaRet formula φ′ in NNF.

4.4 An ABPDS for BranchCaRet Model Checking

In this section, we define the ABPDS for a PDS and a formula and show how it
can be used for model checking. Our construction extends the construction by
Song and Touili for CTL [29]. The construction we use for the global modalities
is largely the same as theirs, but we also need to take abstract successors and
callers into account. We thus have to add appropriate transitions to possible
returns and save the call history on the stack to handle caller modalities. Our
construction relies on the closure of a formula. This closure will be used to define
the states of our ABPDS: For a BranchCaRet formula φ in NNF, the closure
cl(φ) is the smallest set such that

– φ ∈ cl(φ),
– If φ1 ∧ φ2 ∈ cl(φ) or φ1 ∨ φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ),
– If φ′ ≡ Q Op ψ ∈ cl(φ), then ψ ∈ cl(φ), Op ∈ {©f ,©l

W },
– If Q φ1 Op φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ), Op ∈ {Uf , Rf , U l

W ,
Rl

W },
– If φ′ ≡ E φ1 Op φ2 ∈ cl(φ), then φ1 ∈ cl(φ), φ2 ∈ cl(φ) and E ©− φ′ ∈ cl(φ),

Op ∈ {R−,U−}
– If φ′ ≡ E φ1 Op φ2 ∈ cl(φ), then φ1 ∈ cl(φ), φ2 ∈ cl(φ) and E ©−

W φ′ ∈ cl(φ),
Op ∈ {R−

W ,U−
W }

for f ∈ {g, a,−}, l ∈ {g, a} and Q ∈ {E,A}. For a formula φ without caller
modalities, the closure is simply the set of subformulae of φ. On the other hand,
for caller modalities, we also require that the formula itself as well as an appro-
priate formula involving a caller modality be in the closure. This is necessary
because caller modalities are backwards looking. For example, when we encounter
a Caller-Until formula φ ≡ φ1 U− φ2 and we see that φ2 does not hold at (π, i),
we need to check whether φ1 holds at (π, i) and φ holds at the caller of (π, i).
We can do this by checking the formula φ′ ≡ φ1 ∧ E ©− φ, but for this purpose,
we need E ©− φ in the closure of φ.

Let P = (P, Γ,Δ, λ, I) be a PDS and φ be a BranchCaRet formula in NNF.
Let further P ′ = (P ∪ {pc}) × cl(φ) for a fresh control location pc. We denote
the elements of P ′ as [p, φ] and [pc, φ] respectively. We define an ABPDS BP =
(P ′, Ξ,Δ′, F ). Let F ⊆ P ′ be the smallest set such that

1. [p, ap] ∈ F , ap ∈ AP ,
2. [p,¬ap] ∈ F , ap ∈ AP ,
3. [p,E φ1 Rf φ2] ∈ F , f ∈ {g, a},



166 J. O. Gutsfeld et al.

4. [p,A φ1 Rf φ2] ∈ F , f ∈ {g, a},
5. [p,E φ1 Ra

W φ2] ∈ F ,
6. [p,A φ1 Ra

W φ2] ∈ F

iff the respective control locations are members of P ′. In order to define the tran-
sition rules of Δ, we often use conjunctions of the form

∧
i∈I φi and disjunctions

of the form
∨

i∈I φi for an index set I and certain formulae φi. We adopt the
convention that if I is empty,

∧
i∈I φi evaluates to true and

∨
i∈I φi evaluates to

false. Δ′ has the following transition rules iff the respective control locations of
the form [p, φ] and [pc, φ] are members of P ′:

1. ([p, φ], (γ, (p, γ′))) → ([p, φ], γ) ∈ Δ′,
2. ([p, ap], γ) → ([p, ap], γ) ∈ Δ′, ap ∈ AP ∧ ap ∈ λ(p, γ),
3. ([p,¬ap], γ) → ([p,¬ap], γ) ∈ Δ′, ap ∈ AP ∧ ap /∈ λ(p, γ),
4. ([p, φ1 ∧ φ2], γ) → ([p, φ1], γ) ∧ ([p, φ2], γ) ∈ Δ′,
5. ([p, φ1 ∨ φ2], γ) → ([p, φ1], γ) ∨ ([p, φ2], γ) ∈ Δ′,
6. ([p,E ©f φ1], γ) → ∨

(p,γ)↪→f (p′,Ω)([p
′, φ1], Ω) ∈ Δ′, f ∈ {g, a},

7. ([p,A ©f φ1], γ) → ∧
(p,γ)↪→f (p′,Ω)([p

′, φ1], Ω) ∈ Δ′ , f ∈ {g, a} ∧ (p, γ) ∈
ADFf ,

8. ([p,E φ1 Uf φ2], γ) → ([p, φ2], γ) ∈ Δ′, f ∈ {g, a},
9. ([p,E φ1 Uf φ2], γ) → ∨

(p,γ)↪→f (p′,Ω)(([p, φ1], γ)∧([p′, E φ1 Ufφ2], Ω)) ∈ Δ′,
f ∈ {g, a},

10. ([p,A φ1 Uf φ2], γ) → ([p, φ2], γ) ∈ Δ′, f ∈ {g, a},
11. ([p,A φ1 Uf φ2], γ) → ∧

(p,γ)↪→f (p′,Ω)(([p, φ1], γ) ∧ ([p′, A φ1 Uf φ2], Ω)) ∈
Δ′, (p, γ) ∈ ADFf ,

12. ([p,E φ1 Rf φ2], γ) → ([p, φ2], γ) ∧ ([p, φ1], γ) ∈ Δ′,
13. ([p,E φ1 Rf φ2], γ) → ∨

(p,γ)↪→f (p′,Ω)(([p, φ2], γ) ∧ ([p′, E φ1 Rf φ2], Ω)) ∈
Δ′, f ∈ {g, a},

14. ([p,A φ1 Rf φ2], γ) → ([p, φ2], γ) ∧ ([p, φ1], γ) ∈ Δ′, f ∈ {g, a},
15. ([p,A φ1 Rf φ2], γ) → ∧

(p,γ)↪→f (p′,Ω)(([p, φ2], γ) ∧ ([p′, A φ1 Rf φ2], Ω)) ∈
Δ′, f ∈ {g, a} ∧ (p, γ) ∈ ADFf ,

16. ([p,E ©a
W φ1], γ) → true ∈ Δ′, (p, γ) /∈ ADFa,

17. ([p,E ©a
W φ1], γ) → ∨

(p,γ)↪→a(p′,Ω)([p
′, φ1], Ω) ∈ Δ′,

18. ([p,A ©a
W φ1], γ) → ∧

(p,γ)↪→a(p′,Ω)([p
′, φ1], Ω) ∈ Δ′,

19. ([p,E φ1 Ua
W φ2], γ) → ([p, φ1], γ) ∈ Δ′, (p, γ) /∈ ADFa,

20. ([p,E φ1 Ua
W φ2], γ) → ([p,φ2], γ) ∨ ∨

(p,γ)↪→a(p′,Ω) (([p,φ1], γ) ∧ ([p′,

E φ1 Uf
W φ2], Ω)) ∈ Δ′,

21. ([p,A φ1 Ua
W φ2], γ) → ([p, φ2], γ) ∈ Δ′,

22. ([p,A φ1 Ua
W φ2], γ) → (([p, φ1], γ) ∧ ∧

(p,γ)↪→a(p′,Ω)([p
′, A φ1 Ua

W φ2], Ω)) ∈
Δ′,

23. ([p,E φ1 Ra
W φ2], γ) → ([p, φ2], γ) ∈ Δ′, (p, γ) /∈ ADFa,

24. ([p,E φ1 Ra
W φ2], γ) → (([p, φ2], γ) ∧ ([p, φ1], γ)) ∨∨

(p,γ)↪→a(p′,Ω)(([p, φ2], γ) ∧ ([p′, E φ1 Ra
W φ2], Ω)) ∈ Δ′,

25. ([p,A φ1 Ra
W φ2], γ) → (([p, φ2], γ) ∧ ([p, φ1], γ)) ∈ Δ′,



A Branching Time Variant of CaRet 167

26. ([p,A φ1 Ra
W φ2], γ) → (([p, φ2], γ) ∧ ∧

(p,γ)↪→a(p′,Ω)([p
′, A φ1 Ra

W φ2], Ω)) ∈
Δ′,

27. ([p,EMφ1], γ) → ([pc, EMφ1], ε) ∈ Δ′,M ∈ {©−,©−
W } ∧ γ �= #,

28. ([p′, E ©−
W φ1],#) → true ∈ Δ′, p′ ∈ P ∪ {pc}

29. ([pc, EMφ1], (γ, (p′, γ′)) → ([p′, φ1], γ′) ∈ Δ′,M ∈ {©−,©−
W },

30. ([p,E φ1 U− φ2], γ) → ([p, φ2], γ) ∨ (([p, φ1], γ) ∧ ([p, E ©− (E φ1 U− φ2)],
γ)) ∈ Δ′,

31. ([p,E φ1 R− φ2], γ) → (([p, φ2], γ) ∧ ([p, φ1], γ)) ∨ (([p, φ2], γ) ∧ ([p,E ©−

(E φ1 R− φ2)], γ)) ∈ Δ′.

Finally, we need a function that associates executions of our PDS and formu-
lae with configurations of our ABPDS: Let Conf(π, i) = (p,Ω) and φ be a
BranchCaRet formula in NNF. Then Assoc : (ΠP × N) × cl(φ) → P ′ × Ξ+,
Assoc(π, i, φ) = ([p, φ], Ω) is the function that associates every (π, i) and Branch-
CaRet formula φ with a configuration of BP. After this formal introduction, we
now explain the intuition behind the construction of BP. Our objective is to
show that (π, i) � φ iff there is an accepting run from Assoc(π, i, φ).

The control locations P ′ of BP are divided into two sets: control loca-
tions equipped with formulae [p, φ] and intermediate states [pc, φ]. Starting from
Assoc(π, i, φ), the configurations of BP reachable with a single transition rule
are of the form Assoc(π′, k, φ′) for π′ ∈ Ext(π, i), φ′ ∈ cl(φ) and some index k.
The only exception are configurations with control locations of the form [pc, φ]
in their head. These control locations solely are used to restore the caller in case
we encounter a caller modality. The transition rules in Δ′ are straightforward
applications of the semantics of BranchCaRet. We explain these rules and the set
F in turn to establish an intuitive basis for the formal correctness proof of our
approach. Our rules consist of three general blocks. The first block (rules 1–15)
handles (negated) atomic propositions as well as global and abstract modalities.
An atomic proposition holds iff the current configuration is labelled with it, so
we construct an accepting run via an infinite loop in this case and include no
transitions at all otherwise. For successor modalities, we can just check if the
formula φ1 holds in the respective successor, while also requiring that the suc-
cessor be always defined in the universal case. For Until formulae, we always
check whether φ2 holds directly or φ1 holds and the Until formula holds again
in the respective successor. The Release modality is handled analogously. The
only outlier in this block is rule 1. This rule is only applicable after a symbol has
been popped from the stack using a rule that does not refer to caller modalities.
In this case, when we encounter a symbol that combines a stack symbol and the
head of a caller, we can just ignore that caller and place just the stack symbol on
the stack. The second block (rules 16–26) handles weak abstract modalities. The
rules for these modalities are largely similar to the corresponding rules in the first
block, but we also allow the abstract successor to be undefined in the relevant
cases. For example, for the existential abstract successor modality, we require
that either the abstract successor be undefined (as indicated by the ADFa set)
or fulfill φ2. In both blocks, the control locations for the Release modality are
in F because we also need to construct accepting runs in case these are visited



168 J. O. Gutsfeld et al.

infinitely often. In contrast, all other modalities only lead to finitely many steps
before either a Release modality or a (negated) atomic proposition is encoun-
tered. Therefore, the control locations for these modalities do not need to be
included in the set F . The third block (rules 27–31) deals with caller modali-
ties. The caller is handled by popping the current symbol from the stack and
switching into the intermediate state pc. If the current configuration with call
history has a caller, this intermediate state will contain a stack symbol of the
form (γ, (p′, γ′)) and (p, γ′) will be the configuration head of the caller. Thus,
we can restore the configuration with call history that was present when the call
was made then check whether the formula holds in that configuration. If the
stack symbol is not of that form, we know there is no caller and can use this
information to construct an accepting run for weak caller formulae. The other
caller modalities are handled by reduction to the simple caller modality. For
caller modalities, we do not need to include the control locations for Release in
F because only finitely many steps are possible anyway. We can now state our
main theorem for the connection between BranchCaRet model checking and the
ABPDS BP.

Theorem 13. Let φ be a BranchCaRet formula in NNF and π ∈ ΠP . Then
(π, i) � φ iff there is an accepting run from Assoc(π, i, φ) in BP .

Using Algorithms 1 and 2 to compute PSReturnsH and the ADF sets, we can
construct BP in polynomial time. Since there are only at most |P | · |Γ | initial
configurations and thus only that many variants of π(0), we only need to check
for |P | · |Γ | configurations whether there is an accepting run from the respec-
tive configuration to solve the BranchCaRet model checking problem. There are
O(|P | · |φ|) control locations in BP and we can therefore use Theorem 3 to obtain
that the BranchCaRet model checking problem can be solved in time exponen-
tial in |P | and |φ| and polynomial in |Γ | and |Δ|. In conjunction with the fact
that CTL model checking is already EXPTIME-hard [9] (even for a fixed size
formula), we obtain the following result:

Theorem 14. BranchCaRet model checking is EXPTIME-complete (even for a
fixed size formula).

This is the same model checking complexity as for CTL. Theorem 14 also
shows why it is prudent to consider BranchCaRet separately from the whole
BranchCaRet∗. For the latter logic, we obtain a lower bound of 2EXPTIME-
hardness because this bound already holds for the subset CTL∗ [9]. Thus, model
checking BranchCaRet is generally more efficient. We note that our approach can
easily be extended to accommodate regular stack properties as atomic proposi-
tions with similar transition rules as in [29].

5 Conclusion

In this paper, we introduced the logic BranchCaRet as a branching time variant
of CaRet. We showed how the BranchCaRet model checking problem can be



A Branching Time Variant of CaRet 169

solved via the construction of ABPDSs and checking them for emptiness. We
further proved BranchCaRet model checking to be EXPTIME-complete and
therefore to have the same asymptotic model checking complexity as CTL.

Future Work. We would like to implement our model checking algorithm in a
model checker to analyse its feasibility in case studies. Furthermore, a natural
question would be whether and how our model checking approach for Branch-
CaRet can be extended to the full logic BranchCaRet∗ which was only considered
as a general framework in this paper. As mentioned in Sect. 1, the visibly push-
down μ-calculus (VP-μ) [3] can express all properties of the logic CaRet. It would
be interesting to investigate the relation of VP-μ to BranchCaRet. Finally, we
would like to analyse whether our approach can be extended to a branching time
version of the logic NWTL and the Within-modality introduced by Alur et al.
in [1].

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Log. Methods Comput. Sci. 4(4) (2008).
https://lmcs.episciences.org/782

2. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005)

3. Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global
program flows. In: POPL 2006, pp. 153–165 (2006)

4. Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 31

5. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 35

6. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–
211 (2004)

7. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009)

8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

9. Bozzelli, L.: Complexity results on branching-time pushdown model checking.
Theor. Comput. Sci. 379(1–2), 286–297 (2007)

10. Bozzelli, L.: CaRet with forgettable past. Electr. Notes Theor. Comput. Sci. 231,
343–361 (2009)

11. Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. J. Autom. Reason. 60(2),
177–220 (2018)

12. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084787

https://lmcs.episciences.org/782
https://doi.org/10.1007/11817963_31
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/BFb0084787


170 J. O. Gutsfeld et al.

13. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. Theor. Comput. Sci. 221(1–2), 251–270 (1999)

14. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Wid-
mayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45465-9 60

15. Cachat, T.: Games on pushdown graphs and extensions. Ph.D. thesis, RWTH
Aachen University, Germany (2003)

16. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

17. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-
flow analysis. In: Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 14–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49019-1 2

18. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

19. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 30

20. Hague, M., Ong, C.-H.L.: Winning regions of pushdown parity games: a saturation
method. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp.
384–398. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-
8 26

21. La Torre, S., Napoli, M.: A temporal logic for multi-threaded programs. In: Baeten,
J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 225–239.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33475-7 16

22. Nguyen, H., Touili, T.: CARET analysis of multithreaded programs. CoRR
abs/1709.09006 (2017)

23. Nguyen, H., Touili, T.: CARET model checking for malware detection. In: SPIN
Symposium 2017, pp. 152–161 (2017)

24. Nguyen, H., Touili, T.: CARET model checking for pushdown systems. In: SAC
2017, pp. 1393–1400 (2017)

25. Roşu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: this time
with calls and returns. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 51–68.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89247-2 4

26. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: POPL 1998, pp. 38–48 (1998)

27. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical University
Munich, Germany (2002)

28. Song, F., Touili, T.: PuMoC: a CTL model-checker for sequential programs. In:
ASE 2012, pp. 346–349 (2012)

29. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theor.
Comput. Sci. 549, 127–145 (2014)

30. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54415-1 54

31. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

32. Weinert, A., Zimmermann, M.: Visibly linear dynamic logic. In: FSTTCS 2016,
13–15 December 2016, pp. 28:1–28:14 (2016)

https://doi.org/10.1007/3-540-45465-9_60
https://doi.org/10.1007/3-540-45465-9_60
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/3-540-44585-4_30
https://doi.org/10.1007/978-3-642-04081-8_26
https://doi.org/10.1007/978-3-642-04081-8_26
https://doi.org/10.1007/978-3-642-33475-7_16
https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-54415-1_54


Control Strategies for Off-Line Testing
of Timed Systems

Léo Henry(B), Thierry Jéron, and Nicolas Markey

Univ. Rennes, Inria & CNRS, Rennes, France
leo.henry@irisa.fr

Abstract. Partial observability and controllability are two well-known
issues in test-case synthesis for interactive systems. We address the prob-
lem of partial control in the synthesis of test cases from timed-automata
specifications. Building on the tioco timed testing framework, we extend
a previous game interpretation of the test-synthesis problem from the
untimed to the timed setting. This extension requires a deep rework-
ing of the models, game interpretation and test-synthesis algorithms.
We exhibit strategies of a game that tries to minimize both control losses
and distance to the satisfaction of a test purpose, and prove they are
winning under some fairness assumptions. This entails that when turn-
ing those strategies into test cases, we get properties such as soundness
and exhaustiveness of the test synthesis method.

1 Introduction

Real-time interactive systems are systems interacting with their environment and
subject to timing constraints. Such systems are encountered in many contexts,
in particular in critical applications such as transportation, control of manufac-
turing systems, etc. Their correctness is then of prime importance, but it is also
very challenging due to multiple factors: combination of discrete and continuous
behaviours, concurrency aspects in distributed systems, limited observability of
behaviours, or partial controllability of systems.

One of the most-used validation techniques in this context is testing, with
variations depending on the design phases. Conformance testing is one of those
variations, consisting in checking whether a real system correctly implements its
specification. Those real systems are considered as black boxes, thereby offer-
ing only partial observability, for various reasons (e.g. because sensors cannot
observe all actions, or because the system is composed of communicating compo-
nents whose communications cannot be all observed, or again because of intellec-
tual property of peer software). Controllability is another issue when the system
makes its own choices upon which the environment, and thus the tester, have a
limited control. One of the most-challenging activities in this context is the design
of test cases that, when executed on the real system, should produce meaning-
ful information about the conformance of the system at hand with respect to
its specification. Formal models and methods are a good candidate to help this
test-case synthesis [Tre96].
c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 171–189, 2018.
https://doi.org/10.1007/978-3-319-94111-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_10&domain=pdf


172 L. Henry et al.

Timed Automata (TA) [AD94] form a class of model for the specification of
timed reactive systems. It consists of automata equipped with real-valued clocks
where transitions between locations carry actions, are guarded by constraints on
clock values, and can reset clocks. TAs are also equipped with invariants that
constrain the sojourn time in locations. TAs are popular in particular because
reachability of a location is decidable using symbolic representations of sets of
configurations by zones. In the context of testing, it is adequate to refine TAs
by explicitly distinguishing (controllable) inputs and (uncontrollable) outputs,
giving rise to TAIOs (Timed Automata with Inputs and Outputs). In the fol-
lowing, this model will be used for most testing artifacts, namely specifications,
implementations, and test cases. Since completeness of testing is hopeless in
practice, it is helpful to rely on test purposes that describe those behaviours
that need to be tested because they are subject to errors. In our formal testing
framework, an extension of TAIOs called Open TAIOs (or OTAIOs) is used to
formally specify those behaviors. OTAIOs play the role of observers of actions
and clocks of the specification: they synchronize on actions and clock resets of the
specification (called observed clocks), and control their proper clocks. The for-
mal testing framework also requires to formally define conformance as a relation
between specifications and their possible implementations. In the timed setting,
the classical tioco relation [KT09] states that, after a timed observable trace
of the specification, the outputs and delays of the implementation should be
specified.

Test-case synthesis from TAs has been extensively studied during the last
20 years (see [COG98,CKL98,SVD01,ENDK02,NS03,BB04,LMN04,KT09], to
cite a few). As already mentioned, one of the difficulties is partial observation.
In off-line testing, where the test cases are first computed, stored, and later
executed on the implementation, the tester should anticipate all specified out-
puts after a trace. In the untimed framework, this is tackled by determinization
of the specification. Unfortunately, this is not feasible for TAIO specifications
since determinization is not possible in general [AD94,Fin06]. The solution was
then either to perform on-line testing where subset construction is made on
the current execution trace, or to restrict to determinizable sub-classes. More
recently, some advances were obtained in this context [BJSK12] by the use of an
approximate determinization using a game approach [BSJK15] that preserves
tioco conformance. Partial observation is also dealt with by [DLL+10] with a
variant of the TA model where observations are described by observation predi-
cates composed of a set of locations together with clock constraints. Test cases
are then synthesized as winning strategies, if they exist, of a game between the
specification and its environment that tries to guide the system to satisfy the
test purpose.

The problem of test synthesis is often informally presented as a game between
the environment and the system (see e.g. [Yan04]). But very few papers effec-
tively take into account the controllability of the system. In the context of testing
for timed-automata models [DLLN08b], proposes a game approach where test
cases are winning strategies of a reachability game. But this is restricted to



Control Strategies for Off-Line Testing of Timed Systems 173

deterministic models and controllability is not really taken into account. In fact,
like in [DLL+10], the game is abandoned when control is lost, and it is sug-
gested to modify the test purpose in this case. This is mitigated in [DLLN08a]
with cooperative strategies, which rely on the cooperation of the system under
test to win the game. A more convincing approach to the control problem is
the one of [Ram98] in the untimed setting, unfortunately a quite little-known
work. The game problem consists in satisfying the test purpose (a simple sub-
sequence), while trying to avoid control losses occurring when outputs offered
by the system leave this behaviour. The computed strategy is based on a rank
that measures both the distance to the goal and the controls losses.

The current paper adapts the approach proposed in [Ram98] to the timed
context using the framework developed in [BJSK12]. Compared to [Ram98], the
model of TA is much more complex than transition systems, the test purposes are
also much more powerful than simple sub-sequences, thus even if the approach
is similar, the game has to be completely revised. Compared to [DLL+10], our
model is a bit different since we do not rely on observation predicates, but par-
tial observation comes from internal actions and choices. We do not completely
tackle non-determinism since we assume determinizable models at some point.
In comparison, [DLL+10] avoids determinizing TAs, relying on the determiniza-
tion of a finite state model, thanks to a projection on a finite set of observable
predicates. Cooperative strategies of [DLLN08a] have similarities with our fair-
ness assumptions, but their models are assumed deterministic. Our approach
takes controllability into account in a more complete and practical way with the
reachability game and rank-lowering strategies.

The paper is organized as follows. Section 2 introduces basic models: TAs,
TAIOs and their open counterparts OTAs, OTAIOs, and then timed game
automata (TGA). Section 3 is dedicated to the testing framework with hypothe-
sis on models of testing artifacts, the conformance relation and the construction
of the objective-centered tester that denotes both non-conformant traces and the
goal to reach according to a test purpose. Section 4 constitutes the core of the
paper. The test synthesis problem is interpreted as a game on the objective-
centered tester. Rank-lowering strategies are proposed as candidate test cases,
and a fairness assumption is introduced to make such strategies win. Finally
properties of test cases with respect to conformance are proved.

By lack of space, not all proofs could be included. They can be found
in [HJM18].

2 Timed Automata and Timed Games

In this section, we introduce our models for timed systems and for concurrent
games on these objects, along with some useful notions and operations.

2.1 Timed Automata with Inputs and Outputs

Timed automata (TAs) [AD94] are one of the most widely-used classes of
models for reasoning about computer systems subject to real-time constraints.



174 L. Henry et al.

Timed automata are finite-state automata augmented with real-valued vari-
ables (called clocks) to constrain the occurrence of transitions along executions.
In order to adapt these models to the testing framework, we consider TAs with
inputs and outputs (TAIOs), in which the alphabet is split between input, out-
put and internal actions (the latter being used to model partial observation).
We present the open TAs (and open TAIOs) [BJSK12], which allow the models
to observe and synchronize with a set of non-controlled clocks.

Given a finite set of clocks X, a clock valuation over X is a function v : X →
R≥0. We note 0X (and often omit to mention X when clear from the context)
for the valuation assigning 0 to all clocks in X. Let v be a clock valuation, for
any t ∈ R≥0, we denote with v + t the valuation mapping each clock x ∈ X
to v(x)+ t, and for a subset X ′ ⊆ X, we write v[X′←0] for the valuation mapping
all clocks in X ′ to 0, and all clocks in X \ X ′ to their values in v.

A clock constraint is a finite conjunction of atomic constraints of the form
x ∼ n where x ∈ X, n ∈ N, and ∼ ∈ {<,≤,=,≥, >}. That a valuation v satisfies
a clock constraint g, written v |= g, is defined in the obvious way. We write C(X)
for the set of clock constraints over X.

Definition 1. An open timed automaton (OTA) is a tuple1 A = (LA, lA0 , ΣA,
XA

p � XA
o , IA, EA) where:

– LA is a finite set of locations, with lA0 ∈ LA the initial location,
– ΣA is a finite alphabet,
– XA = XA

p � XA
o is a finite set of clocks, partitioned into proper clocks XA

p

and observed clocks XA
o ; only proper clocks may be reset along transitions.

– IA : LA → C(XA) assigns invariant constraints to locations.
– EA ⊆ LA × C(XA) × ΣA × 2XA

p × LA is a finite set of transitions. For
e = (l, g, a,X ′, l′) ∈ EA, we write act(e) = a.

An Open Timed Automaton with Inputs and Outputs (OTAIO) is an OTA in
which ΣA = ΣA

? �ΣA
! �ΣA

τ is the disjoint union of input actions in ΣA
? (noted

?a, ?b, ...), output actions in ΣA
! (noted !a, !b, ...), and internal actions in ΣA

τ

(noted τ1, τ2, ...) We write Σobs = Σ?�Σ! for the alphabet of observable actions.
Finally, a Timed Automaton (TA) (resp. a Timed Automaton with Inputs and
Outputs (TAIO)) is an OTA (resp. an OTAIO) with no observed clocks.

TAIOs will be sufficient to model most objects, but the ability of OTAIOs to
observe other clocks will be essential for test purposes (see Sect. 3.1), which need
to synchronize with the specification.

Let A = (L, l0, Σ,Xp � Xo, I, E) be an OTA. Its semantics is defined as an
infinite-state transition system T A = (SA, sA

0 , ΓA,→A) where:

– SA = {(l, v) ∈ L ×R
X
≥0 | v |= I(l)} is the (infinite) set of configurations, with

initial configuration sA
0 = (l0, 0X).

1 For this and the following definitions, we may omit to mention superscripts when
the corresponding automaton is clear from the context.



Control Strategies for Off-Line Testing of Timed Systems 175

– ΓA = R≥0 � (E × 2Xo) is the set of transitions labels.
– →A ⊆ SA × ΓA × SA is the transition relation. It is defined as the union of

• the set of transitions corresponding to time elapses: it contains all triples
((l, v), δ, (l′, v′)) ∈ SA × R≥0 × SA for which l = l′ and v′ = v + δ.
By definition of SA, both v and v′ satisfy the invariant I(l).

• the set of transitions corresponding to discrete moves: it contains all
triples ((l, v), (e,X ′

o), (l
′, v′)) ∈ SA × (E × 2Xo) × SA such that, writing

e = (m, g, a,X ′
p,m

′), it holds m = l, m′ = l′, v |= g, and v′ = v[X′
p∪X′

o←0].
Again, by definition, v |= I(l) and v′ |= I(l′).

An OTA has no control over its observed clocks, the intention being to syn-
chronize them later in a product (see Definition 2). Hence, when a discrete
transition is taken, any set X ′

o of observed clocks may be reset. When dealing
with plain TAs, where Xo is empty, we may write (l, v) e−→ (l′, v′) in place of

(l, v)
(e,∅)−−−→ (l′, v′).

A partial run of A is a (finite or infinite) sequence of transitions in T A

ρ = ((si, γi, si+1))1≤i<n, with n ∈ N∪ {+∞}. We write first(ρ) for s1 and, when
n ∈ N, last(ρ) for sn. A run is a partial run starting in the initial configuration sA

0 .
The duration of ρ is dur(ρ) =

∑
γi∈R≥0

γi. In the sequel, we only consider TAs in
which any infinite run has infinite duration. We note Ex(A) for the set of runs
of A and pEx(A) the subset of partial runs.

State s is reachable from state s′ when there exists a partial run from s′ to s.
We write Reach(A, S′) for the set of states that are reachable from some state
in S′, and Reach(A) for Reach(A, {sA

0 }).
The (partial) sequence associated with a (partial) run ρ = ((si, γi, s

′
i))i is

seq(ρ) = (proj(γi))i, where proj(γ) = γ if γ ∈ R≥0, and proj(γ) = (a,X ′
p ∪ X ′

o)
if γ = ((l, g, a,X ′

p, l
′),X ′

o). We write pSeq(A) = proj(pEx(A)) and Seq(A) =
proj(Ex(A)) for the sets of (partial) sequences of A. We write s

μ−→ s′ when there
exists a (partial) finite run ρ such that μ = proj(ρ), first(ρ) = s and last(ρ) = s′,
and write dur(μ) for dur(ρ). We write s

μ−→ when s
μ−→ s′ for some s.

If A is a TAIO, the trace of a (partial) sequence corresponds to what can be
observed by the environment, namely delays and observable actions. The trace
of a sequence is the limit of the following inductive definition, for δi ∈ R≥0,
a ∈ Σobs, τ ∈ Στ , X ′ ⊆ X, and a partial sequence μ:

Trace(δ1...δk) =
∑k

i=1 δi (in particular Trace(ε) = 0)

Trace(δ1...δk.(τ,X ′).μ) = (
∑k

i=1 δi) · Trace(μ)

Trace(δ1...δk.(a,X ′).μ) = (
∑k

i=1 δi) · a · Trace(μ)

We note Traces(A) = Trace(Seq(A)) the set of traces corresponding to runs of A
and pTraces(A) the subset of traces corresponding to partial runs. Two OTAIOs
are said to be trace-equivalent if they have the same sets of traces. We further-
more define, for an OTAIO A, a trace σ and a configuration s:

– A afterσ = {s ∈ S | ∃μ ∈ Seq(A), s0
μ−→ s ∧ Trace(μ) = σ} is the set of all

configurations that can be reached when σ has been observed from sA
0 .



176 L. Henry et al.

– enab(s) = {e ∈ EA | s
e−→} is the set of transitions enabled in s.

– elapse(s) = {t ∈ R≥0 | ∃μ ∈ (R≥0 ∪ (Στ × 2X))∗, s
μ−→ ∧dur(μ) = t} is the set

of delays that can be observed from location s without any observation.
– out(s) = {a ∈ Σ! | ∃e ∈ enab(s), act(e) = a} ∪ elapse(s) is the set of possible

outputs and delays that can be observed from s. For S′ ⊆ S, we note out(S′) =⋃
s∈S′ out(s).

– in(s) = {a ∈ Σ! | ∃e ∈ enab(s), act(e) = a} is the set of possible inputs that
can be proposed when arriving in s. For S′ ⊆ S, we note in(S′) =

⋃
s∈S′ in(s).

We now define some useful sub-classes of OTAIOs. An OTAIO A is said

– deterministic if for all σ ∈ Traces(A), A afterσ is a singleton;
– determinizable if there exists a trace-equivalence deterministic OTAIO;
– complete if S = L×R

X
≥0 (i.e., all invariants are always true) and for any s ∈ S

and any a ∈ Σ, it holds s
a,X′
−−−→ for some X ′ ⊆ X;

– input-complete if for any s ∈ Reach(A), in(s) = Σ?;
– non-blocking if for any s ∈ Reach(A) and any non-negative real t, there is a

partial run ρ from s involving no input actions (i.e., proj(ρ) is a sequence over
R≥0 ∪ (Σ! ∪ Στ ) × 2X) and such that dur(ρ) = t;

– repeatedly observable if for any s ∈ Reach(A), there exists a partial run ρ
from s such that Trace(ρ) /∈ R≥0.

The product of two OTAIOs extends the classical product of TAs.

Definition 2. Given two OTAIOs A = (LA, lA0 , Σ?�Σ!�Στ ,XA
p �XA

o , IA, EA)
and B = (LB, lB0 , Σ? � Σ! � Στ ,XB

p � XB
o , IB, EB) over the same alphabets, their

product is the OTAIO A × B = (LA × LB, (lA0 , lB0 ), Σ? � Σ! � Στ , (XA
p ∪ XB

p ) �
((XA

o ∪ XB
o ) \ (XA

p ∪ XB
p )), I, E) where I : (l1, l2) → IA(l1) ∧ IB(l2) and E is the

(smallest) set such that for each (l1, g1, a,X ′1
p , l′1) ∈ EA and (l2, g2, a,X ′2

p , l′2) ∈
EB, E contains ((l1, l2), g1 ∧ g2, a,X ′1

p ∪ X ′2
p , (l′1, l′2)).

The product of two OTAIOs corresponds to the intersection of the sequences of
the orginial OTAIOs, i.e. Seq(A × B) = Seq(A) ∩ Seq(B) [BSJK15].

2.2 Timed Games

We introduce timed game automata [AMPS98], which we later use to turn the
test artifacts into games between the tester (controlling the environment) and
the implementation, on an arena constructed from the specification.

Definition 3. A timed game automaton (TGA) is a timed automaton G =
(L, l0, Σc � Σu,X, I, E) where Σ = Σc � Σu is partitioned into actions that are
controllable (Σc) and uncontrollable (Σu) by the player.

All the notions of runs and sequences defined previously for TAs are extended
to TGAs, with the interpretation of Σc as inputs and Σu as outputs.



Control Strategies for Off-Line Testing of Timed Systems 177

Definition 4. Let G = (L, l0, Σc � Σu,X, I, E) be a TGA. A strategy for the
player is a partial function f : Ex(G) → R≥0×(Σc ∪{⊥})\{(0,⊥)} such that for
any finite run ρ, letting f(ρ) = (δ, a), δ ∈ elapse(last(ρ)) is a possible delay from
last(ρ), and there is an a-transition available from the resulting configuration
(unless a = ⊥).

Strategies give rise to sets of runs of G, defined as follows:

Definition 5. Let G = (L, l0, Σ,X, I, E) be a TGA, f be a strategy over G, and
s be a configuration. The set of outcomes of f from s, noted Outcome(s, f), is
the smallest subset of partial runs starting from s containing the empty partial
run from s (whose last configuration is s), and s.t. for any ρ ∈ Outcome(s, f),
letting f(ρ) = (δ, a) and last(ρ) = (l, v), we have

– ρ ·((l, v), δ, (l, v+δ′)) ·((l, v+δ′), e, (l′, v′)) ∈ Outcome(s, f) for any 0 ≤ δ′ ≤ δ
and act(e) ∈ Σu such that ((l, v + δ′), e, (l′, v′)) ∈ pEx(A);

– and
• either a = ⊥, and ρ · ((l, v), δ, (l, v + δ)) ∈ Outcome(s, f);
• or a ∈ Σc, and ρ · ((l, v), δ, (l, v + δ)) · ((l, v + δ), e, (l′, v′)) ∈ Outcome(s, f)
with act(e) = a;

An infinite partial run is in Outcome(s, f) if infinitely many of its finite pre-
fixes are.

In this paper, we will be interested in reachability winning conditions
(under particular conditions). In the classical setting, the set of winning con-
figurations can be computed iteratively, starting from the target location
and computing controllable predecessors in a backward manner. The com-
putation can be performed on regions, so that it terminates (in exponential
time) [AMPS98,CDF+05]. We extend this approach to our test-generation
framework in Sect. 4.

3 Testing Framework

We now present the testing framework, defining (i) the main testing artifacts
i.e. specifications, implementations, test purposes, and test cases, along with the
assumptions on them; (ii) a conformance relation relating implementations and
specifications. The combination of the test purposes and the specification and
the construction of an approximate deterministic tester is afterward explained.

3.1 Test Context

We use TAIOs as models for specifications, implementations and test cases, and
OTAIOs for test purposes. This allows to define liberal test purposes, and on a
technical side, gives a unity to the manipulated objects.

In order to enforce the occurrence of conclusive verdicts, we equip spec-
ifications with restart transitions, corresponding to a system shutdown and
restart, and assume that from any (reachable) configuration, a restart is always
reachable.



178 L. Henry et al.

Definition 6. A specification with restarts (or simply specification) on
(Σ?, Σ!, Στ ) is a non-blocking, repeatedly-observable TAIO S = (LS , lS0 , (Σ? ∪
{ζ})�Σ!�Στ ,XS

p , IS , ES) where ζ /∈ Σ? is the restart action. We let RestartS =
ES ∩ (LS × GMS (XS) × {ζ} × {XS

p } × {lS0 }) be the set of ζ-transitions, and it
is assumed that from any reachable configuration, there exists a finite partial
execution containing ζ, i.e. for any s ∈ Reach(S), there exists μ s.t. s

μ·ζ−−→ sS
0 .

The non-blocking hypothesis rules out “faulty” specifications having no con-
formant physically-possible implementation. Repeated-observability will be use-
ful for technical reasons, when analyzing the exhaustiveness property of test
cases. Our assumption on ζ-transitions entails:

Proposition 7. Let S be a specification with restarts. Then Reach(TS) is
strongly-connected.

Example 1. Figure 1 is an example of specification for a conveyor belt. After a
maximum time of 2 units (depending for example on their weight), packages
reach a sorting point where they are automatically sorted between packages to
reject and packages to ship. Packages to reject go to waste, while packages to
ship are sent to a boarding platform, where an operator can send them to two
different destinations. If the operator takes more than 3 units of time to select
a destination, the package goes past the boarding platform and restarts the
process.

Dest1
true

Boarding
x≤3

Dest2
true

Sort
x≤1

Waste
x≤1

Start
x≤2

start

x ≤ 2
τ

{x}

true
waste!
{x}

true
τ

{x}

true
ship1?
{x}

true
ship2?
{x}

x = 3
past!
{x}

x = 1
end1!
{x}

x = 1
end2!
{x}

true
ζ

{x}

true
ζ

{x}

x = 1
τ

{x}

true
ζ

{x}

Fig. 1. A conveyor belt specification.

In practice, test purposes are
used to describe the intention
of test cases, typically behaviours
one wants because they must
be correct and/or an error is
suspected. In our formal testing
framework, we describe them with
OTAIOs that observe the spec-
ification together with accepting
locations.

Definition 8. Given a specifica-
tion S = (LS , lS0 , (Σ? ∪ {ζ}) �
Σ! � Στ ,XS

p , IS , ES � Restart),
a test purpose for S is a pair
(T P,AcceptT P) where T P =
(LT P , lT P

0 , Σ? ∪ {ζ} � Σ! � Στ ,XT P
p � XS

p , IT P , ET P) is a complete OTAIO
together with a subset AcceptT P ⊆ LT P of accepting locations, and such that
transitions carrying restart actions ζ reset all proper clocks and return to the
initial state (i.e., for any ζ-transition (l, g, ζ,X ′, l′) ∈ E, it must be X ′ = XT P

p

and l′ = lT P
0 ).

In the following, we may simply write T P in place of (T P,AcceptT P). We force
test purposes to be complete because they should never constrain the runs of



Control Strategies for Off-Line Testing of Timed Systems 179

the specification they observe, but should only label the accepted behaviours to
be tested. Test purposes observe exactly the clocks of the specification in order
to synchronize with them, but cannot reset them.

Example 2. Figure 2 is a test purpose for our conveyor-belt example. We want
to be sure that it is possible to ship a package to destination 2 in less than 5
time units, while avoiding to go in waste. The Accept set is limited to a location,
named Accept. We note oth the set of transitions that reset no clocks, and is
enabled for an action other than ζ when no other transition is possible for this
action. This set serves to complete the test purpose. The test purpose has a
proper clock y.

Start
true

Accept
true

Waste
true

y ≤ 5, ship2?, ∅

true,waste!, ∅

oth

true, ζ, {y}

oth

true, ζ, {y}

oth

true, ζ, {y}

Fig. 2. A test purpose for the conveyor belt.

In practice, conformance test-
ing links a mathematical model,
the specification, and a black-box
implementation, that is a real-life
physical object observed by its
interactions with the environment.
In order to formally reason about
conformance, one needs to bridge
the gap between the mathemati-
cal world and the physical world.
We then assume that the implementation corresponds to an unknown TAIO.

Definition 9. Let S = (LS , lS0 , (Σ? ∪ {ζ}) � Σ! � Στ ,XS
p , IS , ES ∪ Restart) be

a specification TAIO. An implementation of S is an input-complete and non-
blocking TAIO I = (LI , lI0 , (Σ? ∪{ζ})�Σ! �ΣI

τ ,XI
p , II , EI). We note I(S) the

set of possible implementations of S.
The hypotheses made on implementations are not restrictions, but model

real-world contingencies: the environment might always provide any input and
the system cannot alter the course of time.

Having defined the necessary objects, it is now possible to introduce the
timed input-output conformance (tioco) relation [KT09]. Intuitively, it can be
understood as “after any specified behaviour, outputs and delays of the imple-
mentation should be specified”.

Definition 10. Let S be a specification and I ∈ I(S). We say that I con-
forms to S for tioco, and write I tiocoS when:

∀σ ∈ Traces(S), out(I after σ) ⊆ out(S after σ)

Note that it is not assumed that restarts are well implemented: if they are not,
it is significant only if it induces non-conformant behaviours.

3.2 Combining Specifications and Test Purposes

Now that the main objects are defined, we explain how the behaviours targeted
by the test purpose T P are characterized on the specification S by the construc-
tion of the product OTAIO P = S × T P. Since S is a TAIO and the observed



180 L. Henry et al.

clocks of T P are exactly the clocks of S, the product P is actually a TAIO. Fur-
thermore, since T P is complete, Seq(P) = Seq(S). This entails that I tiocoS is
equivalent to I tiocoP. Note in particular that ζ of S synchronize with ζ of T P,
which are available everywhere.

By defining accepting locations in the product by AcceptP = LS ×AcceptT P ,
we get that sequences accepted in P are exactly sequences of S accepted by T P.

Example 3. Figure 3 represents the product of the conveyor-belt specification of
Fig. 1 and the test purpose of Fig. 2. All nodes are named by the first letters
of the corresponding states of the specification (first) and of the test purpose.
The only accepting location is (D2, A).

D1, St
true

Bo, St
x≤3

D2, St
true

D2,A
true

So, St
x≤1

Wa,Wa
x≤1

St, St
x≤2

start

x ≤ 2
τ

{x}

true
waste!
{x}

true
τ

{x}

true, ship1?, {x} y > 5, ship2?, {x}

y ≤ 5, ship2?, {x}

x = 3
past!
{x}

x = 1, end1!, {x}

x = 1
end2!
{x}

x = 1, end2!, {x}

true
ζ

{x, y}

true
ζ

{x, y}

true
ζ

{x, y}

x = 1
τ

{x}

true
ζ

{x, y}

Fig. 3. Product of the conveyor belt specification and the presented test purpose.

We make one final hypothesis: we consider only pairs of specifications S
and test purposes T P whose product P can be exactly determinized by the
determinization game presented in [BSJK15]. This restriction is necessary for
technical reasons: if the determinization is approximated, we cannot ensure that
restarts are still reachable in general. Notice that it is satisfied in several classes
of automata, such as strongly non-zeno automata, integer-reset automata, or
event-recording automata.

Given the product P = S ×T P, let DP be its exact determinization. In this
case, Traces(DP) = Traces(P), hence the reachability of ζ transitions is pre-
served. Moreover the traces leading to AcceptDP and AcceptP are the same.

Example 4. The automaton in Fig. 4 is a deterministic approximation of the
product presented in Fig. 3. The internal transitions have collapsed, leading to
an augmented Start locality.



Control Strategies for Off-Line Testing of Timed Systems 181

D1, St
true

St
x≤6

D2, St
true

D2,A
true

Wa
true

x ≤ 3
waste!
{x}

true, ship1?, {x} y > 5, ship2?, {x}

y ≤ 5, ship2?, {x}

3 ≤ x ≤ 6, past!, {x}

x = 1, end1!, {x}

x = 1
end2!
{x}

x = 1, end2!, {x}

true, ζ, {x, y}

true, ζ, {x, y}

true, ζ, {x, y}

true
ζ

{x, y}

Fig. 4. A deterministic approximation of the product.

3.3 Accounting for Failure

At this stage of the process, we dispose of a deterministic and fully-observable
TAIO DP having exactly the same traces as the original specification, and having
a subset of its localities labelled as accepting for the test purpose. From this
TAIO, we aim to build a tester, that can be able to monitor the implementation,
feeding it with inputs and selecting verdicts from the returned outputs.

DP models the accepted traces with AcceptDP . In order to also explicitly
model faulty behaviours (unspecified outputs after a specified trace), we now
complete DP with respect to its output alphabet, by adding an explicit Fail
location. We call this completed TAIO the objective-centered tester.

Definition 11. Given a deterministic TAIO DP = (LDP , lDP
0 , Σ? � Σ! �

Στ ,XDP
p , IDP , EDP), we construct its objective-centered tester OT = (LDP ∪

{Fail}, lDP
0 , Σ?�Σ!�Στ ,XDP

p , IOT , EOT ) where IOT (l) = true. The set of tran-
sitions EOT is defined from EDP by:

EOT = EDP ∪
⋃

l∈LDP

a∈ΣDP
!

{(l, g, a, ∅,Fail) | g ∈ Ga,l}
∪ {(Fail, true, a, ∅,Fail) | a ∈ ΣDP}

where for each a and l, Ga,l is a set of guards complementing the set of all
valuations v for which an a-transition is available from (l, v) (notice that Ga,l

generally is non-convex, so that it cannot be represented by a single guard).
Verdicts are defined on the configurations of OT as follows:

– Pass =
⋃

l∈AcceptDP ({l} × IDP(l)),

– Fail = {Fail} × R≥0 ∪
⋃

l∈LDP

(
{l} ×

(
R

Xp

≥0 \ IDP(l)
))

.

Notice that we do not define the usual Inconclusive verdicts (i.e. configura-
tions in which we cannot conclude to non-conformance, nor accept the run with
respect to the test purpose) as we will enforce the apparition of Pass or Fail .
Pass corresponds to behaviours accepted by the test purpose, while Fail cor-
responds to non-conformant behaviours. Note that OT inherits the interesting
structural properties of DP. More importantly, ζ is always reachable as long as
no verdict has been emitted, and OT is repeatedly-observable out of Fail .



182 L. Henry et al.

It remains to say that OT and DP model the same behaviours. Obviously,
their sets of traces differ, but the traces added in OT precisely correspond to
runs reaching Fail . We now define a specific subset of runs, sequences and traces
corresponding to traces that are meant to be accepted by the specification.

Definition 12. A run ρ of an objective-centered tester OT is said confor-
mant if it does not reach Fail. We note Exconf(OT ) the set of conformant
runs of OT , and Seqconf(OT ) (resp. Tracesconf(OT )) the corresponding sequences
(resp. traces). We note Exfail(OT ) = Ex(OT ) \ Exconf(OT ) and similarly for the
sequences and traces.

The conformant traces are exactly those specified by DP, i.e. Traces(DP) =
Tracesconf(OT ) and correspond to executions tioco-conformant with the specifi-
cation, while Exfail are runs where a non-conformance is detected.

4 Translating Objectives into Games

In this section, we interpret objective-centered tester into games between the
tester and the implementation and propose strategies that try to avoid control
losses. We then introduce a scope in which the tester always has a winning
strategy, and discuss the properties of the resulting test cases (i.e. game structure
and built strategy).

We want to enforce conclusive verdicts when running test cases, i.e. either
the implementation does not conform to its specification (Fail verdict) or
the awaited behaviour appears (Pass verdict). We thus say that an execu-
tion ρ is winning for the tester if it reaches a Fail or Pass configuration
and note Win(G) the set of such executions. In the following, we consider the
TGA GOT = (LOT , lOT

0 , ΣOT
? � ΣOT

! ,Xp, I
OT , EOT ) where the controllable

actions are the inputs Σc = ΣOT
? and the uncontrollable actions are the outputs

Σu = ΣOT
! .

4.1 Rank-Lowering Strategy

In this part, we restrict our discussion to TGAs where Pass configurations are
reachable (when seen as plain TAs). Indeed, if none can be reached, and we will
discuss the fact that the proposed method can detect this fact, trying to construct
a strategy seeking a Pass verdict is hopeless. This is a natural restriction, as it
only rules out unsatisfiable test purposes.

The tester cannot force the occurrence of a non-conformance (as he does
not control outputs and delays), and hence cannot push the system into a Fail
configuration. A strategy for the tester should thus target the Pass set in a
partially controllable way, while monitoring Fail . For that purpose, we define a
hierarchy of configurations, depending on their “distance” to Pass. This uses a
backward algorithm, for which we define the predecessors of a configuration.

Given a set of configurations S′ ⊆ S of GOT , we define three kinds of prede-
cessors, letting V denote the complement of V :



Control Strategies for Off-Line Testing of Timed Systems 183

– discrete predecessors by a sub-alphabet Σ′ ⊆ Σ:

PredΣ′(S′) = {(l, v) | ∃a ∈ Σ′, ∃(l, a, g,X ′, l′) ∈ E, v |= g ∧ (l′, v[X′←0]) ∈ S′}

– timed predecessors, while avoiding a set V of configurations:

tPred(S′, V ) = {(l, v) | ∃δ ∈ R≥0, (l, v+δ) ∈ S′ ∧∀ 0 ≤ δ′ ≤ δ. (l, v+δ′) /∈ V }

We furthermore note tPred(S′) = tPred(S′, ∅).
– final timed predecessors are defined for convenience (see below):

ftPred(S′) = tPred(Fail ,PredΣu
(S′)) ∪ tPred(PredΣ(S′))

The final timed predecessors correspond to situations where the system is ‘cor-
nered’, having the choice between taking an uncontrollable transition to S′ (as
no uncontrollable transition to S′ will be available) or reach Fail . Such situa-
tions are not considered as control losses, as the system can only take a beneficial
transition for the tester (either by going to S′ or to Fail). Note that tPred and
ftPred need not return convex sets, but are efficiently computable using Pred and
simple set constructions [CDF+05]. Now, using these notions of predecessors, a
hierarchy of configurations based on the ‘distance’ to Pass is defined.

Definition 13. The sequence (W j
i )j,i of sets of configurations is defined as:

– W 0
0 = Pass

– W j
i+1 = π(W j

i ) with π(S′) = tPred
(
S′ ∪ PredΣc

(S′),PredΣu
(S′)

)
∪ ftPred(S′)

– W j+1
0 = tPred(W j

∞ ∪PredΣ(W j
∞)) with W j

∞ the limit2 of the sequence (W j
i )i.

In this hierarchy, j corresponds to the minimal number of control losses the tester
has to go through (in the worst case) in order to reach Pass, and i corresponds
to the minimal number of steps before the next control loss (or to Pass). The
W j+1

0 are considered ‘control losses’ as the implementation might take an output
transition leading to an undesirable configuration (higher on the hierarchy). On
the other hand, in the construction of W j

i the tester keep a full control, as it is
not possible to reach such bad configuration with an uncontrollable transition.
Notice that the sequence (W j

i ) is an increasing sequence of regions, and hence
can be computed in time exponential in XOT and linear in LOT .

We then have the following property:

Proposition 14. There exists i, j ∈ N such that Reach(GOT ) \ Fail ⊆ W j
i .

As explained above, this property is based on the assumption that the Pass
verdict is reachable. Nevertheless, if it is not it will be detected during the
hierarchy construction that will converge to a fixpoint not including sG

0 . As all
the configurations in which we want to define a strategy are covered by the
hierarchy, we can use it to define a partial order.
2 The sequence (W j

i )i is non-decreasing, and can be computed in terms of clock
regions; hence the limit exists and is reached in a finite number of itera-
tions [CDF+05].



184 L. Henry et al.

Definition 15. Let s ∈ Reach(GOT ) \ Fail. The rank of s is:

r(s) = (js = arg min
j∈N

(s ∈ W j
∞), is = arg min

i∈N

(s ∈ W js
i ))

For r(s) = (j, i); j is the minimal number of control losses before reaching an
accepting state, and i is the minimal number of steps in the strategy before the
next control loss. We note s � s′ when r(s) ≤N2 r(s′), where ≤N2 is the lexical
order on N

2.

Proposition 16. � is a partial order on Reach(GOT ) \ Fail.

