
Notes on Newton’s Method After 1960

José Mario Martínez

Abstract Some Newtonian ideas will be reported with respect to research areas that
emerged in numerical Mathematics after, approximately, 1960. For the problems
of solving nonlinear equations and unconstrained optimization, Quasi-Newton
methods, which stayed in the mainstream of numerical optimization for more than
30 years, will be motivated and discussed. The topic of complexity in unconstrained
optimization will be introduced and some fundamental results will be rigorously
proved. Newtonian algorithmic schemes in Linear Programming, which emerged
after 1984 and presently represent competitive alternatives for large-scale problems,
will be commented. Finally, surprising negative results concerning the capacity
of Newton’s method to detect approximate solutions of constrained optimization
problems will be reported.

1 Introduction

Every undergraduate student of Mathematics, Physics, or Engineering learns that
Newton’s method is a powerful tool for solving equations and that this method
converges very fast if the initial approximation is reasonably close to the solution.
Moreover, in most situations, fast convergence occurs even if the initial approx-
imation is poor. Fast convergence means, in general, “quadratic” convergence, a
property that guarantees that the number of correct digits at some iteration approxi-
mately doubles the corresponding number at the previous one. Later, students learn
that there are many methods in numerical mathematics that are called “Newtonian”
or, simply, “Newton” for solving different practical problems. Popular knowledge
about these methods guarantee that they all are “good,” in the sense that they are
very fast close to the solutions and that enjoy other theoretical and practical excellent
properties. More recently, it became accepted the idea that, not only “every Newton
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Fig. 1 Newton’s iteration for
solving a scalar equation

is good” but, also, “every good is Newton,” because several methods that were well
known as being effective and having nice convergence properties were shown to be,
in one sense or another, versions of Newton’s method [22].

Newton’s idea is the following: Given a complicated problem and some approx-
imation to its solution, one builds a simpler and solvable problem and we postulate
that its solution is a better approximation to the solution of the original problem
than the previously computed approximation. The simpler problem is built using
information available at the current approximation.

The Newtonian paradigm can be applied to many problems, even nonmath-
ematical ones. The most simple case consists of finding a solution of a scalar
equation g(x) = 0. If xk is an approximate solution, the presumably better
approximation xk+1 is obtained by solving (when possible) the linear equation
g(xk) + g′(xk)(x − xk) = 0. See Fig. 1.

In the same way, we define the Newtonian iteration when the problem is to solve
a nonlinear system of equations g(x) = 0, where g : Rn → Rn. In this case, the
Jacobian g′(xk) is an n × n matrix and finding the new iterate involves the solution
of an n × n linear system of equations.

One of the most popular applications of solving nonlinear systems comes from
the unconstrained minimization of scalar functions. If f : Rn → R, g = ∇f is its
gradient, and H = g′ = ∇2f is its Hessian, the iterate defined by the solution of
g(xk) + g′(xk)(x − xk) = 0 defines a stationary point (perhaps a minimizer) of the
quadratic approximation f (xk) + 〈g(xk), x − xk〉 + 1

2 (x − xk)T H(xk)(x − xk).
Thus, the simple problem that corresponds to the minimization of an n-

dimensional scalar function f consists of minimizing a quadratic function, a
problem that, in turn, is roughly equivalent to solving a linear system of equations.

We use to say that the simple problem associated with every iteration of a
Newtonian method is a Model of the original problem. In unconstrained opti-
mization, Newton deals with quadratic models, although different interpretations
are possible, as we will see later. Before 1960, it was believed that minimizing
functions with more than 10 variables employing Newton’s method was very hard



Notes on Newton’s Method After 1960 205

because of complications solving “big” linear systems and the computation of
second derivatives. These complications motivated the upraise of the quasi-Newton
age, as we will see in Sect. 2.

