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Abstract This work was done in commemoration of the 50th anniversary of the
inauguration of the Institute of Mathematics, Statistics and Scientific Computation
of the University of Campinas, Brazil (Instituto de Matemática, Estatística e Com-
putação Científica da Universidade Estadual de Campinas). Our objective is just to
give a rather fast introduction to some important modeling aspects of the phase field
approach to model complex material behavior; we aim at students of mathematics
who have almost no previous background in continuum thermomechanics. Thus,
we briefly recall some of its main concepts and explain the main approaches used to
derive the governing equations including the phase field variables (diffusification,
energetic variational, and entropy approaches); we comment on some of their
limitations and relationships, and briefly describe a few simple applications.

1 Introduction

Commemorating the 50th anniversary of the inauguration of the Institute of Mathe-
matics, Statistics and Scientific Computation of the University of Campinas, Brazil
(Instituto de Matemática, Estatística e Computação Científica da Universidade
Estadual de Campinas), we present here a rather fast introduction to some modeling
aspects of the important phase field methodology when used to derive the equations
governing complex material behavior. Specifically, we consider situations where
structures and interfaces may appear and evolve in time in a material.

We stress that modeling and analyzing such situations are not easy tasks since
such structures and interfaces may interact in a complex and nonlinear way with
the material properties; moreover, their appearances, shapes, and positions are not
a priori known and must be determined together with the other physically relevant
variables.
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In this work, we want to clarify the role of the phase field approach in modeling
situations as just delineated. For this, we start by describing the more traditional
sharp-interface methodology, briefly explaining some of its difficulties. Next, we
describe in general terms the diffuse-interface (phase field) methodology and
contrast it with the sharp-interface approach, explaining how phase fields deal with
the pointed difficulties.

The Sharp-Interface Methodology We exemplify this approach by considering
an old and famous problem studied in the late nineteenth century by J. Stefan. He
analyzed the temperature distribution and freezing-front history of a solidifying
slab of water, having as a basic assumption that the freezing-front was sharp;
that is, it was a regular surface (actually a planar surface in the original Stefan’s
problem) with solid water at one of its side and liquid water at the other side.
Along the time, Stefan’s assumption has been applied to more general situations
and different problems, leading to mathematical problems nowadays called sharp-
interface models. For instance, we consider the following slight generalization of
the original Stefan’s problem, taken from Rubinstein [104], see also Alexiades and
Solomon [1] where the reader can find more details. Consider a material that may
assume either of two phases, e.g., solid or liquid, and occupies a spatial region
Ω ⊂ Rn separated at an instant t by an interface Γ (t). Let Tm ∈ R be the melting
temperature at equilibrium, i.e., the temperature at which both phases may coexist
in equilibrium separated by just an interface assumed to be planar for simplicity.
The temperature T (x, t) must then satisfy a heat diffusion equation in each side of
the interface:

ρCvTt = div(K∇T ) in Ω \ Γ (t). (1)

Here, Cv is the specific heat, K is the thermal conductivity, and ρ is the mass density.
For simplicity of exposition, we assume that either Cv = Cs

v > 0 or Cv = Cl
v > 0,

respectively, on the solid and liquid part of Ω \ Γ (t) with constant Cs
v0 and Cl

v0;
similarly, K = Ks > 0 or K = Cl

v > 0, respectively, on the solid and liquid part of
Ω \ Γ (t), with constant Ks and Kl ; ρ > 0 is the same constant for both liquid and
solid phases.

Moreover, the interface must be at the melting temperature, and the rate of
change of the latent heat equals the amount by which the heat flux jumps across
the interface. These lead to the following conditions at the interface:

T = Tm on Γ (t),

�v = −[
K∇T · n

]+
− on Γ (t),

(2)

where � is the latent heat, v is the (normal) velocity to the interface Γ (t), n is the
unit normal at Γ (t), and [·]+− denotes the jump in the quantity as one crosses the
interface from solid to liquid. Thus, the sharp-interface problem is stated as finding
T and Γ subject to (1), (2) and suitable initial and boundary conditions.

This sharp-interface approach can be used in many other physical situations,
leading, as we can see from the previous example, to free-boundary problems. We
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remark that such problems are in general very difficult to analyze, both from the
theoretical and numerical point of views, for the reasons we explain in the following.

By thinking a little about the fact that the equation for the motion of the
interface (2) is a key ingredient of sharp-interface models, one quickly sees some
complications.

First, from the physical point of view, it is not in general easy to incorporate the
effects of several physical phenomena that may be relevant to realistic analysis (for
instance, supercooling and superheating effects, surface tension effects, and so on);
even when this is done, it is not clear whether it was done in a thermodynamically
consistent way.

Second, from the geometrical point of view, the very formulation of the equation
for the motion of the interface requires the existence of the normal n to the
surface (see (2)); thus, this approach requires at least a certain regularity of the
interface, preventing the possibility of directly describing the formation of kinks,
cusps, branching, contact, coalescence, dendrites, and other complex geometric
behaviors that may occur during the evolution of such interfaces. In the sharp-
interface methodology, therefore, these possibilities must be approached in an ad
hoc and sometimes unclear way.

Third, and again from the physical point of view, in several situations the basic
hypothesis of this methodology, that is, that transitions are abrupt, is not correct.
For instance, in problems involving solidification/melting, there is the possibility
of occurrence of extended transitions (mushy) zones between pure solid and pure
liquid phases, where a mixture of solid and liquid materials predominate.

Due to all these difficulties, rigorous mathematical analyses of sharp-interface
models are in general very difficult to perform; see, for instance, Rubinstein [104],
Cannon et al. [28, 29], DiBenedetto and Friedman [43], and DiBenedetto and
O’Leary [44]. Moreover, the geometrical difficulties of sharp-interface models
translate into similar ones found in numerical simulations, requiring the numerical
tracking of possible complex evolving interfaces (front-tracking), which is a very
demanding and difficult computational task.

The Diffuse-Interface (Phase Field) Methodology The previously described
complications motivated the introduction of another modeling methodology, in
which sharp interfaces are replaced by continuous variations that are measured
by a new auxiliary variable (sometimes more than one new variable). This new
variable is called either a phase field or an order parameter or a kinetic descriptor,
depending on the context of the problem being considered; in the present work,
we just use the generic name phase field. The key idea in this approach is that the
interfaces are in fact diffuse transitions layers instead of sharp fronts and that the
position of such layers is specified by the level sets of the phase fields considered
in the problem. Due to these characteristics, this approach is also called the diffuse-
interface methodology.

To illustrate these ideas, we mention two historical articles. The first phase
field model was originally developed in 1958 by Cahn and Hilliard in [27] to
describe the process of phase separation of two fluids. For this, those authors
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developed a fourth-order nonlinear partial differential equation, presently known as
the classical Cahn–Hilliard equation, for a variable u(x, t) (the phase field) related
the continuous concentration function of one of the fluids in their mixture. Such
variable had the range of their values given by the interval −1 ≤ u(x, t) ≤ 1, and
the region where u = 1 indicated the region occupied by one of the fluids, while
the region where u = −1 indicated the region occupied by the other fluid; the fluids
were then separated by a transition region defined by a diffuse interface associated
to the region where −1 < u < 1. In 1972, Allen and Cahn in [2] developed a
second-order nonlinear partial differential equation, which is presently known as
the classical Allen–Cahn equation, describing the phase separation in iron alloys.
Both of those articles used the Ginzburg–Landau free-energy functional; however,
as we will explain later on, the Cahn–Hilliard equation is conservative, while the
Allen–Cahn equation is the nonconservative.

The phase field approach has several advantages over the sharp-interface
approach as we explain in the following.

First, from the physical point of view, although it is not so for every phase field
model one can find in the literature, by using the entropy approach to be explained
in detail in Sect. 5 and following a rather standard argumentation scheme, one
can derive phase field models that are automatically thermodynamically consistent
even in complex situations. To explain this claim is the objective of the present
work, but we advance here the main argumentation steps. In a first step, one
chooses the physical fields that are relevant to the problem under consideration and
also the phase fields to be used to describe the possible structures and interfaces
(transition layers); at this point, one also chooses whether each phase field will be
considered as an internal or a dynamical variable (we will give details on these
aspects later on). In a second step, one obtains the general forms of the dynamical
equations (the equations governing the time evolution of the physical fields and
the phase fields that were considered as physical variables); for this, one uses the
standard balance laws of mass, momentum, and energy (one uses the principle
of virtual powers instead of the balance of momentum when there are dynamical
phase fields), and also other physical laws (like Maxwell’s equation, and so on) as
required by the physical variables. In a third step, one uses the concepts of free-
energy and of pseudo-potential of dissipation, the principle of entropy, and general
dynamical equations obtained in the previous step to get the general forms of the
constitutive relations in terms of free-energy and of pseudo-potential of dissipation.
Finally, in a fourth step, one chooses the specific forms of the free-energy and of
the pseudo-potential of dissipation that are adequate to the situation and material
at consideration; once this is done, the mathematical model is determined and
automatically thermodynamically consistent. Obviously, it is not easy to complete
this argumentation scheme in proper way, and there are points that require careful
studies of the particular situation in order to choose in a physically sound way the
free-energy and of the pseudo-potential of dissipation. However, at least there is a
general approach to obtain consistent models; in contrast, the inclusion of complex
phenomena in a physically consistent way is much more difficult in sharp-interface
models.



Phase Field: A Methodology to Model Complex Material Behavior 71

Second, from the geometrical point of view, since transition layers are localized
by specific level sets of the phase field, they may present kinks, cups, intersections,
coalescences, and so on; thus, they are suitable for describing very complex evolving
geometries. Moreover, the evolution of such complex geometries is automatically
done in a physically sound way since the equations obtained with the phase field
methodology hold even for these complex geometries; this is in contrast with the
sharp-interface methodology where the introduction of ad hoc (and unclear) criteria
are necessary to proceed with the evolution of complex geometries.

Third, by its very concept, the phase field methodology can easily handle
extended transition layers.