We dispose of a partial order on configurations, with Pass being the minimal
elements. We use it to define a strategy trying to decrease the rank during
the execution. For any s ∈ S, we write r−(s) for the largest rank such that
r−(s) <N2 r(s), and W−(s) for the associated set in (W j

i )j,i. We (partially)
order pairs (δ, a) ∈ R≥0 × Σ according to δ.

Definition 17. A strategy f for the tester is rank-lowering if, for any finite
run ρ with last(ρ) = s = (l, v), it selects the lesser delay satisfying one of the
following constraints:

– if s ∈ tPred(PredΣc
(W−(s))), then f(ρ) = (δ, a) with a ∈ Σc s.t. there exists

e ∈ E with act(e) = a and s
δ−→ e−→ t with t ∈ W−(s), and δ is minimal in

the following sense: if s
δ′
−→ e′

−→ t′ with t′ ∈ W−(s) and δ′ ≤ δ, then v + δ and
v + δ′ belong to the same region;

– if s ∈ tPred(W−(s)), then f(ρ) = (δ,⊥) such that s
δ−→ t with t ∈ W−(s), and

δ is minimal in the same sense as above;
– otherwise f(ρ) = (δ,⊥) where δ is maximal in the same sense as above (max-

imal delay-successor region).

The two first cases follow the construction of the W j
i and propose the shortest

behaviour leading to W−. The third case corresponds, either to a configuration
of Pass, where W− is undefined, or to a ftPred. Notice that (possibly several)
rank-lowering strategies always exist.

Example 5. An example of a rank-lowering strategy on the automaton of
Fig. 4 is: in (D2, A), play ⊥ (as W 0

0 has been reached); in St, play (0, ship2?);
in any other state, play (0, ζ). Note that Fig. 4 has not been completed in a
objective-centered tester. This does not impact the strategies, as the transition
to the fail states lead to a victory, but are not targeted by the strategies.

It is worth noting that even in a more general setup where the models are
not equipped with ζ-transitions, as in [BSJK15], rank-lowering strategies may
still be useful: as they are defined on the co-reachable set of Accept, they can
still constitute test cases, and the configurations where they are not defined are
exactly the configurations corresponding to a Fail verdict or to an Inconclusive
verdict, i.e., no conclusions can be made since an accepting configuration cannot
be reached.



Control Strategies for Off-Line Testing of Timed Systems 185

4.2 Making Rank-Lowering Strategies Win

A rank-lowering strategy is generally not a winning strategy: it relies on the
implementation fairly exploring its different possibilities and not repeatedly
avoiding an enabled transition. In this section, fair runs are introduced, and
the rank-lowering strategies are shown to be winning in this subset of the runs.

Lemma 18. If OT is repeatedly-observable, then for all ρ = ((si, γi, si+1))i∈N ∈
Ex(G) ending with an infinite sequence of delays, we have3

ρ ∈ Exfail(G) ∨ ∃e ∈ EG ,
∞
∃ i ∈ N, e ∈ enab(si).

This lemma ensures that we cannot end in a situation where no transitions
can be taken, forcing the system to delay indefinitely. It will be used with the
support of fairness. In order to introduce our notion of fairness, we define the
infinite support of a run.

Definition 19. Let ρ be an infinite run, its infinite support Inf(ρ) is the set of
regions appearing infinitely often in ρ.

Inf((si, γi, si+1)i∈N) = {r |
∞
∃ i ∈ N, si ∈ r ∨

(γi ∈ R≥0 ∧ ∃s′
i ∈ r, ∃δi < γi, si

δi−→ s′
i)}

The notion of enabled transitions and delay transitions are extended to
regions as follows: for a region r, we let enab(r) = enab(s) for any s in r, and
write r

t−→ r′ for all time-successor region r′ of r.

Definition 20. An infinite run ρ in a TGA G = (L, l0, Σu � Σc,X, I, E) (with
timed transitions system T = (S, s0, Γ,→T )) is said to be fair when:

∀e ∈ E, (act(e) ∈ Σu ⇒ (∃r ∈ Inf(ρ), r e−→ r′ ⇒ r′ ∈ Inf(ρ))) ∧
∀r ∈ Inf(ρ),∃γ ∈ (enab(r) ∩ {e | act(e) ∈ Σc}) ∪ {t}), r

γ−→ r′ ∧ r′ ∈ Inf(ρ)

We note Fair(G) the set of fair runs of G.

Fair runs model restrictions on the system runs corresponding to strategies of the
system. The first part of the definition assures that any infinitely-enabled action
of the implementation will be taken infinitely many times, while the second
part ensures that the implementation will infinitely often let the tester play,
by ensuring that a delay or controllable action will be performed. It matches
the “strong fairness” notion used in model checking. Restricting to fair runs is
sufficient to ensure a winning execution when the tester uses a rank-lowering
strategy. Intuitively, combined with Lemma 18 and the repeated-observability
assumption, it assures that the system will keep providing outputs until a verdict
is reached, and allows to show the following property.

3 In this expression,
∞
∃ i ∈ N, φ(i) means that φ(i) is true for infinitely many integers.



186 L. Henry et al.

Proposition 21. Rank-lowering strategies are winning on Fair(G) (i.e., all fair
outcomes are winning).

Under the hypothesis of a fair implementation, we thus have identified a test-
case generation method, starting from the specification with restarts and the test
purpose, and constructing a test case as a winning strategy on the game created
from the objective-centered tester. The complexity of this method is exponential
in the size of DP. More precisely:

Proposition 22. Given a deterministic product DP, OT can be linearly com-
puted from DP, and the construction of a strategy relies on the construction of
the W j

i and is hence exponential in XDP and linear in LDP .

Note that if DP is obtained from P by the game presented in [BSJK15], then
LDP is doubly exponential in the size of XS � XT P � XDP (notice that in the
setting of [BSJK15], XDP is a parameter of the algorithm).

4.3 Properties of the Test Cases

Having constructed strategies for the tester, and identified a scope of imple-
mentation behaviours that allows these strategies to enforce a conclusive ver-
dict, we now study the properties obtained by the test generation method pre-
sented above. We call test case a pair (G, f) where G is the game corresponding
to the objective-centered tester OT , and f is a rank-lowering strategy on G.
We note T C(S, T P) the set of possibles test cases generated from a specifica-
tion S and a test purpose T P, and T C(S) the test cases for any test purpose.
Recall that it is assumed that the test purposes associated with a specification are
restricted to those leading to a determinizable product. Behaviours are defined
as the possible outcomes of a test case combined with an implementation, and
model their parallel composition.

Definition 23. Given a test case (G, f) and an implementation I, their
behaviours are the runs ((si, s

′
i), (ei, e

′
i), (si+1, s

′
i+1))i such that ((si, ei, si+1))i

is an outcome of (G, f), ((s′
i, e

′
i, s

′
i+1))i is a run of I, and for all i, either ei = e′

i

if ei ∈ R≥0 or act(ei) = act(e′
i) otherwise. We write Behaviour(G, f, I) for the

set of behaviours of the test case (G, f) and of the implementation I.

We say that an implementation I fails a test case (G, f), and note
I fails (G, f), when there exists a run in Behaviour(G, f, I) that reaches Fail .
Our method is sound, that is, a conformant implementation cannot be detected
as faulty.

Proposition 24. The test-case generation method is sound: for any specifica-
tion S, it holds

∀I ∈ I(S), ∀(G, f) ∈ T C(S), (I fails (G, f) ⇒ ¬(I tioco S)).



Control Strategies for Off-Line Testing of Timed Systems 187

The proofs of this property and the following one are based on the exact cor-
respondance between Fail and the faulty behaviours of S, and use the trace
equivalence of the different models (DP, P and S) to conclude. As they exploit
mainly the game structure, fairness is not used.

We define the notion of outputs after a trace in a behaviour, allowing to
extend tioco to these objects and to state a strictness property. Intuitively, when
a non-conformance appears it should be detected.

Definition 25. Given a test case (G, f) and an implementation I, for a trace σ:

out(Behaviour(G, f, I) after σ) =
{a ∈ Σ! ∪ R≥0 | ∃ρ ∈ Behaviour(G, f, I), Trace(ρ) = σ · a}

Proposition 26. The test generation method is strict: given a specification S,

∀I ∈ I(S), ∀(G, f) ∈ T C(S), ¬(Behaviour(G, f, I) tioco S) ⇒ I fails (G, f)

This method also enjoys a precision property: traces leading the test case
to Pass are exactly traces conforming to the specification and accepted by the
test purpose. The proof of this property uses the exact encoding of the Accept
states and the definition of Pass. As the previous two, it then propagates the
property through the different test artifacts.

Proposition 27. The test case generation method is precise: for any specifica-
tion S and test purpose T P it can be stated that

∀(G, f) ∈ T C(S, T P),∀σ ∈ Traces(Outcome(sG
0 , f)),

G after σ ∈ Pass ⇔ (σ ∈ Traces(S) ∧ T P after σ ∩ AcceptT P �= ∅)

Lastly, this method is exhaustive in the sense that for any non-conformance,
there exist a test case that allows to detect it, under fairness assumption.

Proposition 28. The test generation method is exhaustive: for any exactly
determinizable specification S and any implementation I ∈ I(S) making fair
runs

¬(I tioco S) ⇒ ∃(G, f) ∈ T C(S), I fails (G, f).

To demonstrate this property, a test purpose is tailored to detect a given non-
conformance, by targeting a related conformant trace.

5 Conclusion

This paper proposes a game approach to the controllability problem for confor-
mance testing from timed automata (TA) specifications. It defines a test synthe-
sis method that produces test cases whose aim is to maximize their control upon
the implementation under test, while detecting non-conformance. Test cases are
defined as strategies of a game between the tester and the implementation, based



188 L. Henry et al.

on the distance to the satisfaction of a test purpose, both in terms of number of
transitions and potential control losses. Fairness assumptions are used to make
those strategies winning and are proved sufficient to obtain the exhaustiveness
of the test synthesis method, together with soundness, strictness and precision.

This paper opens numerous directions for future work. First, we intend to
tackle partial observation in a more complete and practical way. One direction
consists in finding weaker conditions under which approximate determiniza-
tion [BSJK15] preserves strong connectivity, a condition for the existence of
winning strategies. One could also consider a mixture of our model and the
model of [DLL+10] whose observer predicates are clearly adequate in some con-
texts. Quantitative aspects could also better meet practical needs. The distance
to the goal could also include the time distance or costs of transitions, in par-
ticular to avoid restarts when they induce heavy costs but longer and cheaper
paths are possible. The fairness assumption could also be refined. For now it is
assumed on both the specification and the implementation. If the implementa-
tion does not implement some outputs, a tester could detect it with a bounded
fairness assumption [Ram98], adapted to the timed context (after sufficiently
many experiments traversing some region all outputs have been observed), thus
allowing a stronger conformance relation with egality of output sets. A natural
extension could also be to complete the approach in a stochastic view. Finally,
we plan to implement the results of this work in an open tool for the analysis of
timed automata, experiment on real examples and check the scalability of the
method.

References

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci.
126(2), 183–235 (1994)

[AMPS98] Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. In: Proceedings of the 5th IFAC Conference on System Struc-
ture and Control (SSC 1998), pp. 469–474. Elsevier, July 1998

[BB04] Briones, L.B., Brinksma, E.: A test generation framework for quiescent
real-time systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 64–78. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31848-4 5

[BJSK12] Bertrand, N., Jéron, T., Stainer, A., Krichen, M.: Off-line test selection
with test purposes for non-deterministic timed automata. Log. Methods
Comput. Sci. 8(4) (2012)

[BSJK15] Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to
determinize timed automata. Form. Methods Syst. Des. 46(1), 42–80
(2015)

[CDF+05] Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-
fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg
(2005). https://doi.org/10.1007/11539452 9

https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1007/11539452_9


Control Strategies for Off-Line Testing of Timed Systems 189

[CKL98] Castanet, R., Koné, O., Laurençot, P.: On-the-fly test generation for real
time protocols. In: Proceedings of the International Conference on Com-
puter Communications and Networks (ICCCN 1998), pp. 378–387. IEEE
Comp. Soc. Press, October 1998

[COG98] Cardell-Oliver, R., Glover, T.: A practical and complete algorithm for
testing real-time systems. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998.
LNCS, vol. 1486, pp. 251–261. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0055352

[DLL+10] David, A., Larsen, K.G., Li, S., Mikucionis, M., Nielsen, B.: Testing real-
time systems under uncertainty. In: Aichernig, B.K., de Boer, F.S., Bon-
sangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 352–371. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 19

[DLLN08a] David, A., Larsen, K.G., Li, S., Nielsen, B.: Cooperative testing of timed
systems. In: Proceedings of the 4th Workshop on Model Based Testing
(MBT 2008), vol. 220, pp. 79–92 (2008)

[DLLN08b] David, A., Larsen, K.G., Li, S., Nielsen, B.: A game-theoretic approach
to real-time system testing. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2008), pp. 486–491, March 2008

[ENDK02] En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-method: testing
real-time systems. IEEE Trans. Softw. Eng. 28(11), 1023–1038 (2002)

[Fin06] Finkel, O.: Undecidable problems about timed automata. In: Asarin, E.,
Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340 14

[HJM18] Henry, L., Jéron, T., Markey, N.: Control strategies for off-line testing of
timed systems. Technical report 1804.11234, arXiv, April 2018

[KT09] Krichen, M., Tripakis, S.: Conformance testing for real-time systems.
Form. Methods Syst. Des. 34(3), 238–304 (2009)

[LMN04] Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time sys-
tems using Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 79–94. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31848-4 6

[NS03] Nielsen, B., Skou, A.: Automated test generation from timed automata.
Int. J. Softw. Tools Technol. Transfer 5(1), 59–77 (2003)

[Ram98] Ramangalahi, S.: Strategies for comformance testing. Research Report 98-
010, Max-Planck Institut für Informatik, May 1998

[SVD01] Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed
automata. Theoret. Comput. Sci. 254(1–2), 225–257 (2001)

[Tre96] Tretmans, J.: Conformance testing with labelled transition systems: imple-
mentation relations and test generation. Comput. Netw. ISDN Syst. 29(1),
49–79 (1996)

[Yan04] Yannakakis, M.: Testing, optimizaton, and games. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
28–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
27836-8 6

https://doi.org/10.1007/BFb0055352
https://doi.org/10.1007/BFb0055352
https://doi.org/10.1007/978-3-642-25271-6_19
https://doi.org/10.1007/11867340_14
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-540-27836-8_6
https://doi.org/10.1007/978-3-540-27836-8_6


An Extension of TRIANGLE Testbed
with Model-Based Testing

Laura Panizo(B) , Almudena Dı́az , and Bruno Garćıa

Andalućıa Tech, Dept. de Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain

{laurapanizo,almudiaz,bgarcia}@lcc.uma.es

Abstract. Traditional testing methods for mobile apps focus on detect-
ing execution errors. However, the evolution of mobile networks towards
5G will require additional support for app developers to ensure also the
performance and user-experience. Manual testing in a number of sce-
narios is not enough to satisfy the expectations of the apps final users.
This paper presents the testing framework developed in the TRIANGLE
project (https://www.triangle-project.eu/) that integrates a complete
mobile network testbed and a model-based testing approach, which is
based on model checking, to automatically evaluate the apps perfor-
mance in different network scenarios.

Keywords: Model-based testing · Mobile network testbed
Model checking

1 Introduction to Triangle Testing Framework

The TRIANGLE testbed [1] is devoted to the testing and benchmarking of
mobile applications and devices. Figure 1 shows an overview of the main func-
tional blocks of the testbed architecture.

The testbed provides a high-level access based on a web portal whose main
purpose is preparing and running tests, and later reviewing the results. It pro-
vides an intuitive interface for the definition and execution of the testing cam-
paigns, hiding unnecessary complexity. Testing campaigns are based on the exe-
cution of the test cases specified in the TRIANGLE project for app testing. A
test case defines the configuration of the network scenarios, the app user flow
(sequence of actions) that will be used to activate the feature under test, and
finally the measurements that have to be collected, which are determined by
the Key Performance Indicators (KPIs) associated to the features under test.
The network scenarios and the measurement are configured automatically based
on the app features, the device or the high-level scenario selected by the user.
In addition, the user has to provide the app users flows. All these user inputs
are processed and transformed into inputs for the different components of the
underlying architecture.

This work is funded by the European Union’s Horizon 2020 research and innovation
programme, grant agreement No 688712 (TRIANGLE project).

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 190–195, 2018.
https://doi.org/10.1007/978-3-319-94111-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_11&domain=pdf
http://orcid.org/0000-0002-6399-6162
http://orcid.org/0000-0002-1226-6135
http://orcid.org/0000-0001-8276-5936
https://www.triangle-project.eu/


An Extension of TRIANGLE Testbed with Model-Based Testing 191

TRIANGLE Portal
Inputs

App

Features
User behaviours

High-level scenarios

Outputs

TRIANGLE Mark

Test reports
Addi onal info

User

Analysis & Repor ng

Monitoriza on & Synchroniza on

lortnoctne
mirepxE

Test plan KPIsUser behaviour

User flow control

Network 
configura on

UEs RAN

UXM

WiFi

Small cells

UE

UE

UE

… …

Backhaul

EPC

Servers

Transform

Fig. 1. TRIANGLE testing framework overview

The web portal stores all the campaigns and other user provided data, as well
as the results obtained from the testbed, so that test case results are completely
traceable to their configuration, and can be repeated if needed.

The experiment control module coordinates the configuration and execution
of all network components. The configuration of the different network elements
is determined by the high-level scenarios, which abstract similar network con-
figurations that are reproduced during the test case execution. The high-level
scenarios are translated into the specific configurations that are applied to each
network component. In TRIANGLE, we use the Keysight Testing Automation
Platform (TAP) [4] to automate the whole process. TAP is a flexible platform
that orchestrates the interaction of the testing framework with a number of
instruments that interact around the testbed device.

An integral part of testing apps is automating their execution, i.e., simulating
the interactions of a user with the app. Quamotion automation tools1 provide
the means to create sequences of user actions, and then replaying them on a
testbed device. In addition, the testbed provides an instrumentation library in
order to collect measurements related to the internal performance of the app
under test. The source code of the app is instrumented with this library to push
measurements points into the logcat, the Android logging system, and correlate
these points with radio and power measurements.

The Radio Access Network (RAN) is provided by a mobile network emulator
that provides test features such as flexible Inter Cell Interference Coordination
(eICIC) schemes or IMS/End-to-End VoLTE communications between multiple
devices. The mobile devices, where the applications under test are executed,

1 http://quamotion.mobi/Mwc.

http://quamotion.mobi/Mwc


192 L. Panizo et al.

are physically connected to the testbed. In order to preserve the radio condi-
tions configured at network emulator, the radio antenna connection is conducted
through cables. In addition, to analyse properly power consumption, the device
is powered directly by a power analyser. Finally, the testbed also integrates a
commercial Evolved Packet Core (EPC) that includes the main elements of a
standard core network and local application servers such as streaming or VoIP
servers.

The next section presents the model-based testing approach, which is based
on model checking, to automatically generate the app user flows to achieve the
complete automatisation of the app testing process.

2 Model-Based Testing

The TRIANGLE project defines generic app features, such as download content
or playback media files, that are evaluated by the KPIs. In the simplest case, the
app developer provides an app user flow that activates the feature under test to
compute the KPIs. For instance, if the app under test playbacks live streaming,
the app user flow has to start and end the playback. The TRIANGLE testbed
integrates model-based testing techniques to support the automatic generation
of a set of app user flows.

In [5], we presented a preliminary method to guide the generation of app
user flows by means of app user flow requirements. The requirements allow us
to produce only the set of app user flows that are useful to compute any given
KPI. The approach is based on the exhaustive exploration of an app model and
the requirements with the model checker Spin [3].

The app model is described with a language based on nested state
machines [2] that are able to capture the interaction of the user with the app,
and the intrinsic behaviour of mobile operating systems. An app state machine
is composed of one or more activity state machines, which corresponded to the
different activities (screens) in an app. In addition, an activity state machine
can contain one or more state machines with states and edges defining the user
behaviour. The edges of a state machine represent the user actions, such as tap-
ping a button, that should be executed when traversing the edge. Connection
states are used to transit between state machines. These states are represented as
unlabelled empty circles with two outgoing transitions, one pointing to a state,
and another targeting to a state machine. When a connection state is reached,
the execution continues with the initial state of the state machine referenced.
When the target state machine finishes, that is, when it reaches an end state, the
execution comes back in the returning state. Figure 2 shows a model of Exoplayer
app, an Android video player that supports different video codecs. The app is
divided into two activities: SampleChooserActivity, which shows the list of videos
that can be played, and PlayerActivity, which shows the playback controls.

In [5], the app user flow requirements were directly described with Promela
code and the app model was manually written by the user, which can be tedious
and error-prone. In the TRIANGLE testbed, these issues are solved. The app



An Extension of TRIANGLE Testbed with Model-Based Testing 193

Fig. 2. Exoplayer model with nested state machines

user flow requirements are described in a xml-based language, more intuitive
for an app developer, and are automatically transformed into Promela. The
requirements define the states that have to be visited (or not) and the events
that can be fired. Listing 1.1 shows an example related to the Exoplayer app
model. This example defines an invariant that forces only one event play pause
in the complete app user flow. In addition, it also specifies a sequence of events
and states that have to be visited (relative order). Any other events or states can
be fired and visited if the invariant is still satisfied. Finally, we have defined an
approach to automatically extract the app model from the compiled code of the
app. Due to space limits, we do not provide details about the automatic model
generation.

The app model, manually or automatically extracted, and the requirements
are uploaded to the web portal. The model is automatically translated into a
Promela specification and the requirements are translated into a never claim,
which is a special Promela process that guides and prunes the exploration of
the app model. Then, the Spin model checker verifies the app model against
the set of requirements, in such a way that counterexamples represent the app
user flows satisfying the requirements. During the exploration, we also restrict
the minimum and maximum length of the app user flows. Each counterexample
is recorded in the format of Quamotion automation tool, in order to automate
the app user flow execution on the device. For example, the analysis of the
Exoplayer model (see Fig. 2 and Listing 1.1) produces 274 app user flows with
10 user actions at most that can be used to evaluate a given KPI.



194 L. Panizo et al.

Listing 1.1. Example of requirements in XML format
1 <appUserFlowRequirement xmlns="appuserflowrequirement" name="DemoPlayer_never_1">
2 <invariants>
3 <event name="play_pause" max="1"/>
4 </invariants>
5 <sequence>
6 <constraint type="simple">
7 <event name="Dash_video_1" min="1" max="1"/>
8 </constraint>
9 <constraint type="simple">

10 <event name="play_pause" min="1" max="1"/>
11 </constraint>
12 <constraint type="simple">
13 <state name="end" view="SampleChooserActivity"
14 statemachine="SampleChooserActivity_0" visit="true"/>
15 </constraint>
16 </sequence>
17 </appUserFlowRequirement>

3 Conclusions

The TRIANGLE testbed provides an end-to-end mobile network environment
that enables app developers to thoroughly test their applications in real network
scenarios, including radio conditions, which are not under the control when run-
ning tests in live mobile deployments. So the most important feature of the
testbed is that the network scenarios emulate realistic conditions, are totally
repeatable and the experiments are reproducible. This ensures the validity of
the test results.

So the previous version of the testbed is able to rigorously test the application
in numerous combinations of radio and network configurations. The integration
of model-based testing techniques pursue this same rigour to generate app use
flow to stimulate applications under test in different network scenarios.

In particular, the integration of model-based testing techniques improves the
usability and flexibility of the testbed in different ways:

– The testbed automatically produces a pool of app user flows that use the app
features in different ways, improving the test coverage.

– App user flows satisfying different requirements are generated with the same
app model. If the testbed is extended with new test cases, the app model does
not change, and only new requirements have to be defined.

– The automation of app user flow format is transparent for the app developer.
Currently, the portal supports app user flows in JSON format, but we plant
to migrate to Powershell scripts in the near future due to new functionality
integrated in the testbed.



An Extension of TRIANGLE Testbed with Model-Based Testing 195

References

1. Cattoni, A.F., Corrales-Madueño, G., Dieudonne, M., Merino, P., Dı́az-Zayas, A.,
Salmerón, A., Carlier, F., Saint-Germain, B., Morris, D., Figueiredo, R., Caffrey,
J., Baños, J., Cardenas, C., Roche, N., Moore, A.: An end-to-end testing ecosys-
tem for 5G. In: European Conference on Networks and Communications, EuCNC
2016, Athens, Greece, 27–30 June 2016, pp. 307–312 (2016). https://doi.org/10.
1109/EuCNC.2016.7561053

2. Espada, A.R., Gallardo, M.M., Salmerón, A., Merino, P.: Performance analysis of
spotifyR© for android with model-based testing. Mob. Inf. Syst. 2017, 14 (2017).
https://doi.org/10.1155/2017/2012696

3. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Boston (2003)

4. Keysight Technologies: Test Automation Platform Developer’s System. http://www.
keysight.com/en/pd-2747943-pn-KS8400A/test-automation-platform-developers-
system?cc=ES&lc=eng. Accessed Mar 21 2018

5. Panizo, L., Salmerón, A., Gallardo, M.M., Merino, P.: Guided test case generation
for mobile apps in the TRIANGLE project: work in progress. In: Proceedings of the
24th International SPIN Symposium on Model Checking of Software, pp. 192–195.
ACM (2017). https://doi.org/10.1145/3092282.3092298

https://doi.org/10.1109/EuCNC.2016.7561053
https://doi.org/10.1109/EuCNC.2016.7561053
https://doi.org/10.1155/2017/2012696
http://www.keysight.com/en/pd-2747943-pn-KS8400A/test-automation-platform-developers-system?cc=ES&lc=eng
http://www.keysight.com/en/pd-2747943-pn-KS8400A/test-automation-platform-developers-system?cc=ES&lc=eng
http://www.keysight.com/en/pd-2747943-pn-KS8400A/test-automation-platform-developers-system?cc=ES&lc=eng
https://doi.org/10.1145/3092282.3092298


Local Data Race Freedom
with Non-multi-copy Atomicity

Tatsuya Abe(B)

STAIR Lab, Chiba Institute of Technology, 2-17-1 Tsudanuma,
Narashino, Chiba 275-0016, Japan

abet@stair.center

Abstract. Data race freedom ensures the sequentially consistent behav-
iors of concurrent programs under relaxed memory consistency models
(MCMs), and reduces the state explosion problem for software model
checking with MCMs. However, data race freedom is too strong to include
all interesting programs. In this paper, we define small-step operational
semantics for relaxed MCMs, define an observable equivalence using the
notion of bisimulation, and propose the property of local data race free-
dom (LDRF), which requires a kind of race freedom locally instead of
globally. LDRF includes some interesting programs, such as the indepen-
dent reads independent writes program, which is well known to exhibit
curious behaviors under non-multi-copy atomic MCMs, and some concur-
rent copying garbage collection algorithms. In this paper, we introduce
an optimization method called memory sharing for model checking of
LDRF programs, and show that memory sharing optimization mitigates
state explosion problems with non-multi-copy atomic MCMs through
experiments.

Keywords: Data race freedom · Memory consistency model
Software model checking · State explosion problem
Non-multi-copy atomicity · Observable equivalence · Bisimulation
Independent reads independent writes program
Concurrent copying garbage collection algorithm

1 Introduction

Memory consistency models (MCMs), which specify how multiple threads use
shared memory, have become extremely important because modern computer
architectures have multiple cores. Their computing performance depends on the
MCMs that the architectures adopt.

Saraswat et al. and Owens provided an insightful definition of MCM [19,25].
Saraswat et al. focused on an earlier study of observable equivalences between
MCMs and data race freedom (DRF) by Gao and Sarkar [11]. Saraswat et al.
defined some relaxed MCMs, and presented the so-called fundamental property
such that DRF programs have only observable and sequentially consistent (SC)

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 196–215, 2018.
https://doi.org/10.1007/978-3-319-94111-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_12&domain=pdf


Local Data Race Freedom with Non-multi-copy Atomicity 197

behaviors [17] on the relaxed MCMs. Saraswat et al. explained that the funda-
mental property ensures that most programmers writing DRF programs only
have to be concerned about SC executions [25]. Owens considered that the fun-
damental property is the essence of MCMs and defined MCMs as rules that are
designed to guarantee that DRF programs do not have non-SC behaviors [19].

The so-called state explosion problem of software model checking of DRF
programs with MCMs is mitigated because non-SC behaviors of DRF programs
on relaxed MCMs can be observably reduced to SC behaviors. However, DRF is
so strong that we cannot expect it for all programs. Software model checking of
data racy programs with MCMs still suffers from the state explosion problem.

Owens moderated a condition of DRF and presented the notion of triangular
race freedom (TRF), which includes the spinlock used in the Linux kernel [19].
Observable behaviors of TRF programs are reduced to SC behaviors on the x86-
TSO [20], which is adopted by Intel architectures. However, TRF is a global
property of a program; that is, all threads in the program must uniformly follow
the TRF condition. TRF is also strongly specific to x86-TSO, which is stricter
than modern MCMs, and cannot reduce behaviors on more relaxed MCMs to
SC behaviors.

In this paper, we provide a formulation to define small-step operational
semantics for relaxed memory consistency models and an observable equiva-
lence on the semantics using the notion of bisimulation (note that Owens used
trace semantics [19]), and propose the novel notion of local data race freedom
(LDRF), which claims that some threads follow a race free condition, but not
all threads follow the condition, unlike DRF and TRF, which require that all
threads must uniformly follow their conditions. LDRF is a variant of DRF in
another direction that is different from the direction of TRF.

LDRF includes the independent reads independent writes (IRIW) program,
which is well known to have curious behaviors under MCMs with non-multi-
copy atomicity, which is more relaxed than x86-TSO. Although the IRIW pro-
gram enjoys TRF, we cannot use the SC reduction for TRF programs on model
checking with relaxed MCMs because TRF is specific to x86-TSO and we can-
not observe the curious behavior on x86-TSO. Some concurrent copying garbage
collection (CCGC) algorithms are typical LDRF programs. There exists no load-
store race in any period between synchronization points at the garbage collection
layer because end-user programmers must write DRF programs in programming
languages with MCMs that require DRF, although it may be the case that a
collector and mutators share variables because a collector communicates with
mutators when collecting objects that have not been used.

In this paper, we also provide an optimization called memory sharing for the
software model checking of LDRF programs with non-multi-copy atomic MCMs,
which do not ensure atomicities among multiple effects (of a store) to multiple
threads. We demonstrate the effectiveness of memory sharing optimization by
conducting experiments for the IRIW program and some CCGC algorithms.

Related Work. To the best of our knowledge, there exists only the follow-
ing one literature to propose an extension of DRF by focusing on locality.



198 T. Abe

Dolan et al. proposed a notion of local data race freedom independently, and
showed that data race free portions of programs follow SC behaviors [9]. How-
ever, the MCMs in their paper are stricter than those in this paper. Actually,
their LDRF do not provide any optimization on relaxed MCMs which allow load
buffering and non-multi-copy atomicity.

There exists no relevant literature of an optimization specific to model check-
ing with non-multi-copy atomic MCMs, although there exists a model checker
such as Nidhugg [1] which supports the POWER MCM [12].

Owens used trace semantics and showed that x86-TSO behaviors of DRF
programs can be reduced to SC behaviors [19]. In the present paper, we provide
an alternative formalization of an observable equivalence using the notion of
bisimulation, and show that behaviors of LDRF programs with non-multi-copy
atomicity can be observably simulated by behaviors on a general machine with
memory sharing optimization on a partition of threads.

Partitioning threads is reminiscent of clustered-based partial order reduction,
which clusters multiple threads that are dependent on each other, and utilizes
the independencies between the clusters to improve the efficiency of the partial
order reduction [8]. However, the idea looks different from our memory sharing
optimization, which makes independent threads on an LDRF program to share
a common memory.

Ownership and separation are promising reasoning concepts regarding con-
currency in program logic [18]. The author also proposed the notion of obser-
vation invariants in concurrent program logic [3]. However, this paper studies
model checking, and provides no logic.

Outline. The remainder of this paper is organized as follows: In Sect. 2, we
present a review of the observable equivalence of DRF programs. In Sect. 3, we
introduce a general machine with non-multi-copy atomicity. In Sect. 4, we pro-
pose the notion of LDRF together with an optimization called memory sharing
for software model checking with non-multi-copy atomic MCMs. In Sect. 5, we
provide formal definitions that are introduced in Sects. 2, 3 and 4, and prove the
validity of memory sharing under appropriate conditions. In Sect. 6, we explain
how to implement memory sharing optimization in model checker VeriDAG that
supports non-multi-copy atomic MCMs [2]. In Sect. 7, we present an assessment
of the effectiveness of memory sharing using experiments. In Sect. 8, we conclude
the paper by identifying future studies.

2 Observable Equivalence of Data Race Free Programs

In this section, we informally explain observable equivalence.
Saraswat et al. and Owens formally proved that non-SC behaviors of DRF

and TRF programs, respectively, can be reduced to SC behaviors [19,25]. This
means that non-SC behaviors do not disappear but cannot be observed. Non-SC
behaviors exist internally on computer architectures.



Local Data Race Freedom with Non-multi-copy Atomicity 199

Fig. 1. Different behaviors without/with buffers

We can observe non-SC behavior for a data racy program: (x=1; y=1) ‖
(r0=y; r1=x), where ‖ denotes parallel composition, x and y are shared vari-
ables, r0 and r1 are thread-local variables, and all variables are initialized to
0. All six SC executions satisfy r0==1 -> r1==1 when all four instructions
are complete. However, there exists a non-SC execution, x=1 (buffered); y=1
(buffered); y=1 (visible); r0=y; r1=x; x=1 (visible) for which r1==1 &&
r0==0 on modern computer architectures such that each thread might have one
buffer that does not preserve the order of stores, as shown in Fig. 1(b); Fig. 1(a)
shows SC behavior on computer architecture without a buffer.

Consequently, we cannot ignore relaxed MCMs on modern computer archi-
tectures. However, this is not the case for DRF programs. We consider a DRF
program (x=1; y=1) ‖ (r0=y’; r1=x’), where x’ and y’ are shared variables.
Although the buffer can delay the effects of the two stores to the shared memory,
that can be ignored because the first thread cannot recognize whether the effects
of the stores are delayed or the stores are not invoked.

To be precise, we cannot describe an assertion that distinguishes which effects
are delayed in the assertion language; that is, the expressive power of the asser-
tion language is not strong. We can distinguish them by describing an assertion
y==1 -> x==1 if the assertion language enables us to describe arbitrary states on
computer architectures. However, it is reasonable to infer that the assertion lan-
guage does not admit threads to read values of shared variables without loading
the shared variables. The observable equivalence of a DRF program is defined as
the non-existence of assertions that specify a non-SC behavior of the program,
as formally defined in Sect. 5.3.

3 General Machine with Non-multi-copy Atomicity

In this section, we introduce a general machine, which assumes non-multi-copy
atomicity [26].

There exist some computer architectures, such as ARMv7 [6] and
POWER [12,26], that do not always assume multi-copy atomicity, that is,
distinct threads can observe distinct behaviors of threads. We consider the
IRIW program (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1, where r2 and



200 T. Abe

Fig. 2. A curious behavior on computer architectures with non-multi-copy atomicity

Fig. 3. General machine consisting of eight threads

r3 are thread-local variables. The first and second threads read x and y,
respectively, in program order. Therefore, the assertion (r0==1 && r2==1) ->
(r1==1 || r3==1) appears to hold when the program ends. However, non-
multi-copy atomic MCMs allow distinct threads to observe distinct behaviors
of threads. For example, the first observes y=1 and is invoked before x=1 is
invoked, whereas the second observes x=1 and is invoked before y=1 is invoked.
This is natural for the computer architecture in Fig. 2.

As described in this paper, we consider a general machine with non-multi-
copy atomicity. Each thread has its own memory. Each thread reads a shared
variable from its own memory. A store to a memory is reflected to the other
memories as shown in Fig. 3.

Every pair of memories is connected directly so that stores are passed through
other memories, and buffers are separated to manage reflects of shared variables
to memories. A question that arises is why no buffer exists in the general machine.
Buffers are unnecessary for representing non-multi-copy atomic MCMs because
each memory at each thread works as a buffer. The operational semantics of the
general machine is formally defined in Sect. 5.2.

4 Memory Sharing and Local Data Race Freedom

In this section, we propose the notion of LDRF and an optimization called
memory sharing for software model checking with non-multi-copy atomic MCMs.

LDRF is based on a simple concept. To introduce LDRF, we first consider
DRF. Figure 4(a) denotes the behavior of a DRF program x=1 ‖ y=1 on com-
puter architecture with buffers. The behavior is often regarded as being reduced
to the behavior of computer architecture without a buffer, as shown in Fig. 4(b).



Local Data Race Freedom with Non-multi-copy Atomicity 201

Fig. 4. Behaviors of a DRF program on various architectures

Fig. 5. Machine with memory sharing optimization

However, this can be also regarded such that two buffers are merged and inte-
grated into the shared memory. We consider other threads that load x and y (to
r0 and r1, respectively). The loading of x and y from memories, as shown in
Fig. 4(c), can be regarded as that from one shared memory, as shown in Fig. 4(d),
by identifying buffers with memories.

This concept is the origin of the optimization of the general machine for which
each thread has its own memory. If some threads enjoy load-store race freedom,
then the threads can share their memories. Additionally, even if the threads do
not enjoy load-load race freedom in a period between synchronization points, if
there exists no store in the period on the other threads, then the threads can
share their memories. We call that local data race freedom (LDRF). This notion
is formally defined in Sect. 5.

The behavior on the architecture shown in Fig. 2 can be observably simulated
by behaviors on the machine shown in Fig. 5, which consists of four buffers, two
memories, and one shared memory. The stores between writer threads on the
general machine are ignored on the machine shown in Fig. 5. It must be the case
that the curious behavior of the IRIW program can be observed, as shown in
Fig. 6.

It may be considered slightly discouraging that memory sharing optimiza-
tion cannot reduce behaviors on non-multi-copy atomic MCMs to SC behav-
iors; that is, memory sharing optimization does not improve model checking
with non-multi-copy atomicity to a great degree, whereas SC reduction drasti-
cally addresses the state explosion problem; the sequential execution of multiple
threads can simulate all parallel executions of multiple threads. However, LDRF
includes IRIW programs, and memory sharing optimization mitigates the state
explosion problem of model checking for LDRF programs. We demonstrate that
memory sharing optimization is effective through experiments in Sect. 7.



202 T. Abe

Fig. 6. Reduced behavior for memory sharing optimization

5 Formal Theory

In this section, we present formal definitions of the notions that were introduced
informally in Sects. 2, 3 and 4, and prove that memory sharing is valid under
appropriate conditions.

5.1 Concurrent Programs

The sets of instructions Ci and sequential programs Si on thread i are defined
as

Ci ::= Nopi | r = MVi e | r = LDi x | x = STi e | r = CASi x e e

Si ::= Ci | Si;Ci,

where r denotes thread-local variables, x denotes shared variables, e denotes
thread-local expressions (e.g., thread-local variables, constant value v, and arith-
metic operations), and superscript i represents an identifier of the thread on
which the associated statement is executed. In the remainder of this paper, this
superscript is omitted when it is readily apparent from the context. The Nop
statement represents an ordinary no-effect statement. We distinguish thread-
local assignment statements from assignment statements to shared memory. MV
denotes ordinary variable substitution. LD and ST denote read and write oper-
ations, respectively, for shared variables. CAS denotes compare-and-swap in a
standard manner.

We adopt compare-and-swap as a primitive to ensure atomicity, whereas
Owens adopted locking [19]. We adopted this approach because fine-grained
synchronization, such as compare-and-swap, is preferred to coarse-grained syn-
chronization, such as locking, on modern many-core computer architectures.

In this section, memory allocation, jump (conditional and loop statements),
function call, and thread creation instructions are omitted, for simplicity. Actu-
ally, the model checker VeriDAG introduced in Sect. 6 and used at the exper-
iments in Sect. 7 supports them by introducing the notions of the so-called
addresses, labels, and basic blocks.

A concurrent program with N threads is defined as

P,Q ::= S0 ‖ S1 ‖ · · · ‖ SN−1,

where ‖ denotes a parallel composition of threads in a standard manner.



Local Data Race Freedom with Non-multi-copy Atomicity 203

We assume that the number of threads is fixed during program execution.
To represent shared buffers and memories, we introduce the notion of par-

titions of a set of threads. We assume a partition {I(m) | 0 ≤ m < M} of
{0, . . . , N −1}; that is, there exists M such that 0 ≤ M ≤ N , I(m) ∩I(n) = ∅ for
any 0 ≤ m �= n < M , and

⊔{ I(m) | 0 ≤ m < M } = {0, . . . , N − 1}. An element
I(m) of a partition is called a segment.

Threads in a common segment are regarded to share a common memory. For
example, the writer threads (whose identifiers are 2 and 3) in the IRIW pro-
gram (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1 can share a common memory
as shown in Fig. 6. In the case, the partition of thread identifiers {0, 1, 2, 3} is
{{0}, {1}, {2, 3}}.

We define a state. Register ς takes a thread-local variable r and returns
value v. Shared memory σ takes a segment I(m) of the partition and shared
variable x, and returns value v. Buffer Σ takes a pair of thread identifier and
a segment 〈i, I(m)〉, and returns a queue set, where one queue is defined for
each shared variable. Four methods method are defined for a queue set qs. One
method qs.enqueue(x, v) enqueues v at x in qs. Another method qs.dequeue(x, v)
dequeues a value at x in qs, and returns that the value is v. Another method
qs.empty(x) determines that the queue at x in qs is empty. The other method
qs.latest(x) returns the latest value at x in qs without dequeuing any element.

5.2 Operational Semantics

In the following, we assume a partition { I(m) | 0 ≤ m < M } of {0, . . . , N − 1},
and write a meta-variable I as a segment I(m) of the partition.

For brevity, we write σI and Σi,I as σ(I) and Σ(〈i, I〉), respectively. We use
an update operation of function f in a standard manner as follows:

f [a := b](c) =

{
b if a = c

f(c) otherwise.

We also write σ[σI [x := v]] as σ[I := σI [x := v]] because it is read-
ily apparent that the update is about I. Similarly, for brevity, we express
Σ[Σi,I .method ] as Σ[〈i, I〉 := Σi,I .method ]. We respectively write σ[ {σI [x :=
v] | I } ] and Σ[ {Σi,I .method | I } ] as σ[σI(0) [x := v]] · · · [σI(M−1) [x := v]] and
Σ[Σi,I(0) .method ] · · · [Σi,I(M−1) .method ].

Furthermore, we introduce an update of shared memory by a shared buffer
as

σI [Σi,I ](x) =

{
Σi,I .latest(x) if the queue at x is not empty
σI(x) otherwise.

A state is defined as a triple: 〈ς, σ,Σ〉. A configuration is defined as
〈P, 〈ς, σ,Σ〉〉. A small-step operational semantics is defined as shown in Fig. 7.
Transition c→ indicates that an instruction is invoked and that a state is updated.



204 T. Abe

Fig. 7. Operational semantics

Specifically, r = MVi e evaluates e at ς and updates ς, where 〈|e|〉ς represents the
valuation of expression e as

〈|v|〉ς = v 〈|r|〉ς = ς(r) 〈|e0 + e1|〉ς = 〈|e0|〉ς + 〈|e1|〉ς . . . .

Instruction r = LDi x evaluates x on Σi,I if Σi,I(x) is defined, and on σI

otherwise, where i ∈ I, and updates ς. Instruction x = STi e evaluates e on ς and
updates not σI but Σi,I for any I. The effect of the store operation is buffered
in Σi,I for any I. Instruction r = CASi x e0 e1 atomically loads x, compares the
evaluation of e0, stores the evaluation of e1 at x, and returns 1 to r if the values
of x and e0 are equal; it returns 0 otherwise. Sequential and parallel compositions
follow standard methods. In this paper, parallel composition is defined as a non-
commutative and non-associative operator because the indices of segments are
sensitive to operational semantics.

Whereas a transition c→ invokes and consumes one instruction, a transition
e→, which represents an effect that is reflected from a buffer to shared memory,
does not invoke or consume any instructions.



Local Data Race Freedom with Non-multi-copy Atomicity 205

5.3 Assertion Language

The assertion language is defined as

ϕ ::= e = e | e ≤ e | ¬ ϕ | ϕ ⊃ ϕ | ∀ r. ϕ .

Relation ς � ϕ is defined in a standard manner as

ς � e0 = e1 ⇐⇒ 〈|e0|〉ς = 〈|e1|〉ς ς � e0 ≤ e1 ⇐⇒ 〈|e0|〉ς ≤ 〈|e1|〉ς

ς � ¬ ϕ ⇐⇒ ς �� ϕ ς � ϕ ⊃ ϕ′ ⇐⇒ ς � ϕ implies ς � ϕ′

ς � ∀ r. ϕ(r) ⇐⇒ ς � ϕ(v) for any v .

Relation 〈P, 〈ς, σ,Σ〉〉 � ϕ, which indicates that the configuration satisfies
the assertion, is defined as ς � ϕ. An assertion can be inserted anywhere in a
program, while a system in which an assertion must be located at the end of a
program cannot support divergent programs.

The assertion language has no shared variable. The satisfiability is defined
by registers only. Consequently, the assertion language requires the loading of a
shared variable to identify the value of the shared variable.

5.4 Local Data Race Freedom and Observable Equivalence

An objective of in this section is to define a relation ∼ between configurations
satisfying:

1. if cfg0 and cfg1 are related by the memory sharing optimization, then cfg0 ∼
cfg1 holds,

2. if cfg0 ∼ cfg1 holds, then cfg0 � ϕ coincides with cfg1 � ϕ for any ϕ, and
3. the relation ∼ is preserved by transitions on operational semantics.

Claim 1 means that the relation ∼ contains a pair of configurations
〈cfg0, cfg1〉 where cfg0 and cfg1 are related by the memory sharing optimiza-
tion. Claim 2 means that satisfiability of an assertion on cfg0 can be checked
by checking satisfiability of the assertion on cfg1 and vice versa. Claim 3 means
that the relation ∼, in particular, the memory sharing optimization is robust to
transition.

First, let us define a relation ∼ satisfying Claim 1. A set of sequential pro-
grams {S0, . . . , Sn−1} is called load-store race free if R(Sk)∩W (Sl) = ∅ for any
0 ≤ k �= l < n, where

R(S) =
⋃

{R(C) | C ∈ S } R(C) =

{
{x} if C is r = LD x or r = CAS x e0 e1

∅ otherwise.

W (S) =
⋃

{W (C) | C ∈ S } W (C) =

{
{x} if C is x = ST e or r = CAS x e0 e1

∅ otherwise.

A concurrent program P ≡ S0 ‖ · · · ‖ SN−1 is called LDRF with respect to
partition {I(m) | 0 ≤ m < M} of {0, . . . , N − 1} if for any segment I(m)



206 T. Abe

– {Si | i ∈ I(m)} is load-store race free, and
– for any x and i �= j ∈ I(m), if x ∈ R(Si) ∩ R(Sj) then x �∈ W (Sk) for any

0 ≤ k < N .

By definition, every DRF program that consists of N threads is LDRF with
respect to discrete partition {{m} | 0 ≤ m < N}, although memory sharing
optimization based on the discrete partition never improves model checking with
non-multi-copy atomicity.

Let R be a relation. Relation R+ represents the transitive closure of R.
Relation R∗ represents the reflexive and transitive closure of R.

Let {Ij,(m) | 0 ≤ m < Mj} be a partition of {0, . . . , N − 1} for any j = 0, 1.
We define an expansion relation as 〈P0, 〈ς, σ0, Σ0〉〉 � 〈P1, 〈ς, σ1, Σ1〉〉 if

– for any j = 0, 1
• Pj ≡ S0 ‖ · · · ‖ SN−1,
• 〈ς, σj , Σj〉 is defined on { Ij,(m) | 0 ≤ m < Mj }, and
• Pj is LDRF with respect to partition {Ij,(m) | 0 ≤ m < Mj},

– {I0,(m) | 0 ≤ m < M0} is a refinement of {I1,(m) | 0 ≤ m < M1}, that is, for
any 0 ≤ m0 < M0, there exists 0 ≤ m1 < M1 such that I0,(m0) ⊆ I1,(m1), and

– for any x and 0 ≤ i < N ,
• if x ∈ R(Si), then σ0

I0 [Σ0
i,I0 ](x) = σ1

I1 [Σ1
i,I1 ](x),

• if 〈P0, 〈ς, σ0, Σ0〉〉 e→+ 〈P0, 〈ς, σ0
′, Σ0

′〉〉, then there exist σ1
′ and Σ1

′

such that 〈P1, 〈ς, σ1, Σ1〉〉 e→∗ 〈P1, 〈ς, σ1
′, Σ1

′〉〉 and σ0
′I0 [Σ0

′i,I0 ](x) =
σ1

′I1 [Σ1
′i,I1 ](x), and

• if 〈P1, 〈ς, σ1, Σ1〉〉 e→+ 〈P1, 〈ς, σ1
′, Σ1

′〉〉, then there exist σ0
′ and Σ0

′

such that 〈P0, 〈ς, σ0, Σ0〉〉 e→+ 〈P0, 〈ς, σ0
′, Σ0

′〉〉 and σ0
′I0 [Σ0

′i,I0 ](x) =
σ1

′I1 [Σ1
′i,I1 ](x),

where I0 and I1 denote the unique segments such that i ∈ I0 and i ∈ I1,
respectively.

Intuitively, 〈P0, 〈ς, σ0, Σ0〉〉 � 〈P1, 〈ς, σ1, Σ1〉〉 means that 〈P1, 〈ς, σ1, Σ1〉〉 is
the application of the memory sharing optimization to 〈P0, 〈ς, σ0, Σ0〉〉.

It is noteworthy that the third condition is satisfied by executing programs
with initstate ≡ 〈{ �→ 0}, { �→ { �→ 0}}, { �→ ∅}〉 because no effect can be
reflected from the state.

We describe a basic property that expansion relation � is a contextual rela-
tion. This property is useful to check whether two configurations are related
by �, because this property ensures that two configurations which are partially
related by � are totally related by �.

Proposition 1. If 〈P0, 〈ς, σ0�I0, Σ0�(I0×I0)〉〉 � 〈P1, 〈ς, σ1�I1, Σ1�(I1×I1)〉〉
holds, then 〈P0 ‖ SN−1, 〈ς, σ0, Σ0〉〉 � 〈P1 ‖ SN−1, 〈ς, σ1, Σ1〉〉 holds where

– Ij = { Ij,(m) | 0 ≤ m < Mj } is a partition of {0, . . . , N − 2} for any j = 0, 1,
– I = {N − 1},
– σ0 � I = σ1 � I,
– Σ0 � (I × I) = Σ1 � (I × I), and



Local Data Race Freedom with Non-multi-copy Atomicity 207

– Σ0 � (I0 × I), Σ0 � (I × I0), Σ1 � (I1 × I), and Σ1 � (I × I1) are empty

where dom f is the domain of f , and f � A is the restriction of f on A for any
A ⊆ dom f .

Proof. It is routine to check the conditions of � according to the definitions of
� and the operational semantics in Fig. 7. ��

Next, let us confirm that the relation ∼ satisfies Claim 2. Satisfiabilities of
assertions on configurations are invariant to the memory sharing optimization,
which is shown as follows:

Proposition 2. If cfg0 � cfg1, then for any ϕ, cfg0 � ϕ coincides with cfg1 � ϕ.

Proof. It is obvious because expansion relation � is defined between configu-
rations that have the same register, and � is defined by the register and the
assertion ϕ, which cannot refer to variables on memories and buffers. ��

We define observable equivalence ∼ as the reflexive, symmetric, and transitive
closure of the expansion relation �. Intuitively, cfg0 ∼ cfg1 means that cfg0 and
cfg1 are related by the memory sharing optimization.

Proposition 3. If cfg0 ∼ cfg1, then for any ϕ, cfg0 � ϕ coincides with cfg1 � ϕ.

Proof. It is immediate from the definition of observable equivalence ∼. ��
Finally, let us prove that the relation ∼ satisfies Claim 3. We define a property

by which a relation is preserved by transitions on operational semantics. We
designate R as a bisimulation if cfg0 R cfg1 implies

– if cfg0
c→ cfg0

′, then cfg1
′ exists such that cfg1

c→ cfg1
′ and cfg0

′ R cfg1
′,

– if cfg1
c→ cfg1

′, then cfg0
′ exists such that cfg0

c→ cfg0
′ and cfg0

′ R cfg1
′,

– if cfg0
e→ cfg0, then cfg1

′ exists such that cfg1
e→∗ cfg1

′ and cfg0
′ R cfg1

′,
and

– if cfg1
e→ cfg1

′, then cfg0
′ exists such that cfg0

e→∗ cfg0
′ and cfg0

′ R cfg1
′.

Proposition 4. Let R0 and R1 be bisimulations. The inverse of R0, that is,
{〈cfg1, cfg0〉 | 〈cfg0, cfg1〉 ∈ R0}, and the composition of R0 and R1, that is,
{〈cfg0, cfg2〉 | 〈cfg0, cfg1〉 ∈ R0, 〈cfg1, cfg2〉 ∈ R1 for some cfg1}, are bisimu-
lations. Therefore, the reflexive, symmetric, and transitive closure of R0 is a
bisimulation.

Proof. It is obvious by the definition of bisimulation.