2 Quasi-Newton Age

The quasi-Newton age arose around 1960 associated to the unconstrained minimiza-
tion problem:

Minimize f (x), (1)

where f : Rn → R. The Steepest Descent method (or Cauchy’s method, or
Gradient method [10]) for solving (1) proceeds, at each iteration, computing the
gradient g(xk) and performing a “line search” along that direction with the aim of
obtaining a better approximate solution:

xk+1 = xk − tkg(xk), (2)

where tk > 0 is such that, at least, f (xk+1) < f (xk). If g(xk) does not vanish,
this condition is always verified if tk is small enough because the direction −g(xk)

is a “descent direction.” Many alternatives exist for deciding the most convenient
value of tk . Cauchy’s method is easy to implement and relatively cheap since
performing one iteration only needs computation of function values and a gradient
(no Hessians), while linear algebra calculations associated with (2) are trivial.
Moreover, memory requirements for the implementation of (2) are minimal.

However, the sequences generated by the Cauchy method usually converge to
stationary points of (1) (points where g(x) = 0) very slowly. This is because
Cauchy’s method reflects a “greedy” way of taking decisions. According to the
steepest descent point of view, the decision maker stays at xk , verifies the character-
istics of its problem in a very small neighborhood of the present approximation, and
takes a decision based only on such “myopic” observation. Of course, problems do
not behave far from the actual approximation in the same way as they do close to it.
For this reason, the number of iterations needed to achieve good solutions could be
unacceptably large.

On the other hand, Newton’s method seems to work in a very different way.
Instead of taking a quick decision based on local considerations, Newton “stops
to think” about the choice of a good model that, perhaps, should reflect problem
features in a smarter way. This model will correspond to the minimization of the
quadratic that coincides with the objective function f up to its second derivatives
(not only the first ones). The consequence is that, in general, the goal of obtaining
very good approximate solutions in a small number of iterations is achieved but,
on the other hand, the computational effort to perform an iteration is considerably
bigger than the one required by Cauchy.
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The dream of the pioneers of the quasi-Newton age [13, 18] was to devise
algorithms for solving (1) that, at the first iterations, behave as Cauchy and, at the
end, behave as Newton. The rationale behind this idea is that, at the beginning, when
we are probably far from the solution, there is no reason to lose a lot of time building
or solving a good model, whereas, close to the solution (at the end), the Newtonian
model reflects very accurately the original problem and, therefore, Newtonian
iterations produce very fast approximations. (The local convergence properties
of Newton’s methods for solving nonlinear systems were known several decades
ago.) On the other hand, quasi-Newton iterations should involve considerably less
computational effort than Newton steps.

By (2), the gradient method with line searches takes the form

xk+1 = xk − tkHkg(xk) (3)

with Hk = I (the Identity matrix) for all k ∈ N. Moreover, a line-search version of
Newton’s method also has the form (3) with Hk = ∇2f (xk)−1. Should it be possible
to devise a method of the form (3) in which H0 = I and Hk ≈ ∇2f (xk)−1 for k

large with moderate computational cost per iteration? Methods with such purpose
were ultimately called “quasi-Newton methods” and their development and analysis
dominated mainstream research in computational optimization for more than three
decades.

By the Mean Value Theorem, we have that:

[ ∫ 1

0
∇2f (xk + tsk)dt

]
sk = yk, (4)

where

sk = xk+1 − xk and yk = g(xk+1) − g(xk).

Then, since the matrix [∫ 1
0 ∇2f (xk + tsk)dt] is an average of the Hessians of f

in the segment [xk, xk+1], it turns out that the Hessian ∇2f (xk+1) approximately
satisfies the “secant equation”

Bsk = yk. (5)

The secant system has n equations and n2 unknowns (the entries of B). The
number of unknowns can be reduced to (n + 1)n/2 considering that Hessians are
symmetric matrices and (5) defines an affine subspace in the space of matrices. If
Bk is an approximation to ∇2f (xk), it is natural to define Bk+1, the approximation
to ∇2f (xk+1), as some kind of projection of Bk on the affine subspace defined by
the secant equation. For example, the BFGS method, which is the most popular
quasi-Newton method for unconstrained minimization, is defined by:

xk+1 = xk − tkB
−1
k g(xk)
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and

Bk+1 = Bk + yk(yk)T

(yk)T sk
− Bks

k(sk)T Bk

(sk)T Bksk
. (6)

The interpretation of (6) as a (variable with respect to xk) projection on the set of
solutions of (5) may be found in the classical book by Dennis and Schnabel [15].