Phase fields are thus key ingredients of a successful modeling strategy for situa-
tions involving appearance and evolutions of several kinds of interfaces and may be
used to model the appearance, evolution, and interaction of structures in macro-
, meso-, and microscales in problems involving phase transitions, membranes,
damage in materials, bubbles, growth of tissues, and so on. Moreover, from the point
of view of numerical simulations, phase field methods can be thought as physically
consistent level sets methods, and the evolution of complex interfaces geometries
can be obtained rather easily. Interesting examples of this successful approach can
be seen, for instance, in the numerical simulations of the growth of dendritic patterns
in solidification processes in Kobayashi [76], Karma and Rappel [72], and Nestler
et al. [87]. Thus, it is safe to say that nowadays the phase field method has emerged
as a powerful tool in the task of understanding material behavior.

On the other hand, we must also draw the reader’s attention to the fact that the
use of a particular phase field model in a practical situation requires realistic values
for the physical parameters appearing in its description; however, these values are
not easy to achieve, requiring suitable laboratory tests and other kinds of analyses.
Obviously, the practical use of a sharp-interface model also requires the knowledge
of the values of its own parameters; but, since this is an older and traditional
modeling approach, presently there is more laboratory technology and data to
estimate these parameters. Nonetheless, by using asymptotic analyses, it is possible
to associate phase field models to corresponding sharp-interface models, relating
in this way also their respective parameters; such relations can then be used to
estimate the phase field parameters from the known associated sharp-interface ones.
Therefore, the study of the relationship between phase field and sharp-interface
models via asymptotic analyses is an important subject that has been considered
along the years; examples of articles on this subject are Caginalp [23], Caginalp and
Xie [26], and Colli and Sprekels [36, 37].

Finally, despite their importance, we stress that in this work we do not comment
on rigorous mathematical or numerical analyses of phase field models, neither do
we comment on practical aspects of their numerical simulations; the references
mentioned in the next section deal with these aspects, and the interested reader may
consult them and their bibliographies. As we have already said, our objective here is
just to give a rather fast introduction to important modeling aspects of the phase field
approach; this could serve to mathematical students who have almost no previous
background in continuum thermomechanics but are interested in this field of study.
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For this, we recall some basic physical concepts and explain the main approaches
used to derive the governing equations (diffusification, energetic variational, and
entropy approaches), commenting on some of their limitations and relationships.

The outline of this work is as follows. Section 2 gives some references for more
information on the aspects that we left out; Sect. 3 very briefly comments on the
diffusification approach; Sect. 4 deals with the main ideas used in the energetic
variational approach; and Sect. 5 explains the entropy approach.

2 Some Representative References

Due to its flexibility and usefulness, presently there are many hundreds of scientific
articles dealing with the phase field methodology; thus, it is impossible to present
here all the relevant works concerning this approach and comment on their results.
Therefore, we drastically reduce our scope, mentioning only a few references
that, we think, may represent some aspects of the approach. We leave to the
reader the task of consulting their bibliographies for much further information.
Some references we mention are concerned with the physical derivation of the
mathematical models; others strive for rigorous mathematical analyses of such
models and deal with the questions of existence or qualitative properties of solutions
of the model equations; others else propose and analyze numerical methods for the
approximation of such solutions; some others are more concerned with the practical
implementation and numerical simulations or model validation. Since in the present
work we are just focusing in the modeling aspects, we do not explicit comment on
the results of each of those references but just group them by their main application
areas.

First of all, we mention that very interesting general references are Provatas and
Elder [96], Fremond [56, 57], Emmerich [51], and Gomez and van der Zee [66].

Turning to references concerned with specific application areas, since the original
work of Cahn and Hilliard [27], many authors considered the interaction among
different fluids using phase fields. Some articles dealing with this topic are Anderson
et al. [5], Kim [75], Liu and Shen [80], Feireisl et al. [54], Cao and Gal [31],
Vasconcelos et al. [110], Eleuteri et al. [49, 50], and Dai et al. [42].

Many other articles also used the phase field approach to study solidifica-
tion/melting of materials or crystal growth processes. Fix [55] seems to be the
first one to do this; many other authors followed, studying several phase transitions
problems: some of them are Collins and Levine [40], Caginalp [22, 24], Kobayashi
[76], Caginalp and Jones [25], Karma and Rappel [72], Nestler et al. [87, 88], and
Provatas et al. [97]. Among the many papers considering solidification of alloys,
we mention Warren and Boettinger [115], Wheeler et al. [117], Boldrini and Planas
[16], Frémond and Rocca [59] Vaz and Boldrini [111], Boldrini et al. [11], and
Calsavara Caretta and Boldrini [30]. Some articles also included in the model the
influence of the macroscopic motions of the material (in particular, the convection
in the melt); a few of them are Blanc et al. [9], Beckermann et al. [8], Diepers et
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al. [45], Rappaz and Scheid [98], Boldrini and Vaz [18], Scheid [105], Planas and
Boldrini [94, 95], Boldrini and Planas [17], and Rocca and Rossi [99]. We mention
that a particular approach that has been used to model phase transitions employ
the thermodynamic potential known as enthalpy (H -method); this can be seen as a
particular case of phase field since its values determine the material phases. Some
articles using this particular approach are Voller and Prakash [112], Voller et al.
[113], Peicleous et al. [91], O’Leary [90], and Boldrini et al. [15].

Another kind of fluid–structure interaction may be found in articles studying
the motion of membranes (vesicles) immersed in fluids; see, for instance, Du et al.
[46, 47], and Entringer and Boldrini [52].

The phase field approach has also been used to study the interplay among
elasticity, plasticity, phase change, damage, fatigue, and fracture of materials.
Examples of references doing this are Frémond and Nedjar [58], Frémond [56, 57],
Nedjar [86], Rocca and Rossi [100], Heinemann and Kraus [67], Heinemann and
Rocca [68], Duda et al. [48], Bonetti et al. [20], Miehe et al. [81, 82], Ambati et al.
[3, 4], Boldrini et al. [10], and Nguyen et al. [89].

Phase field models taking in consideration the second principle of thermodynam-
ics can be found, for example, in Penrose and Fife [92, 93], Zheng [119], Wang et
al. [114], Sprekels and Zheng [107], Laurençot [77], Colli and Laurençot [34], Colli
and Sprekels [39], Kenmochi and Kubo [74], Ito and Kenmochi [70], Ito et al. [71],
Fabrizio et al. [53], Assunção and Boldrini [7], and Boldrini et al. [10].

Besides the important question concerning the relationship between phase field
and sharp-interface model, which was already mentioned in the Introduction, there
are many other interesting aspects that must be considered. For instance, asymptotic
properties are studied in Kenmochi and Niezgódka [73], Miranville and Zelik [84],
Rocca and Schimperna [101, 102], Gal et al. [61], da Silva and Boldrini [41], and
Gal and Grasselli [62, 63]. Memory effects are important in some situations; some
articles considering this aspect are Colli and Sprekels [38], Colli et al. [32], Bonetti
et al. [19], and Frémond [56, 57]. Control problems related to phase field models
can also be considered; for instance, Hoffman and Jiang [69], Boldrini et al. [12],
Rocca and Sprekels [103], Colli et al. [33, 35], Frigeri et al. [60], and Araruna et al.
[6]. Finally, besides those already mentioned articles, we also refer to the following
interesting ones: Moroşanu [85], Miranville and Quintanilla [83], Wells et al. [116],
Gomez and Hughes [65], and Guillén-González and Tierra [64].

3 Diffusification Approach

In the beginning of their historical development, diffuse-interface (phase field)
models were usually thought not as physical models per se, but just as convenient
approximations (regularizations) of sharp-interface models, to be used just as way
to avoid the difficulties with the front-tracking of the sharp interfaces in numerical
simulations.

Following this idea of regularization, a diffuse-interface model is then derived
from a previously given sharp-interface model by introducing a smooth field, the
phase field ϕ(x, t), where x denotes the points in the spatial domain Ω and t , the
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time. This field is seen as a regularization of the jump appearing at a sharp interface
by a smooth profile; the commonly used profile is the one given by the hyperbolic
tangent, that is, ϕ is taken as ϕ(x, t) := tanh(dt (x)/

√
2ε), where dt (x) denotes the

signed distance from x to the sharp interface, and ε > 0 is a parameter related to
the thickness of the corresponding approximate diffuse interface. We stress that this
field is designed to attribute value ϕ = −1 to one of the phases, value ϕ = 1 to the
other (for instance, respectively, liquid and solid phases in the example described
in the Introduction); the intermediate value 0 < ϕ < 1 is related to the transition
region between the two pure phases.

The next step in the arguments is to look for expressions for the geometrical
entities appearing in the equation for the motion of the interface in terms of ϕ. More
precisely, by using the case of Eq. (2) to exemplify these ideas, v and n must be
written in terms of ϕ and maybe its temporal and spatial derivatives (we remark
that, if we had not taken a planar interface in that example, the curvature of the
sharp interface would also appear in (2) and the curvature should also be written
in terms of ϕ and its temporal and spatial derivatives). Once these expressions are
found, they are substituted back in the equation for the motion of the interface, (2)
in our example; this leads to a partial differential equation for ϕ that is assumed to
be the equation governing the evolution of the phase field not just near the interface,
but also in all the domain Ω . This equation replaces (2) in the associated diffuse-
interface model; we do not write this equation here and refer to Gomez and van der
Zee [66] where a more general situation is discussed.

