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Preface

When the University of Bologna was founded, in 1088, Brazil had not been visited
by the Portuguese navigators, which would only occur 412 years later, in 1500. An
even greater gap was observed between the creation of the University of Coimbra,
in 1290, the first in a Portuguese-speaking country, and the authorization of the
Emperor Dom João VI for the installation of higher education courses in Brazil, in
1808, the year in which the Portuguese court arrives in the country, escaping from
the pressure exerted by Napoleon Bonaparte.

Despite the imperial permission and the subsequent declaration of independence
from Portugal, in 1822, universities, conceived as multidisciplinary institutions
of higher education, were only created in Brazil in the twentieth century. The
University of São Paulo (USP), for example, was founded in 1934, bringing together
isolated colleges and schools, which was the model for higher education until then.

From 1940 to 1960, Brazilian higher education experienced a great advancement,
multiplying by three the number of enrolled students. It is also from this period
that the Brazilian Center for Research in Physics (CBPF), the National Council
for Scientific and Technological Development (CNPq), the Coordination for the
Improvement of Higher Education Personnel (CAPES), the Institute for Pure and
Applied Mathematics (IMPA), and the São Paulo Research Foundation (FAPESP)
were created, institutions that are of crucial relevance for the development of science
in Brazil.

But it was the ebullient atmosphere of social and scientific changes that charac-
terized the 1960s, in Brazil and around the world, which became a catalyst element
for the experimentation of new ideas in all fields of sciences and higher education in
the country. It is in this environment that the University of Campinas (Unicamp)
appears, in 1966. Today, 52 years after being founded, there is no doubt that
Unicamp was able to efficiently combine teaching activities with advanced research
and outreach, which allowed it to approach universities of great international
prestige, despite the several centuries of advantage that separate most of them from
Unicamp.

Because it was conceived as a research university, Unicamp has adopted, from its
very beginning, some innovative practices for the time from its founding, such as the
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vi Preface

creation of basic science institutes and the adoption of a common initial curriculum
to be fulfilled by students of several programs, before they dedicated themselves to
the specific courses of their specialties. This was how the Institute of Physics came
into being in 1967, as well as the Institute of Mathematics, Statistics and Scientific
Computation (IMECC) in 1968, months before the Brazilian Congress promulgated
the so-called university reform, an act that officially instituted these practices in the
rest of the country.

Naturally, the creation of an Institute of Mathematics in a city in the interior of
the state of São Paulo, and its existence in a land that, 2 years previously, was just
farmland, was a task worthy of being featured in an epic story. For the institute
to fulfill this role, it was necessary to count upon the unlikely combination of
the modernizing spirit of Zeferino Vaz, the first president of Unicamp, with the
enthusiasm and dedication of the young researchers who accepted this task.

It was this creative and innovative drive of its founders that eventually became the
trademark of IMECC. The institute was one of the first in the country to implement
undergraduate programs in statistics, computer science, and applied mathematics.
Moreover, its graduate program in mathematics was also one of the first to receive
highest evaluation grade from CAPES, a federal agency that assesses the quality of
graduate courses countrywide.

This volume starts with a description of the challenges faced in the initial years
of the institute and a historical view with new opportunities for applied mathematics
in Brazil, followed by research and survey articles of colleagues who lived the first
years of existence of IMECC and, at the same time, stood out internationally in
their research areas. Among them, we cannot but regret the passing away, just after
finishing his contribution, of Prof. Waldyr Rodrigues Jr. We miss him and all other
colleagues who are no longer among us and who helped build the IMECC.

It is with great pleasure and enthusiasm that, to celebrate the 50 years of IMECC
history, we have gathered in this volume some articles that reflect a partial view
of the institute’s unique contributions to the development of mathematics, applied
mathematics, and statistics in Brazil.

This date is not, however, an arrival in terms of IMECC’s academic life. Rather,
we consider it to be a starting point for our next 50 years – or more. This lays upon
us, collectively, a serious responsibility: keep the high quality of our work as a full-
fledged university institute and maintain our dedication to research, teaching, and
outlook at a level of academic excellence.

Campinas, SP, Brazil Carlile Lavor
Campinas, SP, Brazil Francisco A. M. Gomes
October 2018
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“And Now We’re in 2018. . . ”

João Frederico da Costa Azevedo Meyer

Abstract In this chapter, having been part of IMECC during its 50 years, I try
to register, but not officially, of course, stories that make up the history of the
Institute, as well as pointing out special moments, highlighting some of these. Some
names are mentioned, but many other names do not appear since what I register is,
mostly, the result of collective actions. The first years of IMECC are seen through
the eyes (and feelings) of an undergraduate student and the remaining 46 years
are described—and quite subjectively!—with the observation of a professor. The
objective of this chapter, therefore, is to give an idea of where we came from and
what made us who we are. . . .

The year was 1967. On paper our university—São Paulo State University at
Campinas, in Portuguese “Universidade Estadual de Campinas”, or UNICAMP—
had been formed in 1966, with all the necessary documents being signed and
including the School of Medicine that had already existed in Campinas for some
years. But, the first class, that of 1967, only began in April of that year. Brazilian
society was living the first years of a violent coup d’état which had done away with
a democratically elected government, closed Congress and done away with many
individual and legal rights—the year was one of those which we identify today as
the “Years of Lead.” On the other hand, literature, music, theater, and the change in
social values were booming worldwide, and in Campinas too.

The University functioned as a whole in a single building close to the commercial
center of Campinas, then a town with less than 370,000 inhabitants which already
had strong industrial characteristics that existed alongside an intense agricultural
production. This building had previously belonged to a technical school so it had
the necessary conditions for installing classrooms, laboratories, bureaucratic offices,
and storage, but it was right next to the municipal market and to the big open space
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2 J. F. da Costa Azevedo Meyer

to which came all the produce to be sold to intermediaries. Not surprisingly, all
this commerce happened in an environment with several other activities: bars, early
morning restaurants, pickpockets, street vendors .... The list is quite long. That is
where we started. So, on a street called “The Cult of Science,” next to this space
of social vitality, with unheard of equipments and academic seriousness, both the
University and its Mathematics Department were born.

In fact, this imagined University was the work of a very special person, Prof.
Zeferino Vaz who had the courage (or the foolhardiness, or the vision) of accepting
the challenge of creating something new as a university, something different from
other schools, where new ideas from other countries could (and did!) influence our
lives, and our academic and personal existences.

As in all Brazilian universities, there was an entrance exam, and those who
passed thought of being engineers of some kind, at least one of which was not quite
traditional on the Brazilian academic scenario. But Prof. Zeferino Vaz was not a man
to dream or envision or imagine or create new things by himself. He quite literally
seduced great researchers from other schools and towns (and other countries!), and
talked them into coming to Campinas—and to share his dreams. And they came.
The laboratories, the computer (which many called, in Portuguese, an “electronic
brain”. . . ) convinced them. Maybe. But, most of all, it was Zeferino Vaz’s dream,
and his promises that brought together a respectable team of professors.

So, for those of us who passed the exam to enter the university that year and
in the subsequent years, an extraordinary privilege: we had classes with professors
and researchers who had the courage to come after something new, challenging,
motivating and, above all, the chance to come to a place where freedom and
individual and civil rights were the rule.

In Mathematics, that was the background as well and many of us, having entered
the university to become engineers, due to the contact with these scientists, some of
them bright-eyed youngsters, some of them experienced professionals with histories
of rebellion against imposed authority, was an opportunity to come in contact with
something new, with new ideas, with new values, with a dream to be dreamt together.

In July of 1967, Ivam Resina (now Prof. Dr. Ivam Resina) and I were called to
become monitors of the computer, a fantastic IBM 1130 with an unheard of capacity
of 16K! Besides our good grades during the first semester (which I believe got us
a small grant to be monitors), we were all involved in politics and sports: we were
both part of the directing board of our student body—the existence of which the
law forbade—Ivam played volleyball and football, whereas I was the swimmer in
the free-style swimming as well as part of the relay group and a medium-distance
runner. . . .

At that time, Computer Science was something totally new, and was considered
part of Applied Mathematics. And our teacher, the late Prof. Dr. Imre Simon was
fantastic as a teacher and courageous as an academic—an example we had to look
up to.

By this time, some of us were completely hooked by science, no more engi-
neering for us. Many of our classmates, however, stayed in engineering and we
all received this wonderful influence, our professors’ enthusiasm was not wasted!
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Mentioning names is a serious risk, since my memory will most certainly fail me,
but some of the teachers who came from the State University at São Paulo included
Angelo Barone, Mauro de Oliveira César, Paulo Boulos, and Ayrton Badelucci—
and what an influence they had upon us!

With the arrival of the following year, 1968, a critical year for the whole country,
a new class entered the university, and we saw the same enthusiasm overcome the
participants of the class of 1968. . . . During this time, the political situation became
more and more serious and dangerous and, finally, military authorities arrested ALL
the students participating in the Annual Congress of the National Student Union in
Brazil, called “UNE.” Our three more outstanding leaders ended up in jail with so
many others and our University President Zeferino Vaz was one of the very few who
managed to visit them (and to take them cigarettes and chocolates, and messages
from us, their colleagues).

That was when the Mathematics Institute was founded: the Institute for Math-
ematics, Statistics and Computer Science, later to become the Institute for Math-
ematics, Statistics and Scientific Computing. In 1968, it was born in the midst
of political and social turmoil, but our teachers’ enthusiasm was not diminished
by what was happening in our midst as well as to the whole country. This was
when Zeferino Vaz brought to UNICAMP the professors who had been fired by the
military who had invaded the National University in Brasilia, our national capital.
UNICAMP became a haven as well as the locus for serious science to be developed.
Our Institute, IMECC came to be in difficult times but that was good: being forged in
this scenario made it strong, sound, and very, very serious. Oh, it was not perfect, as
always happened to university organizations, but it had a goal, a destiny, a task. And,
our IMECC never left its pioneering activities, its innovative choice, its academic
seriousness. . . .

The following years, 1969 and 1970, were of an aggravated social situation, when
many social, popular, and political leaders were arrested, underground movements
were strengthened, and persecutions undertaken. So, in this situation, IMECC
continued to thrive academically in no way separated from the national situation,
but really as a part of this social turmoil! And, this was when the graduate studies
appeared, to accompany the undergraduate efforts. . . .

Yes, the political situation affected our efforts, yes, the risk of doubting and of
speaking out was seriously dangerous, yes, many mathematicians were persecuted
in Brazil and in Latin America: our graduate efforts were a place of resistance, and
the seeds were set for an active political life for the IMECC!

During these initial years, two strong groups emerged: Logic and Differential
Equations and, some years later, Mathematical Analysis and Algebra. During the
academic semesters in 1970, fourth-year undergrads had classes together with those
students who had come to our graduate programs, an opportunity to increase our
experiences and our motivation.

By this time, we had already moved to the place where our Campinas campus is
located, in a district north of Campinas called Barão Geraldo. There were buses in
the morning from downtown to the campus and buses in the other sense at the end
of the afternoon. If you missed these buses, the option was to hitch a ride to Barão
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Geraldo and, from the entrance of the district, to walk more or less 3 miles to the
classrooms and laboratories.

Research groups had grown, new professors had arrived, and there were a lot
more undergrads and graduate students. Of course, we did not continue to live the
initial honeymoon: discussions, some severe, involved many aspects and, although
putting us through difficult moments, also helped forge a policy of understanding
differences and diversities. So, in due time we had several different research
groups working in our Institute, and we all received precious support from our
dean, Prof. Dr. Ubiratan D’Ambrósio who succeeded Prof. Dr. Rubens Murillo
Marques, who had laid the foundations for our becoming a nationally significant
research center. Professor D’Ambrósio issued an international invitation, and a
new group of brilliant youngsters attended this call coming from several countries.
Among these came Alcibíades Rigas, Antônio Conde, and Francesco “Franco”
Mercuri who joined the existing faculty, bringing with them further enthusiasm.
Like them, IMECC received a group that came from Rio de Janeiro, a group
that had been working with Professor Leopoldo Nachbin. In with this group
came Mário Mattos, Carlos Mujica, and João Bosco Prolla. It was at this time
that Algebra, Analysis, Geometry, Logic, Numerical Analysis, Measure Theory,
Topology, Optimization, Operational Research, Computer Science, and Scientific
Computing and Applications identified not only areas of work in Mathematics but
groups of IMECC’s faculty developing work, and teaching as well. By this time,
our Graduate Programs had become a reality, a significant one in Brazil. But, it
was important to add to these professors other young researchers who chose to
come to Brazil to live and to work, helping to give IMECC what is at present a
cosmopolitan faculty where most discussions are carried out with different accents,
different cultures, different backgrounds, and histories: a healthy diversity that still
marks our working (and personal!) coexistence. . . .

In 1974, a special Program called the Programa para a Melhoria e a Expansão do
Ensino (PREMEN)—the Program for Improvement and Expansion of Teaching—
was created by the federal government, and the University President, Prof. Zeferino
Vaz, invited prof. Ubiratan D’Ambrósio to be its Coordinator. Ubiratan immediately
accepted, of course, he was a pioneer in most efforts to improve learning in
all of its aspects. IMECC played a leading role in this national initiative. And,
with the support IMECC received, new specialists were hired, and maybe one
of them was paradigmatic: Prof. Henry “Hank” Wetzler who, after obtaining a
doctorate in Differential Equations, dedicated himself to the area of Mathematical
Education. Prof. Wetzler immediately proposed using television in the classroom
and managed to build a small studio which, in the following years, began to work
with Analytic Geometry and Linear Algebra (partially due to the high failure rates),
two mass courses which became effective 2 years later with excellent results,
influencing professors who preferred the traditional methods as well. . . . And, the
small amateurish studio continued to grow and became what is today UNICAMP’s
Television.

The year of 1975 brought with it the choice of the Institute for hosting a graduate
program totally supported by the OAS—Organization of American States—with
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students from the whole Latin American part of the continent. This was another
experimental program that brought together professors from other countries (and
universities) for working as students in chemistry, physics, and mathematics and
to obtain a Master’s Degree in a new as well as experimental transdisciplinary
program. This was later reproduced in other Brazilian universities, in other countries
as well as in Africa.

Not surprisingly, this environment affected IMECC’s faculty: maybe one of the
first Brazilian experiences in teaching Calculus in a computer-aided ambiance was
undertaken at that time, in 1974 (using PASCAL and a mainframe computer lodged
in an annex to IMECC’s old building, a construction lent by the Physics Institute
while IMECC’s new facilities were being built).

But other innovative accomplishments were important, too! With financial and
organizational support given by the main governmental agency for graduate studies,
CAPES (CAPES literally means Coordination for the Improvement of Superior
Education Teachers, and it is part of the Ministry of Education, responsible for
evaluating Graduate Programs in all schools in the whole country), the Institute
was the main agent in an experimental challenge: continued education in distance
learning with state-of-the-art technology (back in 1975–1976): audio cassettes,
Xerox, occasional phone calls, and snail-mail. . . . Some of those students seized the
opportunity to forward their work in Mathematics and went on to obtain Doctorate
Degrees!

These brief descriptions serve to illustrate what it was like to work in IMECC
in those years, a reflection of what was happening in society worldwide. These
were years in which IMECC’s faculty were active in Mathematics, Statistics and
Computer Science, of course, but also in other areas: Culture, University Professor’s
Union, Human Rights—and Sports!

All this academic ebullience had a consequence in IMECC’s work in research:
new groups began to work in Mathematical Logic in innovative aspects, Mathemati-
cal Modeling and Mathematical Education, Biomathematics, Artificial Intelligence,
Computational Linguistics and, as a consequence, these became formal areas for
graduate studies, and areas in which IMECC’s pioneering work brought not only
academic respect from other countries but helped create strong ties with many other
universities in Brazil as well as in so many other countries.

And, another important factor in who we are at present was that IMECC created
UNICAMP’s first night course: a bachelor’s for Mathematics Teachers, a step in
which the whole university followed, making UNICAMP totally prepared to make
effective a state law which obliged all state universities to have one third of their
courses in the nocturnal period.

In 1990, the Computer Science Department formed an Institute of its own, a
separation which had been ripening for some time, but the Institute maintained
its same initials, changing its name to Institute for Mathematics, Statistics and
Scientific Computing which, in Portuguese, keeps the same initials, a chance that
was seized as a way of keeping, as well as these initials, the whole historic process
which had formed IMECC until then.

At this time, a turning point came about with the arrival of one of the great
Brazilian mathematicians: Professor Djairo Guedes de Figueiredo who promptly
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put together a group with professors, and graduate and undergraduate students and
started to work with national projection.

Then, there was the creation of the Applied Mathematics Department, an
initiative which began with Professors Miguel Taube and Vincent Buonomano.
The Applied Mathematics Department received several faculty members from the
Mathematics Department as well as other professors who felt motivated in working
in this new mathematical environment. A special group migrated from Argentina
and dedicated itself to serious research and responsible teaching—sometimes in
very creative ways! The Applied Mathematics Department followed in the other
departments’ steps: it soon became a major force in the national academic scenario.

More recently, IMECC created a new aspect for students entering the university:
when students take the entrance exam, they generally have to list their specific
majors as options previously when enrolling for this entrance exam. So, the
Mathematics and Physics Institutes created a joint entrance, enabling the students to
choose between Physics, Mathematics, Applied Mathematics, and the day course for
Mathematics Teachers 2 years after entering the university, guaranteeing precious
time in making the right choice after the opportunity of contacting these themes. . . .

And, even more recently, IMECC created a Professional Master’s Degree (called
“Mater’s Program in Applied and Computational Mathematics”), which became an
academic success due to the manner in which it permits graduate students with no
grant and who continue to work, to study, obtain a Master’s Degree, and greatly
improve their mathematical education and with special emphasis on a transdis-
ciplinary characteristic. This degree became IMECC’s fourth graduate Program,
alongside the Applied Mathematics’, Mathematics’, and Statistics’ Programs—and
all four have received high ratings in the constant evaluations undertaken by CAPES,
a periodical evaluation which has placed IMECC as a major player in our national
scenario, leading it’s faculty to important positions in Academic Societies both
nationally and internationally. But, this is also a challenge: maintaining these grades
demands that we continue to work hard, keeping, nonetheless, the same bright-eyes
enthusiasm of the Institute’s founders.

In spite of this academic dedication, IMECC’s academic community was able
to jointly and morally expel a dean imposed upon the Institute during the military
dictatorship. . . . This was in 1979 when the state governor cancelled the indication
of all deans who had been chosen by the academic community in Schools in
UNICAMP and had had their names confirmed by the governing board of each
School as well as the University President. In IMECC, this act of expelling
the interventor was done in a very patient, peaceful, and amusing way, and the
interventor ended up by leading an enormous protest march all the way back to the
University President’s building (about a mile and a half. . . ) from where he then left
IMECC (and UNICAMP!) for good. The community was completely united in this
act, in spite of all the academically natural differences which are a part of university
lives! For all of us and many who came later, this was of paramount importance: the
survival of this Institute with a thriving academic life, a history of facing challenges,
a responsibility for innovation at the same time as differences are discussed and
acted upon, and IMECC has had no shortage of these difficulties, like any other
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academic community. Yes, we agree and we disagree, yes, we sometimes bicker and
discuss with quite a lot of energy (maybe this is an academic understatement. . . ),
yes we unite and separate as groups and as individuals due to our many different
academic ideologies, but we have always acted jointly in a way in which we fought
for a better Institute.

The purpose of this text was not that of a carefully documented historical report.
Rather, it is a collection of personal memories—maybe not always precise, I must
admit!—of a person who lived these years as part of IMECC’s academic community.
And the effort was to identify our Institute, from a participative point of view,
as a locus where excellent Mathematical Applications, Mathematics and Statistics
are developed, where excellent levels are maintained in research, in teaching, in
cooperating nationally and internationally and, all in all, a place where it is fun to
work and to study.

Acknowledgements The author thankfully acknowledges staff, colleagues, and students during
these last 50 years for keeping alive facts (and their stories) and maintaining high hopes for our
Institute of Mathematics, Statistics and Scientific Computing as well as their presence in facing the
challenge of making a difference in our Latin American academic scenario.



Applied Mathematics in Brazil:
Challenges and Opportunities

Martin Tygel

Abstract In this article I present an account and recollection of my experiences
as a practitioner and promoter of Applied Mathematics, intensely and passionately
exercised for more than 30 years at the Institute of Mathematics, Statistics and
Scientific Computing (IMECC) at the University of Campinas (UNICAMP). Based
on successes and, above all, failures along the road, I dare to share a few reflections
about Applied Mathematics in Brazil, with special emphasis on its challenges and
opportunities. In doing so, I take full responsibilities of the lack of impartiality,
which seems unavoidable due to strong involvement. The style of the present text
is the one usually employed by applied research articles: they start with an actual
application and, after showing good results, proceed with the scientific formulation
and arguments that justify the obtained results. In this article, I start with a brief
description of the actual involvement and responses as an applied mathematician to
the various challenges and opportunities faced along my career and then proceed
with more general reflections and discussions about what can be learned from this
process and it can contribute to make Applied Mathematics better and more useful.

1 Highlights of a Career in Applied Mathematics

Many applied mathematicians, including myself, started as undergraduates, not in
Mathematics, but in other branches of Science and Engineering. My undergraduate
was in Physics (starting at the Pontifical Catholic University of Rio de Janeiro
(PUC-Rio) in 1964 and ending at the State University of Rio de Janeiro (UERJ)
in 1969). Although the physics topics well addressed my desires for understanding
nature, I felt unhappy with the somewhat excess of intuition and lack of rigor in the
expositions. That pushed me into MSc studies in Mathematics at PUC-Rio (1971–
1973) with disciplines and dissertation topic heavily based on Pure Mathematics
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followed by a PhD in Mathematics at Stanford University (1974–1979) tending
towards Applied Mathematics subjects.

Applied Mathematics and Geophysics Back to Brazil and eager to apply Math-
ematics to real-world problems, I was fortunate to have the opportunity of joining
in 1981 the Research Center for Geophysics and Geology (CPGG) at the Federal
University of Bahia (UFBa). My appointment was to be a Professor of Mathematics
and to conduct research at the recently established Graduate Program in Geophysics
of Petroleum Exploration. Under the leadership of Prof. Carlos Alberto Dias, and
sponsored by the Brazilian Oil Company (Petrobras) and two other Government
agencies, namely the Funding Authority for Studies and Projects (FINEP) and
the National Council for Scientific and Technological Development (CNPq), the
Program have been a pioneering, large-scale enterprise, designed to qualify human
resources and undertake research and development projects in Petroleum Geo-
physics, to face the challenges of hydrocarbon exploration in Brazil. The Program
was strongly based on internationally renowned experts of academy and industry
that acted as MSc and PhD advisors on predefined and carefully designed topics
related to the needs of the oil and gas sector, in particular the ones of interest of
Petrobras. One of my main tasks was to design, organize, teach, and provide support
on the mathematical courses of the Program. Those courses were tailored to the
needs of the thesis and project works to be carried out by the students (many of them
professionals from Petrobras) together with the visiting supervisors. It was a hard
and fascinating work, which gave a pretty good perspective on how Mathematics
could interact and contribute on a complex, real-world application. It also gave me
the opportunity to interact with and conduct joint research with great scientists.
One of them was Prof. Peter Hubral, at that time located at the Federal Institute for
Geosciences and Natural Resources (BGR) in Hannover, Germany, with whom I
started lifetime cooperation. That fruitful interaction helped me to understand how
Mathematics training could be a valuable tool in an applied research area such as
Petroleum Geophysics.

IMECC In 1984, I joined the University of Campinas (UNICAMP) as Professor of
Applied Mathematics at IMECC. With a great support of the Department of Applied
Mathematics (DMA), my aim was to continue and expand the Geophysics research
started in Bahia. For this aim, a new research area, Mathematical Geophysics
subsequently renamed Computational Geophysics, was established at the DMA.

In 1985–1987, IMECC granted me the generous permission to further continue
and strengthen the cooperation with Peter Hubral at the BGR and later with the
Geophysical Institute at the Karlsruhe Institute of Technology (GPI at KIT), where
he has been appointed as a Professor. The stay in Germany was carried out under
the framework of a fellowship of the prestigious Humboldt Foundation (AvH).
The experience abroad provided a solid international cooperation network that was
crucial to establish Geophysics (in particular Petroleum Geophysics) as a viable
and attractive research area of Applied Mathematics at IMECC. Because that was
a brand new area, not only at IMECC but in the Applied Mathematics community
in Brazil, a first task was to organize its activities. That involved setting up a few
courses and offer research topics attractive to DMA community.
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Because of the complexities involved, most typically the multidisciplinary and
interdisciplinary attitudes required by a specific and concrete application, that was
a long process.

The first PhD in the area of Computation Geophysics was awarded in 1991 by
Lucio Tunes dos Santos under my supervision. Lucio was already a Professor at
DMA. Because at that time the Graduate Program at the DMA was not accredited for
the Doctoral level, the PhD was granted by the School of Electrical and Computer
Engineering (FEEC-UNICAMP). In 1995, Jörg Schleicher, who has recently fished
his PhD in the research group at KIT lead by Prof. Hubral, arrived at the DMA as a
post-doc on a joint program CNPq and the Alexander von Humboldt (AvH), under
my supervision. Subsequently, Maria Amélia Novais Schleicher (1998) and Ricardo
Biloti (2002) finished their PhD at the Graduate Program of the DMA, both under
my supervision. Confirming its strong support to the Computational Geophysics
research area, these three researchers became Professors at DMA in 1996, 2002,
and 2005, respectively.

In 1997, under the leadership of Peter Hubral, the Wave Inversion Technology
(WIT) Consortium was established. The WIT Consortium was a joint venture
between the Universities of Karlsruhe, Hamburg, and Unicamp, designed to carry
out research and development of seismic processing and imaging and funded by
a pool of international oil companies. Until today, the WIT Consortium provides
inspiration and funding support to tackle research and development challenges of
interest of the sponsors carried out in close collaboration by the three universities.

In 2001, by means of a research and development project with the Brazilian
National Agency of Petroleum, Natural Gas and Biofuels (ANP) and also with
space provided by the DMA, the Laboratory of Computing Geophysics (LGC) has
been established. Until today, the LGC provides the infrastructure and support for
carrying out, besides Graduate works, projects with oil and gas industry (such as
Petrobras) and also research funding agencies (such as CNPq).

In 2012, I considered that my aims and involvement with the Computing
Geophysics Group and Lab have attained its objectives: The Group and Lab have
been established as one possible model of the use of Applied Mathematics on a
well-focused, well-funded, real-world problem.

The Center for Petroleum Studies (CEPETRO) Since my arrival at UNICAMP,
and besides my duties at IMECC, I tried to get involved and contribute to any
endeavor in Petroleum where my previous experiences could be useful. At that
time, intense discussions concerning education, research, and development in key
areas of the petroleum sector were taking place. As in the case of Bahia in 1981,
Petrobras was a key partner and supporter. In 1987, the Graduate Program in
Sciences and Petroleum Engineering (CEP) was established. From its beginning
until today, I am attached to the CEP Program undertaking research, teaching and
supervising activities. Later, the area Reservoir Geophysics was included at CEP
under responsibility of the Computational Geophysics Group of IMECC.

Also in 1987, the Center for Petroleum Studies (Cepetro) was created, joining
UNICAMP’s several Centers and Nuclei devoted to multidisciplinary research
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in a wide range of areas of expertise. A strong relationship to Cepetro exists
between IMECC and LGC, the former being a member of its scientific board
and the latter a partner Lab. Cepetro is dedicated to research, development, and
innovation in all petroleum-related areas. As stated in its homepage, “the main
purpose of Cepetro is to provide a link between Unicamp and society, in the
petroleum area, by offering support to courses, technological and scientific research
projects and services.” Cepetro has ten Laboratories in its premises and twenty
five partner Laboratories in Institutes and Departments at Unicamp. It disposes
also of an excellent administration that provides secretarial and accounting help
to project executors. In 2010, Cepetro inaugurated its new headquarters. With a
number of Laboratories and well-equipped infrastructure and office space, Cepetro
significantly enhanced its capabilities as a key partner in research and development
applied to the petroleum sector. In this promising environment, I welcomed the
assignment as Associate Director of Cepetro. In view of the new responsibilities,
I left (in good hands) the activities at the LGC with the aim of a full dedication to
research and development projects in the framework of Cepetro.

The Laboratory of High-Performance Geophysics (HPG) Among the Labs
envisaged in the new building, one of them was to be dedicated to geophysical stud-
ies well aligned with the aims of Cepetro. In 2013, under my coordination together
with Edson Borin, Professor at the Institute of Computing (IC) at UNICAMP, the
High-Performance Geophysics (HPG) was created to fulfill these purposes. The
name HPG was derived from a decisive incorporation of Computing Science, most
particularly high-performance computing (HPC) in the Lab activities. The synergy
provided by Computer Science, Applied Mathematics and Geophysics enabled HPG
to carry out more comprehensive projects of academic and industrial interest. A few
distinguished characteristics of HPG are:

1. Located at Cepetro, HPG benefits from a vibrant multidisciplinary environment
and in close relation of ongoing joint projects between academy and industry.

2. HPG benefits from the favorable administration of Cepetro, which maximizes the
time devoted to the core (research and development) activities of projects.

3. Strong interaction with Computer Science, in particular in HPC, has a positive
significant impact on the transfer of its technologies and deliveries (e.g., more
professional coding and ready-to-use programs), especially in industry-oriented
projects.

4. Within HPG, Geophysics and Computer Science are seen as truly synergetic
partners, tackling problems that have actual or potential impact on both areas.

5. Long-run, industrial-funding projects enables HPG to maintain a multidisci-
plinary staff of researchers and professionals capable of undertaking complex
challenges in the petroleum sector.