The BFGS method may be defined without explicitly mentioning the inverse of
any matrix, since the inverse of Bk+1 in (6) can be computed in terms of the inverse
of Bk by means of a judicious application of the Sherman–Morrison formula [19].

The line-search parameter tk is used to guarantee sufficient descent of f (xk+1)

with respect to f (xk). Algorithms for choosing tk differ in degrees of sophistication
and cause different numerical behaviors of the methods so far implemented.

Quasi-Newton methods were generalized to solving arbitrary nonlinear systems
of equations by Broyden [5] and many followers. Generalizations include taking
advantage of specific structures (for example, nonlinear least squares problems),
using sparsity patterns of Hessians or Jacobians, direct updates of factorizations
[25], nonlinear systems coming from constrained optimization, and many others.

Roughly speaking, as one can expect quadratic local convergence from Newton’s
method, superlinear convergence is usually observed, and many times proved, in
quasi-Newton algorithms. The pioneers’ project of devising methods that smoothly
evolve from Cauchy behavior to Newtonian behavior was only partially successful.
Most practitioners believe that, when it is affordable to use Newton in unconstrained
optimization or nonlinear systems, the Newton alternative is more efficient than
quasi-Newton ones. The motivation for quasi-Newton methods decreased with the
development of algorithmic differentiation [21], sparse matrix techniques [16],
and the use of iterative methods for solving the Newtonian linear equation [14].
However, quasi-Newton ideas emerge frequently in modern optimization in com-
bination with new techniques for multiobjective problems, equilibrium problems,
constrained and nonsmooth optimization, and many others.

3 Linear Programming

Linear Programming is the problem of minimizing a linear function subject to linear
inequalities and equalities. Every Linear Programming problem can be reduced to
the Standard Form:

Minimize cT x subject to Ax = b and x ≥ 0. (7)

A point x ∈ Rn is a solution of (7) if and only if it satisfies the KKT conditions:

c + AT y − z = 0, xj zj = 0 for all j = 1, . . . , n, (8)
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for some y ∈ Rm and z ≥ 0, together with the feasibility conditions

Ax = b, x ≥ 0. (9)

Moreover, if the Linear Programming problem has a solution, then one of its
solutions is a vertex of the polytope defined by (9). See [28] and many other
textbooks.

The latter property motivates the best known method for solving Linear Pro-
gramming problems: The Simplex Method, invented by George Dantzig in 1949
[12], proceeds visiting vertices of the polytope (9) always reducing the objective
function value. Since the number of vertices is finite, the Simplex Method finds a
solution of (7), when such a solution exists, in a finite number of steps.

The Simplex Method was the standard procedure for solving Linear Pro-
gramming problems until 1984 and, perhaps, still is. However, at least from the
theoretical point of view, this method has a drawback: In the worst case, it may need
to visit all the vertices of a polytope for finding a solution and, since the number
of vertices grows exponentially with the number of variables, the computer time
needed to solve a large problem may be, in the worst case, unaffordable. This
drawback motivated, in 1979, the introduction of a new method by Khachiyan
[24] who showed that a solution with arbitrary chosen precision can be found
in polynomial time. However, Khachiyan’s method was shown very soon to be
ineffective in practical computations.

In 1984, Karmarkar [23] introduced a new method for Linear Programming,
enjoying similar convergence properties as Khachiyan’s method, for which he
claimed that, especially for large problems, the performance was orders of mag-
nitude better than the performance of the Simplex algorithm. His results and
claims attracted the attention of the whole optimization community. Karmarkar’s
method, whose practical performance could not be reproduced by independent
experiments, introduced new ideas, as projective transformations, approximation
by means of interior points, and potential functions, that seemed to be in the kernel
of polynomiality proofs and practical performance. Later, it was verified that the
only new idea that was crucial both for proofs and for practical behavior was the
interiority of the sequence of iterates generated by the method. See [20].

Independently of the eventual discard of the original Karmarkar’s method,
his work had the merit of motivating a lot of fruitful research that showed that
challenging alternatives to the Simplex method may exist. Ultimately, the challenge
of the so-called Interior Point methods motivated an enormous improvement in
Simplex implementations.