The next step is to obtain a unique equation in the diffuse-interface model that
corresponds to Eq. (1); such equation should depend also on ϕ and hold on all the
domain Ω; this contrasts with the sharp-interface model in which we have different
equations each one holding in one side of the sharp interface. To obtain the required
equation, one possibility is to take one with the form as in (1), but with coefficients
Cv and K defined on all the domain Ω and with values smoothly varying from one
phase to the other; for instance, by taking the averages Cv = (1−ϕ)

2 Cl
v + (1+ϕ)

2 Cs
v

and K = (1−ϕ)
2 Kl + (1+ϕ)

2 Ks .
Once the previous steps are accomplished, one gets a system of equations

coupling the temperature and the phase field. However, as one can observe, this
approach is difficult to generalize to more complex situations, and it requires certain
choices that sometimes are difficult to justify; moreover, there is no systematic way
to verify the thermodynamical consistency of the diffuse-interface models derived
by this method. Therefore, we do not give here more details of this approach and
refer to the very interesting article by Gomez and van der Zee [66] for further
discussion on it.

On the other hand, some of the ideas used in the diffusification approach are
relevant for the two approaches to be described in the next sections. In fact, both of
them use the key concept of free-energy density, which must be expressed in terms
of the phase field. In particular, certain terms of free-energies densities, like surfaces
energies, that are rather well-known in the case of the sharp-interface models, are
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rewritten in terms of the phase field variable with the help of some of the previous
ideas.

4 The Energetic Variational Approach

4.1 Phase Field Equations (Isothermal Processes)

We firstly recall certain basic ideas of the continuum mechanics, which here are
described in Eulerian coordinates. Suppose that a certain physical process occurs
in a domain Ω ⊂ Rn, n = 1, 2, 3, on an interval of time [0, T ]; for simplicity,
we focus in just a scalar physical variable, for instance, mass, electric charge, or
energy, which is distributed in Ω . To describe the changing of such variable, three
basic concepts are required: the density of the physical variable of interest, ρ :
Ω × [0, T ] → R; the density of sources or sinks of the physical variable, g :
Ω × [0, T ] → R; and the flux of that physical variable, F : Ω × [0, T ] → Rn.

Many of the equations from classical continuum mechanics are derived by
relating the previous three concepts by using the physical principle known as law
of balance; this says that at any subregion V of Ω , the rate of change of the total
amount of the physical variable in V is equal to sum of the amount generated (or
consumed) in V by the sources and sinks and the amount left in V by the flux that
crosses its boundary. In mathematical terms, under suitable smoothness conditions
on the previous fields and the use of the divergence theorem, the law of balance is
written as the general (scalar) balance equation in integral form:

d

dt

∫

V
ρ dx = −

∫

∂V
F · n dS +

∫

V
g dx, (3)

for any (suitable) V ⊂ Ω . Here, n denotes the external unitary normal field on
∂Ω , and dS denotes the area element. By assuming enough regularity to use the
divergence theorem and using the fact that V ⊂ Ω is “arbitrary,” we get the general
(scalar) balance equation in differential (local) form:

∂tρ + div F = g. (4)

Thus, in any particular physical situation, to complete the derivation of the
equation governing the phenomenon of interest, we must find the right expressions
for g and F. Examples of fluxes are the advection flux (F = ρv, where v is a velocity
field of the material) and the diffusion flux (F = −k∇ρ, where k ≥ 0 is a diffusion
coefficient).

Inspired in the previous arguments, the energetic variational approach pro-
poses the following modified form of the balance equation (4) (in Eulerian
coordinates) as the evolution equation for a phase field ϕ:
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∂tϕ + div(ϕv) = L(ϕ) + g. (5)

Here, v is the macroscopic velocity of the material, and thus an advection flux
is included in the equation because it is natural to assume that the structures
determined by ϕ may be advected by the velocity flow; g is a source term, whose
expression depends on the situation being considered; and L(ϕ) denotes a maybe
nonlinear operator that must be determined by further arguments. For simplicity, we
will look for an expression for L(ϕ) in a situation without (macroscopic) motion of
the material (v = 0), without sources or sinks (g = 0) (recall that all other physical
variables, including temperature, are kept constant); in this situation, the phase field
equation is reduced to

∂tϕ = L(ϕ).

The basis of the energetic variational approach to determine suitable expressions
for the operator L(ϕ) is the assumption that the evolution in time of ϕ must occur
such way that the total free-energy of the physical system under investigation does
not increase with time. Let us initially apply this idea in the case that the total free-
energy is expressed in the following form, which depends only on the derivatives up
to first order of the phase field variable:

E =
∫

Ω

E(ϕ,∇ϕ)dx. (6)

By denoting pi = ∂iϕ and writing: E(ϕ,∇ϕ) = E(ϕ, p1, . . . , pn), and also
assuming enough smoothness, we obtain dE

dt
= ∫

Ω
∂ϕE(·) ∂tϕ + ∂pi

E(·) ∂t ∂iϕ dx,
where we used the usual Einstein’s index notation that repeated index must be added
up. By using integration by parts with suitable boundary condition on ϕ (either
ϕ = 0 or ∂ϕ/∂ν = 0 on ∂Ω), we get

dE

dt
=

∫

Ω

δE

δϕ
∂tϕ dx =

∫

Ω

δE

δϕ
L(ϕ) dx. (7)

Here, δE
δϕ

is called the variational derivative and is given by

δE

δϕ
= ∂ϕE − ∂i∂pi

E. (8)

The previous arguments can be easily generalized for functionals depending on
higher order derivatives of ϕ. For instance, suppose that the free energy has the
following form:

E =
∫

Ω

E(ϕ,∇ϕ,Δϕ)dx. (9)
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By proceeding exactly as before, with suitable boundary conditions, we get again
expression (7), but now with the variational derivative given by

δE

δϕ
(·) = ∂ϕE(·) − ∂i∂pi

E(·) + Δ∂wE(·), (10)

where we used the same notations as before and also w = Δϕ.
Expression (7) suggests that a first possibility to guarantee that the free-energy

does not increase in time is to take

L(ϕ) = −λ(·)δE
δϕ

,

where λ > 0 is a coefficient called the relaxation factor. In fact, in this case,
we have the dissipative energy law expressed by dE

dt
= − ∫

Ω
λ(δE

δϕ
)2dx ≤ 0.

Thus, under the stated conditions, the total free-energy is automatically a Lyapunov
functional, and we expect that as the time t goes to infinity ϕ(·, t) approaches an
equilibrium state given by the equation: δE

δϕ
= 0, which is exactly the Euler–

Lagrange equation for the critical points of the total free-energy functional E.
Another possibility to guarantee the decay of the total free-energy is to take

L(ϕ) = div

(
M∇ δE

δϕ

)
,

where M > 0 is now a coefficient called mobility. By using this in (7), with the help
of integration by parts and the use of suitable boundary conditions (either δE

δϕ
= 0

or M ∂
∂ν

( δE
δϕ

) = 0 on ∂Ω ), we obtain another dissipative energy law expressed by
dE
dt

= − ∫
Ω

M|∇ δE
δϕ

|2 dx ≤ 0. Thus, similarly as before, the total free-energy is
automatically a Lyapunov functional.

By using these previous expressions for L(ϕ) in the general situation (5), that is,
when v and g are not necessarily null, we obtain the following possibilities for the
equation governing the evolution of the phase field:

Allen-Cahn : ∂tϕ + div(ϕv) = −λ
δE

δϕ
+ g, (11)

Cahn-Hilliard : ∂tϕ + div(ϕv) = div(M∇ δE

δϕ
) + g. (12)

Remarks

(i) In the Cahn–Hilliard equation, μ(ϕ) = δE
δϕ

(ϕ) is called chemical potential.
(ii) The Cahn–Hilliard equation is said to be conservative because, with the

boundary conditions v = 0 and M ∂
∂ν

( δE
δϕ

) = 0 on ∂Ω and source term g = 0,

by integration on Ω we formally obtain that the “total mass”
∫
Ω

ϕ(·, t) dx
is constant in time. This does not hold for the previous Allen–Cahn equation;



78 J. L. Boldrini

so it is said to be nonconservative. However, there is a conservative modified
form of the Allen–Cahn: ∂tϕ + div(ϕv) = −λδE

δϕ
+ g + 1

|Ω| (
∫
Ω

(λδE
δϕ

− g)dx)

(|Ω| denotes the volume of Ω), with the boundary conditions v = 0 on ∂Ω;
since its numerical treatment is simpler than that of the Cahn–Hilliard equation,
which involves fourth-order differential operators, some authors prefer to use
this modified Allen–Cahn; see, for instance, Yang et al. [118].

An Example: Solidification/Melting at a Given Temperature
We consider a solidification/melting isothermic process of a pure material,

assuming that a given θ constant temperature, that macroscopic velocity is null
(v = 0), and that there are no heat sources (g = 0). Now, we consider the phase
field ϕ variable (an order parameter) such that associates values ϕ ≤ −1 to pure
solid state, ϕ ≥ 1 to pure liquid states, and −1 < ϕ < 1 to the transition layers
between solid and liquid state.

We assume that volumetric density of free-energy is of the form

E(ϕ,∇ϕ) = γ

2
|∇ϕ|2 + 1

γ
H(ϕ) − ϕ�(θ − θm).

Here, the first term is related to the interfacial energy (it attributes more energy to
regions where the gradient of ϕ is larger) and the γ > 0 is a constant related to
the width of the transitions layers; the second term H(ϕ) = (1/4)[(ϕ2 − 1)]2 is
the classical two-well potential; thus, the first two terms in the last expression corre-
spond to the classical Ginzburg–Landau free-energy. In the third term, −ϕ�(θ−θm),
the coefficient � > is related to the latent heat of the material, while θm is the
given melting temperature; this term −ϕ�(θ − θm) expresses qualitative changes
in the free-energy according the temperature. In fact, for θ = θm, the total bulk
potential density Hθ (ϕ) = 1

γ
H(ϕ)−ϕ�(θ − θm) has two absolute minimum points

at ϕm1 = −1 (pure solid state) and at ϕm2 = 1 (pure liquid state); for θ > θm, Hθ

has a single absolute minimum point at ϕm ≥ 1 (pure liquid state), and for θ < θm,
Hθ has a single absolute minimum point at ϕm ≤ −1 (pure solid state). See more
physical details in Caginalp [22].

Under these conditions, by using (8), the Allen–Cahn equation (11) becomes

∂tϕ = λγΔϕ + λ

γ
(ϕ − ϕ3) + λ�(θ − θm).