6. Many staff members of HPG have employment contracts paid with project
money, so as to guarantee their full involvement with the project deliverables.
Such employment is different from regular scholarships aimed primarily (and in
many times exclusively) for Graduate purposes.
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Since its establishment, HPG has significantly enlarged in volume and scope the
geophysical activities carried out at Unicamp. A truly multidisciplinary staff in the
areas of Geology, Geophysics, Applied Mathematics, Engineering and Computer
Science are working together in comprehensive real-world problems. Under well-
defined focus and concrete deliveries to attain, the HPG team manages to have a
lively integrated work, where horizontal and vertical discussion can routinely take
place. The three pillars of formulation, solution, and implementation of problems
are systematically put in practice. In summary, the operation in HPG can be seen, in
my evaluation, as one possible model for exercising Applied Mathematics in its full
potential.

The Years to Come In 2017, at the age of 70 and after 46 years of dedicated
work, I retired from Unicamp. Thanks to wise legislation at Unicamp, I am
able to continue in the years to come to contribute to Cepetro and HPG as an
Emeritus Collaborate Researcher. More specifically, my main interests are (1) to
attract interest and funding, mainly from industry and government agencies of the
petroleum sector, to research, development, and innovation projects within that
sector; (2) use those funds to keep offering good opportunities for the young (in
particular Applied Mathematicians) to be involved in relevant, real-world problems,
and (3) be aware of open opportunities and activities where HPG can contribute.
As present examples, Artificial Intelligence (AI) and Machine Learning (ML), in
particular their application to seismic processing and imaging, are already ongoing
research topics at HPG. Although not yet an activity area, Statistics is already in the
HPG radar.

2 Some Historical Notes

In this section, a brief summary of the historical facts related to Applied Mathemat-
ics in Brazil is provided.

Mathematics and Pure Mathematics As a starting point of the considerations
made here, I take the foundation of the Institute of Pure and Applied Mathematics
(IMPA) in 1952. In my opinion, IMPA can be seen as the landmark of organized
Mathematics in Brazil. In spite of word “Applied” attached to its name, the activities
of IMPA were, until the beginning of the seventies, completely devoted to Pure
Mathematics. The Brazilian Mathematical Society (SBM) that has been established
in 1969 followed the same trend as in IMPA.

The view of Pure Mathematics as the legitimate representative of Mathematics
was, since its early days, fully adopted by the Brazilian scientific community.
Moreover, such view has strongly influenced the structure and content of the
mathematical education in the country, throughout all of its levels.

Classical topics such as analysis, geometry, algebra, and dynamical systems
were always the main focus of disciplines in undergraduate and graduate levels in
Mathematics programs. In the same way, positions in Mathematics Departments
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were filled out mainly by specialists on such topics. Finally, official evaluation of
education and research in Mathematics, as provided by the governmental agencies
Coordination for the Improvement of Higher Education Personnel (CAPES) and
the National Council for Scientific and Technological Development (CNPq), have
been strongly based on performance in classical Pure Mathematics topics. A striking
example is that CNPq has still today its Mathematical Committee composed by six
sub-areas: four are topics of Pure Mathematics (Analysis, Geometry, Dynamical
Systems, and Algebra) and the remaining two are Statistics and Probability and
Applied Mathematics.

In that framework, studies devoted to the use of Mathematics to solve practical
problems, in particular problems of areas other than Mathematics were tacitly
considered of less relevance or away from the main stream of Mathematics. It is
to be observed, in passing, that the above view encountered fertile ground in the
Brazilian culture, in which theoretical work has been always valued higher than
practical work. Furthermore, the incipient activity in high technology and innovation
in Brazil did not favor the demand of scientists, in particular mathematicians, in
industrial environments.

Applied Mathematics The early seventies can be traced as the time when Applied
Mathematics was accepted as a legitimate player by the Brazilian Mathematical
community. Acknowledged MSc/PhD Programs in Applied Mathematics appeared
first at the Institute of Mathematics and Statistics of the University of São Paulo
(IME-USP) in 1971 and second the University of Campinas (UNICAMP) in 1977.
Later Applied Mathematics Programs, some of them within conventional Mathe-
matics Programs, were installed, namely at: Department of Applied Mathematics
at the Federal University of Rio de Janeiro (DMA-UFRJ) in 1986, Institute of
Mathematics and Statistics at the Federal University of Rio Grande do Sul (IME-
UFRGS) in 1995, Department of Mathematics at the Federal University of Paraná
(UFPR) in 2002, and the Federal University of ABC (UFABC) in 2008. In 1978,
the Brazilian Society of Applied and Computational Mathematics (SBMAC) (an
Applied Mathematics counterpart of SBM) was founded and in 1980 the National
Laboratory of Scientific Computing (LNCC) (an Applied Mathematics counterpart
of IMPA) was established. Applied Mathematics is also strongly represented in
undergraduate courses of Industrial Mathematics, as for example the one established
in 2002 at the Federal University of Paraná (UFPR).

The rise of Applied Mathematics in the Brazilian scenario as a departure of the
prevailing identification of Mathematics as Pure Mathematics came (roughly) about
due to a combination of two reasons, one internal and another external:

(a) Internal: Within the universities, the mathematical community was exposed to
the demands and opportunities of applying their expertise to a much wider
spectrum of problems, both in academics and in industry. This contrasted with
IMPA, an isolated institute solely devoted to (mainly Pure) Mathematics;

(b) External: The advances in science and technology achieved by the leading
industrialized countries, most particularly in computer-related topics, strongly
echoed in the Brazilian scientific community.
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Recognition of Applied Mathematics as a new player in the well-established Brazil-
ian (Pure) Mathematics environment was not at all a smooth process, especially
when already limited budgets were disputed by ever more applicants. Typical
arguments of representatives of Pure Mathematics were that Applied Mathematics
results were second class in content and moreover did not follow acceptable
practices of scientific rigor. Counter arguments of representatives of Applied
Mathematics were that Pure Mathematics dealt with problems of no technologic,
economic or social interest. Such quarrels are not uncommon in other parts of
the world, leading to the separation of communities, departments, programs, and
representative societies. In Brazil, scars and hard feelings are still present. As a
newcomer that had to fight its way into an established system, Applied Mathematics,
still today, suffers from a rebellion syndrome that, in extreme cases, manifests itself
in a difficulty to accept general rules of academic hierarchy and tradition.

3 Problem-Oriented Science

The easy access and management of information provided by the internet introduced
dramatic changes in the ways information and knowledge in all areas of interest
can be acquired, produced, and disseminated. High-quality courses and lectures,
until recently proprietary to renowned universities, are being offered online for free
or very affordable prices. The market for such products is huge and potentially
disruptive for conventional academic institutions. These institutions, even the well-
established and renown ones, face organizational challenges, not only to keep their
positions, but also to take advantages of the opened opportunities.

The internet made possible the most intense dialogue and cross fertilization of
different areas of scientific activity leading researchers to benefit from contributions
and collaborations in a much larger and broader scale. Such developments have
been consolidated in what I call “problem-oriented science.” As opposed to specific
“disciplinary” conventional projects, problem-oriented projects are attached to
multidisciplinary “big” scientific problems easily recognized as “meaningful” and
“important.” Big problems can be of a basic character (e.g., the origin of the uni-
verse) or of an applied character (e.g., search of clean and efficient energy sources).
Problem-oriented projects make easier for government and private agencies to make
decisions on where to allocate funds in ever tighter budgets.

As an important support to problem-oriented science, comprehensive compu-
tation literature, software (e.g., tool boxes, libraries, solvers, etc.) and hardware
(e.g., cloud computing) designed for ready use for wide audience are easily
available. As a result, “exclusive” or traditional areas of Applied Mathematics
were “invaded” by outside fierce competitors. In other words, Applied Mathematics
became pronouncedly global, as opposed to Pure Mathematics that still retains much
of its original character.
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The new trends of inter- and multidisciplinary character of modern scientific
activity impose significant changes to education at all levels, with emphasis on
formulation and solving problems. Isolated courses and programs do not help the
young to find opportunities in science and technological areas. Applied Mathematics
has a lot to contribute to overcome these difficulties.

A better understanding on how science and technology are carried out in a society
can be gained by analyzing how these activities are funded. This we do below for
the Brazilian reality. We divide our considerations into two parts, namely education
of human resources and research and innovation.

4 Funding of Education of Human Resources

In Brazil, funding specifically devoted to human-resource scientific education is
almost completely undertaken by governmental agencies in the form of scholar-
ships. Typically, scholarships comprise Undergraduate (initial exposure to scientific
activities) and Graduate (MSc, PhD, and Post-Doctoral) levels. Scholarships are
provided on institutional or individual bases.

(a) Institutional scholarships: CNPq and CAPES make available scholarships in
the undergraduate and graduate levels. In the undergraduate level, the so-called
Scientific Initiation scholarships are provided to stimulate young students to be
exposed to scientific problems and activities. In the graduate level, scholarships
support students engaged in MSc and PhD programs.

Scholarships are provided to eligible institutions (universities and research
institutes), which assign them to students according to their own criteria. To
be eligible for institutional scholarships, programs have to be registered and
regularly evaluated by a national (CAPES) system which establishes the number
of scholarships assigned to each program.

(b) CAPES evaluation system: Graduate programs eligible for CAPES and CNPq
institutional scholarships are regularly ranked by a comprehensive evaluation
system elaborated by CAPES. Top-rank positions guaranties privileges such
as larger number of scholarships and some fast-track processing. Fierce com-
petition and the great complexity of the CAPES system represent a constant
nightmare to Program coordinators, responsible for producing the report of
Program activities to be analyzed by a special Committee composed by a few,
elect representatives of the eligible programs. Evaluation is carried out every 4
years, being divided into several areas. Mathematics (which includes Applied
Mathematics, Statistics, and Probability) comprise a single area. In spite of its
legitimate intention of optimal use of public funding, the CAPES system has
become an uncontrolled, number-crunching beast that transforms numerical
indicators automatically extracted from the reports into consolidated ones
(weighted sums of indicators) upon which the Program evaluation is produced.
Indicators include number of publications (weighted by their importance to
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Program areas of activity) divided by the number of Professors, average time for
completing MSc and PhD studies, number of joint publications with students,
student evasion, etc.

A backlash of the CAPES system is that the main preoccupation of the
Program coordinators is to play with its indicators, so as to produce reports
that attain the highest grades, many times at the expense of the actual quality
of the Programs. The system also poses difficulties in the introduction of new
areas or topics because of uncertainty to maintain indicators. Finally, University
administrations, as dependent on the good performance of Graduate Programs,
are also afraid of setting up new or experimental Programs because of the same
uncertainties. The result is, invariably, more of the same.

(c) Individual scholarships: CAPES and CNPq also provide individual schol-
arships (i.e., applications are processed on a one-to-one basis, according to
agency criteria/guidelines) for selective cases, such as studies e.g., Graduate of
Post-Graduate studies at foreign universities. CNPq provides scholarships for
researchers and professors employed at Brazilian academic institutions based
on their research productivity. Individual scholarships for all levels are also
granted by State funding agencies, the most important one being the Research
Foundation of the State of São Paulo (FAPESP).

Comments The established formal education organization fails to provide the
motivation and opportunities to fulfill the potential of Applied Mathematics as
a contributing protagonist to solving real-world problems. The system reflects
and reinforces the conservatism of the Brazilian academic community, which
opposes the multidisciplinarity which is essential to the modern view of problem-
oriented science. Programs are stimulated to strengthen their individual, vertical
character, penalizing innovative, horizontal initiatives that would risk their status
of “well-established,” high-rank programs. Professors also refrain to explore new
areas because of the risk of diminishing their productivity when departing from
comfort-zone areas. Hiring new faculty is oriented to teaching needs of the same
disciplines, rather than opening new directions, even ones able to attract new
funding opportunities other than the usual ones from government sources.

As seen below, Research and Innovation agencies have a much different
approach, with a far better alignment to problem-oriented science.

5 Funding for Research, Development and Innovation

As opposed to the difficulties faced by the Brazilian education system to modernize,
a quiet and consistent revolution towards problem-oriented science is taking place
in research and innovation in the country. Such revolution is being mainly pushed
by a variety of State and Federal agencies, funds, and programs. Moreover, fiscal
incentives stimulate the interest of industry to invest on activities of research,
development, and innovation (R, D, & I) carried out within the country. A brief
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description of main public institutions engaged in such activities is provided
below.

1. The Research Foundation of the State of São Paulo (FAPESP): In terms of
budget and scope, FAPESP is Brazil’s most powerful regional governmental
research agency. Besides its well-recognized role of fostering fundamental
research, FAPESP has fully embraced the concepts of problem-oriented science
and applied research with careful attention to technology and innovation, as
well as social and economic aspects. The foundation supports large research
programs in Biodiversity, Bioenergy, Global Climate Change, and in e-Science.
FAPESP maintains cooperation agreements with national and international
research funding agencies, higher educational and research institutions, and
business enterprises.

2. National Agency for Petroleum, Natural Gas, and Biofuels (ANP): Created
in 1997, it is the regulatory agency that oversees activities undertaken by the
oil, natural gas, and biofuel industries in Brazil. Among its several duties, ANP
is responsible for the management of the so-called RD&I Investment Clause,
which sets forth that 1% of gross revenues from oil and natural gas exploration
companies be invested in research, development, and innovation in the country.
The Clause aims to stimulate research and adoption of new technologies for the
sector. An appealing feature of the Clause is that it permits that the companies
spend up to half of their obliged contribution (0.5% of gross revenues) in projects
of their own choice, as long as certified by ANP. This means that companies can
directly negotiate projects with Brazilian universities and research institutions
accredited by ANP. Since the establishment of the Clause, billions of reals have
been poured into the Brazilian Research, Development and Innovation system
and that favorable situation is bound to remain in the long term.

3. Funding Authority for Studies and Projects (FINEP): FINEP is an organi-
zation of the Brazilian Federal Government under the Ministry of Science of
Technology, devoted to funding of science and technology in the country. FINEP
grants reimbursable and non-reimbursable funding to Brazilian research insti-
tutes and companies. FINEP’s support encompasses every phase and dimension
of the scientific and technological development cycle: basic research, applied
research, product development and innovation, services and processes. FINEP
also supports technology-based company incubation, installation of technologi-
cal parks, structuring and consolidation of research processes, development and
innovation for established companies, and market development. Furthermore,
starting in 2012, FINEP also began to offer support for the implementation of
first industrial units as well as acquisitions, mergers, and joint ventures.

4. Brazilian Agency for Industrial Research and Innovation (EMBRAPII):
It is a Social Organization connected to the Ministry of Science, Technology,
Innovation and Communications (MCTIC) and to the Ministry of Education
(MEC). EMBRAPII’s Management Contract was signed on December 2nd,
2013, and both federal Ministries share responsibility for its funding. EMBRAPII
operates through cooperation with public or private technological and scientific
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research institutions that are accredited as EMBRAPII Research Units. These
Units focus on entrepreneurial demands and innovation projects that are in a pre-
competitive stage.

5. Serrapilheira Foundation: Serrapilheira is a private nonprofit institution cre-
ated to promote science and increase its visibility and impact in Brazil. In
the words of its President, “We want to identify and support the best young
researchers in Brazil, those who are posing the big questions in their fields.
We have no preference when it comes to pure or applied sciences. Nor do we
have any qualms about supporting risky research proposals, the sort where an
audacious researcher may not always be successful.” Presently, Serrapilheira
supports research in the areas of chemistry of computer science, earth sciences,
engineering, life sciences, mathematics, and physics.

Comments Research and Innovation agencies are very much aligned to the concept
of problem-oriented science, definitely encouraging multidisciplinarity and interac-
tion, not only between different academic groups, but most especially with industry
partners. Such interaction obligatorily revolves over real-world problems of relevant
social or economic interest. As has been done world-wide, aims of the funding
agencies include breaking the separation obstacles between academy and industry,
so as to unleash their potential.

6 New Trends and Scenarios

Problem-oriented science with decisive incorporation of technology and innovation
is gaining significant momentum in Brazil. Pushed by government and industry
funding, it privileges long-term multidisciplinary projects and partnerships with
international institutions with a clear focus on economic and social returns of
the investments. Academic-industry joint projects play a key role to guarantee a
synergetic blend of science, technology, and innovation that is essential to solve
real-world problems. Such trend constitutes a new driving force to move Brazilian
science away from its apathy and to transform it into a living instrument for
economic/social improvement. The new framework allows for long-needed compre-
hensive funding in which, besides scholarships strictly attached to MSc/PhD studies,
also soft-money is available to recruit technical (professionals and researchers) and
administrative personnel directly involved in carrying out the projects. It is to be
observed that research projects, especially the ones with applied deliveries, pose
specific demands (reports, computational codes, experiments, etc.) that conflict with
the purpose of MSc/PhD studies in which attaining the degree is the prime interest.
Provided by adequate projects, such qualified people can be recruited either by
permanent employment by the university (generally very difficult) or by project soft
money.
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7 Challenges and Opportunities

In this section, I list a few challenges presently encountered by the established
Applied Mathematics departments and programs in Brazil. Facing and eventually
overcoming such challenges will hopefully contribute to enlarge the scope and role
of Applied Mathematics, creating desirable opportunities both in the academic and
productive sectors.

Applicable and Applied Mathematics As it is the general case of developing
countries in which science and technology are not fully integrated within the eco-
nomic, social, and cultural mainstream, academic programs and research activities
officially recognized as Applied Mathematics in Brazil are mostly devoted to meth-
ods and proof-of-concept examples or illustrations (the so-called toy problems).
In the late seventies, the name for that was “Applicable Mathematics.” Strictly
speaking, practically all Applied Mathematics undergraduate and graduate pro-
grams in Brazil should be more appropriately referred to as Applicable Mathematics
programs. Real-world problems are always of a complex nature requiring not only
mathematical expertise, but also active multi- and inter-disciplinary involvement.
Contributions of Applied Mathematics to real problems have to be attached to
specific areas of application (responsible for the motivation and also evaluation of
the obtained results) and also computer science professionals (responsible of the
effective data processing and algorithm implementation of the solutions).

In summary, present Applied Mathematics programs fail to deliver its promises
of actual involvement and contributions to solve real problems. With some exag-
geration, such programs advertise Applied Mathematics and deliver Applicable
Mathematics. The result is that talented students interested in mathematical appli-
cations turn to opportunities in programs outside the established conventional ones
in Applied Mathematics.

Applied Mathematics skills comprise not only mastering methods and tools to
solve mathematical problems, but also abilities in problem formulations and solu-
tion implementations. Such skills can be essential in real-world multidisciplinary
projects.

Applied Mathematics academic programs in Brazil are mainly focused on
methods and tools only, leaving aside the equally important aspects of problem
formulation (which relies on expertise of the specific area of application) and
implementation (which relies on computing expertise).

In the same way as Mathematics is recognized as the language of Science and
Technology, Applied Mathematics can be seen as an operational link between prob-
lem formulation and solution implementation of actual scientific and technological
applications.

Multidisciplinary Centers and Laboratories One of the biggest challenges of
academic programs in Applied Mathematics today is to provide education and
training that excel in three aspects: methods, formulation, and implementation. This
requires intense multidisciplinary interaction and also in-depth computational stud-
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ies. It might well be that such challenge cannot be met within a single (Mathematics)
Institute, but requires a broader Center which congregates associate researchers
of different expertise. At UNICAMP, 21 Centers devoted to multidisciplinary
research in a wide range of areas of expertise, already exist, being organized at
the Coordination of Interdisciplinary Research Centers and Nuclei (COCEN). On a
federal scale, the National Laboratory for Scientific Computing (LNCC) (albeit an
isolated Institute such as IMPA) exists with the same purpose.

In this spirit, multidisciplinary Centers, not necessarily attached to a single
Institute, can be of great use to awake the interest of Applied Mathematicians as
partners to solve real-world problems. Good initiatives in this direction are the
Research, Innovation and Dissemination Centers (RIDC), installed by FAPESP.
Among them is the Center for Mathematics and Statistics Applied to Industry
(CeMEAI), devoted to the systematic use of mathematical techniques to solve
problems and to propose the construction of an infrastructure for this purpose.

On a more local level, Department Laboratories devoted to specific areas of
interest can also be extremely useful. Such Laboratories help to provide not only
infrastructure to perform academic tasks such as Dissertations and Theses, but also
to carry out research and development projects, in particular with partners outside
the University. Such projects could provide maintenance (e.g., equipment and staff)
of the Laboratories and not constitute a burden to Department or University. A brief
list of recommendations seems to be in order:

(a) Incorporate Applied Mathematics in the framework of problem-oriented sci-
ence. Actions in this direction should include, among others: promoting par-
ticipation in multidisciplinary projects both in academic and in industrial
environments; stimulate undergraduate and graduate work with shared super-
vision of applied mathematicians and practitioners of other areas; special
programs should be designed to be dedicated to applications of mathematics
to other areas; stimulate contact with dynamic partners of the productive sector,
such as startup companies.

(b) Introduce disciplines in Applied Mathematics programs that promote involve-
ment with scientific and high-performance computing (HPC); stimulate activ-
ities related to coding, data processing, and computing applications, e.g.,
machine learning (ML).

(c) Introduce seminars and workshops with researchers and professionals of other
areas to provide a horizontal view and awareness of the potentials of Applied
Mathematics to be of use in its widest sense.

(d) Stimulate and provide opportunities for internships of students at companies or
laboratories in which Applied Mathematics may contribute.

(e) Introduce disciplines on entrepreneurship, as well as seminars and workshops
with industry, in particular startup companies.

(f) Promote involvement of Applied Mathematics in all levels of education (most
particularly elementary education), implementing the philosophy of using
mathematics to solve daily problems.
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8 Summary and Conclusions

Applied Mathematics, as exercised in academic institutions in Brazil, has serious
challenges to be a protagonist in real-world applications that would greatly benefit
from its expertise. An analysis of difficulties and also some suggestions to overcome
them have been presented.

As explained in the main text, a most import challenge is that activities presently
labeled as Applied Mathematics evolve from their stage as Applicable Mathematics.
A concrete example in this direction is the High-Performance Geophysics (HPG) at
UNICAMP.

Acknowledgements I take the opportunity to thank all colleagues from IMECC for constructive
criticism, inspiring suggestions, involvement, and support along all these years.

Nomenclature/Acronyms

ANP National Agency of Petroleum, Natural Gas and Biofuels (http://
www.anp.gov.br/)

AvH Alexander von Humboldt Foundation (https://www.humboldt-
foundation.de/web/home.html)

BGR Federal Institute for Geosciences and Natural Resources (https://
www.bgr.bund.de/EN/Home/homepage_node_en.html)

CAPES Coordination for the Improvement of Higher Education Personnel
(https://www.iie.org/Programs/CAPES)

CeMEAI Center for Mathematics and Statistics Applied to Industry (http://
www.cemeai.icmc.usp.br/)

CEP Graduate Program in Sciences and Petroleum Engineering (http://
www.cep.dep.fem.unicamp.br/?q=en/node/91)

CEPETRO Center for PetroleumStudies (http://www.cepetro.unicamp.br/
english/index.html)

CNPq National Council for Scientific and Technological Development
(CNPq; http://cnpq.br/)

CPGG Research Center for Geophysics and Geology (http://www.cpgg.
ufba.br/pesquisa/exploracao_petroleo-f.html)

COCEN Coordination of Interdisciplinary Research Centers and Nuclei
(http://www.cocen.unicamp.br/centros-e-nucleos)

DMA-UFPr Department of Mathematics, Federal University of Paraná (http://
www.mat.ufpr.br/)

DMA-UFRJ Department of Applied Mathematics, Federal University of Rio de
Janeiro (http://www.dma.im.ufrj.br/index.html)

EMBRAPII Brazilian Agency for Industrial Research and Innovation (http://
embrapii.org.br/en/categoria/institutional/aboutus/)

http://www.anp.gov.br/
http://www.anp.gov.br/
https://www.humboldt-foundation.de/web/home.html
https://www.humboldt-foundation.de/web/home.html
https://www.bgr.bund.de/EN/Home/homepage_node_en.html
https://www.bgr.bund.de/EN/Home/homepage_node_en.html
https://www.iie.org/Programs/CAPES
http://www.cemeai.icmc.usp.br/
http://www.cemeai.icmc.usp.br/
http://www.cep.dep.fem.unicamp.br/?q=en/node/91
http://www.cep.dep.fem.unicamp.br/?q=en/node/91
http://www.cepetro.unicamp.br/english/index.html
http://www.cepetro.unicamp.br/english/index.html
http://cnpq.br/
http://www.cpgg.ufba.br/pesquisa/exploracao_petroleo-f.html
http://www.cpgg.ufba.br/pesquisa/exploracao_petroleo-f.html
http://www.cocen.unicamp.br/centros-e-nucleos
http://www.mat.ufpr.br/
http://www.mat.ufpr.br/
http://www.dma.im.ufrj.br/index.html
http://embrapii.org.br/en/categoria/institutional/aboutus/
http://embrapii.org.br/en/categoria/institutional/aboutus/


Applied Mathematics in Brazil: Challenges and Opportunities 23

FAPESP Research Foundation of the State of São Paulo (http://www.fapesp.
br/en/about)

FINEP Funding Authority for Studies and Projects (http://www.finep.gov.
br/)

GPI at KIT Geophysical Institute at the Karlsruhe Institute of Technology
(https://www.gpi.kit.edu/english/GPIatKIT.php)

IMECC Institute of Mathematics, Statistics and Scientific Computing
(http://www.imecc50.ime.unicamp.br/historia)

IME-UFRGS Institute of Mathematics and Statistics, Federal University of Rio
Grande doSul (https://www.ufrgs.br/ime/institucional/historia/)

IME-USP Institute of Mathematics and Statistics of the University of São
Paulo (https://www.ime.usp.br/en)

IMPA Institute of Pure and Applied Mathematics (https://impa.br/en_
US/)

LNCC National Laboratory of Scientific Computation (http://www.lncc.
br/estrutura/default.php)

PUC-Rio Pontifical Catholic University of Rio de Janeiro (http://www.puc-
rio.br/english/aboutpuc/history.html)

RIDC Research, Innovation and Dissemination Centers (http://www.
fapesp.br/cepid/pasta_cepid_2013.pdf?t=1)
Stanford University (https://www.stanford.edu/about/)
School of Electrical and Computer Engineering (FEEC-
UNICAMP) (http://www.internationaloffice.unicamp.br/english/
teaching/graduate/school-electrical-computer-engineering/)
Serrapilheira Foundation (https://serrapilheira.org/en/about-us/)

UERJ Rio de Janeiro State University (http://www.uerj.br/idiomas.php#
gb)

UFABC Federal University of ABC (http://ufabc.edu.br/en/history/)
UFBa Federal University of Bahia (https://www.ufba.br/)
UNICAMP University of Campinas (http://www.unicamp.br/unicamp/node/

64)
WIT Wave Inversion Technology Consortium (http://www.wit-

consortium.de/)

http://www.fapesp.br/en/about
http://www.fapesp.br/en/about
http://www.finep.gov.br/
http://www.finep.gov.br/
https://www.gpi.kit.edu/english/GPIatKIT.php
http://www.imecc50.ime.unicamp.br/historia
https://www.ufrgs.br/ime/institucional/historia/
https://www.ime.usp.br/en
https://impa.br/en_US/
https://impa.br/en_US/
http://www.lncc.br/estrutura/default.php
http://www.lncc.br/estrutura/default.php
http://www.puc-rio.br/english/aboutpuc/history.html
http://www.puc-rio.br/english/aboutpuc/history.html
http://www.fapesp.br/cepid/pasta_cepid_2013.pdf?t=1
http://www.fapesp.br/cepid/pasta_cepid_2013.pdf?t=1
https://www.stanford.edu/about/
http://www.internationaloffice.unicamp.br/english/teaching/graduate/school-electrical-computer-engineering/
http://www.internationaloffice.unicamp.br/english/teaching/graduate/school-electrical-computer-engineering/
https://serrapilheira.org/en/about-us/
http://www.uerj.br/idiomas.php#gb
http://www.uerj.br/idiomas.php#gb
http://ufabc.edu.br/en/history/
https://www.ufba.br/
http://www.unicamp.br/unicamp/node/64
http://www.unicamp.br/unicamp/node/64
http://www.wit-consortium.de/
http://www.wit-consortium.de/


The Biomathematics in IMECC

A Historical Review

Rodney Carlos Bassanezi

Abstract The main motivation that led us to work with biomathematics is that
we could understand some of the mechanisms of biological phenomena using
techniques that came from mathematics. This existing interface between biology
and mathematics, characterized by a great contact range, experiences a process of
fast-track deepening nowadays. From this two-way process, not only basic biology
issues have been solved, but also new lines of research in mathematics have arisen
and taken on a life of their own. Moreover, it is important to notice the emerging
new fields in applied mathematics, such as genetic algorithms, neural networks,
sociobiological algorithms, fuzzy logic, etc., which we could call biological mathe-
matics, as, in many cases, they owe their basic concepts to theoretical biology. It is
hard to precisely say how biomathematics began as a research field at the Instituto
de Matemática, Estatística e Computação Científica (IMECC). What I am about to
tell you consists of some memories from the 1970s, when biomathematics was not
talked about around here and the prey–predator system was just an example in the
subject of differential equations, taught by Professor Torriani.

The Department of Applied Mathematics was created during Professor
D’Ambrósio’s term who had just returned from the USA and held the position
as Director of the Institute when some professors were hired to strengthen the new
department—others switched departments to work in the new one. In the early
1980s, research involving biological phenomena started with three dissertations
oriented by Professor Alejandro Engel (L. Paraíba (83), S. Raimundo (86) and S.
Bezerra (86)), whereas we would guide some outstanding students (Fenley, Moretti,
Petrônio, Bia D’Ambrósio, Ibrain Saad and Andrea Hahn) in programs of scientific
initiation.