Modern descriptions of Interior Point methods are closely related to the Newton
paradigm. In fact, from (8) and (9) we may extract the nonlinear system of
equations:

c + AT y − z = 0, Ax = b, xj zj = 0 for all j = 1, . . . , n. (10)
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If (x, y, z) is a solution of (10) such that x ≥ 0 and z ≥ 0, we have that x is a
solution of (7).

But, (10) is a nonlinear system of equations with 2n+m equations and unknowns,
then using Newton’s method is an interesting alternative for its solution. On the other
hand, we are interested only in solutions such that x ≥ 0, z ≥ 0, which justifies the
decision of starting with x0 > 0, z0 > 0 and to maintain xk > 0, zk > 0 throughout
the calculations. It is not recommendable to admit xk

j = 0 or zk
j = 0 because,

in this case, Newton’s method would maintain xk+1
j = 0 (or zk+1

j = 0) for all
k. Therefore, the pure Newtonian iterations must be modified in order to prefer the
positivity (interiority) of xk and zk . This is usually done by means of the introduction
of (close to 1) damping parameters. Namely, if (xk, yk, zk) (with xk > 0 and zk > 0)
is the current iteration and (dx, dy, dz) is the increment computed by one iteration
of Newton’s method for solving the nonlinear system (10), we will compute:

(xk+1, yk+1, zk+1) = (xk + θkdx, y
k + θkdy, z

k + θkdz),

in such a way that the new iterate remains interior and the difference with respect to
the pure Newton iterate is cautiously small.

The procedure described above is called Primal-Dual Affine-Scaling method. In
Newtonian terms, this is a damped Newton method that preserves interiority. This
method behaves well except when some variable xj (or zj ) becomes close to zero
when it must be positive at the solution. In order to understand the best succeeded
procedures for improving the robustness of the primal-dual affine-scaling method,
let us assume first that (xk, yk, zk) is such that

c + AT yk − zk = 0, Axk = b, xk > 0, and zk > 0.

Clearly, (xk, yk, zk) is a solution of the nonlinear system

c + AT y − z = 0, Ax = b, xj zj = xk
j zk

j , j = 1, . . . , n.

This means that we already know a solution of the system

c + AT y − z = 0, Ax = b, xj zj = txk
j zk

j , j = 1, . . . , n (11)

with x > 0, z > 0, for t = 1, whereas we wish a solution for t = 0. The Primal-
Dual Affine-Scaling (Newton) step is an aggressive attempt of achieving the solution
for t = 0. If this attempt is considered to be unsuccessful (for some more or less
theoretical justified criterion), the natural procedure is to try a less ambitious value
of t > 0. For approximating the solution of (11) for the new value of t , starting
from an iterate (xk, yk, zk), a Newton-like iteration is also employed that may use
the same matrix factorization as the one employed for finding the Primal-Dual
Affine-Scaling step. Variations of this idea define the best succeeded modern Interior
Point methods for Linear Programming. It is remarkable that a problem traditionally
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solved by means of a combinatorial procedure as Simplex, later challenged by the
nonstandard ideas of Khachiyan and Karmarkar, eventually found in the Newton
paradigm one of the most promising solution tools for many difficult, especially
large-scale, situations.

4 Convergence and Complexity in Unconstrained
Optimization

Numerical methods for solving general continuous optimization problems are
iterative. Since finding global minimizers without employing the specific structure
of the problems is very difficult, we generally rely on methods that guarantee
convergence to points that satisfy necessary optimality conditions (hopefully, local
minimizers). Classical convergence theories analyze the sequences generated by
optimization methods and prove that the sequence of gradients tend to zero or
that the gradient vanishes at limit points. These “global” theories say nothing
about the speed of convergence. Many times they are complemented with “capture
theorems” that say that, when an iterate is close enough to a local minimizer with
good properties, convergence to the local minimizer takes place with satisfactory
convergence rate.

Only recently, it has been considered to be relevant to compute bounds for
the computer effort that is necessary to achieve a predetermined precision ε. For
example, if one assumes that “precision ε” means that the norm of the gradient is
smaller than ε, the question is about the number of iterations and function-gradient
evaluations that are necessary to achieve such precision, as a function of ε, the
functional value at the initial point, characteristics of the problem, and parameters
of the method.