4.2 Phase Field Equation Coupled with the Equation for the
Macroscopic Motion (Isothermal Processes)

The question now is how to couple in proper way the phase field equations with the
dynamical equations governing the motion of that same material.
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To answer this, we need to recall the concept of balance of linear momentum.
The important ideas are the following: (a) linear momentum is a vectorial physical
variable whose density is given by the expression ρu, where ρ is the mass density
and v = (v1, . . . , vn), n = 1, 2, or 3, is the velocity; (b) each component ρvi ,
i = 1, . . . , n, of the linear momentum is advected by the velocity flow; that is, there
is an advection flux of the form ρviu (this special case is called convection); and (c)
the sources and sinks of linear momentum are the forces acting on the body.

Thus, applying the balance law, Eq. (3), to each i-th component of the linear
momentum in an “arbitrary” subregion V ⊂ Ω , one obtains that d

dt

∫
V ρvidx =

− ∫
V ρviv · ndS + ∫

V fidx, where as before n denotes the unitary external normal
at the boundary of V, and fi denotes the volumetric density i-the component of the
total force

∫
V fdx. In vectorial terms, we get:

d

dt

∫

V
ρvdx = −

∫

∂V
(ρv ⊗ v) · ndS +

∫

V
fdx,

where ⊗ denotes the tensorial product; in the present case, v ⊗ v is an n × n matrix
whose (i, j)-element is given by vivj .

The total force
∫
V fdx is the sum of body forces, contact forces, and microscopic

forces. Body forces are forces like gravity; when their volumetric density is given
by a volumetric density field fb, the total body force acting on V is given by

∫
V fbdx.

Contact forces are forces that one part of the body acts on the other parts through
their common boundary; they are obtained by using the concept of Cauchy stress
tensor T0 = [T0,ij ]n×n of the material; the balance of angular moments requires
that T0 be a symmetric tensor. The total contact force that the part Ω−V of the body
acts on V is known to be given by (Cauchy’s Theorem)

∫
∂Ω

T0 · ndS. Microscopic
forces are forces due to internal structures, in case that they exist. We assume that
such forces are given by a volumetric density field fmicro, whose expression will be
related later on to the phase field variable that is used to describe such structures, and
the total microscopic force acting on V is then given by

∫
V fmicrodx. Thus,

∫
V fdx =∫

V fbdx + ∫
∂Ω

T0 · ndS + ∫
V fmicrodx. By substituting this in the balance of linear

momentum, using the divergence theorem and the fact that V is arbitrary, we obtain
the differential form for the balance of linear momentum:

∂t (ρv) + div(ρv ⊗ v) = div T0 + fb + fmicro. (13)

We recall that the stress tensor T0 determines many of the main properties of
the material, and that an expression of T0 in terms of other variables of the physical
problem is called a constitutive relation. In Sect. 5, we describe a thermodynamical
argument that gives general expressions for σ in terms of the free-energy and the
pseudo-potential of dissipation.

Microscopic Forces in Terms of the Phase Field To find an expression for
the microscopic forces fmicro, we will use the following form of the Principle of
Virtual Power which is adequate for the energetic variational approach that we are
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considering in this section. It says that at any time the power of the forces acting on
any part of a material body subjected to any virtual displacement (and thus with
corresponding virtual velocity) must equal the rate of variation of the total energy
along the same virtual displacements. We also recall that virtual displacements are
arbitrary displacements with the only requirement that they satisfy all restrictions
that one might have for the motion (examples: rigid walls, incompressibility, etc.).

We remark that this principle in particular implies the balance law for the linear
momentum. Another important remark is that, since the expression for the total
energy may have several parts, by the application of Principle of Virtual Power,
from each of these parts one gets a particular type of force. In particular, one of
these parts of this total energy is the part of free-energy associated to the energy
contribution due to the structure determined by ϕ. By assuming the simplifying
hypothesis that the phase field ϕ does not appear in the other terms of the total
energy, and since in our equation for the balance of linear momentum we already
know the expression for the forces, with the exception of fmicro, we can apply a
simplified form of the Principle of Virtual Power by observing that fmicro will come
from the rate of variation of the free energy along virtual displacements.

We apply the previous arguments in the case of a viscous fluid in a still domain
Ω (and thus, we have the restriction: u|∂Ω = 0, since the fluid sticks to the walls),
in which there is an evolving structure determined by a phase field ϕ. Moreover,
since the process of obtaining the expression for the microscopic forces is simpler
in the case without further restrictions on the virtual displacements, in the following
we explain how to do that under the extra hypothesis that the fluid is incompressible
(and thus, we have the restriction: div v = 0). Additionally, we assume that the
free-energy depends only on ϕ; that is, the other thermodynamics variables are kept
constant.

To construct virtual displacements satisfying our restrictions, we consider the
vector fields in the set

V(Ω) = {v̂ ∈ (C0(Ω))n : div v̂ = 0}, (14)

Then, take any v ∈ V(Ω) and at any fixed time t and for each x ∈ Ω consider
the displacements given by solving the auxiliary family of systems of ordinary
differential equations:

⎧
⎨

⎩

dz
dτ

= v̂(z),

z|τ=0 = x.

The solutions z = z(x, τ ) are the virtual displacements that we will use.
Thus, by using our previous notations, the chain rule, and integration by parts,

the previous formulation of the Principle of Virtual Power gives us that:

∫

Ω

fmicro · v dx = d

dτ
E(ϕ(z(x, τ ), t))|τ=0 =

∫

Ω

δE

δϕ
∇ϕ · v̂ dx, for all v̂ ∈ V(Ω).
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Thus,
∫
Ω

(fmicro − δE
δϕ

∇ϕ) · v̂ dx = 0, ∀v ∈ V(Ω), that is, fmicro − δE
δϕ

∇ϕ is

orthogonal to V(Ω) in L2(Ω). Thus, Theorem 1.4, p. 11, in Temam [108] implies
that there is q such that fmicro = −∇q + δE

δϕ
∇ϕ .

Thus, substituting back this last expression in the balance of linear momentum
equations (13), we get the following equations governing the motion of a material
with an evolving structure determined by a phase field:

⎧
⎨

⎩
∂t (ρv) + div(ρv ⊗ v) = div T0 − ∇q + fb + δE

δϕ
∇ϕ,

div v = 0.

(15)

Remark We stress that the previous arguments assumed that the Cauchy stress
tensor T0 was exactly that of the virgin material (that is, the material disregarding
the presence of the structure associated to the phase field). Thus, in this model the
interaction between the structure and the rest of the material is not realized through
contact forces but just through the microforces fmicro which were considered part
of the body forces. However, in Sect. 5, we show that thermodynamical consistency
in general requires suitable modification of the Cauchy stress tensor and contact
interaction forces between the structure and the rest of material do appear.

Equations (15) must be coupled with an equation for the phase field; this may
be an Allen–Cahn or Cahn–Hilliard equation according to the kind of structure
immersed in the fluid. Moreover, a free-energy must be specified. Next, we illustrate
this procedure.

Example: Motion of Vesicles in Fluids Du et al. [46] (see also Du et al. [47])
consider a phase field model for the motion of a vesicle immersed in a homogeneous
incompressible Newtonian viscous fluid in a domain Ω ⊂ Rn, n = 2 or 3. They
assume that the same fluid was in the exterior and in the interior of the vesicle,
that membrane density is comparable (equal, actually) to the fluid density, and that
there are no external forces and no sources of the membrane material. A phase field
variable ϕ is used to describe the relative vesicle position: at time t , the interior
of the vesicle is given by {x ∈ Ω : ϕ(x, t) > 0}; the exterior of the vesicle
is given by {x ∈ ω : ϕ(x, t) < 0}; and the membrane of the vesicle is at
{x ∈ Ω : ϕ(x, t) = 0}.

By supposing a homogeneous incompressible Newtonian viscous fluid, with
constant density ρ = 1, for simplicity of exposition, the Cauchy stress tensor is
T0 = −pI + μ0

1
2 (∇v + (∇v)t ), where p is the hydrostatic pressure; thus, by

incorporating q into the hydrostatic pressure p and calling p̃ = p + q, Eq. (15)
simplify. By putting together the equations for the fluid motion and the phase field
equation (an Allen–Cahn type in this case), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + v · ∇v − μoΔv + ∇p = f + δE

δϕ
∇ϕ,

div v = 0,

∂tϕ + v · ∇ϕ = −λ
δE

δϕ
,

(16)
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where the expression for δE
δϕ

(·) is given by (10) since, as we will explain, the free-
energy functional associated to the vesicle is a functional of form (9).

To find the expression for the total free-energy E in terms of the phase field,
the authors of [46] firstly consider that in a sharp front approach the corresponding
free energy should be what is known as the Helfrich bending energy; this is then
rewritten in terms of the phase field (which includes a small positive parameter ε and
recovers the bending energy of the sharp front model as ε approaches zero). More-
over, under the conditions considered in [46], two constraints appear: the volume
of the vesicle and the surface area of vesicle membrane should be fixed constants.
The authors treat these volumetric and area constraints by penalization, including
them in a final total free-energy functional with two penalization parameters. Then,
the free energy considered in [46] is the sum of the following three terms:

E = Ebending + Evolume + Earea.

The first term is Ebending = k
2ε

∫
Ω

|e(ϕ)|2dx, which is a simplified form of elastic
bending energy for the phase field. Here, ε > 0 is a small parameter related to
the width of the transition layer; k is the bending modulus; c0 is the spontaneous
curvature of the vesicle, and e(ϕ) = εΔϕ + ( 1

ε
ϕ + c0

√
2)(1 − ϕ2). The second

term is Evolume = 1
2M1(A(ϕ) − α)2, which is a penalization term for the volume of

the vesicle. Here, M1 > 0 is a large penalization term; α is related to the required
volume, and A(ϕ) = ∫

Ω
ϕdx. The third term is Earea = 1

2M2(B(ϕ) − β)2, which is
a penalization term for the surface area. Here, M2 is a large penalization term; β is
related to the required surface area, and B(ϕ) = ∫

Ω
ε
2 |∇ϕ|2 + 1

4ε
(ϕ2 − 1)2dx.