R. C. Bassanezi (�)
Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas,
SP, Brazil
e-mail: rodney@ime.unicamp.br

© Springer Nature Switzerland AG 2018
C. Lavor, F. A. M. Gomes (eds.), Advances in Mathematics and Applications,
https://doi.org/10.1007/978-3-319-94015-1_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94015-1_3&domain=pdf
mailto:rodney@ime.unicamp.br
https://doi.org/10.1007/978-3-319-94015-1_3


26 R. C. Bassanezi

Contemporary biomathematics can be classified into three distinct branches
concerning methods and approaches: the traditional interface offered by biophysical
and biomechanical issues; the most recent one dedicated to the genomic analyses;
and a third one called population dynamics. The field of greatest emphasis on the
Instituto de Matemática, Estatística e Computação Científica (IMECC) graduate
programs was population dynamics which, in its broader meaning, encompasses
the study of the population of molecules, cells, microorganisms, higher organisms,
diseases, and human societies. The synthesis and the foundation of this broad line
of research proceed from a variety of mathematical models described by variational
equations: ordinary and partial, continuous and discrete differential equations, and
afterward, variational equations that envisage the subjectivity of parameters and
state variables (fuzzy systems).

The use of mathematics in the formulation of biological laws is still in its initial
stage if compared with its development and use in the physical sciences; however,
in the past few years, along with the evolution of the computer sector, it has been
demonstrated to be a crucial tool in cutting-edge research in several fields. The
practical models that involve inter-relationships of a great number of variables are
formulated through equation systems with countless parameters. In these cases,
analytical treatment is usually impossible and the resolution of qualitative methods
must be used, which favors the computational resolutions. The more complex or
realistic the model is, the more difficult it will be to statistically show that it
describes reality!

The first biomathematics paper at a Master’s level with which we assisted
took place in Londrina, where the IMECC acted as a partner in the “Fundagão
Universidade Estadual de Londrina” postgraduate program—it was a dissertation
about the dynamics of biodigesters (N. Martinhão/82: “Exploração de Recursos
Renováveis – Biodigestor” – Exploration of Renewable Resources – Biodigester).
This paper was expanded afterward and presented at the Congresso Nacional de
Matemática Aplicada e Computacional (CNMAC) of Maringá (1983). Other dis-
sertations followed at the IMECC, always involving ordinary differential equation
(ODE) systems and population dynamics (C. Souza/85: “Exploração de Recursos
Renováveis: Otimização do Modelo de Beverton-Holt da pesca” – Exploration of
Renewable resources: Optimization of Gordon’s and Gould’s models; M. B. Custó-
dio/86: “Recursos Renováveis: a pesca – Comparação dos modelos de Gordon
e Gould – Renewable resources: fishing – Comparison of Gordon’s and Gould’s
models”; A. T. Conceição/89: “Modelos Compartimentais em Biomatemática –
Compartment Models in Biomathematics”; V. dos Santos/89: “Sistema Presa
Predador Generalizado – Generalized Prey-Predator System”; A. P. Emérito/89:
“Modelo Matemático Determinístico em Doenças Transmissíveis – Deterministic
Mathematical Model in Communicable Transmissible Diseases”).

At the IMECC, biomathematics was only considered a field of research of applied
mathematics as late as 1990. The first PhD thesis in this field, which we guided along
with Professor Boldrini, was defended at the FEE-Unicamp by Prof. L. Vendite/88:
“Crescimento e Tratamento de Tumores Cancerígenos – Growth and Treatment of
Cancerous Tumors”.
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With the recognition of biomathematics as an area of research, there was
significant growth in the IMECC group with the admission of Professors Joni Meyer,
Wilson C. Ferreira Jr, Laércio Vendite, Laécio Barros, and Silvio Pregnolatto—later
the group became even stronger, with the hiring of Professor Hyan M. Yang (1993).

From 1991, the group started to publish the yearly BIOMATEMÁTICA journal
containing the papers produced by its researchers and presented at the CNMAC. In
the first issue, the diversity of interest and the subjects approached could be seen
as a natural evolution consequence of the IMECC biomathematics group. The first
papers presented can be gathered into two main topics: dynamic population systems
(optimal control of tumors and bacteria, dengue evolution, resistance to fungicides
and enzymatic kinetics), and the numerical analysis of parabolic–hyperbolic partial
differential equations (PDE; river and sea pollution, hemodialysis, and potato
drying). In the third issue of the BIOMATEMÁTICA journal, the following can be
read at its presentation: “The difficulties remain present since it is a relatively new
line of research at the IMECC both at local and national levels, where there are a few
groups. Nevertheless, the growth of our group and its consolidation can be evaluated
by what we present herein, besides the presence of the third mini course of this field
taught at CNMAC—in that year, mathematical ecology.” The BIOMATEMÁTICA
journal, published for 25 years, rain or shine, and the mini courses in conferences,
were crucial for the diffusion and consolidation of this field of research in the whole
of Latin America. The graduate program started to receive a many students from
other institutions who were interested in the field of biomathematics.

Professor Wilson C. Ferreira Jr defended his thesis at the IMECC (1993) in
the program of applied mathematics: “Mathematical models for the dynamics
of populations distributed in aspect areas with non-local interaction: complexity
paradigms”. Also in 1993, we had the defense of Michel I. Silveira’s thesis:
“Deterministic control of chemotherapy treatments”, which we guided, along with
Professor Boldrini. Other theses with papers reasoned on ODE systems and optimal
control theory followed.

The biomathematics group began, then, to develop integrated research
projects: “Growth and Treatment of Cancerous Tumors,” (FAP UNICAMP)
September/1987–August/1988; “Mathematical Modeling for Medicine Opti-
mization in Cancerous Tumors,”, CNPq August/1987–July/1989; “Mathematical
Modeling in Biological Controls,” CNPq September/1989–August/1991, “Math-
ematical Modeling of Dynamics and Control of Populations Subjected to Side
Effects Due to Chemical Treatments”, CNPq, October/1991–September/1993;
“Mathematical Modeling of Interaction Between Two Epidemics: AIDS X
Tuberculosis,” CNPq, October/1993–September/1995 and “Mathematical Modeling
of Epidemics Subjected to Dispersion and Migration Phenomena”, CNPq,
October/1995–September/1997.

We believe that the reason for the active continuity of this group is the result
of modeling in biological processes supported by instruments resulting from the
fuzzy theory. The study and research, using the fuzzy logic procedures, started in
the Mathematics Department when we guided some Master’s dissertations in 1988
about “Fuzzy Measures” (J. Gerônimo) and “Fuzzy Integrals” (J. Duarte). Next, we
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also had Heriberto Flores’s thesis on “Fuzzy Entropies”. The first Biomathematical
paper using fuzzy logic arguments occurred when we used, along with Heriberto,
the structure of a foundation of fuzzy rules to study the process of medical diagnosis
of childhood diseases.

In the Applied Mathematics program, the first dissertation which used the Fuzzy
Logic concepts in formulating the models was the one presented by L. Barros/92:
“Deterministic Models with Subjective Parameters”, in which a study of discrete
models of population dynamics and its stability is carried out.

The use of the fuzzy concepts in models linked to biological phenomena was
very well-accepted by the professional of the biological area and a great number of
papers, joint work, arose from this union, up to the point Biomathematics would be
confused with Fuzzy Logic and vice-versa. The elements of the Group, following
their natural tendencies, began to dedicate themselves to specific matters. That’s the
reason why J. Meyer and W. Ferreira Jr. developed their activities in problems that
use the process of diffusion with PDE; L. Vendite in processes of diagnoses and
treatments; H. Yang in epidemiology and, L. Barros and R. Bassanezi in modeling
that uses the subjectivity as a preponderant factor in biological processes.

The Group published some texts which became essential for those who intend
to research in Biomathematics and/or Fuzzy Logic: “Differential Equations with
Applications” (R. Bassanezi and W. C. Ferreira Jr.), Edit. Harbra, 1988 ; “Theory
of the fuzzy sets with applications” (R. Jafelice, L. Barros and R. Bassanezi),
SBMAC—Notas em Matemática Aplicada, Vol.17, 2005; “Topics of Fuzzy Logic
and Biomathematics” (L. Barros and R. Bassanezi), Edit. Unicamp, 2006; “Fuzzy
Dynamic systems: Alternative modeling for biological systems” (M. Cecconello, J.
D. Mendes da Silva and R. Bassanezi), SBMAC—Notas em Matemática Aplicada,
Vol.50, 2010. Recently, our book on fuzzy logic and biomathematics was expanded,
translated into English, and published: “The First Course in Fuzzy Logic, Fuzzy
Dynamical Systems and Biomathematics – Theory and Applications” (L. Barros, R.
Bassanezi, and W. Lodaick), Springer, 2016.

The IMECC’s Biomathematics Group organized and held, at Unicamp, the
Congresso Latino Americano e Biomatemática – Latin America Biomathematics
Conference (ALAB–ELAEM) on two separate occasions, in 2001 and 2010, and
also organized the meeting’s proceedings.

The activities of the group were intensified by the scientific cooperation with
national research centers (EMBRAPA, ESALQ, CAISM, IB-Unicamp, Fundecitrus,
etc.) and by the presence of foreign guest researchers who encouraged our research,
several times even with effective collaboration.

In 1989, Professor Lee. A. Segel from the Weizmann Institute in Israel, one of
the most renowned biomathematicians in the world, was present, as a guest of the
group, and he lectured several times, emphasizing research into biomathematics.
His motivation and power of enthusiasm leveraged our research and contributed to
the paper developed in Professor Wilson’s thesis (Fig. 1).

In 1994, we received Professor Alejandro Engel, from the University of
Rochester, USA, working with “Implementation of fuzzy logic in artificial neural
nets and applications to Biology”; Professor Gabriele Greco, from the University of
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Fig. 1 Professor Segel visits the biomathematics group in 1989

Trento, has visited us several times, always bringing news concerning fuzzy logic.
In the past few years, Professor Weldon Ludwick has honored us with his presence
and cooperation.

Now, in a synthetic and simple inventory, we can say that the IMECC biomath-
ematics group has accomplished its research and guidance project satisfactorily
over these nearly 30 years of existence. The group has published more than a
hundred articles in specialized journals and teaching and research books, it has
taught several mini courses at conferences, and has guided 89 Master’s and 44
doctorate theses in the field so far (as of 2016). Our former students are located
throughout several regions of Brazil and Latin America, spreading knowledge in
the field and encouraging other students to follow it.

It would be extremely complicated to summarize all the papers developed by
the group. Therefore, we are going to present the ideas of some of the pioneering
work that, in our opinion, have been used as an incentive for the continuity of
biomathematics at the IMECC over these past 30 years.

Review of Some of the Papers Published
by the Biomathematics Group of IMECC: Unicamp

After some Master’s dissertations in the field, the first doctorate thesis came about.
It was defended by Professor Vendite and the paper had been started in Italy and
officially concluded at IEE-Unicamp.
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1. Mathematical Modeling for tumor growth and the problem of cellular
resistance to antiblastic drugs (Doctoral thesis of L. Vendite, 1988)

This work demonstrated the importance of pharmacoresistance from spontaneous
mutations, as an intrinsic property of a tumor. The formal mathematical models
show in this context different factors that can influence the efficacy of chemotherapy,
such as tumor size, degree of cell resistance at the initiation of therapy, therapeutic
program, the frequency of mutation-resistant cells, tumor kinetics, etc.

The results that were obtained suggest directions to be taken by therapists for the
best choice of chemotherapy for its program, which is usually done empirically.

The proposed model initially considers C: tumor cells; S: sensitive cells; R1:
cells resistant to the first drug, and R2: second drug-resistant cells:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= rS(1 − kN)− α1rS(1 − kN)− α2rS(1 − kN)

dR1

dt
= rR1(1 − kN)+ α1rS(1 − kN)− α2rR1(1 − kN)

dR2

dt
= rR2(1 − kN)+ α2rS(1 − kN)− α2rR2(1 − kN)

dRd

dt
= rRd(1 − kN)+ α2rR1(1 − kN)− α1rR2(1 − kN)

(1)

It is considered that the population Rd consists of a resistant part R1 (sensitive
to the second drug) that changes itself and the resistant part R2 (sensitive to the first
drug) that changes itself, in which, N = S + R1 + R2 + Rd and αi is the mutation
from S to Ri and from Rj �=i to Rd .

As a result of this model, the factor of double resistance can be obtained, due to
N and the rates αi :

Rd

N
= (1 −N−α1

)+ (1 −N−α2
)+
(

1 −N−(α1+α2)
)

and also the percentage of resistant cells in a N -order:

R1

N
= N−α2 −N−(α1+α2)

R1

N
= N−α1 −N−(α1+α2)

.

Admitting that there is α � α1 � α2 then,

Rd = N (1 −N−α)2

R1 = R2 = N(1−α) (1 −N−α) .

These relationships permit the resistant numbers to be calculated when the N -
tumor mass and the mutation rate α are known.
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In this paper, models with A and B alternative therapies having immediate effects
and effects at fixed period intervals were also analyzed.

Thus, if the therapeutic program consists of two Noncross-resistant drugs, with
period applications FA and FB interspersed, the model is changed to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= rS(1 − kN)− α1rS(1 − kN)− α2rS(1 − kN)− F(t)S

dR1

dt
= rR1(1 − kN)+ α1rS(1 − kN)− α2rR1(1 − kN)− FB(t)R1

dR2

dt
= rR2(1 − kN)+ α2rS(1 − kN)− α2rR2(1 − kN)− FA(t)R2

dRd

dt
= rRd(1 − kN)+ α2rR1(1 − kN)− α1rR2(1 − kN)

.

Simulations carried out show the therapeutic advantage of using a program of
alternate drugs over the mono-chemotherapy.

Some strategies of cancer control, formulated by Michel I. Silveira in his
doctorate thesis at the Department of Applied Mathematics (1993), originated
in a specialization course for high school teachers we held at Universidade de
Guarapuava (University of Guarapuava) in 1986, in which the theme studied, with
the modeling process, was bacteria control in papermaking. The tumor growth and
cell resistance models were inspired by Vendite’s thesis.

The following abstract is part of the paper developed in his doctorate thesis,
which we guided with the cooperation of Professor Luis Boldrini.

2. Optimal chemical control of populations developing drug resistance (Michel
I. da S. Costa, J. L. Boldrini and R. C. Bassanezi)—IMA Journal of Mathematics
Applied in Medicine & Biology, 1992.

A system of differential equations for the control of tumor cell growth in cycle-
nonspecific chemotherapy is presented. Drug resistance and toxicity are also taken
into account. The aim of the control is to minimize the final tumor level and the
toxicity. The analysis resorted to the optimal control theory and the results showed
that maximum drug concentration featured in all treatments—in some cases it was
the sole optimal strategy. Treatments dependent on tumor level were also optimal,
whereas alternating maximum drug concentration and rest periods proved to be
suboptimal, or an alternative strategy when there is no optimal solution.

Specifically, the model considered is given by the following systems of ordinary
differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
= xf (y)+ αf (y)(y − x)

dy

dt
= yf (y)− u(t)g(y − x)

x(0) = x0; y(0) = y0

, (2)
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where, y and x represents the total number of the population at time and drug-
resistant individuals respectively, the resistance to drugs being acquired by sponta-
neous mutation, at a certain rate.

We are interested in solving the following free end-time optimal control problem
associated with (2). The problem is to find a time 0 ≤ t∗f < +∞ and a bounded

variation function u∗ :
[
0, t∗f

]
→ R with 0 ≤ u∗(t) ≤ umax almost everywhere in

[
0, t∗f

]
that will be the optimal drug administration treatment in the sense that

Jc(u
∗(∗), t∗f ) = min

{
Jc(u, tf ) : uεBV

[
0, t∗f

]
; 0 ≤ u(t) ≤ umax a.e

}
, (3)

where the functional Jc is defined by:

Jc(u, tf ) = y(tf )+ c
∫ tf

0
u(t)dt, (4)

with c � 0 a constant and (x(t), y(t)) a solution of (3). The pair (u∗(∗), t∗f ) is called
an optimal strategy to the problem.

The term y(tf ) is the number of tumor cells at the end of the treatment; the
integral term of (4) is the total amount of the drug that reaches the tumor site during
the treatment.

Using Pontryagin’s minimum principle we prove that the optimal strategy is the
bang-off type, we precisely prove the following:

Theorem 1 Under the assumptions (2)–(4), and x0 � y0 � ym, where ym is the
saturation level of the medium, the optimal strategy is given by u(t) = umax with
0 � t � tf , where tf is such that if tf > 0, it is given by the condition d

dt
y(tf ) =

−cumax.

This theorem is also applied in the case of cycle-nonspecific cancer chemother-
apy and in control of bacteria populations in cellulose media.

Michel’s thesis “Controle determinístico de tratamentos quimioterápico” (1993)
promoted the publication of articles in scientific journals and encouraged the
evolution of biomathematics at the IMECC. Among these works, in addition to those
summarized here, we quote:

“Optimal chemotherapy: A Case study with drug resistance; saturation effect and
toxicity” (with J. L. Boldrini and M. I. Costa); IMA J. Math. Applied in Medicine
and Biology). Oxford University Press, 11, 1, pp. 45–59 (1994).

“Drug Kinetics and Drug Resistance in Optimal Chemotherapy” (with M. I. S.
Costa and J. L. Boldrini); Math. Biosciences, 125, 2, pp. 191–209 (1995).

“Chemotherapeutic Treatments Involving Drug Resistance and Level of Normal
Cells as a Criterion of Toxicity” (M. I. S. Costa, J. L. Boldrini, and R. C.
Bassanezi); Math. Biosciences, V.125, 2, pp 211–218 (1995).
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The research work in epidemiology began from the results obtained by Silvia
Raimundo in her doctoral thesis: “Uma Abordagem Deterministica da Interação de
Doenças—AIDS e TB num Presídio” in which we were her advisers in DMA, with
the collaborations of Professor Drs Hyan Mo Yang and Alejandro Engel in 1996.
The summary of the following publication is a part of her thesis.

3. The Attracting Basins and the Assessment of the Transmission Coefficients
for HIV and M. Tuberculosis Infections Among Women Inmates (S. M.
Raimundo, R. C. Bassanezi, H. M. Yang and M. Ferreira)—Journal of Biological
Systems, 2002; 10:61–83.

It has been observed that in many cases, one infection can partially protect against
another infection, or it may lead to a co-infection. For instance, the interaction
between infections with different strains, such as dengue and malaria or tuberculosis
and leprosy, induces cross immunity. On the other hand, individuals infected with
HIV are much more susceptible to other infections, for instance, tuberculosis.
We propose a compartmental model to describe the transmission of AIDS and
tuberculosis in a closed community as an example of one infection activating the
other one. When studying the dynamics of the interactions we obtain basins of
attraction in which one infection prevails over the other and where both infections
coalesce. Furthermore, we are taking into account an adaptation of the model
to assess the transmission coefficients for HIV and Mycobacterium tuberculosis
(MTB) infections among women inmates.

The present model describes the phenomenon of the interaction between HIV and
MTB infections considering the populational dynamics theory. Taking into account
the mathematical approach and the biological aspects of this phenomenon, we assess
quantitatively the attracting basins for a single disease and both diseases. Initially,
we present the biological features of the transmission of AIDS and TB diseases.

We developed a mathematical model to analyze the interaction between HIV and
MTB infections. From our analyses, we obtained the attracting basins in which one
infection prevails over the other one and where both infections coalesce, and based
on these analyses, we also presented a simple epidemiological study. Let us take
the developed countries as an epidemiological example of the interaction between
MTB and HIV infections. As is well known, in many developed countries the MTB
infection could be considered eradicated. In other words, in these countries, the
value of the MTB transmission coefficient β2 was lower than its critical value βth2 ,
that is, R2

0 < 1. In epidemiological terms this means that the only possible case of
the existence of TB is among individuals with AIDS. That is, TB is an opportunistic
infection in the course of AIDS disease.

The stated variables considered in the model are:
X1 : susceptible individuals; X2 : MTB-infected individuals; Tb : TB-diseased

individuals; Y1 : HIV-infected individuals; Y2 : both HIV- and MTB-infected
individuals; Ytb : HIV-infected individuals with TB disease; A : individuals with
AIDS disease; Atb : individuals with both AIDS and TB diseases and N =
X1 +X2 + Tb + Ytb + A+ Atb + Y1 + Y2 is the total population size (assumed to
be constant).
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The mathematical model analyzes the interaction between AIDS and TB. As
Mycobacterium tuberculosis is an airborne infection, and HIV is transmitted by
contact with blood or products derived from blood, the quantitative descriptions
for the insurgence of new cases of infections are different:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1

dt
= μN + θ(Tb + Ytb + Atb)+ α(A+ Atb)
−β1
N
(Y1 + Y2 + Ytb)X1 − β2(Tb + Ytb)X1 − μX1

dX2

dt
= −β1

N
(Y1 + Y2 + Ytb)X2 + β2(Tb + Ytb)X1 + ρTb − (σ + μ)X2

dTb

dt
= σX2 − β1

N
(Y1 + Y2 + Ytb)Tb − (ρ + θ + μ)Tb

dY1

dt
= β1

N
(Y1 + Y2 + Ytb)X1 − β2(Tb + Ytb)Y1 − (ω + μ)Y1

dY2

dt
= β1

N
(Y1 + Y2 + Ytb)X2 − β2(Tb + Ytb)X1 − (	 + σ + μ)Y2 + ρYtb

dYtb

dt
= σY2 + β1

N
(Y1 + Y2 + Ytb)Ttb − (ρ + ξ + θ + μ)Ytb

dA

dt
= ωY1 − β2AAtb − (α + μ)A

dAtb

dt
= 	Y2 + ξYtb + β2AAtb − (α + θ + μ)Atb

where the coefficients β1 and β2 are the transmission coefficients for HIV and MTB
infections respectively; σ−1 and ρ−1 are the average re-activation and recovery
periods of TB; ω−1 and ξ−1 are the average incubation periods of individuals who
have AIDS disease and both AIDS and TB diseases respectively; μ is the natural
mortality rate; α and θ are AIDS-related and TB-related mortality rates respectively;
and	−1(assumed to be ω−1 + ξ−1) is the average incubation period of individuals
with AIDS disease and MTB infection.

A study of the stability and critical points of the model is presented.
The paper of epidemiology that followed shows that we were on the right track

with our research in biomathematics. A conjecture of Professor Yang was the theme
of the thesis defended by Ma. Beatriz Leite in 1999. The result obtained in this
research is essential in the process of the study of the persistence or not of diseases
when the infectious individuals have different levels of infectiousness. An abstract
of the paper, which contains its results, is presented hereinafter:
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4. The basic reproduction ratio for a model of directly transmitted infections
considering the virus charge and the immunological response (M. B. Leite,
R. C. Bassanezi and H. M. Yang)—IMA Journal of Mathematics Applied in
Medicine and Biology (2000) 17, 15–31.

First, we developed a mathematical model taking into account a heterogeneous
infectivity based on a virus charge harbored by human hosts. From this model,
we determined the formula for the basic reproduction ratio, when the infectious
individuals were subdivided into k infective stages according to the interaction
between the host’s immunological response and the virus.

The mathematical model is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
S(t) = μ+ δR − βS

k∑

j=1

εj Ij − μS

d

dt
E(t) = βS

k∑

j=1

εj Ij − (μ+ σ)E
d

dt
I1(t) = σE − (μ+ γ1)I1

d

dt
Ij (t) = γj−1Ij−1 − (μ+ γj )Ij , for j = 2, . . . , k

d

dt
R(t) = γkIk − (μ+ δ)R

. (5)

The formula for the basic reproduction ratio was obtained by analyzing the
stability of the trivial equilibrium point of system (5),

R0 = σ

μ+ σ
k∑

j=1

Pj−1
βεj

μ+ γj , where, Pi =

⎧
⎪⎪⎨

⎪⎪⎩

i∏

j=1

γj

μ+ γj , if i = 1, 2, 3, . . . , k

1, if i = 0

,

and we demonstrated that the stability results can be assessed by analyzing the
γ−independent term of the characteristic polynomial:

Theorem 2 The trivial equilibrium pointQ0 is locally asymptotically stable (LAS)
if the γ−independent term of the characteristic polynomial of (5) is strictly positive,
and unstable if it is strictly negative.

Theorem 3 If the trivial equilibrium pointQo is LAS then it is globally asymptoti-
cally stable.

Modeling the Immunological Response When a susceptible individual has the
first infective contact with a virus, this individual builds up an immunological
response after a certain period of time. Also, this infective period is characterized
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by the abundance of the initial virus rising followed by it later decreasing because
of the antibodies produced by the stimulated immunological system, which destroys
completely (or at a very low level) the invading pathogens. In model (5) we did not
take into account the heterogeneity among individuals. However, the genetic and
nutritional aspects of the infected individual can affect both the infectious period
and the virus charge.

A heterogeneous immunological response is obtained by dividing all the latent
individuals into k different infection status classes according to their immunological
response to the virus. The bilinear incidence model encompassing the heterogeneous
immunological response and describing directly transmitted infection can now be
set in terms of the fraction of individuals in each class as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
S(t) = μ+ δR − βS

k∑

j=1

εj Ij − μS

d

dt
E(t) = βS

k∑

j=1

εj Ij − (μ+ σ)E
d

dt
I1(t) = λjσE − (μ+ γj )Ij , for j = 1, . . . , k

d

dt
R(t) =

k∑

j=1

γj Ij − (μ+ δ)R

. (6)

Theorem 4 The trivial equilibrium point of the model (6), Q0 is LAS if the
independent term an of the characteristic polynomial, given by the expression below,
is strictly positive, and unstable if it is strictly negative, where

an = (μ+ σ)
k∏

j=1

(μ+ γj )− βσ
k∑

j=1

λjεj

k∏

i=1,i �=j
(μ+ γi).

Following the ideas of the works developed in the thesis by Michel, Renata Zotin
obtained relevant results in her doctoral thesis, regarding the chemical treatment of
pests in bean plants, using processes coming from optimal control. The following
summary is part of her thesis paper:

5. A Model For Optimal Chemical Control of Leaf Area Damaged by Fungi
Population Parameter Dependence (R. Zotin, R. C. Bassanezi, H. M. Yang
and A. Adami)—IMA Journal of Mathematics Applied in Medicine and Biology
(2000) 17, 15–31.

In the specific case of this study, we mathematically modeled an agricultural
production situation subjected to the attacks of a susceptible and a resistant fungi
population to maximize production (minimizing disease at the end of the harvest),
controlling disease at a low cost.
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We considered the dynamics of the damaged leaf area with the intraspecific com-
petition between a susceptible and a resistant fungi population for the occupation of
the leaf area. Such occupation is cumulative; that is, once the leaf area is damaged,
it does not recover, which reduces plant productivity. The productivity is affected
significantly if the damaged area exceeds some limit, which varies for each cultivar.

The control problem that we analyzed searched for the establishment of a
minimum value for the damaged leaf area at the final time (crop) with the minimum
cost of fungicides.

We present a model to study of a fungi population subjected to chemical control,
incorporating the fungicide application directly into the model. From that, we obtain
an optimal control strategy that minimizes both the fungicide application (cost)
and the leaf area damaged by the fungi population during the interval between the
moment when the disease is detected (t = 0) and the time of harvest (t = tf ):
initially, the parameters of the model are considered constant. Later, we consider
the apparent infection rate depending on the time (and the temperature) and perform
some simulations to illustrate and compare with the constant case.

The model of the fungi population can be described by the following system of
differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS

dt
= r(t)N(1 −N)(1 − βu)+ r(t)Rβu(1 −N)

dR

dt
= r(t)R(1 −N)+ αr(t)(N − R)(1 −N)(1 − βu)

, (7)

where the fungi population in a given crop is represented by the total occupied
area N and is subdivided into susceptible and resistant. We assign S(t) and R(t) to
represent, at each time t , the proportion of the damaged leaf area for susceptible and
resistant respectively.

The optimal control problem associated with the dynamic (7) consists of finding
u that minimizes the functional

J (u) = N(tf )+ c1

∫ tf

0
u(t)dt,

where c1 is an adjustment constant and it is proportional to the cost of the fungicide.
The function u is the optimal control, which satisfies

J (u∗) = min

[

N(tf )+ c1

∫ tf

0
u(t)dt

]

. (8)

Theorem 5 The optimal control u∗(t) that satisfies the Eqs. (8) with (7) is given by

u(t) =
⎧
⎨

⎩

0, if g(t) > 0
1, if g(t) < 0
indetermined, if g(t) = 0

,



38 R. C. Bassanezi

where g(t) = c1− r(t)(1 −N)(N − R)β(λ1 + αλ2) and the constant equations

dλ1

dt
= −∂H

∂N

dλ2

dt
= −∂H

∂R

are obtained from the Hamiltonian.

The final conditions for λ∗1and λ∗2 are obtained when tf is fixed and, N(tf )
and R(tf ) are free. The nonlinearity of the model hinders the analysis of the
differential equations for λ1 and λ2 making it practically impossible to obtain
analytic expressions for λ1 and λ2.

We initially consider the growth rate as being constant, that is, r(t) = r,∀t .
Analytic Results In the constant case r(t) = r , we analyze which types of control
are feasible. In practice, the parameter α is between 10−9 and 10−5 and it only has
an effect after various crop cycles. As we analyze one cycle, we consider α ≈ 0.

Lemma 1 If the change rate is null and the optimal control is zero (u(t) = 0)
during some time interval

[
t, tf

]
, then u∗(t) = 0, ∀t ∈ [0, tf ].

From Lemma 1, we observe that the optimal control, if it is not always null,
should end with u(t) = 1:

Lemma 2 If the optimal control ends with u∗(t) = 1 and α = 0, then it will have
one commutation point at the most.

Theorem 6 For the control problems (7) and (8), with α = 0, the optimal control
u∗(t) is given by

u∗(t) =
{

0, 0 < t < t
1, t < t < tf

,

with t ε [0; tf ].
We observed changes in the control strategy when we altered each of the

parameters, as we did not obtain an explicit formula among t and the other
parameters of the model.

The commutative point t as a function of growth rate r is observed in Fig. 2 and
the optimal values of damaged leaf area of the final time tf for each value fixed r
are given in Fig. 3.