LDRF is necessary to define � as a bisimulation. For example, 〈x = ST0 1 ‖
r = LD1 x ‖ r′ = LD2 x, 〈{ �→ 0}, σ0, Σ0〉〉 �� 〈x = ST0 1 ‖ r = LD1 x ‖ r′ = LD2 x, 〈{ �→
0}, σ1, Σ1〉〉, where



208 T. Abe

σ0 = { {0} �→ { �→ 0}, {1} �→ { �→ 0}, {2} �→ { �→ 0}}
Σ0 = {〈0, {0}〉 �→ ∅, 〈0, {1}〉 �→ ∅, 〈0, {2}〉 �→ ∅, 〈1, {0}〉 �→ ∅, 〈1, {1}〉 �→ ∅,

〈1, {2}〉 �→ ∅, 〈2, {0}〉 �→ ∅, 〈2, {1}〉 �→ ∅, 〈2, {2}〉 �→ ∅}
σ1 = { {0} �→ { �→ 0}, {1, 2} �→ { �→ 0}}
Σ1 = {〈0, {0}〉 �→ ∅, 〈0, {1, 2}〉 �→ ∅, 〈1, {0}〉 �→ ∅, 〈1, {1, 2}〉 �→ ∅,

〈2, {0}〉 �→ ∅, 〈2, {1, 2}〉 �→ ∅}

because 〈r = LD1 x ‖ r′ = LD2 x, 〈{ �→ 0}, σ′
0, Σ

′
0〉〉 �� 〈r = LD1 x ‖ r′ = LD2 x, 〈{ �→

0}, σ′
1, Σ1〉〉, where

σ′
0 = { {0} �→ {x �→ 1, �→ 0}, {1} �→ {x �→ 1, �→ 0}, {2} �→ { �→ 0}}

Σ′
0 = {〈0, {0}〉 �→ ∅, 〈0, {1}〉 �→ ∅, 〈0, {2}〉 �→ x = 1, 〈1, {0}〉 �→ ∅, 〈1, {1}〉 �→ ∅,

〈1, {2}〉 �→ ∅, 〈2, {0}〉 �→ ∅, 〈2, {1}〉 �→ ∅, 〈2, {2}〉 �→ ∅}
σ′
1 = { {0} �→ {x �→ 1, �→ 0}, {1, 2} �→ {x �→ 1, �→ 0}}

after x = ST0 1 is invoked.

Lemma 5. Expansion relation � is a bisimulation.

Proof. Each shared variable has its own queue. Therefore, any pair of e-
transitions related to distinct shared variables can be reordered.

Let 〈P0, 〈ς0, σ0, Σ0〉〉 � 〈P1, 〈ς1, σ1, Σ1〉〉. Assume that Sj belongs to a com-
mon segment with Si on 〈P1, 〈ς1, σ1, Σ1〉〉. If R(Si) ∩R(Sj) = ∅ holds, then the
first item of the third condition of � does not matter. If x ∈ R(Si)∩R(Sj), then
there exists no x=STk e according to LDRF; the first item of the third condition
of � also does not matter.

Otherwise, the queues of Si and Sj are separated; any e→ on P0 can be
simulated by e→∗ on P1. The second and third items of the third condition of �
can be checked easily because it is sufficient to consider effects except those by
invoking the x = STi e instruction.

The case of CAS is similar. The other cases related to the c-transition are
routine because Σ remains unchanged. The c-transition of P1 is similar. The
cases of e-transitions are readily apparent by definition. ��
Theorem 6. Observable equivalence ∼ is a bisimulation.

Proof. It is immediate from Proposition 4 and Lemma 5. ��
Thus, the objective has been accomplished because Claim 1 is satisfied by

the definition of observable equivalence, Claim 2 is satisfied by Proposition 3
and Claim 3 is satisfied by Theorem 6.



Local Data Race Freedom with Non-multi-copy Atomicity 209

6 Implementation of Memory Sharing Optimization

In this section, we explain the implementation of memory sharing optimization.
We implemented memory sharing optimization on a stateful model checker

VeriDAG, which performs model checking not only with multi-copy atomicity,
but also non-multi-copy atomicity [2]. VeriDAG takes a concurrent program
written in the C programming language (or a sequence of LLVM-IRs) and an
MCM as inputs, and generates a directed acyclic graph called a program graph as
an intermediate representation, which was introduced in [4]. Program graphs are
defined to support various MCMs, such as relaxed memory ordering (RMO) [5]
that allows load-load reordering. Furthermore, the definition of program graphs
was extended to support non-multi-copy atomicity [2]. Operational semantics for
program graphs can simulate the general machine introduced in Sect. 3, and the
formal discussion in Sect. 5 can be applied to program graphs and its operational
semantics.

A node of a program graph corresponds to an instruction or an effect of an
instruction from thread i to a set of threads I written as x = Ei,I v, which makes
the execution of the instruction visible to the other threads. For example, an
effect means a reflect from the store buffer on thread i to shared memory under
x86-TSO. An effect also means a reflect from the memory on thread i to the
other memories on threads I under the POWER MCM.

Figures 8(a) and (b) depict program graphs that consist of x = ST1 3 and its
effects on three threads under multi-copy atomicity and non-multi-copy atom-
icity, respectively. The edges of the program graph denote dependencies. In the
figures, x = E1,{0,1,2} 3, x = E1,{0} 3, x = E1,{1} 3, and x = E1,{2} 3 are necessarily
invoked after x = ST1 3 is invoked.

One method to implement memory sharing optimization is as follows: We
introduced a partition of threads that corresponded to memory sharing by
extending E to take not only the set of threads that corresponded to multi-
copy atomicity or a singleton that corresponded to non-multi-copy atomicity,
but also any segment of the partition. For example, x = ST1 3 on an LDRF pro-
gram that consists of three threads was represented as shown in Fig. 8(c), where
the two threads share one memory. Another method is to abandon unnecessary
effects, although it was not adopted in this work. Because VeriDAG was well-
designed to address reflected stores partially, the implementation of memory
sharing optimization was straightforward.

Program graphs on VeriDAG have been modified from the original ones
described in a previous paper [4], for performance improvement. An atomic edge,
denoted by =⇒, means that if its source node is consumed, then its target node
is preferably chosen at one of the roots of the updated program graph in the next
step; that is, a pair of instructions related by an atomic edge is invoked instan-
taneously. Atomic edges are carefully implemented to not disturb the so-called
partial order reduction based on the notion of ample sets [21] using invisibility
that is already implemented in VeriDAG.

The previous program graphs in Fig. 8 were modified, as shown in Fig. 9.
The validity of the optimization was ensured because there was no necessity to



210 T. Abe

Fig. 8. Program graphs with multi-copy atomicity, non-multi-copy atomicity, and
memory sharing optimization

Fig. 9. Program graphs with atomic edges

consider interleavings between these nodes because every thread i used its own
σI , and every σI was always used via Σi,I in the form of σI [Σi,I ], where i ∈ I.
Note that thread 2 did not read x in the last program graph according to the
LDRF condition. Additionally, note that the first program graph had no atomic
edge because the graph was generated with multi-copy atomicity.

7 Experiments

In this section, we demonstrate the effectiveness of memory sharing optimiza-
tion by conducting model checking of the IRIW program and CCGC algorithms.
We used VeriDAG, on which memory sharing optimization was implemented, as
explained in Sect. 6. MCMs were RMO with and without multi-copy-atomicity.
RMO with multi-copy-atomicity corresponds to the SPARC RMO MCM. RMO
with non-multi-copy-atomicity corresponds to the POWER MCM. The exper-
imental environment was as follows: the CPU was Intel Xeon E5-1620 v4 3.50
GHz, the memory was DDR4-2400 256 GB, the OS was Ubuntu 17.10, and
VeriDAG was compiled using Glasgow Haskell Compiler 8.0.2.

7.1 Independent Reads Independent Writes Program

The IRIW program is (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1, and an
assertion to observe curious behaviors under non-multi-copy atomicity is (r0==1
&& r2==1) -> (r1==1 || r3==1), as explained in Sect. 3. We used acquire loads
in the IRIW program, which prohibit load-load reordering because the IRIW
program has curious behaviors with non-multi-copy atomicity even if load-load
reordering is prohibited.

We increase the number of writer threads in the IRIW because memory
optimization should be more effective when the number of threads whose buffers



Local Data Race Freedom with Non-multi-copy Atomicity 211

Table 1. Experimental results of the IRIW programs

# of Ws Multi-copy atomicity Non-multi-copy atomicity Memory sharing optimiz.

States Memory Time States Memory Time States Memory Time

(K) (MB) (s) (K) (MB) (s) (K) (MB) (s)

2 1 2 0.02 2 3 0.08 1 2 0.05

3 3 3 0.16 35 9 2.06 10 4 0.54

4 17 5 1.15 718 142 63.91 79 17 5.83

5 92 20 12.14 16650 3339 2526.31 666 125 84.07

6 463 87 71.00 407439 80912 88382.43 5100 941 847.56

are shared is larger. The number of writer threads in the original IRIW program
is two. Additionally, we conducted model checking with the IRIW programs
with three to six writer threads. The additional writer threads wrote integer 1
to additional shared variables. The two reader threads read additional values
from the shared variables. For example, in a case that the number of writer
threads is 3, the program is (r0=z; r1=y; r2=x) ‖ (r3=x; r4=y; r5=z) ‖
x=1 ‖ y=1 ‖ z=1. The number of interleavings should have increased drastically.

Table 1 presents the experimentally obtained results for the IRIW programs.
The first column shows the number of writer threads (denoted by Ws). The
second, third, and fourth columns refer to multi-copy atomicity. Model checking
with multi-copy atomicity was conducted to represent the difficulty of model
checking with non-multi-copy atomicity. Of course, model checking with multi-
copy atomicity does not ensure the correctness of programs with non-multi-copy
atomicity. There might exist a counterexample with non-multi-copy atomicity
even if model checking with multi-copy atomicity detects no counterexample.

The second, third, and fourth columns list the numbers of states visited,
memory consumed, and time elapsed, respectively. Even if a counterexample was
detected, model checking continued until an exhaustive search was complete. The
command-line option of VeriDAG includes -c0, which denotes that an exhaustive
search is complete even if a counterexample is detected and printed out, whereas
the default is -c1, which denotes that if a counterexample is detected, model
checking stops and returns the counterexample. Similarly, the fifth, sixth, and
seventh columns refer to non-multi-copy atomicity, and the eighth, ninth, and
tenth columns refer to memory sharing optimization.

Model checking with multi-copy atomicity was completed more rapidly than
the others with non-multi-copy atomicity and memory sharing optimization.
However, they printed out no counterexamples because the assertion (r0==1 &&
r1==1) -> (r2==1 || r3==1) holds with multi-copy atomicity when the IRIW
program (r0=y; r1=x) ‖ (r2=x; r3=y) ‖ x=1 ‖ y=1 is complete. They are just
experiments to compare model checking with multi-copy atomicity with model
checking with non-multi-copy atomicity.

The numbers of states increased drastically during model checking with non-
multi-copy atomicity. Accordingly, the consumed memories and elapsed times



212 T. Abe

Table 2. Experimental results of the CCGC algorithms

CCGC
algorithm

Non-multi-copy atomicity Memory sharing optimization

States (K) Memory (MB) Time (s) States (K) Memory (MB) Time (s)

Schism 1744 320 205.17 1131 210 128.80

Sapphire 159052 28576 22312.51 41926 7589 5503.61

increased. Memory sharing optimization mitigated the state explosion problem.
The greater the number of writer threads, that is, the larger the shared buffer,
the more effective it is because of the combinatorial explosion.

Memory sharing optimization mitigated the state explosion problem. When
the number of writer threads was two, memory sharing optimization improved
performance approximately twice. When the number of writer threads was six,
memory sharing optimization improved performance by 79–105 times. Thus,
we confirmed that memory sharing optimization was more effective when the
number of threads whose memories were shared was larger.

7.2 Concurrent Copying Garbage Collection Algorithms

Some CCGC algorithms are typical LDRF programs. CCGCs consist of muta-
tors, which correspond to threads in user programs, and a collector. We can
assume that there exists no load-store race in any period between synchroniza-
tion points because threads in user programs that do not exist at the garbage
collection layer must be DRF in programming languages with MCMs that require
DRF. However, it may be the case that mutators share variables because a col-
lector communicates with mutators when collecting objects that have not been
used.

We conducted model checking of popular CCGC algorithms [15] that were
modeled in the paper [27]. We extended the models to those whose mutators
consisted of two threads, whereas the number of mutators in the original models
was one. The original models have restrictions that their behaviors are fixed to
read-write or write-read flows. Details of the restrictions are in the paper [27].
We modified the models to include both the flows by adding non-deterministic
choice statements to the models. The modified models are more realistic than
the original models. Table 2 presents the experimentally obtained results of the
CCGC algorithms. The first column shows the names of the CCGC algorithms.
The remaining columns are similar to those in Table 1.

Table 2 shows that the experimental results for Schism [22] and Sapphire [24],
even those that were real applications, had a similar feature to that for the IRIW
program, which is a litmus test for multi-copy-atomicity. The experiment for the
other larger CCGCs was not complete in half a day (= 43, 200 s).



Local Data Race Freedom with Non-multi-copy Atomicity 213

8 Conclusion, Discussion, and Future Work

In this paper, we provided small-step operational semantics for relaxed mem-
ory consistency models with store buffers, defined observable equivalence on the
semantics, and proposed LDRF, a local property of concurrent programs, which
runs on non-multi-copy atomic MCMs. LDRF includes the IRIW programs that
DRF cannot include. We also introduced memory sharing optimization on model
checking of LDRF programs, and demonstrated that memory sharing optimiza-
tion mitigates state explosion problems with non-multi-copy atomic MCMs.

Multi-copy atomicity, also known as remote write atomicity, has been stud-
ied [6,13]. Although ARM adopted non-multi-copy atomicity until ARMv8 [7],
Pulte et al. reported that ARMv8 will be revised to prohibit non-multi-copy
atomicity because they claim that the complexity derived from non-multi-copy
atomicity has a cost, particularly for architectures implemented by multiple ven-
dors [23]. In contrast, Vafeiadis argued that multi-copy atomicity did not seem
relevant because its enforcement of global orders between instructions prevents
scalability of verification [28]. Thus, multi-copy atomicity is a topic of debate.
We hope that the present paper helps to elucidate non-multi-copy atomicity, and
therefore contributes to decisions to adopt various multi-copy atomicities.

The experimental results demonstrated that the performance of VeriDAG
with the memory sharing optimization was not substantially high. This is
because VeriDAG is a stateful model checker that adopts classical partial order
reduction optimization [21], differently from Nidhugg [1] with the POWER
MCM [12] and RCMC [16] with the repaired version of C/C++11 MCM [14]
which adopt dynamic partial order reduction [10]. However, this is independent
of the goal of demonstrating the effectiveness of memory sharing optimization.

Because TRF and LDRF are variants of DRF in different directions, it might
be expected that a novel property can be defined by combining the two prop-
erties. However, this appears to be difficult because TRF is strongly specific
to x86-TSO, which preserves the order of stores of different shared variables,
whereas LDRF requires that store buffers consist of multiple queues.

This work has a few limitations. LDRF is syntactically and conservatively
defined while DRF is defined by observing execution traces, because local data
race detection has not been implemented yet.

It seems reasonable that LDRF should be defined as a pair-wise property
because the locality may be a pair-wise property. For example, let us consider a
case that threads 0 and 1 do not race, threads 0 and 2 do not race, but threads
1 and 2 do. However, LDRF in this paper cannot capture the case since LDRF
is defined as a property for a partition of the set of threads.

The memory sharing optimization that mitigates the state explosion problem
is not a scalable method for increasing the number of threads. We would like
to revise LDRF as a pair-wise property, find any better characterization for
scalability, and provide local data race detection.



214 T. Abe

Acknowledgments. The author thanks Toshiyuki Maeda and Tomoharu Ugawa. The
motivation of this work was fostered through discussions with them. The author also
thanks the anonymous reviewers for several comments to improve the paper. This work
was supported by JSPS KAKENHI Grant Number 16K21335.

References

1. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model check-
ing for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS,
vol. 9780, pp. 134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 8

2. Abe, T.: A verifier of directed acyclic graphs for model checking with mem-
ory consistency models. Hardware and Software: Verification and Testing. LNCS,
vol. 10629, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70389-3 4

3. Abe, T., Maeda, T.: Observation-based concurrent program logic for relaxed mem-
ory consistency models. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp.
63–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47958-3 4

4. Abe, T., Maeda, T.: Concurrent program logic for relaxed memory consistency
models with dependencies across loop iterations. J. Inf. Process. 25, 244–255 (2017)

5. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

6. ARM Limited: ARM Architecture Reference Manual (ARMv7-A and ARMv7-R
edition) (2012)

7. ARM Limited: ARM Architecture Reference Manual (ARMv8, for ARMv8-A archi-
tecture profile) (2017)

8. Basten, T., Bošnački, D., Geilen, M.: Cluster-based partial-order reduction.
Autom. Softw. Eng. 11(4), 365–402 (2004)

9. Dolan, S., Sivaramakrishnan, K., Madhavapeddy, A.: Bounding data races in space
and time. In: Proceedings of PLDI (2018, to appear)

10. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of POPL, pp. 110–121 (2005)

11. Gao, G.R., Sarkar, V.: Location consistency-a new memory model and cache con-
sistency protocol. IEEE Trans. Comput. 49(8), 798–813 (2000)

12. IBM Corporation: Power ISA Version 3.0 (2015)
13. Intel Corporation: A Formal Specification of Intel Itanium Processor Family Mem-

ory Ordering (2002)
14. ISO/IEC 14882:2011: Programming Language C++ (2011)
15. Jones, R., Hosking, A., Moss, E.: The Garbage Collection Handbook. CRC Press,

Boca Rotan (2012)
16. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless

model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL:17),
1–32 (2018)

17. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. c-28(9), 690–691 (1979)

18. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

19. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2 23

https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-70389-3_4
https://doi.org/10.1007/978-3-319-70389-3_4
https://doi.org/10.1007/978-3-319-47958-3_4
https://doi.org/10.1007/978-3-642-14107-2_23


Local Data Race Freedom with Non-multi-copy Atomicity 215

20. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

21. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

22. Pizlo, F., Ziarek, L., Maj, P., Hosking, A.L., Blanton, E., Vitek, J.: Schism:
fragmentation-tolerant real-time garbage collection. In: Proceedings of PLDI, pp.
146–159 (2010)

23. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
Proc. ACM Program. Lang. 2(POPL:19), 1–29 (2018)

24. Ritson, C.G., Ugawa, T., Jones, R.: Exploring garbage collection with Haswell
hardware transactional memory. In: Proceedings of ISMM, pp. 105–115 (2014)

25. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: Proceedings of PPoPP, pp. 161–172 (2007)

26. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI, pp. 175–186 (2011)

27. Ugawa, T., Abe, T., Maeda, T.: Model checking copy phases of concurrent copy-
ing garbage collection with various memory models. Proc. ACM Program. Lang.
1(OOPSLA:53), 1–26 (2017)

28. Vafeiadis, V.: Sequential consistency considered harmful. In: New Challenges in
Parallelism (Report from Dagstuhl Seminar 17451), p. 21 (2018)

https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/3-540-56922-7_34


A Comparative Study of Decision
Diagrams for Real-Time Model Checking

Omar Al-Bataineh1, Mark Reynolds2(B), and David Rosenblum1

1 National University of Singapore, Singapore, Singapore
2 University of Western Australia, Perth, Australia

mark.reynolds@uwa.edu.au

Abstract. The timed automata model, introduced by Alur and Dill,
provides a powerful formalism for describing real-time systems. Over
the last two decades, several dense-time model checking tools have been
developed based on that model. This paper considers the verification of a
set of interesting real-time distributed protocols using dense-time model
checking technology. More precisely, we model and verify the distributed
timed two phase commit protocol, and two well-known benchmarks, the
Token-Ring-FDDI protocol, and the CSMA/CD protocol, in three dif-
ferent state-of-the-art real-time model checkers: UPPAAL, RED, and
Rabbit. We illustrate the use of these tools using one of the case stud-
ies. Finally, several interesting conclusions have been drawn about the
performance, usability, and the capability of each tool.

1 Introduction

Real-time systems are systems that are designed to run applications and pro-
grams with very precise timing and a high degree of reliability. These systems
can be said to be failed if they can not guarantee response within strict time
constraints. Ensuring the correctness of real-time systems is a challenging task.
This is mainly because the correctness of real-time systems depends on the actual
times at which events occur. Hence, real-time systems need to be rigorously mod-
eled and verified in order to have confidence in their correctness with respect to
the desired properties.

Because of time constraints in real-time systems, traditional model checking
approaches based on finite state automata and temporal logic are not sufficient.
Since they can not capture the time requirements of real-time systems upon
which the correctness of these systems relies. Several researchers have proposed
different modeling formalisms for describing real-time systems such as timed
transition systems [21], timed I/O automata [20], and timed automata model
[4]. Although a number of formalisms have been proposed, the timed automata
model of Alur, Courcoubetis, and Dill [4] has become the standard.

In this contribution, we conduct a comparative study of a number of model
checking tools, based on a variety of approaches to representing real-time sys-
tems. We have selected three real-time protocols, the timed two phase commit
c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 216–234, 2018.
https://doi.org/10.1007/978-3-319-94111-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_13&domain=pdf


A Comparative Study of Decision Diagrams for Real-Time Model Checking 217

protocol (T2PC) [16], the Token-Ring-FDDI protocol [19], and the CSMA/CD
protocol [27], implemented them in quite different ‘dense’ timed model checkers,
and verified their relevant properties. Specifically, we consider the model checkers
UPPAAL [7], Rabbit [12] and RED [26]. We focus more on the particular T2PC
protocol since the protocol has not been model checked before and we use it to
illustrate how one can use the three tools to model real-time systems. The tools
use different decision diagrams to model and verify real-time systems. UPPAAL
deals with the logic of TCTL [2] using an algorithm based on DBMs (Differ-
ence Bound Matrices) [17]. Rabbit is a model checker based on timed automata
extended with concepts for modular modeling and performs reachability analy-
sis using BDD (Binary Decision Diagrams) [15]. RED is a model checker with
dense-time models based on CRD (Clock-Restriction Diagrams) [26]. Compar-
ing model-checking tools is challenging because it requires mastering various
modelling formalisms to model the same concepts in different paradigms and
intimate knowledge of tools’ usage.

We compare the three tools from four different perspectives: (a) their model-
ing power, (b) their verification and specification capabilities, (c) their theoretical
(algorithmic) foundation, and (d) their efficiency and performance. RED outper-
formed both UPPAAL and Rabbit in two of the case studies (T2PC and FDDI)
in terms of scalability, and expressivity of its specification language. On the
other hand, Rabbit outperformed both RED and UPPAAL on the CSMA/CD
case study. However, UPPAAL was a lot faster than both tools in cases where
it gave a result, but it is less scalable than RED.

The CRD-based data structure implemented in RED turns out to be an
efficient data structure for handling case studies with huge number of clocks
since it scales better with respect to number of clocks. The data structure BDD
turns out to be efficient for handling case studies with huge number of discrete
variables but it is very sensitive to the scale of clock constants in the model. The
DBM-based data structure implemented in UPPAAL handles the complexity of
timing constant magnitude very well, but when the number of clocks increases
its performance degrades rapidly. It is interesting to mention also that the three
tools agreed on the results of all the experiments that we conducted.

Related Work. Some work has already been done on the verification of commit-
ment protocols using formal techniques. In particular, the basic 2PC protocol
has frequently been the focus of studies of verification of distributed computing
[6,22,24], but it is just one of several variants discussed in the literature. One of
the interesting variants of the protocol is the T2PC protocol that has complex
timing constraints. In this work we have shown how the T2PC protocol can be
analyzed with three various tools: UPPAAL, Rabbit, and RED. To the best of
our knowledge the T2PC protocol has not been model checked before.

The literature of timed automata theory is a rich literature since it was intro-
duced by Alur and Dill in 1990. In [3] Alur et al. showed that the TCTL is in
PSPACE-complexity and gave a model checking algorithm of TCTL. In [18]
Henzinger et al. proposed an efficient algorithm for model checking TCTL. Alur
and Madhusudan [5] present a full survey of known results for decidability prob-



218 O. Al-Bataineh et al.

lems in timed automata theory. Ober et al. [23] proposed a timed unified mod-
eling language (UML) for real-time systems and showed how to translate timed
UML into timed automata that can be used for formal analysis. Tripakis [25]
gives algorithms and techniques to verify timed systems using TCTL logic and
Timed Buchi Automata. which have implemented in KRONOS model checking
tool. KRONOS is a full DBM-based model checker that supports both forward
and backward TCTL model checking. One of the limitations of KRONOS is
that its input language supports a very restricted data types that allow only the
declaration of clock variables. For this reason we have not included KRONOS
in our comparative study since the case study that we consider requires much
richer modeling language.

The BDD-like data structures have been also used in the verification of timed
systems. The model checkers Rabbit and RED have been developed based on
BDD-like technology. Empirical results given in [12,26] have shown that RED
and Rabbit outperformed UPPAAL in some particular examples such as Fisher
mutual exclusion and FDDI Token Ring protocol. However, the empirical results
presented in these works were reported using an old version of UPPAAL (v3.2.4),
which lack many of the optimisations that are used in the current version of the
tool (v4.1.13). In [13] Beyer shows that the size of the BDD and the CRD
representation of the reachability set depends on two properties of the models:
the number of automata and the magnitude of the clock values. In [26] Wang
shows that CRDs outperform DBMs when verifying specifications that contain
large number of clocks. However, he pointed out that CRDs consume much
space (memory) in handling intermediate data structures, and therefore require
intensive use of garbage collection.

2 Preliminaries

In this section, we introduce the basics of the timed two phase commit protocol,
which is the main case study considered in this. We then give a brief review of
the syntax and semantics of timed automata model, real-time temporal logic,
and the zone abstraction which is an abstraction for representing the timing
information in the timed models.

2.1 Timed Two Phase Commit Protocol (T2PC)

The T2PC protocol aims to maintain data consistency of all distributed database
systems as well as having to satisfy the time constraints of the transaction under
processing. The protocol is mainly based on the well-known two phase commit
(2PC) protocol, but it incorporates several intermediate deadlines in order to be
able to handle real-time transactions. We describe first the basic 2PC protocol
(without deadlines) and then discuss how it can be modified to be used for
real-time transactions. The 2PC protocol can be summarised as follows [11].

A set of processes {p1, .., pn} prepare to involve in a distributed transaction.
Each process has been given its own subtransaction. One of the processes will act



A Comparative Study of Decision Diagrams for Real-Time Model Checking 219

as a coordinator and all other processes are participants. The protocol proceeds
into two phases. In the first phase (voting phase), the coordinator broadcasts a
start message to all the participants, and then waits to receive vote messages from
the participants. The participant will vote to commit the transaction if all its
local computations regarding the transaction have been completed successfully;
otherwise, it will vote to abort. In the second phase (commit phase), if the
coordinator received the votes of all the participants, it decides and broadcasts
the decision. If all the votes are ‘yes’ then the coordinator will commit the
transaction. However, if one process voted ‘no’, then the coordinator will decide
to abort the transaction. After sending the decision, the coordinator waits to
receive a COMPLETION messages from all the participants.

Three intermediate deadlines have been added to the basic 2PC protocol in
order to handle real-time transactions [16]: the deadline V which is a deadline for
a participant to send its vote, DEC the deadline for the coordinator to broadcast
the decision, and Dp the deadline for a participant to send a COMPLETION
message to the coordinator. Note that the correctness of the T2PC protocol
depends mainly on the way we select the values of the above timing parameters.
In particular, the coordinator should choose the value of D to be sufficiently long
to allow the participants to receive the start message and return the completion
message in time for the coordinator to determine the result. The correctness of
the protocol depends also on a condition that a fair scheduling policy is imposed,
this condition is necessary in order to avoid situations in which some participants
may miss the deadline if they schedule to execute until after the deadline D. Note
also that the protocol can only guarantee correctness in the absence of failures
both node failures and link failures, since a failure if happens might delay the
execution of some processes until after the deadline expires, which therefore
cause the protocol to fail.

2.2 The Timed Automata Model and Real-Time Temporal Logic

Timed automata are an extension of the classical finite state automata with
clock variables to model timing aspects [4]. Let X be a set of clock variables,
then the set Φ(X) of clock constraints φ is defined by the following grammar

φ:: = t ∼ c | φ1 ∧ φ2

where t ∈ X, c ∈ N, and ∼ ∈ {<,≤,=, >,≥}. A clock interpretation v for a set
X is a mapping from X to R

+ where R
+ denotes the set of nonnegative real

numbers.

Definition 1. A timed automaton A is a tuple (Σ,L,L0,X,E,L), where

– Σ is a finite set of actions.
– L is a finite set of locations.
– L0 is a finite set of initial locations.
– X is a finite set of clocks.



220 O. Al-Bataineh et al.

– E ⊆ L×L×Σ×2X ×Φ(X) is a finite set of transitions. An edge (l, l
′
, a, λ, σ)

represents a transition from location l to location l
′

after performing action
a. The set λ ⊆ X gives the clocks to be reset with this transition, and σ is a
clock constraint over X.

– L : L → 2AP is a labeling function mapping each location to a set of atomic
propositions.

The semantics of a timed automaton (Σ,L,L0,X,E,L) can be defined by
associating a transition system with it. With each transition a clock constraint
is associated. The transition can be taken only if the clock constraint on the
transition is satisfied. There are two basic types of transitions:

1. delay transitions that model the elapse of time while staying at some location,
2. action transitions that execute an edge of the automata.

A state s = (l, v) consists of the current location and the set of clock valuations
at that location. The initial state is (l0, v0) where the valuation v0(x) = 0 for all
x ∈ X. A timed action is a pair (t, a) where a ∈ Σ is an action performed by an
automaton A after t ∈ R

+ time units since A has been started.

Definition 2. An execution of a timed automaton A = (Σ,L,L0,X,E,L) with
an initial state (l0, v0) over a timed trace ζ = (t1, a1), (t2, a2), (t3, a3), .. is a
sequence of transitions of the form.

〈l0, v0〉 d1−→ a1−→ 〈l1, v1〉 d2−→ a2−→ 〈l2, v2〉 d3−→ a3−→ 〈l3, v3〉...

satisfying the condition ti = ti−1 + di for all i ≥ 1. ��
In order to allow the verification of dense-time properties we need to add

bounds in the classical CTL temporal operators. The extended logic is called
TCTL. We now give the syntax and the semantics of the TCTL logic.

TCTL  ϕ:: = p | ¬ϕ | ϕ1 ∨ ϕ2 | Eϕ1UIϕ2 | Aϕ1UIϕ2

where I is an interval of R
+ that can be either bounded or unbounded. The basic

TCTL modality in the above definition is the U -modality which can be used to
define the time interval in which the property should be true. Given a formula
ϕ and a state (	, v) of a timed automata A, the satisfaction relation (	, v) |= ϕ
is defined inductively on the syntax of ϕ as follows.

– (	, v) |= p iff p ∈ L(	)
– (	, v) |= ¬ϕ iff (	, v) � ϕ
– (	, v) |= ϕ ∨ ψ iff (	, v) |= ϕ or (	, v) |= ψ
– (	, v) |= EϕUIψ iff there is a run ζ in A from (	, v) such that ζ |= ϕUIψ.
– (	, v) |= AϕUIψ iff for any run ζ in A from (	, v) such that ζ |= ϕUIψ.
– (	, v) |= ϕUIψ iff there exists a position π > 0 along a run ζ such that

ζ[π] |= ψ, for every position 0 < π
′
< π, ζ[π

′
] |= ϕ, and duration (ζ≤π) ∈ I.



A Comparative Study of Decision Diagrams for Real-Time Model Checking 221

2.3 The Zone-Based Abstraction Technique

In the original work of Alur and Dill [4], they presented an abstraction tech-
nique by which an infinite timed transition system (i.e., timed automata) can be
converted into an equivalent finitely symbolic transition system called region
graph where reachability is decidable. However, it has been shown that the
region automaton is highly inefficient to be used for implementing practical
tools. Instead, most real-time model checking tools like UPPAAL, Kronos and
RED apply abstractions based on so-called zones, which is much more practical
and efficient for model checking real-time systems.

In a zone graph [17], zones are used to denote symbolic states. A zone is a
pair (	, Z), where l is a location in the TA model and Z is a clock zone that
represents sets of clock valuations at l. Formally a clock zone is a conjunction of
inequalities that compare either a clock value or the difference between two clock
values to an integer. In order to have a unified form for clock zones we introduce
a reference clock x0 to the set of clocks X in the analyzed model that is always
zero. The general form of a clock zone can be described by the following formula

(x0 = 0) ∧
∧

0≤i�=j≤n

((xi − xj) ∼ ci,j)

where xi, xj ∈ X, ci,j represents the difference between them, and ∼ ∈ {≤, <}.
Considering a timed automaton A = (Σ,L,L0,X,E,L), with a transition e =
(	, a, ψ, λ, 	

′
) in E we can construct an abstract zone graph Z(A) such that states

of Z(A) are zones of A. The clock zone succ(Z, e) will denote the set of clock
valuations Z

′
for which the state (	

′
, Z

′
) can be reached from the state (	, Z) by

letting time elapse and by executing the transition e. The pair (	
′
, succ(Z, e))

will represent the set of successors of (	, Z) under the transition e. Since every
constraint used in the invariant of an automaton location or in the guard of a
transition is a clock zone, we can use zones for various state reachability analysis
algorithms for timed automata.

It is interesting to note that without further abstractions (“extrapolation”),
the zone graph can be infinite. To obtain a finite zone graph most model checkers
use some kind of extrapolation of zones. In the last two decades, there has been a
considerable development in the extrapolation procedure for TA for the purpose
of providing coarser abstractions of TA [8,10,14]. We refer the reader to [1] for
more details about different kinds of extrapolation techniques.

2.4 Data Structures for Representing Zone Graphs

In this section we review briefly the three data structures DBM, BDD, and CRD
which have been used respectively to represent clock zones in the tools UPPAAL,
Rabbit, and RED.

Difference Bound Matrices (DBMs). [17] are two-dimensional matrices that
record the difference upper bounds between clock pairs up to a certain con-
stant. Each row in the matrix represents the bound difference between the value



222 O. Al-Bataineh et al.

of the clock xi and all the other clocks in the zone, thus a zone can be rep-
resented by at most |X|2 atomic constraints. The element Di,j in DBM is on
the form (n,∼) where xi, xj ∈ X, n represents the difference between them,
and ∼ ∈ {≤, <}. DBM-technology generally handles the complexity of timing
constant magnitude very well. But when the number of clocks increases, its per-
formance degrades rapidly. The DBM-based technology has been implemented
in the tool UPPAAL.

Binary Decision Diagrams (BDDs). [15] are propositional directed acyclic
graphs. The BDD graph consists of a set of decision nodes and has two terminal
nodes TRUE-terminal and FALSE-terminal. Each decision node is labeled by a
Boolean variable and has two child nodes called low child and high child. A path
from the root node to the TRUE-terminal represents a variable assignment for
which the represented Boolean function is true. As the path descends to a low
child (high child) from a node, then that node’s variable is assigned to FALSE
(TRUE). For untimed system veification, BDD has shown great success. But for
timed system verification, so far, all BDD-like structures have not performed as
well as the popular DBM. The BDD data structure is used in the tool Rabbit.

Clock Restriction Diagrams (CRDs). [26] is a BDD-like data structure for repre-
sentation of sets of zones, with related set-oriented operations for fully symbolic
verification of real-time systems. It has similar structure as BDD without FALSE
terminal. Unlike BDD, CRD is not a decision diagram for state space member-
ship. It acts like a database for zones and is appropriate for manipulation of
sets of clock difference constraints. It has been claimed that CRDs provide more
efficient space representation of timed automata than DBMs data structure [26].
The CRD technology is used in the current version of the tool RED. It is worth
mentioning here that the CRD data structure of RED is very similar to the CDD
data-structure (clock difference diagram) [9].

3 Modeling the Protocol in the Three Tools

In this section we describe how we formalize the T2PC protocol in the tools
UPPAAL, RED, and Rabbit. The reason for choosing these tools in the compar-
ison is due to the fact that the tools have been mainly developed for real-time
model checking based on TA formalism (or some of its variants). The other rea-
son is that the specification languages of the tools allow one to express common
properties of real-time systems in a very natural and easy way (specially the
tools UPPAAL and RED). The availability of the user guide of the tools which
describes the different options of the tools is another reason for choosing them in
this comparison. It is interesting to mention that the protocol has been verified
while considering the different available verification options of each tool including
the research order, state space representation, and extrapolation technique.



A Comparative Study of Decision Diagrams for Real-Time Model Checking 223

3.1 UPPAAL Model Checker

UPPAAL [7] is a model checker for real-time systems developed in conjunction
by Uppsala University, Sweden, and Aalborg University, Denmark. It extends
the basic timed automata with features for concurrency, communication, data
variables, and priority. UPPAAL uses a client-server architecture which splits
the tool into a graphical user interface (client) and a model checking engine
(server). The user interface consists of three main sections: system editor, simu-
lator, and verifier. The editor allows the user to model the system as a network
of timed automata. The simulator gives the user the capability to interactively
run the system to check if there are some trivial errors in the system design. The
verifier allows the user to enter the properties to be verified in a sub-language
of TCTL. UPPAAL can verify safety, bounded liveness, and reachability prop-
erties. UPPAAL uses fragment of TCTL language and it does not support the
direct verification of bounded response properties.

The T2PC Protocol in UPPAAL. The coordinator template is depicted in
Fig. 1. Initially, the coordinator attempts to reserve a CPU time slot via sending
a reservation request signal to the CPU resource manager (see Fig. 3) using the
channel reserve[rsc id] indexed with the resource to be allocated. If the CPU
is busy in executing other tasks, the manager will add the coordinator process to
the waiting queue. Otherwise, it will send immediately the process to the CPU
for processing. When the manager receives a finished signal from the CPU
indicating that the CPU has finished processing the current process and it is
currently in an idle state, the manager will send the process at the front of the
queue (if any) to the CPU for processing. The abstract model of the CPU (see
Fig. 4) has two locations idle and InUse which reflects the status of the CPU.
When it receives a ready[pid] signal from process pid, it moves from idle
to InUse, and then returns from InUse to idle after the determined execution
time is completed. If the resource (CPU) is granted (rsc granted ==true), the
coordinator initiates the protocol via broadcasting a start message to all the
participants. The coordinator then waits to receive the votes of the participants.
If V time units passed before receiving all the votes, the coordinator decides to
abort and then terminate. Otherwise, it will move to location m2 at which it
decides and broadcast the decision.

A function result(part vote) returns the result of the transaction based
on the values of the received votes. The coordinator broadcasts this result using
the broadcast channel fin result and the global variable outcome. The coor-
dinator then moves to location m3 at which it waits to receive the completion
messages of the participants. If Dp time units passed before receiving all com-
pletion messages, it decides to abort and then terminate. The protocol ends at
location finished at which the coordinator updates its database server.

The template of the participants is depicted in Fig. 2. All the participants
start their execution at location idle where they wait to receive a start signal
from the coordinator. Once they receive that signal, each participant i will try to
reserve ti time units via signalling the resource manager component. If the CPU



224 O. Al-Bataineh et al.

is busy at that time, it will join the waiting queue until it gets executed. If the
deadline V expired before sending their votes to the coordinator they decide to
abort and then terminate. Each participant then moves to location r2 at which
it waits to receive the decision of the coordinator. If it does not receive it within
DEC time units, it decides to abort the transaction and terminate. Otherwise,
it sets its comp variable to true and moves to location r4 where it updates its
database server and terminates.

data_update := true,
status := terminated

decision := abort,
outcome := abort,
status := terminated

decision := abort,
outcome := abort,
status := terminated

outcome := result(part_vote)

decision := abort,
outcome := abort,
status := terminated

comp == true && x < Dp

x >= Dp

isVoted == true

rsc_granted[pid] == true
coor_vote := vote

x :=0, 
status:= running

x < D

x >= V

x >= D

vote : voting

Dp_Expired

finished

m4

m3

m2

fin_result!

D_Expired

start !

reserve[rsc_id]!

Idle

m0

V_Expired

m1

Fig. 1. The coordinator template

data_update := true,
status := terminated

decision := abort,
status := terminated

comp := true

decision:= abort,
status := terminated

decision:= abort,
status := terminated

x >= DEC

x <D

x < DEC

rsc_granted[pid] == true

decision := outcome

part_vote := vote,
isVoted := true

x >= D

x:=0,
status := running

x>=V

vote: voting

r4

finished

DEC_Expired

r3

r2

fin_result?

D_Expired

reserve[rsc_id]!

start?

Idle

V_Expired

r0

r1

Fig. 2. The participant template

3.2 Rabbit Model Checker

Rabbit [12] is a model checking tool for real-time systems. The theoretical foun-
dation of the tool is mainly based on timed automata extended with concepts for
modular modeling. We give an informal description of the formalism of Cottbus
Timed Automata (CTA), which is used in the modeling language of Rabbit.

A CTA system consists of a set of modules that can be defined in a hierarchi-
cal way. Each module in the system model should have the following components:

– An identifier. Identifiers are used to name the modules within the system
description. Using identifiers we can create several instances of the modules
associated with these identifiers.



A Comparative Study of Decision Diagrams for Real-Time Model Checking 225

ready[pid]!

finished?

ready[pid]!
reserve[pid]?

add_to_queue(pid)

rsc_granted[pid] := true

rsc_granted[pid] := true

empty()

!empty() || busy == true

!empty()

empty() && !busy

Idle

Fig. 3. The resource manager template

busy := false

x == exe_time
x:=0, busy := truefinished!
ready[pid]?

x <= exe_time

Idle

InUse

Fig. 4. The CPU template

– An Interface. The interface of a module contains the declarations of the vari-
ables that are used in that module. In a CTA module, we can declare clock
variables, discrete variables, and synchronisation labels.

• Synchronisation labels. Sometimes called signals which are used to syn-
chronise timed automata that exist in different modules in the system.
The concept of synchronisation labels in modules is very similar to the
concept of events in CSP.

• Variables. Rabbit allows us to declare both continuous (clock) variables
and discrete variables. The values of these variables can be updated using
assignment statements in the transition rules of the automaton.

– A timed automaton. Each module contains a timed automaton. The automa-
ton consists of a finite set of states, a finite set of transitions, and a set of
synchronisation labels. In the CTA language, a process transition is declared
as a transition rule which starts with the keyword TRANS, while the locations
of the automaton are declared using the keyword STATE.

– Initial condition. This is a formula over the module variables and the states
of the module’s automaton, which specifies the initial state of the module.

– Instances. In the CTA model, a module can contain instances of the other
defined modules in the model.

Due to space reasons, we do not present the full model of the T2PC protocol
in Rabbit here, and we refer the reader to Appendix A of the longer version of
the paper at http://arxiv.org/abs/1201.3416. However, we pick some statements
in the Rabbit model of the T2PC protocol in order to explain how to declare
the model behaviour structure with Rabbit. The declaration is a sequence of
STATE declarations. The statements declare a state whose name is InUse and
whose invariance condition is “x<= exe time”. Inside the transition TRANS we
have a synchroniser finished, a triggering condition “x == exe time”, and two
actions “DO busy’ = 0;" and “GOTO Idle;”.

http://arxiv.org/abs/1201.3416


226 O. Al-Bataineh et al.

AUTOMATON CPU
{

STATE InUse{ INV x<= exe_time;
TRANS {GUARD x = exe_time; SYNC ! finished;
DO busy’ = 0; GOTO Idle;} }

STATE Idle{ TRANS {SYNC ? ready; DO x’ =0 AND
busy’ =1; GOTO InUse;} }

}

3.3 RED Model Checker

RED [26] stands for (Region-Encoding Diagrams) is a TCTL model checker for
real-time systems. An interesting feature of the RED model checker is that it is
totally based on symbolic technology with BDD-like diagrams.

In RED, systems are described as parametrized communicating timed
automata, where processes can be model processes, specification processes, or
environment processes. In a system with n processes, the user invokes the RED
model checker via telling it which processes are for the model, and which for
the specification. The remaining processes will be for the environment. Since the
automata in RED are parametrised automata then we can declare many process
automata with the same automaton template and identify each process automa-
ton with a process index. RED supports both forward and backward analyses,
deadlock detection, and counter-example generation. In RED, users can declare
global and local variables of type boolean, discrete, clock-restriction variable,
and hybrid-restriction variable. Due to space reasons, we don’t present here the
full model of the T2PC protocol in RED, and we refer the reader to Appendix
B of the longer version of the paper at http://arxiv.org/abs/1201.3416. The
statements declare a mode whose name is InUse and whose invariance condi-
tion “x<= exe time”. Inside the transition rule when we have a synchronizer
finished, a triggering condition “x == exe time”, and the two actions “busy
= 0” and “goto idle”.

mode InUse (x<= exe_time)
{
when !finished (x == exe_time) may busy = 0; goto Idle;

}
mode Idle (true)

{
when ? ready (true) may busy = 1; x =0; goto InUse;

}

4 Correctness Conditions of the T2PC Protocol

The first formula of interest is global atomicity (i.e. all processes must agree on
the final decision: all must abort or all must commit.)

http://arxiv.org/abs/1201.3416


A Comparative Study of Decision Diagrams for Real-Time Model Checking 227

Specification 1: The global atomicity is always guaranteed.

AG (
∧

i�=j

¬(i.decision = abort ∧ j.decision = commit))

Note that the variable decision can take one of the following values {undecided,
abort, commit}. Initially, all agents are undecided. Recall that the goal of the
protocol is to preserve data consistency as well as to satisfy all designated inter-
mediate deadlines Dp, DEC, and V . If any of these deadlines expired during
the execution of the transaction, all processes will decide to abort. Note that the
execution of the transaction may be delayed due to queuing delay or due to a
communication delay which might cause the protocol to miss its deadlines. The
following specifications verify whether the protocol can satisfy these deadlines.

Specification 2: If the coordinator sent successfully a commit request message,
then it is guaranteed to receive all participants’ votes within V time units.

AG ((C.request sent) ⇒ AF≤V (
∧

i=1..n (C.vote rcvd[i])))

Specification 3: If the coordinator received all the votes successfully, then all
the participants can receive the decision within DEC time units.

AG ((
∧

i=1..n(C.vote rcvd[i])) ⇒ AF≤DEC (
∧

i=1..n(i.dec rcvd)))

Specification 4: If the coordinator announced the decision successfully, it can
receive acknowledgement signals within Dp time units.

AG ((C.dec sent) ⇒ AF≤Dp
(
∧

i=1..n (C.ack[i])))

We discuss now how we specify the properties of the protocol in the input
language of each model checker. UPPAAL uses fragment of TCTL logic, RED
uses full TCTL logic, while on other hand, TCTL is not available in Rabbit and
it uses techniques based on reachability analysis to verify systems properties.
Due to space limitation, we consider here only specification 1. For more details
about how we specify the whole protocol’s properties in each tool we refer the
reader to the full version of this paper (http://arxiv.org/abs/1201.3416).

In UPPAAL, we can capture specification 1 as follows.

A[] not (coor.decision == commit and part.decision == abort)

Since Rabbit does not support the TCTL language, it alternatively provides
an analysis command language to write a simple segment of code for verifying
properties based on reachability analysis. Using this language, we declare a set
of variables that are used to represent a set of states, called regions, followed by
a set of iterative command statements. We then check whether the model can
reach a region where the formula can be violated.

http://arxiv.org/abs/1201.3416


228 O. Al-Bataineh et al.

REACHABILITY CHECK T2PC {
1 VAR initial, error, reached : REGION;
2 COMMANDS
3 initial:= INITIALREGION;
4 error := ((coor.decision == 1) AND (part.decision ==2));
5 reached := REACH FROM initial FORWARD;
6 IF (EMPTY(error INTERSECT reached)){
7 PRINT "Specification 1 satisfied.";}
8 ELSE { PRINT " Specification 1 violated.";} }

The first line declares three regions. Region initial represents the set of initial
states from the Rabbit’s modules. Lines 4 characterizes the set of states that
violate specification 1 of the protocol: some process decided to abort while some
other process decided to commit. Line 5 assigns to reached the set of states
reachable from the initial state. The specification is satisfied if the intersection
between the reached region and the error region is empty. However, in RED
we can express specification 1 as follows.

forall always not (decision[1] == 1 && decision[2] == 2)

5 Comparing the Performance of the Three Tools

In this section, we present the model checking runtimes obtained in testing the
tools, with version 4.1.13 for UPPAAL, 2.1 for Rabbit, and 5.0 for RED. All
experiments are conducted on a PC with 32-bit Redhat Linux 7.3 with Intel (R)
core CPU at 2.66 GHz and with 4 GB RAM. The specifications of the T2PC
protocol were checked with backward and forward analysis in Rabbit and RED,
and using the on the fly approach for UPPAAL. In the tables below we show the
CPU time used by the system on behalf of the calling process (system time). An
entry of “x” indicates that the model checker ran out of memory on that speci-
fication. As shown in Sect. 4 some properties of the T2PC protocol require us to
use a full TCTL language and to verify formulas with nested temporal modali-
ties which are not allowed in Rabbit. Moreover, Rabbit does not allow the direct
verification of bounded liveness properties of the form AG(φ ⇒ AF≤p ψ) which
are necessary for the verification of the T2PC protocol. We therefore reduce the
bounded liveness properties of the protocol into reachability properties and then
add extra monitor automata which interact with the actual model of the proto-
col in order to capture correctly the required properties. This in fact represents
an extra unnecessary overhead and a big disadvantage for the tool Rabbit. In
RED we can verify such properties directly. However, UPPAAL supports this
special case of nested properties by offering leads-to operator → and thus the
property AG(φ ⇒ AF≤p ψ) can be expressed by: (φ → (x ∧ c ≤ p) ψ), where x
is a clock and c is reset upon φ.

We scaled the model of the protocol until the tools could not verify the proto-
col properties, due to the state space problem. Note that the T2PC protocol uses
a huge number of discrete variables and huge number of clocks which increases



A Comparative Study of Decision Diagrams for Real-Time Model Checking 229

Table 1. Model checking runtimes (seconds) for T2PC protocol using Rabbit and RED
backward analysis

Backward analysis

Number of processes Model checker Specification

1 2 3 4

6 Rabbit 1.22 1.21 1.37 1.5

6 RED 10.88 12.9 11.26 9.57

9 Rabbit x x x x

9 RED 554 249 734 981

12 Rabbit x x x x

12 RED 2667 6135 6283 4339

Table 2. Model checking runtimes (seconds) for T2PC protocol using Rabbit and RED
forward analysis approach

Forward analysis

Number of processes Model checker Specification

1 2 3 4

6 Rabbit 160 160 161 163

6 RED 2.58 1.19 1.36 1.52

9 Rabbit x x x x

9 RED 69.7 26.9 29.5 31

12 Rabbit x x x x

12 RED 3088 884 939 943

as we increase the number of processes in the model. In Table 1 we give the
runtimes obtained in checking the protocol using Rabbit backward reachability
analysis and RED backward TCTL model-checking. RED could verify success-
fully the protocol up to 12 processes with 8 clocks, while Rabbit could verify only
the simplest cases of the protocol. In Table 2 we report the runtimes obtained
in testing the tools Rabbit and RED using forward reachability analysis. Opti-
mizations used in RED make it more scalable than Rabbit by several order of
magnitude.

In Table 3 we give the model-checking runtimes of the protocol using
UPPAAL’s on the-fly approach. UPPAAL could verify successfully the proto-
col up to 9 processes with 6 clocks. However, UPPAAL was a lot faster in cases
where it gave a result, but it is less scalable than RED. As we can see, the
DBM-based tool UPPAAL outperforms the CRD-based tool RED when consid-
ering small instances of the protocol with small number of clocks. However, when
considering instances involving larger numbers of processes and larger numbers
of clocks we find that RED outperforms UPPAAL where we could analyze the
protocol up to 12 processes in RED while we fail to do so in UPPAAL.



230 O. Al-Bataineh et al.

Table 3. Model checking runtimes (seconds) for T2PC protocol using UPPAAL on
the fly approach

On the fly approach

Number of processes Specification

1 2 3 4

6 0.01 0.001 0.002 0.003

9 4.4 5.5 10.3 8.84

12 x x x x

In Table 4 we summarize information about the time taken to do the modeling
and verification in each tool, the number of code line, the number of automata
used to model and verify the basic case of the T2PC protocol, and the avail-
able verification options in each tool. Note that the time spent to learn the
language of UPPAAL and then to verify the protocol is significantly shorter
than the time spent to learn and model the protocol in both RED and Rab-
bit since UPPAAL is a very user-friendly tool. It is interesting to mention that
the experience level of the authors about the three tools before conducting the
experiments was initially the same. It is worth mentioning also that in Rabbit
we use 9 automata: 6 automata to model the processes of the protocol and 3
extra monitor automata to capture bounded liveness properties (see specifica-
tions 2–4 in Sect. 4). On the other hand, we use only 6 automata to model and
verify the protocol in RED and UPPAAL since they allow us to verify directly
bounded liveness properties. In interesting to mention that in addition to the
GUI automata used in the UPPAAL’s model, we use also some extra simple func-
tions as shown in Figs. 1, 2 and 3, namely add queue(pid), rsc granted(pid),
and result(part vote). The implementation and of these functions are very
straightforward which requires only a few lines of code (about 35 lines).

Table 4. Modeling time and effort for the T2PC protocol in the Three tools

Tool Time spent # of code line # of automata Verification options

UPPAAL ≈ 18 h GUI automata plus 35 lines 6 Breadth, Depth, random On-the-fly

RED ≈ 45 h 85 6 Backward/Forward TCTL

Rabbit ≈ 52 h 110 9 Backward/Forward reachability

Now we turn to discuss the model checking runtimes obtained in testing the
three tools on the following two benchmarks. The models of the benchmarks
have been taken from the distributed installation package of each tool.