Next, for simplicity of exposition, take c0 = 0. Then, a direct computation using
(10) shows that δE

δϕ
(ϕ) = kg(ϕ) + M1(A(ϕ) − α) + M2(B(ϕ) − β)e(ϕ), where

g(ϕ) = −Δe(ϕ) + 1
ε
(3ϕ2 − 1)e(ϕ).

Finally, the equations governing the interaction between the membrane and the
fluid are given by (16), where, by using (10) and c0 = 0, the expression of the
variational derivative is δE

δϕ
= kg(ϕ) + M1(A(ϕ) − α) + M2(B(ϕ) − β)e(ϕ).

Dissipative Energy Laws; Further Short Commentaries The just described
problem formally satisfies a dissipative energy law of form

d

dt

∫

Ω

1

2
|v|2dx + E(ϕ) = −μ0

∫

Ω

|∇v|2dx − λ

∫

Ω

∣
∣∣∣
δE

δϕ

∣
∣∣∣

2

dx.

The first term in the left-hand side of the last inequality is the time derivative of
the kinetic energy K(v) = ∫

Ω
1
2 |v|2dx (recall that for simplicity the density was

taken to be one), while E(ϕ) = ∫
Ω

E(ϕ)dx is the total free-energy. This dissipative
energy law can be obtained by the following formal computations: multiply the first
equation in (16) by v and the third equation by δE

δϕ
; integrate on Ω , using standard

integration by parts, the second equation (div v = 0). By adding the corresponding
results, observing that the term coming from the last one in the first equation and
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the term coming from the second one in the third equation cancel each other, we
obtain the stated dissipative energy law. Although we do not have space to comment
this aspect as it deserves, many phase field models, derived by using the variational
energy approach, do satisfy suitable dissipative energy laws. For this reason, such
models are popular and convenient, specially from the mathematical and numerical
point of view.

However, it is not clear in general whether they are thermodynamically consistent
(i.e., satisfy the entropy principle), specially in non-isothermal situations. Some
authors argue that in order to satisfy the entropy principle, the principle of
nonincreasing of the total free-energy, which was used for determining the phase
field equations, should be replaced by to the requirement of nonincreasing in time
of the following modified free-energy functional: E = ∫

Ω
1
θ
Edx, where E is as

before and θ > 0 is the absolute temperature. Although our impression is that these
arguments are a bit confusing, some truth must be in them since, as we will see in the
next section, where we describe a thermodynamically consistent approach, at least
one term of the derived equation satisfies this last claim for phase fields considered
as internal variables.

5 The Entropy Approach

Some of the arguments presented in this section are generalizations of the ones in
Boldrini et al. [10] for the special case of a phase field model for damage and fatigue
in materials.

We describe here a physically sound approach to obtain phase field models,
in the sense that the standard physical principles, including the second principle
of thermodynamics (entropy condition), are required to hold. Such methodology
is called the entropy approach, and to explain how it works, we assume that
all the stated variables and other mathematical entities that follow have enough
regularity for the required computations hold. We start by considering a body that at
time t occupies a domain denoted by Ωt ⊂ R3 described by Eulerian (spatial)
coordinates x (we will briefly comment on the use of Lagrangian (reference)
coordinates in the last section); Dt denotes arbitrary regular subdomains of Ωt

moving with the body. The variables characterizing the thermodynamical state of the
body are the following. A mass density ρ that must satisfy the standard conservation
of mass; the displacement and velocity vector fields, denoted, respectively, by u
and v, are dynamical variables, and the governing equation for v will be obtained by
applying the Principle of Virtual Power (PVP) (see, for instance, Frémond [56]); the
specific density of the internal energy e (density by unit of mass) whose governing
equation will be obtained by applying the first principle of thermodynamics, that is,
the balance of energy.

Since we want to exemplify the application of the entropy approach in a rather
general setting, we consider two phase fields of different types as we will explain.
At this point of the arguments, we do not attribute any physical meaning to those
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phase fields because we want just to distinguish them by the way their respective
governing equations are obtained; later on, we will consider an example where
specific physical meanings will be attributed to those phase fields. We assume:

• A first phase field ϕ that is considered a dynamical variable in the sense that its
corresponding governing equation will also be obtained by applying the Principle
of Virtual Power (PVP);

• A second phase field F that is considered an internal variable; we assume that
its governing equation is a constitutive differential equation to be determined by
the second principle of thermodynamics, that is, such that a suitable form of the
entropy inequality be satisfied.

Concerning notation, ġ = gt + v · ∇g denotes the material derivative of any
given variable g(x, t) (in particular, v̇ is the acceleration) and ∇Sw = sym (∇w)

denotes the symmetric part of the gradient of any given vector field w. In particular,
E = ∇Su and D = ∇Sv are, respectively, the infinitesimal strain tensor and the rate
of strain tensor fields.

In the present context, we use the expression macroscopic velocity to refer to
the standard (classical) velocity, that is, the time rate of change of the displacement,
v; we use the term microscopic velocity to refer to the time rate of change of
the dynamical phase field ϕ, that is, ϕ̇, which is denoted here by c. Moreover,
for the application of the Principle of Virtual Power (PVP), we denote by v̂
any admissible virtual macroscopic velocity and by ĉ any admissible virtual
microscopic velocity. The term admissible means that such velocities must satisfy
any possible physical or geometrical restrictions. For instance, irreversibility,
incompressibility, or nonpenetrability of rigid walls, and so on; we recall that in
the simplified application of the Principle of Virtual Power done in the previous
section, in the arguments to find an expression for fmicro, we had the requirement
that admissible virtual motions should be incompressible, and thus the associated
virtual macroscopic velocities should have null divergence, that is, we had to require
v̂ ∈ V(Ω), which is defined in (14). However, to simplify the presentation of the
arguments, we do not consider in this section any restriction and take for any fixed
time t the following admissible virtual velocities sets:

v̂ ∈ Vmacro(Ωt ) = (C0(Ωt ))
n, ĉ ∈ Vmicro(Ωt ) = C0(Ωt ). (17)

At the end of this section, we briefly comment on other possibilities.

5.1 General Governing Equations

The first physical law to be satisfied is the conservation of mass, which is expressed
by the continuity equation for the material density ρ:

ρ̇ + ρ divv = 0. (18)
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Next, to obtain the dynamic equations, we closely follow the arguments in
Frémond [56]. For this, we consider the virtual powers of several kinds of forces.

The virtual power of the interior forces is given for any (Dt , v̂, ĉ) by:

Pi (Dt , v̂, ĉ) = −
∫

Dt

T : D̂dx −
∫

Dt

(bĉ + h · ∇ ĉ)dx. (19)

Here, T is the Cauchy stress tensor, b is the volumetric density of energy
exchanged by variation of a unit of the time rate of ϕ; and h is the flux of energy
associated to the spatial variation of a unit of the time rate of ϕ. The first term
in the right-hand side of the previous equation is the classical stress power. The
next two other terms are the powers of generalized interior forces associated to
microscopic motions described, respectively, by the phase fields ϕ and F.

The virtual power of the exterior forces is given for any (Dt , v̂, ĉ) by:

Pe(Dt , v̂, ĉ) =
∫

Dt

ρf · v̂ dx +
∫

Dt

ρaĉ dx +
∫

∂Dt

t · v̂ dS +
∫

∂Dt

thĉ dS. (20)

In this last expression, f is the body force vector per unit of mass, a is
the specific (by unit of mass) density of energy supplied from the exterior
to the evolving structures (for example, if the phase fields are used to describe
material damage, a could be energies supplied by external irradiation or electrical
or chemical resulting from external actions modifying the microscopic bounds), t is
the macroscopic contact force and th is the superficial density of energy supplied
to the material by the flux h. The first two integrals in (20) are virtual powers of
actions at distance; the last two integrals in (20) are virtual powers of contact
forces.

The virtual power of the inertia (acceleration) forces is expressed for any
(Dt , v̂, ĉ) as follows:

Pa(Dt , v̂, ĉ) =
∫

Dt

ρv̇ · v̂dx. (21)

Remark In (21), the acceleration forces associated to the phase field ϕ are assumed
to be null; so there is no virtual power associated to them. This is a usual hypothesis,
which implies in a purely dissipative evolution for the structures described by ϕ.
However, as is pointed out by Frémond [56, p. 5], in certain specific situation it
is necessary to take into account also the acceleration forces of the microscopic
motions. In such cases, we must add the term

∫
Dt

ρ̂ ċ ĉ dx to Pa(Dt , v̂, ĉ), where
ρ̂ is a parameter associated to the “inertia” of the evolving structure (related, for
instance, to the mass of the bonds in certain damage modeling; see Frémond [56,
Section 12.2], Frémond and Nedjar [58], and Nedjar [86]), ċ = ϕ̈ is the acceleration
of ϕ, that is, the material derivative of the microscopic velocity c, and ĉ is a virtual
microscopic velocity.
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The Principle of Virtual Power (PVP) is stated as follows: for any (Dt , v̂, ĉ),

Pa(Dt , v̂, ĉ) = Pi (Dt , v̂, ĉ) + Pe(Dt , v̂, ĉ). (22)

From Eqs. (19) to (22), with ĉ ≡ 0, using the fact that the virtual velocities
satisfy (17) and standard arguments, we obtain:

ρv̇ = div T + ρ f in Dt ,

Tn = t in ∂Dt .
(23)

Similarly, taking v̂ ≡ 0 in (22), we also have:

0 = div h − b + ρa in Dt ,

h · n = th in ∂Dt .
(24)

To the previous dynamical equations, we must add another one governing the
evolution of F; since this phase field is considered an internal variable, we assume
that it satisfies a constitutive differential relation as follows:

Ḟ = F. (25)

The expression of F will be determined later on by using the entropy condition.
Next, we must impose the first principle of thermodynamics, that is, the

balance of energy in the system:

d

dt

∫

Dt

ρe dx + d

dt
K(Dt , v) = Pe(Dt , v, ϕ̇) +

∫

Dt

ρr dx −
∫

∂Dt

q · n dS,

where

K(Dt , v) =
∫

Dt

1

2
ρv · v dx

is the macroscopic kinetic energy, r is the specific heat source density, e is the
specific internal energy density, and q is the heat flux.