Professor Hyan has guided several theses involving epidemiological processes.
Let us present here a summary of the work developed by Barrozo and Yang in
1999.
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6. Mathematical Modeling for Macroparasites with an emphasis on Schistoso-
miasis (S. Barrozo e H. M. Yang)—Biomatemática 9 (1999), 73–89.

Schistosomiasis is a parasitic disease caused by parasitic worms called Schistosoma,
it occurs more frequently in tropical countries, especially in underdeveloped or
developing ones. It can be a disease whose transmission takes place through the
direct contact of the person with contaminated water, it is closely linked to the
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socioeconomic–cultural and educational conditions of each region. In Brazil, the
species Schistosoma mansoni, which lives in the hepato-intestinal system of the
infected individual, prevails. It is more common in the northeastern region of the
country and in Minas Gerais, Espírito Santo, and Rio de Janeiro; however, in most
Brazilian states, there are focal points with a low incidence.

The Schistosoma are parasites with an overly complex life cycle, involving two
types of hosts (human and snail), two transmission stages (miracidia and cercaria)
and several factors, such as environmental and immunological. In the definitive host
(human), they undergo sexual reproduction, laying eggs that are eliminated in the
feces or urine, depending on the species. These eggs hatch when in contact with
water, freeing the miracidia, which are ciliate organisms with great mobility. When
they find a specific snail (Biomphalaria), they infect it and reproduce asexually
in hundreds of thousands of new organisms, called cercaria, which, after a few
weeks, are eliminated in the water and constitute the form that infects humans.
Once these cercaria find a human, they penetrate the skin with the help of special
enzymes. Immediately after the infection, they become schistosomule and stay in
the epidermis for just a few days. After that, they enter the blood circulation and
migrate to the lungs and from there to the hepatoportal circulation, where they
become sexually mature adults, they mate and migrate to the mesenteric veins,
where they lay their eggs. They can remain in copulation and continue to lay eggs
for many years. Each female lays about 300 eggs a day. These eggs fall into the
circulation and are taken to several organs of the human organism. Some of them
can transpose the natural barriers, move into the intestines, and are released into the
environment with the feces to continue their cycle.

A deterministic model is presented here and it is aimed at describing the
transmission of human schistosomiasis. To do so, it incorporates the concomitant
immunity in the following way: it supposes that the susceptible individuals, when
infected, begin to develop a certain immune response, which becomes effective after
a certain period of time and it remains active only in the presence of parasites.
If they lose the whole parasite load, after some time, they also lose immunity,
continuing only with the immunological memory. The average parasite load per
class of individuals infected in the population and the vital dynamics of the snails,
which are intermediate hosts of the parasite, are also considered. Environmental and
immunological factors are considered relevant in the transmission mechanism (see
Fig. 4).

The compartments x1, x2, x3, and x4 represent, the fractions of suscepti-
ble population, developing immunity, immune, and with immunological memory
respectively; the compartmentsw2 andw3 represent the average number of parasites
in the population of the compartments x1 and x2 respectively, and the compartments
y1, y2, and y3 represent the fraction of susceptible, latent, and infectious snails in
the community respectively.
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Fig. 4 Compartmental
structure of the life cycle of
the parasite

λh is the infection power of the susceptible individuals and those with immuno-
logical memory individuals λω2 is the infection power of individuals developing
immunity, λω3 is the infection power of partially immune individuals, σ1 is the
rate at which the non-immune infected individuals who lose their parasites become
susceptible again, ν1 is the rate at which the infected ones become immune, σ2 is
the rate at which the partially immune, when losing their parasites, lose immunity
and start having immunological memory, ν2 is the rate at which the individuals
with immunological memory become susceptible, θ is the rate of vaccination, which
is applied to susceptible individuals, partially protecting them (making them have
immunological memory), μh and μω are the mortality rates of the individuals and
parasites respectively, λc is the snail’s basic reproduction ratio, τ is the latent period
of infected snails, and μs , μ′

s , and μ′′
s are the mortality rates of susceptible, latent,

and infectious snails respectively.
We consider the total human population Nh and snails Nc to be homogeneously

distributed and constant and do not consider age structure.
Applying the classical mass action law in a homogeneously distributed popu-

lation and based on the transmission dynamics of the disease represented by the
above scheme, we describe our model through the following system of differential
equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= μh + σ1x2 + ν2x4 − [λh(t)+ μh + θ ] x1

dx2

dt
= λh(t)x1 − [σ1 + ν1 + μh] x2

dx3

dt
= ν1x2 + λh(t)x4 − [σ2 + μh] x3

dx4

dt
= θx1 + σ2x3 − [λh(t)+ μh + ν2] x4

dw2

dt
= λω2(t)x1 + λω2(t)x2 − [ν1 + μh + μω]w2

dw3

dt
= λω3(t)x3 + λω2(t)x4 + ν1w2 + − [μh + μω]w3

dy2

dt
= λs(t) [1 − y2 − y3] −

[
τ−1 + μ′

s

]
y2

dy3

dt
= τ−1y2 − μ′′

s y3

.

In the study of this model, two situations were supposed: in the first, the basic
reproduction ratio of the immune individuals depends both on the immunity and
environmental factors; in the second one, those hypotheses were changed.

Concerning the diffusion phenomenon, several interesting papers were carried
out by the group. We mention herein the one developed by S. Pregnolatto with the
guidance of J. Meyer:

7. A strategy for the numerical simulation of the evolutionary behavior of a
descriptive PDE of the Trypanosoma evansi (surra) of capybaras—periodic
infection rate (João Frederico da C. A. Meyer and Sílvio de Alencastro
Pregnolatto)—BIOMATEMÁTICA 12 (2002), 01–18.

In this paper, the aim is to fall back upon the numerical instrumental in type SIR or
SIRS systems with spatial dissemination to which we add certain hypotheses related
to a case study. In this example, we try to describe some of the hypotheses related
to the evaluation of the Trypanosoma evansi in capybara populations, an epidemic
with cyclic spatial dissemination in certain situations with a certain type of rodent
in natural environments. The idea, then, would be to put an SIR or SIM model, but
only with equations for Susceptible and Infected, as the removed ones are due to
death (what SIM stands for), simulating the evolutionary behavior of the epidemic
mentioned. This model would include the spatial dissemination of the infected
capybaras, the contagion of the susceptible ones, and a population dynamics of the
susceptible ones, as the infected ones hardly ever reproduce. Moreover, as the initial
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population of susceptible capybaras is homogeneous, there is no diffusibility at an
early stage, but the spatial and temporal variation arises when, by contagion, part
of the population of susceptible animals are infected and these, sometime later, are
dead (or removed). The first model does not include Trypanosoma equus infection-
carrying insects, which cause this endemic disease.

This first model is given, consequently, by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− αsΔS + div(−→V · S)+ σsS = λS

(

1 − S + I
K

)

− βSI

∂I

∂t
+ αIΔI + σI I = βSI − γ I

∂M

∂t
= γ I

S = S(x, y, t); I = I (x, y, t);M = M(x, y, t),

with (x, y) ∈ Ω ⊂ R
2 and t ∈ (0, T ].

A possible initial condition is given by S(x, y; 0) = S0 steady in the whole
domain, by M(x, y; 0) = 0 and by I (x, y; 0) = I0(x, y), where it is considered
a population of healthy and susceptible animals, evenly distributed by the study
domain, and a population of infected ones concentrated in some sub-region of the
Ω domain. The boundary conditions are—in an initial exploratory modeling—of
the homogeneous Dirichlet and Von Neumann types, indicating parts of the ∂Ω
boundary in which there is an obstacle to the passage of individuals of the species
studied (Γ1) and where there are no individuals (Γ0):

∂S(x, y, t)

∂η

∣
∣
(x,y)∈Γ1 = 0 if t ∈ (0, T ]

S(x, y, t)
∣
∣
(x,y)∈Γ0 = 0 if t ∈ (0, T ]

∂I (x, y, t)

∂η

∣
∣
(x,y)∈Γ1 = 0 if t ∈ (0, T ]

I (x, y, t)
∣
∣
(x,y)∈Γ0 = 0 if t ∈ (0, T ]

One of the reasons that motivates the experimental use of this model is that a
false steady state is obtained, given by:

S = σI + γ
β

I = βK(σs − λ)− λ(σI + γ )
β(λ− βK)
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This pair of values, even if it remains (at least theoretically) steady in terms
of the respective populations of susceptible and infected animals, corresponds to a
linear variation in time for the population of dead individuals, counterbalancing the
population growth through reproduction of the healthy ones.

An alternative model was studied incorporating qualitative traits with which it
is possible to analyze the surra we intend to assess in an endemic population.
Therefore, we approximated the infection rate, describing the contagion using a sine
curve, which must show (in a first approximation) the periodic seasonal variation
of the population of infection-carrying insects, that is, we associated the action of
the infection carrier with its population density, replacing β with the expression
β + δ sin(πt/6).

We waived, of course, the exhibition of a simple expression for an analytical
solution, and we dedicated ourselves, herein, to the quest and exploratory manage-
ment of approximate solutions. The goal, much more than defending such solutions
depicting possible realities, is to create a culture of models so that, as new traits of
real and effective scenarios are incorporated into the model, an acquired intuition
helps the assessment consideration of approximate solutions, allowing effective
criticism of the use of the model and its results, going to the variational formulation
of the system described above, choosing beforehand functional spaces suitable for
this line of work. We obtained weak, or variational, formulation of the problem
originally proposed, appropriate formulation for the discretization via the Galerkin
method, with finite elements. Moreover, we fell back upon Crank–Nicolson in the
discretization of the temporal variable.

With the insect dispersion process, we mention two papers oriented by Professor
Wilson Ferreira Jr:

8. Invasão de abelhas africanizadas: Dispersão não-local e taxia—(Invasion of
Africanized bees: nonlocal dispersion and taxia) (D. C. Mistro and W. C. Ferreira
Jr)—Memórias do IX Congreso Internacional de Biomatemática, p. 149–156,
1999.

In this paper, a mathematical model, discrete in time and continuous in space, is
built, which represents a dispersion of colonies of social insects that are particularly
characterized by far reaching movements, strategical perception of the site (taxi)
quality, and reproduction through fissions. The mathematical model is described
using a nonlinear integral operator. The theoretical paper is illustrated by the
dispersion phenomenon of Africanized bees, but the argument can be explained
in the study of the collective behavior of other social insects concerning its
macroscopic movement.

9. Fitotaxia e agregação não-local na dispersão de insetos herbívoros—
(Phyllotaxis and nonlocal clustering in herbivorous insect dispersion) (L. A.
D. Rodrigues and W. C. Ferreira Jr)—Memórias do IX Congresso Internacional
de Biomatemática, p. 199–206, 1999.

In this paper, the mathematical model for the description of the dynamics of
herbivore populations (growth and dispersion) in large textured crops under the
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circumstance of the oriented movement of herbivores concerning the quality of their
food and including a nonlocal clustering behavior with regard to the conspecifics.

A discrete cellular automata-type model is used to analyze the nature of the
variation of the quality of vegetation and the density of the herbivores in the space
and time for parameter values that represent several situations of interest.

Effects such as the formation and spread of wave fronts and colonization patterns
are observed on a macroscopic scale.

Fuzzy Theory and Biomathematics

The dynamics systems arose with the need to understand phenomena that evolve
over time, following strict and predetermined rules. The deterministic variational
models, formulated by differential equations or equations of differences, became
essential tools for the knowledge and prediction of several situations, especially
of a physical or biological nature. The essential trait of mathematical modeling of
variational processes, using deterministic equations, is the accuracy obtained in
the predictions of the phenomenon studied. Evidently, such predictions are always
dependent on accurate information, which is inserted into the models using the
mean values of the parameters involved.

The classic biomathematics models, particularly the models of population
dynamics and epidemiology, are reasoned upon hypotheses, almost always deriving
from physical–chemistry in which the reaction between two substances (variables
in a state) is modeled by the product of their concentrations—the law of mass
action. This same law is used in the Kermack–McKendrick epidemiology models.
The parameter that represents the rate of predation or infection power of the
epidemiological models are “mean” values simulated or obtained empirically.

In the models that deal with uncertainty, such as the stochastic, for instance,
the solutions are stochastic processes whose means can be obtained after the event,
when you have the distribution densities of the variables and/or of the parameters
involved in the model referring to the phenomenon analyzed.

On the other hand, if in a population, besides quantifying its elements, we intend
to take into account certain qualities of the individuals, the variables and/or param-
eters of the mathematical models must almost always be considered inaccurate or
obtained with partial data. For example, in a population of prey of a certain species,
to each prey we can take into account the ease with which it is predated, which
may be related to its age, health condition, habitat, etc. Considerations of this kind
(state variables with qualitative adjuncts) are very frequent in biological phenomena
and often essential in the modeling and understanding of the phenomenon. In an
evolutionary system, what seems to be insignificant can be of utmost importance in
the future.

The several kinds of uncertainties that appear in the phenomena dealt by
biomathematics can have well-varied modeling. When we opted for stochastic
models, implicitly, we were supposing to know, a priori, the distribution of the
probabilities of the parameters and the initial conditions of the phenomena studied.
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This is the case of the Malthusian stochastic model studied by Pielou. The “realistic”
models tend to also use stochastic equations in their formulations—much more
complex and dependent on sophisticated computational models. Nevertheless, if,
in the phenomenon at issue, we intend to take into account heterogeneity, such as
gradualities that do not come from randomness, the use of tools coming from the
fuzzy logic favor the variational modeling. Another more recent and maybe more
practical and simple alternative, is to use fuzzy variational models, in which the
variables and/or parameters are considered sets that display the pertinence level of
their elements and, thus, the subjectivity is embedded in the concept of the state
variable or the parameters themselves. Anyway, the deterministic models, while not
correctly defining reality, can be markers of several stochastic or fuzzy models—
when working with a large sample of individuals, it can be said that the process
follows a deterministic course that represents the mean solution of isolated cases.
In the fuzzy models, the solution is a fuzzy set of deterministic solutions that, when
defuzzified, represent the means of the solutions. Still, of the deterministic solutions
that form the fuzzy solution, the one that has the greatest pertinence or reliability
level is the initial mean solution called “preferred.”

The variational fuzzy models can encompass several uncertainty types (subjec-
tivities or fuzziness) that can be attached in the parameters, initial conditions or
the state variables themselves. If the subjectivity comes in the state variable or in
the parameters of the models, we have demographic fuzziness or environmental
fuzziness respectively. Therefore, when the state variables are modeled by means
of the fuzzy sets, we have demographic fuzziness, and we have environmental
fuzziness when just the parameters are considered fuzzy. In general, both kinds of
fuzziness are present in biological phenomena.

This new way of modeling problems linked to the biological reality, in which not
only the state variables, but also the parameters, are subjectivity holders, is gaining
ground in the biomathematics field, with significant and very encouraging results. A
great part of the research of the IMECC biomathematics group is linked to the use
of variational fuzzy systems modeling biological phenomena.

The variational fuzzy equations have been studied using distinct methods. The
first attempt to envisage nonrandom-type subjectivity in variational systems was
with the use of the Hukuhara derivative, which was not very successful, the main
cause being the fact that, with such a process, there was never solution stability—
the uncertainty always increases with no limitation. Another way of envisaging
the nonrandom subjectivity is through differential inclusions. Such a procedure,
however, has been shown to be very complicated, even when applied in simple
situations. An alternative method we have been using consists of fuzzifying the
solutions of a deterministic model, using Zadeh’s extension principle. We have
recently shown that this relatively simple method, under certain circumstances,
supplies the same solutions as the fuzzy differentials. We have also shown that these
fuzzy systems, obtained via Zadeh’s extension, behave in a similar manner to the
associated deterministic models regarding the quality of their stationary points. In
all the methods mentioned, the fuzzy process adopted for studying the variational
systems is always derived from classic, deterministic or stochastic systems.
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On the other hand, with the tools of fuzzy logic, we can study the dynamics of
phenomena without the formal concepts of variations coming from the derivative
or explicit differences or, then, from differential inclusions. The method consists of
simply adopting the iterative process, considering variations obtained by means of a
rule foundation and an operator (Mamdani’s), which change them into “numbers.”
We call such systems purely fuzzy systems, or just p-fuzzy systems.

The solutions obtained from the fuzzy or p-fuzzy systems are apparently rougher
and less precise than the deterministic ones; however, they are much safer. The
fuzzy-system solutions are presented in interval ways in which each value has its
reliability level as solution, at each instant. The p-fuzzy systems have the advantage
of encompassing the subjectivity described by a specialist of the phenomenon
studied.

After some satisfactory experience with research into fuzzy logic, which we
had started in the 1980s, some interesting papers came about, not only from the
perspective of mathematics, but also biology. Examples of these papers are: the
thesis of Heriberto E. Roman Flores in 1989: “Sobre as Entropias Fuzzy—About
the Fuzzy Entropies”, followed by the dissertations of Laécio C. Barros: “Modelos
determinísticos com Parâmetros subjetivos—Deterministic Models with subjective
Parameters” (1992) and Paulo Blinder: “Implementação da lógica fuzzy em redes
neurais artificiais e aplicações à Biologia—Fuzzy logic implementation in artificial
neural nets and application to Biology” in 1994. Laécio’s doctorate thesis appeared
straight after, in 1997, with Professor Pedro Tonelli’s contribution: “Sobre Sistemas
Dinâmicos Fuzzy—Teoria e Aplicações—About Dynamic Fuzzy Systems—Theory
and Applications”.

From 2000, papers involving fuzzy logic in modeling processes of biological
phenomena, especially in variational, discrete, and continuous models, began to
emerge more frequently.

Next, we present some abstracts of papers that marked this period:

10. Fuzzy modelling in population dynamics (L. C. Barros, R. C. Bassanezi and
P. A. Tonelli)—Ecological Modelling, 128 (2000), 27–33.

The aim of this paper is to analyze the behavior of models that describe the
population dynamics, taking into account the subjectivity in the state variables or
in the parameters. The models in this work have demographic and environmental
fuzziness. The environmental fuzziness is presented using a life expectancy model
where the fuzziness of the parameters is considered. The demographic fuzziness is
presented using the continuous Malthus and logistic discrete models. An outstand-
ing result in this case is the emergence of new fixed points and bifurcation values to
the discrete logistic model with subjective state variables in the form of fuzzy sets.
An interpretation is offered for this fact that differs from the deterministic one.

We consider the normalized logistic function

{
xn+1 = axn(1 − xn) = f (xn)
1 � xn � 4; xn ∈ R

n (9)
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and the associated fuzzy system

{
un+1 = aun(1 − un) = f̂ (un)
1 � un � 4; un ∈ F(Rn)

. (10)

The fixed points of f̂ (un) are the critical points of (10), that is, the characteristic

functions 0̂ and x̂a = ̂
(1 − 1

a
). The fixed points of f̂ (un) that are different from the

characteristic functions are:

• If 1 � a � 2, the only fixed points are: 0̂ and x̂a and u1 given by [u1]α =
[0, xa] ,∀α ∈ [0, 1].

• If 2 < a � 3, apart from 0̂ and x̂a , we have the fixed point u2 given by [u2]α =[
0, a4
]
,∀α ∈ [0, 1].

• If 3 < a � 1+√
5, excluding 0̂, x̂a and u2, we also have the fixed point u3 given

by [u3]α = [x1, x2] ,∀α ∈ [0, 1], where x1, x2 = a+1±√
(a−3)(a+1)
2a .

• If 1 + √
5 < a < 4, the fixed points are: 0̂, x̂a, u2, u3, u4 with [u4]α =

[f (a/4), a/4] and u5 given by

[u5] =
⎧
⎨

⎩

[
0, f ( a4 )

]
, if α � α

[
f (a4 ),

a
4

]
, if α > α

, for α ∈ [0, 1] and some α.

• If a = 4, the only fixed points are 0̂, x̂a and u6 with [u6]α = [0, 1] ,∀α ∈ [0, 1] .

The bifurcation diagram of the logistic function is presented. Although the
deterministic branch presents fixed points and cycles, in the fuzzy branch we present
only fixed points of f . The dashed and continuous lines indicate instability and
stability respectively (Fig. 5).

11. Attractors and asymptotic stability for fuzzy dynamical systems (R. C.
Bassanezi, L. C. de Barros and P. A. Tonelli)—Fuzzy Sets and Systems 113
(2000), 473–483.

We study the asymptotic properties of maps on fuzzy spaces that are extensions
of maps on R.

Definition 1 Let f : T × R
n −→ R

n be a map. For each fixed t we write ft (x) =
f (t, x). Zadeh’s extension of f (t, x) is defined as:

f̂ (t, u)(x) =
{

supf (t,z)=x u(z), if f−1
t (x) �= φ

0, if f−1
t (x) = φ . (11)

Definition 2 A discrete fuzzy dynamical system is an iterative system of the form

un+1 = F(un), (12)
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Fig. 5 Bifurcation diagram of the logistic fuzzy equation

where F : F(Rn) −→ F(Rn) is a function. Given that u0 ∈ F(Rn), the sequence
of elements u0, F (u0), F (F (u0)), . . . is called the positive orbit of Eq. (12) from
uo and Fn(uo) denotes the n times composition of F .

xn+1 = f̂ (un) (13)

is the fuzzy system associated with the deterministic system

xn+1 = f (xn). (14)

Definition 3 Let F : F(Rn) −→ F(Rn) a map. A point u ∈ F(Rn) is called a
fixed point of F if F(u) = u.

Theorem 7 Let f : Rn −→ R
n be continuous with f (x) = x and f̂ the Zadeh’s

extension of f . Then

(a) χ{x} is stable for the system (13), if and only if, x is stable for the system (14),
(b) χ{x} is asymptotically stable for the system (13) if, and only if, x is asymptoti-

cally stable for the system (14).

Theorem 8 Let f̂ : F(Rn) −→ F(Rn) Zadeh’s extension of a continuous function
f . If f̂ (u) = u and limn→∞D(f̂ n(u, u)) = 0 for D(u, u) < r , then the levels [u]α

attract the levels [u]α by f .



50 R. C. Bassanezi

Theorem 9 If f and f̂ are as above, u is a fixed point of f̂ , asymptotically stable
with a diameter diam [u]α < r , then u is the characteristic function of some point
in R

n; moreover, if u is globally asymptotically stable, then u is the characteristic
function of some point in R

n.

We also study the stability of the new fixed points for Zadeh’s extension logistic
function f̂ (un) = aun(1 − un).

The various types of uncertainties that appear in the evolutionary processes can
have highly varied modeling. The fuzzy variational equations have been studied
using distinct methods. A way of contemplating subjectivities of the nonrandom
type in the state variables of a system is through problems of initial fuzzy values,
denoted for

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= F(x(t))

x(0) = xo ∈ F(U)

.

The fuzzy continuous dynamic systems and the stability of their equilibrium
points were analyzed in the thesis of M. Mizukoshi: “Sistemas dinâmicos fuzzy”;
(2004) and M. Cecconello: “Sistemas dinâmicos em espaços métricos fuzzy—
Aplicações em Biomatemática” (2010), whose main results are presented below in
brief:

12. Fuzzy differential equations and the extension principle (M. Mizukoshi, L.
Barros, Y. Chalco C., H. Roman F. and R.C. Bassanezi)— Information Science
(2007), p. 3627–3635; Stability of Fuzzy Dynamic Systems (M. Mizukoshi,
R. Bassanezi and L. Barros); Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems (2008), v. 17, n 1, p. 69–83. World Scientific Pu.
Co.; On Topological Equivalence of Fuzzy Flows near Hyperbolic Equilibria
(M. T. Mizukoshi, L. C. Barros, R. C. Bassanezi and A. J. V. Brandão); Fuzzy
Sets and Systems, Volume 189, Issue 1, 16 (2012), p. 92–100; On the stability of
fuzzy dynamical systems (M. S. Cecconello, R. C. Bassanezi, A. J. V. Brandão
and J. Leite); Fuzzy Sets and Systems, DOI: 10.1016/j.fss.2013.12.009; About
Projections of Solutions for Fuzzy Differential Equations (M. S. Cecconello,
J. Leite, R. C. Bassanezi and J. de Deus M. Silva); Journal of Applied
Mathematics 06/2013; 2013.

The purpose of these works is to study fuzzy dynamical systems associated with
deterministic systems. Zadeh’s extension principle is used to obtain the fuzzy flow
from the deterministic system. The Grobman–Hartman theorem states that, near
hyperbolic equilibria, there exists a homeomorphism between the trajectories of
the nonlinear system and those of the corresponding linearized system. That is,
these systems are topologically equivalent. A similar theorem to Grobman–Hartman
theorem to fuzzy flows is the main result in this article. It states that the fuzzy flows
obtained from each system—the nonlinear and the linearized—are topologically
equivalent.
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We study the Cauchy problem for differential equations, considering its parame-
ters and/or initial conditions given by fuzzy sets. These fuzzy differential equations
are approached in two different ways: (a) by using a family of differential inclusions;
and (b) Zadeh’s extension principle for the solution of the model. We conclude that
the solutions to the Cauchy problem obtained by both are the same.

Considering the initial value problem given by the autonomous equation

{
dx
dt

= f (t, x(t), w)
x0 = x(0), w ∈ R

n , (15)

where f : Rn −→ R
n. It is such that the solution (15) exists and is unique.

The fuzzy associated system, denoted by

{
d̂x
dt

= f̂ (t, x̂(t), ŵ)
X0 = x̂0, ŵ ∈ F(Rn)

, (16)

is defined and its solution x̂(t) is given by Zadeh’s extension of the solution x(t) of
the system (15).

Theorem 10 Let x be a hyperbolic equilibrium point of (15) satisfying the hypothe-
ses of the Grobman–Hartman theorem. Then, there exists a neighborhood B of χ{x}
and a homeomorphism ĥ : B −→ B such that

ĥ(ϕ̂t (X0)) = ψ̂t (̂h(Xo)),

where ϕ̂t (X0) is the fuzzy flow of (16) and ψ̂t is the fuzzy flow of the associated
linear system

{ dy
dt

= Df (x)y
y(0) = y0

, (17)

for all t ≥ 0 with Df (x), the Jacobian matrix of f around the equilibrium point x.

Theorem 11 Let x be a hyperbolic equilibrium point of the deterministic system
(15). Then, χ{x}is an equilibrium point for the fuzzy system associated with (16)
and

(i) If χ{x} is unstable for (15), then it is also unstable for (16);
(ii) If χ{x} is asymptotically stable for (15), then it is also asymptotically stable for

(16).

Theorem 12 Let xe : A → U be continuous, A ⊆ U , xo ∈ F(U) with [xo]0 ⊂ A

and xe = x̂e(xo) (Figs. 6, 7, 8, 9 and 10).
Under these conditions:

(i) If ϕt (xe(x)) = xe(x) for every x ∈ A then ϕ̂t (xe) = xe for every t ≥ 0.
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Fig. 6 Commutative diagram ϕ
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Fig. 7 Fuzzy and deterministic solutions

(ii) If ϕt : U → U converges, uniformly in A, to xe : A → U as t → ∞ then
ϕ̂t (x0) converges to xe and ϕ̂t (xe) = xe for every t ∈ R+.

In other words, the theorem affirms that if the deterministic solution ϕt (xo)
converges uniformly to the function xe(xo), so that Zadeh’s extension ϕ̂t (x0)

converges to Zadeh’s extension ϕ̂t (xe).
If we consider that the subjectivity of a phenomenon, modeled by the system

(15), appears in the w parameters of the function f , then we should apply Zadeh’s
extension to the flow of the deterministic system:

⎧
⎨

⎩

dx
dt

= f (x(t), w)
dw
dt

= 0
x0 = x(0, w) ∈ R

n+m, w ∈ R
m

. (18)

We study the projection of the fuzzy solution onto the phase space. By that
projection, we may identify the behavior of each component of the fuzzy solution
as a function of time.

Then, the existence, unicity, and stability are guaranteed by n + m dimensional
systems.

Example 1 Let the logistics be the fuzzy system in which the growth rate is a fuzzy
number:
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Fig. 8 Projection of the fuzzy solution of (19) on plane (t, x)

Fig. 9 Architecture of a
fuzzy rule-based system

Fuzzifier

Fuzzy
rules base

inference
method

Deffusifier

xo

xo

y

y

∧

∧

{
dx
dt

= rx(1 − x)
x0 ∈ R and r ∈ F(R)

. (19)

The solution of this equation is Zadeh’s extension of the initial value problem
associated with the deterministic two-dimensional system (20):
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Fig. 10 Architecture of a
p-fuzzy system Fuzzy

rules base

Mathematical
Model

xk xk

xk+1 = xk + Δxk

Δ

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= rx(1 − x)
dr
dt

= 0

X0 = (x0, r)

. (20)

When the convergence of a deterministic solution at the equilibrium point
depends on the initial condition or parameters, it is possible to show that the fuzzy
solution converges to a fuzzy equilibrium point, and we show how to determine the
membership function of such an equilibrium point.

In summary, we have studied the case where the fuzzy systems are derived
from deterministic systems, considering only the initial condition to be a fuzzy
set. However, fuzzy autonomous systems with the parameters and uncertain initial
condition can be treated as a system in which all the fuzziness is contained in the
initial condition.

Theorem 13 LetA ⊂ U×P be an open set, ye : A→ U×P a continuous function
and yo ∈ F(U × P) with [yo]0 ⊂ A. We are given that ϕt (xo, p0) → xe(xo, pe)

for every (xo, po) ∈ A as t → ∞. If xe(xo, p) is asymptotically stable, then ψ̂t (yo)
converges to the equilibrium point ye = ŷe(yo).

The interpretation of fuzzy differential equations through Zadeh’s extension
principle captures the rich properties of stability.

We verified that the linearization captures the local dynamics of nonlinear
systems, that is, if x is a crisp hyperbolic equilibrium point, there is a fuzzy
neighborhood of χ{x} in which the fuzzy systems (16) and (17) are topologically
equivalent.