Being a bit more formal than in the previous sections, we will assume here that
f : Rn → R has continuous first derivatives g(x) = ∇f (x) and that a Lipschitz
inequality for the gradient holds. As a consequence, by Elementary Calculus, there
exists γ > 0 such that

f (x + s) ≤ f (x) + g(x)T s + γ ‖s‖2. (12)

This assumption is “slightly” weaker than saying that f has bounded second
derivatives on Rn. We are going to analyze the worst-case complexity of a version
of Cauchy’s method, with the aim of relating this analysis with analogous analyses
concerning Newton’s method.

There is a reason for considering that Cauchy’s method is also a Newton-like
method: In Newton, for minimizing functions, we use to say that the objective
function is approximated, locally, by a quadratic model. Analogously, in Cauchy
we may think that we approximate the objective function, locally, by a linear model.
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Equivalently, in Newton we approximate the gradient by a linear model whereas in
Cauchy we approximate the gradient by a constant vector, namely, the gradient at
the current iterate.

The difficulty in this point of view about Cauchy is that, in general, linear
functions do not admit minimizers. Therefore, the “Newtonian subproblem” cannot
be solved. We will fix this inconvenience observing that, although the linear model
g(xk)T (x − xk) does not have a minimizer, the “regularized” version of this model:
g(xk)T (x − xk) + ρ

2 ‖x − xk‖2 has a unique solution independently of the value of
the regularizing parameter ρ > 0. Moreover, if we choose ‖·‖ as the Euclidian norm
‖ · ‖2, the minimizer of g(xk)T (x −xk)+ ρ

2 ‖x −xk‖2 is given by x = xk − 1
ρ
g(xk).

This idea is formalized in the following algorithm.

Algorithm 4.1
Let x0 ∈ Rn and α > 0 be given. Initialize k ← 0.

Step 1 Set ρ ← 1/2.
Step 2 Solve the subproblem

Minimize g(xk)T s + ρ‖s‖2,

obtaining the solution strial . (Note that strial = − 1
2ρ

g(xk) if ‖ · ‖ = ‖ · ‖2.)
Step 3 (Test the sufficient descent condition)

If

f (xk + strial) ≤ f (xk) − α‖strial‖2, (13)

set sk = strial , xk+1 = xk + sk , k ← k + 1, and go to Step 1.
Otherwise, set ρ ← 2ρ and go to Step 2.

When ‖ · ‖ is the Euclidian norm, Algorithm 4.1 is Cauchy’s method with the
most simple line-search procedure (backtracking dividing the trial step by 2) and
the clothes of regularization.

Lemma 4.1 If ρ ≥ γ + α, the sufficient descent condition (13) is fulfilled.

Proof By (12), the hypothesis of this lemma, and Step 2 of the algorithm,

f (xk + s) ≤ f (xk) + g(xk)T s + γ ‖s‖2

= f (xk) + g(xk)T s + (γ + α)‖s‖2 − α‖s‖2

≤ f (xk) + g(xk)T s + ρ‖s‖2 − α‖s‖2 ≤ f (xk) − α‖s‖2.

This completes the proof. �
By Lemma 4.1, the first term in the sequence {1/2, 1, 2, 4, 8 . . .} bigger than

γ + α necessarily defines a value of ρ for which (13) holds. As a consequence, the
following corollary holds.
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Corollary 4.1 At each iteration of Algorithm 4.1, after a maximum of 1+ log2(γ +
α) tests (backtrackings, functional evaluations) we necessarily obtain the descent
condition and the final ρ for which (13) holds and satisfies:

ρ < 2(γ + α).

For the sake of simplicity, assume now that ‖·‖ = ‖·‖2. Then, strial = − 1
2ρ

g(xk)

and, so, by Corollary 4.1, ‖sk‖ ≥ 1
4(γ+α)

‖g(xk)‖. Then, by the sufficient descent
condition,

f (xk+1) ≤ f (xk) − α

16(γ + α)2 ‖g(xk)‖2.