Remark When the acceleration forces associated to the phase field ϕ are not null
(see Remark just after (21)), the kinetic energy must be modified to K(Dt , v, c) =∫
Dt

1
2ρv · v dx + ∫

Dt

1
2 ρ̂|c|2 dx.

The previous expression of the balance of energy, combined with the balance of
mechanical work, which is obtained from (22) by taking v̂ = v and ĉ = ϕ̇, gives the
reduced form of the balance of energy in the integral form as:

d

dt

∫

Dt

ρe dx = −Pi (Dt , v, ϕ̇) +
∫

Dt

ρr dx −
∫

∂Dt

q · n dS.
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Due to the conservation of mass (18), we have d
dt

∫
Dt

ρe dx = ∫
Dt

ρė dx, and
thus, from the last integral identity we obtain the following local form:

ρė = −div q + ρr + T : D + bϕ̇ + h · ∇ϕ̇ in Dt . (26)

Finally, we must also impose the second principle of thermodynamics, that
is, the entropy inequality. For this, since we have two phase fields: ϕ, which is
considered a dynamical variable, and F, which is considered an internal variable,
we will combine arguments similar to the ones in Frémond [56] and Fabrizio et al.
[53], but with a more general form of the second principle of thermodynamics:

ρη̇ ≥ div F + ρs in Dt . (27)

Here, η, F, and s are, respectively, the specific entropy density, the entropy flux,
and the specific entropy production term.

The entropy flux is assumed to be of form

F = q
θ

+ k,

where, as before, q is the heat flux, θ > 0 is the absolute temperature (from now on,
we assume that θ is always positive); we observe that q/θ is the classical entropy
flux, while k is an entropy flux correction due to the physical processes associated
to the evolution of the structures described by the phase fields.

Similarly, the specific entropy production term is of form

s = r

θ
+ ω,

where r/θ is the classical specific entropy production due to heat generation, and
ω is an entropy production correction again due to the evolution of the structures
described by the phase fields.

Suitable expressions for k and ω will be obtained in the next subsection; however,
we firstly observe that certain restrictions are natural. We assume that there is no flux
of entropy due to microstructure evolution through the body’s boundary, that is, the
entropy production correction must satisfy

k · n = 0 on ∂Ωt . (28)

Also, although local decreasing of entropy due to microscopic evolution is
acceptable, this has to be compensated by corresponding increase in other parts
of the boundary in such way that the total entropy production due to microscopic
evolution in the body cannot decrease; that is, we must have

∫

Ω

ρω dx ≥ 0. (29)
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We observe that the under such restrictions, the second law of thermodynamics
assumes its standard form for the whole body.

Therefore, with the previous conditions, the entropy inequality (27) becomes:

ρη̇ ≥ −div
(q

θ
+ k

)
+ ρr

θ
+ ρω. (30)

Collecting the previous results, the basic governing equations are the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ div v = 0,

u̇ = v,

ρv̇ = div T + ρf,
0 = div h − b + ρa,

ρė = − div q + ρr + T : D + bϕ̇ + h · ∇ϕ̇,

Ḟ = F.

(31)

The previous expressions together with (30), (28), (29) constitute the general
equations for the models considered in this work. As usual, the constitutive relations
must be found in such way that the entropy inequality (30) is satisfied for all possible
admissible processes.

5.2 Constitutive Relations

We recall that we are using Eulerian (spatial) coordinates; also, for simplicity, in
the following arguments we assume that the body under consideration is under the
hypothesis of small strains; we will briefly comment on what must be changed when
this is not so, that is, when the body is subjected to large strains.

To obtain thermodynamically consistent expressions for the constitutive rela-
tions, we follow arguments similar to the ones introduced by Truesdell and Noll
[109]. We start by assuming that the constitutive properties are expressed in terms
of specific the free-energy density

ψ = e − θη (32)

and that ψ = ψ(Γ ), that is, it is a function of the following variables:

Γ = (ρ, θ, ϕ,F,∇ρ,∇θ,∇ϕ,∇F, E), (33)

By rewriting (30) in terms of the specific free-energy with the help of the equation
for the balance of energy (31) (iv), we obtain:

− ρ(ψ̇ + ηθ̇) + T : D + bϕ̇ + h · ∇ψ̇ − 1

θ
q · ∇θ + θ div k − ρω ≥ 0. (34)
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As in Frémond [56], T, b, h, and q are split in their reversible (non-dissipative)
and irreversible (dissipative) parts, which are indicated, respectively, by the super-
scripts (r) and (ir):

T = T(r) + T(ir), b = b(r) + b(ir),

h = h(r) + h(ir), q = q(r) + q(ir).
(35)

Here, T(r) and T(ir) are symmetric tensors; the non-dissipative (reversible) parts
may in general depend on the variables Γ (see (33)); the dissipative (irreversible)
parts may in general depend on the variables in Γ and on some of their derivatives
in time or space. The following arguments will lead to specific dependences on such
derivatives.

For simplicity of arguments, again as in Frémond [56, p. 27], we assume that
dissipation (irreversibility) appears only due to ϕ̇ and ∇θ in (34), that is,

h(ir) ≡ 0, (36)

and also that the heat flux is purely dissipative (irreversible); that is,

q(r) ≡ 0, (37)

The expressions in (35) must be found such that the entropy condition is satisfied
for any admissible process. To do that, we recall that for any sufficiently smooth
field g(x, t) depending on the spatial position x and time t , the following holds (see,
for instance, Lemma 1, p. 146, in Fabrizio et al. [53]):

∇̇g = ∇ġ − (∇v)T ∇g. (38)

Next, we use the chain rule for ψ and Eq. (38) with ρ, F, and E in place of
g. From (25), (31), and the entropy condition (34) (written in terms of the free-
energy) and the fact that T and ∂Eψ are symmetric tensors, after some manipulation,
collecting similar terms, and rearranging, we obtain:

−ρ(η + ∂θψ)θ̇ + (−ρ∂ϕψ + b(r) + b(ir))ϕ̇ + ρ2∂∇ρψ∇(div v)

+ρ∂∇ρψ
(
(div v) I + (∇v)T

)
∇ρ − ρ∂∇θψ∇̇θ − (ρ∂∇ϕψ − h(r))∇̇ϕ

+(T(r) + T(ir) − ρ ∂Eψ + ρ2∂ρψI + ρ∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ h) : ∇v

−ρ∂FψF − ρ∂∇Fψ · ∇F − 1

θ
q(ir) · ∇θ + θ div k − ρω

+1

2
ρ ∂Eψ : [(∇v)T ∇u + (∇u)T ∇v] ≥ 0.

(39)
Since we are considering only the case of small strains, the last term in the

previous inequality can be disregarded, and we are left with:



90 J. L. Boldrini

−ρ(η + ∂θψ)θ̇ + (−ρ∂ϕψ + b(r))ϕ̇ + ρ2∂∇ρψ∇(div v)

−ρ∂∇θψ∇̇θ − (ρ∂∇ϕψ − h(r))∇̇ϕ

+(T(r) − ρ ∂Eψ + ρ2∂ρψI + ρ∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ h(r)) : ∇v

+ρ∂∇ρψ
(
(div v) I + (∇v)T

)
∇ρ + b(ir)ϕ̇ + T(ir) : ∇v

−ρ∂FψF − ρ∂∇Fψ · ∇F − 1

θ
q(ir) · ∇θ + θ div k − ρω ≥ 0.

(40)

Next, we choose the reversible terms of the last inequality such that they do
contribute to the increase in the entropy for any admissible process, that is,

−ρ(η + ∂θψ)θ̇ + (−ρ∂ϕψ + b(r))ϕ̇

+ρ2∂∇ρψ∇(div v) − ρ∂∇θψ∇̇θ − (ρ∂∇ϕψ − h(r))∇̇ϕ

+(T(r) − ρ ∂Eψ + ρ2∂ρψI + ρ∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ h(r)) : ∇v = 0.

(41)

Since in (41) the dependence on θ̇ , ∇v, ∇(div v), and ∇̇θ are linear and, at any
point x and time t , such quantities can assume arbitrary values (due to the possibility
of choosing in suitable ways the forcing terms f and r), their respective coefficients
must be zero. Thus, we must have

∂∇ρψ = 0, ∂∇θψ = 0, (42)

η = −∂θψ. (43)

In addition, by taking the reversible parts of b, h, and T, respectively, as

b(r) = ρ∂ϕψ, (44)

h(r) = ρ∂∇ϕψ. (45)

T(r) = ρ ∂Eψ − ρ2∂ρψI − ρ∇F ⊗ ∂∇Fψ − ∇ϕ ⊗ h(r), (46)

identity (41) is automatically satisfied. Then, from (37) and (45), we get

h = h(r) = ρ∂∇ϕψ. (47)

From (46), using that T, ∂Eψ , and ∂ρψI are symmetric tensors, we then obtain

T(r) = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ), (48)

together with the following restriction:

skw (∇ϕ ⊗ ∂∇ϕψ) ≡ 0 and skw (∇F ⊗ ∂∇Fψ) ≡ 0. (49)
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By using the previous results and that T(ir) is a symmetric tensor, (40) is then
reduced to

b(ir)ϕ̇ + T(ir) : D − ρ∂FψF − ρ∂∇Fψ · ∇F − q(ir)

θ
· ∇θ + θ div k − ρω ≥ 0.