13. Periodic orbits for fuzzy flows (M. Cecconelo, R. Bassanezi, A. Brandão and
J. Leite)—Fuzzy Sets and Systems, 230, Nov/2013, p. 21–38. A special number
of FSS: Differential Equations over Fuzzy Spaces—Theory, Applications and
Algorithms.

Periodic solutions are present in many of the various mathematical models that
describe physical, chemical or biological phenomena. In this work, we investigate
the existence of periodic solutions for problems of fuzzy initial values. We show that
fuzzy solutions can present periodic points and develop tools of qualitative analysis
for such solutions.

Let ϕt : U → U be the solution to the deterministic equation
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{
dx
dt

= f (t, x(t), w)
x0 = x(0), w ∈ R

n , (21)

and we suppose that ϕt (xo) is defined for all xo ∈ U and t ∈ R+. The solutions to
autonomous differential equations, as they are considered here, satisfy the properties
of a dynamic system on the open set U ⊂ R

n, i.e., for all xo ∈ U and t, s ∈ R+ we
have:

ϕ0(xo) = xo; ϕt+s(xo) = ϕt (ϕs(xo)).

For each xo ∈ U , the subset of the phase space defined by γ (xo) = {ϕt (xo) ∈
U : t ≥ 0} is called the orbit or trajectory of the point xo by the solution ϕt .

The ω − limit of a subset B ⊂ U , is defined by

ω(B) = ∩s�0∪t�sϕt (B).

We say that p ∈ U is a periodic point of period τ , or, a τ − periodic point, for
the flow ϕt when it exists τ > 0 such that ϕt = p and ϕt �= p for all t < τ .

Theorem 14 LetM be compact and invariant. Thus,M is asymptotically stable if,
and only if,M is a uniform attractor.

Corollary 1 Let γ ∈ U be a periodic orbit asymptotically stable and A(γ ) ⊂ U

its attraction region. Therefore, given ε > 0 and a compact K ⊂ A(γ ) there exists
T (K, ε) > 0 such that dist (ϕt (xo), γ ) < ε for all xo ∈ K and t > T (K, ε).

The fuzzy orbit γ (xo) ⊂ F(U) of an initial state xo ∈ F(U) is defined as being
a subset in the phase space F(U) defined by

γ (xo) = ∪t∈R+ ϕ̂t (xo) = {ϕ̂t (xo) ∈ F(U) : t ∈ R+} .

For each B ⊂ F(U), the set ω − fuzzy limit is defined by

ω(B) = ∩s�0∪t�s ϕ̂t (B).

p ∈ F(U) is a τ − periodic point for ϕ̂t when

ϕ̂t (p) = p and ϕ̂t (p) �= p, if t ∈ (0, τ ).

We can also characterize the periodic points of the fuzzy flow ϕ̂t by its α-levels.
The following result merely ensures the existence of invariant sets for the fuzzy

flow when the deterministic solution has a periodic orbit.

Theorem 15 A point p ∈ U is τ − periodic for ϕt if, and only if, χ{p} is a periodic
point of period τ for ϕ̂t .

Proposition 1 If γ is a deterministic periodic orbit, so that the fuzzy periodic set
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γ =
{

x ∈F(U) : [x]0 ⊂ γ
}

is closed, limited, and invariant because of the fuzzy flow.

Theorem 16 Let γ be a periodic orbit for ϕt with period τ > 0 and γ the fuzzy
periodic set determined by γ .

Thus:

(i) γ is stable for ϕt if, and only if, γ is stable for ϕ̂t ;
(ii) γ is asymptotically stable for ϕt if, and only if, γ is asymptotically stable for

ϕ̂t .

Theorem 17 Let γ be a deterministic periodic orbit that is asymptotically stable
and x0 ∈ F(U). If [x0]0 ⊂ A, then ω(x0) ⊂ γ is a fuzzy periodic orbit.

To establish an analogous result to the Poincaré–Bendixson theorem in the fuzzy
metric spaces E(R2), we present two theorems.

14. Poincaré–Bendixson theorem in fuzzy metric space E(R2) (M. Diniz, R. C.
Bassanezi and M. Cecconello)—Sent to Fuzzy Sets and Systems (2015).

Theorem 18 LetK ⊂ R
2 be a compact and invariant set, xe is the unique singular

point ofK and x0 ∈ E(R2). If xe is unstable, then there exists a region A ⊂ K such
that, for [x0]0 ⊂ A, ϕ̂t (xo) converges to a fuzzy periodic orbit γ .

Theorem 19 Let K ⊂ R
2 be a compact and invariant set and x0 ∈ K . If ϕt (xo)

does not approach any equilibrium point, then there exists a region A ⊂ K such
that for [x0]0 ⊂ A, ϕ̂t (xo) is either a fuzzy periodic orbit or converges to one fuzzy
periodic orbit.

In both theorems it is necessary that the closure of the support of the fuzzy initial
value is contained in a given region A, where A is the region of attraction of a
periodic orbit that is asymptotically stable or a subset of a stable periodic orbit.

15. Mathematical Modelling: medical diagnosis

The basic idea for a medical diagnosis is to relate symptoms or patients’ signs to
possible diseases according to an expert’s medical knowledge. This application can
be summarized in an input–output system:

Input(Symptoms) → Knowledge-Based System → Output (Diagnosis).

Let us consider the following universal sets: U = set of patients; V = set of
symptoms;W = set of diseases.

We want to obtain a fuzzy relationD such that S ◦D = T , where S and T are the
matricial forms of the fuzzy relations of symptoms and patients defined in U × V
and U ×W respectively.
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The knowledge base is composed of the fuzzy relations S and T where the matrix
of the relation S is given by patients and their symptoms and T is the matrix related
to diagnostic pattern.

The matrix of the relation D = S−1 ⊗g T gives the symptoms and diagnoses.
Each element of the relation D indicates the degree of connection of each symptom
with the diseases under consideration.

Using these arguments of the fuzzy logic some interesting works were realized:

“Relaciones fuzzy: optimizacion de diagnostico médico”, Anais do Encontro
Nacional de Ecologia (1989); R. C. Bassanezi and H. Roman-Flores.

“Construção e avaliação de um modelo matemático para predizer câncer de
próstata e descrever seu crescimento utilizando a teoria dos conjuntos fuzzy”,
Tese de Doutorado (2005). M. J. P. Castanho.

“Software desenvolvido a partir de um modelo matemático fuzzy para predizer o
estágio patológico do câncer de próstata”, Biomatemática 18 (2008), 27–36. G.
P. Silveira, L. L. Vendite, and L. C. Barros.

“Postoperative vomiting in pediatric oncologic patients: prediction by a fuzzy logic
model”, Pediatric Anesthesia, 2012. B. S. B. Bassanezi1, A. G. de Oliveira-Filho,
R. S. M. Jafelice, J. Bustorff-Silva, and A. Uldesmann.

“Diagnosis of Incidence Risk of Cardiovascular Diseases”, Master’s Dissertation,
2015. L. Bassani.

The variational systems can also be given by means of a rule-based system, in
which case the systems are called p-fuzzy. Such rules are usually provided by a
specialist when modeling of a particular phenomenon is desired.

Conditions of existence of p-fuzzy systems were obtained in the thesis of João
de Deus M. Silva. In the next work, we present new concepts and techniques for
modeling using systems based on fuzzy rules. We enunciate and prove theorems
that ensure the existence of a stationary point for each equilibrium viable set of the
p-fuzzy system.

16. Stationary points: I. One-dimensional P-fuzzy Dynamic Systems (J. de
Deus M. Silva, J. Leite, R. C. Bassanezi, and M. S. Cecconello)— Journal
of Applied Mathematics 09/2013, 2013.

P-Fuzzy dynamical systems are variational systems whose dynamic is obtained by
means of a Mamdani-type fuzzy rule-based system. In this paper, we show the
1 − dimensional p-fuzzy dynamical systems and present theorems that establish the
conditions of existence and uniqueness of stationary points. Besides the analytical
results obtained, we present examples that illustrate and confirm the mathematical
results.

The efficiency of a deterministic model depends on knowledge of the rela-
tionships between variables and their variations. Moreover, in many situations,
such relations are only partially known; therefore, the modeling with deterministic
variational systems, or even with stochastic ones, may not be adequate. In addition,
fuzzy systems derived from deterministic models, which have subjectivity regarding
some parameters, are not appropriate when we have only incomplete information
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of the phenomenon being analyzed. Thus, the use of a rule-based system can be
adopted as an alternative to modeling partially known phenomena or those carried
out with imprecision. Fuzzy rule-based systems have been used with success in
some areas such as control, decision-taking, recognition systems, etc. This success
is because of its simplicity and interrelation with human ways of reasoning. Fuzzy
rule-based systems are conceptually simple. Such systems are basically threefold:
an input (fuzzifier), an inference mechanism composed of a base of fuzzy rules
together with an inference method, and, finally, an output (defuzzifier) stage.

Formally, a p-fuzzy system in R
n is a discrete dynamic system:

{
xk+1 = F(xk)
x0 given and xk ∈ R

n

where the F function is given by F(xk) = xk +Δxk and Δxk ∈ R
n is obtained by

means of a fuzzy rule-based system; that is, Δxk is the defuzzification value of the
rule-based system.

Theorem 20 (Existence) Let S be a p-fuzzy system and A∗ an equilibrium viable
set of S of the type (Ai, Ai+1)→ (C,B). Then, there is at least one stationary point
of S in A∗. That is, ∃x∗ ∈ A∗ such that Δx∗ = 0.

Theorem 21 (Uniqueness) Let S be a p-fuzzy system andA∗ an equilibrium viable
set of S of the type (Ai, Ai+1)→ (C,B).

If the pertinence functions μAi and μAi+1 are piecewise monotone and A∗ ⊂
[z1, z2], then there exists only one stationary point in A∗.

Theorem 22 (Uniqueness) Let S be a p-fuzzy system andA∗ an equilibrium viable
set of S of the type (Ai, Ai+1)→ (C,B).

If the pertinence functions μAi , μAi+1 , μB and μC are continuously differen-
tiable, μAi , μAi+1 are piecewise monotone and μC are strictly monotone, such
that:

(i) μC(t) � μB(−t),∀t ∈ (0, a).
(ii)

μ′
C(q)

μ′
B(p)

>

(
p

q

)3

,∀p ∈ supp(B),∀q ∈ supp(C) and μB(p) <

μC(q); μAi (x) �= μAi+1(x).

(iii)
μ′
Ai
(x)

μ′
Ai+1

(x)
� 0,∀x ∈ (c1, z0).

Then, S has only one stationary point, x∗ in A∗ and x∗ ∈ (c1, z0) (Fig. 11).

Corollary 2 Let S be a p-fuzzy system and A∗ an equilibrium viable set of S of the
type (Ai, Ai+1)→ (C,B).

If the pertinence functions μAi , μAi+1, μB and μC are triangular fuzzy numbers,
then S has only one stationary point in A∗.
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Fig. 11 Mamdani’s inference process

Just as we did for the one-dimensional case, we apply the theorem 21 to ensure
the uniqueness of the solution. To ensure the uniqueness of the solution, it is
important to know what the sufficient conditions are for a p-fuzzy system to be
Lipschitzian. Such conditions are described in the theorem 23.

Theorem 23 Let Fp : U ⊂ R
2 → V ⊂ R

2, the output function of a two
dimensional p-fuzzy system S, with well-posed rules. If all the membership functions
of the input fuzzy sets are Lipschitzian and all the membership functions of the output
fuzzy sets are Lipschitzian and have inverse Lipschitzian, then the p-fuzzy system is
Lipschitzian.

Predator-Prey p-Fuzzy Model In this example, we present a p-fuzzy model type
predator–prey. We can represent the rules by the diagram of arrows in Fig. 12. In
this system, there are two input variables, and each of these variables can take five
different fuzzy state values. Using similar reasoning to the previous example, it is
easy to see that this p-fuzzy system is a well-posed two-dimensional p-fuzzy system
(Fig. 13).

Other recent and unpublished results were obtained in relation to the existence
and uniqueness of the solutions of p-fuzzy systems Existence and uniqueness for
continuous p-fuzzy systems (2014) (M. M. Diniz and R.C. Bassanezi).

The p-fuzzy systems have also been used to model the diffusion process using a
rule base:

17. P-fuzzy diffusion equation using rules base (J. Leite, R. C. Bassanezi,
Jaqueline Leite and M. Cecconello)—Journal of Applied Mathematics, Vol.
2014, Article ID 478241.

The p-fuzzy systems incorporate subjective information in both variables as the
variations and their relationships with the variables and is therefore a very useful
tool for modeling phenomena whose behavior is partially known. The fuzzy systems
are generally the result of a generalization of the classical systems, i.e., in this
approach the uncertain concepts are incorporated into these systems. A central
feature of fuzzy systems is that they are based on the concept of fuzzy partition
information. The use of fuzzy sets allows a generalization of information that is
associated with the introduction of imprecision ignoring the phenomena. In essence,
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Fig. 12 Diagram of the vector fields of a two-dimensional p-fuzzy system

the representation of information in fuzzy systems tries to imitate the process
of human reasoning, considering heuristic knowledge and information across the
disconnected principle. In this work, we describe a diffusive process without the use
of their analytical solution, using p-fuzzy dynamical systems and given a rule base.
It is worth noting that the results obtained in terms of solutions are very similar to
the deterministic case.

The rule base is a set consisting of fuzzy rules that relate the linguistic terms of
the input variables and output variables. The rule base is considered an element, a
member of the fuzzy controller core. Each rule base satisfies the following structure:

IF a is in Ai THEN b is in Bi,

whereAi and Bi are fuzzy sets that represent linguistic terms for input variables and
output variables respectively.
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Fig. 13 Trajectory in phase plane

Thus, consider how linguistic variables for the position of the population
(distance to origin): low positive (Bp), mean positive (Mp), mean high positive
(MAp), positive high (Ap), low negative (Bn), mean negative (Mn), mean high
negative (MAn), and negative high (An), where the positive terms or negative mean
distance from the origin to the right or left respectively.

Considering the known results about the diffusion process, consider the following
basis for fuzzy rules:

(a) If the position of the individuals is low positive Bp, then the variation of the
population is low positive Bp.

(b) If the position of the individuals is positive average Mp, then the variation of
the population is positive averageMp.

(c) If the position of the individuals is average high positive MAp, then the
variation of the population is average high positiveMAp.

(d) If the position of the individuals is high positive Ap, then the variation in the
population is high positive Ap.

(e) If the position of the individuals is low negative Bn, then the variation in the
population is low negative Bn.

(f) If the position of the individuals is average negative Mn, then the variation of
the population is average negativeMn.

(g) If the position of the individuals is average high negative MAn, then the
variation of the population is average high negativeMAn.
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Fig. 14 Union of p-fuzzy solutions

(h) If the position of the individuals is high negative An, then the variation of
population is high negative An (Fig. 14).

18. On Fuzzy Solutions for Diffusion Equation (J. Leite, M. Cecconello, Jac.
Leite, and R. C. Bassanezi)—Journal of Applied Mathematics Volume 2015,
Article ID 874931, 10 pages.

Our main objective in this paper is to explore properties such as uniqueness and
stability of the fuzzy solution of a fuzzy differential equation associated with a
classical advection–diffusion–reaction equation using Zadeh’s extension.

Diffusion models have been extensively employed to investigate dispersal and
have yielded considerable insight into the dynamics of animal movement in space
and time. Diffusion models can be written in the simplest form as:

∂u

∂t
= D∇2u+ f

(

u,
∂u

∂x

)

(22)

where the operator ∇ denotes the spatial gradient, t is time, u(x, y, t) is the local
population density in the spatial variables x and y; D is the coefficient of diffusion,
and f (u, ∂u

∂x
) is the reaction–advection term describing the net population change

due to birth, death, and direction of travel. Most of the phenomena involving
diffusion are described by models that suggest a dynamic in R and R

2 is what will
be treated below. Consider the initial value problem given by
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{
∂u
∂t
(x, t) = DΔ(u(x, t)), x ∈ R, t � 0
u(x, 0) = Nδ(x), x ∈ R, t = 0

(23)

where, u : U ⊂ R → R is a real function.
The classical solution to problem (23) exists, is unique for values of x in bounded

domains U ⊂ R, and is given by

u(x, t) = No√
4πDt

e−
x2

4Dt .

If incorporating into (23), the parameters of reaction and advection have a
problem of the form

∂u

∂t
(x, t) = DΔ(u(x, t))+ a ∂u

∂x
(x, t)+ bu(x, t) (24)

whose solution is given by

u(x, t) = uo√
4πDt

e−
(x−at)2
4Dt+bt .

If we know that the phenomenon occurs by diffusion, but its initial condition
is not well determined, we can consider the initial condition as a fuzzy number.
Thereafter. the principle of Zadeh’s extension in the initial condition applies. Thus,
we have the solution to the fuzzy initial value problems:

û(x, t) = ûo√
4πDt

e−
(x−at)2
4Dt+bt .

We also develop an alternative method for treatment parameters, which may
involve some uncertainty; for this, the fuzzy initial condition and setting conditions
for the fuzzy solution are unique and ensure that these solutions are stable (Fig. 15).

Fig. 15 Graph of the fuzzy solution for b = 0
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Still using the Zadeh extension principle in EDP other interesting works were
developed as: “On Fuzzy Solutions for Partial Differential Equations,” Fuzzy Sets
and Systems, 2012; A. M. Bertone, R. M. Jafelice, L. Barros, and R. C. Bassanezi.

The fuzzy logic provided alternative forms of mathematical modeling. Systems-
based rules, cellular automata, and fuzzy sets of type 2 were some of these
arguments applied in biomathematics models:

“On Fuzzy control of Soybean Aphid” (2016); (M. Peixoto, R. C. Bassanezi, L.
C. Barros, and O. A. Fernandes);

“A Fuzzy delay approach for HIV dynamics using a cellular automaton”. Journal
of Applied Mathematics, V. 25, ID 378753 (2015); (R. Motta Jafelice, C. A. F. Silva,
L. C. Barros, and R. C. Bassanezi);

“A Study on Subjectivities of Type 1 and 2 in Parameters of Differential
Equations”. TEMA—Tendências em Matemática Aplicada e Computacional, 16,
N. 1 (2015); (R. M. Jafelice, A. M. Bertone and R. C. Bassanezi).

The most important problems in Biomathematics arise from situations that
require some type of control. Classical mathematics provides tools for control
decisions, especially optimal control when one has a series of information that
allows deterministic modeling. However, the uncertainties inherent in biological
phenomena stimulate thinking in the sense of seeking some instrumentation to
obtain a more adequate optimal control as in the thesis of Michael Diniz:

19. Optimization of functions, functional, and fuzzy control, IMECC (2016)
(Michael Diniz)

In this thesis, we study an optimization process that allows optimal control to be
established when subjectivity or a lack of information is present in the variables
or in the experimental data. We study optimization of real functions with fuzzy
parameters, variational problems with fuzzy boundary values, and optimal control
with fuzzy initial values. Using ordinal optimization, we study the minimization of
real functions with fuzzy parameters. We verify that, under some hypotheses, it is
possible to establish mapping that associates each parameter value to the minimizer
of the function; thus, we show that Zadeh’s extension of this mapping, in fact, is a
minimizer, according to the notion of the smallest element on the established partial
order relation. Posteriorly, we apply a similar reasoning for the fuzzy variational
calculus problem, setting a mapping that associates each real initial value with each
optimal function (solution) and thus, applying Zadeh’s extension to this map, we
prove that the fuzzy function obtained is the solution (in the sense of the smallest
element) of the variational problem with a fuzzy initial value. Still following the
same reasoning, we define a mapping that associates each initial value with the
state solution of the optimal control problem, and another mapping that associates
each initial value with the control solution of the optimal control problem; thus,
applying Zadeh’s extension to these mappings, we obtain the solution to the optimal
control problem with a fuzzy initial value. Finally, we show a technique to find
an approximate solution for the control problem whose states, controls, and time
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variables are given by fuzzy numbers. For this, we build a fuzzy grid and apply a
dynamic programming algorithm to find the rules. As a result, we obtained a fuzzy
rule-based system whose inputs are the states and the time and the output is the best
control (decision) to be applied.

We focus on cases where the objective functional has as an image the set of fuzzy
numbers, and therefore we use the concept of a smaller (greater) element, to define
the minimizer/maximizer of the functional being evaluated.

Definition 4 (The Biggest Element) Let P be a partially ordered set. An element
g ∈ P is the largest element of P , if ∀a ∈ P , a � g. In an analogous way, we can
set the smallest element.

Definition 5 Let (M, d) be a metric space and P be a partially ordered set
according to the order relationship �P . Consider a function f : M → P and
x∗ ∈ Ω ⊂ M . We say that x∗ is a local minimizer of f in Ω when there exists
a δ > 0, such that f (x∗) �P f (x), for all x ∈ B(x∗, δ); x∗ is called the global
minimizer of f in Ω when f (x∗) �P f (x), for all x ∈ Ω .

Consider the following optimal control problem:

minu∈U J (u) =
∫ tf

t0

F(t, x, u)dt

x̂(t0) = x̂0 ∈ F
([
xL0 , x

R
0

])
, x(tf ) = xf

. (25)

We define the solution of the optimal control problem with an initial fuzzy
condition as Zadeh’s extension of the solution in relation to the initial condition
x(t0). In addition, we study conditions in the optimal control problem that ensure
that the objective functional image is a fuzzy number when the initial condition is a
fuzzy number.

Theorem 24 Let the optimal control problem given in (25), such that F(t, x, u) is
continuous with respect to all variables, f is of class C1, and the (global) solution
of the classical problem, x∗(t, x0) ∈ u∗(t, x0), be continuous in relation to x0 ∈[
xL0 , x

R
0

]
. Then, x̂∗(t, x0) ∈ û∗(t, x̂0) form the (global) solution to the problem (25)

at B∗
F (û

∗(t, x0),∈) for all x̂0 ∈ F
([
xL0 , x

R
0

])
.

Finally, we present an approximate solution to the optimal control problem
whose state, control, and time variables are defined by fuzzy numbers. For this, we
construct a fuzzy net and apply the algorithm of dynamic programming, or define the
rules of a Mamdani-type controller. As a result, we obtain a system based on fuzzy
rules that, at each established state and time, assigns the best decision (control) to
be applied.
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Complex Material Behavior
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Abstract This work was done in commemoration of the 50th anniversary of the
inauguration of the Institute of Mathematics, Statistics and Scientific Computation
of the University of Campinas, Brazil (Instituto de Matemática, Estatística e Com-
putação Científica da Universidade Estadual de Campinas). Our objective is just to
give a rather fast introduction to some important modeling aspects of the phase field
approach to model complex material behavior; we aim at students of mathematics
who have almost no previous background in continuum thermomechanics. Thus,
we briefly recall some of its main concepts and explain the main approaches used to
derive the governing equations including the phase field variables (diffusification,
energetic variational, and entropy approaches); we comment on some of their
limitations and relationships, and briefly describe a few simple applications.

1 Introduction

Commemorating the 50th anniversary of the inauguration of the Institute of Mathe-
matics, Statistics and Scientific Computation of the University of Campinas, Brazil
(Instituto de Matemática, Estatística e Computação Científica da Universidade
Estadual de Campinas), we present here a rather fast introduction to some modeling
aspects of the important phase field methodology when used to derive the equations
governing complex material behavior. Specifically, we consider situations where
structures and interfaces may appear and evolve in time in a material.

We stress that modeling and analyzing such situations are not easy tasks since
such structures and interfaces may interact in a complex and nonlinear way with
the material properties; moreover, their appearances, shapes, and positions are not
a priori known and must be determined together with the other physically relevant
variables.
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In this work, we want to clarify the role of the phase field approach in modeling
situations as just delineated. For this, we start by describing the more traditional
sharp-interface methodology, briefly explaining some of its difficulties. Next, we
describe in general terms the diffuse-interface (phase field) methodology and
contrast it with the sharp-interface approach, explaining how phase fields deal with
the pointed difficulties.

The Sharp-Interface Methodology We exemplify this approach by considering
an old and famous problem studied in the late nineteenth century by J. Stefan. He
analyzed the temperature distribution and freezing-front history of a solidifying
slab of water, having as a basic assumption that the freezing-front was sharp;
that is, it was a regular surface (actually a planar surface in the original Stefan’s
problem) with solid water at one of its side and liquid water at the other side.
Along the time, Stefan’s assumption has been applied to more general situations
and different problems, leading to mathematical problems nowadays called sharp-
interface models. For instance, we consider the following slight generalization of
the original Stefan’s problem, taken from Rubinstein [104], see also Alexiades and
Solomon [1] where the reader can find more details. Consider a material that may
assume either of two phases, e.g., solid or liquid, and occupies a spatial region
Ω ⊂ Rn separated at an instant t by an interface Γ (t). Let Tm ∈ R be the melting
temperature at equilibrium, i.e., the temperature at which both phases may coexist
in equilibrium separated by just an interface assumed to be planar for simplicity.
The temperature T (x, t) must then satisfy a heat diffusion equation in each side of
the interface:

ρCvTt = div(K∇T ) in Ω \ Γ (t). (1)

Here,Cv is the specific heat,K is the thermal conductivity, and ρ is the mass density.
For simplicity of exposition, we assume that either Cv = Csv > 0 or Cv = Clv > 0,
respectively, on the solid and liquid part of Ω \ Γ (t) with constant Csv0 and Clv0;
similarly, K = Ks > 0 or K = Clv > 0, respectively, on the solid and liquid part of
Ω \ Γ (t), with constant Ks and Kl ; ρ > 0 is the same constant for both liquid and
solid phases.

Moreover, the interface must be at the melting temperature, and the rate of
change of the latent heat equals the amount by which the heat flux jumps across
the interface. These lead to the following conditions at the interface:

T = Tm on Γ (t),
�v = −[K∇T · n

]+
− on Γ (t),

(2)

where � is the latent heat, v is the (normal) velocity to the interface Γ (t), n is the
unit normal at Γ (t), and [·]+− denotes the jump in the quantity as one crosses the
interface from solid to liquid. Thus, the sharp-interface problem is stated as finding
T and Γ subject to (1), (2) and suitable initial and boundary conditions.

This sharp-interface approach can be used in many other physical situations,
leading, as we can see from the previous example, to free-boundary problems. We
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remark that such problems are in general very difficult to analyze, both from the
theoretical and numerical point of views, for the reasons we explain in the following.

By thinking a little about the fact that the equation for the motion of the
interface (2) is a key ingredient of sharp-interface models, one quickly sees some
complications.

First, from the physical point of view, it is not in general easy to incorporate the
effects of several physical phenomena that may be relevant to realistic analysis (for
instance, supercooling and superheating effects, surface tension effects, and so on);
even when this is done, it is not clear whether it was done in a thermodynamically
consistent way.

Second, from the geometrical point of view, the very formulation of the equation
for the motion of the interface requires the existence of the normal n to the
surface (see (2)); thus, this approach requires at least a certain regularity of the
interface, preventing the possibility of directly describing the formation of kinks,
cusps, branching, contact, coalescence, dendrites, and other complex geometric
behaviors that may occur during the evolution of such interfaces. In the sharp-
interface methodology, therefore, these possibilities must be approached in an ad
hoc and sometimes unclear way.

Third, and again from the physical point of view, in several situations the basic
hypothesis of this methodology, that is, that transitions are abrupt, is not correct.
For instance, in problems involving solidification/melting, there is the possibility
of occurrence of extended transitions (mushy) zones between pure solid and pure
liquid phases, where a mixture of solid and liquid materials predominate.

Due to all these difficulties, rigorous mathematical analyses of sharp-interface
models are in general very difficult to perform; see, for instance, Rubinstein [104],
Cannon et al. [28, 29], DiBenedetto and Friedman [43], and DiBenedetto and
O’Leary [44]. Moreover, the geometrical difficulties of sharp-interface models
translate into similar ones found in numerical simulations, requiring the numerical
tracking of possible complex evolving interfaces (front-tracking), which is a very
demanding and difficult computational task.

The Diffuse-Interface (Phase Field) Methodology The previously described
complications motivated the introduction of another modeling methodology, in
which sharp interfaces are replaced by continuous variations that are measured
by a new auxiliary variable (sometimes more than one new variable). This new
variable is called either a phase field or an order parameter or a kinetic descriptor,
depending on the context of the problem being considered; in the present work,
we just use the generic name phase field. The key idea in this approach is that the
interfaces are in fact diffuse transitions layers instead of sharp fronts and that the
position of such layers is specified by the level sets of the phase fields considered
in the problem. Due to these characteristics, this approach is also called the diffuse-
interface methodology.

To illustrate these ideas, we mention two historical articles. The first phase
field model was originally developed in 1958 by Cahn and Hilliard in [27] to
describe the process of phase separation of two fluids. For this, those authors
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developed a fourth-order nonlinear partial differential equation, presently known as
the classical Cahn–Hilliard equation, for a variable u(x, t) (the phase field) related
the continuous concentration function of one of the fluids in their mixture. Such
variable had the range of their values given by the interval −1 ≤ u(x, t) ≤ 1, and
the region where u = 1 indicated the region occupied by one of the fluids, while
the region where u = −1 indicated the region occupied by the other fluid; the fluids
were then separated by a transition region defined by a diffuse interface associated
to the region where −1 < u < 1. In 1972, Allen and Cahn in [2] developed a
second-order nonlinear partial differential equation, which is presently known as
the classical Allen–Cahn equation, describing the phase separation in iron alloys.
Both of those articles used the Ginzburg–Landau free-energy functional; however,
as we will explain later on, the Cahn–Hilliard equation is conservative, while the
Allen–Cahn equation is the nonconservative.

The phase field approach has several advantages over the sharp-interface
approach as we explain in the following.