Token-Ring-FDDI Protocol. Fiber Distributed Data Interface (FDDI) [19] is a
high speed protocol for local networks based on token ring technology. We use
a simplified model of N -processes. One process models the ring, that hands the



A Comparative Study of Decision Diagrams for Real-Time Model Checking 231

token in one direction to N − 1 symmetric processes, that may hand back the
token in a synchronous (high-speed) fashion. The ring process owns a local clock
and every station owns three local clocks. This case study uses a huge number
of clocks and a huge number of synchronisation labels. Here again RED outper-
formed both UPPAAL and Rabbit since RED is the only tool that succeeded to
verify the protocol up to 16 senders. In fact the number of reachable locations in
the RED model does not explode with growing number of senders. This proves
again that the CRD-technology scales better with respect to number of clocks.

Table 5. Time for the computation of the reachability set of FDDI protocol

No. of senders 2 4 6 8 10 12 14 16

UPPAAL 0.01 0.03 0.16 1.42 18.2 280 4535 x

RED 0.02 0.09 0.26 0.61 1.18 3.8 3.6 8.9

Rabbit 0.04 0.25 0.99 4.20 11.7 29.9 x x

CSMA/CD Protocol. Carrier Sense Multiple Access with Collision Detection
(CSMS/CD) [27] is a protocol for communication on a broadcast network with a
multiple access medium. This case study uses a huge number of synchronisation
labels and discrete variables and small number of clocks. For this case study,
Rabbit outperformed both RED and UPPAAL since the BDD-based tool Rabbit
handles case studies with huge discrete variable much better than the CRD-based
tool RED and the DBM-based tool UPPAAL (Tables 5 and 6).

Table 6. Time for the computation of the reachability set of CSMA/CD protocol

No. of processes 2 4 6 8 10 12 14 16 32

UPPAAL 0.01 0.04 7.1 9.5 x x x x x

RED 0.05 0.27 1.25 7.88 51.2 518 x x x

Rabbit 0.02 0.08 0.25 0.79 1.5 2.8 14.6 65.8 3260

Several conclusions can be drawn from the above reported results. RED is
able to verify properties that are not expressible in UPPAAL and Rabbit and it
supports full TCTL language with fairness assumptions. RED also allows verify-
ing bounded liveness formulas that contain nested temporal modalities. On the
other hand, UPPAAL’s specification language supports fragment of TCTL and
Rabbit specification language is restricted to reachability formulas. We believe
that this limitation of the specification language of Rabbit is something that can
lift the usability of the tool in particular when considering systems with timing
constraints of the form AG(φ ⇒ AF≤p ψ).



232 O. Al-Bataineh et al.

Unlike UPPAAL, RED and Rabbit provide no graphical interface or simu-
lation facilities. Moreover, UPPAAL allows a very natural formalization of sys-
tems this is not, or less, possible in Rabbit or RED. In case the specification
fails, UPPAAL provides a counterexample and allows one to trace (simulate)
the counterexample state by state in a very intuitive way. RED also provides
this facility (it generates a counterexample when a specification fails) but in a
less intuitive way than UPPAAL. The CRD-based data structure implemented
in RED turns out to be an efficient data structure for handling case studies with
huge number of clocks since it scales better with respect to number of clocks.
The data structure BDD turns out to be efficient for handling case studies with
huge number of discrete variables but it is very sensitive to the scale of clock
constants in the model. While the DBM-based data structure implemented in
UPPAAL handles the complexity of timing constant magnitude very well, its
performance degrades rapidly when the number of clocks increases.

6 Conclusion

We have verified three timed distributed protocols (T2PC, FDDI, and
CSMA/CD) in the model checkers UPPAAL, Rabbit, and RED. The three model
checkers vary in how easy, or difficult, it is to formalise the protocol and its prop-
erties in the language of each model checker. In summary, to model and verify
real-time systems that have complex timing requirements, we recommend using
the tool RED as it supports a full TCTL language which allows to express a wide
variety of timed properties. For timed systems with complex modeling details, we
recommend using the tool UPPAAL as it has richer expressiveness in modeling
systems than Rabbit and RED. Since Rabbit supports modular modelling that
allows one to represent systems components in a hierarchical way, we recommend
using it when the system has components with different levels of hierarchy.

References

1. Al-Bataineh, O.I., Reynolds, M., French, T.: Finding minimum and maximum
termination time of timed automata models with cyclic behaviour. Theor. Comput.
Sci. 665, 87–104 (2017)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104, 2–34 (1993)

3. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In:
Proceedings of the 5th Annual Symposium on Logic in Computer Science, pp.
414–425 (1990)

4. Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)
5. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:

International School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems, SFM-RT 2004, pp. 200–236 (2004)

6. Atif, M.: Analysis and verification of two-phase commit and three-phase commit
protocols. In: Emerging Technologies ICET 2009, pp. 326–331 (2009)



A Comparative Study of Decision Diagrams for Real-Time Model Checking 233

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

8. Behrmann, G., Bouyer, P., Larsen, K.G., Radek, P.: Lower and upper bounds in
zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transf.
8, 204–215 (2006)

9. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48683-6 30

10. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

11. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading (1987)

12. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: a tool for BDD-based verification
of real-time systems. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol.
2725, pp. 122–125. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45069-6 13

13. Beyer, D., Noack, A.: Can decision diagrams overcome state space explosion in
real-time verification? In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003.
LNCS, vol. 2767, pp. 193–208. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39979-7 13

14. Bouyer, P.: Forward analysis of updatable timed automata. Formal Meth. Syst.
Des. 24, 281–320 (2004)

15. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35, 677–691 (1986)

16. Davidson, S., Lee, I., Wolfe, V.: A protocol for times atomic commitment. In:
Proceedings of 9th International Conference on Distributed Computing System
(1989)

17. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

18. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111, 394–406 (1992)

19. Jain, R.: FDDI Handbook: High-Speed Networking Using Fiber and Other Media.
Addison-Wesley Longman Publishing Co. Inc., Boston (1994)

20. Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: a mathe-
matical framework for modelling and analyzing real-time systems. In: Proceedings
of 24th IEEE International Real-Time Systems Symposium (RTSS 2003), pp. 166–
177 (2003)

21. Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structures and state-space reduction. In: Proceedings of the
18th IEEE Real-Time Systems Symposium, pp. 14–24 (1997)

22. Magee, J.: Analyzing synchronous distributed algorithms (2003)
23. Ober, I., Graf, S., Ober, I.: Validation of UML models via a mapping to commu-

nicating extended timed automata. In: Graf, S., Mounier, L. (eds.) SPIN 2004.
LNCS, vol. 2989, pp. 127–145. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24732-6 9

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/3-540-48683-6_30
https://doi.org/10.1007/3-540-48683-6_30
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-45069-6_13
https://doi.org/10.1007/978-3-540-45069-6_13
https://doi.org/10.1007/978-3-540-39979-7_13
https://doi.org/10.1007/978-3-540-39979-7_13
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-540-24732-6_9
https://doi.org/10.1007/978-3-540-24732-6_9


234 O. Al-Bataineh et al.

24. Ölveczky, P.C.: Formal modeling and analysis of a distributed database protocol
in Maude. In: Proceedings of the 2008 11th IEEE International Conference on
Computational Science and Engineering - Workshops, pp. 37–44 (2008)

25. Tripakis, S.: The analysis of timed systems in practice. Ph.D. thesis, Universite
Joseph Fourier, Grenoble, France (1998)

26. Wang, F.: Symbolic verification of complex real-time systems with clock-restriction
diagram. In: Proceedings of the IFIP TC6/WG6.1, pp. 235–250. Kluwer, B.V.
(2001)

27. Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools
Technol. Transfer 1, 123–133 (1997)



Lazy Reachability Checking for Timed
Automata with Discrete Variables

Tamás Tóth(B) and István Majzik

Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

{totht,majzik}@mit.bme.hu

Abstract. Systems and software with time dependent behavior are
often formally specified using timed automata. For practical real-time
systems, these specifications typically contain discrete data variables
with nontrivial data flow besides real-valued clock variables. In this
paper, we propose a lazy abstraction method for the location reacha-
bility problem of timed automata that can be used to efficiently control
the visibility of discrete variables occurring in such specifications, this
way alleviating state space explosion. The proposed abstraction refine-
ment strategy is based on interpolation for variable assignments and sym-
bolic backward search. We combine in a single algorithm our abstraction
method with known efficient lazy abstraction algorithms for the handling
of clock variables. Our experiments show that the proposed method per-
forms favorably when compared to other lazy methods, and is suitable
to significantly reduce the number of states generated during state space
exploration.

Keywords: Timed automata · Model checking
Reachability checking · Lazy abstraction
Visible variables abstraction · Zone abstraction · Interpolation

1 Introduction

Timed automata [1] is a widely used formalism for the modeling and verifica-
tion of systems and software with time-dependent behavior. In timed automata
models, erroneous or unsafe behavior (that is to be avoided during operation) is
often modeled by error locations. The location reachability problem deals with
the question whether a given error location is reachable from an initial state
along the transitions of the automaton.

As timed automata contain real-valued clock variables, to ensure performance
and termination, model checkers for timed automata apply abstraction over clock
variables. The standard solution involves performing a forward exploration in
the zone abstract domain [7], combined with extrapolation [3] parametrized by

T. Tóth—This work was partially supported by Gedeon Richter’s Talentum Foun-
dation (Gyömrői út 19-21, 1103 Budapest, Hungary).

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 235–254, 2018.
https://doi.org/10.1007/978-3-319-94111-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_14&domain=pdf
http://orcid.org/0000-0001-7176-1278
http://orcid.org/0000-0002-1184-2882


236 T. Tóth and I. Majzik

bounds appearing in guards, extracted by static analysis [2]. Other zone-based
methods propagate bounds lazily for all transitions [11] or along an infeasible
path [10], and perform efficient inclusion checking with respect to a non-convex
abstraction induced by the bounds [12]. Alternatively, some methods perform
lazy abstraction directly over the zone abstract domain [19,20]. However, in
the context of timed automata, methods rarely address the problem of abstrac-
tion for discrete data variables that often appear in specifications for practical
real-time systems, or do so by applying a fully SMT based approach, relying
on the efficiency of underlying decision procedures for the abstraction of both
continuous and discrete variables.

In our work, we address the location reachability problem of timed automata
with discrete variables by proposing an abstraction method that can be used
to lazily control the visibility of discrete variables occurring in such specifica-
tions. If the abstraction is too coarse to disable an infeasible transition, then we
propagate the pre-image of the transition backward using weakest precondition
computation, and use interpolation (defined for variable assignments) to extract
a set of variables that are sufficient to block the transition from the abstract
state. We use interpolation in a similar fashion to attempt to enforce coverage
of a newly discovered state with an already visited state when possible, this way
effectively pruning the search space. Our method does not rely on an interpo-
lating SMT solver, and can be freely combined with zone-based forward search
(eager or lazy) methods for efficient handling of clock variables.

We evaluated the proposed abstraction method by combining it with lazy
refinement techniques for continuous variables. Results show that in terms of
execution time our method performs similarly to lazy methods without abstrac-
tion of discrete variables, but generates a smaller (in cases significantly smaller)
state space.

Comparison to Related Work. Lazy abstraction [9], a form of
counterexample-guided abstraction refinement [6], is an approach widely used for
reachability checking, and in particular for model checking software. It consists
of building an abstract reachability graph on-the fly, representing an abstraction
of the system, and refining a part of the tree in case a spurious counterexample
is found. For timed automata, a lazy abstraction approach based on non-convex
LU -abstraction and on-the-fly propagation of bounds has been proposed [10].
A significant difference of this algorithm compared to usual lazy abstraction
algorithms is that it builds an abstract reachability graph that preserves exact
reachability information (a so-called adaptive simulation graph or ASG). As a
consequence it is able to apply refinement as soon as the abstraction admits a
transition disabled in the concrete system. Similar abstraction techniques based
on building an ASG include difference bound constraint abstraction [20] and
the zone interpolation-based technique of [19]. In our work, we follow the same
approach, but for discrete variables instead of clock variables. The proposed
abstraction method is orthogonal to the aforementioned techniques and can be
freely combined with any of them.



Lazy Reachability Checking for Timed Automata with Discrete Variables 237

Symbolic handling of integer variables for timed automata is often supported
by unbounded fully symbolic SMT-based approaches. Symbolic backward search
techniques like [5,17] are based on the computation and satisfiability checking
of pre-images. In [13], reachability checking for timed automata is addressed by
solving Horn clauses. In the IC3-based technique of [15], the problem of discrete
variables is not addressed directly, but the possibility of generalization over dis-
crete variables is (to some extent) inherent to the technique. In [14], also based
on IC3, generalization of counterexamples to induction is addressed for both dis-
crete and clock variables by zone-based pre-image computation. In our work, we
propose an abstraction method over discrete variables that is completely theory
agnostic, and does not rely on an SMT-solver.

In [8], an abstraction refinement algorithm is proposed for timed automata
that handles clock and discrete variables in a uniform way. There, given a set
of visible variables, an abstracted timed automaton is derived from the original
by removing all assignments to abstracted variables, and by replacing all con-
straints by the strongest constraint that is implied and that does not contain
abstracted variables. In case the model checker finds an abstract counterexam-
ple, a linear test automaton is constructed for the path, which is then composed
with the original system to check whether the counterexample is spurious. If the
final location of the test automaton is unreachable, a set of relevant variables is
extracted from the disabled transition that will be included in the next iteration
of the abstraction refinement loop. In our work, we use a similar approach, but
instead of building abstractions globally on the system level and then calling
to a model checker for both model checking and counterexample analysis, we
use a more integrated, lazy abstraction method, where the abstraction is built
on-the-fly, and refinement is performed locally in the state space where more
precision is necessary.

Interpolation for variable assignments was first described in [4]. There, the
interpolant is computed for a prefix and a suffix of a constraint sequence, and
an inductive sequence of interpolants is computed by propagating interpolants
forward using the abstract post-image operator. In our work, we define interpo-
lation for a variable assignment and a formula, and compute inductive sequences
of interpolants by propagating interpolants backward using weakest precondition
computation. In our context, this enables us to consider a suffix of an infeasible
path, instead of the whole path, for computing inductive sequences of inter-
polants.

Organization of the Paper. The rest of the paper is organized as follows. In
Sect. 2, we define the notations used throughout the paper, and present the the-
oretical background of our work. In Sect. 3 we propose a lazy reachability check-
ing algorithm based on the visibility of discrete variables for timed automata.
Section 4 describes experiments performed on the proposed algorithm. Finally,
conclusions are given in Sect. 5.



238 T. Tóth and I. Majzik

2 Background and Notations

Let V be a set of data variables over Z, and X a set of clock variables over R≥0. A
data constraint over V is a well-formed formula ϕ ∈ DC (V ) built from variables
in V and arbitrary function and predicate symbols interpreted over Z. A clock
constraint over X is a formula ϕ ∈ CC (X) that is a conjunction of atoms of the
form x ≺ c and xi − xj ≺ c where x, xi, xj ∈ X, c ∈ Z and ≺ ∈ {<,≤}. A data
update over V is an assignment u ∈ DU (V ) of the form v := t where v ∈ V and
t is a term built from variables in V and function symbols interpreted over Z.
A clock update (clock reset) over X is an assignment u ∈ CU (X) of the form
x := n where x ∈ X and n ∈ Z. The set of variables appearing in a formula ϕ is
denoted by vars(ϕ).

A valuation over a finite set of variables is a function that maps variables to
their respective domains. A data valuation is a valuation over a set of data vari-
ables V , that is, a function ν : V → Z. Similarly, a clock valuation is a valuation
over a set of clock variables X, that is, a function η : X → R≥0. We will denote
by Eval(Q) the set of valuations over a set of variables Q.

Throughout the paper we will allow partial functions as valuations. We
extend valuations to range over terms and formulas the usual way, with the
possibility that the value of a term is undefined over a valuation. We will denote
by σ |= ϕ iff formula ϕ is satisfied under valuation σ. Note that in the context
of partial valuations σ |= ¬ϕ is a strictly stronger statement than σ �|= ϕ (e.g.
{x ←� 1} �|= y

.= 1 but it is not the case that {x ←� 1} |= y � .= 1).
We will denote by def(σ) the domain of definition of a valuation, that is,

def(σ) = {q | σ(q) �= ⊥}, and by form(σ) the formula characterizing the valua-
tion, that is, form(σ) =

∧
q∈def(σ) q

.= σ(q). Valuation 	 is the unique valuation
such that def(	) = ∅. We denote by σ � σ′ iff σ(q) = σ′(q) for all q ∈ def(σ′).
Note that � is a partial order, as expected. Moreover if σ � σ′ and σ′ |= ϕ then
σ |= ϕ, and σ � σ′ iff σ |= form(σ′).

We will denote by ⊗ the partial function over valuations that is defined as

(σ ⊗ σ′)(q) =

⎧
⎪⎨

⎪⎩

σ(q) if q ∈ def(σ)
σ′(q) if q ∈ def(σ′)
⊥ otherwise

if σ(q) = σ′(q) for all q ∈ def(σ) ∩ def(σ′), and is undefined otherwise.
Given a valuation σ ∈ Eval(Q) and an assignment q := t, we denote

by σ{q := t} the valuation σ′ ∈ Eval(Q ∪ {q}) such that σ′(q) = σ(t) and
σ′(q′) = σ(q′) for all q′ �= q. For a sequence of updates μ and a set of updates U
we define

σ{μ}U =

⎧
⎪⎨

⎪⎩

σ if μ = ε

σ{u}{μ′}U if μ = u · μ′ and u ∈ U

σ{μ′}U if μ = u · μ′ and u /∈ U



Lazy Reachability Checking for Timed Automata with Discrete Variables 239

2.1 Timed Automata

In the area of real-time verification, timed automata [1] is the most prominent
formalism. To make the specification of practical systems more convenient, the
traditional formalism is often extended with various syntactic and semantic con-
structs, in particular with the handling of discrete variables. In the following, we
describe such an extension.

Definition 1 (Syntax). Syntactically, a timed automaton with discrete vari-
ables is a tuple A = (L, V,X, T, �0) where

– L is a finite set of locations,
– V is a finite set of data variables of integer type,
– X is a finite set of clock variables,
– T ⊆ L × P(C) × U∗ × L is a finite set of transitions with sets C and U

defined as C = DC (V ) ∪ CC (X) and U = DU (V ) ∪ CU (X), where for a
transition (�,G, μ, �′), the set G ⊆ C is a set of guards and μ ∈ U∗ is a
sequence of updates,

– �0 ∈ L is the initial location.

Throughout the paper, we will refer to a timed automaton with discrete
variables simply as a timed automaton.

A state of A is a triple (�, ν, η) where � ∈ L, ν ∈ Eval(V ) and η ∈ Eval(X).
We will denote by ν0 the unique total function ν0 : V → {0} and by η0 the unique
total function η0 : X → {0}.

Definition 2 (Semantics). The operational semantics of a timed automaton
is given by a labeled transition system with initial state (�0, ν0, η0) and two kinds
of transitions:

– Delay: (�, ν, η) δ−→ (�, ν, η′) for some real number δ ≥ 0 where η′ = η + δ with
(η + δ)(x) = η(x) + δ for all x ∈ X;

– Action: (�, ν, η) t−→ (�′, ν′, η′) for some transition t = (�,G, μ, �′) where we
have ν′ = dpostt(ν) and η′ = cpostt(η) with partial functions

dpostt(ν) =

{
⊥ if ν |= ¬g for some g ∈ G ∩ DC (V )
ν{μ}DU (V ) otherwise

cpostt(η) =

{
⊥ if η |= ¬g for some g ∈ G ∩ CC (X )
η{μ}CU (X) otherwise

Here, dpostt(ν) denotes the strongest (discrete) postcondition of ν with
respect to transition t. Note that for any t ∈ T , function dpostt is monotonic
with respect to �, as expected. Moreover, we define the weakest (discrete) pre-
condition wpt(ϕ) as the formula such that ν |= wpt(ϕ) iff dpostt(ν) |= ϕ for all
ν and ϕ, with respect to t.



240 T. Tóth and I. Majzik

A run of a timed automaton is a sequence of states from the initial state
along the transition relation

(�0, ν0, η0)
α1−→ (�1, ν1, η1)

α2−→ . . .
αn−−→ (�n, νn, ηn)

where αi ∈ T ∪ R≥0 for all 0 ≤ i ≤ n. A location � ∈ L is reachable iff there
exists a run such that �n = �.

2.2 Symbolic Semantics

As the concrete semantics of a timed automaton is infinite due to real valued
clock variables, model checkers are often based on a symbolic semantics defined
in terms of zones. A zone is the solution set of a clock constraint ϕ ∈ CC (X).
For sets of clock valuations Z and Z ′, we will denote by Z � Z ′ iff Z ⊆ Z ′.
Moreover, if Z is a zone and t ∈ T , then

– ⊥ = ∅,
– Z0 = {η | η = η0 + δ for some δ ≥ 0} and
– zpostt(Z) =

{
η′ | (·, ·, η) t−→ s

δ−→ (·, ·, η′) for some η ∈ Z and δ ≥ 0
}

are also zones. Here, zpostt(Z) represents the strongest postcondition of Z with
respect to a transition t of a timed automaton. As defined above, function zpostt
is monotonic with respect to � for any t ∈ T .

Definition 3 (Symbolic semantics). The symbolic semantics of a timed
automaton is given by a labeled transition system with states of the form (�, ν, Z),
with initial state (�0, ν0, Z0), and for t = (�, ·, ·, �′) with transitions of the form
(�, ν, Z) t=⇒ (�′, dpostt(ν), zpostt(Z)).

We will say that a transition t is enabled from a symbolic state (�, ν, Z)
iff (�, ν, Z) t=⇒ (�′, ν′, Z ′) for some �′, ν′ and Z ′ �= ⊥, otherwise it is disabled.
Note that a transition t = (�, ·, ·, ·) is disabled from a symbolic state (�, ν, Z) iff
dpostt(ν) = ⊥ or zpostt(Z) = ⊥.

Definition 4 (Symbolic run). A symbolic run of a timed automaton is a
sequence (�0, ν0, Z0)

t1=⇒ (�1, ν1, Z1)
t2=⇒ . . .

tn=⇒ (�n, νn, Zn) where Zn �= ⊥.

Proposition 1. For a timed automaton, a location � ∈ L is reachable iff there
exists a symbolic run with �n = �.

3 Algorithm for Lazy Reachability Checking

In this section, we present our algorithm for lazy reachability checking of timed
automata with discrete variables. During the description, we will focus on the
handling of discrete variables, but formulate the algorithm so that it is straight-
forward to combine the method with a corresponding (eager or lazy) method for
the handling of clock variables.



Lazy Reachability Checking for Timed Automata with Discrete Variables 241

3.1 Adaptive Simulation Graph

The central structure of the algorithm is an abstract simulation graph. The
presented formulation is a generalization of the definition presented in [19] for
the handling of discrete variables and the possibility of using various methods
for the handling of clock variables.

Definition 5 (Unwinding). An unwinding of a timed automaton (L, V,X, T,
�0) is a tuple U = (N,E, n0,Mn,Me, 
) where

– (N,E) is a directed tree rooted at node n0 ∈ N ,
– Mn : N → L is the node labeling,
– Me : E → T is the edge labeling and
– 
 ⊆ N × N is the covering relation.

For an unwinding we require that the following properties hold:

– Mn(n0) = �0,
– for each edge (n, n′) ∈ E the transition Me(n, n′) = (�, ·, ·, �′) is such that

Mn(n) = � and Mn(n′) = �′,
– for all nodes n and n′ such that n 
 n′ it holds that Mn(n) = Mn(n′).

The purpose of the covering relation 
 is to mark that a node of the search tree
has been pruned due to another node that admits all runs that are possible from
the covered node. We define the following shorthand notations for convenience:
�n = Mn(n) and tn,n′ = Me(n, n′).

Definition 6 (Adaptive simulation graph). An adaptive simulation graph
(ASG) for a timed automaton A is a tuple G = (U,ψν , ψν̂ , ψZ , ψẐ) where

– U is an unwinding of A,
– ψν , ψν̂ : N → Eval(V ) are labelings of nodes by data valuations and
– ψZ , ψẐ : N → P(Eval(X)) are labelings of nodes by sets of clock valuations.

We will use the following shorthand notations: νn = ψν(n), ν̂n = ψν̂(n),
Zn = ψZ(n) and Ẑn = ψẐ(n).

A node n is expanded iff for all transitions t ∈ T such that t = (�, ·, ·, ·) and
�n = �, either t is disabled from (�n, νn, Zn), or n has a successor for t. A node
n is covered iff n 
 n′ for some node n′. It is excluded iff it is covered or it has
an excluded parent. A node is complete iff it is either expanded or excluded. A
node n is �-safe iff �n �= �.

For an ASG to be useful for reachability checking, we have to introduce
restrictions on the labeling. Therefore while building the ASG we will ensure
that (�n, νn, Zn) represents an exact set of reachable states for n (thus with Zn

being a zone), and that νn � ν̂n and Zn � Ẑn. We formalize this notion in the
next definition.

Definition 7 (Well-labeled node). A node n of an ASG G for a timed
automaton A is well-labeled iff the following conditions hold:



242 T. Tóth and I. Majzik

– (initiation) if n = n0, then
(a) νn = ν0 and Zn = Z0

(b) ν0 � ν̂n and Z0 � Ẑn

– (consecution) if n �= n0, then for its parent m and the transition t = tm,n

(a) νn = dpostt(νm) and Zn = zpostt(Zm)
(b) dpostt(ν̂m) � ν̂n and zpostt(Ẑm) � Ẑn

– (coverage) if n 
 n′ for some node n′, then ν̂n � ν̂n′ and Ẑn � Ẑn′ and n′ is
not excluded

– (simulation) if n is expanded, then any transition disabled from (�n, νn, Zn)
is also disabled from (�n, ν̂n, Ẑn).

The above definitions for nodes can be extended to ASGs. An ASG is com-
plete, �-safe or well-labeled iff all its nodes are complete, �-safe or well-labeled,
respectively. The main challenge for the construction of a well-labeled ASG as
defined above is how the labelings ψν̂ and ψẐ are computed. A well-labeled ASG
preserves reachability information, which is expressed by the following proposi-
tion.

Proposition 2. Let G be a complete, well-labeled ASG for a timed automaton
A. Then A has a symbolic run (�0, ν0, Z0)

t1=⇒ (�1, ν1, Z1)
t2=⇒ . . .

tk=⇒ (�k, νk, Zk)
iff G has a non-excluded node n such that �k = �n.

Proof. The right-to-left direction is a consequence of the subsequent Lemma 1.
and the converse follows from Lemma 2.

��
Lemma 1. Let G be a well-labeled ASG for a timed automaton A. If G has a
node n then A has a symbolic run (�0, ν0, Z0)

t1=⇒ (�1, ν1, Z1)
t2=⇒ . . .

tk=⇒ (�k, νk, Zk)
such that �k = �n.

Proof. The statement is a direct consequence of conditions initiation(a) and
consecution(a).

��
Lemma 2. Let G be a complete, well-labeled ASG for a timed automaton A. If
A has a symbolic run (�0, ν0, Z0)

t1=⇒ (�1, ν1, Z1)
t2=⇒ . . .

tk=⇒ (�k, νk, Zk) then G has
a non-excluded node n such that �k = �n and νk � ν̂n and Zk � Ẑn.

Proof. We prove the statement by induction on the length k of the symbolic
run. If k = 0, then � = �0 and ν = ν0 and Z = Z0, thus n0 is a suitable witness
by condition initiation(b). Suppose the statement holds for runs of length at
most k − 1. Hence there exists a non-excluded node m such that �k−1 = �m and
νk−1 � ν̂m and Zk−1 � Ẑm.

Clearly the transition tk is not disabled from (�m, ν̂m, Ẑm), as then by condi-
tion simulation it would be also disabled from (�k−1, νk−1, Zk−1), which contra-
dicts our assumption. As m is complete and not excluded, it is expanded, and
thus has a successor n for transition tk with �n = �k. By condition consecution(b),



Lazy Reachability Checking for Timed Automata with Discrete Variables 243

we have dposttk(ν̂m) � ν̂n. As νk−1 � ν̂m and dpostt is monotonic w.r.t. � , we
have νk � ν̂n. We can obtain Zk � Ẑn symmetrically.

Thus if n is not covered, then it is a suitable witness for the statement.
Otherwise there exists a node n′ such that n 
 n′. By condition coverage, we
know that ν̂n � ν̂n′ and Ẑn � Ẑn′ and n′ is not excluded, thus n′ is a suitable
witness.

��

3.2 Reachability Algorithm

The pseudocode of the algorithm is shown in Algorithm1. The algorithm gets
as input a timed automaton A and a distinguished error location �e ∈ L. The
goal of the algorithm is to decide whether �e is reachable for A. To this end
the algorithm gradually builds an ASG for A and continually maintains its well-
labeledness. Upon termination, it either witnesses reachability of �e by a node n
such that �n = �e, which by Lemma 1 corresponds to a symbolic run of A to �e,
or produces a closed, well-labeled, �e-safe ASG that proves unreachability of �e

by Lemma 2.
The main data structures of the algorithm are the ASG G and sets passed

and waiting . The set passed is used to store nodes that are expanded and
waiting stores nodes that are incomplete. The algorithm consists of subproce-
dures close, expand and refine, and of procedures zcover and zblock. Pro-
cedure zcover and zblock serve for abstraction refinement over clock variables.
These procedures can be soundly implemented in various ways [3,10–12,19,20],
and we assume such an implementation. Procedure close attempts to cover a
node by some other node. Procedure expand expands a node by creating the
successors of a node for all non-blocked transitions for the given location. Pro-
cedure refine (see in Sect. 3.3) can be used to ensure for a node n and some
formula ϕ that if νn |= ϕ then ν̂n |= ϕ as well. Both close and expand main-
tain well-labeledness by calls to refine. In particular, close calls to refine

in order to enforce condition coverage, and expand calls to refine to establish
condition simulation.

The algorithm consists of a single loop in line 8 that employs the following
strategy. The loop consumes nodes from waiting one by one. If waiting becomes
empty, then A is deemed safe. Otherwise, a node n is removed from waiting . If
the node represents an error location, then A is deemed unsafe. Otherwise, in
order to avoid unnecessary expansion of the node, the algorithm tries to cover
it by a call to close. If there are no suitable candidates for coverage, then the
algorithm establishes completeness of the node by expanding it using expand,
which puts it in passed and puts all its successors in waiting .

We show that explore is correct with respect to the annotations (proce-
dure contracts) in Algorithm1. As, given a suitable refinement method for clock
variables, termination of the algorithm is trivial, we focus on partial correctness.

Proposition 3. Procedure explore is partially correct: if explore(A, �e) ter-
minates, then the result is safe iff �e is unreachable for A.



244 T. Tóth and I. Majzik

Algorithm 1. Reachability algorithm for timed automata with discrete variables
1: ensure ρ = safe iff �e is unreachable for A
2: function explore(A, �e) returns ρ ∈ {safe,unsafe}
3: let n0 be a node with �n0 = �0, νn0 = ν0, ν̂n0 = �, Zn0 = Z0 and Ẑn0 = �
4: N ← {n0}, E ← ∅, � ← ∅
5: let G be an ASG for A over N , E and �
6:
7: passed ← ∅, waiting ← {n0}
8: while n ∈ waiting for some n do
9: waiting ← waiting \ {n}

10: if �n = �e then
11: return unsafe

12: else
13: close(n)
14: if n is not covered then
15: expand(n)

16: return safe

17: procedure close(n)
18: for all n′ ∈ passed such that �n = �n′ and νn � ν̂n′ and Zn � Ẑn′ do
19: refine(n, form(ν̂n′))
20: zcover(n, n′)
21: if ν̂n � ν̂n′ and Ẑn � Ẑn′ then
22: � ← � ∪ {(n, n′)}
23: return

24: ensure n is expanded
25: procedure expand(n)
26: for all t ∈ T such that t = (�, ·, ·, �′) with � = �n do
27: let ν′ = dpostt(νn)
28: let Z′ = zpostt(Zn)
29: if ν′ = ⊥ then
30: refine(n,wpt(⊥))
31: else if Z′ = ⊥ then
32: zblock(n, t)
33: else
34: let n′ be a new node with �n′ = �′, νn′ = ν′, Zn′ = Z′, ν̂n′ = �, Ẑn′ = �
35: let (n, n′) be a new edge with tn,n′ = t
36: N ← N ∪ {n′}, E ← E ∪ {(n, n′)}
37: waiting ← waiting ∪ {n′}
38: passed ← passed ∪ {n}

39: require νn |= ϕ
40: ensure ν̂n |= ϕ
41: procedure refine(n, ϕ)

42: require Zn � Ẑn′

43: ensure Ẑn � old(Ẑn′)
44: procedure zcover(n, n′)

45: require zpostt(Z) = ⊥
46: ensure zpostt(Ẑ) = ⊥
47: procedure zblock(n, t)



Lazy Reachability Checking for Timed Automata with Discrete Variables 245

Proof (sketch). Let covered = {n ∈ N | n is covered}. It is easy to verify that
the algorithm maintains the following invariants:

– N = passed ∪ waiting ∪ covered ,
– passed is a set of non-excluded, expanded, �e-safe nodes,
– waiting is a set of non-excluded, non-expanded nodes,
– covered is a set of covered, non-expanded, �e-safe nodes.

It is easy to see that under the above assumptions sets passed , waiting and
covered form a partition of N . Assuming that G is well-labeled, partial cor-
rectness of the algorithm is then a direct consequence. At line 11 a node is
encountered that is not �e-safe, thus by Lemma 1 there is a symbolic run of A to
�e. Conversely, at line 16 the set waiting is empty, so G is complete and �e-safe,
and as a consequence of Lemma 2 the location �e is indeed unreachable for A.

What remains to show is that the algorithm maintains well-labeledness. We
assume that procedures zcover and zblock and procedure refine maintain
well-labeledness (this later statement we prove to hold in Sect. 3.3). Initially node
n0 is well-labeled as it satisfies initiation. Procedure close trivially maintains
well-labeledness, as it just possibly adds a covering edge for two nodes such that
condition coverage is not violated. For procedure expand, if a given transition
t is enabled, then a node is created that satisfies consecution. Otherwise the
corresponding refinement procedure is called, ensuring that simulation holds for
the given transition. In particular, if t is blocked due to dpostt(νn) = ⊥, we have
νn |= wpt(⊥), and thus can call refine to update ν̂n so that ν̂n |= wpt(⊥),
ensuring dpostt(ν̂n) |= ⊥ and effectively disabling t from (·, ν̂n, ·). ��

3.3 Abstraction Refinement

To maintain well-labeledness, the algorithm relies on procedure refine that
performs abstraction refinement by safely adjusting abstract data valuations
labeling nodes of the ASG. The pseudocode of the refinement algorithm is shown
in Algorithm 2.

Informally, refine works as follows. Given a node n and a formula ϕ such
that νn |= ϕ holds, a weakening νI of νn is computed such that νI |= ϕ by calling
to procedure interpolate, which simply removes variables from the domain of
definition that are not necessary for satisfying the formula. Then all covering
edges are dropped that would violate condition coverage after strengthening. To
maintain condition consecution(b), procedure refine is then recursively called
for the predecessor m of n. The computed interpolant is then used to strengthen
the current labeling by including variables occurring in the interpolant in the
current abstraction. We show that refine maintains well-labeledness and is
correct with respect to the annotations in Algorithm2.

Proposition 4. Procedure refine is totally correct: if νn |= ϕ, then
refine(n, ϕ) terminates and ensures ν̂n |= ϕ. Moreover, it maintains well-
labeledness.



246 T. Tóth and I. Majzik

Algorithm 2. Refinement of visible variables
1: require νn |= ϕ
2: ensure ν̂n |= ϕ
3: procedure refine(n, ϕ)
4: if ν̂n |= ϕ then
5: return
6: else
7: let νI = interpolate(νn, ϕ)
8: for all m such that m � n and ν̂m 	� νI do
9: � ← � \ (m, n)

10: waiting ← waiting ∪ {m}
11: if (m, n) ∈ E for some m then
12: let t = tm,n

13: refine(m,wpt(form(νI)))

14: ν̂n ← ν̂n ⊗ νI

15:
16: require νA |= ϕB

17: ensure νA � νI

18: ensure νI |= ϕB

19: ensure def(νI) ⊆ def(νA) ∩ vars(ϕB)
20: function interpolate(νA, ϕB) returns νI

21: νI ← νA|vars(ϕB)

22: let Q = def(νA) ∩ vars(ϕB)
23: for all v ∈ Q do
24: let ν′

I = νI |def(νI )\{v}
25: if ν′

I |= ϕB then
26: νI ← ν′

I

27: return νI

Proof. Termination of the procedure is trivial, so we focus on partial correctness
and the preservation of well-labeledness.

Function interpolate has no side effect, it thus trivially maintains well-
labeledness. Moreover, it is easy to see that it satisfies its contract, as it simply
drops variables not necessary to ensure satisfiability of ϕB from the domain of
definition of νA.

In procedure refine, if ν̂n |= ϕ then no refinement is needed, and the con-
tract is trivially satisfied. Otherwise, the interpolant νI is computed by function
interpolate. As νn � ν̂n by well-labeledness and νn � νI by the precondition,
we know that ν̂n ⊗ νI , and thus the new value of ν̂n, is defined. As ν̂n ⊗ νI � νI

and νI |= ϕ, we have ν̂n ⊗ νI |= ϕ, which ensures the postcondition.
Next we show that well-labeledness is maintained. Condition simulation is

trivially ensured, as if ν̂n |= ¬g for some guard g, then ν̂n ⊗ νI |= ¬g as well.
After the loop we have ν̂m � νI for all m such that m 
 n. Moreover, ν̂m � ν̂n

by well-labeledness. Thus ν̂m � ν̂n ⊗ νI , which ensures condition coverage. If
n has no parent then condition initiation(b) is trivially maintained. Otherwise
we have νn � νI , thus dpostt(νm) |= form(νI), from which νm |= wpt(form(νI))



Lazy Reachability Checking for Timed Automata with Discrete Variables 247

follows. Hence refine can be called to ensure ν̂m |= wpt(form(νI)), and thus
dpostt(ν̂m) � νI . Moreover, dpostt(ν̂m) � ν̂n by well-labeledness. It follows that
dpostt(ν̂m) � ν̂n ⊗ νI , which ensures condition consecution(b). ��

3.4 Example

In this subsection, we give an example that demonstrates how the algorithm
described above lazily controls the visibility of discrete variables of the system
during construction of the abstraction.

Figure 1 shows automaton Ak, a modified version of the examples given
in [10,16] where clock variables are replaced by discrete variables and a compo-
nent is added that nondeterministically increments all variables. The resulting
automaton is the parallel composition of four components, and has 2k discrete
variables, namely a1, a2, . . . , ak and b1, b2, . . . , bk.

�0a �1a
. . . �ka

t1a : a1 := 0 t2a : a2 := 0 tka : ak := 0

�0b �1b
. . . �kb

t1b : b1 := 0 t2b : b2 := 0 tkb : bk := 0

�0c �1c
. . . �kc

t1c : [a1
.= b1

.= 1] t2c : [a2
.= b2

.= 1] tkc : [ak
.= bk

.= 1]

�d
td : a1 := a1 + 1 ; a2 := a2 + 1 ; . . . ; ak := ak + 1 ;

b1 := b1 + 1 ; b2 := b2 + 1 ; . . . ; bk := bk + 1

Fig. 1. Automaton Ak

As an example, we are going to consider A1, the simplest version of the
automaton. For simplicity, we are going to omit the indexes in names whenever
possible. Figure 2 shows part of the ASG produced by the algorithm. Here, nor-
mal edges represent edges of the unwinding (elements of the relation E), dashed
edges represent covering edges (elements of the relation 
), and dotted edges
represent edges of the unwinding that lead to subtrees omitted from the figure.
For each node n, the set of visible variables def(ν̂n) is shown.

The algorithm starts by instantiating the root node n0 with ν̂n0 = 	. As
transition tc is disabled from νn0 but not from ν̂n0 , the set of visible variables
has to be refined in n0. Hence during refinement, a will be included in the set of
visible variables, ensuring ν̂n0 = {a ←� 0} |= (a � .= 1 ∨ b � .= 1) = wptc(⊥). For the
same reason, a will become visible when expanding n1 and n2. For any other node
n however, tc is either not an outgoing transition of location �n, or is enabled from
νn, thus no refinement will be triggered during expansion, resulting in abstrac-
tion ν̂n = 	. This enables coverage between nodes that assign different concrete
values to the variables. E.g. covering edges (n5, n4) and (n10, n9) are only pos-
sible because b is not visible in either nodes (as νn4 = νn9 = {a ←� 1, b ←� 1}



248 T. Tóth and I. Majzik

n0

{a}

n1

{a}

n2

{a}
n3

∅

n4

∅
n5

∅
n6

∅
n7

∅

n9

∅
n8

∅
n10

∅
n11

∅

n12

∅

ta tb td

tb td

td tb tc td

td tc tb td

td

Fig. 2. ASG of A1

and νn5 = νn10 = {a ←� 1, b ←� 0}). More importantly, the algorithm is able to
quickly cover nodes that result from the second firing of td along a path, thus
the resulting ASG remains finite. Even if the number of times td can be taken is
bounded by some number N , an algorithm that handles discrete variables explic-
itly would generate a significantly larger state space depending on N . Similarly,
as k increases, the advantage of the abstraction based method compared to the
explicit handling of variables becomes increasingly notable.

4 Evaluation

We implemented a prototype version of our algorithm in the open source model
checking framework Theta [18]. In order to enable abstraction refinement for
clock variables, we implemented a variant of the lazy abstraction method of [10]
based on LU -bounds, and the method described in [19] based on interpolation for
zones (with refinement strategy seq). These strategies are then combined both
with the explicit handling of discrete variables, resulting in algorithms similar
to that of the original papers [10,19], and with the abstraction and refinement
method proposed in this paper. The algorithms are evaluated for both breadth-
first and depth-first search orders. This results in 8 algorithm configurations by
combining the above mentioned alternatives:

– explicit (E) or abstraction-based (A) handling of discrete variables,
– lazy a�LU abstraction (L) or interpolation (I) for clock variables and
– breadth-first (B) or depth-first (D) search order.



Lazy Reachability Checking for Timed Automata with Discrete Variables 249

For the configurations that handle discrete variables explicitly, we partitioned
the set of nodes based on the value of the data valuation, this way saving the
O(n) cost of checking inclusion for valuations. This optimization also signifi-
cantly reduces the number of nodes for which coverage is checked and attempted
during close. Apart from this and the difference in refinement strategies, the
implementation of the configurations is shared.

As inputs we considered 15 timed automata models in Uppaal 4.0 XTA
format that contain integer variables. For each model, the number of discrete
variables/number of clock variables is given in parentheses.

– bocdp (26/3), bocdpf (26/3): models of the Bang & Olufsen Collision Detec-
tion Protocol obtained from the Uppaal

1 benchmark set
– brp (9/7): a model of the Bounded Retransmission Protocol
– c1 (12/3), c2 (14/3), c3 (15/3), c4 (17/3): models of a real-time mutual exclu-

sion protocol obtained from the Mcta
2 benchmark set

– m1 (11/4), m2 (13/4), m3 (13/4), m4 (15/4), n1 (11/7), n2 (13/7), n3 (13/7),
n4 (15/7): industrial cases studies obtained from the Mcta benchmark set

We performed our measurements on a machine running Windows 10 with
a 2.6 GHz dual core CPU and 8 GB of RAM. We evaluated the algorithm con-
figurations for both execution time (Table 1) and the number of nodes in the
resulting ASG (Table 2). The timeout (denoted by “—” in the tables) was set
to 120 s. In the tables the best values among both the explicit and abstraction
based configurations are emphasized with bold font for each model. The exe-
cution time is the average of 10 runs, obtained from 12 deterministic runs by
removing the slowest and the fastest one.

As can be seen in Table 1, in general, the performance of the fastest con-
figurations of the two categories (explicit and abstraction based configurations)
with respect to execution time is balanced (there are no more difference than
100%). For models c1–3, the explicit configuration was faster, but the abso-
lute difference in execution time is not significant. For the other Mcta models,
the fastest configurations perform similarly with respect to execution time. For
model bocdpf the abstraction-based variant was almost twice as fast, whereas
the opposite is true for models bocdp and brp. In total, the abstraction based
variant is faster than the corresponding configuration without abstraction in one
fourth of the cases, and configuration AID is faster than a given configuration
without abstraction in two thirds of the cases.

When comparing the methods based on the number of ASG nodes generated,
the difference is more significant, as it can be seen in Table 2. As expected,
the abstraction-based method produces a smaller ASG than the corresponding
configuration without abstraction in most (97%) of the cases, and the state
space generated by configuration AID is smaller in all cases. On average, the
reduction in size in favor of the abstraction based handling of discrete variables
is around 50%. In the worst case (model c1), the reduced size is around 80%,
1 https://www.it.uu.se/research/group/darts/uppaal/benchmarks.
2 http://gki.informatik.uni-freiburg.de/tools/mcta.

https://www.it.uu.se/research/group/darts/uppaal/benchmarks
http://gki.informatik.uni-freiburg.de/tools/mcta


250 T. Tóth and I. Majzik

Table 1. Execution time in seconds per model and configuration

EIB ELB EID ELD AIB ALB AID ALD

bocdp 11.2 4.8 8.7 7.0 11.7 11.1 8.7 7.9

bocdpf 23.7 14.3 20.0 16.4 14.9 13.4 7.7 7.5

brp 12.0 5.4 20.9 9.2 12.2 9.5 14.3 16.3

c1 2.0 1.3 1.6 1.8 3.6 4.0 2.9 3.2

c2 5.3 3.2 3.9 4.7 7.1 8.5 5.0 6.8

c3 6.2 4.5 5.0 4.9 8.5 9.1 6.9 7.6

c4 71.5 53.9 43.2 52.4 59.8 77.2 41.0 49.6

m1 2.0 1.8 0.9 1.5 2.5 4.6 1.1 1.7

m2 4.6 4.7 2.3 4.3 6.5 12.4 2.1 4.2

m3 5.2 4.7 2.4 4.6 7.2 13.0 2.6 4.7

m4 17.4 23.1 6.3 16.0 27.4 68.5 6.1 —

n1 2.4 2.2 1.2 1.6 2.8 4.4 1.2 1.6

n2 6.2 5.9 3.0 4.3 7.0 13.9 2.6 4.7

n3 6.1 6.0 3.4 4.9 7.7 14.5 2.8 4.8

n4 23.9 31.5 7.5 27.8 30.5 78.6 5.6 18.0

Table 2. Number of nodes in the ASG per model and configuration

EIB ELB EID ELD AIB ALB AID ALD

bocdp 94801 74052 84136 96133 32639 34107 29846 32520

bocdpf 212225 172865 182085 196003 38492 39801 26544 29491

brp 72117 96624 114198 159249 39702 68979 52049 104552

c1 20967 18590 18612 23030 17155 20825 14973 18155

c2 67433 67325 57260 70198 44711 58351 39644 47725

c3 86285 85695 76122 94887 50617 62215 46594 55473

c4 876266 866890 737271 917527 339560 418619 318470 384214

m1 8541 19217 3650 14720 4394 13078 1941 4868

m2 31932 73667 15610 62879 16246 39773 5728 15797

m3 38128 74514 15966 73879 18463 42574 6707 17783

m4 145378 297343 63523 250221 66406 146804 20519 —

n1 7510 18660 3915 13132 4222 11802 1942 4222

n2 32038 79741 15534 54954 15819 42937 5932 17695

n3 32799 83982 16602 68010 17014 44741 6547 17903

n4 142053 325485 60120 342408 64934 155729 17568 70762



Lazy Reachability Checking for Timed Automata with Discrete Variables 251

and in the best case (model bocdpf) it is 15%, i.e. the introduction of abstraction
has significant gain.

To characterize the fastest configurations, Fig. 3 depicts the execution time
(first column in blue) and number of nodes generated (second column in red)
for the fastest configuration with abstraction relative to the performance of the
fastest configuration without abstraction. Similarly, Fig. 4 depicts the relative
performance when considering the configurations generating the least number of
nodes. According to Fig. 3, if the configuration with abstraction performs well
in execution time, then it also performs well in the number of nodes generated.
Conversely, according to Fig. 4, if significant reduction is achieved in the size of
the state space, then the algorithm with abstraction also tends to perform well
in terms of execution time (except for model bocdp). Moreover, as can be seen
on both charts, within a group of models (c, m and n), the relative performance
of the abstraction method tends to increase with increasing model complexity.

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

Fig. 3. Relative execution time and
number of nodes generated of fastest
configurations (Color figure online)

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

Fig. 4. Relative execution time and
number of nodes generated of config-
urations with the smallest ASG

Moreover, for the models considered, configuration AID (Abstraction of dis-
crete variables, Interpolation-based abstraction of clock variables, Depth-first
search order) approximates the best configuration well for both execution time
and ASG size, as this configuration tends to have a good performance on the
more complex models. This is depicted on Figs. 5 and 6, where we compared con-
figuration AID with the E-configurations in terms of execution time and size of
the generated state space, respectively. In Fig. 5, we denote by BEST the virtual
best configuration, calculated from the best results of all other configurations.
This data is omitted in Fig. 6, as BEST greatly overlaps with configuration AID
in terms of states generated. Moreover, to focus on the significant differences,
we only depicted data for the hardest six models (denoted as 10 . . . 15 on the
horizontal axis) for each configuration.



252 T. Tóth and I. Majzik

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

10 11 12 13 14 15

EIB ELB EID ELD AID BEST

Fig. 5. Time to solve the hardest
model instances (seconds)

0

200000

400000

600000

800000

1000000

10 11 12 13 14 15

EIB ELB EID ELD AID

Fig. 6. Number of nodes generated for
the hardest model instances

5 Conclusions

In this paper we proposed a lazy algorithm for the location reachability problem
of timed automata with discrete variables. The method is based on controlling
the visibility of discrete variables by using interpolation for valuations of vari-
ables. We demonstrated with experiments that our abstraction and refinement
strategy, combined with lazy methods for the abstraction of continuous clock
variables, can achieve significant reduction in the size of the generated state
space during search, typically with low or no overhead in execution time, and in
cases even with an additional speedup.

Future Work. According to the method described in this paper, refinement is
triggered upon encountering a disabled transition. In the future, we intend to
experiment with counterexample-guided refinement for both the abstraction of
discrete and continuous variables. In addition, we plan to experiment with dif-
ferent abstract domains (e.g. intervals), and investigate alternative refinement
strategies for the discrete variables of timed systems. In particular we are inter-
ested in the performance for timed automata of the forward interpolation tech-
nique described in [4]. Moreover, we plan to explore more sophisticated strategies
for finding covering states, as this can potentially yield considerable speedups
for our method. Furthermore, although we evaluated our abstraction method in
the context of timed systems, the technique itself can be applied in a more gen-
eral context, and we plan to investigate its uses for model checking imperative
programs.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 18

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18


Lazy Reachability Checking for Timed Automata with Discrete Variables 253

3. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 25

4. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1 11

5. Carioni, A., Ghilardi, S., Ranise, S.: MCMT in the land of parametrized timed
automata. In: 6th International Verification Workshop (VERIFY-2010), pp. 47–64
(2010)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

7. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

8. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement
for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 10

9. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Princi-
ples of Programming Languages, pp. 58–70. ACM (2002). https://doi.org/10.1145/
503272.503279

10. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 71

11. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approx-
imations for efficient analysis of timed automata. In: Foundations of Software
Technology and Theoretical Computer Science. LIPIcs, vol. 13, pp. 78–89 (2011).
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.78

12. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. In: Logic in Computer Science, pp. 375–384. IEEE (2012). https://
doi.org/10.1109/LICS.2012.48

13. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating
timed systems. In: Horn Clauses for Verification and Synthesis. EPTCS, vol. 169,
pp. 39–52. Open Publishing Association (2014). https://doi.org/10.4204/EPTCS.
169.6

14. Isenberg, T., Wehrheim, H.: Timed automata verification via IC3 with zones. In:
Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 203–218. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11737-9 14

15. Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for
timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS,
vol. 7595, pp. 171–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33365-1 13

16. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock
explosion problem of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 296–311. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24730-2 24

https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.78
https://doi.org/10.1109/LICS.2012.48
https://doi.org/10.1109/LICS.2012.48
https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.1007/978-3-319-11737-9_14
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1007/978-3-540-24730-2_24
https://doi.org/10.1007/978-3-540-24730-2_24


254 T. Tóth and I. Majzik

17. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 616–632. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 50

18. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework
for abstraction refinement-based model checking. In: Formal Methods in Com-
puter Aided Design, pp. 176–179. FMCAD Inc. (2017). https://doi.org/10.23919/
FMCAD.2017.8102257

19. Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using inter-
polants. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp.
264–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3 15

20. Wang, W., Jiao, L.: Difference bound constraint abstraction for timed automata
reachability checking. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS,
vol. 9039, pp. 146–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19195-9 10

https://doi.org/10.1007/978-3-642-22110-1_50
https://doi.org/10.1007/978-3-642-22110-1_50
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.1007/978-3-319-19195-9_10
https://doi.org/10.1007/978-3-319-19195-9_10


From SysML to Model Checkers via
Model Transformation

Martin Kölbl(B), Stefan Leue(B), and Hargurbir Singh

University of Konstanz, Konstanz, Germany
{martin.koelbl,stefan.leue,Hargurbir.Singh}@uni.kn

Abstract. In this paper we present an automated translation from the
systems engineering modeling language SysML into the input languages
of the NuSMV, Prism and Spin model checkers. A special focus of this
work is the semantics of the communication mechanisms used in a syn-
tactic fragment of SysML, in particular synchronous and asynchronous,
broadcast and buffered communication. In order to achieve generality of
our approach, which supports establishing the consistency of the transla-
tion as well as enabling easy adaption between different source and target
languages, we use a model based transformation approach. In particular,
we use the ATLAS Transformation Language (ATL) framework that is
nicely integrated in the Eclipse Modeling Framework (EMF) and in the
Meta-Object Facility. We illustrate the application of this model trans-
formation approach using an airbag system as a case study.