Then, if ‖g(xk)‖ ≥ ε,

f (xk+1) ≤ f (xk) − α

16(γ + α)2 ε2. (14)

Assume that ftarget < f (x0) is arbitrary. Then, (14) implies that the number of
iterations at which ‖g(xk)‖ ≥ ε and f (xk) > ftarget is bounded by:

[f (x0) − ftarget ]16(γ + α)2

α
ε−2. (15)

Thus, by Corollary 4.1, the number of evaluations is bounded by:

[f (x0) − ftarget ][1 + log2(γ + α)]16(γ + α)2

α
ε−2. (16)

Both expressions (15) and (16) have the form cε−2, where c is a constant that
only depends on characteristics of the problem (γ ), parameters of the algorithm
(α), the initial point x0, and, of course, the target with respect to which we desired
to estimate the computational effort. The dependence on the precision required is
represented by ε−2. For this reason, we generally say that the complexity of the
algorithm is O(ε−2).

“Gradient-related” methods for unconstrained optimization are characterized by
the generation of directions dk that are related to g(xk) by means of angle and
relative-size conditions as:

g(xk)T dk ≤ −θ‖g(xk)‖2‖dk‖2 and ‖dk‖ ≥ β‖g(xk)‖, (17)

where θ ∈ (0, 1) and β > 0 are algorithmic parameters. These conditions are
sufficient to show that gradient-related methods have complexity O(ε−2).

Quasi-Newton methods (as BFGS) also enjoy the worst-case complexity O(ε−2)

when conveniently safeguarded in order to satisfy gradient-related conditions. The
standard BFGS method (without safeguards) does not satisfy such property. In fact,
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there exist counterexamples that show that all the limit points generated by this
popular method may be such that the norm of the gradient does not vanish at all
[11, 26]. Of course, this prevents the possibility of satisfactory complexity results.

Newton’s method with line searches may also generate sequences with associated
gradients that are bounded away from zero [27]. This cannot happen when Newton’s
method is coupled with a “trust-region” strategy, which guarantees that every limit
point is stationary. In spite of this, it has been shown that even Newton’s method
with the robust trust-region strategy has worst-case complexity not better than
O(ε−2) [6].

It is disappointing that, with Newton’s method plus traditional globalization
procedures, a complexity better than O(ε−2) cannot be obtained. Fortunately,
the reason is that the “traditional globalization procedures” are not the natural
globalization procedures that should be used for Newton. Mimicking the complexity
proof given for Cauchy, we will show that a better complexity result may be obtained
for Newton, if one replaces quadratic regularization with cubic regularization and
quadratic sufficient descent with cubic convergence descent with respect to ‖strial‖.
Analogous results with variations with respect to the sufficient descent criterion
were given in [3, 7, 29].

In order to define Algorithm 4.2, assume that the Hessian ∇2f (x) exists for all
x ∈ Rn.

Algorithm 4.2
Let x0 ∈ Rn and α > 0 be given. Initialize k ← 0.

Step 1 Set ρ ← 0.
Step 2 Solve the subproblem

Minimize g(xk)T s + 1

2
sT ∇2f (xk)s + ρ‖s‖3,

obtaining the solution strial . If the subproblem has no solution (which may occur
only if ρ = 0), reset ρ ← 1 and repeat Step 2.

Step 3 (Test the sufficient descent condition)

If

f (xk + strial) ≤ f (xk) − α‖strial‖3, (18)

set sk = strial , xk+1 = xk + sk , k ← k + 1, and go to Step 1.
Otherwise, set ρ ← 2ρ and go to Step 2.

The complexity proof for Algorithm 4.2 needs to assume that the Hessian ∇2f

is Lipschitz continuous for all x ∈ Rn. This implies, as in the case of (12), that there
exists γ2 > 0 such that, for all x, s ∈ Rn,

f (x + s) ≤ f (x) + g(x)T s + 1

2
sT ∇2f (x)s + γ2‖s‖3 (19)
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and

‖g(x + s)‖ ≤ ‖g(x) + ∇2f (x)s‖ + γ2‖s‖2. (20)

Lemma 4.2 below is entirely analogous to Lemma 4.1.

Lemma 4.2 If ρ ≥ γ2 + α, the sufficient descent condition (18) is fulfilled.