First, from the physical point of view, although it is not so for every phase field
model one can find in the literature, by using the entropy approach to be explained
in detail in Sect. 5 and following a rather standard argumentation scheme, one
can derive phase field models that are automatically thermodynamically consistent
even in complex situations. To explain this claim is the objective of the present
work, but we advance here the main argumentation steps. In a first step, one
chooses the physical fields that are relevant to the problem under consideration and
also the phase fields to be used to describe the possible structures and interfaces
(transition layers); at this point, one also chooses whether each phase field will be
considered as an internal or a dynamical variable (we will give details on these
aspects later on). In a second step, one obtains the general forms of the dynamical
equations (the equations governing the time evolution of the physical fields and
the phase fields that were considered as physical variables); for this, one uses the
standard balance laws of mass, momentum, and energy (one uses the principle
of virtual powers instead of the balance of momentum when there are dynamical
phase fields), and also other physical laws (like Maxwell’s equation, and so on) as
required by the physical variables. In a third step, one uses the concepts of free-
energy and of pseudo-potential of dissipation, the principle of entropy, and general
dynamical equations obtained in the previous step to get the general forms of the
constitutive relations in terms of free-energy and of pseudo-potential of dissipation.
Finally, in a fourth step, one chooses the specific forms of the free-energy and of
the pseudo-potential of dissipation that are adequate to the situation and material
at consideration; once this is done, the mathematical model is determined and
automatically thermodynamically consistent. Obviously, it is not easy to complete
this argumentation scheme in proper way, and there are points that require careful
studies of the particular situation in order to choose in a physically sound way the
free-energy and of the pseudo-potential of dissipation. However, at least there is a
general approach to obtain consistent models; in contrast, the inclusion of complex
phenomena in a physically consistent way is much more difficult in sharp-interface
models.
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Second, from the geometrical point of view, since transition layers are localized
by specific level sets of the phase field, they may present kinks, cups, intersections,
coalescences, and so on; thus, they are suitable for describing very complex evolving
geometries. Moreover, the evolution of such complex geometries is automatically
done in a physically sound way since the equations obtained with the phase field
methodology hold even for these complex geometries; this is in contrast with the
sharp-interface methodology where the introduction of ad hoc (and unclear) criteria
are necessary to proceed with the evolution of complex geometries.

Third, by its very concept, the phase field methodology can easily handle
extended transition layers.

Phase fields are thus key ingredients of a successful modeling strategy for situa-
tions involving appearance and evolutions of several kinds of interfaces and may be
used to model the appearance, evolution, and interaction of structures in macro-
, meso-, and microscales in problems involving phase transitions, membranes,
damage in materials, bubbles, growth of tissues, and so on. Moreover, from the point
of view of numerical simulations, phase field methods can be thought as physically
consistent level sets methods, and the evolution of complex interfaces geometries
can be obtained rather easily. Interesting examples of this successful approach can
be seen, for instance, in the numerical simulations of the growth of dendritic patterns
in solidification processes in Kobayashi [76], Karma and Rappel [72], and Nestler
et al. [87]. Thus, it is safe to say that nowadays the phase field method has emerged
as a powerful tool in the task of understanding material behavior.

On the other hand, we must also draw the reader’s attention to the fact that the
use of a particular phase field model in a practical situation requires realistic values
for the physical parameters appearing in its description; however, these values are
not easy to achieve, requiring suitable laboratory tests and other kinds of analyses.
Obviously, the practical use of a sharp-interface model also requires the knowledge
of the values of its own parameters; but, since this is an older and traditional
modeling approach, presently there is more laboratory technology and data to
estimate these parameters. Nonetheless, by using asymptotic analyses, it is possible
to associate phase field models to corresponding sharp-interface models, relating
in this way also their respective parameters; such relations can then be used to
estimate the phase field parameters from the known associated sharp-interface ones.
Therefore, the study of the relationship between phase field and sharp-interface
models via asymptotic analyses is an important subject that has been considered
along the years; examples of articles on this subject are Caginalp [23], Caginalp and
Xie [26], and Colli and Sprekels [36, 37].

Finally, despite their importance, we stress that in this work we do not comment
on rigorous mathematical or numerical analyses of phase field models, neither do
we comment on practical aspects of their numerical simulations; the references
mentioned in the next section deal with these aspects, and the interested reader may
consult them and their bibliographies. As we have already said, our objective here is
just to give a rather fast introduction to important modeling aspects of the phase field
approach; this could serve to mathematical students who have almost no previous
background in continuum thermomechanics but are interested in this field of study.
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For this, we recall some basic physical concepts and explain the main approaches
used to derive the governing equations (diffusification, energetic variational, and
entropy approaches), commenting on some of their limitations and relationships.

The outline of this work is as follows. Section 2 gives some references for more
information on the aspects that we left out; Sect. 3 very briefly comments on the
diffusification approach; Sect. 4 deals with the main ideas used in the energetic
variational approach; and Sect. 5 explains the entropy approach.

2 Some Representative References

Due to its flexibility and usefulness, presently there are many hundreds of scientific
articles dealing with the phase field methodology; thus, it is impossible to present
here all the relevant works concerning this approach and comment on their results.
Therefore, we drastically reduce our scope, mentioning only a few references
that, we think, may represent some aspects of the approach. We leave to the
reader the task of consulting their bibliographies for much further information.
Some references we mention are concerned with the physical derivation of the
mathematical models; others strive for rigorous mathematical analyses of such
models and deal with the questions of existence or qualitative properties of solutions
of the model equations; others else propose and analyze numerical methods for the
approximation of such solutions; some others are more concerned with the practical
implementation and numerical simulations or model validation. Since in the present
work we are just focusing in the modeling aspects, we do not explicit comment on
the results of each of those references but just group them by their main application
areas.

First of all, we mention that very interesting general references are Provatas and
Elder [96], Fremond [56, 57], Emmerich [51], and Gomez and van der Zee [66].

Turning to references concerned with specific application areas, since the original
work of Cahn and Hilliard [27], many authors considered the interaction among
different fluids using phase fields. Some articles dealing with this topic are Anderson
et al. [5], Kim [75], Liu and Shen [80], Feireisl et al. [54], Cao and Gal [31],
Vasconcelos et al. [110], Eleuteri et al. [49, 50], and Dai et al. [42].

Many other articles also used the phase field approach to study solidifica-
tion/melting of materials or crystal growth processes. Fix [55] seems to be the
first one to do this; many other authors followed, studying several phase transitions
problems: some of them are Collins and Levine [40], Caginalp [22, 24], Kobayashi
[76], Caginalp and Jones [25], Karma and Rappel [72], Nestler et al. [87, 88], and
Provatas et al. [97]. Among the many papers considering solidification of alloys,
we mention Warren and Boettinger [115], Wheeler et al. [117], Boldrini and Planas
[16], Frémond and Rocca [59] Vaz and Boldrini [111], Boldrini et al. [11], and
Calsavara Caretta and Boldrini [30]. Some articles also included in the model the
influence of the macroscopic motions of the material (in particular, the convection
in the melt); a few of them are Blanc et al. [9], Beckermann et al. [8], Diepers et
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al. [45], Rappaz and Scheid [98], Boldrini and Vaz [18], Scheid [105], Planas and
Boldrini [94, 95], Boldrini and Planas [17], and Rocca and Rossi [99]. We mention
that a particular approach that has been used to model phase transitions employ
the thermodynamic potential known as enthalpy (H -method); this can be seen as a
particular case of phase field since its values determine the material phases. Some
articles using this particular approach are Voller and Prakash [112], Voller et al.
[113], Peicleous et al. [91], O’Leary [90], and Boldrini et al. [15].

Another kind of fluid–structure interaction may be found in articles studying
the motion of membranes (vesicles) immersed in fluids; see, for instance, Du et al.
[46, 47], and Entringer and Boldrini [52].

The phase field approach has also been used to study the interplay among
elasticity, plasticity, phase change, damage, fatigue, and fracture of materials.
Examples of references doing this are Frémond and Nedjar [58], Frémond [56, 57],
Nedjar [86], Rocca and Rossi [100], Heinemann and Kraus [67], Heinemann and
Rocca [68], Duda et al. [48], Bonetti et al. [20], Miehe et al. [81, 82], Ambati et al.
[3, 4], Boldrini et al. [10], and Nguyen et al. [89].

Phase field models taking in consideration the second principle of thermodynam-
ics can be found, for example, in Penrose and Fife [92, 93], Zheng [119], Wang et
al. [114], Sprekels and Zheng [107], Laurençot [77], Colli and Laurençot [34], Colli
and Sprekels [39], Kenmochi and Kubo [74], Ito and Kenmochi [70], Ito et al. [71],
Fabrizio et al. [53], Assunção and Boldrini [7], and Boldrini et al. [10].

Besides the important question concerning the relationship between phase field
and sharp-interface model, which was already mentioned in the Introduction, there
are many other interesting aspects that must be considered. For instance, asymptotic
properties are studied in Kenmochi and Niezgódka [73], Miranville and Zelik [84],
Rocca and Schimperna [101, 102], Gal et al. [61], da Silva and Boldrini [41], and
Gal and Grasselli [62, 63]. Memory effects are important in some situations; some
articles considering this aspect are Colli and Sprekels [38], Colli et al. [32], Bonetti
et al. [19], and Frémond [56, 57]. Control problems related to phase field models
can also be considered; for instance, Hoffman and Jiang [69], Boldrini et al. [12],
Rocca and Sprekels [103], Colli et al. [33, 35], Frigeri et al. [60], and Araruna et al.
[6]. Finally, besides those already mentioned articles, we also refer to the following
interesting ones: Moroşanu [85], Miranville and Quintanilla [83], Wells et al. [116],
Gomez and Hughes [65], and Guillén-González and Tierra [64].

3 Diffusification Approach

In the beginning of their historical development, diffuse-interface (phase field)
models were usually thought not as physical models per se, but just as convenient
approximations (regularizations) of sharp-interface models, to be used just as way
to avoid the difficulties with the front-tracking of the sharp interfaces in numerical
simulations.

Following this idea of regularization, a diffuse-interface model is then derived
from a previously given sharp-interface model by introducing a smooth field, the
phase field ϕ(x, t), where x denotes the points in the spatial domain Ω and t , the
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time. This field is seen as a regularization of the jump appearing at a sharp interface
by a smooth profile; the commonly used profile is the one given by the hyperbolic
tangent, that is, ϕ is taken as ϕ(x, t) := tanh(dt (x)/

√
2ε), where dt (x) denotes the

signed distance from x to the sharp interface, and ε > 0 is a parameter related to
the thickness of the corresponding approximate diffuse interface. We stress that this
field is designed to attribute value ϕ = −1 to one of the phases, value ϕ = 1 to the
other (for instance, respectively, liquid and solid phases in the example described
in the Introduction); the intermediate value 0 < ϕ < 1 is related to the transition
region between the two pure phases.

The next step in the arguments is to look for expressions for the geometrical
entities appearing in the equation for the motion of the interface in terms of ϕ. More
precisely, by using the case of Eq. (2) to exemplify these ideas, v and n must be
written in terms of ϕ and maybe its temporal and spatial derivatives (we remark
that, if we had not taken a planar interface in that example, the curvature of the
sharp interface would also appear in (2) and the curvature should also be written
in terms of ϕ and its temporal and spatial derivatives). Once these expressions are
found, they are substituted back in the equation for the motion of the interface, (2)
in our example; this leads to a partial differential equation for ϕ that is assumed to
be the equation governing the evolution of the phase field not just near the interface,
but also in all the domain Ω . This equation replaces (2) in the associated diffuse-
interface model; we do not write this equation here and refer to Gomez and van der
Zee [66] where a more general situation is discussed.

The next step is to obtain a unique equation in the diffuse-interface model that
corresponds to Eq. (1); such equation should depend also on ϕ and hold on all the
domainΩ; this contrasts with the sharp-interface model in which we have different
equations each one holding in one side of the sharp interface. To obtain the required
equation, one possibility is to take one with the form as in (1), but with coefficients
Cv and K defined on all the domain Ω and with values smoothly varying from one
phase to the other; for instance, by taking the averages Cv = (1−ϕ)

2 Clv + (1+ϕ)
2 Csv

and K = (1−ϕ)
2 Kl + (1+ϕ)

2 Ks .
Once the previous steps are accomplished, one gets a system of equations

coupling the temperature and the phase field. However, as one can observe, this
approach is difficult to generalize to more complex situations, and it requires certain
choices that sometimes are difficult to justify; moreover, there is no systematic way
to verify the thermodynamical consistency of the diffuse-interface models derived
by this method. Therefore, we do not give here more details of this approach and
refer to the very interesting article by Gomez and van der Zee [66] for further
discussion on it.

On the other hand, some of the ideas used in the diffusification approach are
relevant for the two approaches to be described in the next sections. In fact, both of
them use the key concept of free-energy density, which must be expressed in terms
of the phase field. In particular, certain terms of free-energies densities, like surfaces
energies, that are rather well-known in the case of the sharp-interface models, are
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rewritten in terms of the phase field variable with the help of some of the previous
ideas.

4 The Energetic Variational Approach

4.1 Phase Field Equations (Isothermal Processes)

We firstly recall certain basic ideas of the continuum mechanics, which here are
described in Eulerian coordinates. Suppose that a certain physical process occurs
in a domain Ω ⊂ Rn, n = 1, 2, 3, on an interval of time [0, T ]; for simplicity,
we focus in just a scalar physical variable, for instance, mass, electric charge, or
energy, which is distributed in Ω . To describe the changing of such variable, three
basic concepts are required: the density of the physical variable of interest, ρ :
Ω × [0, T ] → R; the density of sources or sinks of the physical variable, g :
Ω × [0, T ] → R; and the flux of that physical variable, F : Ω × [0, T ] → Rn.

Many of the equations from classical continuum mechanics are derived by
relating the previous three concepts by using the physical principle known as law
of balance; this says that at any subregion V of Ω , the rate of change of the total
amount of the physical variable in V is equal to sum of the amount generated (or
consumed) in V by the sources and sinks and the amount left in V by the flux that
crosses its boundary. In mathematical terms, under suitable smoothness conditions
on the previous fields and the use of the divergence theorem, the law of balance is
written as the general (scalar) balance equation in integral form:

d

dt

∫

V
ρ dx = −

∫

∂V
F · n dS +

∫

V
g dx, (3)

for any (suitable) V ⊂ Ω . Here, n denotes the external unitary normal field on
∂Ω , and dS denotes the area element. By assuming enough regularity to use the
divergence theorem and using the fact that V ⊂ Ω is “arbitrary,” we get the general
(scalar) balance equation in differential (local) form:

∂tρ + div F = g. (4)

Thus, in any particular physical situation, to complete the derivation of the
equation governing the phenomenon of interest, we must find the right expressions
for g and F. Examples of fluxes are the advection flux (F = ρv, where v is a velocity
field of the material) and the diffusion flux (F = −k∇ρ, where k ≥ 0 is a diffusion
coefficient).

Inspired in the previous arguments, the energetic variational approach pro-
poses the following modified form of the balance equation (4) (in Eulerian
coordinates) as the evolution equation for a phase field ϕ:
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∂tϕ + div(ϕv) = L(ϕ)+ g. (5)

Here, v is the macroscopic velocity of the material, and thus an advection flux
is included in the equation because it is natural to assume that the structures
determined by ϕ may be advected by the velocity flow; g is a source term, whose
expression depends on the situation being considered; and L(ϕ) denotes a maybe
nonlinear operator that must be determined by further arguments. For simplicity, we
will look for an expression for L(ϕ) in a situation without (macroscopic) motion of
the material (v = 0), without sources or sinks (g = 0) (recall that all other physical
variables, including temperature, are kept constant); in this situation, the phase field
equation is reduced to

∂tϕ = L(ϕ).
The basis of the energetic variational approach to determine suitable expressions

for the operator L(ϕ) is the assumption that the evolution in time of ϕ must occur
such way that the total free-energy of the physical system under investigation does
not increase with time. Let us initially apply this idea in the case that the total free-
energy is expressed in the following form, which depends only on the derivatives up
to first order of the phase field variable:

E =
∫

Ω

E(ϕ,∇ϕ)dx. (6)

By denoting pi = ∂iϕ and writing: E(ϕ,∇ϕ) = E(ϕ, p1, . . . , pn), and also
assuming enough smoothness, we obtain dE

dt
= ∫

Ω
∂ϕE(·) ∂tϕ + ∂piE(·) ∂t ∂iϕ dx,

where we used the usual Einstein’s index notation that repeated index must be added
up. By using integration by parts with suitable boundary condition on ϕ (either
ϕ = 0 or ∂ϕ/∂ν = 0 on ∂Ω), we get

dE

dt
=
∫

Ω

δE

δϕ
∂tϕ dx =

∫

Ω

δE

δϕ
L(ϕ) dx. (7)

Here, δE
δϕ

is called the variational derivative and is given by

δE

δϕ
= ∂ϕE − ∂i∂piE. (8)

The previous arguments can be easily generalized for functionals depending on
higher order derivatives of ϕ. For instance, suppose that the free energy has the
following form:

E =
∫

Ω

E(ϕ,∇ϕ,Δϕ)dx. (9)
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By proceeding exactly as before, with suitable boundary conditions, we get again
expression (7), but now with the variational derivative given by

δE

δϕ
(·) = ∂ϕE(·)− ∂i∂piE(·)+Δ∂wE(·), (10)

where we used the same notations as before and also w = Δϕ.
Expression (7) suggests that a first possibility to guarantee that the free-energy

does not increase in time is to take

L(ϕ) = −λ(·)δE
δϕ
,

where λ > 0 is a coefficient called the relaxation factor. In fact, in this case,
we have the dissipative energy law expressed by dE

dt
= − ∫

Ω
λ(δE
δϕ
)2dx ≤ 0.

Thus, under the stated conditions, the total free-energy is automatically a Lyapunov
functional, and we expect that as the time t goes to infinity ϕ(·, t) approaches an
equilibrium state given by the equation: δE

δϕ
= 0, which is exactly the Euler–

Lagrange equation for the critical points of the total free-energy functional E.
Another possibility to guarantee the decay of the total free-energy is to take

L(ϕ) = div

(

M∇ δE
δϕ

)

,

whereM > 0 is now a coefficient called mobility. By using this in (7), with the help
of integration by parts and the use of suitable boundary conditions (either δE

δϕ
= 0

or M ∂
∂ν
( δE
δϕ
) = 0 on ∂Ω ), we obtain another dissipative energy law expressed by

dE
dt

= − ∫
Ω
M|∇ δE

δϕ
|2 dx ≤ 0. Thus, similarly as before, the total free-energy is

automatically a Lyapunov functional.
By using these previous expressions for L(ϕ) in the general situation (5), that is,

when v and g are not necessarily null, we obtain the following possibilities for the
equation governing the evolution of the phase field:

Allen-Cahn : ∂tϕ + div(ϕv) = −λδE
δϕ

+ g, (11)

Cahn-Hilliard : ∂tϕ + div(ϕv) = div(M∇ δE
δϕ
)+ g. (12)

Remarks

(i) In the Cahn–Hilliard equation, μ(ϕ) = δE
δϕ
(ϕ) is called chemical potential.

(ii) The Cahn–Hilliard equation is said to be conservative because, with the
boundary conditions v = 0 and M ∂

∂ν
( δE
δϕ
) = 0 on ∂Ω and source term g = 0,

by integration on Ω we formally obtain that the “total mass”
∫

Ω
ϕ(·, t) dx

is constant in time. This does not hold for the previous Allen–Cahn equation;
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so it is said to be nonconservative. However, there is a conservative modified
form of the Allen–Cahn: ∂tϕ + div(ϕv) = −λδE

δϕ
+ g + 1

|Ω| (
∫

Ω
(λδE
δϕ

− g)dx)
(|Ω| denotes the volume of Ω), with the boundary conditions v = 0 on ∂Ω;
since its numerical treatment is simpler than that of the Cahn–Hilliard equation,
which involves fourth-order differential operators, some authors prefer to use
this modified Allen–Cahn; see, for instance, Yang et al. [118].

An Example: Solidification/Melting at a Given Temperature
We consider a solidification/melting isothermic process of a pure material,

assuming that a given θ constant temperature, that macroscopic velocity is null
(v = 0), and that there are no heat sources (g = 0). Now, we consider the phase
field ϕ variable (an order parameter) such that associates values ϕ ≤ −1 to pure
solid state, ϕ ≥ 1 to pure liquid states, and −1 < ϕ < 1 to the transition layers
between solid and liquid state.

We assume that volumetric density of free-energy is of the form

E(ϕ,∇ϕ) = γ

2
|∇ϕ|2 + 1

γ
H(ϕ)− ϕ�(θ − θm).

Here, the first term is related to the interfacial energy (it attributes more energy to
regions where the gradient of ϕ is larger) and the γ > 0 is a constant related to
the width of the transitions layers; the second term H(ϕ) = (1/4)[(ϕ2 − 1)]2 is
the classical two-well potential; thus, the first two terms in the last expression corre-
spond to the classical Ginzburg–Landau free-energy. In the third term, −ϕ�(θ−θm),
the coefficient � > is related to the latent heat of the material, while θm is the
given melting temperature; this term −ϕ�(θ − θm) expresses qualitative changes
in the free-energy according the temperature. In fact, for θ = θm, the total bulk
potential density Hθ (ϕ) = 1

γ
H(ϕ)−ϕ�(θ − θm) has two absolute minimum points

at ϕm1 = −1 (pure solid state) and at ϕm2 = 1 (pure liquid state); for θ > θm, Hθ

has a single absolute minimum point at ϕm ≥ 1 (pure liquid state), and for θ < θm,
Hθ has a single absolute minimum point at ϕm ≤ −1 (pure solid state). See more
physical details in Caginalp [22].

Under these conditions, by using (8), the Allen–Cahn equation (11) becomes

∂tϕ = λγΔϕ + λ

γ
(ϕ − ϕ3)+ λ�(θ − θm).

4.2 Phase Field Equation Coupled with the Equation for the
Macroscopic Motion (Isothermal Processes)

The question now is how to couple in proper way the phase field equations with the
dynamical equations governing the motion of that same material.
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To answer this, we need to recall the concept of balance of linear momentum.
The important ideas are the following: (a) linear momentum is a vectorial physical
variable whose density is given by the expression ρu, where ρ is the mass density
and v = (v1, . . . , vn), n = 1, 2, or 3, is the velocity; (b) each component ρvi ,
i = 1, . . . , n, of the linear momentum is advected by the velocity flow; that is, there
is an advection flux of the form ρviu (this special case is called convection); and (c)
the sources and sinks of linear momentum are the forces acting on the body.

Thus, applying the balance law, Eq. (3), to each i-th component of the linear
momentum in an “arbitrary” subregion V ⊂ Ω , one obtains that d

dt

∫

V ρvidx =
− ∫V ρviv · ndS + ∫V fidx, where as before n denotes the unitary external normal
at the boundary of V, and fi denotes the volumetric density i-the component of the
total force

∫

V fdx. In vectorial terms, we get:

d

dt

∫

V
ρvdx = −

∫

∂V
(ρv ⊗ v) · ndS +

∫

V
fdx,

where ⊗ denotes the tensorial product; in the present case, v ⊗ v is an n× n matrix
whose (i, j)-element is given by vivj .

The total force
∫

V fdx is the sum of body forces, contact forces, and microscopic
forces. Body forces are forces like gravity; when their volumetric density is given
by a volumetric density field fb, the total body force acting on V is given by

∫

V fbdx.
Contact forces are forces that one part of the body acts on the other parts through
their common boundary; they are obtained by using the concept of Cauchy stress
tensor T0 = [T0,ij ]n×n of the material; the balance of angular moments requires
that T0 be a symmetric tensor. The total contact force that the partΩ−V of the body
acts on V is known to be given by (Cauchy’s Theorem)

∫

∂Ω
T0 · ndS. Microscopic

forces are forces due to internal structures, in case that they exist. We assume that
such forces are given by a volumetric density field fmicro, whose expression will be
related later on to the phase field variable that is used to describe such structures, and
the total microscopic force acting on V is then given by

∫

V fmicrodx. Thus,
∫

V fdx =∫

V fbdx + ∫
∂Ω

T0 · ndS + ∫V fmicrodx. By substituting this in the balance of linear
momentum, using the divergence theorem and the fact that V is arbitrary, we obtain
the differential form for the balance of linear momentum:

∂t (ρv)+ div(ρv ⊗ v) = div T0 + fb + fmicro. (13)

We recall that the stress tensor T0 determines many of the main properties of
the material, and that an expression of T0 in terms of other variables of the physical
problem is called a constitutive relation. In Sect. 5, we describe a thermodynamical
argument that gives general expressions for σ in terms of the free-energy and the
pseudo-potential of dissipation.

Microscopic Forces in Terms of the Phase Field To find an expression for
the microscopic forces fmicro, we will use the following form of the Principle of
Virtual Power which is adequate for the energetic variational approach that we are
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considering in this section. It says that at any time the power of the forces acting on
any part of a material body subjected to any virtual displacement (and thus with
corresponding virtual velocity) must equal the rate of variation of the total energy
along the same virtual displacements. We also recall that virtual displacements are
arbitrary displacements with the only requirement that they satisfy all restrictions
that one might have for the motion (examples: rigid walls, incompressibility, etc.).

We remark that this principle in particular implies the balance law for the linear
momentum. Another important remark is that, since the expression for the total
energy may have several parts, by the application of Principle of Virtual Power,
from each of these parts one gets a particular type of force. In particular, one of
these parts of this total energy is the part of free-energy associated to the energy
contribution due to the structure determined by ϕ. By assuming the simplifying
hypothesis that the phase field ϕ does not appear in the other terms of the total
energy, and since in our equation for the balance of linear momentum we already
know the expression for the forces, with the exception of fmicro, we can apply a
simplified form of the Principle of Virtual Power by observing that fmicro will come
from the rate of variation of the free energy along virtual displacements.

We apply the previous arguments in the case of a viscous fluid in a still domain
Ω (and thus, we have the restriction: u|∂Ω = 0, since the fluid sticks to the walls),
in which there is an evolving structure determined by a phase field ϕ. Moreover,
since the process of obtaining the expression for the microscopic forces is simpler
in the case without further restrictions on the virtual displacements, in the following
we explain how to do that under the extra hypothesis that the fluid is incompressible
(and thus, we have the restriction: div v = 0). Additionally, we assume that the
free-energy depends only on ϕ; that is, the other thermodynamics variables are kept
constant.

To construct virtual displacements satisfying our restrictions, we consider the
vector fields in the set

V(Ω) = {v̂ ∈ (C0(Ω))
n : div v̂ = 0}, (14)

Then, take any v ∈ V(Ω) and at any fixed time t and for each x ∈ Ω consider
the displacements given by solving the auxiliary family of systems of ordinary
differential equations:

⎧
⎨

⎩

dz
dτ

= v̂(z),

z|τ=0 = x.

The solutions z = z(x, τ ) are the virtual displacements that we will use.
Thus, by using our previous notations, the chain rule, and integration by parts,

the previous formulation of the Principle of Virtual Power gives us that:

∫

Ω

fmicro · v dx = d

dτ
E(ϕ(z(x, τ ), t))|τ=0 =

∫

Ω

δE

δϕ
∇ϕ · v̂ dx, for all v̂ ∈ V(Ω).
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Thus,
∫

Ω
(fmicro − δE

δϕ
∇ϕ) · v̂ dx = 0, ∀v ∈ V(Ω), that is, fmicro − δE

δϕ
∇ϕ is

orthogonal to V(Ω) in L2(Ω). Thus, Theorem 1.4, p. 11, in Temam [108] implies
that there is q such that fmicro = −∇q + δE

δϕ
∇ϕ .

Thus, substituting back this last expression in the balance of linear momentum
equations (13), we get the following equations governing the motion of a material
with an evolving structure determined by a phase field:

⎧
⎨

⎩

∂t (ρv)+ div(ρv ⊗ v) = div T0 − ∇q + fb + δE

δϕ
∇ϕ,

div v = 0.
(15)

Remark We stress that the previous arguments assumed that the Cauchy stress
tensor T0 was exactly that of the virgin material (that is, the material disregarding
the presence of the structure associated to the phase field). Thus, in this model the
interaction between the structure and the rest of the material is not realized through
contact forces but just through the microforces fmicro which were considered part
of the body forces. However, in Sect. 5, we show that thermodynamical consistency
in general requires suitable modification of the Cauchy stress tensor and contact
interaction forces between the structure and the rest of material do appear.

Equations (15) must be coupled with an equation for the phase field; this may
be an Allen–Cahn or Cahn–Hilliard equation according to the kind of structure
immersed in the fluid. Moreover, a free-energy must be specified. Next, we illustrate
this procedure.

Example: Motion of Vesicles in Fluids Du et al. [46] (see also Du et al. [47])
consider a phase field model for the motion of a vesicle immersed in a homogeneous
incompressible Newtonian viscous fluid in a domain Ω ⊂ Rn, n = 2 or 3. They
assume that the same fluid was in the exterior and in the interior of the vesicle,
that membrane density is comparable (equal, actually) to the fluid density, and that
there are no external forces and no sources of the membrane material. A phase field
variable ϕ is used to describe the relative vesicle position: at time t , the interior
of the vesicle is given by {x ∈ Ω : ϕ(x, t) > 0}; the exterior of the vesicle
is given by {x ∈ ω : ϕ(x, t) < 0}; and the membrane of the vesicle is at
{x ∈ Ω : ϕ(x, t) = 0}.