1 Introduction

The use of model-based software and systems engineering in the design of crit-
ical systems implies the need to prove high dependability properties, including
correctness, of these designs since human life or substantial damage to the envi-
ronment is at stake. While a vast array of formal analysis techniques, such as
model and causality checking [1,2], have been developed to analyze model based
designs for compliance with these properties, there is a substantial gap between
the syntax and the semantics of model-based engineering languages and the
input formats that the formal analysis tools accept. In particular, each model
checking tool typically provides its own input language, designed to provide opti-
mal abstractions enabling efficient model checking. Even if some model checking
tools aim to provide open interfaces, e.g., LTSmin [3], there is no commonly
accepted input format for models that would be processed by a large number
of model checking tools. Also, none of the available model checkers can directly
process the OMG System Modelling Language (SysML) [4,5] which is widely
used in industrial practice to model system architectures. SysML is supported
by a large number of commercial and open source modeling tools (e.g., Rhap-
sody [6], Enterprise Architect [7], Papyrus [8].) SysML allows for modeling the
structure and behavior of systems, including inter-object communication. If used
in a design process, the architecture models need to be manually transformed

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 255–274, 2018.
https://doi.org/10.1007/978-3-319-94111-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_15&domain=pdf


256 M. Kölbl et al.

into the input language of the chosen model checker. This is human intensive, and
therefore extremely expensive, and furthermore an error prone activity. With an
automated transformation from SysML towards different model checkers, a sys-
tem can easily be checked for faults. When a model checking algorithm detects
a fault in a model, it returns a trace to the faulty state in the form of a coun-
terexample. Each model checking tool, however, returns a counterexample using
a different syntax. Interpreting the counterexample in order to correct the fault
in the model requires intimate knowledge of this syntax.

We propose an automated, rule-based approach to transforming SysML mod-
els to models specified in the input languages of various model checking tools
that we consider. In particular, we will define transformations for the Spin [9],
Prism [10] and NuSMV2 [11] model checkers. Spin is an explicit-state temporal
logic model checker frequently used in the analysis of concurrent software sys-
tems. Prism is a model checker used for the analysis of probabilistic systems.
NuSMV2 is a symbolic temporal logic model checker frequently applied to hard-
ware systems analysis. Automated model transformation facilitates maintaining
consistency by following defined transformation mappings. Notice that since the
input languages of model checkers typically have very specific semantics, only
subsets of the SysML language will be transformed in our approach. We base
our translation on the following precursory research.

– The safety analysis of SysML models implemented in the QuantUM [12] app-
roach and tool includes a transformation of SysML models to the input lan-
guages of the Prism and Spin model checkers. Using causality checking, Quan-
tUM computes causes for faults of a system and presents the computed causes
by fault trees to the user.

– In [13], an approach is described which transforms SysML to NuSMV2.
The transformation is based on an object-oriented view and first transforms
the SysML model to a general model checker model using the support of
JDOM [14]. Afterwards, the general model is translated to NuSMV2 code
using a non-rule based approach.

We exploit, extend and generalize these ideas as follows.

– First, our approach reuses the idea of an object-oriented meta-model and gen-
eralizes it by using model-to-model transformation (MMT) technology. The
previous translation approaches implemented model transformation by using
JDOM or by direct Java programming. A concern with these non rule based
translation approaches is that it is difficult to ensure consistency of the trans-
lation. They also lack flexibility and concept reuse when changing from one
target modeling language to another. We propose to use an MMT approach,
which ensures consistency of the input, output and transformation model
against meta-models during the model transformation, and allows for flexible
re-definition of translation rules when considering a different target modeling
language. As an MMT framework we use the Atlas Transformation Language
(ATL) [15], and the Xpand framework [16] for the model-to-code transforma-
tion, both integrated into the Eclipse Modeling Framework (EMF) [17].



From SysML to Model Checkers via Model Transformation 257

– Second, the works cited above transform states, transitions and nested states
along with guards, actions and asynchronous communication. Our approach
extends the forms of communication that the previous approaches support by
also considering SysML synchronous and asynchronous point-to-point com-
munication, asynchronous broadcast, and buffered communication. Although
asynchronous communication can be used to emulate synchronous communi-
cation and broadcasting, we want to take advantage of the expressiveness of
different communication paradigms provided by SysML and enable the user
to model the system using the envisioned logical syntax. The usage of dif-
ferent communication mechanisms also helps us produce more efficient code
in the target model checker input languages, contributing to addressing the
state space explosion problem [1].

– Finally, our approach enables a user to understand a given counterexample by
a transformation from the counterexample syntax of the used model checker
to a SysML sequence diagram.

We illustrate the application of our approach by a case study that applies the
proposed transformation to an airbag model used in previous transformations
[13].

Structure of the Paper. In Sect. 2 we provide a brief overview of SysML, the con-
sidered model checking input languages, ATL and Xpand. In Sect. 3 we describe
our transformation approach, in particular the necessary transformation steps
from SysML to the model checker input languages, and from counterexamples to
Sequence Diagrams. In Sect. 4 we illustrate the transformations by a case study.
We conclude in Sect. 5.

Related Work. A number of publications related to the transformation of SysML
to different analysis tools are available in the literature. For an overview we
refer to [13]. In [18] a transformation is presented which transforms SysML to a
hardware description language using MMT. Similar to our work, that work uses
ATL and meta models, but the target model is fundamentally different from
our target model. We are not aware of any work that translates SysML using
automated model transformation technology into any of the input languages of
the model checkers that we consider.

2 Preliminaries

SysML Model Elements. The purpose of the SysML standard is to define a gen-
eral modeling language for system engineering [4]. SysML uses a subset of the
Unified Modeling Language (UML) [19], but also adds diagrams to the UML.
In the remainder of the paper we will only refer to SysML in the understanding
that many of the syntax and semantics definitions can be found in the UML
specification. In the current paper, we transform only a syntactic subset of the
full SysML language. In SysML, a system model is given by block definition



258 M. Kölbl et al.

diagrams (bdd), depicting the structure of the architecture, internal block def-
inition diagrams (ibd), representing the internal structure of blocks, and state
chart diagrams (stm), specifying the behavior of the respective block they are
associated with. A bdd describes the overall structure of a system. It comprises
blocks which represent classes, with associations between blocks depicted by
straight lines. An ibd is a refinement of a bdd and encompasses the same struc-
tural elements as a bdd. A block that possesses a behavior description is called
an active block. Using an stm, the behavior of a block is described by states
and transitions. States represent a location of control, and transitions between
states representing state changing activities in the system. In particular, a state
transition may be labeled by a trigger, indicating a wait condition for an event
to occur, a guard controlling the activation of the transition, and effects which
are being executed when the transition is taken. In the context of this paper,
we only consider activities and opaque behavior as transition effects. An opaque
behavior is defined as an arbitrary text that is not specified in terms of its syntax
and semantics in the SysML standard. In SysML, an activity is defined as being
represented by a complex activity diagram. In this paper we only consider activ-
ities that consist of a single send action. The stms of all blocks in the system
are executed concurrently. Stms of one block can interact with stms of other
blocks using shared variable as well as message passing based communication.
Stms follow the hierarchical state machine idea and can contain substates that
represent other hierarchical state machines. We call such states composite states.

Execution of SysML Models. When interpreting the behavior of an SysML model
operationally, for instance by a model checker, we need to comply with the
run-to-completion principle in the semantics of executing stms. As we now
illustrate, this principle leads to ambiguous interpretations of SysML model
behavior. In an SysML model, a state can be active, which means that the
current location of control is in this state. If a composite state is active, this
means that control rests in one of its sub states as well as in the composite state
itself, which means that a set of states can be active at any given point in time.
The set of active states is called a state configuration. A state may be labeled by
entry and exit behaviors which are executed when the state is entered or exited,
respectively, as well as by behavior executed while the system is in that state.
The stm maintains an event pool that contains events that are available to trig-
ger transitions. A state configuration is called stable if all entry behaviors of the
current state configuration are completed and no more transitions are enabled.
The SysML specification defines an execution environment that selects an event
to be processed from the event pool. The precise mechanism how this selection is
performed is not specified. The run-to-completion principle means that when
an stm is in a stable state configuration, the execution environment of the SysML
model selects an event to trigger a transition, the effects of the selected tran-
sition will be executed and the system returns to a stable state. Applying this
principle to a loop in an stm that consists exclusively of transitions that have
enabled guards but no triggers implies that the stm enters a livelock and never
reaches a stable state configuration again. This is not consistent with a further



From SysML to Model Checkers via Model Transformation 259

specification in the SysML standard which states that once the execution of an
stm reaches a state, the stm remains in the state until a transition is triggered
by an event from the event pool, or an external asynchronous message termi-
nates the execution. In order to resolve this inconsistency, we assume that in
the context of this paper each transition without an explicitly specified trigger
will find an implicitly defined trigger event in the event pool that allows it to
perform the next transition. Under this assumption a cycle of transitions reaches
a stable configuration in each state of the cycle.

Communication in SysML. The SysML standard defines a large number of types
of communication, including messages. In this paper we only consider communi-
cation between the stms by messages without parameters and return values. We
use the syntax options of SysML to express different forms of communication.
A message event in SysML can be instantiated as a call or a signal event. The
behavior implied by a message event depends on this instantiation. If the mes-
sage event is of type signal event, then the communication is asynchronous and
the stm continues after sending a message without blocking. If the message event
is of the type of a synchronous call event, then the communication is synchronous
and the stm waits until the called operation has finished. Notice that in accor-
dance with the SysML specification, a transition with a synchronous call only
completes the current execution step when the called operation has completed.
In this paper we do not consider asynchronous call events for which the invoking
stm only waits until the operation is called. The type of a send action depends
on the kind of message event that is to be sent. A send signal action sends a
signal event. A call operation action sends a call event. A send action sends a
message to a reception if both refer to the same message event. In the models we
consider in this paper the sending stm is assumed always to be different from the
receiving stm. Signal events and call events are received when executing a trigger
in a transition. If several triggers can receive an event, then the SysML standard
suggests that the trigger from an active substate has priority in execution over
the trigger of the composite state. If several transitions have the same priority,
then the transition to be executed is selected non-deterministically.

Special forms of asynchronous communication are broadcast and buffered
communication:

– SysML provides broadcast communication using a send action of type broad-
cast signal action. SysML defines the receivers of a broadcast as all potentially
available targets and mentions that the exact set of targets is not defined. To
represent broadcast in this paper we assume that the broadcast is directed to
every block that has an stm with a matching receiving trigger on one of its
transitions.

– SysML supports the modeling of buffered communication by adding First-In-
First-Out (FIFO) queues to the sending actions. Since the target of our work
is the use of finite state verification technology to analyze SysML models we
restrict the capacity of the queues to be finite. If no queue length is specified
in the SysML model we assume a default queue size of one message. According



260 M. Kölbl et al.

to SysML specification, in case of a full queue the message sent by a send
signal action will be lost. This is a consequence of the fact that a send signal
action just sends a message but does not consider any reception of the signal
event.

Properties in SysML. Since the objective of this paper is to use model checking
technology to verify properties against SysML models we need to consider how
to specify the desired type of properties in SysML. We express a specification in
SysML by using invariants. An invariant is an expression that before and after
each execution step has to evaluate to true and consists of a composition of
Boolean condition about states and variable values inside of a block. Invariants
can be specified using the Object Constraint Language (OCL) [20] which is a
higher order logic formalism defined to specify logical constraints on the SysML.
As a property specification we add an OCL invariant to a model by adding
an OCL formula expressing the property to the topmost element of the model,
called the root. An invariant can refer to other invariants in the other blocks of
the model and use those in order to check a combination of states or variable
values belonging to different blocks. We restrict the OCL formula representing
the desired property to be a propositional formula φ, where the propositions in
φ refer to variable values and states being active or not. The model checkers
NuSMV2, Prism and Spin are capable of verifying such invariant properties, for
instance by translating them to the Linear Time Temporal Logic (LTL) [21]
formula �φ and performing LTL model checking using this property on the
model.

SysML Sequence Diagrams. A SysML sequence diagram [4] is an interaction
diagram and depicts the message flow between actors and blocks of the system.
The diagram consists of several Lifelines which model concurrent processes.
Behaviors like activities and send actions of a process can be added to a lifeline by
a behavior execution specification. A behavior execution specification is depicted
by a rectangle on the lifeline of the executing process. Lifelines are arranged
next to each other and along each line, the order of the events in each of the
depicted actors and blocks is from top to bottom. A message is depicted by
arrows from a sender to a receiver process. Asynchronous message are depicted
with an arrow and synchronous messages are depicted with a filled arrow.

The NuSMV2 Modeling Language. NuSMV2 is a symbolic model checker which
is used for the verification of synchronous and asynchronous finite state sys-
tems [11]. NuSMV2 can perform finite state model checking for LTL specifica-
tions. In this section, we introduce the parts of the NuSMV2 input language
which are relevant for our approach. A short example of NuSMV2 code is given
in Listing 1.1.



From SysML to Model Checkers via Model Transformation 261

MODULE main ( events )
VAR

s t a t e : {run , undetected } ;
ASSIGN

i n i t ( s t a t e ) := run ;
next ( s t a t e ) :=

case
s t a t e = run & events != ECU_error : undetected ;
TRUE: s t a t e ;

e sac ;
Listing 1.1. NuSMV2 Example

An asynchronous model consists of several concurrent processes. In NuSMV2,
each concurrent process is defined by the keyword MODULE. Each MODULE con-
sists of two sections. In the section VAR the variables are declared. Section ASSIGN
contains variable assignments. The keyword init declares the initial value of a
variable. The NuSMV2 model specifies a transition system. Variable values can
be changed in the next clauses which describe how the value of a variable changes
in the course of a state transition. In the example, the statement next(state)
changes to the value of the variable undetected if the guards state = run and
events != ECU_error evaluate to true. The TRUE:state clause is executed if
the guards are false, which means that the state remains unchanged. All possible
variable changes of a single process are done at once, but only one process at
a time. NuSMV2 allows the declaration of variables as an enumeration of non
reserved strings as value range. The MODULE called main can define global
variables and other MODULES. NuSMV2 has no special syntax or semantic
definition for the declaration of communication channels.

The Promela Modeling Language. Promela is the input language of the explicit
state model checker Spin. It combines a fragment of the syntax of the C pro-
gramming language with guarded commands and specific communication prim-
itives [9].
i n t p roce s s1_sta t e s = 0 ;
chan channel1 = [ 0 ] o f { bool } ;
chan channel2 = [ 1 ] o f { bool } ;
proctype proce s s1 {
do
: : p roce s s1_sta t e s == 0 −> proce s s1_sta t e s = 1 ; channel1 ! t rue ;
: : p roce s s1_sta t e s == 1 −> channel2 ? t rue ; p roce s s1_sta t e s = 0 ;
od ;

Listing 1.2. Promela example

Concurrent processes in Promela are defined as proctypes, as illustrated in
Listing 1.2. Variables are declared with a type and can either be defined locally
inside a proctype, or globally. Computation steps from different proctypes are
arbitrarily interleaved. Sequences of Promela statements included in an atomic
statement will not be interleaved by statements in concurrent proctypes. Promela



262 M. Kölbl et al.

provides keywords for the definition of channels as well as the sending and receiv-
ing of messages. As shown in the example, if the process1 is in state 0 then it
can send a message to channel1 and if the process is in state 1 it can receive a
message from channel2. Channels are defined with the keyword chan, indicat-
ing a type and a capacity of the channel. A channel is defined as synchronous
if the size is zero as in the example with channel1, or asynchronous with a
non-zero positive size as with channel2. A synchronous message can only be
sent by a sender if another process is ready to receive the message. The synchro-
nization statement of a channel breaks the atomicity of an atomic statement at
the point of sending the message and goes on with the receiving statement. For
asynchronous communication in SysML we use a asynchronous First-In-First-
Out (FIFO) channel of Spin. If the channel is full we instruct Spin to lose the
message and proceed.

The Prism Modeling Language. The model checker Prism allows for the model
checking of a probabilistic timed variant of CTL relative to discrete or continuous
time finite state Markov chain models. SysML has language elements that allow
to add probabilities and stochastic rates to the model. We currently do not
interpret these SysML elements and assume all probabilities to have a rate of 1.

A Prism code sample is presented in Listing 1.3. Concurrent processes in
Prism are defined by the keyword module. Variables can be defined locally by
a name, type, initial value and range. Transitions can have a synchronization
event name inside of the brackets [...], a guard, a probability and several
actions. If different processes have a transition labeled with the same synchro-
nization event, then these transitions can only be executed synchronously. All
other transitions are taken sequentially in an arbitrary sequence. The update of
a variable is indicated using the frequently encountered “prime” notation. For
instance, in the course of the transition1 transition in Listing 1.3 the variable
done is assigned the new value true. There is no explicit syntax in Prism to
define a communication channel.

module proce s s1
s t a t e s : [ 0 . . 1 ] i n i t 0 ;
done : bool i n i t f a l s e ;
[ t r a n s i t i o n 1 ] ( done = f a l s e ) −> 0.01 : ( done ’= true ) ;

endmodule
Listing 1.3. Prism example

The Atlas Transformation Language (ATL). ATL is a domain specific transfor-
mation language and provides a framework for the rule-based model-to-model
transformation of XMI [22] based models. ATL addresses two important issues
in model transformation. First, it checks the syntactic correctness of the input
model and hence avoids an ill formed input model to lead to an ill formed output
model. Second, it supports the assurance of correctness and unambiguity of the
transformation rules for complex model transformations. ATL addresses these



From SysML to Model Checkers via Model Transformation 263

problems by exploiting the idea of meta-models for the purpose of model trans-
formation. A meta-model is a special model representing the model elements of
the modeling language used [23]. For instance, it specifies rules that determine
what the correct structure of a SysML model is, and what its admissible elements
are. ATL allows a declarative description of transformation rules by the use of
meta-models. Transformation rules can refer to the elements in the source and
target model. This leads to a more dependable model transformation than a non
MMT based approach since the complexities entailed by the selection of source
elements and the application of rules is handled automatically by ATL [15].

The structure of an ATL transformation process is depicted in Fig. 1. ATL
parses a source model MA in accordance with a source meta-model MMA and
ensures that a source model conforms to its source meta-model or recognizes
the source model as ill defined input model. Then the ATL code mma2mmb.atl
describes how a source model is converted to a target model which conforms to
a target meta-model MMB. The ATL code itself has to conform to the ATL meta-
model ATL. To ensure correctness of the transformation, all meta-models have
to conform to the standard meta-meta-model Meta Object Facility (MOF) [15]
proposed by the OMG. ATL has its own syntax, but also inherits a subset of
Java and OCL syntax. OCL operations provide a common way to work with
collections, for instance the forall operator that can be used to iterate over a
collection. Transformation rules are described in the ATL code as a set of map-
pings between source and target patterns with imperative operations performed
on the source elements. Each element of the source model matches at most to
one transformation rule.

An example for an ATL rule E2E is given in Listing 1.4. The rule refers to
elements of the meta-models MMa and MMb. In the rule, we describe the transfor-
mation from a source element of type EnumerationLiteral to a target element
of type StringEnumeration where the rule transfers the information from the
attributes name and id. The source pattern contains a conditional statement
which restricts the matching to source elements whose name starts with an A.
r u l e E2E{from s : MMa! Enumerat ionLitera l ( s . name . startsWith ( "A" ) )

to t : MMb! StringEnumeration (name <− s . name , ID <− s . ID)}

Listing 1.4. ATL example

There are three types of ATL rules:

1. Matched rules. These are the basic rules which will be matched against the
source elements. The rule name must be unique and contain a source and a
target pattern. The example in Listing 1.4 is a matched rule.

2. Lazy rules. This type of rule is only called through other rules. It is usually
used to create child elements and helps in traversing the XMI model.

3. Called rules. These rules behaves similar to lazy rules but don’t contain any
source pattern. They can be called at the entry and exit of the transformation
execution. Called rules are used to create new elements in the output model
for which no source elements exist.



264 M. Kölbl et al.

Fig. 1. Overview of ATL transformation [15]

Xpand is a framework supporting the model-to-text transformation for the gen-
eration of text files for domain specific languages (DSLs). We use Xpand here to
generate code of the model checker input languages based on the XMI produced
by the ATL model transformation. To do so, we need a source model, a source
meta-model and the Xpand code which is executed to create the output text file,
representing the model checker input code. For the source meta-model in Xpand,
we reuse the target meta-model of ATL. The Xpand code for a transformation
is called a template, for an example see Listing 1.5. In a template, we define the
structure of the target text file. Xpand specific code is written between the signs
« and ». Any text outside of these characters is considered part of the target
output file syntax and is written directly to the target file.
«IMPORT MMb»
«DEFINE main FOR Model−»
«FILE f i l ename +". txt "−»
s t a t e s = {«EXPAND subs ta t e FOREACH t h i s . s t a t e s SEPARATOR ’ , ’ −»}
«DEFINE subs ta t e FOR State−»« t h i s . name−»«ENDDEFINE»
«ENDFILE»
«ENDDEFINE»

Listing 1.5. XPAND example

The Xpand code example in Listing 1.5 first checks whether the input model
conforms to a meta-model MMb. The Xpand code starts inside the «DEFINE»
statement main by creating a file and writing the text “states =” to the file.
Afterwards the «EXPAND» statement substates iterates over a comma separated
list states of states. For each state of the list the «DEFINE» statement with the
same name as the EXPAND statement is called with a element of type State. The
called «DEFINE» statement writes the name of the current state into the file.

3 Model Transformation

Model Transformation Approach. Our approach consists of two transformations.
First, we transform a SysML model into the input language of the considered
model checkers. Second, if a model checker identifies a counterexample to the



From SysML to Model Checkers via Model Transformation 265

Fig. 2. Structure of the transformation

property that we are interested in, we translate this counterexample into a
SysML sequence diagram. The SysML models that we wish to analyze are edited
using the Papyrus editor and saved in XMI format. We then use ATL to parse
the XMI model of Papyrus and transform the model to an Intermediate Model,
and finally transform this model to the different model checking languages using
Xpand. An overview of the model transformation approach is depicted in Fig. 2.
ATL parses the input Papyrus Model and checks if the contained model con-
forms to the UML 2.5.0 meta-model of Eclipse. Afterwards, ATL transforms the
model into an Intermediate Model. As a target meta-model we use the one
defined as intermediate meta-model in [13]. We use the intermediate meta-
model in order to ensure that the intermediate model contains all necessary infor-
mation, for example stms, states, transitions, guard, etc. After the generation
of the intermediate model and using the specific templates of the model check-
ers, Xpand translates the elements of the intermediate model into the Target
Model. The Target Model contains the model and the property in the syntax of
the currently considered model checker. The support for further model checkers
can be added by using additional Xpand templates.

Property Generation Rules. As explained before, we transform a property defined
as a state invariant in SysML to an LTL expression in the syntax of the consid-
ered model checker. ATL parses the state invariant included in the SysML model
and adds it to the Intermediate Model. Xpand then transforms the property
from the Intermediate Model to the property used by the currently considered
model checker. While the transformation of the SysML model is independent of
the property we wish to check, we currently only support the transformation of
OCL specified invariant properties.

State and Transition Transformation Rules. We shortly sum the basic trans-
formation rules from SysML to a model checker model that we adopt from our
precursory work, [12,13]. We only support nested states in stm diagrams and not
referenced stms. Each stm defines a concurrent process in the respective model
checking input language. We flatten nested states by encoding each state in the
model by a unique name. The unique name is the combination of the names
of all nesting states of the current state and the name of the state itself. Spin
directly uses state names and can change the current state by a goto statement
to the next state. In NuSMV2 and Prism, the current state of an stm is stored



266 M. Kölbl et al.

by a variable with a name of the stm extended with “_states” for Prism and in
the variable named state in NuSMV2. In NuSMV, the variable is of type enu-
meration and stores the current state name. In Prism, the state variable stores
a unique number for each state of a block. A model transition can change the
current state by changing the value of the state variable. A model transition is
only enabled if the source state is the current state of the stm. We add an extra
guard, which enables a transition if the current state of the stm is the source state
of the transition, to each transition. If the current state is a substate and has
a composite state, then the transitions of the composite state are also enabled.
Our transformation flattens the state hierarchy and hence, a transition that was
enabled in the composite state is no longer enabled when entering a substate.
As a consequence we enable all those disabled transitions in the composite state
again by copying them to the substate. The translation of guards and effects
of transitions is straightforward. Entry and exit behavior of a model state are
added during the model transformation as effects to the corresponding transi-
tion in the intermediate model. An effect of a transition can be an activity or
opaque behavior. We use an activity with a single action to represent the sending
of a message event, and an opaque behavior in OCL format to characterize the
update of a variable using a logical formula. In the context of this paper, we only
allow a single effect for each transition. This ensures consistency of the generated
model checking input code among the different model checkers that we support
since it avoids problems ensued by the different execution order semantics that
these model checkers assume. In particular, just like SysML, Spin executes effects
of a transition one after another in a sequential sequence while the Prism and
NuSMV models that we generate execute all effects of taken transitions in one
atomic step. With only one effect on a transition the model checkers do not
deviate from the restricted SysML behavior.

Messages in Promela. Synchronous and asynchronous point-to-point commu-
nication messages are first class citizens in the Promela language. They are
introduced in the language by declaring synchronous or asynchronous channels,
and listing certain message names as being valid message names along these
channels. We use the language constructs that Promela provides in order to
define synchronous and asynchronous buffered communication. A transition with
a synchronous call is executed at once or not at all since we clasp the guard and
effects of a transition in Promela by an atomic statement. Sequences of Promela
statements inside an atomic statement are not interleaved by other concurrent
statements. However, with a synchronous message, the atomic statement of the
sender will break and execute the atomic statement of the receiver. Since in our
modeling the sending transition can have only one action as an effect, all effects
in the synchronization are executed in the correct sequence. In order to emulate
asynchronous broadcast, we create an asynchronous channel for each receiver
and send a message to each one of them. Since we need to send all messages at
once, we enclose the sending actions to these channels by an atomic statement.



From SysML to Model Checkers via Model Transformation 267

Messages in NuSMV2. There is no native syntax for messages in NuSMV2. In
order to emulate synchronous communication we add the guard conditions for
the receive transition in the receiving process to the guard condition of the send
transition in the sender, thus ensuring that the sending can only be executed
when the receiver is ready to receive. Furthermore, in order to ensure that in the
course of one transition in the NuSMV2 model only one synchronous communica-
tion occurs the sending process sets a global variable to a value that is unique for
this communication. This variable deactivates all transitions except the receiving
transition. When executing the receiving of the message, the receiver resets the
global variable. In order to emulate an asynchronous broadcast communication
we create an array with one element corresponding to one receiving stm, for
every receiving stm. When broadcasting the message, each entry of the array
is set to true at once. Since the semantics of this broadcast is asynchronous in
nature, there is no requirement to suspend the execution of any of the other
modules. To emulate buffered communication, we use an array of variables that
behaves like a FIFO queue. The length of the array is equal to the capacity of
the sender queue as defined in the SySML model. Each entry of the array rep-
resents a position in the queue. As a consequence, multiple sending of messages
are stored in the queue until the queue is full and then the extra messages are
discarded. This persists until the receiver processes previously sent messages.

Messages in Prism. There is no native syntax for messages in the Prism input
language either. Similar to the case of NuSMV2, we emulate the channels by
using variables, but with slight differences. In order to emulate synchronous
communication we take advantage of the implicit synchronization that Prism
performs for several transitions synchronization event names, for which we use
the name of the call event and the sender process. With this name encoding,
we distinguish between several possible senders sending the same call event to
the same receiver. In order to emulate asynchronous communication, like for
NuSMV2 we create a variable. Prism does not permit the use of global variables
together with label based transition synchronization. We therefore use a local
variable inside the sending stm in order to coordinate the asynchronous sending
and receiving. When sending the message, this variable is set to true. Since
the variable is local, it can only be reset in the sending process. We generate an
auxiliary transition in the sender which is independent of the remaining behavior
of the sender. It is synchronized with the receive transition in the receiving
process via a transition label and resets the local variable. Broadcasting and
buffered communication are emulated similarly as in the case of NuSMV2. A
minor difference is that Prism has no syntax for arrays. We therefore create an
individual variable for each entry of the array. In buffered communication, when
the first element of the fifo queue is read, the value of each entry of the queue is
copied to the entry ahead of it.

Counterexample to SysML Sequence Diagram Transformation. We propose the
following steps to transform the counterexample that one of the considered model
checkers produces into a Sequence Diagram. We interpret the counterexample,



268 M. Kölbl et al.

for which every one of the considered model checkers uses a different syntax, as
a model and apply ATL based model transformation to this syntax in order to
obtain a sequence diagram representation in XMI format.

1. Parsing the Counterexample. For an ATL transformation, we first need to
parse the counterexamples which are stored in different textual formats
depending on the model checker that was used. In order to accomplish this
we need extra information from the original model, for instance regarding the
names of the blocks that exchange messages, the events occurring along a
state sequence, etc., since not all of this information is included in the state
name sequences that the model checkers generate as counterexamples. We
obtain this information by parsing the original SysML model.

2. Transformation into a Sequence Diagram. We next transform the parsed
counterexample to a sequence diagram using an ATL transformation. For
each process in the input model of the model checker we create a Lifeline in
the sequence diagram, representing a concurrent thread of execution. A coun-
terexample consists of a sequence of state and transition whereas a sequence
diagram depicts the control flow of the system by a sequence of message send
and receive events. Transitions of a stm without messages are depicted by
a behavior execution specification. The behavior execution specification has
as a name the current state name and contains the name and values of any
changed variable. When a message is sent to another stm, then the message
points from the sending to the receiving stm and the message name is set
to the name of the sender, the current state name of the sender and the
message event name corresponding to the message sending. A possible vari-
able change of the reiving transition is added as an invisible attribute to the
message arrow.

3. Generation of Graphical View. Using another ATL transformation step we
generate a graphical view for the Papyrus IDE from the sequence diagram.

4 Case Study

The Airbag Model. We illustrate our approach by applying it to a real world
model of an airbag system adopted from [24]. The SysML model of this system
was edited using the Papyrus tool and is an extension of on the SysML model
of the same system used in [13]. In particular, we added different inter process
communication mechanisms in order to be able to experiment with the model
translation rules for these mechanisms that we defined above. An overview of
the airbag SysML model is given as a bdd in Fig. 3. The dashed arrows represent
communication from a sender to a receiver block. The most important block in
the airbag model is the MicroController. It continuously evaluates whether the
two sensors represented by the block MainSensor and the block SafetySensor
detect a critical accident of the vehicle, represented by the block Car. When this
is the case, the deployment procedure for the airbag will be activated.

There are two meaningful properties to check for an airbag system. The first
is to ensure proper functioning, i.e., to ensure that the airbag can be deployed.



From SysML to Model Checkers via Model Transformation 269

Fig. 3. bdd of the Airbag model

The second property is the absence of an inadvertent deployment of the airbag
when no accident has occurred. From a system safety point of view this is the
more significant property to check, and we have focussed on it in some of our
previous work on this model, e.g., in [24]. However, the counterexamples to
inadvertent deployment are relatively short. We focus on the proper functioning
property in this paper since it returns longer counterexamples and is hence better
suited to illustrate the application of our approach.

In order to understand the behavior of the Airbag model, an understanding
of the two safety mechanisms designed to avoid an inadvertent deployment is
essential. First, the Field Effect Transistor (FET) controls the power supply of the
airbag squib. Only if the MicroController enables the FET, the airbag squib has
enough power to deploy the airbag by igniting the explosive. Second, the Firing
Application Specific Integrated Circuit (FASIC) only ignites the airbag squib if
it first receives an armFASIC message and then a fireFASIC message from the
MicroController.

Communication in the Airbag System. We use different forms of communication
to forward information in the airbag system. In case of an accident the block Car
broadcasts a message crashHappened to both sensors. The two sensors receive
the broadcast message and start to repeatedly forward the information regarding
the accident by buffered communication. The block MainSensor sends a mess-
sage mainSensorCrashDetection and the block SafetySensor sends a message
safetySensorCrashDetection. The repetition of the message ensures, that not
a single wrong message can deploy the airbag. The microcontroller receives the
messages of both sensors and starts the airbag deployment process after receiv-
ing the accident notification of each sensor two times. In order to start the
deployment process the block MicroController sends the following three asyn-
chronous messages. A message armFASIC is sent to the block FASIC and causes
the fasic to go into state arm. A message FETPoweredOn is sent to the block FET
which enables the power supply when received. A message fireFASIC is sent to
the block FASIC which causes the fasic to transit from state arm into state fire.
It is now important to ensure that the squib will only explode and deploy the
airbag if the power supply is enabled at the time of firing the squib. We model



270 M. Kölbl et al.

the coordination regarding the deployment of the airbag between the FET and
the FASIC by two synchronous messages that are exchanged between these two
processes. In case the FET is enabled, it can send a message FETPoweredOn, oth-
erwise it can send a message FETPoweredOff in order to communicate its state
to the FASIC. If the FASIC accepts the synchronization via the FETPoweredOn
message this means that the airbag will actually be deployed by the FET applying
an ignition voltage to the squib. The FASIC then transits into the state fired. If,
however, the FASIC and the FET synchronize via the FETPoweredOff message,
this means that the FET is not prepared to deploy the airbag and the FASIC
transits into its initial state.

Property Specification. We specify the proper functioning property of the airbag
system using an invariant. The invariant expresses that it is always not the case
that the airbag is deployed and the car has an accident. If a model checker finds
a counterexample for this invariant then the counterexample contains a sequence
of states and transitions that starts with a car accident and terminates with the
deployment of the airbag.

Analysis of the Airbag Model. We model check the models that we obtain from
the above described translation into the target languages of the NuSMV2, Spin
and Prism model checkers for the proper functioning property. Each model
checker results in a counterexample to the property. We automatically trans-
form the resulting counterexample of NuSMV2 to a SysML sequence diagram,
depicted in Fig. 4. A similar translation of the counterexamples for the other two
model checkers is easily possible, but currently not implemented. Note that the
change of the variable values is not visible in the figure, but it is viewable when
browsing the diagram in the Papyrus IDE. The model transformations were per-
formed on a computer with an i7-4820K CPU (3.7 GHz), 32 GB of RAM and a 64
bit Linux operation system. In Table 1 we show the memory usage and time nec-
essary to transform SysML models to the different model checker input models,
to verify the airbag model in the different model checkers, and for the NuSMV2
case to transform a counterexample to a sequence diagram. Additionally, we
depict the count of states searched by each model checker. For the verification of
the airbag model, Spin uses with 128.3 MB an order of magnitude more memory
than the other model checkers. The higher memory consumption of Spin is due
to the use of a hash table which has at least a size of 128 MB.

Table 1. Computational effort

Model transformation Model checking Sequence diagram generation
Memory Time Memory Time States Memory Time

NuSMV2 9.6 MB 37 ms 10.0 MB 0.092 s 3279 9.6 MB 75 ms
Spin 9.6 MB 35 ms 128.3 MB <1 s 1432
Prism 9.6 MB 34 ms 8.5 MB 0.023 s 984



From SysML to Model Checkers via Model Transformation 271

Fig. 4. Sequence diagram depicting the NuSMV2 counterexample, rendered by Papyrus



272 M. Kölbl et al.

Result Interpretation. The sequence diagram representing the counterexample
produced by NuSMV2 consists of 6 lifelines, one for each module in the NuSMV2
code of the airbag model. The sequence diagram depicts ordered sequences of
local module events, corresponding to local steps in the Airbag SysML model,
as well as synchronous and asynchronous message passing events that lead up to
the firing of the airbag, indicated by the FASIC entering the fired state.

The counterexamples produced by all three model checkers are similar. Each
counterexample contains the necessary transitions to get from a car accident to
a deployment of the airbag. The counterexamples mainly only differ in the order
in which the transitions in the model are executed, but all contain the same set
of transitions. NuSMV2 performs a short loop that the other model checkers
do not include in the counterexample. For example with the deployment of the
airbag, in NuSMV2 the messages armFasic, fireFasic and enableFet are all
send before any of the messages is received, but in Prism and Promela each
message is received before the next one is triggered.

5 Conclusion

We have presented an approach to automatically translating SysML models to
the input languages of the model checkers NuSMV2, Spin and Prism, using the
ATL framework for model to model transformation. We also propose to use ATL
in order to translate the counterexamples for reachability properties to SysML
sequence diagrams, thus facilitating error interpretation and debugging. We have
illustrated the application of this approach using an industrially relevant case
study.

In spite of the fact that at the time of writing only the SysML to NuSMV2
model transformation is fully automated we anticipate that the proposed auto-
mated model transformation approach is a lot more flexible in adapting to the
target languages of other model checkers, compared to a manual encoding app-
roach. We also foresee that the implicit consistency of the generated target mod-
els with meta models of the used modeling and target languages will support
syntactic and semantic correctness of the generated target models. This will
greatly help to bridge the syntactic and semantic gaps between domain spe-
cific modeling languages, such as SysML, and the somewhat idiosyncratic input
languages of various model checking and other verification tools.

Currently, the flexibility of the approach is somewhat limited by requiring
substantial specific, manual coding effort in the Xpand framework when generat-
ing the target models. We plan to devise meta models for each of the considered
model checker input languages and transform to them from the general meta
model. This will allow to greatly reduce the Xpand related coding effort. We also
plan to establish semantic correctness properties of the model to model trans-
formation using this more refined model transformation approach. We finally
plan to extend the approach to handling liveness properties, which brings up the
question how to specify them in SysML/OCL.



From SysML to Model Checkers via Model Transformation 273

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:

Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9_16

3. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_31

4. Object Management Group: OMG Systems Modeling Language, Specification 1.5
(2017). http://www.omg.org/spec/SysML

5. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML, 3rd edn.
Morgan Kaufmann, San Francisco (2014)

6. IBM Corporation: Rational Rhapsody (2017). https://www.ibm.com/us-en/
marketplace/rational-rhapsody

7. Sparx Systems: Enterprise Architect (2017). http://www.sparxsystems.com/
products/ea/

8. Eclipse Foundation: Papyrus IDE (2015). https://www.eclipse.org/papyrus/index.
php

9. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

11. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: NuSMV 2.6 user manual (1998). http://nusmv.fbk.eu/
NuSMV/userman/v26/nusmv.pdf

12. Leitner-Fischer, F., Leue, S.: Quantum: quantitative safety analysis of UML mod-
els. In: QAPL. EPTCS 57, 16–30 (2011)

13. Caltais, G., Leitner-Fischer, F., Leue, S., Weiser, J.: SysML to NuSMV model
transformation via object-orientation. In: Berger, C., Mousavi, M.R., Wisniewski,
R. (eds.) CyPhy 2016. LNCS, vol. 10107, pp. 31–45. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-51738-4_3

14. Hunter, J., Lear, R.: Java Data Object Model (2015). http://www.jdom.org/index.
html

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

16. Eclipse Foundation: Xpand (2007). https://www.eclipse.org/modeling/m2t/?
project=xpand

17. Eclipse Foundation: Eclipse Modeling Framework (2017). https://www.eclipse.org/
modeling/emf/

18. Gauthier, J., Bouquet, F., Hammad, A., Peureux, F.: Verification and validation
of meta-model based transformation from SysML to VHDL-AMS. In: MODEL-
SWARD, pp. 123–128. SciTePress (2013)

19. Object Management Group: Unified Modelling Language, Specification 2.5.1
(2017). http://www.omg.org/spec/UML

20. Object Management Group: OMG Object Constraint Language, Specification 2.4
(2014). http://www.omg.org/spec/OCL

https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-14295-6_31
http://www.omg.org/spec/SysML
https://www.ibm.com/us-en/marketplace/rational-rhapsody
https://www.ibm.com/us-en/marketplace/rational-rhapsody
http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
https://www.eclipse.org/papyrus/index.php
https://www.eclipse.org/papyrus/index.php
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
https://doi.org/10.1007/978-3-319-51738-4_3
http://www.jdom.org/index.html
http://www.jdom.org/index.html
https://www.eclipse.org/modeling/m2t/?project=xpand
https://www.eclipse.org/modeling/m2t/?project=xpand
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/UML
http://www.omg.org/spec/OCL


274 M. Kölbl et al.

21. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
0931-7

22. Object Management Group: XML Metadata Interchange, Specification 2.5.1
(2015). http://www.omg.org/spec/XMI/

23. Object Management Group: OMG Meta Object Facility (MOF) Core Specification,
Specification 2.0 (2016). http://www.omg.org/spec/MOF

24. Aljazzar, H., Fischer, M., Grunske, L. Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety analysis of an airbag system using probabilistic FMEA and probabilistic
counterexamples. In: QEST, pp. 299–308. IEEE Computer Society (2009)

https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/MOF


Genetic Synthesis of Concurrent Code
Using Model Checking and Statistical

Model Checking

Lei Bu1, Doron Peled2(B), Dachuan Shen1, and Yuan Zhuang1

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, China

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Genetic programming (GP) is a heuristic method for auto-
matically generating code. It applies probabilistic-based generation and
mutation of code, combined with “natural selection” principles, using a
fitness function. Often, the fitness is calculated based on a large test suite.
Recently, GP was applied for synthesizing correct-by-design concurrent
code from temporal specification, where model checking was used for cal-
culating the fitness function. A deficiency of this approach is that it uses
a limited number of fitness values, based on a small number of modes
for each verified specification property (e.g., satisfies, does not satisfy a
given property). Furthermore, the need to apply model checking on many
candidate solutions using the genetic process makes using an off-the-shelf
model checker such as Spin prohibitively expensive. The repeated invoca-
tion of such a tool, compiling the code for a new candidate solution and
running it, can render the performance of this approach several orders of
magnitude slower than using an internal model checking. To tackle this
problem, we describe here the use of a combination of statistical model
checking, and a light use of model checking, for calculating the fitness
required by GP.

1 Introduction

The classical approach for synthesis of interactive systems from temporal specifi-
cation uses automata and game theory [25]. Synthesis of distributed or concurrent
programs from temporal specifications is in general undecidable [26]. This calls for
the use of heuristic methods. In particular, genetic programming based on model
checking [15] employs a powerful heuristic search in the state space of candidate
programs, which can be controlled and adjusted by an intelligent user.

The research in this paper was partially funded by an ISF-NSFC grant “Runtime
Measuring and Checking of Cyber Physical Systems” (ISF award 2239/15, NSFC
No. 61561146394). The authors from Nanjing Univeristy were also partially funded
by a National Natural Science Foundation of China grant No. 61690204 and No.
61572249.

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 275–291, 2018.
https://doi.org/10.1007/978-3-319-94111-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_16&domain=pdf


276 L. Bu et al.

Genetic programming (GP) is an automatic method for generating code. It
is based on beam search, i.e., a search that maintains in each generation a set of
objects, rather than a single object. The search attempts to improve the quality
of candidates from one generation to another, with mutual influence between
candidates. Candidates propagate from one generation to the next one with
probability based on their fitness value, which is an estimation on how close the
candidate is from a correct solution. In addition, it uses the genetic operations
of mutation, i.e., making small random changes to a candidate, and crossover,
i.e., combining elements of two candidates. Since GP does not use backtracking,
the only possibilities to deal with a failed search is to start with a new random
seed or to try searching with a different fitness function.

Classical genetic programming is based on calculating the fitness function
with respect to a large training set of test cases. Recently, using model checking
for calculating the fitness function was studied in [14–18]. Model checking is
a comprehensive approach for checking correctness, hence its use provides a
greater assurance of the correctness of the code than testing. On the other hand,
the number of correctness properties are typically not large, which results in a
small set of fitness values. Additional fitness levels can be provided, e.g., “some
executions satisfy a property”. However, even then, the fitness landscape is far
from being smooth [8], which may sometimes limit the ability of the genetic
search to converge.

Model checking based GP requires performing model checking for all the can-
didate programs generated during the process. Hence, it benefits greatly from
having a dedicated model checker that is implemented within the genetic pro-
gramming tool. Without it, the use of an off-the-shelf model checking tool like
Spin [12] would be several orders of magnitude slower. This motivates using
alternative ways of checking the fitness of candidates such as randomized testing
and statistical model checking. However, these methods only provide a limited
assurance about the correctness of the generated code.

In this work, we suggest to use statistical model checking (SMC) [20,27] to
replace part of the work that is done by model checking. SMC is a simulation-
based solution, which is less time and memory intensive than classical model
checking. The goal of SMC is to check sample execution paths of the system
and use methods like statistical hypothesis testing to calculate the probabili-
ties of the system to satisfy a given property within a given statistical error.
Compared with the model checking verdicts, probability measurement can pro-
vide smoother indication about how much the model satisfies a given property,
which can assist in the convergence of the genetic process. Typical tools for SMC
include Plasma [21] and Uppaal [3].

Applying SMC, which is based on finite executions, we immediately expe-
rience several inherent obstacles. The statistical sampling of the executions is
limited to finite length, hence, the correctness of the generated programs is not
guaranteed by the statistical evaluation. In particular, some properties may fail
in very few executions (rare events), which may be missed in the statistical eval-
uation. Conversely, properties that hold for long or infinite execution sequences



Genetic Synthesis of Concurrent Code Using Model Checking 277

may not be manifested during some of the finite executions that are checked.
This suggests using a combination of SMC and model checking to achieve the
best of both wofair scheds. Our approach combines SMC with light use of model
checking, based on the Spin model checker, performed at the later stages of the
genetic process.

2 Genetic Programming

During the 1970s, Holland [11] established the field known as Genetic Algorithms
(GA). Individual candidate solutions are represented as fixed length strings of
bits, corresponding to chromosomes in biological systems. Candidates are evalu-
ated using a fitness function. The fitness approximates the distance of the candi-
date from a desired solution. Genetic algorithms evolves a set of candidates into
a successor set. Each such set forms a generation, and there is no backtracking.
Candidates are usually represented as fixed length strings. They progress from
one generation to the next one according to one of the following cases:

– Reproduction. Part of the candidates are selected to propagate from one gen-
eration to the subsequent one. The reproduction is done at random, with
probability relative to the relation between the fitness of the individual can-
didate and the average of fitness values in the current generation.

– Crossover. Some pairs of the candidates selected at random for reproduction
are combined using the crossover operation. This operation takes parts of bit-
strings from two parent solutions and combines them into two new solutions,
which potentially inherit useful attributes from their parents.

– Mutation. This operation randomly alters the content of a small number of
bits from candidates selected for reproduction (this can also be done after
the crossover). One can decide on mutating each bit separately with some
probability.

Unlike traditional point-by point search such as depth-first search or breadth-
first search, the different candidates in a single generation have a combined
effect on the search; progress tends to promote, improve and combine candidates
that are better than others in the same generation. The process of selecting
candidates from the previous generation and deciding whether to apply crossover
or mutation continues until we complete a new generation. All generations are
of some predefined fixed size N . This can be, typically, a number between 50
and 500. Genetic algorithms thus perform the following steps:

1. Randomly generate N initial candidates.
2. Evaluate the fitness of the candidates.
3. If a satisfactory solution is found, or the number of generations created

exceeds a predefined limit (say hundreds or a few thousands), terminate.
4. Otherwise, select candidates for reproduction using randomization, propor-

tional to the fitness values and apply crossover or mutation on some of them,
again using randomization, until N candidates are obtained.

5. Go to step 2.



278 L. Bu et al.

If the algorithm terminates unsuccessfully, we can restart it with a new ran-
dom seed, or change the way we calculate the fitness function.

Genetic programming, suggested by Koza [19], is a direct successor of genetic
algorithms. In GP, each individual organism represents a computer program.
Programs are represented by variable length structures, such as trees (see Fig. 1)
or a sequences of instructions. It is quite easy to transfer between a program and
a syntax tree and vice versa. These trees are well typed. Each node is classified as
code, Boolean, condition or expression. Leaf nodes are variables or constants, and
other nodes have successors according to their type. For example, a while node
(of type code) has one successor of type Boolean or condition and one successor
of type code (for the loop body); a Boolean node and has two successors that
can be of type Boolean or condition, and a condition node < has two successors
of type expression. The genetic operations need to respect these (and possibly
further) types, e.g., expressions cannot be exchanged with Booleans.

Crossover is performed by selecting subtrees on each of the parents, and
then swapping between them. This forms two new syntax trees, having parts
from both of their parents. There are several kinds of mutation operations. In
replacement mutation, one picks at random a node in the tree, which is the
root of a subtree. Then one throws away this subtree and replace it with a
subtree of the same type, generated at random. In Fig. 1, the rightmost leaf
node was chosen, which is marked with double ellipse. The subtree consists of
this single node, representing the constant 1. Thus, it needs to be replaced with
another expression, built at random. A new subtree was randomly generated,
consisting of two nodes, representing the expression a[0]. In insertion mutation,
a new node of the same type as the selected subtree is generated and is inserted
just above it (type permitting); then one may need to complete the tree by
constructing another descendant of the newly inserted node. For example, if we
select an expression and insert above it a node that corresponds to addition +,
it can be made one of the descendants to be summed up, say the left, but we
need to complete the tree with a new right descendant. The reduction mutation
has the opposite effect of insertion: the selected node is replaced with one of
its offsprings (type permitting). In deletion mutation we remove the selected
subtree, and recursively update the ancestors to make the program syntactically
correct.

Syntax trees are not limited to a fixed size. Therefore the candidates can
shrink or grow after mutation and crossover. In GP, there is actually a tendency
of candidates to bloat with unnecessary code, for example, an assignment such as
a[1] := a[1]. The countermeasure for this, called parsimony pressure, is to include
a (small) negative value in the fitness function, corresponding to the length of
the code. As a consequence, the resulting solutions are not expected to have
a perfect fitness value, but instead they need to pass all the tests/verifications
performed.



Genetic Synthesis of Concurrent Code Using Model Checking 279

while

<>

A[]

2

0 A[]

me

1

:=

while

<>

A[]

2

0 A[]

me

:=

A[]

0

]0[a=:]em[a)0><]2[a(elihw1=:]em[a)0><]2[a(elihw

Fig. 1. Mutation on a syntax tree

3 GP Based on Model Checking and Statistical Model
Checking

We want to employ GP to synthesize concurrent programs from given a tem-
poral specification. We use linear temporal logic, LTL syntax [24]. The input
includes, besides the temporal specification, also a configuration, which restricts
the parameters of the desired solution. The configuration can restrict the depth
of the generated syntax trees, the variable used, the allowed arithmetic and
Boolean operators, and the number of processes. It can also contain a template
that restricts the code, e.g., dictates that the code is embedded within a fixed
loop or contains some fixed parts of code. The template has several uses:

– Using the template we can guarantee part of the behavior of the targeted
code, simplifying the specification.

– We use as specification formalism LTL, which is limited to assert on all the
executions of the code. On top of that, we can use the template to force check-
ing different cases, providing some expressive power of branching temporal
logic such as CTL [2]. Furthermore, templates also provide a testbed environ-
ment with uncontrolled actions, where the code needs to behave under all the
interactions with it. This provides some expressive power of game logics [5].

– The template can be used to limit the state space of the search, e.g., suggesting
that a solution will start with an assignment, or that it is embedded in a main
loop. This can reduce the complexity of the genetic search and improve the
chance and speed of coverage.

In [14–18], GP based on model checking was described and experimented
with. The fitness function was solely calculated based on model checking results.
Using model checking instead of testing to calculate the fitness function for GP
allows a more reliable evidence of the correctness of the code. On the other hand,
model checking is computationally expensive. In [15–18], it was observed that the
number of specification properties is rather small, which creates a small number
of fitness values. Therefore, a few intermediate levels were added on top of the



280 L. Bu et al.

obvious satisfies/does not satisfy verdicts; in particular, levels such as sometimes
satisfies and satisfies with probability 1.

3.1 A Running Example

As a running example, we look at synthesizing a solution for the well known
mutual exclusion problem. Solutions for this problem from temporal specifica-
tions were synthesized using GP, where the fitness function is based on model
checking [15,16]. The configuration provided dictates the following structure:

p1: While W1 do p2: While W2 do
nonCrit1:no-op nonCrit2:no-op
preCS1 preCS2
CS1:no-op CS2:no-op
postCS1 postCS2

end while end while

The labels nonCriti represent the actions of the process pi outside the critical
section. The labels CSi represent the critical section, which both processes want
to enter a finite or unbounded number of times. These segments are not part
of the synthesis task, and can be represented by trivial code no-op. The critical
section is controlled by the code that will be synthesized for preCSi and postCSi.
We require the following LTL properties:

Safety: �¬(p1 in CS1 ∧ p1 in CS2), i.e., there is no state where the program
counters of both processes are in the critical section simultaneously.

Liveness: �(pi in preCSi → ♦pi in CSi), i.e., if a process wants to enter the
critical section, then it will eventually succeed in doing so.

A solution that necessarily alternate between the process in entering their
critical sections would also satisfy these conditions. Then, if one of them ceases
to try entering its critical section, the other one can get blocked. To eliminate
this problem, the variables Wi in the configuration are used to control whether
processes want to keep entering the critical section. We can set different values
to W1 and W2 to control the program behavior in different scenarios, including
both processes want to enter the critical section, or only one wants to enter the
critical section. This part of the code is fixed and not subject to synthesis.