Proof By (19), the hypothesis of this lemma, and Step 2 of the algorithm,

f (xk + s) ≤ f (xk) + g(xk)T s + 1

2
sT ∇2f (xk)s + γ2‖s‖3

= f (xk) + g(xk)T s + 1

2
sT ∇2f (xk)s + (γ2 + α)‖s‖3 − α‖s‖3

≤ f (xk) + g(xk)T s + 1

2
sT ∇2f (xk)s + ρ‖s‖3 − α‖s‖3

≤ f (xk) − α‖s‖3.

This completes the proof. �
Moreover, as in Corollary 4.1, we have:

Corollary 4.2 At each iteration of Algorithm 4.2, after a maximum of 1+ log2(γ2 +
α) tests we necessarily obtain the descent condition (18) with

ρ < 2(γ2 + α).

By Corollary 4.2, after computer time that only depends on γ2 (characteristic of
the problem) and α (characteristic of the algorithm), we obtain a decrease at least
α‖strial‖3. Recall that in Algorithm 4.1 the corresponding decrease was α‖strial‖2.
In Algorithm 4.1, our proof finished showing that ‖sk‖ was bigger than a multiple

of ‖g(xk)‖. Here, we will show that ‖sk‖ is bigger than a multiple of ‖g(xk +sk)‖ 1
2 .

In other words, we will prove that ‖g(xk + sk)‖ is smaller than a multiple of ‖sk‖2.
In fact, by (20),

‖g(xk + sk)‖ ≤ ‖g(xk) + ∇2f (xk)sk‖ + γ2‖sk‖2.

So, assuming, for simplicity, that ‖ · ‖ = ‖ · ‖2, using that ∇(‖s‖3) = 3s‖s‖, and
the fact that gradient of the objective function of the subproblem must vanish at sk ,
we have that:

‖g(xk + sk)‖ ≤ ∥∥g(xk) + ∇2f (xk)sk + 3ρsk‖sk‖∥∥ + 3ρ‖sk‖2 + γ2‖sk‖2

= (3ρ + γ2)‖sk‖2.
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Then, since the final ρ accepted at (18) is smaller than 2(γ + α),

‖g(xk + sk)‖ ≤ [6(γ2 + α) + γ2]‖sk‖2.

Thus,

‖sk‖ ≥ ‖g(xk+1)‖ 1
2√[6(γ2 + α) + γ2] .

By (18), this implies that, at each iteration of Algorithm 4.2,

f (xk+1) ≤ f (xk) − α
‖g(xk+1)‖3/2

[6(γ2 + α) + γ2]3/2 .

Therefore, the number of iterations for which ‖g(xk+1)‖ ≥ ε and f (xk+1) ≥ ftarget

is bounded above by c[f (x0)−ftarget ]ε−3/2, where c is a constant that only depends
on γ2 and α. As in the case of Algorithm 4.1, by Corollary 4.2, this implies that the
worst-case complexity of the Newtonian Algorithm 4.2 is O(ε−3/2).

This rather simple result, as several analogous ones [3, 7, 17, 29], confirms
the intuition that some version of Newton’s method should have better worst-case
complexity than every gradient-related method.

A straightforward generalization of Algorithm 4.2 consists of replacing the sub-
problem with the minimization of the q-th Taylor polynomial plus a regularization
of the form ρ‖s‖q+1 and replacing (18) with

f (xk + strial) ≤ f (xk) − α‖strial‖q+1.

Assuming Lipschitz conditions on the derivatives of order q and following, mutatis
mutandi, the proof for the case q = 2, we obtain an algorithm with complexity
O(ε(q+1)/q). Slight variations of this algorithm have been given in [3].