By supposing a homogeneous incompressible Newtonian viscous fluid, with
constant density ρ = 1, for simplicity of exposition, the Cauchy stress tensor is
T0 = −pI + μ0

1
2 (∇v + (∇v)t ), where p is the hydrostatic pressure; thus, by

incorporating q into the hydrostatic pressure p and calling p̃ = p + q, Eq. (15)
simplify. By putting together the equations for the fluid motion and the phase field
equation (an Allen–Cahn type in this case), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + v · ∇v − μoΔv + ∇p = f + δE

δϕ
∇ϕ,

div v = 0,

∂tϕ + v · ∇ϕ = −λδE
δϕ
,

(16)
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where the expression for δE
δϕ
(·) is given by (10) since, as we will explain, the free-

energy functional associated to the vesicle is a functional of form (9).
To find the expression for the total free-energy E in terms of the phase field,

the authors of [46] firstly consider that in a sharp front approach the corresponding
free energy should be what is known as the Helfrich bending energy; this is then
rewritten in terms of the phase field (which includes a small positive parameter ε and
recovers the bending energy of the sharp front model as ε approaches zero). More-
over, under the conditions considered in [46], two constraints appear: the volume
of the vesicle and the surface area of vesicle membrane should be fixed constants.
The authors treat these volumetric and area constraints by penalization, including
them in a final total free-energy functional with two penalization parameters. Then,
the free energy considered in [46] is the sum of the following three terms:

E = Ebending + Evolume + Earea.

The first term is Ebending = k
2ε

∫

Ω
|e(ϕ)|2dx, which is a simplified form of elastic

bending energy for the phase field. Here, ε > 0 is a small parameter related to
the width of the transition layer; k is the bending modulus; c0 is the spontaneous
curvature of the vesicle, and e(ϕ) = εΔϕ + ( 1

ε
ϕ + c0

√
2)(1 − ϕ2). The second

term is Evolume = 1
2M1(A(ϕ)− α)2, which is a penalization term for the volume of

the vesicle. Here, M1 > 0 is a large penalization term; α is related to the required
volume, and A(ϕ) = ∫

Ω
ϕdx. The third term is Earea = 1

2M2(B(ϕ)− β)2, which is
a penalization term for the surface area. Here, M2 is a large penalization term; β is
related to the required surface area, and B(ϕ) = ∫

Ω
ε
2 |∇ϕ|2 + 1

4ε (ϕ
2 − 1)2dx.

Next, for simplicity of exposition, take c0 = 0. Then, a direct computation using
(10) shows that δE

δϕ
(ϕ) = kg(ϕ) + M1(A(ϕ) − α) + M2(B(ϕ) − β)e(ϕ), where

g(ϕ) = −Δe(ϕ)+ 1
ε
(3ϕ2 − 1)e(ϕ).

Finally, the equations governing the interaction between the membrane and the
fluid are given by (16), where, by using (10) and c0 = 0, the expression of the
variational derivative is δE

δϕ
= kg(ϕ)+M1(A(ϕ)− α)+M2(B(ϕ)− β)e(ϕ).

Dissipative Energy Laws; Further Short Commentaries The just described
problem formally satisfies a dissipative energy law of form

d

dt

∫

Ω

1

2
|v|2dx + E(ϕ) = −μ0

∫

Ω

|∇v|2dx − λ
∫

Ω

∣
∣
∣
∣
δE

δϕ

∣
∣
∣
∣

2

dx.

The first term in the left-hand side of the last inequality is the time derivative of
the kinetic energy K(v) = ∫

Ω
1
2 |v|2dx (recall that for simplicity the density was

taken to be one), while E(ϕ) = ∫
Ω
E(ϕ)dx is the total free-energy. This dissipative

energy law can be obtained by the following formal computations: multiply the first
equation in (16) by v and the third equation by δE

δϕ
; integrate on Ω , using standard

integration by parts, the second equation (div v = 0). By adding the corresponding
results, observing that the term coming from the last one in the first equation and
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the term coming from the second one in the third equation cancel each other, we
obtain the stated dissipative energy law. Although we do not have space to comment
this aspect as it deserves, many phase field models, derived by using the variational
energy approach, do satisfy suitable dissipative energy laws. For this reason, such
models are popular and convenient, specially from the mathematical and numerical
point of view.

However, it is not clear in general whether they are thermodynamically consistent
(i.e., satisfy the entropy principle), specially in non-isothermal situations. Some
authors argue that in order to satisfy the entropy principle, the principle of
nonincreasing of the total free-energy, which was used for determining the phase
field equations, should be replaced by to the requirement of nonincreasing in time
of the following modified free-energy functional: E = ∫

Ω
1
θ
Edx, where E is as

before and θ > 0 is the absolute temperature. Although our impression is that these
arguments are a bit confusing, some truth must be in them since, as we will see in the
next section, where we describe a thermodynamically consistent approach, at least
one term of the derived equation satisfies this last claim for phase fields considered
as internal variables.

5 The Entropy Approach

Some of the arguments presented in this section are generalizations of the ones in
Boldrini et al. [10] for the special case of a phase field model for damage and fatigue
in materials.

We describe here a physically sound approach to obtain phase field models,
in the sense that the standard physical principles, including the second principle
of thermodynamics (entropy condition), are required to hold. Such methodology
is called the entropy approach, and to explain how it works, we assume that
all the stated variables and other mathematical entities that follow have enough
regularity for the required computations hold. We start by considering a body that at
time t occupies a domain denoted by Ωt ⊂ R3 described by Eulerian (spatial)
coordinates x (we will briefly comment on the use of Lagrangian (reference)
coordinates in the last section); Dt denotes arbitrary regular subdomains of Ωt
moving with the body. The variables characterizing the thermodynamical state of the
body are the following. A mass density ρ that must satisfy the standard conservation
of mass; the displacement and velocity vector fields, denoted, respectively, by u
and v, are dynamical variables, and the governing equation for v will be obtained by
applying the Principle of Virtual Power (PVP) (see, for instance, Frémond [56]); the
specific density of the internal energy e (density by unit of mass) whose governing
equation will be obtained by applying the first principle of thermodynamics, that is,
the balance of energy.

Since we want to exemplify the application of the entropy approach in a rather
general setting, we consider two phase fields of different types as we will explain.
At this point of the arguments, we do not attribute any physical meaning to those
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phase fields because we want just to distinguish them by the way their respective
governing equations are obtained; later on, we will consider an example where
specific physical meanings will be attributed to those phase fields. We assume:

• A first phase field ϕ that is considered a dynamical variable in the sense that its
corresponding governing equation will also be obtained by applying the Principle
of Virtual Power (PVP);

• A second phase field F that is considered an internal variable; we assume that
its governing equation is a constitutive differential equation to be determined by
the second principle of thermodynamics, that is, such that a suitable form of the
entropy inequality be satisfied.

Concerning notation, ġ = gt + v · ∇g denotes the material derivative of any
given variable g(x, t) (in particular, v̇ is the acceleration) and ∇Sw = sym (∇w)
denotes the symmetric part of the gradient of any given vector field w. In particular,
E = ∇Su and D = ∇Sv are, respectively, the infinitesimal strain tensor and the rate
of strain tensor fields.

In the present context, we use the expression macroscopic velocity to refer to
the standard (classical) velocity, that is, the time rate of change of the displacement,
v; we use the term microscopic velocity to refer to the time rate of change of
the dynamical phase field ϕ, that is, ϕ̇, which is denoted here by c. Moreover,
for the application of the Principle of Virtual Power (PVP), we denote by v̂
any admissible virtual macroscopic velocity and by ĉ any admissible virtual
microscopic velocity. The term admissible means that such velocities must satisfy
any possible physical or geometrical restrictions. For instance, irreversibility,
incompressibility, or nonpenetrability of rigid walls, and so on; we recall that in
the simplified application of the Principle of Virtual Power done in the previous
section, in the arguments to find an expression for fmicro, we had the requirement
that admissible virtual motions should be incompressible, and thus the associated
virtual macroscopic velocities should have null divergence, that is, we had to require
v̂ ∈ V(Ω), which is defined in (14). However, to simplify the presentation of the
arguments, we do not consider in this section any restriction and take for any fixed
time t the following admissible virtual velocities sets:

v̂ ∈ Vmacro(Ωt ) = (C0(Ωt ))
n, ĉ ∈ Vmicro(Ωt ) = C0(Ωt ). (17)

At the end of this section, we briefly comment on other possibilities.

5.1 General Governing Equations

The first physical law to be satisfied is the conservation of mass, which is expressed
by the continuity equation for the material density ρ:

ρ̇ + ρ divv = 0. (18)
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Next, to obtain the dynamic equations, we closely follow the arguments in
Frémond [56]. For this, we consider the virtual powers of several kinds of forces.

The virtual power of the interior forces is given for any (Dt , v̂, ĉ) by:

Pi (Dt , v̂, ĉ) = −
∫

Dt
T : D̂dx −

∫

Dt
(bĉ + h · ∇ ĉ)dx. (19)

Here, T is the Cauchy stress tensor, b is the volumetric density of energy
exchanged by variation of a unit of the time rate of ϕ; and h is the flux of energy
associated to the spatial variation of a unit of the time rate of ϕ. The first term
in the right-hand side of the previous equation is the classical stress power. The
next two other terms are the powers of generalized interior forces associated to
microscopic motions described, respectively, by the phase fields ϕ and F.

The virtual power of the exterior forces is given for any (Dt , v̂, ĉ) by:

Pe(Dt , v̂, ĉ) =
∫

Dt
ρf · v̂ dx +

∫

Dt
ρaĉ dx +

∫

∂Dt
t · v̂ dS +

∫

∂Dt
thĉ dS. (20)

In this last expression, f is the body force vector per unit of mass, a is
the specific (by unit of mass) density of energy supplied from the exterior
to the evolving structures (for example, if the phase fields are used to describe
material damage, a could be energies supplied by external irradiation or electrical
or chemical resulting from external actions modifying the microscopic bounds), t is
the macroscopic contact force and th is the superficial density of energy supplied
to the material by the flux h. The first two integrals in (20) are virtual powers of
actions at distance; the last two integrals in (20) are virtual powers of contact
forces.

The virtual power of the inertia (acceleration) forces is expressed for any
(Dt , v̂, ĉ) as follows:

Pa(Dt , v̂, ĉ) =
∫

Dt
ρv̇ · v̂dx. (21)

Remark In (21), the acceleration forces associated to the phase field ϕ are assumed
to be null; so there is no virtual power associated to them. This is a usual hypothesis,
which implies in a purely dissipative evolution for the structures described by ϕ.
However, as is pointed out by Frémond [56, p. 5], in certain specific situation it
is necessary to take into account also the acceleration forces of the microscopic
motions. In such cases, we must add the term

∫

Dt
ρ̂ ċ ĉ dx to Pa(Dt , v̂, ĉ), where

ρ̂ is a parameter associated to the “inertia” of the evolving structure (related, for
instance, to the mass of the bonds in certain damage modeling; see Frémond [56,
Section 12.2], Frémond and Nedjar [58], and Nedjar [86]), ċ = ϕ̈ is the acceleration
of ϕ, that is, the material derivative of the microscopic velocity c, and ĉ is a virtual
microscopic velocity.
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The Principle of Virtual Power (PVP) is stated as follows: for any (Dt , v̂, ĉ),

Pa(Dt , v̂, ĉ) = Pi (Dt , v̂, ĉ)+ Pe(Dt , v̂, ĉ). (22)

From Eqs. (19) to (22), with ĉ ≡ 0, using the fact that the virtual velocities
satisfy (17) and standard arguments, we obtain:

ρv̇ = div T + ρ f in Dt ,

Tn = t in ∂Dt .
(23)

Similarly, taking v̂ ≡ 0 in (22), we also have:

0 = div h − b + ρa in Dt ,

h · n = th in ∂Dt .
(24)

To the previous dynamical equations, we must add another one governing the
evolution of F; since this phase field is considered an internal variable, we assume
that it satisfies a constitutive differential relation as follows:

Ḟ = F. (25)

The expression of F will be determined later on by using the entropy condition.
Next, we must impose the first principle of thermodynamics, that is, the

balance of energy in the system:

d

dt

∫

Dt
ρe dx + d

dt
K(Dt , v) = Pe(Dt , v, ϕ̇)+

∫

Dt
ρr dx −

∫

∂Dt
q · n dS,

where

K(Dt , v) =
∫

Dt

1

2
ρv · v dx

is the macroscopic kinetic energy, r is the specific heat source density, e is the
specific internal energy density, and q is the heat flux.

Remark When the acceleration forces associated to the phase field ϕ are not null
(see Remark just after (21)), the kinetic energy must be modified to K(Dt , v, c) =∫

Dt
1
2ρv · v dx + ∫Dt 1

2 ρ̂|c|2 dx.

The previous expression of the balance of energy, combined with the balance of
mechanical work, which is obtained from (22) by taking v̂ = v and ĉ = ϕ̇, gives the
reduced form of the balance of energy in the integral form as:

d

dt

∫

Dt
ρe dx = −Pi (Dt , v, ϕ̇)+

∫

Dt
ρr dx −

∫

∂Dt
q · n dS.
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Due to the conservation of mass (18), we have d
dt

∫

Dt
ρe dx = ∫

Dt
ρė dx, and

thus, from the last integral identity we obtain the following local form:

ρė = −div q + ρr + T : D + bϕ̇ + h · ∇ϕ̇ in Dt . (26)

Finally, we must also impose the second principle of thermodynamics, that
is, the entropy inequality. For this, since we have two phase fields: ϕ, which is
considered a dynamical variable, and F, which is considered an internal variable,
we will combine arguments similar to the ones in Frémond [56] and Fabrizio et al.
[53], but with a more general form of the second principle of thermodynamics:

ρη̇ ≥ div F + ρs in Dt . (27)

Here, η, F, and s are, respectively, the specific entropy density, the entropy flux,
and the specific entropy production term.

The entropy flux is assumed to be of form

F = q
θ

+ k,

where, as before, q is the heat flux, θ > 0 is the absolute temperature (from now on,
we assume that θ is always positive); we observe that q/θ is the classical entropy
flux, while k is an entropy flux correction due to the physical processes associated
to the evolution of the structures described by the phase fields.

Similarly, the specific entropy production term is of form

s = r

θ
+ ω,

where r/θ is the classical specific entropy production due to heat generation, and
ω is an entropy production correction again due to the evolution of the structures
described by the phase fields.

Suitable expressions for k and ω will be obtained in the next subsection; however,
we firstly observe that certain restrictions are natural. We assume that there is no flux
of entropy due to microstructure evolution through the body’s boundary, that is, the
entropy production correction must satisfy

k · n = 0 on ∂Ωt . (28)

Also, although local decreasing of entropy due to microscopic evolution is
acceptable, this has to be compensated by corresponding increase in other parts
of the boundary in such way that the total entropy production due to microscopic
evolution in the body cannot decrease; that is, we must have

∫

Ω

ρω dx ≥ 0. (29)
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We observe that the under such restrictions, the second law of thermodynamics
assumes its standard form for the whole body.

Therefore, with the previous conditions, the entropy inequality (27) becomes:

ρη̇ ≥ −div
(q
θ

+ k
)
+ ρr

θ
+ ρω. (30)

Collecting the previous results, the basic governing equations are the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ div v = 0,
u̇ = v,
ρv̇ = div T + ρf,
0 = div h − b + ρa,
ρė = − div q + ρr + T : D + bϕ̇ + h · ∇ϕ̇,
Ḟ = F.

(31)

The previous expressions together with (30), (28), (29) constitute the general
equations for the models considered in this work. As usual, the constitutive relations
must be found in such way that the entropy inequality (30) is satisfied for all possible
admissible processes.

5.2 Constitutive Relations

We recall that we are using Eulerian (spatial) coordinates; also, for simplicity, in
the following arguments we assume that the body under consideration is under the
hypothesis of small strains; we will briefly comment on what must be changed when
this is not so, that is, when the body is subjected to large strains.

To obtain thermodynamically consistent expressions for the constitutive rela-
tions, we follow arguments similar to the ones introduced by Truesdell and Noll
[109]. We start by assuming that the constitutive properties are expressed in terms
of specific the free-energy density

ψ = e − θη (32)

and that ψ = ψ(Γ ), that is, it is a function of the following variables:

Γ = (ρ, θ, ϕ,F,∇ρ,∇θ,∇ϕ,∇F,E), (33)

By rewriting (30) in terms of the specific free-energy with the help of the equation
for the balance of energy (31) (iv), we obtain:

− ρ(ψ̇ + ηθ̇)+ T : D + bϕ̇ + h · ∇ψ̇ − 1

θ
q · ∇θ + θ div k − ρω ≥ 0. (34)
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As in Frémond [56], T, b, h, and q are split in their reversible (non-dissipative)
and irreversible (dissipative) parts, which are indicated, respectively, by the super-
scripts (r) and (ir):

T = T(r) + T(ir), b = b(r) + b(ir),
h = h(r) + h(ir), q = q(r) + q(ir).

(35)

Here, T(r) and T(ir) are symmetric tensors; the non-dissipative (reversible) parts
may in general depend on the variables Γ (see (33)); the dissipative (irreversible)
parts may in general depend on the variables in Γ and on some of their derivatives
in time or space. The following arguments will lead to specific dependences on such
derivatives.

For simplicity of arguments, again as in Frémond [56, p. 27], we assume that
dissipation (irreversibility) appears only due to ϕ̇ and ∇θ in (34), that is,

h(ir) ≡ 0, (36)

and also that the heat flux is purely dissipative (irreversible); that is,

q(r) ≡ 0, (37)

The expressions in (35) must be found such that the entropy condition is satisfied
for any admissible process. To do that, we recall that for any sufficiently smooth
field g(x, t) depending on the spatial position x and time t , the following holds (see,
for instance, Lemma 1, p. 146, in Fabrizio et al. [53]):

∇̇g = ∇ġ − (∇v)T∇g. (38)

Next, we use the chain rule for ψ and Eq. (38) with ρ, F, and E in place of
g. From (25), (31), and the entropy condition (34) (written in terms of the free-
energy) and the fact that T and ∂Eψ are symmetric tensors, after some manipulation,
collecting similar terms, and rearranging, we obtain:

−ρ(η + ∂θψ)θ̇ + (−ρ∂ϕψ + b(r) + b(ir))ϕ̇ + ρ2∂∇ρψ∇(div v)

+ρ∂∇ρψ
(
(div v) I + (∇v)T

)
∇ρ − ρ∂∇θψ∇̇θ − (ρ∂∇ϕψ − h(r))∇̇ϕ

+(T(r) + T(ir) − ρ ∂Eψ + ρ2∂ρψI + ρ∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ h) : ∇v

−ρ∂FψF − ρ∂∇Fψ · ∇F − 1

θ
q(ir) · ∇θ + θ div k − ρω

+1

2
ρ ∂Eψ : [(∇v)T∇u + (∇u)T∇v] ≥ 0.

(39)
Since we are considering only the case of small strains, the last term in the

previous inequality can be disregarded, and we are left with:
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−ρ(η + ∂θψ)θ̇ + (−ρ∂ϕψ + b(r))ϕ̇ + ρ2∂∇ρψ∇(div v)

−ρ∂∇θψ∇̇θ − (ρ∂∇ϕψ − h(r))∇̇ϕ
+(T(r) − ρ ∂Eψ + ρ2∂ρψI + ρ∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ h(r)) : ∇v

+ρ∂∇ρψ
(
(div v) I + (∇v)T

)
∇ρ + b(ir)ϕ̇ + T(ir) : ∇v

−ρ∂FψF − ρ∂∇Fψ · ∇F − 1

θ
q(ir) · ∇θ + θ div k − ρω ≥ 0.

(40)

Next, we choose the reversible terms of the last inequality such that they do
contribute to the increase in the entropy for any admissible process, that is,

−ρ(η + ∂θψ)θ̇ + (−ρ∂ϕψ + b(r))ϕ̇
+ρ2∂∇ρψ∇(div v)− ρ∂∇θψ∇̇θ − (ρ∂∇ϕψ − h(r))∇̇ϕ
+(T(r) − ρ ∂Eψ + ρ2∂ρψI + ρ∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ h(r)) : ∇v = 0.

(41)

Since in (41) the dependence on θ̇ , ∇v, ∇(div v), and ∇̇θ are linear and, at any
point x and time t , such quantities can assume arbitrary values (due to the possibility
of choosing in suitable ways the forcing terms f and r), their respective coefficients
must be zero. Thus, we must have

∂∇ρψ = 0, ∂∇θψ = 0, (42)

η = −∂θψ. (43)

In addition, by taking the reversible parts of b, h, and T, respectively, as

b(r) = ρ∂ϕψ, (44)

h(r) = ρ∂∇ϕψ. (45)

T(r) = ρ ∂Eψ − ρ2∂ρψI − ρ∇F ⊗ ∂∇Fψ −∇ϕ ⊗ h(r), (46)

identity (41) is automatically satisfied. Then, from (37) and (45), we get

h = h(r) = ρ∂∇ϕψ. (47)

From (46), using that T, ∂Eψ , and ∂ρψI are symmetric tensors, we then obtain

T(r) = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ +∇ϕ ⊗ ∂∇ϕψ), (48)

together with the following restriction:

skw (∇ϕ ⊗ ∂∇ϕψ) ≡ 0 and skw (∇F ⊗ ∂∇Fψ) ≡ 0. (49)
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By using the previous results and that T(ir) is a symmetric tensor, (40) is then
reduced to

b(ir)ϕ̇ + T(ir) : D − ρ∂FψF − ρ∂∇Fψ · ∇F − q(ir)

θ
· ∇θ + θ div k − ρω ≥ 0.

(50)
Let us now look for constitutive relations for k and q guaranteeing thermody-

namic consistency. For this purpose, we use the identities θ div k = div (θk)−k·∇θ
and ρ∂∇Fψ · ∇F = div (ρ∂∇FψF) − div (ρ∂∇Fψ)F in (50); then, after some
manipulation, it can be rewritten as

b(ir)ϕ̇ + T(ir) : D − q(ir)

θ
· ∇θ − (ρ∂Fψ − div (ρ∂∇Fψ))F

−div (ρ∂∇FψF − θk)− k · ∇θ − ρω ≥ 0.
(51)

Allen–Cahn Type Systems
To simplify expression (51), we choose k exactly as in [53]:

k = ρ

θ
∂∇FψF. (52)

We also take the correction term for the entropy production due to microscopic
evolution, ω, to be null (then (29) is automatically satisfied), that is,

ω = 0.

By using these last two expressions, respectively, in the fifth and seventh terms of
(51), after dividing by θ and some manipulation, the inequality reduces to

b(ir)

θ
ϕ̇ + T(ir)

θ
: D − q(ir)

θ2 · ∇θ − Fξ ≥ 0, (53)

where we denoted

ξ = ρ

θ
∂Fψ − div

(ρ

θ
∂∇Fψ

)
. (54)

The next main idea is to automatically satisfy expression (53) by using the
concept of pseudo-potential of dissipation. In the case we are discussing, this is a
functional

ψd = ψd(ϕ̇,D,∇θ, ξ, Γ̃ ), (55)

where Γ̃ = (ρ, θ, ϕ,F,∇ϕ,∇F,E) (we took in consideration (33) and (42)),
satisfying: ψd(ϕ̇,D,∇θ, ξ, Γ̃ ) ≥ 0 for all (ϕ̇,D,∇θ, ξ, Γ̃ ), ϕ(0, 0, 0, 0, Γ̃ ) = 0
and to be continuous and convex with respect to the variables ϕ̇, D, ∇θ , ξ .
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To obtain (53), it is enough to take [b(ir)/θ,T(ir)/θ,−q(ir)/θ2,−F ] as the gradi-
ent of ψd(·) with respect to [ϕ̇,D,∇θ, ξ ] (recall that for simplicity of exposition we
assumed that ψd(·) is differentiable with respect to variables [ϕ̇,D,∇θ, ξ ]). In fact,
the convexity of ψd(·) implies that 0 = ψd(0, 0, 0, 0, Γ̃ ) ≥ ψd(ϕ̇,D,∇θ, ξ, Γ̃ ) +
∂ϕ̇ψd(ϕ̇,D,∇θ, ξ) (0 − ϕ̇)+ ∂Dψd(ϕ̇,D,∇θ, ξ) : (0 − D)+ ∂∇θψd(ϕ̇,D,∇θ, ξ) ·
(0−∇θ)+∂ξψd(ϕ̇,D,∇θ, ξ)(0−ξ). Since ψd(ϕ̇,D,∇θ, ξ, Γ̃ ) ≥ 0, we obtain the
inequality ∂ϕ̇ψd(ϕ̇,D,∇θ, ξ)ϕ̇ + ∂Dψd(ϕ̇,D,∇θ, ξ) : D + ∂∇θψd(ϕ̇,D,∇θ, ξ) ·
∇θ+∂ξψd(ϕ̇,D,∇θ, ξ)ξ ≥ 0. Therefore, in order to have (53) satisfied, it is enough
to take

b(ir)

θ
= ∂ϕ̇ψd, T(ir)

θ
= ∂Dψd,

−q(ir)

θ2 = ∂∇θψd, −F = ∂ξψd.
(56)

Remark When ψd is not differentiable, the results are similar, but with the
partial derivatives replaced by the corresponding subdifferentials and the equalities
replaced by inclusions since subdifferentials are not necessarily single valued.

Thus, using (56) and all the previous results, we obtain

b = ρ∂ϕψ + θ∂ϕ̇ψd,
T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ +∇ϕ ⊗ ∂∇ϕψ)+ θ∂Dψd,

q = −θ2∂∇θψd,
F = −∂ξψd

(57)

By collecting all the previous results and recalling that e = ψ+θη = ψ−θ∂θψ ,
we finally rewrite the governing equations (31) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ div v = 0,
u̇ = v,
ρv̇ = div T + ρ f,
θ∂ϕ̇ψd = div (ρ∂∇ϕψ)− ρ∂ϕψ + ρa,
ρė = div

(
θ2∂∇θψd

)
+ T : D + (ρ∂ϕψ + θ∂ϕ̇ψd)ϕ̇ + ρ∂∇ϕψ · ∇ϕ̇ + ρr,

Ḟ = −∂ξψd.
T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ +∇ϕ ⊗ ∂∇ϕψ)+ θ∂Dψd,

e = ψ − θ∂θψ.
(58)

We observe that the fifth equation in the previous system is usually written in
terms of the temperature θ ; moreover, suitable initial and boundary conditions must
be added to the system to complete the evolution problem.

We stress that the sixth equation Ḟ = −∂ξψd in system (58) can be thought as
a generalized Allen–Cahn type equation. In fact, let us consider, for instance, the
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mathematically simplest case: a quadratic pseudo-potential given by

ψd(ϕ̇,D,∇θ, ξ, Γ̃ ) = λ̃

2
|ϕ̇|2 + b̃

2
|D|2 + c̃

2
|∇θ |2 + F̃

2
|ξ |2,

where the coefficients are nonnegative and may depend on Γ̃ . Then, we obtain F =
−∂ξψd = −F̃ ξ = −F̃ [ρ

θ
∂Fψ − div (

ρ

θ
ψ∇F)], by recalling the definition (54) of

ξ , and we arrive at the rather standard thermo-modified Allen–Cahn equation:

Ḟ = F̃
[

div
(ρ

θ
∂∇Fψ

)
− ρ

θ
∂Fψ

]
. (59)

From (52), condition (28) is satisfied if we assume either of the following
boundary conditions: ρ

θ
∂Fψ − div

(
ρ
θ
∂∇Fψ

) = 0 or ∂∇Fψ · n = 0 on ∂Ω .

Cahn–Hilliard Type Systems
There are other possibilities to the expression of F giving the differential

constitutive relation for the phase field system. For instance, assume that

F = div H, (60)

where H has to be found. Then, we rewrite inequality in (51) in terms of H and ξ
(see (54)) as

b(ir)ϕ̇ + T(ir) : D − q(ir)

θ
· ∇θ − ξ̃ div H

−div (ρ∂∇Fψ div H − θk)− k · ∇θ − ρω ≥ 0,

where we denoted

ξ̃ = ρ∂Fψ − div (ρ∂∇Fψ) . (61)

By taking

k = ρ

θ
∂∇Fψ div H (62)

and observing that ξ̃ div H = div(ξ̃H)− H · ∇ ξ̃ , the last inequality becomes

b(ir)ϕ̇ + T(ir) : D − q(ir)

θ
· ∇θ − div(ξ̃H)+ H · ∇ ξ̃ − k · ∇θ − ρω ≥ 0.

Next, by taking the correction term for the entropy production as

ω = 1

ρ
div(ξH), (63)
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we finally get

b(ir)ϕ̇ + T(ir) : D −
(

q(ir)

θ
+ k

)

· ∇θ + H · ∇ ξ̃ ≥ 0. (64)

Similarly as before, expression (64) can be satisfied with the help of a pseudo-
potential, but now of form

ψd = ψd(ϕ̇,D,∇θ,∇ ξ̃ , Γ̃ ), (65)

where Γ̃ is as before, and ψd is such that ψd(ϕ̇,D,∇θ,∇ ξ̃ , Γ̃ ) ≥ 0 for all
(ϕ̇,D,∇θ,∇ ξ̃ , Γ̃ ), ψd(0, 0, 0, 0, Γ̃ ) = 0, and it is continuous and convex with
respect to the variables ϕ̇, D, ∇θ , ∇ ξ̃ . As before, (64) is satisfied if we take

b(ir) = ∂ϕ̇ψd, T(ir) = ∂Dψd,

−q(ir)

θ
− k = ∂∇θψd, H = ∂∇ ξ̃ ψd .

(66)

Thus, using the previous results, we obtain

b = ρ∂ϕψ + ∂ϕ̇ψd,
T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ +∇ϕ ⊗ ∂∇ϕψ)+ ∂Dψd,

q = −θ∂∇θψd − ρ∂∇Fψ div(∂∇ ξ̃ ψd),
F = div(∂∇ ξ̃ ψd).

(67)

Remark As before, when ϕ is not differentiable with respect to [ϕ̇,D,∇θ,∇ ξ̃ ], we
have similar expressions but with the partial derivatives replaced by subdifferentials
and the equalities replaced by inclusions since subdifferentials are not necessarily
single valued operators.