Note that the configuration assures that the duration of the critical sections
CSi are finite. Hence there is no need to require that ¬♦�pi in CSi. We assume
no (goto) statements are allowed, hence the synthesized parts are executed to
completion each time they are entered.

3.2 Replacing Model Checking with Statistical Model Checking

Due to the two deficiencies of the use of model checking in genetic programming
mentioned, complexity and lack of smoothness of the fitness value, we were moti-
vated to replace part of its use by statistical model checking. In particular, we



Genetic Synthesis of Concurrent Code Using Model Checking 281

generate for each GP candidate solution a large set of pseudo random executions;
we check if these executions satisfy related specification properties.

The fitness function used in GP needs to be rather smooth in order to pro-
vide good convergence, and the statistical evaluation can provide multiple levels.
Statistical evaluation may also be more affordable for some intricate synthesis
problems. The simplicity of statistical methods is even further apparent for real
time or cyber-physical systems. Another advantage that statistical model check-
ing has over model checking is that it can be used for parametric systems and
systems with infinite state space, where model checking has limited use for these
applications.

For using statistical model checking over finite prefixes, we form a set of
bounded temporal properties over finite prefixes of executions that are related
to the original LTL properties over infinite sequences. Safety properties can be
migrated directly to finite prefixes (A safety property is violated when there is a
finite prefix that does so [1]). We use an additional temporal operator �, where
�ϕ holds in a sequence when ϕ holds at its last state. A finite prefix may present
only partial information, and the property may be violated or satisfied only in a
longer prefix. The properties over finite prefixes that correspond to the original
properties provide support to the case that the original properties hold for the
infinite sequences, but do not always guarantee them. For example, instead of the
liveness property, we use a property that a process enters its critical section some
fixed amount of times. The larger this number is, the more we are convinced that
the liveness property holds. However, a large number will only be manifested in
a long prefix. We pick up these related properties over finite prefixes according
to our intuition (we may fine tune them if the genetic process fails).

At the moment we do not have a way of obtaining these related properties
automatically from the original LTL properties, and this can be the subject of
further research (e.g., using genetic co-evolution [19] or learning). Nevertheless,
we do not expect the synthesis of concurrent programs to be completely auto-
matic, as it was shown to be undecidable [26].

We illustrate the choice of related properties over finite prefixes for the run-
ning example. Suppose that we decide to check n executions, each one of them
is limited to a length of k. We can fine tune the parameters n and k on several
test runs to see what works. We can also try to estimate the size (number of
states) of the desired solution to provide such parameters where errors will be
found with high probability [10].

We split the original liveness property into several bounded properties. The
predicates enteri represent the total number of times process pi entered its
critical section in the current prefix.

– B. The case that both processes want to enter the critical section. We enforce
that by setting (W1∧W2). We add two counters enter1 and enter2 to indicate
the times that each process enters the critical section. Out of which we have:

• B1. Both processes succeed entering the critical section multiple times:
ρB1 = �(enter1 > 1 ∧ enter2 > 1).



282 L. Bu et al.

• B2. One process enters the critical section multiple times and the other
only once: ρB2 = �((enter1 > 1∧enter2 = 1)∨(enter1 = 1∧enter2 > 1)).

• B3, Only one process succeeds in entering, or both enter exactly once:
ρB3 = �(enter1 + enter2 ≥ 1 ∧ 0 ≤ enter1 × enter2 ≤ 1).

• B4. Both processes do not succeed in entering their critical section ρB4 =
�(enter1 + enter2 = 0).

– O. Only one process p1 wants to enter, when forcing (W1 ∧ ¬W2). Out of
which we have:

• O1. The process p1 succeeds entering its critical section multiple times:
ρO1 = �(enter1 > 1)

• O2. The process p1 succeeds entering its critical section only once: ρO2 =
�(enter1 = 1)

• O3, The process p1 does not succeed entering its critical section: ρO3 =
�(enter1 = 0)

We mark the SMC probabilities (as estimated by an SMC tool, or just the
portions of executions satisfying each property among the randomly generated
test cases) of the model satisfying these given properties by PB1 , PB2 , PB3 ,
PB4 , PO1 , PO2 and PO3 respectively and the safety property by PM . The fitness
function is based on the above parameters.

We have the following coefficients, which can be assigned various values
between 0 and 1:

– α multiplies PM , the probability that the model satisfies the safety property.
– β1, β2, β3 multiply PB1 , PB2 , PB3 , the probability that the model satisfies

ρB1 , ρB2 and ρB3 , respectively.
– γ1, γ2 multiply PO1 , PO2 the probability that the model satisfies ρO1 ,and ρO2 ,

respectively1.

We enforce that β3 < β2 < β1, γ2 < γ1. A possible fitness function is

(α × PM + β1 × PB1 + β2 × PB2 + β3 × PB3 + γ1 × PO1 + γ2 × PO2) × 100

We normalize fitness to be between 0 and 100 by requiring that α + β1 + γ1 = 1.

3.3 Problems and Solutions in Using SMC for Fitness Function

We need to pay attention to some issues in transforming SMC probabilities into
fitness results. We will first list the difficulties, and then suggest some solutions.

Limited Distinction of the Probabilistic Approach. Although providing a
smooth fitness value range, SMC based fitness function is only a rough estimate.
In particular, it is hardly reasonable to assume that a solution that has 75%
of its sampled prefixes satisfy some properties is uniformly worse than one in
which 85% of the sampled prefixes satisfy them. However, the use of stochastic
1 The coefficients for PB4 and PO3 are both 0, as these cases correspond to an inept

solution.



Genetic Synthesis of Concurrent Code Using Model Checking 283

selection of candidates for propagation by the genetic programming algorithm,
where the given fitness only affects the probability of selecting the candidate,
rather than directly selecting the best fitted ones, somewhat smoothens out the
difference between such similar cases.

False Positives: Failure of Properties that Appear as Rare Events. The
executions where an error is demonstrated may be rare; in which case one may
need a lot of experiments and would, by chance, not catch the bad executions.
For mutual exclusion, the processes may enter the critical section simultaneously,
but on many executions they just independently enter and then exit, where the
simultaneous stay within the critical section is not manifested on the selected
random prefixes.

False Negatives: Negative Bias Due to Scheduling. Another problematic
situation is where some liveness properties would not show up on a substantial
number of prefixes due to scheduling. In a particular finite execution, a pro-
cess may fail to enter the critical section since the other process is scheduled
more frequently, although it could do so in a longer prefix or under a different
scheduling.

Fairness. Many solutions of the mutual exclusion are based on some fairness
assumption [23]; there, without allowing both processes ample opportunities to
progress, the liveness will not hold. In particular, this is the case for the classical
Dekker solution for mutual exclusion, presented by Dijkstra [4]. However, fairness
is defined over infinite executions, and SMC checks only finite ones.

In order to tackle the above issues, wcich stem from the randomness and
finiteness of the checked prefixes, we used a combination of the following ideas.

Extending the Measurements. Depending on the checked property, we may
want to extend the measurements. For example, for the safety property, we can
check more executions to increase the probability that we find the violation. For
the liveness property, we may want to use longer executions to diminish the effect
of unfair scheduling. These parameters are adjusted after some initial failures to
synthesize correct solutions.

Using Combination of Cases. Because we cannot rely on fairness, and our
tested sequences are finite, we should learn about the satisfaction of a property
from observing the combination of the random checks. Take for example the case
where we want to check that a process is not prohibited from entering the critical
section. There may exist some prefixes where it fails to do so. However, if in a large
percentage of the executions, it succeeds in entering the critical section, this can
be used as evidence that the failure in the minority of the executions is due to unfa-
vored scheduling. Then, given a certain threshold, we may apply “majority rules”
to conclude that the liveness property holds. Accordingly, we may decide that
when at least, say, 70% of the executions are satisfy ρB1 , the fitness treats all the
executions in B as if they all satisfy ρB1 . Accordingly, in that case we use a simpler
fitness function (α×PM + β1 × (PB1 +PB2 +PB3)+ γ1 ×PO1 + γ2 ×PO2)× 100.

However, this is not the only possible conclusion for this measurement: it may
not be the discrimination of the scheduling that makes a process fail to enter



284 L. Bu et al.

its critical section, but rather some scheduling that subsequently prevents the
entrance to the critical section. Such a situation of multiple possible conclusions
from the same statistical experiments can be resolved by the combined use of
both majority rules and the light use of model checking (see below); model
checking will catch such rare event errors that may otherwise not affect the
fitness function.

Biasing the Probabilistic Selection. If we identify cases that may happen
rarely, we can use biasing of the different choices in order to inspect them closer.
For example, since catching violation of the safety property may be rare, we
can reduce the probability of transitions that exit the critical section in favor of
transitions of the other process that is outside the critical section. In essence, we
are “waiting” for the other process to enter the critical section. For promoting
liveness and providing more “fair” scheduling, we can decrease the probability
of a transition of some process to be selected relative to the number of states
where the other process has been waiting. A related technique for handling rare
events, in the context of statistical model checking, is importance splitting [13],
which split the test sequences into cases. Then one can zoom into checking cases
where the rare events are believed to appear more frequently. This can also be
a potential technique to handle the rare events problem.

Light Use of Model Checking as Certification or as Part of the Fit-
ness. When candidates that receive very high fitness values are produced, in late
generations, model checking can be used to certify that they indeed satisfy the
desired properties. One can apply model checking sparingly, late on the genetic
process, on candidates with already very high fitness value. We then may inte-
grate the result of the model checking into the fitness and allow it to participate
in additional generations.

Checking Ultimately Periodic Executions. We can replace checking finite
executions by ultimately periodic ones. This can be done as in [7]. However,
checking ultimately periodic sequences is more expensive than checking finite
prefixes, as states on a sequence need to be hashed in order to detect cycles.
This part was not implemented in our prototype.

4 Experiments

For each of the synthesis problems described above we performed experiments
with SMC using Plasma [21]. Plasma uses Approximate Probabilistic Model
Checking (APMC) [9] to provide a controlled accuracy on the statistical results2.
For accelerating the performance, we have also implemented an ad-hoc statistical
evaluation algorithm which shares some of the merits of SMC. This implemen-
tation selects a given number of finite execution sequences and calculates the

2 The configuration of running Plasma in our experiment includes the approximation
threshold ε = 0.05, and the confidence threshold δ = 0.01. Please refer to [9] for
detailed explanation of these parameters.



Genetic Synthesis of Concurrent Code Using Model Checking 285

ratio of executions that satisfy a given property. However, it does not provide a
significance level [6] for the measurement result.

The model checking is performed by Spin. Spin works here as separate soft-
ware interfacing with ours, which needs to prepare its own (multiple) files and
performs compilation on each candidate it checks, in order to make the verifica-
tion; each activation of Spin by our code is slower than the statistical evaluations
we make per candidate, hence we applied it sparingly. The Spin model checker
was invoked when the fitness value reaches some threshold, which we set as 98. If
model checking fails, we continue the genetic process, since the failed candidate
solutions may still contain good “genetic material” so we can proceed from this
point based on the SMC fitness calculations.

4.1 Synthesis of Solutions for Mutual Exclusion

The first set of experiments we conducted is to use GP to synthesize solutions of
mutual exclusion. Without using Spin in the last stage to do the certification, our
implementation can generate dozens of solutions that reach the highest fitness
value easily. For example, three representative solutions (a), (b) and (c) are
shown below. The processes are symmetric. The variables me and other can be
concretized to i and (i + 1) mod 2 for process pi (1 ≤ i ≤ 2) respectively.

While W1 do While W1 do While W1 do
v[me]=1 v[me]=1 v[me]=1
While (v[2]!=me) do While (v[2]==other) do While (v[other]!=0) do
v[2]=0 v[2]=1 While (v[other]==other) do
if(v[other]!=me) if(v[other]!=other) v[me]=0
v[2]=1 v[2]=0 end while

end while end while v[me]=1
CS CS end while
v[2]=other v[2]=other CS

end while end while v[me]=0
(a) (b) end while

(c)

In the random simulations, both the processes show no violation of the mutual
exclusion, starvation or deadlock. However, if we investigate the two solutions
(a) and (b), we can find that they fail to satisfy the safety requirement. In some
execution sequences, two processes can enter the critical section at the same
time. Actually, for solution (a), among 10000 simulations, we could observe only
139 failures to satisfy the safety requirement. The unsafe scenario happened even
fewer times in scenario (b): 4 times in 100000 simulations.

Solution (c) does not satisfy the liveness property. Actually, this solution
represents the scenario where only if both processes want to enter the critical
section indefinitely, then the liveness is satisfied; however, if one process decides
to stop, then the other process will eventually be blocked forever. These exam-
ples demonstrate the problems raised in Sect. 3.3, where one may need a lot of



286 L. Bu et al.

experiments and may, by chance, not catch the bad rare events. This leads us to
the next experiment, where we used model checking as certification in the last
generation of the genetic process.

For candidates that received fitness value of at least 98, we used the model
checker Spin [12] to certify whether the desired properties are satisfied. To do
that, we implemented an automatic generator to translate the solution generated
by GP into the modeling language Promela of Spin. If the model checking
confirmed correctness, the procedure was stopped. Otherwise, we continued the
GP process (until the limit on the number of generations has been reached).

After integrating Spin to the GP process, we started to obtain correct solu-
tions. One such solution is (d) below. This is a perfect solution that shares a
similar structure with Dekker’s algorithm. Another representative solution, (e),
is similar to Peterson’s algorithm. The difference between (e) and (d) is that (e)
allows Boolean operators and and or in the conditions.

While W1 do While W1 do
v[me]=1 v[me]=1
While (v[other]==1) do v[2]=me
While (v[2]!=other) do While((v[other]!=0) && (v[2]==me)) do
v[me]=0 end while

end while CS
v[me]=1 v[2]=other

end while v[me]=0
CS end while
v[me]=0 (e)
v[2]=me

end while
(d)

4.2 Synthesizing Solutions for Round Robin Scheduling

In this example, there are three processes p0, p1 and p2, each with a critical
section. The processes need to enter their critical sections in round robin order.
That is, p0 before p1, then p2, and repeating that order with p0, etc. The pro-
cesses always want to enter the critical section (there is no flag Wi that restricts
a process from wishing to enter). A trivial solution is that the processes would
use a turn variable with three values, 0, 1 and 2, and each process will enter only
when turn points to it and then increment it modulo 3. However, to make things
less trivial, we require that we use only Boolean variables.

We allow solutions that are asymmetric in the sense that different values will
be assigned in different processes. To allow that but still generate one candidate
that will be concretized into three processes, we introduced to the generated
process template as a syntactic construct an assignment statement of the form
“v[i]=b0b1b2”, where bi ∈ {0, 1}, 0 ≤ i ≤ 3. This dictates that for the actual
process pi, the concretized statement will be v[i]=bi. The variables which can
show up in the solution are v[0] to v[3], and also v[me], v[other1], and v[other2].



Genetic Synthesis of Concurrent Code Using Model Checking 287

For each process pi, me is concretized to i, other1 is concretized as (i+1) mod 3,
and other2 is concretized to (i + 2) mod 3.

Our GP based synthesizer generated several solutions similar to the following
solution (f).

While true do While true do
v[3]=010 While(v[me]==001) do
While(v[me]==001) do end while
v[3]=101 CS
v[3]=010 v[me]=001

end while v[other1]=101
CS end while
v[me]=001 (g)
v[other1]=101

end while
(f)

We can see that each process in solution (f) refers to v[me] and v[other1].
There are also assignments to v[3] among the statements. However, as v[3] is
not used in any conditions at all, such statements can be safely removed. This
is done here manually to demonstrate the solution, resulting in solution (g), and
we did not implement parsimony pressure.

Let us concretize the solution of the three process p0, p1, and p2 to (g0), (g1),
and (g2) respectively. Observe that only three variables are used in the solution,
which makes this solution simple and elegant.

While true do While true do While true do
While(v[0]==0) do While(v[1]==0) do While(v[2]==1) do
end while end while end while
CS CS CS
v[0]=0 v[1]=0 v[2]=1
v[1]=1 v[2]=0 v[0]=1

end while end while end while
(g0) (g1) (g2)

4.3 Synthesizing Solutions for Dining Philosopher

This synthesis problem involves several philosophers sit around a table; a philoso-
pher can take the fork on his right or the one on his left as they become available.
If a philosopher wants to eat, she must have both left and right forks and if he
finishes eating, she needs to put the forks back and these forks will be available
again. The problem is to design a concurrent algorithm with no deadlock and,
under fair scheduling [22], no philosopher will starve.

To support this problem, we extend the basic variable library with semaphore
variables, and also add semaphore-related operations such as wait and signal into
the expression library. Two representative solutions generated by our method



288 L. Bu et al.

are shown below in (h) and (i). It is interesting to see that although the GP
synthesis processes allowed different kinds of programming constructs, including
while loop, if condition and variable assignments in the expression library, the
generated solutions are composed by only manipulation of semaphores. In these
solutions, each philosopher (process) waits for the semaphore “mutex” to be
free. Then she takes both the forks by capturing the semaphores “left” and
“right”; these semaphores are be translated to i mod m and i + 1 mod m, for
the ith philosopher. After finishes eating, a philosopher frees the semaphores she
captured.

Both solutions (h) and (i) can pass the verification of Spin. In (h), when one
philosopher is eating, all the other philosophers are blocked. Solution (i) permits
more concurrency, as only philosophers that share forks with the dining ones
will be blocked.

While true do While true do
think think
wait(mutex) wait(mutex)
wait(right) wait(right)
wait(left) wait(left)
eat signal(mutex)
signal(left) eat
signal(right) signal(right)
signal(mutex) signal(left)

end while end while
(h) (i)

4.4 Performance Evaluation

We run the experiments on the SMC guided GP synthesis using Plasma, and
using our own implementation of statistical evaluation. The corresponding data
are marked with SMC and SE, respectively. The data for mutual exclusion,
round robin and dining philosopher problems are marked as ME, RR, and DP,
respectively.

In the experiment, we have 100 seeds for each generation, and if the GP does
not generate a correct solution in 2000 generations, we abandon the current GP
search. As the GP process involves randomness, we repeated the experiments
for each problem 100 times. We record the average time each execution takes,
the number of successful executions which generate perfect solution, the average
number that the GP calls model checker per execution, and the average number
of generations per execution. The performance data is given below in Table 1.

The built-in statistical evaluation (SE) algorithm basically implements a sim-
plified method of SMC. We can see the success ratio of SE for each problem aligns
with SMC, but performs almost two orders of magnitude faster. However, our
built-in SE diminished the effect of having most of the overhead due to the invo-
cation and repeated use of the tool. In fact, given that Plasma was used in this
mode, its use should be considered very efficient. Moreover, the light need to



Genetic Synthesis of Concurrent Code Using Model Checking 289

Table 1. Performance data

Problem Method Total

executions

Average

time

Success

executions

Success

rate

Average Spin

call

Average

generations

ME SMC 21 7 h 53m 0 0 280 2000

SE 100 341.4 s 15 15% 378.3 1754

RR SMC 22 7 h 25m 8 36.4% 502 1751

SE 100 479.4 s 41 41% 436.3 1389

DP SMC 11 15 h 23m 9 81.8% 1178 687

SE 100 34m6 s 65 65% 1287 116

invoke Spin (in both modes), also as an external tool, did not make the entire
synthesis process prohibitively expensive.

This experiments seem to support that our proposed SMC guided genetic
synthesis method can be applicable and efficient in concurrent code synthesis
with the help of a built-in implementation of SMC and model checking proce-
dures. It can generate a correct solution with high success ratio within reasonable
time overhead. Moreover, allowing SMC tools such as Plasma or Uppaal [3], and
model checking tools such as Spin, to be integrated into a GP tool would make
the genetic synthesis both efficient and powerful.

We do not compare our experiments directly to the results in [15–18] since
there, an internal tool for performing model checking was used, which was tai-
lored to provide additional levels besides the yes/no (+counterexample) that
standard model checkers provide. But a powerful internal model checking is
hard to implement, and can hardly compete with the breadth of a tool like Spin.
Moreover, even with the additional model checking levels, the fitness function
may not be smooth enough in some cases.

5 Conclusions

We described here the use of genetic programming based on statistical model
checking for synthesizing concurrent code from its temporal specifications. Using
statistical model checking for defining the fitness function has several advantages
over using model checking. In particular, it can be more efficient, can be used
in domains where model checking is not applicable, and can provide a smoother
function, which helps to converge. We presented different ideas and parameters
for defining statistical based fitness function.

We implemented these ideas and conducted experiments of synthesizing con-
current code. One of the main lessons we learned is that some common properties,
such as mutual exclusion or eventual progress, may happen to be quite elusive
in a model. This makes the tradeoff between efficiency and reliability. This also
calls for using model checking to verify the generated solutions.

We used a hybrid approach, where we used statistical model checking for
most of the duration of the genetic process, but involved model checking at the
later part of the genetic process to certify the potential solution.



290 L. Bu et al.

Our research on the combination of genetic programming, synthesis, statisti-
cal model checking and model checking already shows some encouraging results,
but also calls for several follow ups. Besides improving our implementation (in
particular, using built-in verification, as the connection with Spin and Plasma
is quite time consuming) there are some interesting theoretical/practical direc-
tions. One direction is the use of biasing of the randomized experiments. Finally,
we intend to make more experiments in synthesizing code, in particular of timed,
probabilistic and cyber physical systems, where statistical approaches, such as
statistical model checking, are found to be quite efficient.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

3. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

4. Dijkstra, E.W.: Cooperating sequential processes. In: Hansen, P.B. (ed.) The Origin
of Concurrent Programming, pp. 65–138. Springer, New York (1968). https://doi.
org/10.1007/978-1-4757-3472-0 2

5. Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL
2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15205-4 25

6. Fisher, R.: Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh
(1925)

7. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31980-1 18

8. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

9. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

12. Holzmann, G.J.: The SPIN Model Checker. Pearson Education, Boston (2003)
13. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance

splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8 11

14. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71605-1 11

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-1-4757-3472-0_2
https://doi.org/10.1007/978-1-4757-3472-0_2
https://doi.org/10.1007/978-3-642-15205-4_25
https://doi.org/10.1007/978-3-642-15205-4_25
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-540-71605-1_11


Genetic Synthesis of Concurrent Code Using Model Checking 291

15. Katz, G., Peled, D.: Genetic programming and model checking: synthesizing
new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-88387-6 5

16. Katz, G., Peled, D.: Model checking-based genetic programming with an applica-
tion to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 11

17. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19237-1 13

18. Katz, G., Peled, D.: Code mutation in verification and automatic code correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 36

19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

20. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

21. Legay, A., Traonouez, L.-M.: Statistical model checking of simulink models with
plasma lab. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp.
259–264. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29510-7 15

22. Lehmann, D.J., Rabin, M.O.: On the advantages of free choice: a symmetric
and fully distributed solution to the dining philosophers problem. In: Conference
Record of the Eighth Annual ACM Symposium on Principles of Programming
Languages, Williamsburg, Virginia, USA, January 1981, pp. 133–138 (1981)

23. Manna, Z., Pnueli, A.: How to cook a temporal proof system for your pet language.
In: Conference Record of the Tenth Annual ACM Symposium on Principles of
Programming Languages, Austin, Texas, USA, January 1983, pp. 141–154 (1983)

24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57 (1977)

25. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11–13 January 1989, pp. 179–190 (1989)

26. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, 22–24 October 1990, vol. II, pp. 746–757 (1990)

27. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/978-3-540-88387-6_5
https://doi.org/10.1007/978-3-540-78800-3_11
https://doi.org/10.1007/978-3-540-78800-3_11
https://doi.org/10.1007/978-3-642-19237-1_13
https://doi.org/10.1007/978-3-642-12002-2_36
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-29510-7_15
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17


Quantitative Model Checking for a Controller
Design

YoungMin Kwon1(B) and Eunhee Kim2

1 Department of Computer Science, The State University of New York, Korea,
119 Songdo Moonhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea

youngmin.kwon@sunykorea.ac.kr
2 2e Consulting Corporation, 1710 KnK Digital Tower, 220 Yeongsin-Ro, Yeongdeungpo-gu,

Seoul 07288, Korea
keh@2e.co.kr

Abstract. A controller design method based on a quantitative model checking
technique is proposed. Controllers have been designed to shape the closed-loop
system’s responses to meet certain requirements. We use Linear Temporal Logic
for Control (LTLC) [16] to formally describe complex requirements and design a
controller to meet the requirements with guidance from model checking results.
The technique can help design a controller robust against errors systematically
hampering the controller’s efforts. To demonstrate the usefulness of the proposed
technique, we exercised several controller design examples with different types
of errors.

1 Introduction

In a Cyber-Physical System (CPS), computers not only perform computations on their
memory, but interact with the physical world as well. With the advances in sensor and
actuator technologies, CPS can be found in many places such as autonomous cars, smart
home appliances, automated farms, and so on. Automatic controllers, right at the border
between cyber systems and physical systems, are interfacing the two systems. As cyber
systems are becoming more and more complex, it is crucial to be able to formally spec-
ify certain requirements about the physical systems and design controllers to guarantee
them.

Automatic controllers have been designed to meet certain global properties of a sys-
tem. For instance, Nyquist plots are drawn for the stability of a system, Bode plots are
used to shape overall frequency responses [6]. Even though controllers are designed
with some margin of errors, these design practices do not guarantee the non-existence
of events that can violate certain properties. In other words, the system cannot guaran-
tee the requirements when events are systematically hampering the system. Formally
describing such requirements and designing a controller to meet the requirements will
be crucial especially for mission critical or safety critical systems.

We propose a quantitative model checking technique to specify the requirements
and to design a controller. Requirements about a closed-loop system are written in a
quantitative temporal logic called Linear Temporal Logic for Control (LTLC) [1,15,16]

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 292–307, 2018.
https://doi.org/10.1007/978-3-319-94111-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_17&domain=pdf


Quantitative Model Checking for a Controller Design 293

and controller parameters are searched while guided by the model checking results. In
this paper, we designed a Pole-placement controller whose pole locations are chosen by
model checking results. Furthermore, we considered two types of measurement errors:
simply bounded errors and an effect of buffering in sensors.

LTLC is expressive enough to specify nontrivial properties about the system. LTLC
has the logical and temporal operators of Linear Temporal Logic (LTL) that make the
specification concise and easy to understand [5,12]. Its atomic propositions are linear
(in)equalities about the input, output, and state variables of a hybrid system. Regarding
the expressiveness of LTLC, an (in)equality specifies a hyperplane or a half space in the
state space; their conjunctions can express a polytope in the space; and the disjunctions
of the polytopes can form non-convex regions. Using the temporal operators, one can
specify how such regions should change over time in the state space.

There have been model checking techniques for infinite state space. One of the first
approaches is Timed Automata where clocks with a constant rate comprise the contin-
uous state space [2]. A more expressive model is hybrid automata, where properties on
the trajectories of continuous variables governed by differential equations can be speci-
fied [10], but its model checker implementations such as HyTech and UPPAAL handle
simplified dynamics like clocks [11,18]. HySAT, SpaceEX, and BACH are reachability
checkers for hybrid automata [4,7,8]. Unlike model checkers, reachability checkers do
not check whether a system satisfies a given specification usually written in a temporal
logic, but check whether certain states can be reached. When considering computation
paths only up to a certain finite length, the finite automaton for an LTLC formula might
be checked by the reachability checkers. However, arguably, specifications expressed in
a logic would be easier to manage than those described in an automaton.

In this paper, the LTLC model checking technique is introduced to check if a con-
troller design can satisfy requirements. Another direction of utilizing the technique is
to embed the model checking algorithm into the controller to generate a control input
directly [17]. In particular, a goal is described in LTLC and its negation is model-
checked within the controller. Because a counterexample contains a control input that
can be applied to the system to achieve the original goal, LTLC model checking tech-
nique can be employed in the feedback control loop [16]. Model checking techniques
have been used in the automatic control systems to find control strategies to satisfy
high-level goals [9,13,14,19,23]. They are based on finite abstraction of state spaces,
where a state space is partitioned into finite polytopes and a transition system is built
on the equivalent sets of states. A control strategy is computed such that the transition
system can satisfy the goals. One of the advantages the LTLC based technique has over
the finite abstraction based approaches is that it does not need to pre-partition the whole
state space which usually takes a long time.

2 Hybrid System Model

A hybrid system is a mixed system with a continuous system described by differential
equations and a discrete system governed by discrete events. For example, changing the
transmission gears of a car is a discrete event and the responses of the car at a certain
gear position follow a differential equation. We will design a controller for a Linear



294 Y. Kwon and E. Kim

Time Invariant (LTI) system. Furthermore, to capture the effect of system dynamics
changes, a hybrid system model is introduced. In this section, we formally define an
LTI system, a hybrid system, and a computation path.

A Linear System is a system where the superposition principle holds. A Linear
Time Invariant System is a linear system whose dynamics do not change over time. In
this paper, we consider a discrete-time LTI system that can be obtained by periodically
sampling its continuous-time counterpart.

Definition 1. A discrete-time Linear Time Invariant (LTI) system1 is a seven tuple L =
〈U,Y, X, A, B,C,D〉, where U = {u1, . . . , unu}, Y = {y1, . . . , yny}, X = {x1, . . . , xnx} are
the set of input, output, and state variables respectively, A ∈ �nx×nx, B ∈ �nx×nu, C ∈
�ny×nx, and D ∈ �ny×nu are system matrices. ��

The relation between the input, output, and state variables of an LTI system satisfy
the dynamics equations below.

x(t + 1) = A · x(t) + B · u(t), y(t) = C · x(t) + D · u(t), (1)

where u : � → �nu, y : � → �ny, and x : � → �nx are trajectories of the input,
output, and state variables respectively. That is, u(t)i = ui at time t for i = 1, . . . , nu,
y(t)i = yi at time t for i = 1, . . . , ny, and x(t)i = xi at time t for i = 1, . . . , nx.

A hybrid system is a graph of LTI systems, called modes, such that the system can
change its dynamics from the set of modes.

Definition 2. A Hybrid system is a quintuple H = 〈U,Y, X,M, E〉, where U =

{u1, . . . , unu}, Y = {y1, . . . , yny}, X = {x1, . . . , xnx} are the set of input, output, and state
variables respectively, M = {m1, . . . ,mnm} is a set of LTI systems called modes, and
E = {e1, . . . , ene} is a set of labeled directed edges between the modes. ��
All modes of a hybrid system share the same set of input, output, and state variables.
Therefore, a mode mi of Definition 2 is in the form mi = 〈U,Y, X, Ai, Bi,Ci,Di〉 for
i = 1, . . . , nm. A labeled directed edge e = (mi,mj, ψ) defines a mode-switch condi-
tion from mi to mj, where the label ψ is a propositional formula defining its enabling
condition. When more than one edge are enabled at a time, the mode transition can
nondeterministically occur along any of the enabled edges. For simplicity, we write

mi
ψ−→ mj for (mi,mj, ψ) and mi −→ mj for (mi,mj, T).

The syntax of the propositional formula2 ψ is

ψ ::= T | F | AP | (ψ) | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ→ ψ | ψ↔ ψ,
AP ::= c1 · v1 + · · · + cn · vn � d,

where ci, d ∈ � for i = 1, . . . , n, vi ∈ U ∪ Y ∪ X for i = 1, . . . , n, and �∈ {≤, <,
=,�, >,≥}. The operators of ψ have their usual meanings and the truth value of AP

1 We use the term LTI systems for both continuous-time LTI systems and discrete-time LTI
systems when the usage is clear from the context.

2 We use the term propositional formula because the semantics of LTLC is interpreted over each
computation path where all the variables are assigned with a value.



Quantitative Model Checking for a Controller Design 295

depends on the system state. Let a state of a hybrid system s ∈ M × �nu × �ny × �nx

be s = (m,u(t), y(t), x(t)) and let an assignment function θs : U ∪ Y ∪ X → � be
θs(v) = u(t)i if v = ui for some i ∈ [1, nu], θs(v) = y(t)i if v = yi for some i ∈ [1, ny], and
θs(v) = x(t)i if v = xi for some i ∈ [1, nx]. Then, c1 · v1 + · · · + cn · vn � d is true in s iff
c1 · θs(v1) + · · · + cn · θs(vn) � d.

Let μ : �→ M be a function that returns the mode at time t and by overloading the
notations let A : � → �nx×nx, B : � → �nx×nu, C : � → �ny×nx, and D : � → �ny×nu
be the functions that return the system matrices A, B, C and D of the mode μ(t). Then
the system variables satisfy the dynamics equations below.

x(t + 1) = A(t) · x(t) + B(t) · u(t), y(t) = C(t) · x(t) + D(t) · u(t). (2)

Solving x(t) and y(t) in Eq. (2) in terms of x(0), u(τ), A(τ), B(τ), C(τ) and D(τ) for
0 ≤ τ ≤ t,

x(t) =

⎛
⎜⎜⎜⎜⎜⎝

t∏

i=0

A(i)

⎞
⎟⎟⎟⎟⎟⎠ · x(0) +

t−1∑

i=0

⎛
⎜⎜⎜⎜⎜⎜⎝

t−1∏

j=i+1

A( j)

⎞
⎟⎟⎟⎟⎟⎟⎠ · B(i) · u(i),

y(t) = C(t) · x(t) + D(t) · u(t), (3)

where
∏t

i=0 Ai = At · At−1 · · · A1 · A0.

Definition 3. A computation path of a hybrid system H = 〈U,Y, X,M, E〉 is a function
π : � → M × �nu ×�ny ×�nx such that π(t) = (μ(t), u(t), y(t), x(t)). The input, output,
and state trajectories u, y, and x satisfy Eq. (2), and for all t ≥ 0, there is a ψ such that

μ(t)
ψ−→ μ(t + 1) ∈ E and ψ is true in π(t). ��

3 Specifications on Hybrid System Models

Given a hybrid system, we need a way to write some desirable or undesirable properties
about the system. We developed a quantitative temporal logic called Linear Temporal
Logic for Control (LTLC) [16] to formally specify those properties. In this section, we
describe the syntax and semantics of LTLC.

LTLC has the logical and temporal operators of LTL. However, to specify properties
of the infinite states of hybrid systems, its atomic propositions are linear (in)equalities
about the system states.

Definition 4. The syntax of LTLC is

φ ::= T | F | AP | (φ) | ¬φ | φ ∧ ϕ | φ ∨ ϕ | φ→ ϕ | φ↔ ϕ |
X φ | � φ | � φ | φ U ϕ | φ R ϕ,

AP ::= c1 · v1 + · · · + cn · vn � d | H@m,

where ci, d ∈ � for i = 1, . . . , n, vi ∈ U ∪ Y ∪ X for i = 1, . . . , n, �∈ {≤, <,=,�, >,≥},
and m is a mode of a hybrid system H. ��



296 Y. Kwon and E. Kim

Fig. 1. (a) ternary satisfaction relation |= and (b) bounded ternary satisfaction relation |=b.

An implicit meaning of LTLC formulas is as follows. An atomic proposition c1 ·
v1 + · · · + cn · vn � d at time t is true iff the (in)equality is true when the variables are
assigned with their corresponding values at the state π(t). That is, c1 · v1 + · · ·+ cn · vn �
d ⇔ c1 · θπ(t)(v1)+ · · ·+ cn · θπ(t)(vn) � d. H@m is true at time t iff the system is in mode
m at the state π(t). In other words, H@m⇔ μ(t) is m.

The logical operators have their usual meanings. ¬φ is true at t iff φ is false at t;
φ ∧ ϕ is true at t iff both φ and ϕ are true at t; φ ∨ ϕ is true at t iff φ is true at t or ϕ is
true at t. φ→ ϕ is equivalent to ¬φ ∨ ϕ and φ↔ ϕ is equivalent to (φ→ ϕ) ∧ (ϕ→ φ).

The temporal operators have the following meanings. X φ is true at t iff φ is true
at t + 1; � φ is true at t iff φ is always true from t; � φ is true at t iff φ eventually
becomes true at some t′ ≥ t. φ U ϕ is true at t iff φ is true until ϕ eventually becomes
true. To be more specific, φ U ϕ is true iff there is a time t′ ≥ t when ϕ becomes true
and φ is true for all τ ∈ [t, t′). φ R ϕ is equivalent to ϕ U (φ ∧ ϕ) except that φ is not
required to hold eventually. Between U and R operators, the following equivalence
holds ¬(¬φ U ¬ϕ) ≡ φ R ϕ.

Formally, the semantics of LTLC can be defined by the ternary satisfaction relation
|=⊂ Π × � × Φ and the binary satisfaction relation |=⊂ H × Φ, where Π is the set of
computation paths, Φ is the set of LTLC formulas, and H is the set of hybrid system
models. For simplicity, we write π, t |= φ for (π, t, φ) ∈|= and H |= φ for (H, φ) ∈|=.

Definition 5. The ternary satisfaction relation |=⊂ Π × � × Φ is defined in Fig. 1(a).
Using the ternary relation, the binary satisfaction relation |=⊂ H ×Φ is

H |= φ ⇔ φ, 0 |= φ f or all computation paths π o f H.

��
The missing operators have the following equivalence relations. � φ ≡ F R φ, and � φ ≡
T U φ. In addition, φ U ϕ ≡ ϕ ∨ ( φ ∧ X (φ U ϕ) ) and φ R ϕ ≡ (φ ∧ ϕ) ∨ ( ϕ ∧ X (φ R ϕ) )
are commonly used equivalence relations in the model checking process.



Quantitative Model Checking for a Controller Design 297

The satisfaction relation |= of Definition 5 is about computation paths of the infinite
length. However, in practice, it is difficult to track system trajectories unboundedly.
Hence, we developed a bounded model checking algorithm, where infinite paths ending
with a loop before the bound or paths whose satisfiability can be decided before the
bound are considered [3].

To define the bounded satisfaction relation |=b, let us define a helper function
τs,p : �→ [0, s+ p) first. τs,p maps a time step to an index into a loop-ending computa-
tion path such that τs,p(t) = t if t < s+ p; otherwise, τs,p(t) = s+ (t− s) modp. A simple
example of this helper is: τ1,2(t) = 0, 1, 2, 1, 2, . . . when t = 0, 1, 2, 3, 4, . . .. A computa-
tion path ending with a loop of a period p starting from time s satisfies π(t) = π(τs,p(t))
for t ≥ 0.

Definition 6. The ternary bounded satisfaction relation |=b⊂ Π × � × Φ is defined in
Fig. 1(b). Using the ternary relation, the bounded binary satisfaction relation |=b⊂ H×Φ
is

H |=b φ⇔
{
π, 0 |= φ i f π(t) = π(τs,p(t) f or t ≥ 0 and s + p ≤ b
π, 0 |=b φ otherwise.

��
Finally, to bring some intuitions about LTLC model checking algorithm, let us

explain an example. LTLC model checking algorithm converts model checking prob-
lems to a series of Linear Programming (LP) [20] problems.

Example 1. Let H = 〈{u}, {y}, {x}, {M,N}, {M → N,N → N}〉 be a hybrid system, where
M = 〈{u}, {y}, {x}, 1, 2, 5, 0〉 and N = 〈{u}, {y}, {x}, 3,−1, 7, 0〉 are its modes; a specifica-
tion ϕ be ϕ = ¬φ, where φ = (H@M ∧ y ≤ 1) ∧ X (y ≤ 1) ∧ X X (y ≤ 1); and the model
checking problem be H |=2 ϕ.

In the model checking process, we are looking for a counterexample that would
violate the specification ϕ. Hence, we are searching for a computation path π, such that
π, 0 |=2 φ. Based on the ternary satisfaction relation of Fig. 1(b), π should satisfy

π, 0 |=2 H @M and π, 0 |=2 y ≤ 1 and π, 1 |=2 y ≤ 1 and π, 2 |=2 y ≤ 1.

Let μ : � → {M,N} be a mode function, u : � → �, y : � → �, and x : � → �
be the input, output, and state trajectories of H. Observe that depending on the mode
μ(t) at time t, u, y, and x conform either to the dynamics equations of M or to those of
N. The variable assignment at time t is θπ(t)(u) = u(t), θπ(t)(y) = y(t), and θπ(t)(x) = x(t).

Let us check the conditions about the modes first. Based on the edges of H, μ can
be either MNNN · · · or NNN · · · . Because H@M in φ is enforced at t = 0, μ should be
MNNN · · · .

The other inequality conditions can be written as

y(0) ≤ 1 and y(1) ≤ 1 and y(2) ≤ 1.

We rewrite the conditions in term of x(0) and u. Let a vector of variables v be v =
[x(0),u(0),u(1)]T , then because μ = MNNN · · · , the following holds.

y(0) = 5 · x(0) = [5, 0, 0] · v,
y(1) = 7 · (x(0) + 2 · u(0)) = [7, 14, 0] · v,
y(2) = 7 · (3 · (x(0) + 2 · u(0)) − u(1)) = [21, 42,−7] · v.



298 Y. Kwon and E. Kim

Now, the model checking problem can be converted to a feasibility checking problem
as below.

π, 0 |=2 φ⇔ {v : [5, 0, 0] · v ≤ 1, [7, 14, 0] · v ≤ 1, [21, 42,−7] · v ≤ 1} � ∅.
The feasibility of the set of inequality constraints can be checked by solving an LP
problem [20]. There are feasible solutions that satisfy all inequalities. For example v =
0 is a feasible solution. Hence, any computation path with μ(0) = N, μ(t) = M for t ≥ 1,
x(0) = 0, u(0) = 0, and u(1) = 0 violates the original specification ϕ. ��

4 Pole-Placement Control

Automatic control is a process of shaping the system responses to a desirable one and
making the system output follow a reference value. In a feedback control system the
output of a system is fed back to a controller such that a control input to the system can
be generated based on the value. The whole system is called a closed-loop system.

Fig. 2. Pole-placement control: u(t) = −K · x(t) + N · 
(t) is the control law.

The transfer function of a system is a mapping from the Laplace transform of an
input to the Laplace transform of the output [6]. The roots of the numerator of the trans-
fer function are called zeros and the roots of the denominator of the transfer function are
called poles. The responses of the system are determined by the locations of the poles
and zeros called pole-zero constellation.

Pole-placement control is a state space control method that shapes the closed-loop
system responses by placing the poles of the system at predetermined locations [6].
Figure 2 shows a block diagram of a closed-loop system using the Pole-placement con-
trol. The target system, the upper-left-side block of Fig. 2, has the dynamics equations
of Eq. (1). Let the control law be a feedback of a linear combination of the state vari-
ables.

u(t) = −K · x(t),

where K ∈ �nu×nx is a design parameter that we need to decide. Substituting this equa-
tion into Eq. (1), the characteristic equation of the closed-loop system is

det(p · I − A + B · K) = 0.



Quantitative Model Checking for a Controller Design 299

The poles of the closed-loop system are the roots of this polynomial and K can be
computed once the desired locations of the poles are decided.

The control law above decides the transient responses of the system, but we still
need to make the system follow a reference value. Considering the reference input 
(t)
the control law has the following form.

u(t) = −K · x(t) + N · 
(t), (4)

where the value of N ∈ �nu×ny can be computed from A, B, C, D, and K matrices [6].
Equation (4) is the control law of Pole-placement control, represented by the lower
block of Fig. 2.

In this paper, we employed the LTLC model checking technique to decide the loca-
tions of the poles. Specifically, the desirable responses of the closed-loop system were
described in LTLC and the locations of the poles were iteratively searched while guided
by the model checking results.

Model checking an uncontrolled system is straightforward: in a model checking
problem H |= φ, the system dynamics of Eq. (2) can be easily described in H. How-
ever, model checking a closed-loop system is a little trickier unless the dynamics of
the closed-loop system are computed separately. To avoid this additional step and to
make the proposed method readily applicable to many situations, we embedded the
control law in the specification φ. Particularly, the control law was brought in as an
always enforced equality constraint between the input u(t) of Eq. (2) and the RHS of
the control law of Eq. (4). To restrict the computation paths to only those that respect
the control law, we added φc below to a specification as a precondition.

φc = � (u = −K · x + N · 
).
Observe that the equality sign between u and −K · x + N · 
 is not the assignment but
the equality constraint.

5 Controller Design Guided by LTLC Model Checking

To demonstrate the proposed method, we design a helicopter velocity control sys-
tem [6]. We will express properties such as the settling time, the maximum overshoot,
etc. in LTLC and evaluate the effects of measurement errors through model checking.
Guided by model checking results, we will design a Pole-placement controller and make
it robust against the errors.

5.1 Pole-Placement Controller Design

Figure 3 shows a third-order continuous-time dynamics model of the longitudinal
motion of a helicopter. By sampling the continuous-time model at T = 100 ms period,
we acquired its discrete-time dynamics equations. Let w(t) be a wall clock and 
(t) be
a constant input of one that will be used for a clock duration and for a reference input



300 Y. Kwon and E. Kim

Fig. 3. A helicopter model. In the dynamics equations, q and p are the pitch rate and the pitch
angle of the fuselage respectively, v is the horizontal velocity, and r is the rotor angle.

value. Let x(t) be [q(t), p(t), v(t),w(t)]T and u(t) be [r(t), 
(t)]T , then the discrete-time
model obtained by the Zero Order Hold (ZOH) method [21] with 100 ms sampling
interval is

x(t + 1) = A · x(t) + B · u(t), (5)

where the matrices A and B are in the mode n of Fig. 4.
The hybrid system model with this single mode is

H = 〈U,Y, X, {n}, {n −→ n}〉, n = 〈U,Y, X, A, B, 0, 0〉,
where U = {r, 
} is the set of input variables, Y = {} is the empty set for the output
variables, X = {q, p, v,w} is the set of state variables, and n is the LTI system model.

From Eq. (4), the control law is in the form

r(t) = N · 
(t) − Kq · q(t) − Kp · p(t) − Kv · v(t).

Suppose that we want to place the poles of the closed-loop system at 0.7, 0.7 · e π12 i and
0.7 · e− π12 i, then N = 0.6833, Kq = 0.1644, Kp = 5.2374, and Kv = 0.6793.

This control law can be described in LTLC as

φ′c = � (φc), where φc = (r = N · 
 − Kq · q − Kp · p − Kv · v),

φ′
 = � (φ
), where φ
 = (
 = 1).

The desired properties about the closed-loop system can be specified in LTLC as
well. (1) we want to limit the maximum overshoot to 0.1 m/s when the reference input
is 1 m/s. Because the output variable for the velocity is v, using the always operator, this
condition can be written as below.

φ′o = � (φo), where φo = (v ≤ 1.1).

(2) we want to keep the maximum pitch-angle not larger than 0.13 radian. Similarly
to the previous condition, we can make an always formula about the output variable p.

φ′a = � (φa), where φa = (p ≤ 0.13).



Quantitative Model Checking for a Controller Design 301

(3) with regard to the settling-time, we want to maintain the velocity of helicopter
within the interval [0.9, 1.1] m/s from 1.5 s onwards. In general, the time step t used in
LTL model checking processes is not exposed to the specification. However, we can
define a clock like w(t + 1) = w(t) + T · 
(t) and explicitly use it in the specification.
To specify that this settling-time condition is enforced only after 1.5 s, we used the
precondition w(t) ≥ 1.5 in the always formula as below.

φ′s = � (φs), where φs = (w ≥ 1.5→ (0.9 ≤ v ∧ v ≤ 1.1)).

(4) finally, the initial condition that the system is in the relaxed state can be
expressed as below.

φi = (q = 0 ∧ p = 0 ∧ v = 0 ∧ w = 0).

Combining them, the overall specification φ can be constructed as below.

φ = (φi ∧ � φc ∧ � φ
)→ (� φo ∧ � φa ∧ � φs).
One of the practical concerns is that we will need to check the specification over

and over again while searching for the location of poles. Hence, any speed up in the
model checking process will greatly improve the whole design process. An immediate
improvement is to combine the always operators together as below so that the Büchi
automaton Bφ for the specification φ has a smaller number of nodes.

φ = (φi ∧ � (φc ∧ φ
))→ � (φo ∧ φa ∧ φs).
A more significant improvement came from removing the always operators all

together. Checking the bounded satisfaction relation |=b of Fig. 1(b) is usually faster
than its unbounded counterpart |= of Fig. 1(a).3 Observe that, based on Fig. 1(b), always
formula does not satisfy |=b. If we relax the validation to a finite horizon, then we can
reformulate the specification that can be checked by the efficient |=b.

It might be easier to understand the formula to build by examining its counterex-
ample. All counterexamples violate any of φo, φa, or φs conditions at some time. On
the other hand, the computation paths that do not satisfy φc and φ
 before any of φo,
φa, or φs are violated cannot be a counterexample. Likewise, computation paths that
do not satisfy the precondition φi initially should be disregarded as well. To recap, a
counterexample is a computation path that satisfies φi initially and satisfies φc and φ

until any of φo, φa, or φs are violated. Hence, the reformulated specification to check is

φ = φi → ¬( (φc ∧ φ
) U ¬(φo ∧ φa ∧ φs) ).

Note that counterexamples satisfy φi ∧ ( (φc ∧ φ
) U ¬(φo ∧ φa ∧ φs) ).
For a bound of 18, the model checking problem we want to examine is

H |=18 φ.

3 To check the ternary satisfaction relation |=, LTLC model checker has to find accepting runs
ending with a loop and examine the feasibility of the runs generated by the Cartesian product
of the accepting runs and computation paths ending with a loop of all possible periods.



302 Y. Kwon and E. Kim

Fig. 4. LTLC description for the hybrid system model and the specification.

Figure 4 shows an LTLC-Checker description for the model checking problem. In
the description, contents from the # mark to the end of the line are comments. The
description has two main sections: model section for a hybrid model definition and
specification section for describing a model checking problem. Input, output, and
state variables are defined after var tag with their corresponding types suffixed. Using
the variables, LTI systems and edges are defined after mode and edge tags respectively.
A hybrid system comprising the modes and edges is defined after system tag. Regard-
ing the checker description for the operators of LTLC, the logical operators ∧, ∨, ¬,→,
and↔ are /\, \/, ∼, ->, and <-> respectively. The temporal operators X , U , R , � , and
� are X, U, R, <>, and [] respectively. Finally, sys |= spec in 18 after check tag
describes the model checking problem H |=18 φ.

To simplify the example, we restricted the locations of poles to {r, r·e π12 i, r·e− π12 i} and
looked for the range of r that would make the closed-loop system satisfy the require-
ments. While model checking the description of Fig. 4 with the controller parameters
Kq, Kp, Kv, and N computed from the locations of poles, we found that if r is in the
range of 0.700 ≤ r ≤ 0.716, the controller satisfies the requirements. The responses
of a controller when r = 0.715 are in Fig. 5(a) and (b) although their trajectories are
disturbed by errors.



Quantitative Model Checking for a Controller Design 303

5.2 Controller Design with Measurement Errors

Practically all measurements about a system have errors coming from various sources
like device errors, environmental noise, and so on. Here, we design a controller that can
satisfy the requirements despite the presence of measurement errors. We do not assume
that the errors are governed by any dynamics equations or they have any statistical
behaviors. Instead, they can take any values in a range and trying to drive the closed-
loop system to violate the requirements. One can regard the model checking process a
two player game: the errors are trying to attack the system to violate the requirements,
whereas the controller is trying to make the system comply with them.

We consider a case where additive errors are disturbing some or all of state variables
directly. The measurement errors do not alter the underlying system state, but they feed
incorrect state information to the controller and have effects on the computation of the
next control input. The control law is reformulated as below.

u(t) = −K · (x(t) + e(t)) + N · 
(t),
where e : � → �nx is the measurement error function. The state trajectory of the
closed-loop system deviates from the ideal one from the next step onward.

For the helicopter example, let eq(t), ep(t), and ev(t) be the measurement errors
in the pitch rate, pitch angle, and velocity. Including these errors, the control law is
rewritten as below.

r(t) = N · 
(t) − Kq · (q(t) + eq(t)) − Kp · (p(t) + ep(t)) − Kv · (v(t) + ev(t)).

To describe the new control law in LTLC, we added three input variables eq, ep, and
ev respectively for the errors in the pitch rate, pitch angle, and velocity. These variables
are added to the state variables q, p, and v in the control law and disturb the computation
of the next control input value. The control law in LTLC is

φ′c = � (φc), where φc = (r = N · 
 − Kq · (q + eq) − Kp · (p + ep) − Kv · (v + ev)).

Observe that the additive measurement errors do not touch the system dynamics
directly, but disturb the control law and change the state trajectories of the closed-loop
system. During the LTLC model checking process, the checker will try to find error
functions eq(t), ep(t), and ev(t) that can violate the requirements.

For these measurement errors, we assume that they are always within (e, ē) range,
where e = −0.0005 and ē = 0.0005. This error bound condition can be expressed in
LTLC as follows

φ′e = � (φe), where φe = e < eq ∧ eq < ē ∧ e < ep ∧ ep < ē ∧ e < ev ∧ ev < ē.

With the reformulated control law φc and the error bound condition φe, the combined
formula φ to check is as below.

φ = φi → ¬( (φc ∧ φ
 ∧ φe) U ¬(φo ∧ φa ∧ φs) ).

When the locations of the poles are {r, r · e π12 i, r · e− π12 i}, the closed-loop system
satisfies the requirements if 0.703 ≤ r ≤ 0.707.



304 Y. Kwon and E. Kim

Fig. 5. Helicopter responses of the Pole-placement control. (a) System responses with measure-
ment errors of Sect. 5.2 and (b) System responses with mode switches of Sect. 5.3 in every step.