5 Newton in Constrained Optimization

The smooth constrained optimization problem consists of minimizing a smooth
function f (x) subject to h(x) = 0 and g(x) ≤ 0, where h : Rn → Rm and
g : Rn → Rp are, also, sufficiently smooth. For simplicity, this section will be
restricted to the case in which there are not inequality constraints, although all the
arguments apply straightforwardly to the case p > 0. Then, the problem considered
here is

Minimize f (x) subject to h(x) = 0. (21)
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In unconstrained optimization, it is quite natural to require, as stopping criterion
for computer algorithms, the condition ‖∇f (xk)‖ ≤ ε because ∇f (x) = 0 is a
necessary condition for every local minimizer. However, in constrained optimization
we have the additional requirement on the feasibility of the approximate solution
and, moreover, a computable necessary condition based on the gradients of f and
the constraints does not exist. In fact, the Lagrange conditions (called KKT in the
presence of inequalities) establish that

∇f (x) +
m∑

i=1

λi∇hi(x) = 0 (22)

should hold for suitable multipliers λ ∈ Rm, but these conditions are guaranteed
to hold at a minimizer only if such point satisfies a “constraint qualification.” For
example, the problem of minimizing x subject to x2 = 0 has an obvious global
minimizer at x = 0, but (22) does not hold.

This inconvenience raises the question about the practical convergence test that
should be used in numerical algorithms designed to solve (21). Some authors
employ stopping criteria based on “scaled KKT conditions.” Instead of requiring
that

∥∥∥∥∥∇f (x) +
m∑

i=1

λk
i ∇hi(x)

∥∥∥∥∥ ≤ ε (23)

they stop their algorithms when

1

max{1, ‖λk‖∞}

∥∥∥∥∥∇f (x) +
m∑

i=1

λk
i ∇hi(x)

∥∥∥∥∥ ≤ ε, (24)

a weaker condition than (23) that may hold close to a minimizer at which constraint
qualifications are not fulfilled [8, 9]. However, (24) may hold in simple problems at
points that are arbitrarily far from the solution. For example, consider the problem
of minimizing x2 subject to 0x = 0 and take xk = 1020. Clearly, (24) holds with
ε = 10−10 and λk = 2 × 1030. Thus, the criterion (23) may be useful to save
computer work when convergence of an algorithm is in fact occurring to a correct
minimizer but may also lead to incorrect decisions when the iterate is far from a
solution.

Fortunately, an interesting result concerning the approximate fulfillment of (22)
at local minimizers exists. Although local minimizers may not satisfy (22), they do
satisfy the approximate version of this system of equations. By this we mean that, if
x∗ is a local minimizer, given ε > 0 arbitrary small, there exist x ∈ Rn and λ ∈ Rm

such that ‖x − x∗‖ ≤ ε, ‖h(x)‖ ≤ ε, and ‖∇f (x) + ∑m
i=1 λi∇hi(x)‖ ≤ ε. See

[1, 4] and other papers that study Sequential Optimality Conditions.
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As a consequence, the following is a well-justified stopping criteria for algo-
rithms that aim to solve (21):

‖h(xk)‖ ≤ ε,

∥∥∥∥∥∇f (xk) +
m∑

i=1

λk
i ∇hi(x

k)

∥∥∥∥∥ ≤ ε. (25)

The natural question that arises is: Given a particular algorithm for solving (21)
that converges to a minimizer x∗, is it possible to prove that, for all ε > 0, an iterate
xk , associated with suitable multipliers λk , exists? If the answer is positive, the
algorithm will eventually stop satisfying (25). It has been proved that this is the case
of penalty and Augmented Lagrangian algorithms [4]. Surprisingly, it can be shown
in very simple examples that, when Newton’s method is applied to the nonlinear
system that includes h(x) = 0 and (22), the resulting sequence xk may converge to
a minimizer of (21) but the KKT-residual ‖∇f (xk)+∑m

i=1 λ̃k
i ∇hi(x

k)‖ is bounded
away from zero independently of the value of λ̃k . This means that, even converging
to the solution, Newton’s method would never detect that such convergence occurs
[2]. Therefore, no complexity results associated with the condition (25) is possible
for Newton’s method. The example given in [2] consists of minimizing x1 subject
to ‖x‖2

2 = 0, with n ≥ 2. Starting with λ1 > 0, the sequence generated by Newton’s
method converges to the solution x = 0 but the norm of the KKT-residual is bounded
away from zero (bigger than (

√
5−1)/4 if n = 2) for most initial choices of x0. The

simplicity of this example is amazing and suggests that this “failure” of Newton’s
method might occur frequently in practical problems in which optimality cannot be
easily detected by other means.
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