(50)
Let us now look for constitutive relations for k and q guaranteeing thermody-

namic consistency. For this purpose, we use the identities θ div k = div (θk)−k·∇θ

and ρ∂∇Fψ · ∇F = div (ρ∂∇FψF) − div (ρ∂∇Fψ)F in (50); then, after some
manipulation, it can be rewritten as

b(ir)ϕ̇ + T(ir) : D − q(ir)

θ
· ∇θ − (ρ∂Fψ − div (ρ∂∇Fψ))F

−div (ρ∂∇FψF − θk) − k · ∇θ − ρω ≥ 0.

(51)

Allen–Cahn Type Systems
To simplify expression (51), we choose k exactly as in [53]:

k = ρ

θ
∂∇FψF. (52)

We also take the correction term for the entropy production due to microscopic
evolution, ω, to be null (then (29) is automatically satisfied), that is,

ω = 0.

By using these last two expressions, respectively, in the fifth and seventh terms of
(51), after dividing by θ and some manipulation, the inequality reduces to

b(ir)

θ
ϕ̇ + T(ir)

θ
: D − q(ir)

θ2 · ∇θ − Fξ ≥ 0, (53)

where we denoted

ξ = ρ

θ
∂Fψ − div

(ρ

θ
∂∇Fψ

)
. (54)

The next main idea is to automatically satisfy expression (53) by using the
concept of pseudo-potential of dissipation. In the case we are discussing, this is a
functional

ψd = ψd(ϕ̇, D,∇θ, ξ, Γ̃ ), (55)

where Γ̃ = (ρ, θ, ϕ,F,∇ϕ,∇F, E) (we took in consideration (33) and (42)),
satisfying: ψd(ϕ̇, D,∇θ, ξ, Γ̃ ) ≥ 0 for all (ϕ̇, D,∇θ, ξ, Γ̃ ), ϕ(0, 0, 0, 0, Γ̃ ) = 0
and to be continuous and convex with respect to the variables ϕ̇, D, ∇θ , ξ .
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To obtain (53), it is enough to take [b(ir)/θ, T(ir)/θ,−q(ir)/θ2,−F ] as the gradi-
ent of ψd(·) with respect to [ϕ̇, D,∇θ, ξ ] (recall that for simplicity of exposition we
assumed that ψd(·) is differentiable with respect to variables [ϕ̇, D,∇θ, ξ ]). In fact,
the convexity of ψd(·) implies that 0 = ψd(0, 0, 0, 0, Γ̃ ) ≥ ψd(ϕ̇, D,∇θ, ξ, Γ̃ ) +
∂ϕ̇ψd(ϕ̇, D,∇θ, ξ) (0 − ϕ̇) + ∂Dψd(ϕ̇, D,∇θ, ξ) : (0 − D) + ∂∇θψd(ϕ̇, D,∇θ, ξ) ·
(0−∇θ)+∂ξψd(ϕ̇, D,∇θ, ξ)(0−ξ). Since ψd(ϕ̇, D,∇θ, ξ, Γ̃ ) ≥ 0, we obtain the
inequality ∂ϕ̇ψd(ϕ̇, D,∇θ, ξ)ϕ̇ + ∂Dψd(ϕ̇, D,∇θ, ξ) : D + ∂∇θψd(ϕ̇, D,∇θ, ξ) ·
∇θ+∂ξψd(ϕ̇, D,∇θ, ξ)ξ ≥ 0. Therefore, in order to have (53) satisfied, it is enough
to take

b(ir)

θ
= ∂ϕ̇ψd,

T(ir)

θ
= ∂Dψd,

−q(ir)

θ2 = ∂∇θψd, −F = ∂ξψd.

(56)

Remark When ψd is not differentiable, the results are similar, but with the
partial derivatives replaced by the corresponding subdifferentials and the equalities
replaced by inclusions since subdifferentials are not necessarily single valued.

Thus, using (56) and all the previous results, we obtain

b = ρ∂ϕψ + θ∂ϕ̇ψd,

T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ) + θ∂Dψd,

q = −θ2∂∇θψd,

F = −∂ξψd

(57)

By collecting all the previous results and recalling that e = ψ +θη = ψ −θ∂θψ ,
we finally rewrite the governing equations (31) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ div v = 0,

u̇ = v,

ρv̇ = div T + ρ f,
θ∂ϕ̇ψd = div (ρ∂∇ϕψ) − ρ∂ϕψ + ρa,

ρė = div
(
θ2∂∇θψd

)
+ T : D + (ρ∂ϕψ + θ∂ϕ̇ψd)ϕ̇ + ρ∂∇ϕψ · ∇ϕ̇ + ρr,

Ḟ = −∂ξψd.

T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ) + θ∂Dψd,

e = ψ − θ∂θψ.

(58)

We observe that the fifth equation in the previous system is usually written in
terms of the temperature θ ; moreover, suitable initial and boundary conditions must
be added to the system to complete the evolution problem.

We stress that the sixth equation Ḟ = −∂ξψd in system (58) can be thought as
a generalized Allen–Cahn type equation. In fact, let us consider, for instance, the
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mathematically simplest case: a quadratic pseudo-potential given by

ψd(ϕ̇, D,∇θ, ξ, Γ̃ ) = λ̃

2
|ϕ̇|2 + b̃

2
|D|2 + c̃

2
|∇θ |2 + F̃

2
|ξ |2,

where the coefficients are nonnegative and may depend on Γ̃ . Then, we obtain F =
−∂ξψd = −F̃ ξ = −F̃ [ρ

θ
∂Fψ − div (

ρ

θ
ψ∇F)], by recalling the definition (54) of

ξ , and we arrive at the rather standard thermo-modified Allen–Cahn equation:

Ḟ = F̃
[

div
(ρ

θ
∂∇Fψ

)
− ρ

θ
∂Fψ

]
. (59)

From (52), condition (28) is satisfied if we assume either of the following
boundary conditions: ρ

θ
∂Fψ − div

(
ρ
θ
∂∇Fψ

) = 0 or ∂∇Fψ · n = 0 on ∂Ω .

Cahn–Hilliard Type Systems
There are other possibilities to the expression of F giving the differential

constitutive relation for the phase field system. For instance, assume that

F = div H, (60)

where H has to be found. Then, we rewrite inequality in (51) in terms of H and ξ

(see (54)) as

b(ir)ϕ̇ + T(ir) : D − q(ir)

θ
· ∇θ − ξ̃ div H

−div (ρ∂∇Fψ div H − θk) − k · ∇θ − ρω ≥ 0,

where we denoted

ξ̃ = ρ∂Fψ − div (ρ∂∇Fψ) . (61)

By taking

k = ρ

θ
∂∇Fψ div H (62)

and observing that ξ̃ div H = div(ξ̃H) − H · ∇ ξ̃ , the last inequality becomes

b(ir)ϕ̇ + T(ir) : D − q(ir)

θ
· ∇θ − div(ξ̃H) + H · ∇ ξ̃ − k · ∇θ − ρω ≥ 0.

Next, by taking the correction term for the entropy production as

ω = 1

ρ
div(ξH), (63)
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we finally get

b(ir)ϕ̇ + T(ir) : D −
(

q(ir)

θ
+ k

)

· ∇θ + H · ∇ ξ̃ ≥ 0. (64)

Similarly as before, expression (64) can be satisfied with the help of a pseudo-
potential, but now of form

ψd = ψd(ϕ̇, D,∇θ,∇ ξ̃ , Γ̃ ), (65)

where Γ̃ is as before, and ψd is such that ψd(ϕ̇, D,∇θ,∇ ξ̃ , Γ̃ ) ≥ 0 for all
(ϕ̇, D,∇θ,∇ ξ̃ , Γ̃ ), ψd(0, 0, 0, 0, Γ̃ ) = 0, and it is continuous and convex with
respect to the variables ϕ̇, D, ∇θ , ∇ ξ̃ . As before, (64) is satisfied if we take

b(ir) = ∂ϕ̇ψd, T(ir) = ∂Dψd,

−q(ir)

θ
− k = ∂∇θψd, H = ∂∇ ξ̃ ψd .

(66)

Thus, using the previous results, we obtain

b = ρ∂ϕψ + ∂ϕ̇ψd,

T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ) + ∂Dψd,

q = −θ∂∇θψd − ρ∂∇Fψ div(∂∇ ξ̃ ψd),

F = div(∂∇ ξ̃ ψd).

(67)

Remark As before, when ϕ is not differentiable with respect to [ϕ̇, D,∇θ,∇ ξ̃ ], we
have similar expressions but with the partial derivatives replaced by subdifferentials
and the equalities replaced by inclusions since subdifferentials are not necessarily
single valued operators.

By collecting all the previous results and recalling that e = ψ +θη = ψ −θ∂θψ ,
we finally rewrite the governing equations (31) as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ div v = 0,

u̇ = v,

ρv̇ = div T + ρ f,
∂ϕ̇ψd = div (ρ∂∇ϕψ+) − ρ∂ϕψ + ρa,

ρė = div (θ∂∇θψd + ρ∂∇Fψ div(∂∇ ξ̃ ψd)) + T : D + (ρ∂ϕψ + ∂ϕ̇ψd)ϕ̇

+ρ∂∇ϕψ · ∇ϕ̇ + ρr,

Ḟ = div(∂∇ ξ̃ ψd)

T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ) + ∂Dψd,

e = ψ − θ∂θψ.

(68)
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We stress that the sixth equation in (68), which is the differential constitutive
equation for the phase field F, is in conservative form and can be thought as a
generalized Cahn–Hilliard type equation. In fact, as before, let us consider, for
instance, the mathematically simplest case of a quadratic pseudo-potential:

ψd(ϕ̇, D,∇θ,∇ξ, Γ̃ ) = λ̃

2
|ϕ̇|2 + b̃

2
|D|2 + c̃

2
|∇θ |2 + M̃

2
|∇ ξ̃ |2,

where the coefficients are nonnegative and may depend on Γ̃ . Then, we obtain H =
∂∇ ξ̃ ψd = M̃∇ ξ̃ = M̃∇ (ρ∂Fψ − div (ρψ∇F)). By recalling again the definition

(61) of ξ̃ , we arrive at the rather standard Cahn–Hilliard equation:

Ḟ = div
[
M̃∇ ( div (ρ∂∇Fψ) − ρ∂Fψ)

]
, (69)

where M̃ functions as the mobility.
We also observe that condition (29) is satisfied when one imposes the boundary

condition ξ̃ = ρ∂Fψ − div (ρ∂∇Fψ) = 0 on ∂Ω; in fact, in this case we have∫
Ω

ρω = ∫
Ω

div(ξ̃H) = ∫
∂Ω

ξ̃H = 0.