Figure 5(a) shows the responses of the system when r = 0.715. Because r is not in
the safe range of [0.703, 0.707], the model checker reported a sequence of measurement
errors eq(t), ep(t), and ev(t) in the counterexample. Figure 5(a) is plotted when these
error values were added to the states in the control law. Observe that at time 15, the
velocity is slightly below 0.9 and the requirement is violated.

5.3 Controller Design with Nondeterministic Dynamics Changes

Unexpected system dynamics change poses a nontrivial challenge to a controller design.
Some examples of such systems are: an airplane flying at different altitudes shows dif-
ferent aerodynamics, a car changes its dynamics after shifting the transmission gear, the
ADME process of a drug shows different drug kinetics when the drug molecules out-
number the enzymes, and so on. It is desirable or even critical to design a controller that
can maintain its required properties regardless of the system dynamics changes. In this
section, we will demonstrate how LTLC model checking can help design a controller
that is robust against the dynamics changes.

Some smart sensors perform measurements at a specific interval and keep the results
in a buffer. On data request, they return the buffered value without making a new mea-
surement. Suppose that the sensors of the helicopter example sample 10 times dur-
ing a 100 ms discretization interval. Then, depending on when the last measurement
is buffered and when the data request is made, the data can be as much as 10 ms old.
Furthermore, if the data requests and the data measurements are closely aligned, the
readings can be either without any delay or 10 ms stale. To the controller, this buffering
effect may look like a system dynamics change. We model this dynamics change by



Quantitative Model Checking for a Controller Design 305

a hybrid system with two modes: one for the normal sampling and one for the 10 ms
hasty sampling.

Discrete-time system dynamics are obtained from their continuous-time counter-
parts by the ZOH sampling. Let ũ : �→ �nu and x̃ : �→ �nx be continuous-time tra-
jectories for the input and state variables respectively, u′ : �→ �nu and x′ : �→ �nx

be their discrete-time counterparts, and let the continuous-time dynamics equations of
an LTI system be

d
dt
x̃(t) = F · x̃(t) +G · ũ(t).

Let δ be a buffering delay, T be the discretization interval, and T ′ = T − δ, then the
discrete-time model has the following dynamics equations.

x̃((t + 1) · T ′) = eF·T
′ · x̃(t · T ′) +

(

eF·T
′ ·
∫ T ′

0
e−F·τdτ ·G

)

· ũ(t · T ′)
= A′ · x̃(t · T ′) + B′ · ũ(t · T ′),

x′(t + 1) = A′ · x′(t) + B′ · u′(t).
However, because the actual state trajectory is still governed by Eq. (5), and the buffered
measurement is from the actual state x(t),

x′(t + 1) = A′ · x(t) + B′ · u(t). (6)

That is, we need both x′ and x state vectors in the model checking. Because doubling
the state space significantly slows down the model checking process (it quadruples A
matrix and doubles B and C matrices), we reformulated Eq. (6) to make x′ an output
vector as below.

[
x′(t + 1)
u(t)

]

=

[
A′ B′
0 1

]

·
[
x(t)
u(t)

]

=

[
A′ B′
0 1

]

·
[
A B
0 1

]−1

·
[
A B
0 1

]

·
[
x(t)
u(t)

]

=

[
A′ B′
0 1

]

·
[
A B
0 1

]−1

·
[
x(t + 1)
u(t)

]

= C′ ·
[
x(t + 1)
u(t)

]

,

where 0 ∈ �2×3 is a matrix of zeros and 1 ∈ �2×2 is the identity matrix. C′ exist if the
system is controllable. Let an extended state vector be x(t) = [q(t), p(t), v(t),w(t), r′(t)],
and an output vector be y(t) = [q′(t), p′(t), v′(t)], where r′(t) is the previous value of
r(t), and q′(t), p′(t), and v′(t) are the measured pitch rate, pitch angle, and velocity
respectively. Then, the dynamics equations are

x(t + 1) = A · x(t) + B · u(t), y(t) = C · x(t), (7)

where A and B are extended from Eq. (5) to accommodate the new state variable r′ with
the dynamics r′(t + 1) = r(t), and C is the first 3 rows of C′. The elements of C matrix
are in the mode s of Fig. 4.

A hybrid system model can be built as below using the two modes (a normal mode
n and a hasty mode s).

H = 〈U,Y, X, {n, s}, {n −→ n, n −→ s, s −→ n, s −→ s}〉,
n = 〈U,Y, X, A, B, I, 0〉, s = 〈U,Y, X, A, B,C, 0〉,



306 Y. Kwon and E. Kim

where U = {r, 
}, Y = {q′, p′, v′}, and X = {q, p, v,w, r′}. Observe that from mode n, H
can switch its mode to s or remain in n nondeterministically. Similarly, from mode s, H
can move to n or stay in s nondeterministically.

The LTLC specification for the control law is

φ′c = � (φc), where φc = (r = N · 
 − Kq · q′ − Kp · p′ − Kv · v′).
Using the new control law φc, the LTLC formula to check is

φ = φi → ¬( (φc ∧ φ
) U ¬(φo ∧ φa ∧ φs) ).

Like the previous examples, when the locations of the poles are {r, r·e π12 i, r·e− π12 i}, the
closed-loop system satisfies the requirements if 0.700 ≤ r ≤ 0.715. Figure 5(b) shows
the trajectories of input, output, and state variables when r = 0.715 and the system
mode switches between n and s at every step. The figure shows that the closed-loop
system satisfies the requirements despite the mode switches.

6 Conclusion

Using the LTLC model checking technique, required properties about a control system
can be formally specified and the controller can be designed to satisfy the requirements.
We proposed a controller design method guided by LTLC model checking results and
showed that the resulting closed-loop system is robust against errors not just stochasti-
cally disturbing the system but also systematically hampering it as well.

One of the missing elements in the proposed technique is the state observer. Instead
of adding measurement noise directly to the state variables, we are working on extend-
ing the model checking technique to incorporate state observers like a Kalman fil-
ter [22]. We are expecting a more efficient controller design using the probability dis-
tributions of errors.

With the advances in CPS and IoT technologies, computer systems will interact
more tightly with physical systems. Because the behaviors of physical systems are com-
monly modeled by differential equations, a natural way to interface cyber systems and
physical systems is a logic that can handle quantitative values. We believe many quanti-
tative techniques, including the proposed LTLC model checking technique, will produce
many fruitful results.

Acknowledgement. The authors thank the anonymous referees for their helpful comments. This
work was supported by MSIP, Korea under the ICTCCP program (IITP-2017-R0346-16-1007)
and by KEIT under the GATC program (10077300).

References

1. LTLC-Checker. https://sites.google.com/site/youngminkwon
2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)
3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:

Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49059-0 14

https://sites.google.com/site/youngminkwon
https://doi.org/10.1007/3-540-49059-0_14


Quantitative Model Checking for a Controller Design 307

4. Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear hybrid
automata. In: Formal Methods in Computer Aided Design, pp. 65–68. IEEE Computer Soci-
ety (2008)

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
6. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 3rd

edn. Addison Wesley, Reading (1994)
7. Fränzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model checking of

hybrid systems. Formal Methods Syst. Des. 30, 179–198 (2007)
8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,

A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 30

9. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for incremen-
tally stable switched systems. Trans. Autom. Control 55, 116–126 (2010)

10. Henzinger, T.A.: The theory of hybrid automata. In: Annual Symposium on Logic in Com-
puter Science, pp. 278–292. IEEE Computer Society (1996)

11. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 48

12. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23, 279–295 (1997)
13. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from

temporal logic specifications. Trans. Autom. Control 53, 287–297 (2008)
14. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and

motion planning. Trans. Robot. 25, 1370–1381 (2009)
15. Kwon, Y.M., Agha, G.: LTLC: linear temporal logic for control. In: Egerstedt, M., Mishra,

B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 316–329. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78929-1 23

16. Kwon, Y., Kim, E.: Bounded model checking of hybrid systems for control. IEEE Trans.
Autom. Control 60, 2961–2976 (2015)

17. Kwon, Y., Kim, E., Jeong, S., Lee, A.: Quantitative model checking for a smart grid pricing.
In: International Conference on the Quantitative Evaluation of Systems (QEST), pp. 55–71.
IEEE (2017)

18. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol.
Transf. 1, 134–152 (1997)

19. Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of reactive switching protocols from
temporal logic specifications. IEEE Trans. Autom. Control 58, 1771–1785 (2013)

20. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Addison Wesley, Reading
(1989)

21. Oppenheim, A.V., Willsky, A.S.: Signals and Systems. Prentice-Hall, Englewood Cliffs
(1983)

22. Start, H., Woods, J.W.: Probability and Random Processes with Applications to Signal Pro-
cessing, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

23. Tabuada, P., Pappas, G.J.: Linear time logic control of discrete-time linear systems. Trans.
Autom. Control 51, 1862–1877 (2006)

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-540-78929-1_23
https://doi.org/10.1007/978-3-540-78929-1_23


Modelling Without a Modelling Language

Antti Valmari(B) and Vesa Lappalainen

University of Jyväskylä, Jyväskylä, Finland
{antti.valmari,vesa.t.lappalainen}@jyu.fi

Abstract. Developments in computer hardware and programming lan-
guages, in this case C++, have made it feasible to write models of con-
current systems under verification in the programming language, instead
of some established modelling language such as Promela. While this does
not reduce the usefulness of modelling languages, it offers new possibil-
ities that may be advantageous, for instance, when teaching state space
ideas to newcomers or when experimenting with new scientific ideas. In
earlier work, we were able to express everything else fairly naturally in
C++, except the set of transitions. The present study uses C++ lambda
functions to represent naturally transitions that consist of a tail state,
guard, body, and head state. We discuss two implementations, a simple
one and a faster one. We present measurements demonstrating that the
loss of performance compared to the earlier approach is not big. Start-
ing to use our approach is easy, because one only needs to have a C++
compiler and download (not install) one C++ file.

Keywords: Explicit state spaces · Modelling languages
Implementation issues

1 Introduction

In this publication, our focus is on concurrency aspects of systems. Therefore,
by a modelling language we mean a language that has been designed for model
checking concurrency aspects. Often, but not always, the model is an abstraction
that, for instance, replaces the computation of a checksum by a nondeterminis-
tic choice between two values “correct checksum” and “incorrect checksum”. A
programming language, on the other hand, is a language meant for implementing
systems. It need not support concurrency. In an implementation, abstractions of
the kind mentioned above are not made.

Even when focusing on concurrency aspects, and therefore abstracting away
from many details such as the computation of checksums, a model may have
to contain some sequential computation. For instance, in a telecommunication
protocol, the number of retransmission attempts may be counted and compared
against a pre-defined constant maximum value. Therefore, many modelling lan-
guages contain at least some machinery for expressing sequential or functional
computation.

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 308–327, 2018.
https://doi.org/10.1007/978-3-319-94111-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_18&domain=pdf


Modelling Without a Modelling Language 309

If the machinery is powerful enough, then it may be possible to express the
system, instead of just an abstraction, in the modelling language. There may be
a compiler that can compile the model into one or more executables that can
be installed in the hardware components of the system. In this case, the model
is actually a program and the modelling language is a programming language.
That is, a language may be both a modelling and a programming language.

Because of the computational complexity of model checking, it is often the
case (at least with current state of the art) that the system cannot be verified
but its abstraction that focuses on concurrency aspects can. Therefore, although
the distinction between modelling and programming languages is not sharp, we
feel it important to maintain a distinction between modelling and programming.
Modelling is the act of writing something for the purpose of model checking, and
programming is the act of writing something for implementation purpose.

There are tools that can model check systems expressed in ordinary pro-
gramming languages, such as Java PathFinder [21], Bandera (another toolset
for Java) [2], and CBMC (C/C++ bounded model checker) [1]. When they suc-
ceed, they make it possible to forget about the distinction between programming
and modelling. Because of the complexity of verification, they often fail.

A well-designed modelling language, such as Promela [6], FDR-CSP [11], or
CPN ML [7,9], has many advantages. It supports some modelling paradigm very
well. It facilitates efficient model checking. If it has many users, it serves as a
widely known medium for sharing models. If it is powerful and flexible, it can also
be used, albeit perhaps clumsily, for model checking tasks that arise from other
domains than what it was designed for. For instance, encoding place/transition
Petri nets [10] in Promela would be unnatural but certainly possible. The same
can be said about the wolf, goat, cabbage and farmer puzzle, or the knight’s tour.

On the other hand, learning a modelling language is a non-trivial task, in
particular for a newcomer to model checking of concurrent systems. In addition
to learning mundane details of the language, such as how loops and if -statements
are written, the newcomer must grasp the fundamental ideas of concurrent execu-
tion and nondeterministic choice between alternative atomic actions, and various
concepts for expressing properties that should be checked on the model. These
ideas are radically different from everything that many students and software
engineers have encountered before. To avoid state explosion, the newcomer must
also learn to use so little memory in the model that it seems ridiculous from
ordinary programming point of view. Furthermore, installing SPIN, FDR, or
CPN Tools is not absolutely trivial.1

In the case of Java PathFinder, Bandera, and CBMC, the students need not
learn a new low-level syntax. On the other hand, the use of Java or C/C++ as such
makes the above-mentioned fundamental ideas of concurrency and nondetermin-
ism somewhat implicit, making it harder to learn them. In many (albeit not all)

1 The first author tried to install SPIN to Ubuntu 16.04 LTS according to the instruc-
tions at [12]. It failed because of the absence of yacc in the system, but succeeded
after installing yacc. He also tried both of the Linux precompiled executables at
http://spinroot.com/spin/Bin/ in vain.

http://spinroot.com/spin/Bin/


310 A. Valmari and V. Lappalainen

algorithm textbooks such as [3], algorithms are expressed in pseudocode, to avoid
hiding the essence behind low-level implementation issues. We believe that for the
same reason, when introducing model checking to newcomers, it is advantageous
to use a notation that brings concurrency and nondeterminism forward.

From the research point of view, to experiment with an idea, it may be
necessary to make modifications to the input language or other features of the
verification tool in use. SPIN is distributed freely in source form, so making
such modifications is possible. However, because SPIN is a big program, making
modifications to it is far from trivial.

It is often possible to express the state space construction problem in terms
of guarded transitions that act on shared variables. That is, there is a set of
variables, called state variables, and a set of transitions. A transition consists
of a Boolean function on the state variables and of a (possibly complicated)
piece of code that makes assignments to the state variables. The value of the
former tells whether or not the transition is enabled. If the transition is enabled,
then the latter may be executed, assigning new values to zero or more state
variables, based on the earlier values of the state variables. This approach makes
concurrency and nondeterminism explicit.

Petri nets are clearly an instance of this idea. The processes of Promela can
be interpreted in these terms by treating the location of control of each process
as an extra state variable. On-the-fly process creation goes beyond the basic
version of this model. However, it need not be among the first topics that are
taught to a newcomer in model checking.

It is the opinion, and to some extent also the experience, of the first author
that it is easier for newcomers to learn the fundamentals of state spaces with
guarded transitions on state variables, because they are so different from ordinary
programming languages that the learner is not misguided by earlier intuition on
sequential programs. For instance, it is sometimes hard for a newcomer to accept
that a process may choose the second nondeterministic alternative (e.g., timeout)
even if also the first (e.g., inputting a message) is enabled. It becomes less hard,
if the alternatives do not look like an ordinary if -statement with else replaced
by ::. Guarded transitions on state variables are also sometimes a very good
formalism for experimenting with new model checking algorithms.

Of course, this does not mean that one should reject established modelling
languages and switch to guarded transitions on state variables. It only means
that sometimes there are valid reasons for using something else than an estab-
lished modelling language.

The research that led to the present study started in autumn 2014 as an
attempt to give students a small quickly written tool with which they could play
with state space ideas, without having to install any program or learn any new
syntax. The students had strong background in C++ [13] and sequential pro-
gramming, varied but mostly rather weak background in theoretical aspects of
software and computer science, and little background in concurrency. The idea
was that students write the guards and assignment parts of guarded transitions
in C++ (where the assignment parts are not restricted to just assignments, but



Modelling Without a Modelling Language 311

may contain loops, etc.), and the file containing them is #included to a pro-
gram written by the first author which constructs the state space. The students
also write C++ functions that specify some correctness properties, the simplest
example being a function that checks a state and either deems it good or returns
an error message in the form of a character string chosen by the student.

This use of a programming language is fundamentally different from how
Java or C/C++ is used with Java PathFinder, Bandera, or CBMC. The latter
aim at model checking implementations. Therefore, they use the semantics of
the programming language as such. Our approach aims at expressing and model
checking abstractions (in the sense discussed above). The semantics of concur-
rency and nondeterminism are not picked from the native semantics of C++,
but defined outside the definition of C++ and implemented as classes and other
C++ mechanisms. The main goal was not to build a heavy-duty verification tool.
Instead, it was to make it as easy as possible for newcomers to learn essential
ideas behind model checking. Even so, the resulting tool is actually fast.

The first version of the tool suffered from serious weaknesses. Most impor-
tantly, the global state was represented as a single unsigned integer, forcing the
students to represent state variables as bit segments within it. Despite this, the
tool was pedagogically successful. Almost all students understood the idea of
exhaustive search and became able to model such systems as the knight’s tour,
and most students succeeded in modelling a non-trivial concurrent system such
as a token ring protocol. At the same time, the first author wanted to experiment
with a new way [17,18] of applying stubborn set/partial order methods, to solve
the so-called ignoring problem [4,14] much better than before. The tool proved
suitable for this purpose.

To let the modeller use more than the 32 (or 64) bits of a single unsigned
integer to represent the global state, a C++ class state var was written that
looks like an ordinary variable to the modeller but behind the scenes operates on
the data structure that stores the so far constructed states. As a consequence,
all but one aspects of the modelling of concurrent systems and their correctness
properties as systems of guarded transitions on state variables became simple
and intuitive. The remaining problem was that often the transitions had to
be modelled as complicated collections of switch- and if-statements. At that
stage, the tool was given the name ASSET (A State Space Exploration Tool)
and published [16].

Then it turned out that the complicated switch-statements can be avoided
by representing the transitions with the aid of C++ lambda functions. The
present study focuses on this idea.

Section 2 introduces the example system used in this study. In Sect. 3, it
is modelled for ASSET. Natural modelling of transitions relies on two C++
classes written for this purpose. A straightforward version of them is shown in
Sect. 4, and a faster but more complicated version is discussed in Sect. 5. Section 6
presents some measurements comparing the two implementations to each other
and to a model based on the use of switch and if statements. There also is a
tiny comparison to SPIN. The study is concluded in Sect. 7.



312 A. Valmari and V. Lappalainen

2 A Demand-Driven Token Ring

In this section we present the system that is used as the main example in this
publication. It is from [15,16], but we model it in a different fashion.

r0 g0 l0
d1
t1

r1 g1 l1
d2
t2

r2 g2 l2
d3
t3

· · ·
· · ·

dn−1

tn−1

rn−1 ln−1gn−1

d0
t0

C0

S0

C1

S1

C2

S2

Cn−1

Sn−1

Fig. 1. Overall structure of the demand-driven token ring

Figure 1 shows its architecture. It is a demand-driven token ring consisting of
n clients C0, . . . , Cn−1 and n servers S0, . . . , Sn−1. There is precisely one token
in the ring. Each client has a region in its code that is called critical section. The
purpose of the system is to ensure mutual exclusion between the clients, that
is, two clients must never be simultaneously in their critical sections. Client i
requests for access to its critical section by executing the action ri. If server i
does not have the token, it obtains it as is described below. When it has the
token, it grants client i the permission by executing gi. Now client i is in its
critical section. When client i leaves its critical section, it executes li to inform
the server that it may now give the token to the next server.

When necessary, server i demands the token from the previous server by
executing di. The demand progresses in the ring until it reaches the server in
possession of the token. Let that server be number j. When server j no longer
needs the token, it gives it to the next server by executing tj⊕1, where j ⊕ 1 = 0
if j = n − 1 and j ⊕ 1 = j + 1 if 0 ≤ j < n − 1. The token travels in the ring to
server i. The servers through which it travels may serve their own clients before
passing the token to the next server.

ri gi

li0

1

2

3

0: wait until Ci has requested or Si⊕1 needs the token
goto 1

1: wait until I have the token
if Ci has requested then grant it permission; goto 2
else give the token to Si⊕1; goto 0

2: wait until Ci has left its critical section
give the token to Si⊕1; goto 0

Fig. 2. The clients as labelled transition systems (left) and servers in pseudocode (right)

The clients can be easily described precisely. Figure 2 left shows them as
labelled transition systems. Each client has a terminal state (state 3) and a



Modelling Without a Modelling Language 313

transition to it, to model the fact that a client need not request for access to its
critical section if it does not want to. We will now discuss this detail a bit.

The termination branch (or some other modelling trick) is necessary to avoid
a modelling trap. Assume that after getting the token, each server always waits
until its client makes a request, then serves the client, and only then passes the
token forward. This is unacceptable, because it may take a long time before
the client makes the request, forcing other clients to wait unnecessarily. What
is worse, if the server’s own client never requests, then other clients that have
requested are never served. However, if a client consists of just an ri-gi-li-cycle,
then this error is not caught. This is because then the model lacks the possibility
of the server’s own client not requesting in the described situation. The request
transition is then enabled, and will therefore occur, if nothing else can happen in
the system. The termination branch makes it possible for the request transition
to not occur, resulting in a deadlock and thus revealing the error.

The typical way of solving the above-mentioned problem is the use of so-
called weak fairness assumptions as described in [8]. However, the termination
branch is also valid, and has certain advantages. It tends to make non-progress
errors manifest themselves as illegal deadlocks instead of unfair cycles, making
them technically easy to detect. It is also better compatible with so-called partial
order/stubborn set methods that help keep the size of the state space manage-
able. It has a solid theoretical justification via the notion of stable failures in
process algebras. Further discussion can be found in [19] or in Sect. 3 of [17,18].

The labelled transition systems that represent the servers are too big and
unintuitive to be shown here. (Please see [15] for a slight variant.) This is because
the behaviour of a server depends on the presence or absence of a request by
its client, the presence or absence of a demand for the token by the next server,
whether the server itself has expressed such a demand, and whether it has the
token. Figure 2 right describes the servers via a mixture of a state machine and
natural language. In the next section we will see a more precise description in
the form of guarded transitions on state variables.

3 An ASSET Model of the Example System

In this section we illustrate that, using C++ lambda functions, our example
system can be expressed as a guarded transition model, in a readable fashion.

In many modern programming languages, libraries constitute an intermediate
layer between a program and the core language. When a program uses, say, a
sorting subroutine that is picked from a library, it gets a significant piece of code
that is usually not counted as a part of the program, although it is not part of
the core language either. If a better sorting subroutine becomes available, the
program may be easily modified to use it.

Similarly, the model in this section relies on some facilities, one version of
which will be developed in Sect. 4 and an alternative version in Sect. 5. We do
not consider these facilities as part of the model proper, since they play a similar
role as subroutines picked from a library. (We do admit, however, that we have



314 A. Valmari and V. Lappalainen

not yet implemented them in the form of a library, nor made them as generic as
they could be.) To verify the model, one only needs to have a C++ compiler,
download the program asset.cc,2 copy the model with the supporting facilities
to the file asset.model, compile asset.cc, and run the result.3

To model the system for ASSET, we first specify the size of the system. The
simplest way to do this would be

const unsigned n = 6;

However, to make it easier to experiment with systems of different sizes, we
exploit C++ macros as follows:

#ifdef size_par

const unsigned n = size_par;

#else

const unsigned n = 6;

#endif

This means that if the compilation command specifies a value for size par,
then it is used as the size of the system; and otherwise the size is 6. With the g++
compiler, the value is given with the option -Dsize par=10 (with any natural
number in the place of 10).

Next we introduce the state variables. Each client has four states: 0 = idle,
1 = requested, 2 = critical, and 3 = terminated. There are n clients. We model
them with C[n], that is, an array named C whose indices run from 0 to n − 1.
The tokens are modelled with an array T[n] such that T[i] == true if and only
if server i has the token. If we let the transitions of the server read the state
of the client directly, then the server need not store the piece of information
whether the client has requested or not. The same idea can be applied to the
demand. These simplify the server so much that three states suffice: 0 = initial,
1 = waiting for the token, 2 = waiting for the client to leave its critical section.
These states match Fig. 2 right. The following is written to the model:

enum { idle, requested, critical, terminated };

enum { initial, wait_token, wait_client };

state_var C[n], S[n];

state_bit T[n];

The only things above that are not readily available in C++ are state var
and state bit. They are classes that have been defined in asset.cc. From the
point of view of the modeller, variables of their types look like ordinary 8-bit
and 1-bit unsigned integer variables.

However, as was explained in [16], behind the scenes state var takes care of
the memory management needed to store a state into the state space. The class
state bit was added to ASSET when writing the present study. It is important

2 http://users.jyu.fi/%7eava/ASSET/asset.cc.
3 http://users.jyu.fi/%7eava/ASSET/run.

http://users.jyu.fi/%7eava/ASSET/asset.cc
http://users.jyu.fi/%7eava/ASSET/run


Modelling Without a Modelling Language 315

to realize that from the point of view of ASSET, variables of these types do not
store state information. Instead, all global states are stored in a C++ vector
of unsigned integers. (C++ vector is an array with some special services. Most
importantly, it can be extended on-the-fly.)

An individual global state occupies some constant number of successive slots
of the vector. A variable of these types only contains the information needed to
access the value (as seen by the modeller) of the state variable from within the
unsigned integers that represent a single global state. When the model uses a
state variable, its value (as seen by the modeller) is accessed from one or another
global state depending on the value of a variable that contains the index of the
current global state. This variable is part of ASSET and not part of the model.

To fire a transition on a global state, ASSET (not always, see below) copies
the state (as a sequence of unsigned integers) to a free sequence of slots, makes
the latter be the current global state, and asks the model to fire the transition. If
the transition is enabled, the model executes its body, potentially modifying the
global state. ASSET checks whether the resulting state has been encountered
before. If not, it is made an official state of the state space, the sequence of slots
is permanently reserved for it, and a new free sequence of slots is acquired by
extending the vector. If the model replies that the transition is disabled, ASSET
tries the next transition without copying the state, because it has not changed,
because the previous transition did not fire. This speeds up the processing of
disabled transitions. We will see later that the processing speed of disabled tran-
sitions is important.

By default, all state variables hold initially the value 0, also known as false.
However, there must initially be one token in the ring. Therefore, we write

void initialize(){ T[0] = true; }

How to write transitions nicely depends on the modelling paradigm and per-
haps also on the system. Classes, macros, or other means may have to be defined.
In this section we show the transitions of our example system. The first version
of the classes and macros that we used is shown in Sect. 4. To illustrate experi-
mentation with implementation ideas, in Sect. 5 we describe another, more com-
plicated version of the classes that uses precisely the same representation of the
transitions, but speeds up the construction of the state space. We also describe
a small modification to the representation of the transitions that yields further
speed-up.

The transitions of the clients are copied almost trivially from Fig. 2 left using
the names of states. All transitions of the client except the termination transition
are joint with the server. However, each of them has a natural direction of the
signal, as shown by arrowheads in Fig. 1. Each transition is modelled at the tail
of the arrow, that is, at the sender of the signal. Therefore, the transition that
moves the client from requested to critical is modelled as a server transition.

client_tr clients[] = {

client_tr( idle, terminated ), // termination transition

client_tr( idle, requested ), // request access



316 A. Valmari and V. Lappalainen

client_tr( critical, idle ) // leave critical

};

The transitions of the servers are less trivial. We first need a simple helper
function that, given the index of a server, yields the index of the next server.

inline unsigned next( unsigned i ){ return ( i+1 ) % n; }

The transitions of the servers are shown in Fig. 3. Each of them consists of
four components: tail state, guard, body, and head state. A transition is enabled
if and only if the control of the server is at the tail state and the guard evaluates
to true. When the transition occurs, it executes the body and moves the control
of the server to the head state.

server_tr servers[] = {

server_tr(

initial,

GUARD( C[i] == requested || S[ next(i) ] == wait_token ),

BODY(),

wait_token

),

server_tr(

wait_token,

GUARD( T[i] && C[i] == requested ),

BODY( C[i] = critical; ),

wait_client

),

server_tr(

wait_token,

GUARD( T[i] && C[i] != requested && S[ next(i) ] == wait_token ),

BODY( T[i] = false; T[ next(i) ] = true; ),

initial

),

server_tr(

wait_client,

GUARD( C[i] != critical ),

BODY( T[i] = false; T[ next(i) ] = true; ),

initial

)

};

Fig. 3. The transitions of the servers

The first transition moves the server from initial to wait token when there
is a reason for that, that is, its own client has requested or the next server needs
the token. When the token is available, the second transition moves the client
to its critical section, provided that it has requested for access. If it has not



Modelling Without a Modelling Language 317

requested for access but the next server needs the token, and the current server
has it, then the current server gives the token to the next server and returns to
its initial state. The fourth transition is enabled when the server is waiting for
the client to leave its critical section, and the client has done so. When it occurs,
the server gives the token to the next server and returns to its initial state.

After serving its client, the server pushes the token to the next server even if
the latter has not demanded. This prevents the system from executing an infinite
cycle, where a client requests and its server serves it again and again, while some
other client has requested but is never served. In the system as it is in Fig. 3,
after a client is served, the token must circulate the ring before the same client
may be served again. This guarantees that the other clients will be served if they
want.

The verification tool must also be given some properties to check. We first
describe mutual exclusion via a feature that makes ASSET check every state
that it has constructed. The #define switches this feature on. The function
counts the number of clients that are in their critical sections, and returns an
error message, if and only if that number is at least two.

#define chk_state

const char *check_state(){

unsigned cnt = 0;

for( unsigned i = 0; i < n; ++i ){ if( C[i] == critical ){ ++cnt; } }

if( cnt >= 2 ){ return "Mutual exclusion violated"; }

return 0;

}

To see that this function works, we temporarily changed the initialization
function so that it puts two tokens to the system: T[n/2] = T[0] = true;. As a
consequence, ASSET reported !!! Safety error: Mutual exclusion violated
and printed the sequence of states of an execution that led to the error. ASSET
prints each state using a function provided by the modeller. So the modeller
has full control on how each state is printed. Because the sequences leading to
errors may be long, it is often a good idea to print states so densely that one
line suffices. In our experiments we used the following function that encodes the
local states of clients and servers as characters.

const char Cchr[] = { ’-’, ’R’, ’C’, ’ ’ }, Schr[] = { ’i’, ’t’, ’c’ };

void print_state(){

for( unsigned i = 0; i < n; ++i ){

std::cout << Cchr[ C[i] ] << Schr[ S[i] ];

if( T[i] ){ std::cout << ’*’; }else{ std::cout << ’ ’; }

}

std::cout << ’\n’;

}



318 A. Valmari and V. Lappalainen

With n = 6, the sequence of states mentioned above is as follows. The two
tokens are shown as *. They are permanently at positions 0 and 3. We have added
comments that describe what happened in each transition. “to CS” abbreviates
“to its critical section”.

-i*-i -i -i*-i -i Initial state
-i*-i -i Ri*-i -i Client 3 requested.
Ri*-i -i Ri*-i -i Client 0 requested.
Ri*-i -i Rt*-i -i Server 3 moved to wait token.
Ri*-i -i Cc*-i -i Server 3 moved to wait client, taking client 3 to CS.
Rt*-i -i Cc*-i -i Server 0 moved to wait token.
Cc*-i -i Cc*-i -i Server 0 moved to wait client, taking client 0 to CS.

We also used a function that verifies that when the system has terminated, all
clients have terminated on purpose instead of being blocked. If the initialization
function is changed so that it puts no token to the system, then ASSET reports
!!! Illegal deadlock: Client not terminated and shows a sequence of states
where one by one, all clients move to requested.

#define chk_deadlock

const char *check_deadlock(){

for( unsigned i = 0; i < n; ++i ){

if( C[i] != terminated ){ return "Client not terminated"; }

}

return 0;

}

We mentioned earlier that after serving its client, the server pushes the token
to the next server even if the latter has not demanded. To illustrate that this
is important, we temporarily removed the latter T[i] = false; T[ next(i)
] = true; and permanently added the following checking function. It verifies
that the system has no infinite execution where client 0 stays permanently in
requested. This fails in the intentionally broken system, causing ASSET to
report !!! Must-type non-progress error together with a long sequence of
states that ends with a cycle where server 5 repeatedly serves client 5 while
client 0 is in requested. The other clients have terminated and all servers other
than 5 are waiting for the token.

#define chk_must_progress

bool is_must_progress(){ return C[0] != requested; }

An implementation of client tr and server tr will be described in the
next section, and a faster, more complicated implementation in Sect. 5. The
code fragments in this section together with either implementation constitute a
complete model that ASSET can check. Our claim is that for a person who knows
C++ and the basics of state spaces, the model in this section is reasonably easy
to follow. It is also reasonably easy to make experiments by making modifications
to the model. The classes in the next two sections are more difficult, but they
can be re-used in other models.



Modelling Without a Modelling Language 319

4 Simple Transition Classes

In this section we describe a simple version of the generic facilities that the
model in the previous section uses. The idea is that in the future, there would
be a library from which these and other similar facilities could be picked. The
next section discusses a more advanced alternative.

typedef bool (*guard_type)( unsigned );

typedef void (*body_type)( unsigned );

#define GUARD(x) { [](unsigned i) {return x;} }

#define BODY(x) { [](unsigned i) {x} }

class server_tr{

unsigned tail, head; guard_type guard; body_type body;

public:

static unsigned cnt;

server_tr(

unsigned tail, guard_type guard, body_type body, unsigned head

): tail( tail ), head( head ), guard( guard ), body( body ) { ++cnt; }

bool operator()( unsigned i ) const {

if( S[i] != tail || !guard( i ) ){ return false; }

body( i ); S[i] = head; return true;

}

};

unsigned server_tr::cnt = 0;

Fig. 4. The server transition facilities

The facilities needed by the transitions of the server are shown in Fig. 4. A
guard is a function that takes the index of the server and returns a Boolean value,
and a body is a function that takes the index of the server and returns nothing.
First these two types of functions are given names. Then two macros are shown
that facilitate intuitive syntax for the guards and bodies. Each guard and body
is a C++ lambda function, that is, a C++ function that has no name. In the
definition of a lambda function, [] (or something more complicated) appears in
the place of the return type and name of the function.

Each server tr object consists of four components: the tail state, the head
state, the guard and the body. The execution of a server transition is defined
by bool operator(). If the current local state of the server is not the same as
the tail state of the transition, the execution terminates immediately returning
false, indicating that the transition is not enabled. In the opposite case (that
is, if these two states are the same), the guard is evaluated. If the guard returns
false, then again the execution terminates returning false. In the opposite
case, the transition is enabled. Then the body of the transition is executed, the
head state is made the current local state of the server, and true is returned.



320 A. Valmari and V. Lappalainen

With the aid of cnt, the class counts the number of server transitions that
are created. (Being an array instead of a vector, servers has no size operator.)
The last line initializes cnt to 0. The three lines above bool operator() copy
the tail and so on from the command that creates a server transition, to the
corresponding fields of the object. They also increment cnt.

The class client tr is simpler. It only contains tail, head, cnt, and the
operations that manipulate them.

We have described how the client and server transitions become stored in
the arrays clients[] and servers[]. We still have to explain how ASSET uses
these arrays when constructing the state space. Figure 5 shows the code that
implements this functionality.

unsigned nr_server_tr = 0;

unsigned nr_transitions(){

initialize();

nr_server_tr = server_tr::cnt * n;

return nr_server_tr + client_tr::cnt * n;

}

bool fire_transition( unsigned i ){

if( i < nr_server_tr ){

return servers[ i % server_tr::cnt ]( i / server_tr::cnt );

}

i -= nr_server_tr;

return clients[ i % client_tr::cnt ]( i / client_tr::cnt );

}

Fig. 5. The firing of transitions

Before starting to construct the state space, ASSET calls nr transitions(),
to obtain the number of transitions in the model and to perform whatever ini-
tialization is needed. The function calls the initialization function discussed in
Sect. 3, computes the total number of transitions as seen by ASSET, and com-
putes the total number of server transitions as seen by ASSET for a reason
that will be discussed soon. The number of client transitions that we wrote is in
client tr::cnt, and similarly for the server. The total number of transitions
that we wrote is the sum of these. However, from the point of view of ASSET,
the transitions of each client and server are distinct from the transitions of any
other client or server, although we modelled them as parameterized transitions
that got the index of the client or server as the parameter. Therefore, for ASSET,
both numbers of transitions must be multiplied by the number of servers. Let
M denote the total number of transitions as seen by ASSET.

ASSET tries to fire a transition by calling fire transition with the num-
ber of the transition as a parameter. If it returns false, then ASSET treats the



Modelling Without a Modelling Language 321

transition as disabled. If it returns true, then ASSET assumes that the tran-
sition was enabled and has been executed, changing the values of zero or more
state variables. If this happens when ASSET is in the state space construction
mode, then ASSET behaves like any state space construction tool, that is, checks
whether the resulting state has been encountered before, and, if not, stores it in
the state space. Then it either copies the original state to a fresh working area
and tries the next transition on it or, if all transitions have been tried on the
state, chooses the next state for processing.

For fast access, the total number of server transitions, as seen by ASSET, is
stored in the global variable nr server tr. Let that number be denoted with m.
Let s denote the number of server transitions that we wrote (that is, s = 4). So
m = ns. Transition numbers from 0 to m − 1 correspond to the servers. Using
the modulus operator and integer division, fire transition splits the number
to a number in the range from 0 to s − 1 and another in the range from 0 to
n − 1. The former is used for picking a transition from the array servers, and
the latter is given to the picked transition as a parameter. That is, the latter is
the index of the server. The transition is executed by invoking the () operator,
and the returned Boolean value is forwarded to ASSET as the return value of
fire transition.

Transition numbers from m to M −1 correspond to the clients. The function
fire transition first subtracts m from them and then processes them similarly
to the transition numbers that correspond to the servers.

The transition classes developed in this section can be thought of as a middle
layer between the model and the ASSET tool. Further classes could be developed
for different needs. For instance, there could be a non-parameterized class to
model processes that, unlike our clients and servers, exist in only one copy.
Writing a class may be non-trivial, but after it has been written, it may be
easily usable in many different models. This is analogous to data structure and
algorithm libraries.

5 Faster Transition Classes

In the design of the transition classes in the previous section, simplicity was
preferred over performance. First, lambda functions are slower than the methods
used in ASSET models until now. Before the present study, individual transitions
were written as branches of if and switch statements that direct the control
to the right transition on the basis of the number of the transition and the local
states of the clients and servers. The statements were inside fire transition.
In the present study, the execution of an enabled server transition involves the
invocations of two functions whose addresses are picked from an array. This
introduces overhead.

Second, from the point of view of ASSET, the model in Sects. 3 and 4 con-
tains 7n transitions, three for each client and four for each server. Because a
server transition is disabled if its tail state is different from the current local
state of the server, and because the guards of the second and third transition



322 A. Valmari and V. Lappalainen

of the server are in contradiction, at most one of the four transitions of a server
can be simultaneously enabled. For a similar reason, at most two transitions
of a client can be simultaneously enabled. This means that during state space
construction, numerous calls to fire transition are made that yield false
because of the local state of the client or server. In switch-based models, tran-
sitions with different tail states may share the transition number, reducing the
number of unproductive calls to fire transition.

To obtain information on the magnitude of these phenomena, we imple-
mented four additional models. By Simple we refer to the model developed in
the previous sections. Switch3 uses if and switch statements in the traditional,
optimized manner. Also Switch7 uses if and switch statements, but it uses the
same, non-optimal numbering of transitions as Simple. Lambda4 and Lambda3
exploit an improved way of using lambda functions that we will develop in this
section. Lambda4 uses precisely the same transition specifications as Simple, but
uses only 4n transition numbers. In Lambda3, the two transitions that start at
wait token have been merged. Like Switch3, it uses 3n transition numbers.4

The idea is to reduce the number of ASSET transition numbers and eliminate
the tests on the tail states of transitions by sharing transition numbers between
transitions with different tail states. The transitions (as seen by the modeller)
of a server are partitioned to levels. The transitions on the same level share an
ASSET transition number. Each level contains precisely one transition for each
local state of the server, but this transition may be a special transition ℘ that
is never enabled.

Consider the introduction of a new transition whose tail state is t. Location
t on level 0 is checked, then on level 1 and so on, until a location containing ℘
is found or the levels are exhausted. In the latter case, a new level is introduced
and all its locations are initialized with ℘. In both cases, then the new transition
is stored on location t on the level.

When ASSET tries to fire transition number k where k is in the range for the
server transitions, the index i of the server and the level � are computed using
integer division and modulus by the number of the levels. Then the current local
state of the server (that is, S[i]) is used to pick the right transition on the
chosen level. This takes place by using s� + S[i] to index an array, where s is
the number of local states of the server, that is, s = 3. So this is a constant time
operation. Next the guard of the transition is evaluated. If it yields true, the
head state of the transition is assigned as the current local state of the server,
and the body of the transition is executed. These two actions are executed in
this order to make it possible for the body to override the default head state.
This feature is needed in merging the two server transitions whose tail state is
wait token.

Transitions of the clients are partitioned to levels in a similar fashion. Before
sending an ASSET transition number to the firing function of client tr, the
total number of server transitions is subtracted from it, to make the range of
numbers as seen by client tr start from 0.

4 http://users.jyu.fi/%7eava/ASSET/MWML/simple.cc, switch3.cc, and so on.

http://users.jyu.fi/%7eava/ASSET/MWML/simple.cc
http://switch3.cc


Modelling Without a Modelling Language 323

An idea of how complicated this optimized approach is can be obtained from
the fact that Simple consists of 158 lines of code (including comments), Lambda4
of 208, and Lambda3 of 205.

The number of levels needed by a process is the maximum number of transi-
tions of the process that may be simultaneously enabled. It can thus be thought
of as the degree of nondeterminism of the process. This is not necessarily the
same as the maximum outdegree of a local state of the process, because two
transitions that share their tail state may have mutually exclusive guards. The
two server transitions that start at wait token are an example of this.

The degree of nondeterminism is typically small, often 1 or 2. On the other
hand, with the simple technique of the previous section, the number of ASSET
transition numbers used by a process is the same as the total number of transi-
tions of the process. This number is 3 for our clients and 4 for our servers, but it
is often bigger. For instance, the sender of the self-synchronizing alternating bit
protocol in [20] has 22 transitions and its degree of nondeterminism is 2. There-
fore, one might expect that the levelling technique of this section might yield
significant savings with that protocol, but not necessarily with the example of
the present study. The next section reports what happened in our measurements.

6 Measurements

Although our main motivation was pedagogical, it is important that the tool
is not woefully slow. In this section we demonstrate experimentally that it is
actually quite fast. On the other hand, the effect of the improvements in Sect. 5
over the implementation in Sect. 4 will turn out not big on our example.

We analysed the five models introduced in the previous sections with n =
7, n = 8, and n = 9, with various hash table sizes. (Hash table is the data
structure from which ASSET checks whether a newly constructed state has been
encountered before.) For each n, each of the models has the same number of
reachable states and edges. These numbers are shown below. An observation
that we will refer to in the sequel is that the number of edges is roughly 1.04n
times the number of states.

n 7 8 9

States 2 939 328 20 155 392 136 048 896

Edges 21 500 640 167 588 352 1 267 270 272

Table 1 shows the times it took to construct and analyse the state spaces
by ASSET on a machine with 3.60 GHz clock rate and 16 gibibytes of memory.
The analysis algorithm tries to fire each transition twice on each reachable state:
first to construct the set of reachable states as usual, and then as a part of an
algorithm that checks the property specified by is must progress.



324 A. Valmari and V. Lappalainen

Table 1. Running times

n Hash Simple Lambda4 Lambda3 Switch7 Switch3 Seconds

7 23 1.38 1.27 1.18 1.22 1.00 3.33

7 24 1.37 1.27 1.19 1.24 1.00 3.28

8 23 1.31 1.23 1.19 1.10 1.00 45.7

8 27 1.44 1.34 1.27 1.15 1.00 29.6

9 27 1.26 1.19 1.17 1.11 1.00 355

9 28 1.30 1.21 1.17 1.13 1.00 321

The rightmost column shows the analysis times of Switch3 in seconds, and
the five preceding columns show the relation of the analysis time of each model to
the analysis time of Switch3. Although we show two decimals, we point out that
the information content of the latter decimal is limited, because the analysis
times of identical runs on the same machine varied as much as 18 %. So the
second decimal is unreliable. The second column shows the base-2 logarithm of
the hash table size used in the experiments. For each n, the lower row uses the
hash table size that yielded the fastest runs. To obtain information on the effect
of the hash table size, the upper row presents the analysis times with a smaller
hash table size, which is 23 in most cases but 27 with n = 9, because 23 took
too much time. The compiler refused to compile when hash was 29.

The total number of transition numbers (as seen by ASSET) is 7n for Simple
and Switch7, 4n for Lambda4 and 3n for Lambda3 and Switch3. Indeed, the
analysis times of Switch7 are bigger than those of Switch3, and similarly with
Simple, Lambda4, and Lambda3. We saw above that of these 7n, 4n, or 3n
transitions, only about 1.04n were enabled on the average in each state. So in
all models, most calls of fire transition yield false. The processing time of
such calls is thus important. Also, as one would expect, the switch-based models
were faster to analyse than the models that use lambda functions.

However, the differences were at most only 44 %. The effect of the hash table
size is of similar magnitude. So there is little point in spending human effort on
optimizing analysis speed unless the analysis proves too slow. Even then the first
thing is to set the hash table size. A good hash table size is at least roughly the
number of reachable states, but not so big that the hash table uses too much of
the available memory. In the absence of a better idea, the size of the available
memory divided by 100 can be used as a rule of thumb. (An obvious idea for
improving ASSET would be to make it choose the hash table size.)

During the development of the models, they were tested on a small 8 years
old Linux mini-laptop with n = 8 and hash = 23. The analysis times were, of
course, much bigger, because the computer was of much smaller performance.
We feel that they are worth reporting, because there is an interesting difference.
The following table shows the analysis times in seconds. They are user times
measured with the time command, and they include also the roughly 4 s that it
took to compile the model and asset.cc.



Modelling Without a Modelling Language 325

n Hash Simple Lambda4 Lambda3 Switch7 Switch3 Sec

8 23 1.70 1.48 1.33 1.10 1.00 181

On that environment, the overhead of lambda functions is significant. We
speculate that the overhead caused by indirect function calls may have become
less significant over the years, thanks to developments in hardware (and com-
pilers?). Clearly the measurements with a modern machine shown above do not
suggest that lambda functions would be a serious performance problem.

We pointed out in Sect. 5 that the sender of the self-synchronizing alternating
bit protocol has a high ratio of the number of transitions to the degree of nonde-
terminism. So we expected the levelling technique to yield much more dramatic
improvement than it did in the demand-driven token ring example. We tested
two different versions of the protocol on the old slow laptop. The improvement
was small in both cases. It turned out that the manipulation of the fifo-channels
of the protocol was so time consuming that it dominated the analysis time. Each
time when a message is added to a fifo, the first empty location must be found
to put it there, and each time when a message is removed, all contents of the fifo
must be moved one step forward. Outside state space methods, the fifo could
be made faster by implementing it as a ring buffer. However, in a verification
model, such an implementation would cause state explosion by giving the same
actual content many different representations.

We tried our approach also on the dining philosophers’ model at [5]. Transla-
tion from Promela along the lines of Sect. 3 was straightforward. The framework
of Sect. 4 was used, after removing everything related to clients as unnecessary.
We tried up to 14 philosophers, with SPIN max search depth set to 18 000 000
(17 000 000 did not suffice) and no show cnt switched on in ASSET. ASSET
always constructed one state and two edges less than SPIN. When n ≥ 12, its
running time was less than half of that of SPIN. When n < 12, ASSET termi-
nated within one second. The machine was a modern laptop.

7 Conclusions

We illustrated how lambda functions can be used to write fairly natural and
readable models of systems as guarded transitions on shared variables, with tail
and head states. Lambda functions were added to C++ in the 2011 standard,
so they are somewhat recent. Because in our application, the use of lambda
functions involves calling functions picked from arrays, we expected it to add
significant overhead. This proved to be so on an 8 year old mini-laptop, but not
on modern machines. (We reported measurements on one modern machine but
had tried also three others.) In our measurements, the overhead was so small
that there is no point in spending human effort to avoid lambda functions unless
the analysis speed has to be optimized to the extreme. Although we did not
report them, we also made some experiments with virtual functions. Again, the
result was that there is no strong need to avoid them.



326 A. Valmari and V. Lappalainen

We first presented simple classes that made it possible to write natural models
using lambda functions. Then we developed more complicated, faster classes.
However, in our experiments, the motivation for the faster classes was reduced
by the fact that on modern machines, already the simple classes performed not
much worse than highly optimized models relying on switch and if statements.

Our work is initial in that our classes are not universal. Instead, they were
designed according to the needs of our example system. However, especially the
simple classes are straightforward and can thus be mimicked as needed when
modelling other systems. We also successfully re-used a class in another model.
The work is initial also in that only three systems were modelled and experi-
mented with. Because of the strong expressive power of C++, we are convinced
that many further systems can be modelled, and more universal classes than
ours can be developed.

References

1. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

2. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: extracting finite-state models from Java source code. In:
Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International
Conference on Software Engineering, ICSE 2000, Limerick Ireland, 4–11 June 2000,
pp. 439–448. ACM (2000). http://doi.acm.org/10.1145/337180.337234

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

4. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. STTT 12(2), 155–170 (2010). https://doi.org/10.1007/s10009-010-0137-y

5. Floinn, E.Ó.: Model of dining philosophers’ problem in the Promela verification lan-
guage (2016). https://github.com/oflynned/DiningPhilosophersPromela. Accessed
2 May 2018

6. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

7. Jensen, K., Kristensen, L.M.: Colored Petri nets: a graphical language for for-
mal modeling and validation of concurrent systems. Commun. ACM 58(6), 61–70
(2015). http://doi.acm.org/10.1145/2663340

8. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
0931-7

9. Milner, R., Tofte, M., Harper, R.: Definition of Standard ML. MIT Press, Cam-
bridge (1990)

10. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science. An EATCS Series, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.
1007/978-3-642-69968-9

11. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

12. spinroot.com. SPIN Readme. http://spinroot.com/spin/Man/README.html.
Accessed 1 May 2018

https://doi.org/10.1007/978-3-540-24730-2_15
http://doi.acm.org/10.1145/337180.337234
https://doi.org/10.1007/s10009-010-0137-y
https://github.com/oflynned/DiningPhilosophersPromela
http://doi.acm.org/10.1145/2663340
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-1-84882-258-0
http://spinroot.com/spin/Man/README.html


Modelling Without a Modelling Language 327

13. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1997)

14. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

15. Valmari, A.: Composition and abstraction. In: Cassez, F., Jard, C., Rozoy, B.,
Ryan, M.D. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 58–98. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45510-8 3

16. Valmari, A.: A state space tool for concurrent system models expressed in C++.
In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) Proceedings of the 14th
Symposium on Programming Languages and Software Tools (SPLST 2015), Tam-
pere, Finland, 9–10 October 2015. CEUR Workshop Proceedings, vol. 1525, pp.
91–105. CEUR-WS.org (2015)

17. Valmari, A.: Stop it, and be stubborn! In: 15th International Conference on Appli-
cation of Concurrency to System Design, ACSD 2015, Brussels, Belgium, 21–26
June 2015, pp. 10–19. IEEE Computer Society (2015). http://dx.doi.org/10.1109/
ACSD.2015.14

18. Valmari, A.: Stop it, and be stubborn!. ACM Trans. Embed. Comput. Syst. 16(2),
46:1–46:26 (2017). http://doi.acm.org/10.1145/3012279

19. Valmari, A., Setälä, M.: Visual verification of safety and liveness. In: Gaudel, M.-C.,
Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, pp. 228–247. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60973-3 90

20. Valmari, A., Vogler, W.: Int. J. Softw. Tools Technol. Transfer (2017). https://doi.
org/10.1007/s10009-017-0481-2

21. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking pro-
grams. Autom. Softw. Eng. 10(2), 203–232 (2003). https://doi.org/10.1023/A:
1022920129859

https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-45510-8_3
http://dx.doi.org/10.1109/ACSD.2015.14
http://dx.doi.org/10.1109/ACSD.2015.14
http://doi.acm.org/10.1145/3012279
https://doi.org/10.1007/3-540-60973-3_90
https://doi.org/10.1007/s10009-017-0481-2
https://doi.org/10.1007/s10009-017-0481-2
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859


Context-Updates Analysis
and Refinement in Chisel

Irina Măriuca Asăvoae1, Mihail Asăvoae2(B), and Adrián Riesco3

1 Swansea University, Swansea, UK
I.M.Asavoae@swansea.ac.uk

2 CEA LIST, Gif-sur-Yvette, France
mihail.asavoae@cea.fr

3 Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

Abstract. This paper presents the context-updates synthesis compo-
nent of Chisel, a tool that synthesizes a program slicer directly from
a given algebraic specification of a programming language operational
semantics. By context-updates we understand programming language
constructs that induce unconditional control-flow non-sequentiality, i.e.,
gotos or subroutine calls. The context-updates synthesis follows two
directions: an over-approximation phase that extracts a set of poten-
tial context-update constructs and an under-approximation phase that
refines the results of the first step by testing the behavior of the context-
updates constructs produced at the previous phase. We use two experi-
mental semantics that cover two types of language paradigms: high-level
imperative languages and low-level assembly languages and we conduct
the tests on standard benchmarks used in avionics.

Keywords: Generic slicing tool
Programming languages formal semantics · Maude · Synthesis

1 Introduction

Slicing is a program analysis technique that takes a program and a slicing crite-
rion (i.e., a set of variables V ) and produces a program slice (i.e., the program
parts containing language construct units that may directly or indirectly change
the value of the variables in V during execution). We refer to the language
construct units, i.e., the syntactic components of the programming language,
separated by sequencing operators, as instructions. In this paper, we focus on
static slicing, i.e., when the slices are computed without executing the program,
and we refer to it as simply slicing.

This research has been partially supported by the MINECO Spanish project
TRACES (TIN2015-67522-C3-3-R) and by the Comunidad de Madrid project N-
Greens Software-CM (S2013/ICE-2731).

c© Springer International Publishing AG, part of Springer Nature 2018
M. M. Gallardo and P. Merino (Eds.): SPIN 2018, LNCS 10869, pp. 328–346, 2018.
https://doi.org/10.1007/978-3-319-94111-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94111-0_19&domain=pdf


Context-Updates Analysis and Refinement in Chisel 329

Program slicing relies on the evaluation of the data-flow equations over the
control-flow graph of the program. Obviously, besides the data-flow, there is
a need for additional techniques to deal with other language features. In [27]
we find a comprehensive survey on the standard program slicing techniques
applied over different programming language concepts such as standard impera-
tive, pointers, unstructured control flow, and concurrency. Generally, these tech-
niques use an augmented control-flow graph, e.g., the function calls are usually
represented by edges [25] in a call graph.

Meanwhile, the rewriting logic semantics project [15] promotes the program-
ming languages semantics are defined as rewriting systems using Maude [7],
and it is followed by the work in the K framework [24]. Our work complements
the rewriting logic semantics project by developing static analysis methods, in
particular slicing, for programs written in languages with an already defined
rewriting logic semantics in Maude. Our approach analyzes a given language
semantics and synthesizes the necessary information for program slicing. We use
these results to traverse the program term in order to obtain the program slice.

Our approach is implemented in Chisel,1 a Maude tool for generic program
slicing [21]. Chisel takes a programming language semantics, given as a Maude
specification, breaks it into pieces of interest for slicing, and uses these pieces
to augment the program and to produce the program model, which is then
sliced. Chisel synthesizes these semantics to extract operators that produce cer-
tain update patterns in the underlying machine model. These operators are then
used to produce necessary information for slicing, e.g., side-effect instructions.
The final step of Chisel is the program slicing analysis that takes a program
and produces its slice w.r.t. a slicing criterion. With Chisel we target sequential
imperative code without dynamic allocation that is generated from synchronous
designs—a class of applications used in real-time systems, e.g., avionics. We
experiment for now two semantics: one for an imperative language with func-
tions, WhileFun [3,10], and one for the MIPS assembly language.

Chisel aims to evolve into a framework for generic static slicing. The pro-
gression in Chisel design and implementation is described in [3,19,20]. In [19]
we present the methodology for performing intraprocedural slicing and in [3] we
design and implement the interprocedural slicing. In [20] we introduce an algo-
rithm for inferring the data-flow information to automatically detect how the
language constructs work with the memory.

The contribution of this paper is presenting the context-updates synthesis
component of Chisel, where by context-updates we understand programming
language constructs that unconditionally produce non-sequential changes in the
control-flow, such as goto instructions or function calls. The main motivation for
our work is the fact that for the interprocedural slicing algorithm implemented in
Chisel we need to identify the function calls in order to produce the appropriate
control-flow. Until now we gave this information manually, as user input to the
slicing component of Chisel. With the current work we improve the genericity of
Chisel by automatic synthesis of context-updates.

1 https://github.com/ariesco/chisel.

https://github.com/ariesco/chisel


330 I. M. Asăvoae et al.

The context-updates synthesis follows two directions: an over-approximation
phase when we analyze the language semantics specification to extract a set of
potential context-update constructs and an under-approximation phase when
we stress-test the semantics to refine the context-updates obtained at the first
step. The under-approximation phase, introduced in this paper, is justified by
the imprecision of the over-approximation phase for the context-updates. The
imprecision is mostly due to the laxity of the automatic detection of stack-like
memory operators.

1.1 Related Work

Program slicing [28] is a standard analysis technique used to compute program
slices based on certain criteria for a given program input. Slicing without a
program execution input is called static slicing and slicing based on execution
of specific program inputs is called dynamic slicing.

Generic Slicing. Techniques of generic program slicing are proposed in [5,8].
The program slicing of [8] uses an algorithm that extracts slices from a com-
mon intermediate representation named PIM, however it requires a non-trivial
language-dependent transformation between a particular language and PIM. The
work in [8] is generic because it uses a notion of constraints slices to repre-
sent both static and dynamic slices and transforms various slicing methods into
instances of a parametric slicing procedure. Chisel, extended with the proposed
method of context-updates synthesis, considers only static slicing and addresses
genericity from a different angle: it eliminates the need of a language-dependent
translation by working directly on the formal language semantics. Generic pro-
gram slicing is also the focus in [5]. The ORBS tool [5] proposes a technique for
dynamic slicing based on statement deletion. A program slice is iteratively con-
structed by removing statements from the original program and then checking if
the transformation is semantics-preserving w.r.t. the slicing criterion. Checking
the semantics preservation relies on novel testing techniques [14]. The static slic-
ing of Chisel complements the dynamic slicing of ORBS, as it computes static
program slices based on in-depth investigation of the formal language semantics.
And as in [14], Chisel, through the current work, integrates testing based on
path-coverage to improve the precision of the context-updates synthesis, while
it remains generic w.r.t. the language semantics.

Environments and Context-Updates. Functional programming proposes
richer notions of contexts and context manipulation than what we consider in
our framework. Briefly, the standard definition of a context as variables in scope
is extended in functional languages in several directions. On the one hand, there
are high-level constructs such as call/cc - call with current continuation - in the
Scheme language [1], where snapshots of the current control states are manipu-
lated as values (e.g., passed as arguments to function calls). On the other hand,
there are extended notions of contexts to capture security properties, as in the
SLam calculus [9] or parameters of execution platforms [17,26]. Such contexts
are used to track how programs affect an execution environment (e.g., the effect



Context-Updates Analysis and Refinement in Chisel 331

systems [26]) or how programs depend on the execution environment (e.g., the
coeffect systems [17]). In our work, the context is a first-order variable that could
be explicitly or implicitly represented in a programming language semantics.
We identify context changes (i.e., context-updates) in a generic manner, directly
from a formal language semantics given as rewrite theories. Our context-updates
synthesis is more general than the aforementioned work in functional program-
ming, due to the genericity of our approach, i.e., we do not address a particular
type of memory/environment representation as the one in functional program-
ming. Nevertheless, the rich context representations from functional program-
ming could be used to specialize our context-updates synthesis with the inference
of types of variables updates during context changes.

Formal Semantics and Testing. The rewriting logic semantics project [15]
advocates for specialized modeling and reasoning techniques based on formal
semantics of programming languages. In this direction, the K framework [22]
relies on a convenient notation to advance the development of formal language
definitions and it argues that such language definitions should be used directly,
as they are, in tool construction for program reasoning. Apart from its intrin-
sic specification strengths, the K framework proposes a verification environment
called matching logic [23]. Matching logic uses patterns to specify properties over
the program state space and employs symbolic execution and pattern matching
to validate program properties. In this context, program verification with match-
ing logic means to symbolically run the target program on the formal seman-
tics, while the generic techniques behind Chisel allow for the symbolic analysis
the formal semantics in order to synthesize the necessary semantic ingredients
to address the program properties. The approach in [2] implements dynamic
slicing for execution traces of Maude. The semantics is executed for an initial
given state, then dependency relations are computed using a backward trac-
ing mechanism. In comparison, our approach focuses on statically computing
slices for programs and not for given traces (e.g., of model checker runs). The
tool in [18] implements a technique of rule-coverage testing as it generates test
cases from the formal semantics of programming languages given as rewrite the-
ories. Specifically, the semantic rules are employed to instantiate the variables
used by the given program based on a narrowing technique. The refinement
phase of our context-updates synthesis uses path-coverage testing provided by
PathCrawler [13], a specialized plugin of the Frama-C analyzer [12]. PathCrawler
generates test sets for ANSI C code using a combination of symbolic execution
and constraint solving capabilities to ensure complete path-coverage. The cur-
rent work uses test-coverage with PathCrawler to refine the context-updates
synthesis of Chisel as opposed to the aforementioned usage of rule-coverage,
in [4] (which tests individual language constructs but it is agnostic w.r.t. the
program semantics).

The rest of the paper is organized as follows: Sect. 2 overviews the Chisel sys-
tem; Sect. 3 defines and characterizes the context-updates; Sects. 4 and 5 describe
the context-updates synthesis and respectively context-updates refinement;



332 I. M. Asăvoae et al.

Side-Effects
Synthesis

Memory Policies
Context-Updates

Synthesis

S Language Semantics

Term Slicing

C M C
memory

read/write
memory
stack

Fig. 1. Chisel components: the formal language semantics and the syntheses.

Sect. 6 presents the experimental evaluation on avionics benchmarks. Section 7
concludes and outlines future work directions.

2 The Chisel System

We briefly describe in this section the ideas underlying Chisel, which aims to syn-
thesize slicers from programming language semantics specifications. An overview
of Chisel is presented in [21]. Figure 1 summarizes the design structure of the
tool. Namely, we denote by S the Chisel input, i.e., the semantics specification
of a programming language defined in Maude. The memory policies work over
M—the memory component of S, while the syntheses examine C—the language
syntax component of S. Next we describe in Fig. 1 by levels, i.e., the structure
of S, the syntheses that work over components of S, and the term slicing that
synthesizes the slicer based on the results obtained from the above level.

2.1 Programming Language Semantics

The programming language semantics specification S is a Maude theory with
the structure C =⇒ −−→M where:

– C represents the context free grammar defining the language syntax;
– M defines the machine on which the programs are executed; M is formed by

components such as static and dynamic memory where the program variables
are assigned values directly or indirectly, program code section, and so on;

– =⇒ is the set of rules < C,M >⇒< C ′,M ′ > defining how the machine state
M ∈ M is changed into M ′ ∈ M by the syntactic construct(s) C ∈ C, while
C ′ ∈ C represents the syntactic construct(s) that continue the computation;

– −→ over the M component denote the machine operations, e.g., setting the
value of a variable.

Note that the context free grammar production rules as S → S1t1 . . . Sntn are
defined in Maude by operators op t1 ...tn : S1...Sn->S where ti, 1 ≤ i ≤ n ∈ N

are terminal symbols and S, Si,≤ i ≤ n are non-terminals defined by sorts/types



Context-Updates Analysis and Refinement in Chisel 333

in Maude. The sorts sequence S1...Sn is called the arity of the operator while S
is the co-arity.

In S we assume that the syntax has a top non-terminal denoted by C that
is the sort representing the co-arity of the language constructs. For example a
branching instruction is defined as op If Then Else : B C C -> C, where B
is the top sort for Boolean expressions (note that the arity of this operator is
B C C, while the co-arity is C). Hence, the language instructions are assumed
to be defined in S by operators with the C co-arity. Consequently, the context
free grammar denoted by C is equipped with a parser provided by Maude that
transforms a program p into the associated parse tree tp which in rewriting is
called a term (of sort C). Also, an example of rules in =⇒ denoting the command
of the branching instruction is:

crl [If1] : < If be Then C Else C’, m > => < skip, m’’ >

if < be, m > => < T, m’ > /\ < C, m’ > => < skip, m’’ > .

crl [If2] : < If be Then C Else C’, m > => < skip, m’’ >

if < be, m > => < F, m’ > /\ < C’, m’ > => < skip, m’’ > .

where the rule labeled [If1] is executing the Then branch containing the code
C if the condition be evaluates in the memory m to the true value T and the
rule labeled [If2] is executing the Else branch containing the code C ′ if the
condition be evaluates in the memory m to the false value F.

The machine representation in S is given by
−−→M where, for example, the

static memory component is defined by an operator which lists elements of sort
W representing pairs of the variables (of sort Var) with the values (of sort Val).
Note that the pairs are defined by another operator of arity Var Val and co-
arity W . The changes in the machine are denoted by −→ representing a set
of operators and their associated equations or rewrite rules that specify how
the machine internals are working. For example, a variable look-up in the static
memory is defined by an operator op [ ] : W Var -> Val defined by an equation
or a rewrite rule that identifies the pair pr in the static memory w : W containing
the variable v : Var as first element and returns the second element of pr that
represents the value n : Val associated to v in w.

2.2 Memory Policies and Syntheses

By a memory policy mp we understand a subset of memory operators M(mp) =
{o : w → s | o ∈ M s.t. mp(−→o )}, where mp is a property of the arity and co-
arity of o and of −→o , i.e., the rules matching the operator o. Note that s denotes
a sort while w denotes a list of sorts. Also, given a rewrite rule or equation
[r] : lhs → rhs where r is the rule label, lhs, rhs are terms in M then r ∈ −→o iff
the operator o is a subterm of lhs. For example, memory-read policy M(read)
is the set of operators in M that contain in their arity the sort for variables Var
and for static memory W and in their co-arity the sort for values Val . A memory-
write operator ow ∈ M(write) contains in its arity sorts for static memory W ,
variables Var , and values Val , and in its co-arity the static memory sort W .



334 I. M. Asăvoae et al.

Moreover, any r ∈ −→ow replaces in rhs the value parameter of the operator ow
from lhs into the static memory pair containing the variable. The read/write
memory policies are presented in [20].

The syntheses analyze =⇒, the semantics rules in S, in order to identify the
subset of instructions in C that induce a certain change pattern in the memory.
The memory change pattern is defined by a combination of memory policies.
The main assumption of the synthesis methodology is that rules rC in =⇒ trig-
ger rules rM in

−−→M . If rM ∈ −→M follows the assumed memory change pat-
tern (i.e., the memory policies combination) then the instruction i ∈ C that
matches the triggering rule rC ∈=⇒ is selected by the synthesis. For example,
in [19] we describe the side-effects synthesis defined as the set of instructions
i that may trigger a memory write for some variable subterm in i, which we
denote as destination variable, and memory reads for other subterms, which
we denote as sources. In [20] we describe a follow-up methodology that iden-
tifies the source-destination subterms in i by following backwards the subterm
dependencies between rM and rC .

2.3 Term Analysis

Program slicing takes as input a program p and a slicing criterion S consisting of
a set of program variables that are considered the initial side-effect destinations.
In the first step all the instructions in p that have some element of S as a side-
effect destination are added to the slice sp. Next, p is traversed with a fix-point
algorithm that adds to S the side-effect sources in sp and repeats the first step
until S is saturated. In Chisel we implement a state-of-the-art interprocedural
slicing algorithm introduced in [11] that uses call graph information to produce
a more precise slice sp. This part of Chisel is described in [3]. However, for
preserving the genericity of the tool, the call graph had to be inferred from S.
Until now we assumed the call graph node patterns as given by the user where
by call graph node patterns we understand the function call instructions that
represent the source nodes in the call graph. In the current work we give the
methodology for identifying call graph node patterns as context-updates.

3 Context-Updates Definition and Characterizations

In this section we give the definition of context-updates and present two (static
and dynamic) characterizations for this notion. The static characterization ana-
lyzes S to extract the context-updates while the dynamic characterization exe-
cutes the semantics S for the same purpose.

Definition 1. A context-update is a ground term of S that instantiates an
instruction which identifies an unconditional non-sequential control-flow in some
program p in S. The context-updates are the set of syntactic constructs that
match a context-update in some program:

CU := {i ∈ C | ∃p ∈ C a ground term s.t. ∃θ a ground substitution s.t.
θ(i) ≺ p and θ(i) is a context-update}



Context-Updates Analysis and Refinement in Chisel 335

where a ground substitution replaces the non-terminals in the production rule of
the context free grammar denoted by C with words in the language of C, while
given two words w1, w2 we have w1 ≺ w2 if w2 = w w1 w′.

Note that C is a part of S hence we use the complementary terminology terms
instead of words while ≺ is the subterm relation.

The static characterization of CU relies on the observation that in impera-
tive languages with local memory (i.e., the class of languages we consider) the
function call instructions need to save the local context, i.e., a part of the static
memory state. In a standard way, the local context is saved on a stack structure
due to the fact that the rules =⇒ behave as the transition rules in a pushdown
system P where M represents the states in P. Our assumptions regarding to the
structure of the semantics S, i.e., the separation between the language syntax
and the machine, induce the static characterization:

SC: The context-updates of the programming language specified by S is a subset
of instructions in C that must trigger a memory stack change:

SC := {i ∈ C | ∀rC ∈=⇒
if i 	 lhs(rC) then ∃rM ∈ M(stack) s.t. rC triggers rM}

where t1 	 t2 defines the unification relation, i.e., a set of substitutions φ
s.t. φ(t1) is a subterm of t2 and M(stack) is the instantiation of M(mp)
with a stack memory policy.

Note that SC produces an over-approximation of CU due to the abstract nature
of the unification and the stack memory policy.

The dynamic characterization of CU relies on testing the semantics S by exe-
cuting programs from a test set TP using certain testing technique(s) TestTech
to generate input states In(p) for any p ∈ TP . Namely, given a set TP of
test programs p ∈ C, TestTech : TP S → In(M) is a function that for
each program p ∈ TP provides a set of initial states that execute p in S,
i.e., In(p) = {m0 ∈ M | ∃m ∈ M :< p,m0 >

∗⇒< ∅,m >}. We denote
by Πp = {πp | ∃m0 ∈ In(p) s.t. πp =< p,m0 >

∗⇒< ∅,m >} the executions
traces of the program p from the initial states In(p). Furthermore, we denote
Lp = [i1 . . . in] the list of instructions ik ∈ C,∀1 ≤ k ≤ n obtained by a pre-
order traversal of tp–the tree term associated by parsing to the program p. The
dynamic characterization exploits the fact that S is an executable formal seman-
tics as follows:

DC: Assuming that for any execution trace π ∈ Πp (of length |π|) exists the

segmentation π
Lp= w1 . . . wn such that wi is a segment of Lp then the

context-updates are the separator instructions:

DC := {i ∈ C | ∃p ∈ TP ,∀π ∈ Πp s.t. π
Lp= w1 . . . wn and i ∈ π then

∃j : 1 ≤ j ≤ n,∃aj , bj : 0 ≤ aj < bj < |π| s.t.
wj = π(aj)π(aj + 1) . . . π(bj) and i = π(bj)}



336 I. M. Asăvoae et al.

Hence, DC is the set of instructions that appear at the end of some segment w
of Lp in every program execution π that contains them.

Note that DC produces an under-approximation of CU due to the fact that
TP is a subset of all programs in C and TestTech produces a subset of all
possible program executions. In Sects. 4 and 5 we present details of SC and
DC, respectively.

4 Context-Updates Synthesis

In this section we present our approach towards discovering context-updates
based on their static characterization SC.

The methodology we propose for context-updates over-approximation follows
the methodology described in the Sect. 2.2. Namely, we firstly apply sort-based
patterns to define a memory policy that identifies stack structures/memory oper-
ators or, short, memory-stacks. Secondly, using the memory-stacks we construct
a tree T based on =⇒ to discover the set O of language constructs that must
use the memory-stacks. We call T a hyper-tree and we give in this section an
example of such hyper-tree.

The stack memory policy determines M(stack) where stack(−→o ) property
first requires that o is a non-commutative operator with the arity S S and co-
arity S, where S is a sort in M. Moreover, we have two patterns we search
for: explicit and implicit. The explicit memory-stack policy requires that all the
rules in −→o either add or subtract one element. The implicit pattern uses the
conditional rules over the language semantics to produce memory-stacks. The
implicit pattern is produced by the Maude’s evaluation semantics that uses a an
evaluation stack for conditional rules. Namely, the evaluation of the conditional
rule’s body (i.e., the statement between the crl and if keywords) is postponed
until the evaluation of the rule’s condition (i.e., the statement after if keyword)
is completed.

Example 1. We present in this example the memory specification for WhileFun–
an imperative language with assignment, conditional, loops, local variables, an
input/output buffer, and function calls [3,10]. Assuming we have defined the
syntax for the language in a module WHILE-SYNTAX (which includes definitions
for variables, Boolean values, and numeric values), the module MEMORY imports
this module and defines the sorts Env for the environment, which maps variables
to values, and ESt for a stack of environments, which will be used when a new
context is required:

fmod MEMORY is

pr WHILE-SYNTAX .

sorts Env ESt .

subsort Env < ESt .

...

where the subsort indicates that a single environment (of sort Env) represents
a one element stack (of sort ESt), i.e., the environment type Env is a subtype of
the environments’ stack ESt. Constructors of these sorts are defined by using op



Context-Updates Analysis and Refinement in Chisel 337

and the attribute ctor. In this case, we define the empty environment (mt); a
single assignment, which receives a variable and a value2; and the composition of
environments ( ), which is defined as commutative and associative and having
mt as the identity element:

op mt : -> Env [ctor] .

op _=_ : Variable Value -> Env [ctor] .

op __ : Env Env -> Env [ctor comm assoc id: mt] .

Similarly, the stack is built by putting together stacks with the | operator:

op _|_ : ESt ESt -> ESt [ctor assoc] .

The operator | follows the explicit memory-stack policy and it will be used
in the context-update synthesis, as described next in Example 2. The memory
module also contains functions for variables’ update, variables’ look-up, and new
variables allocation.

The synthesis of a set O of context-updates relies on the construction of a
hyper-tree of rules and is similar to the side-effects synthesis described in [19].
The difference here is the fact that at the leaves level we now use a different
memory policy (the memory-stack policy) to filter the paths leading to context-
updates and we use a must strategy, i.e., all rules in =⇒ matching an instruction
have to contain in their associated subtree a memory-stack.

The algorithm implementing this functionality in Chisel is defined by the
operator traverseHypertree in Fig. 2. This operator takes as arguments (i) the
module where the slicing process takes place; (ii) the set of statements contained
in the hypernode that have not been traversed yet, represented as a set of rule
labels; (iii) the list of terms already used to generate hypernodes, which are
used to avoid non-termination by preventing matchings in the conditions; (iv)
the side effects tuple, indicating the operators and rules that may generate side
effects; and (v) an accumulator containing the current result of the hypernode,
including the nodes in the olive and orange set. Using these elements, it computes
the set of basic syntactic language constructs that must be context-updates by
inspecting the conditions and the right-hand side of each rewrite rule in the set
and updating the accumulator.

More specifically, the base case of the function returns the accumulator, while
the recursive case works as follows. It first checks whether the current rule has
been already traversed; in this case it is discarded and the next one is tried
recursively. If it was not traversed and it provokes context updates then it is
added in the orange. Otherwise, the children of the hypernode are computed
with traverseCond and the label is added to the appropriate set depending of
the color of the children.

The auxiliary function traverseCond just discards all conditions but rewrite
conditions, that we assume are the ones in charge of defining the semantics. In
this case we take the lefthand side of the condition and create a new term where
all arguments has been substituted with fresh variables. We use this term to
2 Please note that the underscore symbol represents a placeholder.



338 I. M. Asăvoae et al.

op traverseHypertree : Module QidSet TermList ContextUpdates
HypertreeTraversalResult -> HypertreeTraversalResult .

eq traverseHypertree(M, none, TL, CU, HTR) = HTR .
ceq traverseHypertree(M, Q ; QS, TL, CU, HTR) =

if traversed?(Q, HTR)
then traverseHypertree(M, QS, TL, CU, HTR)
else if Q in CU

then traverseHypertree(M, QS, TL, CU, add2orange(Q, HTR))
else if allOrange?(traverseCond(M, COND, (T, TL), CU,

setAllOrangeVar(true, HTR)))
and not emptyHypernode(M, getCondition(M,Q),

(getLHS(M,Q), TL))
then add2orange(Q, traverseCond(M, COND, (T, TL), CU,

setAllOrangeVar(true, HTR)))
else add2olive(Q, traverseCond(M, COND, (T, TL), CU,

setAllOrangeVar(true, HTR)))
fi

fi
fi .

op traverseCond : Module Condition TermList ContextUpdates
HypertreeTraversalResult -> HypertreeTraversalResult .

eq traverseCond(M, nil, TL, CU, HTR) = setAllOrangeVar(false, HTR) .
eq traverseCond(M, T = T’ /\ COND, TL, CU, HTR) =

traverseCond(M, COND, TL, CU, HTR) .
eq traverseCond(M, T := T’ /\ COND, TL, CU, HTR) =

traverseCond(M, COND, TL, CU, HTR) .
eq traverseCond(M, T : S /\ COND, TL, CU, HTR) =

traverseCond(M, COND, TL, CU, HTR) .
eq traverseCond(M, T => T’ /\ COND, TL, CU, HTR) =

combineHypernodes(
traverseHypertree(M,

getRulesUnifying(M, freshTerm(T),
getRls(M), TL),

TL, CU, HTR),
traverseCond(M, COND, TL, CU, setAllOrangeVar(true, HTR’))

) .

Fig. 2. The traverseHypertree operator in Chisel.

find those rules whose lefthand side unifies with the term and use the function
traverseHypertree to compute the corresponding hypernode.

In this way, traversalHypertree assigns each rule label Q to a particular
set, either orange or olive, where these sets are defined as follows:

orangeSet := {Q ∈ nodes(T ) | ∃Q′ ∈ subtree(Q, T ) : Q′ ∈ ContextUpdates}
oliveSet := {Q ∈ nodes(T ) | ∀Q′ ∈ subtree(Q, T ) : Q′ /∈ ContextUpdates}



Context-Updates Analysis and Refinement in Chisel 339

The orangeSet contains Qs that are the root of a subtree containing context-
updates while oliveSet is context-updates free. Assuming the given theory has
a terminating algorithm for unification,3 the termination of the algorithm in
Fig. 2 is ensured by the fact that the specification S has a finite number of rules,
and that any rule in T that was already added to either orange or olive set
is not unfolded anymore. We give next an example that provides the intuition
about the synthesis process.

CallF→ AsR→ Inc1→ Inc2→ SdE→ IfR1→ . . . → WriteR→ ReadR1→ReadR2

−→ < , > −→ asgP1→asgP2 −→ | −→ < , , , >

rmv1→rmv2→rmv3 −→ −→ |

Fig. 3. The hyper-tree constructed for WhileFun.

Example 2. The first part of the hyper-tree TWhileFun, constructed for WhileFun
semantics, is depicted in Fig. 3. The memory-stack operator discovered here at
the leaves level is | , which is obtained by the explicit memory-stack policy.
The root of TWhileFun contains the language constructs C where we show first
CallF the rule label that specifies the semantics of a function call such as:

crl [CallF] :

< Call fn(actPrms), st, rwb, fs > => < skip, st’’, rwb’, fs >

if fn(Prms){ C } fs’ := fs /\ < actPrms, st > => vals /\

st’ := assignPrms(actPrms, Prms, st | mt) /\

< C, st’, rwb, fs > => < skip, st’’ | lenv’, rwb’, fs > .

The first condition in the rule CallF extracts the function definition from
the function set fs by means of a matching condition; the second condition
evaluates the arguments passed to the function; the third condition uses the
function assignPrms (listed below) to bind the parameters to the values previ-
ously obtained; and the fourth condition evaluates the body of the function in
the new stack of environments.

3 The current implementation of Maude provides a terminating unification algo-
rithm [6] for theories without axioms and for combinations of operators with the
axioms A, C, AC, ACU, CU, U, Ul, and Ur (where A stands for associativity, C for
commutativity, U for identity or unit, Ul for left identity or unit, and Ur for right
identity or unit). If the theory does not fulfill the requirements it would be possible
to implement a mechanism in Chisel to give a warning; however, for the time being
we just focus on the syntheses mechanisms.



340 I. M. Asăvoae et al.

op assignPrms : ExpL VarL ESt -> ESt .

eq [asgP1] : assignPrms(nv, nv, ro) = ro .

eq [asgP2] : assignPrms((N,EL), (X,VVs), mu | ro) =

assignPrms(EL, VVs, mu | remove(ro, X) (X = N)) .

The function assignPrms receives a list of expressions, a list of variables,
and a stack of environments as arguments and traverses the lists removing the
previous value associated to the variable at the top of the stack and binding it to
the new one. Furthermore, the rules rmv1 and rmv2 for the remove operator used
in asgP2 to remove an element X from the commutative list ro are standardly
specified as follows:

op remove : Env Variable -> Env .

eq [rmv1] : remove(mt, X) = mt .

eq [rmv2] : remove(X = V ro, X) = ro .

eq [rmv3] : remove(ro, X) = ro [owise] .

The first equation rmv1 specifies the case when the we search X in the empty
environment mt. The equation rmv1 uses associative-commutative matching to
identify X in the environment. Note that the associative-commutative matching
could be applied for the environment variable of sort Env due to the Env construc-
tor operator which is defined as associative, commutative, and with mt as
unit element, i.e., op : Env Env -> Env [ctor comm assoc id: mt]. The
equation rmv3 is applied in the case when neither rmv1 nor rmv2 cannot be
applied, via the [owise] option.

5 Context-Updates Refinement

This section describes how the dynamic characterization of context-updates is
implemented and used for the refinement of the set O obtained by the context-
updates synthesis.

First, similarly to the stack memory policy, we detect syntactic constructs
that produce code sequencing. Namely, a sequencing syntactic construct is
defined by a non-commutative operator with arity C C and co-arity C. For exam-
ple, in WhileFun a sequencing operator is ; .

We recall that the program p is parsed into a term tree tp based on context
free grammar defined by C. We define the code list Lp as the flattening of p into
a list of instructions (i.e., unit elements in C) obtained by the preorder traversal
of tp’s subtrees that represent the children of some sequencing operator in tp. In
Fig. 4 (i) and (ii) we give an example of a program p and the associated tree tp,
respectively, while (iii) describes the list Lp.

Also, we denote by [Lp]fn the set function definitions in p:

{Lp(k)..Lp(k + n − 1) | Lp(k) ∈ Cfn and (Lp(k + n) ∈ Cfn or Lp(k + n) = ε)
and ∀i = k + 1..k + n − 1 : Lp(i) /∈ Cfn}

where Lp(i) represents the i-th element of the list Lp and Cfn is the set of program
constructs representing function declarations.



Context-Updates Analysis and Refinement in Chisel 341

Read i ; Read j ;
s := 0 ; p := 1 ;
While Not Equal(i, 0) Do

Write (i -. j) ; s := s +. i ;
p := p *. i ; Read i

(i)

[ Read i, Read j, s := 0, p := 1,
While Not Equal(i, 0) Do,
Write (i -. j), s := s +. i,
p := p *. i, Read i ]

(iii)

(ii)

Fig. 4. The code list Lp (iii) for the program p (i) and parsed program term tp (ii).

Second, given a set of execution traces Πp of a program p, as defined in Sect. 3,
we denote its elements by �, i.e., an execution path of p w.r.t. S. Furthermore,
we denote by π the filtering of � w.r.t. the application of the rules in =⇒.
Namely, we only preserve in π the terms �i which match the lhs of a rule
in =⇒. The executions traces � and their filtering into π are obtained using
the Maude debugger tool [18]. We use the standard notation for π, namely |π|
represents the length of the path, while πi, i ∈ {0, . . . , |π|}, represents the i-th
element of the path. Note that π0 is ε, the empty execution list.

Definition 2. The property ϕ w.r.t. Πp is defined as follows:

∀ς ∈ O, ∀� ∈ Πp, π := filterC(�), ∀i ∈ 1..|π| : πi = ς =⇒
(πi−1πi ∈ Lp =⇒ ς ∈ Or)∧
(πi−1πi /∈ Lp ∧ (πi−1, πi) ∈ [Lp]fn =⇒ ς ∈ Og)∧
(πi−1πi /∈ Lp ∧ (πi−1, πi) /∈ [Lp]fn =⇒ ς ∈ Of )

Finally, based on DC, the dynamic characterization of context-updates, the
definition of the property ϕ identifies separator instructions ς into the sets Of

(i.e., the separators that delimitate words pertaining to different functions in
Lp) and Og (i.e., the separators that delimitate words pertaining to the same
function). The remaining operators are residual, part of Or, and are obtained
in O due to the over-approximation character of the context-updates synthesis.
Note that the residues Or are constructs that may execute in programs’ sequen-
tial order given by Lp; the gotos Og and function calls Of are constructs that
break the sequential order for either jumping inside the current function body,
or to another function, respectively. If the sets Or, Og, and Of do not form a
partition we use the remaining elements in O to signal counterexamples for the
context-updates inference phase.

Next we describe the sets TP of benchmark tests, the function TestTech we
used for the experimental semantics WhileFun and MIPS.



342 I. M. Asăvoae et al.

6 Experiments in Chisel

We evaluate our technique for dynamic characterization of context-updates
on a set of programs TP provided by a real-time systems benchmark called
PapaBench [16]. The TestTech function used to generate input test is based on
a path coverage testing provided by the tool PathCrawler [13]. Next, we present
the PapaBench benchmark forming the set TP , followed by the combined work-
flow of Chisel and PathCrawler where PathCrawler is used to generate the input
states In(p),∀p ∈ TP and Chisel uses the Maude debugger to produce the exe-
cution traces Πp,∀p ∈ TP which are later used with ϕ and Lp to refine the set
of context-updates O obtained by SC.

PapaBench is extracted from a real-time design for an Unmanned Aerial
Vehicle (UAV) application. The code presents the characteristics of an avion-
ics application, and by extension, of a real-time design. First, it is modu-
lar at both structural and functional code levels; in this latter case there
are several (exclusive) functional modes. Second, it contains a global schedul-
ing to handle the high-level interleaving of the different functionalities.
PapaBench has two communicating applications: a command management called
fly by wire and a navigation management called autopilot. The function-
alities are referred to as tasks and both these applications execute these
tasks in control loops (i.e., the so-called global schedulings). The application
fly by wire has the following five tasks: T1 - receive radio commands, T2 -
send data to autopilot, T3 - receive data from autopilot, T4 - transmit servos
and T5 - check failsafe. The application autopilot has the following eight tasks:
T6 - manage radio commands, T7 - control stabilization, T8 - send data to fbw,
T9 - receive gps data, T10 - control navigation, T11 - control altitude, T12 - con-
trol climb and T13 - manage reporting.

Semantically, PapaBench features two interacting functionality modes: man-
ual and automatic. In the manual mode, the execution of the radio com-
mand task T1 triggers the task T2 responsible with data transmission to the
autopilot application. In turn, autopilot analyzes this data and responds to
the fly by wire application (i.e., task T8) the necessary information on the radio
commands, task T6 and the flight stabilization, task T7 for processing and issu-
ing commands, in tasks T3 and T4. The autopilot triggers the automatic mode
when it receives GPS coordinates, task T9 and enables navigation, altitude and
climb control, tasks T10, T11 and respectively T12. Finally, fly by wire handles
failure checking with task T5 and autopilot uses a parameter report manager,
as task T13.

We conduct our experiments on the following settings: we run Chisel with
Maude (and Full-Maude) 2.7.1 on a MacBook Pro 2.5 GHz, 4 GB RAM, with
PapaBench version 0.4 (for the WhileFun code) and the gcc 4.7.1 cross-
compiler to obtain MIPS code (and with sufficient traceability to check the
corresponding program slices at the high- and low-levels). The results of the
context-updates synthesis in Chisel are refined with the path-coverage testing of
PathCrawler. Briefly, the PathCrawler tool automatically generates test sets for
a subset of C (and hence of our considered WhileFun language) with complete



Context-Updates Analysis and Refinement in Chisel 343

Application LOC LOC # Vars # Test #Total Branch
fly by wire (WhileFun) (MIPS) cases paths coverage

T1 119 534 19 54 75 95.45%
T2 59 329 21 11 14 100%
T3 82 501 26 37 40 92.86%
T4 50 235 15 60* > 15* >50%*
T5 66 453 16 27 27 92.86%

Application LOC LOC # Vars # Test #Total Branch
autopilot (WhileFun) (MIPS) cases paths coverage

T6 306 1329 31 173 236 87.50%
T7 57 426 19 181 183 100%
T8 54 219 13 48 72 100%
T9 87 617 32 59 97 100%
T10 102 1002 25 60 90 95%
T11 15 90 10 11 11 100%
T12 49 363 23 78 102 100%
T13 240 1535 18 41 400 98.75%

Fig. 5. Refinement phase - testing coverage for PapaBench tasks using PathCrawler.
*Test cases from multiple runs of PathCrawler.

coverage of all feasible execution paths. The path-coverage strategy uses propa-
gation of symbolic values coupled with constraint solving support.

Our context-updates refinement with PathCrawler generates test sets for
imperative code and uses gcc without optimizations to obtain test sets for
the binary code. We report the path-coverage strategy using PathCrawler on
PapaBench, in Fig. 5. Whereas code compilation without optimizations does not
guarantee the exact preservation of the high-level test statements, in this paper
we assume an one-to-one mapping of tests. The last two columns of Fig. 5 (i.e.,
Total paths and Branch coverage) show the PathCrawler results on the total
number of covered paths and the branch coverage factor for the imperative code.
Under the previously mentioned assumption, we consider the same statistics to
the MIPS code. The columns Vars and Test cases present the test size and
respectively the necessary number of test cases to report path coverage. We
use PathCrawler to generate 840 test sets for the 13 tasks of autopilot and
fly by wire, with significant branch coverage for all but task T4. In this case,
PathCrawler guarantees at least a 50% branch coverage (i.e., certain variables
consider restricted domain values) but it fails to return a result for a less con-
straint variable set. We vary the domain values for several variables and collect
multiple instances of PathCrawler on T4 code.

The reduction factors obtained for the context-updates synthesis with path-
coverage refinement are the same (and hence not reported again in Fig. 5) as
in [4], whereas the path-coverage strategy is more powerful than the rule-coverage
strategy. The first results [21] on PapaBench required manual annotation of the
context-updates. In the current work and its previous draft [4] we automatically



344 I. M. Asăvoae et al.

extract the context-updates set which is then refined with path-coverage and
respectively rule-coverage testing. Because the formal language specifications are
given as rewriting logic theories, we initially drafted, in [4], a testing method-
ology based on rule-coverage. As such, we randomly generated test cases in
an attempt to cover a significant part of the program path (because the rule-
coverage is agnostic to the program semantics). For particular programs and
with carefully designed set of random test cases, it is possible to cover the exact
set of language constructs, as we shown in [4]. But in general it is difficult to
report coverage percentages in the rule-based testing. The current work with
path-coverage testing reports, as for [4] the exact results for WhileFun while
for MIPS the over-approximation at the synthesis phase is too large (the syn-
thesized set of context-updates for MIPS includes most of the language instruc-
tions). Hence, the refinement phase, which is an under-approximation of the
synthesized context-updates, is essential for context-updates synthesis in MIPS.
As such, PathCrawler offers accurate path-coverage factors to exercise, in a sys-
tematic way, the most (if not all) context-updates constructs in the MIPS code.

7 Concluding Remarks and Future Work

In this paper we have presented a generic synthesis method for context-updates
synthesis, directly from formal language semantics written in Maude. The syn-
thesis strategy performs a context-updates over-approximation, followed by an
under-approximation refinement based on a path-coverage strategy (provided by
a specialized tool – PathCrawler). We integrated our method in Chisel, a Maude
tool that can perform generic program slicing. We experimented with imperative
and assembly language semantics on a standard avionics application.

As ongoing work we focus on a more complex strategy for the refinement step
by using more evolved testing strategies. For future work, we plan to extend the
language with pointers, hence supporting more complex memory policies based
on a more refined memory model. Finally, our aim is to introduce concurrency
in the framework so that we can cover and test out proposed methodology on a
larger and significant class of programming languages.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments to improve the quality of the paper.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs.
MIT Press, Cambridge (1985)

2. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Combining runtime checking
and slicing to improve Maude error diagnosis. In: Mart́ı-Oliet, N., Ölveczky, P.C.,
Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 72–96.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 3

https://doi.org/10.1007/978-3-319-23165-5_3


Context-Updates Analysis and Refinement in Chisel 345

3. Asăvoae, I.M., Asăvoae, M., Riesco, A.: Towards a formal semantics-based tech-
nique for interprocedural slicing. In: Albert, E., Sekerinski, E. (eds.) IFM 2014.
LNCS, vol. 8739, pp. 291–306. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10181-1 18

4. Asavoae, I.M., Asavoae, M., Riesco, A.: Context-updates analysis and refinement
in Chisel. CoRR, abs/1709.06897 (2017)

5. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS: language-
independent program slicing. In: FSE 2014, pp. 109–120 (2014)

6. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C.: Maude manual (Version 2.7.1), July 2016. http://maude.cs.uiuc.
edu/maude2-manual

7. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-71999-1

8. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: POPL, pp.
379–392. ACM Press (1995)

9. Heintze, N., Riecke, J.G.: The sLam calculus: programming with secrecy and
integrity. In: POPL, pp. 365–377 (1998)

10. Hennessy, M.: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. Wiley, New York (1990)

11. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI, pp. 35–46 (1988)

12. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

13. Kosmatov, N., Williams, N., Botella, B., Roger, M., Chebaro, O.: A lesson on struc-
tural testing with pathcrawler-online.com. In: Brucker, A.D., Julliand, J. (eds.)
TAP 2012. LNCS, vol. 7305, pp. 169–175. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30473-6 15

14. Langdon, W.B., Yoo, S., Harman, M.: Inferring automatic test oracles. In: ICSE,
pp. 5–6 (2017)

15. Meseguer, J., Rosu, G.: The rewriting logic semantics project. TCS 373(3), 213–
237 (2007)

16. Nemer, F., Casse, H., Sainrat, P., Bahsoun, J.P., Michiel, M.D.: Papabench: a free
real-time benchmark. In: WCET (2006)

17. Petricek, T., Orchard, D.A., Mycroft, A.: Coeffects: a calculus of context-dependent
computation. In: ICFP, pp. 123–135 (2014)

18. Riesco, A.: Using big-step and small-step semantics in Maude to perform declar-
ative debugging. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475,
pp. 52–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 4

19. Riesco, A., Asăvoae, I.M., Asăvoae, M.: A generic program slicing technique based
on language definitions. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 248–264. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37635-1 15

20. Riesco, A., Asavoae, I.M., Asavoae, M.: Memory policy analysis for semantics spec-
ifications in Maude. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS, vol. 9527, pp.
293–310. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27436-2 18

21. Riesco, A., Asăvoae, I.M., Asăvoae, M.: Slicing from formal semantics: Chisel.
In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 374–378.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 21

22. Rosu, G.: K - a semantic framework for programming languages and formal analysis
tools. In: Dependable Software Systems Engineering. IOS Press (2017)

https://doi.org/10.1007/978-3-319-10181-1_18
https://doi.org/10.1007/978-3-319-10181-1_18
http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-30473-6_15
https://doi.org/10.1007/978-3-642-30473-6_15
https://doi.org/10.1007/978-3-319-07151-0_4
https://doi.org/10.1007/978-3-642-37635-1_15
https://doi.org/10.1007/978-3-642-37635-1_15
https://doi.org/10.1007/978-3-319-27436-2_18
https://doi.org/10.1007/978-3-662-54494-5_21


346 I. M. Asăvoae et al.

23. Rosu, G.: Matching logic. Logical Methods in Computer Science (2017, to appear)
24. Rosu, G., Serbanuta, T.F.: An overview of the K semantic framework. J. Logic

Algebraic Program. 79(6), 397–434 (2010)
25. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New

York University, Computer Science Department, New York, NY (1978)
26. Talpin, J., Jouvelot, P.: The type and effect discipline. In: LICS, pp. 162–173 (1992)
27. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3), 121–189

(1995)
28. Weiser, M.: Program slicing. In: ICSE, pp. 439–449. IEEE Press (1981)



Author Index

Abe, Tatsuya 196
Al-Bataineh, Omar 216
Asăvoae, Irina Măriuca 3, 328
Asăvoae, Mihail 328

Berthomieu, Bernard 65
Bu, Lei 275

Chalupa, Marek 115

Dal Zilio, Silvano 65
Díaz, Almudena 190
Dubbert, Patrick 103

García, Bruno 190
Gnad, Daniel 103
Gutsfeld, Jens Oliver 153

Havelund, Klaus 26
Henry, Léo 171
Hoffmann, Jörg 103

Iosif, Radu 48

Jéron, Thierry 171

Katoen, Joost-Pieter 85
Kim, Eunhee 292
Kölbl, Martin 255
Kwon, YoungMin 292

Lange, Tim 85
Lappalainen, Vesa 308
Le Botlan, Didier 65

Leue, Stefan 255
Lluch Lafuente, Alberto 103

Majzik, István 235
Markey, Nicolas 171
Müller-Olm, Markus 153

Neuhäußer, Martin R. 85
Nguyen, Hoang Nga 3
Noll, Thomas 85
Nordhoff, Benedikt 153

Panizo, Laura 190
Peled, Doron 26, 275
Pommellet, Adrien 133
Prinz, Frederick 85

Reynolds, Mark 216
Riesco, Adrián 328
Roggenbach, Markus 3
Rosenblum, David 216

Shen, Dachuan 275
Singh, Hargurbir 255
Strejček, Jan 115

Tóth, Tamás 235
Touili, Tayssir 133

Valmari, Antti 308
Vitovská, Martina 115

Zhuang, Yuan 275


	Preface
	Organization
	Abstracts of Invited Papers
	Software Model Checking for Mobile Security – Collusion Detection in \mathbb{K} 
	Efficient Runtime Verification of First-Order Temporal Properties
	A Sample of Formal Verification Research for Embedded Control Software at ONERA
	Program Verification with Separation Logic
	Contents
	Tutorial and Invited Papers
	Software Model Checking for Mobile Security – Collusion Detection in K
	1 Introduction
	2 Android Application and Smali
	3 Collusion
	4 K Framework
	5 Concrete Semantics
	5.1 Instrumentation Principles
	5.2 Configurations

	6 Abstraction Principles Concerning Memory
	6.1 Memory Graph
	6.2 Data Dependency Graph
	6.3 History Projection
	6.4 Sample Instructions in Abstract Semantics
	6.5 A Theoretical Result on These Abstractions

	7 Selected Abstraction Principles Concerning Execution
	8 First Experimental Results
	9 Summary and Future Work
	References

	Efficient Runtime Verification of First-Order Temporal Properties
	1 Introduction
	2 Syntax and Semantics
	3 An Efficient Algorithm Using BDDs
	4 Dynamic Data Reclamation
	5 Relations and Quantification over Seen Values
	6 Implementation
	7 Evaluation of Dynamic Data Reclamation
	8 Related Work
	9 Conclusion
	References

	Program Verification with Separation Logic
	1 How It All Started
	2 Heaps as Resources
	3 Program Verification
	3.1 While Programs
	3.2 Local Reasoning and Modularity

	4 Decision Procedures
	4.1 Basic Logic
	4.2 Inductive Definitions

	5 Conclusions
	References

	Regular Papers
	Petri Net Reductions for Counting Markings
	1 Introduction
	2 Petri Nets
	3 The Reduction System
	3.1 Removal of Redundant Transitions
	3.2 Removal of Redundant Places
	3.3 Place Agglomerations
	3.4 The Reduction System

	4 An Illustrative Example — HouseConstruction
	5 Correctness of Markings Reconstruction
	6 Counting Markings
	7 Computing Experiments
	8 Related Work and Conclusion
	References

	Improving Generalization in Software IC3
	1 Introduction
	2 Preliminaries
	3 Generalization
	3.1 Predecessor Computation
	3.2 Predecessor Cubes
	3.3 WP Inductivity
	3.4 Caching of Generalization Context
	3.5 Upper Bounds from Generalization Context
	3.6 Lower Bounds from Generalization Context

	4 Evaluation
	5 Conclusion
	References

	Star-Topology Decoupling in SPIN
	1 Introduction
	2 Star-Topology Decoupling
	2.1 Decoupling in AI Planning
	2.2 Correctness of Decoupling for Reachability Analysis
	2.3 Complementarity from Other Methods

	3 Implementation in SPIN
	4 Experiments
	5 Conclusion
	References

	Joint Forces for Memory Safety Checking
	1 Introduction
	2 Basic Instrumentation
	3 Instrumentation Improvements
	3.1 Extended Pointer Analysis

	4 Implementation
	5 Experimental Evaluation
	5.1 Contribution of Instrumentation Improvements and Slicing
	5.2 Comparison of Symbiotic, PredatorHP, and UKojak

	6 Related Work
	6.1 Runtime Monitoring Tools
	6.2 Memory Safety Verification Tools

	7 Conclusion
	References

	Model-Checking HyperLTL for Pushdown Systems
	1 Introduction
	2 Pushdown Systems
	2.1 The Model
	2.2 Visibly Pushdown Systems

	3 HyperLTL
	3.1 The Logic
	3.2 HyperLTL and PDSs
	3.3 HyperLTL and VPDSs

	4 Model-Checking HyperLTL with Constraints
	4.1 With One Context-Free Variable and n Regular Variables
	4.2 With One Visibly Pushdown Variable and n Regular Variables

	5 Model-Checking HyperLTL with Bounded Phases
	6 Applications to Security Properties
	6.1 Observational Determinism
	6.2 Declassification
	6.3 Non-inference

	7 Conclusion and Future Works
	References

	A Branching Time Variant of CaRet
	1 Introduction
	2 Preliminaries
	3 CaRet and BranchCaRet
	3.1 BranchCaRet

	4 Model Checking
	4.1 Computing Abstract Successors and Loops
	4.2 Configurations with Call Histories
	4.3 Negation Normal Form
	4.4 An ABPDS for BranchCaRet Model Checking

	5 Conclusion
	References

	Control Strategies for Off-Line Testing of Timed Systems
	1 Introduction
	2 Timed Automata and Timed Games
	2.1 Timed Automata with Inputs and Outputs
	2.2 Timed Games

	3 Testing Framework
	3.1 Test Context
	3.2 Combining Specifications and Test Purposes
	3.3 Accounting for Failure

	4 Translating Objectives into Games
	4.1 Rank-Lowering Strategy
	4.2 Making Rank-Lowering Strategies Win
	4.3 Properties of the Test Cases

	5 Conclusion
	References

	An Extension of TRIANGLE Testbed with Model-Based Testing
	1 Introduction to Triangle Testing Framework
	2 Model-Based Testing
	3 Conclusions
	References

	Local Data Race Freedom with Non-multi-copy Atomicity
	1 Introduction
	2 Observable Equivalence of Data Race Free Programs
	3 General Machine with Non-multi-copy Atomicity
	4 Memory Sharing and Local Data Race Freedom
	5 Formal Theory
	5.1 Concurrent Programs
	5.2 Operational Semantics
	5.3 Assertion Language
	5.4 Local Data Race Freedom and Observable Equivalence

	6 Implementation of Memory Sharing Optimization
	7 Experiments
	7.1 Independent Reads Independent Writes Program
	7.2 Concurrent Copying Garbage Collection Algorithms

	8 Conclusion, Discussion, and Future Work
	References

	A Comparative Study of Decision Diagrams for Real-Time Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Timed Two Phase Commit Protocol (T2PC)
	2.2 The Timed Automata Model and Real-Time Temporal Logic
	2.3 The Zone-Based Abstraction Technique
	2.4 Data Structures for Representing Zone Graphs

	3 Modeling the Protocol in the Three Tools
	3.1 UPPAAL Model Checker
	3.2 Rabbit Model Checker
	3.3 RED Model Checker

	4 Correctness Conditions of the T2PC Protocol
	5 Comparing the Performance of the Three Tools
	6 Conclusion
	References

	Lazy Reachability Checking for Timed Automata with Discrete Variables
	1 Introduction
	2 Background and Notations
	2.1 Timed Automata
	2.2 Symbolic Semantics

	3 Algorithm for Lazy Reachability Checking
	3.1 Adaptive Simulation Graph
	3.2 Reachability Algorithm
	3.3 Abstraction Refinement
	3.4 Example

	4 Evaluation
	5 Conclusions
	References

	From SysML to Model Checkers via Model Transformation
	1 Introduction
	2 Preliminaries
	3 Model Transformation
	4 Case Study
	5 Conclusion
	References

	Genetic Synthesis of Concurrent Code Using Model Checking and Statistical Model Checking
	1 Introduction
	2 Genetic Programming
	3 GP Based on Model Checking and Statistical Model Checking
	3.1 A Running Example
	3.2 Replacing Model Checking with Statistical Model Checking
	3.3 Problems and Solutions in Using SMC for Fitness Function

	4 Experiments
	4.1 Synthesis of Solutions for Mutual Exclusion
	4.2 Synthesizing Solutions for Round Robin Scheduling
	4.3 Synthesizing Solutions for Dining Philosopher
	4.4 Performance Evaluation

	5 Conclusions
	References

	Quantitative Model Checking for a Controller Design
	1 Introduction
	2 Hybrid System Model
	3 Specifications on Hybrid System Models
	4 Pole-Placement Control
	5 Controller Design Guided by LTLC Model Checking
	5.1 Pole-Placement Controller Design
	5.2 Controller Design with Measurement Errors
	5.3 Controller Design with Nondeterministic Dynamics Changes

	6 Conclusion
	References

	Modelling Without a Modelling Language
	1 Introduction
	2 A Demand-Driven Token Ring
	3 An ASSET Model of the Example System
	4 Simple Transition Classes
	5 Faster Transition Classes
	6 Measurements
	7 Conclusions
	References

	Context-Updates Analysis and Refinement in Chisel
	1 Introduction
	1.1 Related Work

	2 The Chisel System
	2.1 Programming Language Semantics
	2.2 Memory Policies and Syntheses
	2.3 Term Analysis

	3 Context-Updates Definition and Characterizations
	4 Context-Updates Synthesis
	5 Context-Updates Refinement
	6 Experiments in Chisel
	7 Concluding Remarks and Future Work
	References

	Author Index