Example: Constitutive Relations for Solid Materials Under Damage and
Fatigue

A particular case of the previously described situation was presented in Boldrini
et al. [10]. In that article, the authors develop a phase field model for the evolution
of fatigue and damage in materials, leading eventually to fracture, under non-
isothermal processes. Moreover, two phase field variables, also denoted by ϕ and
F, were used to give, respectively, the level of damage and fatigue in the material;
the variable ϕ was the volumetric fraction of damaged material ϕ (and so 0 ≤ ϕ ≤ 1;
virgin material when ϕ = 0; fractured material when ϕ = 1) and was considered a
dynamical variable; the variable associated to fatigue F was considered an internal
variable. The model equations were similar to the ones in (58); in the particular
case used by the authors for their numerical simulations, a nearly incompressible
approximation was taken (density approximately constant given by ρ0, see the
commentaries in Sect. 5.3), and the volumetric free-energy density had the following
form:

ρ0ψ = (1 − ϕ)2 1

2
ET CE − cV θ ln θ + gc

(
γ

2
|∇ϕ|2 + 1

γ
H(ϕ)

)
+ 1

γ
FHf (ϕ).

(70)
Here, C is the symmetric fourth-order elasticity tensor whose coefficients give

the elastic properties of the virgin material; gc is the critical Griffith-type fracture
energy parameter and for simplicity is assumed to be a positive constant; γ > 0
is related to the width of the fracture layers and again for simplicity is assumed a
positive constant; and H(ϕ) and Hf (ϕ) are the following potentials:
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H(ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2
ϕ2 for 0 ≤ ϕ ≤ 1,

1

2
for ϕ > 1,

0 for ϕ < 0.

and Hf (ϕ) =
⎧
⎨

⎩

−ϕ for 0 ≤ ϕ ≤ 1,

−1 for ϕ > 1,

0 for ϕ < 0,

The pseudo-potential of dissipation in that particular case was

ψd = λ

2
|ϕ̇|2 + b

2
|D|2 + c

2
|∇θ |2 + F̃

2
|ξ |2,

where ξ is the expression defined in (54), and the coefficients cannot depend on ϕ̇,
D, ∇, θ , and ξ . More details and justifications can be found in Boldrini et al. [10],
where several numerical simulations were also presented to show the potentiality of
this kind of phase field models.

5.3 Further Commentaries

Incompressibility Systems (58) and (68) give the governing equations compress-
ible materials; the term −ρ2∂ρψI in the expression of T is the thermodynamic
pressure. When the material is incompressible (isochoric), the null divergence of
velocity is required (div v = 0), and the first admissible virtual velocities space in
(17) must be replaced by Vmacro(Ω) = {v̂ ∈ (C0(Ω))n : div v̂ = 0}. The arguments
then lead to the addition of extra term to the stress tensor T; this is related to a
hydrostatic-type pressure p, and T now becomes

T = −pI + ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ) + θ∂Dψd.

Nearly Incompressible Processes Besides the small strains hypothesis, another
rather common simplifying assumption is the nearly incompressibility of solid
materials. In such approximation, the material density is assumed to be a known
constant ρ0; the first equation in previously obtained system is disregarded, and the
density ρ is replaced by ρ0 in the other governing equations; in this approximation,
the stress tensor has no additional pressure term.

Quasi-Static Processes Another simplifying hypothesis, frequently used in con-
junction to the nearly incompressibility, assumes that the equilibrium of forces and
damage (fracture) occur at a much faster timescale than the equilibrium of thermal
energy and fatigue. This is a quasi-static situation, and the previous systems are
simplified by taking the approximations v̇ ≡ 0, ϕ̇ ≡ 0.

Irreversible Phase Fields In some physical situations, the physical consequences
described by a phase field φ are irreversible. Examples are solidification of several
polymers (the white of eggs that cannot naturally turn back to nonsolid state after
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being fried) and several kinds of damage (fracturing) in materials (no healing after
having occurred). These situations translate in the mathematical requirement that
for admissible processes we must have ϕ̇ ≥ 0. One possibility to deal with this is
to replace the second admissible velocity space in (17) by the admissible virtual
microvelocity set Vmicro(Ω) = {ĉ ∈ C0(Ω) : ĉ ≥ 0}; this leads to imposition of
Kuhn–Tucker type conditions, similar, for instance, as in Simo and Hughes [106]
(in the plasticity context). Another possibility is to impose the irreversibility by
modifying the pseudo-potential of dissipation by the addition of the extra term
I−(ϕ̇), where I−(z) denotes the potential defined by I−(z) = 0 for z ≥ 0 and
I−(z) = +∞ for z < 0. This forces ϕ̇ ≥ 0 at the expense that now ∂ϕ̇ψd must be
understood as a subdifferential and that, in the equations where this term appears,
the equalities must be replaced by inclusions; see, for instance, Bonfanti et al. [21],
Laurençot et al. [78], Luterotti et al. [79], and Boldrini et al. [13, 14]. In particular
situations, some authors consider the irreversibility of phase fields using alternative
approaches; see, for instance, Miehe et al. [81, 82] in the context of phase field
modeling of damage and fracture of materials.

Anisotropy Material anisotropy can be included by suitably changing the part
depending on the gradient of the phase field in the free-energy density. For instance,
in the example described in the last subsection, the term |∇ϕ|2 in (70) could be
replaced by 〈∇ϕ,A∇ϕ〉, where 〈·, ·〉 denotes the canonical inner product in Rn and
A is a positive definite matrix associated to the anisotropy.

Energy Inequalities The phase field models derived in this section automatically
satisfy an energy identity (and thus corresponding inequalities). This is because they
were derived in a physically consistent way, but one can also see this directly by
formally proceeding as follows: first, we integrate on Ω the fifth equation in (58),
using the information given by conservation of mass (the first equation); second, we
take the scalar product of the third equation in (58) by the velocity v and integrate on
Ω , using again the information given by conservation of mass (the first equation),
integration by parts and the fact that the Cauchy tensor T is symmetric; third, we
multiply the fourth equation in (58) by ϕ̇ and integrate on Ω and use integration by
parts; fourth, we add the resulting identities obtained in the previous three steps to
obtain the following conservation of energy:

d

dt

∫

Ω

ρe dx + d

dt

∫

Ω

ρ|v|2
2

dx =
∫

Ω

ρr dx +
∫

Ω

ρf · v dx +
∫

Ω

ρaϕ̇ dx

we observe that the sixth equation in (58), the equation for the evolution of the phase
field F, was not used to obtain this identity, and F appears only implicitly in it. This
situation is consistent with the choice of this phase field as an internal variable.
However, given the specific free-energy and the pseudo-potential of dissipation
densities, one can try to obtain modified “energy” inequalities explicitly involving
F. For this, one could multiply the sixth equation in (58) by Ḟ, for instance, and
proceed as usual, trying to combine the result with the other equations. Exactly, the
same observations hold for system (68).
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Energetic Variational Approach and Thermodynamical Consistency By using
the notation of (27), when the total entropy entering the region Ω from the
exterior is null (

∫
∂Ω

F · ndS = 0) and the total internal production is positive
(
∫
Ω

ρs dx ≥ 0), the total entropy
∫
Ω

ρηdx must be nondecreasing. In fact,
from (27) and the previous conditions, using the conservation of mass (18), we
must have d

dt

∫
Ω

ρηdx = ∫
Ω

ρη̇dx ≥ ∫
∂Ω

ϕdS + ∫
Ω

ρs ≥ 0. The classical
Allen–Cahn (11) and Cahn–Hilliard (12) phase field equations obtained by the
energetic variational approach (see Sect. 4) automatically satisfy this requirement
when applied to nearly incompressible isothermal processes (constant mass density
and temperature) for materials with the internal energy e depending only on the
temperature. In fact, from the definition of the specific free-energy (32), we have
ρη = ρe/θ − ρψ/θ = ρe/θ − E/θ (recall that E is the volumetric free-energy
density); thus, d

dt

∫
Ω

ρη dx = − 1
θ

d
dt

∫
Ω

E dx ≥ 0. However, as we had already
mentioned, it is not a priori clear that more general phase field models obtained by
the energetic variational approach are thermodynamically consistent in the sense of
satisfying an entropy inequality.

Large Strains The last term in (39) appeared because Eulerian (spatial) coordi-
nates were used; it does not appear in Lagrangian (reference) coordinates; moreover,
in such coordinates the other terms in the expression corresponding to (39) appear
in simpler forms. This means that in Lagrangian coordinates no approximation is
required at that point of the arguments since it is not necessary to pass from (39)
to (40), and thus, for large strains, it is more convenient to follow the previous
arguments and derivations using Lagrangian coordinates; by doing this, one gets
expressions similar to the just obtained ones (but in Lagrangian coordinates).
However, there is a “mathematical price” to be paid in any specific situation. To
explain this, we just observe that, since everything must be written in Lagrangian
coordinates, in particular, the same is so for the free-energy density. The difficulties
appear in the cases with gradient terms in the free-energy, as in the situation we just
described; in fact, by their physical origin, such gradients are naturally gradients
with respect to Eulerian (spatial) coordinates since they correspond to fluxes or
diffusions occurring in the spatial (deformed) configuration. Thus, to apply a theory
written in Lagrangian coordinates, one must firstly rewrite the free-energy density
in such coordinates, which brings nonlinearities involving also the deformation
gradient and results in more complicated mathematical expressions.
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