By collecting all the previous results and recalling that e = ψ+θη = ψ−θ∂θψ ,
we finally rewrite the governing equations (31) as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ div v = 0,
u̇ = v,
ρv̇ = div T + ρ f,
∂ϕ̇ψd = div (ρ∂∇ϕψ+)− ρ∂ϕψ + ρa,
ρė = div (θ∂∇θψd + ρ∂∇Fψ div(∂∇ ξ̃ ψd))+ T : D + (ρ∂ϕψ + ∂ϕ̇ψd)ϕ̇

+ρ∂∇ϕψ · ∇ϕ̇ + ρr,
Ḟ = div(∂∇ ξ̃ ψd)
T = ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ)+ ∂Dψd,

e = ψ − θ∂θψ.
(68)
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We stress that the sixth equation in (68), which is the differential constitutive
equation for the phase field F, is in conservative form and can be thought as a
generalized Cahn–Hilliard type equation. In fact, as before, let us consider, for
instance, the mathematically simplest case of a quadratic pseudo-potential:

ψd(ϕ̇,D,∇θ,∇ξ, Γ̃ ) = λ̃

2
|ϕ̇|2 + b̃

2
|D|2 + c̃

2
|∇θ |2 + M̃

2
|∇ ξ̃ |2,

where the coefficients are nonnegative and may depend on Γ̃ . Then, we obtain H =
∂∇ ξ̃ ψd = M̃∇ ξ̃ = M̃∇ (ρ∂Fψ − div (ρψ∇F)). By recalling again the definition

(61) of ξ̃ , we arrive at the rather standard Cahn–Hilliard equation:

Ḟ = div
[
M̃∇ ( div (ρ∂∇Fψ)− ρ∂Fψ)

]
, (69)

where M̃ functions as the mobility.
We also observe that condition (29) is satisfied when one imposes the boundary

condition ξ̃ = ρ∂Fψ − div (ρ∂∇Fψ) = 0 on ∂Ω; in fact, in this case we have∫

Ω
ρω = ∫

Ω
div(ξ̃H) = ∫

∂Ω
ξ̃H = 0.

Example: Constitutive Relations for Solid Materials Under Damage and
Fatigue

A particular case of the previously described situation was presented in Boldrini
et al. [10]. In that article, the authors develop a phase field model for the evolution
of fatigue and damage in materials, leading eventually to fracture, under non-
isothermal processes. Moreover, two phase field variables, also denoted by ϕ and
F, were used to give, respectively, the level of damage and fatigue in the material;
the variable ϕ was the volumetric fraction of damaged material ϕ (and so 0 ≤ ϕ ≤ 1;
virgin material when ϕ = 0; fractured material when ϕ = 1) and was considered a
dynamical variable; the variable associated to fatigue F was considered an internal
variable. The model equations were similar to the ones in (58); in the particular
case used by the authors for their numerical simulations, a nearly incompressible
approximation was taken (density approximately constant given by ρ0, see the
commentaries in Sect. 5.3), and the volumetric free-energy density had the following
form:

ρ0ψ = (1 − ϕ)2 1

2
ETCE − cV θ ln θ + gc

(
γ

2
|∇ϕ|2 + 1

γ
H(ϕ)

)

+ 1

γ
FHf (ϕ).

(70)
Here, C is the symmetric fourth-order elasticity tensor whose coefficients give

the elastic properties of the virgin material; gc is the critical Griffith-type fracture
energy parameter and for simplicity is assumed to be a positive constant; γ > 0
is related to the width of the fracture layers and again for simplicity is assumed a
positive constant; and H(ϕ) and Hf (ϕ) are the following potentials:
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H(ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2
ϕ2 for 0 ≤ ϕ ≤ 1,

1

2
for ϕ > 1,

0 for ϕ < 0.

and Hf (ϕ) =
⎧
⎨

⎩

−ϕ for 0 ≤ ϕ ≤ 1,
−1 for ϕ > 1,

0 for ϕ < 0,

The pseudo-potential of dissipation in that particular case was

ψd = λ

2
|ϕ̇|2 + b

2
|D|2 + c

2
|∇θ |2 + F̃

2
|ξ |2,

where ξ is the expression defined in (54), and the coefficients cannot depend on ϕ̇,
D, ∇, θ , and ξ . More details and justifications can be found in Boldrini et al. [10],
where several numerical simulations were also presented to show the potentiality of
this kind of phase field models.

5.3 Further Commentaries

Incompressibility Systems (58) and (68) give the governing equations compress-
ible materials; the term −ρ2∂ρψI in the expression of T is the thermodynamic
pressure. When the material is incompressible (isochoric), the null divergence of
velocity is required (div v = 0), and the first admissible virtual velocities space in
(17) must be replaced by Vmacro(Ω) = {v̂ ∈ (C0(Ω))

n : div v̂ = 0}. The arguments
then lead to the addition of extra term to the stress tensor T; this is related to a
hydrostatic-type pressure p, and T now becomes

T = −pI + ρ ∂Eψ − ρ2∂ρψI − ρ sym (∇F ⊗ ∂∇Fψ + ∇ϕ ⊗ ∂∇ϕψ)+ θ∂Dψd.

Nearly Incompressible Processes Besides the small strains hypothesis, another
rather common simplifying assumption is the nearly incompressibility of solid
materials. In such approximation, the material density is assumed to be a known
constant ρ0; the first equation in previously obtained system is disregarded, and the
density ρ is replaced by ρ0 in the other governing equations; in this approximation,
the stress tensor has no additional pressure term.

Quasi-Static Processes Another simplifying hypothesis, frequently used in con-
junction to the nearly incompressibility, assumes that the equilibrium of forces and
damage (fracture) occur at a much faster timescale than the equilibrium of thermal
energy and fatigue. This is a quasi-static situation, and the previous systems are
simplified by taking the approximations v̇ ≡ 0, ϕ̇ ≡ 0.

Irreversible Phase Fields In some physical situations, the physical consequences
described by a phase field φ are irreversible. Examples are solidification of several
polymers (the white of eggs that cannot naturally turn back to nonsolid state after
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being fried) and several kinds of damage (fracturing) in materials (no healing after
having occurred). These situations translate in the mathematical requirement that
for admissible processes we must have ϕ̇ ≥ 0. One possibility to deal with this is
to replace the second admissible velocity space in (17) by the admissible virtual
microvelocity set Vmicro(Ω) = {ĉ ∈ C0(Ω) : ĉ ≥ 0}; this leads to imposition of
Kuhn–Tucker type conditions, similar, for instance, as in Simo and Hughes [106]
(in the plasticity context). Another possibility is to impose the irreversibility by
modifying the pseudo-potential of dissipation by the addition of the extra term
I−(ϕ̇), where I−(z) denotes the potential defined by I−(z) = 0 for z ≥ 0 and
I−(z) = +∞ for z < 0. This forces ϕ̇ ≥ 0 at the expense that now ∂ϕ̇ψd must be
understood as a subdifferential and that, in the equations where this term appears,
the equalities must be replaced by inclusions; see, for instance, Bonfanti et al. [21],
Laurençot et al. [78], Luterotti et al. [79], and Boldrini et al. [13, 14]. In particular
situations, some authors consider the irreversibility of phase fields using alternative
approaches; see, for instance, Miehe et al. [81, 82] in the context of phase field
modeling of damage and fracture of materials.

Anisotropy Material anisotropy can be included by suitably changing the part
depending on the gradient of the phase field in the free-energy density. For instance,
in the example described in the last subsection, the term |∇ϕ|2 in (70) could be
replaced by 〈∇ϕ,A∇ϕ〉, where 〈·, ·〉 denotes the canonical inner product in Rn and
A is a positive definite matrix associated to the anisotropy.

Energy Inequalities The phase field models derived in this section automatically
satisfy an energy identity (and thus corresponding inequalities). This is because they
were derived in a physically consistent way, but one can also see this directly by
formally proceeding as follows: first, we integrate on Ω the fifth equation in (58),
using the information given by conservation of mass (the first equation); second, we
take the scalar product of the third equation in (58) by the velocity v and integrate on
Ω , using again the information given by conservation of mass (the first equation),
integration by parts and the fact that the Cauchy tensor T is symmetric; third, we
multiply the fourth equation in (58) by ϕ̇ and integrate on Ω and use integration by
parts; fourth, we add the resulting identities obtained in the previous three steps to
obtain the following conservation of energy:

d

dt

∫

Ω

ρe dx + d

dt

∫

Ω

ρ|v|2
2

dx =
∫

Ω

ρr dx +
∫

Ω

ρf · v dx +
∫

Ω

ρaϕ̇ dx

we observe that the sixth equation in (58), the equation for the evolution of the phase
field F, was not used to obtain this identity, and F appears only implicitly in it. This
situation is consistent with the choice of this phase field as an internal variable.
However, given the specific free-energy and the pseudo-potential of dissipation
densities, one can try to obtain modified “energy” inequalities explicitly involving
F. For this, one could multiply the sixth equation in (58) by Ḟ, for instance, and
proceed as usual, trying to combine the result with the other equations. Exactly, the
same observations hold for system (68).
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Energetic Variational Approach and Thermodynamical Consistency By using
the notation of (27), when the total entropy entering the region Ω from the
exterior is null (

∫

∂Ω
F · ndS = 0) and the total internal production is positive

(
∫

Ω
ρs dx ≥ 0), the total entropy

∫

Ω
ρηdx must be nondecreasing. In fact,

from (27) and the previous conditions, using the conservation of mass (18), we
must have d

dt

∫

Ω
ρηdx = ∫

Ω
ρη̇dx ≥ ∫

∂Ω
ϕdS + ∫

Ω
ρs ≥ 0. The classical

Allen–Cahn (11) and Cahn–Hilliard (12) phase field equations obtained by the
energetic variational approach (see Sect. 4) automatically satisfy this requirement
when applied to nearly incompressible isothermal processes (constant mass density
and temperature) for materials with the internal energy e depending only on the
temperature. In fact, from the definition of the specific free-energy (32), we have
ρη = ρe/θ − ρψ/θ = ρe/θ − E/θ (recall that E is the volumetric free-energy
density); thus, d

dt

∫

Ω
ρη dx = − 1

θ
d
dt

∫

Ω
E dx ≥ 0. However, as we had already

mentioned, it is not a priori clear that more general phase field models obtained by
the energetic variational approach are thermodynamically consistent in the sense of
satisfying an entropy inequality.

Large Strains The last term in (39) appeared because Eulerian (spatial) coordi-
nates were used; it does not appear in Lagrangian (reference) coordinates; moreover,
in such coordinates the other terms in the expression corresponding to (39) appear
in simpler forms. This means that in Lagrangian coordinates no approximation is
required at that point of the arguments since it is not necessary to pass from (39)
to (40), and thus, for large strains, it is more convenient to follow the previous
arguments and derivations using Lagrangian coordinates; by doing this, one gets
expressions similar to the just obtained ones (but in Lagrangian coordinates).
However, there is a “mathematical price” to be paid in any specific situation. To
explain this, we just observe that, since everything must be written in Lagrangian
coordinates, in particular, the same is so for the free-energy density. The difficulties
appear in the cases with gradient terms in the free-energy, as in the situation we just
described; in fact, by their physical origin, such gradients are naturally gradients
with respect to Eulerian (spatial) coordinates since they correspond to fluxes or
diffusions occurring in the spatial (deformed) configuration. Thus, to apply a theory
written in Lagrangian coordinates, one must firstly rewrite the free-energy density
in such coordinates, which brings nonlinearities involving also the deformation
gradient and results in more complicated mathematical expressions.
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Spherical Codes from Lattices

Sueli I. R. Costa, João E. Strapasson, and Cristiano Torezzan

Abstract Lattices are homogeneous discrete sets in the n-dimensional space that
have been used in different applications in communication areas such as coding
for Gaussian or fading channels and cryptography. This chapter approaches the
connection between quotient of lattices and spherical codes, presenting a survey
on contributions to this topic mainly based on Costa et al. (Flat tori, lattices and
spherical codes. In: 2013 Information Theory and Applications Workshop (ITA),
February 2013, pp 1–8), Siqueira and Costa (Des Codes Cryptogr 49(1–3):307–321,
2008), Torezzan et al. (IEEE Trans Inf Theory 59(10):6655–6663, 2013), Costa et
al. (Lattice applied to codding for reliable and secure communications. Springer,
2017), and Torezzan et al. (Des Codes Cryptogr 74(2):379–394, 2015).

1 Introduction

Lattices are discrete sets in Rn given as integer linear combinations of a set of
independent vectors. Problems on the geometry of lattices and their packings have
already been approached since the seventeenth century in works by J. Kepler, I.
Newton, F. Gauss, J-L. Lagrange and H. Minkowski, and this is still a very active
field of research with applications in different areas [44]. In communication and
coding theory lattices have been used for coding for Gaussian and fading channels
[45] and also in cryptography [28, 29].

Group codes as introduced by Slepian in [31], and developed in [3, 4, 24, 27], are
defined as finite sets on a sphere in the n-dimensional space generated by a group
of orthogonal matrices. These spherical codes are geometrically uniform codes [25]
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capturing the highly desirable properties that come from homogeneity such as same
distance profile and congruent Voronoi region for each codeword.

Lattices in RL with orthogonal sublattices can be used to construct spherical
codes in R2L, generated by a finite commutative group of orthogonal: matrices,
which are contained in a flat torus. By considering the unit sphere in R2L as
foliated by flat tori, which are L-dimensional surfaces of zero curvature we can
also construct quasi-commutative group codes on layers of flat tori. Lattices and flat
tori can also be used to construct homogeneous spherical curves for transmitting a
continuous alphabet source over an AWGN (additive white Gaussian noise) channel.
In both cases the performance is related to the packing density of the involved
lattices. In the continuous case the packing density of curves (fat-strut problem)
relies on the search for projection lattices with good packing density.

We present here a survey on this topic, mainly based in [13, 16, 30, 39],
and summarize most of the contributions of our research group up to now. This
research group has been formed, since 1997, through an interaction between faculty
members, graduated and undergraduated students and post-doctoral researchers
of the Institute of Mathematics, Statistics and Computer Science (IMECC) with
the Faculty of Electrical and Computer Engineering (FEEC) and the Institute of
Computing (IC) of the University of Campinas. An important support for this
group has been given by the FAPESP foundation through four consecutive thematic
projects.

This chapter is organized as follows. A very brief introduction to lattices
and to spherical codes is presented in Sects. 2 and 3. In Sect. 4 flat tori in the
sphere are described and related bounds for distances are derived. The connection
between lattices and commutative group codes in even dimensions as well as
the constructions of codes using this connection through different approaches is
presented in Sects. 5 and 6. Quasi-commutative group codes on layers of flat tori
are described in Sect. 7 and in Sect. 8 the structure of flat tori and lattices comes
together again in the proposal of homogeneous spherical curves for transmitting a
continuous alphabet source over an AWGN channel. An application to the wiretap
channel is also included.

2 Lattices

In this section we briefly introduce the concept of lattice and its main proprieties
to be used hereafter. A general reference for lattices is the classical book [10] and
applications to communication areas can also be found in [45] and [13].

A lattice Λ ⊂ Rn is a discrete set of vectors composed by all integer linear
combinations of a subset of independent vectors β = {b1, b2, . . . , bm}:

Λ = Λβ = {u1b1 + · · · + umbm; u1, . . . , um ∈ Z} . (1)

The set β is said to be a basis and m is the rank of Λ. If m = n, we say that Λ is
full-rank. In this chapter we only consider full rank lattices and vectors described
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Fig. 1 Three lattices in R2 and their packings

in column form. A generator matrix B for a lattice Λ is a matrix whose columns
are a basis for it, i.e. Λ = {Bu;u ∈ Zm}, where Zm denotes the set of integers m-
uples. Note that, for full rank lattices, a generator matrix Bn×m is invertible and any
lattice Λ admits an infinite number of basis, since any matrix H = B U, where U is
unimodular (U has integer elements and det(U) = ±1), is also a generator matrix
for Λ [13, Ch. 2].

Example 1 Three different lattices in R2 are shown in Fig. 1, which also illustrate
their packing densities, to be introduced next. The lattices are represented by
black dots and the bases are B1 = {(1, 0), (0, 1)}, B2 = {(−4/5, 1/5), (0, 1)}
B3 =

{
(1, 0), (1/2,

√
3/2)

}
for the lattices on the left, at the centre and on the

right, respectively.

An example of full rank lattice in Rn is given by the checkerboard lattice Dn,
defined as Dn = {(x1, . . . xn) ∈ Zn; x1 + · · · + xn is even}.

Since two generator matrices B and A for the same full rank lattice satisfy
A = B U, for some unimodular matrix U, we must have | det(A)| = | det(B)|.
This number | det(B)|, which is basis invariant, is also the n-dimensional volume
of the Voronoi region of the lattice at the origin. Such region is defined as the set
of points of Rn which are closer to the origin than to any other lattice point. The
Voronoi region of a lattice including its boundary provides a tilling of Rn through
translations by lattice vectors.

The packing radius of a lattice, i.e. the largest radius of congruent open balls
centred at lattice points that can be packed without overlapping, is given by
d/2, where d is the minimum distance between any two distinct lattice points.
The packing density, Δ̄(Λ), of lattice is the ratio between the volume of an n-
dimensional ball Bn(d/2) of the packing radius d/2 and the volume vol(Λ) =
| det(B)| of the Voronoi region,

Δ̄(Λ) = vol(Bn(d/2))

| det(B)| .
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The centre density is defined as

Δ(Λ) = Δ̄(Λ)

vol(B(1))
= dn

2n| det(B)| , (2)

where Bn(1) is the unit ball in Rn.
Note that, due the homogeneity of a lattice, its density is also the fraction of the

space Rn covered by all packing balls.
For the lattices shown in Fig. 1, the packing densities are 0.7854, 0.6283 and

0.9069, respectively. The lattice Λ generated by B3 presented on the right side
is called the hexagonal lattice, and it has the largest possible packing density in
dimension 2 while the lattice Dn has the best packing density in dimensions 3, 4
and 5.

The dual Λ∗ of a full rank lattice Λ ⊂ Rn is a lattice defined as

Λ∗ = {y ∈ Rn; x · y ∈ Z,∀ x ∈ Λ}

and it plays an important role in applications involving projection of lattices, as it
will be discussed in Sect. 8.

2.1 Quotient of Lattices and q-Ary Codes

A lattice Λ′ is said to be a sublattice of Λ if Λ′ ⊂ Λ. Note that if Λ′ and Λ have
generator matrices B′ and B, Λ′ is sublattice of Λ, if only if B′ = BH, where H is a
matrix of integers.

Since the lattices Λ and Λ′ are commutative groups, if Λ′ ⊂ Λ, the quotient of

lattices represented by
Λ

Λ′ is also a group and, for full rank lattices, the number of

elements in this group is given by

∣
∣
∣
∣
Λ

Λ′

∣
∣
∣
∣ =

vol(Λ′)
vol(Λ)

= | det(H)|.

Any integer square matrix H, of order n, can be decomposed into the so-called
Smith normal form, H = UDV, where U and V are unimodular matrices, D is a
diagonal matrix with diagonal elements dj ∈ N and di |di+1. [9, Sec 2.4]

The Smith normal form can be used to obtain special bases for a pair of nested
full rank lattices and also to identify the quotient group Λ/Λ′ as well as its
generators. This will be used to describe spherical codes in the following sections.
Given a nested pair of full rank latticesΛ′ ⊂ Λ, there are special bases {w1, . . .wn}
of Λ′ and {v1, . . . , vn} of Λ such that wi = kivi, for i = 1, . . . , n ; ki ∈ N.

Let B be a generator matrix of Λ and BH a generator matrix of Λ′. Consider
the Smith decomposition, H = UDV. The matrix A = BHV−1 = (BU)D is also
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a generator matrix of Λ′ and BU is a generator matrix of Λ, since U and V−1 are
unimodular matrices. If we consider {w1, . . . ,wn} and {v1, . . . , vn} as the columns
of matrices A and BU, respectively, we get wj = djvj . This implies that the group
Λ/Λ′ is isomorphic to Zdk ⊕ Zdk+1 ⊕ · · · ⊕ Zdn , where k = min{i; di �= 1}. The
generators of this quotient are the classes v̄j , j = k, . . . , n.

This approach of quotient lattices allows to describe the orthogonal group of
matrices which generate the spherical code in the next sections.

Quotient of special lattices are also associated with q-ary codes what provides a
connection between the spherical code construction presented here and these codes.

For a latticeΛwith integer coordinates which containsΛ′ = qZn as a sublattice,
Λ/Λ′ ⊆ Znq is identified with a linear code over a q-ary alphabet (a q-ary code).
A natural distance to be considered for error correction in these codes is the Lee
distance, which is induced from the metric l1 (or graph distance) in Zn.

For example, the code C1 = {k(4, 3) mod 25; 0 � k � 24} in Z2
25 is perfect

regarding the Lee metric, in the sense that balls of packing radius 3 centred at its
points cover Z2

25. C2 = {k(1, 10) mod 25; 0 � k � 24} has packing radius 2 and
is not perfect (Fig. 4 illustrates these codes). Perfect q-ary codes on flat tori were
approached in [14]. There is a long-standing conjecture stated by Golomb-Weech
in 1970 asserting that for dimension � 3 the only perfect codes in Zn regarding the
graph metric have packing radius one. This will imply the same assertion for q-ary
codes with q � 2R + 1. Quasi-perfect codes in the Lee-metric and perfect codes in
the lp metric were considered in [5, 35].

If we consider the (cyclic) code C1 ordered by k, we have a circulant graph where
each point has four neighbours (at graph distance 7). This geometric view through
quotient of lattices [14, 33] may provide tools to analyse circulant and Cayley graphs
which are used in parallel computing schemes.

The search for good codes regarding the Lee metric (l1 metric) relies on analysing
balls of maximum radius centred at the code points that do not intersect each other
(packing balls) that offer the maximum possible covering of the full space Znq . This
approach is considered in [12, 14, 18] and also in [5, 35] regarding the lp metric.

3 Spherical Codes

A spherical code is a finite set ofM points on a sphere of radius a, Sn−1(a) = {x ∈
Rn; ‖x‖ = a}. Usually we consider only spherical codes on the sphere of radius one,
Sn−1 = Sn−1(1) and all the conclusions will be extended by similarity to a sphere
of radius a. Two dual optimization (packing) problems regarding spherical codes,
which have several applications such as the ones in physics, chemistry, architecture
and signal processing, can be stated as:

(i) Given a number M to find a spherical code with M points and maximum
possible minimum distance between them.
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(ii) Given a minimum distance d to find a spherical code with the largest number
M of points such that each two of them are at a distance at least d.

Codes which are solutions for one of these problems are called optimal spherical
codes. Optimal spherical codes are known only in a few cases. In dimension 2, codes
which are vertices of regular polygons inscribed in the circle S1 provide solutions
for both problems. The solution of (i) in dimension 3 is, up to now, only known for
1 � M � 12 and for M = 24 [19, 26]. For M = 2, 3 and 4 the optimal spherical
codes in R3 are two antipodal points, the vertices of an equilateral triangle inscribed
on an equator and the vertices of an inscribed regular tetrahedron in S2 ⊂ R3,
respectively. For M = 8, the optimal spherical code in R3 is given by the vertices
not of a cube as one should possibly expected, but of a regular anti-prism with eight
vertices and with same length edges (see Fig. 3). Spherical codes which are known
to be optimum in any dimension n are the antipodal code (M = 2), the simplex code
(M = n+ 1) and the bi-orthogonal code (M = 2n) given by permutation of vectors
(±1, 0, 0, . . . , 0) [19].

A group code C is a spherical code given as an orbit of a finite multiplicative
group of orthogonal matrices G = {Gi , i = 1, . . . ,M}, that is C = Gu =
{Giu,Gi ∈ G}. u ∈ Sn−1 is called the initial vector of the group code. A group
code may not provide an optimum code but it has more structure, can be easily
generated and is quite homogeneous. Its minimum distance can be given as:

d := min
x, y ∈ C

x �= y

‖x − y‖ = min
Gi ∈ G

Gi �= In

‖Gi u − u‖,

where ‖.‖ and In denote the standard Euclidean norm and the identity matrix of
order n, respectively.

We remark that the minimum distance of a group code depends on the generator
group and on the chosen initial vector. Isomorphic groups may also present different
minimum distances for the same initial vector, as it will be seen in the following
sections.

4 Flat Tori

The unit sphere S2L−1 ⊂ R2L can be foliated by flat tori (Clifford Tori) as follows.
For each unit vector c = (c1, c2, . . . , cL) ∈ RL, ci > 0,

∑L
i=1 c

2
i = 1, and u =

(u1, u2, . . . , uL) ∈ RL, let ϕc : RL → R2L be defined as

ϕc(u) =
(

c1 cos
(u1

c1

)
, c1 sin

(u1

c1

)
, . . . , cL cos

(uL

cL

)
, cL sin

(uL

cL

))

. (3)
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Fig. 2 Illustration of a torus layer Tc

The image of this periodic mapping ϕc is the torus Tc, a flat L-dimensional
surface in the unit sphere S2L−1. Tc is also the image of an L-dimensional box Pc,

Pc = {u ∈ RL; 0 � ui < 2πci}, 1 � i � L, (4)

in which Pc is injective (see Fig. 2).
For c ∈ SL−1 and ci � 0, if ci = 0 for some 1 � i � L, we may replace in (3)

both coordinates related to ci by 0 and obtain a degenerated flat torus Tc, which is
an embedding of a (L− k)-dimensional box in R2L, where k is the number of zero
coordinates of c.

The Gaussian curvature of a torus Tc is zero and Tc can be cut and flattened into
the box, Pc, just as a cylinder in R3 can be cut and flattened into a 2-dimensional
rectangle. The mapping ϕc is a local isometry, what means that any measure of
length, area and volume up to dimensionL−k on Tc is the same of the corresponding
pre-image in the box Pc.

The family of flat tori Tc and their degenerations, with c = (c1, c2, . . . , cL),
‖c‖ = 1, ci � 0, defined above is a foliation of the unit sphere of S2L−1 ⊂ R2L.

This means that any vector of S2L−1 belongs to one and only one of these flat tori.
The following results [39, 41] allow to relate the distances between two points

in RL and their spherical image on a flat torus in R2L and will be used in the
construction of spherical codes.

Proposition 1 Let Tb and Tc be two flat tori, defined by unit vectors b and c with
non-negative coordinates. The minimum distance d(Tc, Tb) between two points on
these flat tori is

d(Tc, Tb) = ‖c − b‖ =
(
L∑

i=1

(ci − bi)2
)1/2

. (5)
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The distance between two points ϕccc(u) and ϕ(v) on the same torus Tccc, defined
by a vector c = (c1, . . . , cL), is given by

‖ϕccc(uuu), ϕccc(vvv)‖ = 2

√
∑

c2
i sin2

(ui − vi
2ci

)
(6)

and it is bounded according to the next proposition.

Proposition 2 Let c =c =c = (c1, c2, . . . , cL) ∈ S2L−1, ci > 0, cξ = min
1�i�L

ci �= 0,

Δ = ‖u − v‖, for u, v ∈ Pc. Suppose 0 < Δ ≤ πcξ , then

2Δ

π
≤ sin

(
Δ

2cξ

)

2cξ ≤ ‖ϕccc(uuu)− ϕccc(vvv)‖ ≤ sin Δ2
2

≤ Δ

In the next section we show that a commutative group codes must lie on a flat
torus, and the above proposition allows to derive bounds on the minimum distance
of these codes.

5 Commutative Group Codes

Consider a unit vector u in the n-dimensional Euclidean space Rn and a finite
commutative group of orthogonal matrices, G = {G1,G2, . . . ,GM }. The orbit of u

under the action of G is the set of points C = {G u,∀G ∈ G}. Due to orthogonality,
the points in C belong to the surface of the unit sphere Sn−1 ⊂ Rn, and this spherical
code is called a commutative group code.

Commutative group codes belong to the family of Slepian group codes, intro-
duced in [31] or, in a more general sense, geometrically uniform codes [25]. Such
codes have been widely applied in communication theory, for instance, to match
signal sets to groups [27].

There is a well-known representation of a finite commutative group of orthogonal
matrices G, as stated in the next proposition:

Proposition 3 ([21] Theorem 12.1) Every finite commutative group G of orthogo-
nal matrices, n × n, can be carried by the same real orthogonal transformation Q
into a block-diagonal form:

QG
i
Qt = [R(ai 1), . . . ,R(ai q), μ(i)2q+1, . . . , μ(i)n]n×n,

R(ai j ) is the rotation matrix,

R(ai j ) =
[

cos(ai j ) − sin(ai j )
sin(ai j ) cos(ai j )

]

, (7)

where ai j = 2πbi j
M

, bi j ∈ Z, 0 � bi j � M and μ(i)l = ±1, l = 2q +
1, . . . , n, j = 1, . . . , q,∀Gi ∈ G.
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Any commutative group G is isomorphic to the group Zm1 ⊕ · · · ⊕ Zmk , where
mi divides mi+1. If G is a commutative group of orthogonal matrices of order M ,
any G ∈ G can be given a product of powers of generator matrices [9, 21]:

G = {Gi1j1 . . .G
ik
jk
; 0 � i1 � m1 − 1, . . . , 0 � ik � mk − 1 and mi1 . . . mik = M}.

We will then denote G = 〈Gj1 , . . .Gjk 〉.
The above result provides a characterization of the geometric locus, [30], of a

commutative group code.

Proposition 4 (Geometric Locus of Commutative Group Codes) Every commu-
tative group code of order M is congruent to a commutative group code X whose
initial vector is u = (u1, . . . , un) and its points have the form

(
R(ai 1)(u1, u2), . . . ,R(ai q)(u2q−1, u2q), μ2q+1(i)u2q+1, . . . , μn(i)un

)
, (8)

where ai j = 2πbi j
M

. Moreover,

1. If n = 2L, X is contained in the flat torus Tδ , where δ = (δ1, . . . , δL) satisfies
δ2
i = u2

2i−1 + u2
2i .

2. If n = 2L+1 andX is not contained in a proper subspace, X = X1 ∪X2, where
Xi is contained in the hyperplane Π = {(x1, . . . , x2L+1) ∈ R2L+1; x2L+1 =
(−1)iun}. Also, Xi is contained in the torus Tδ of a sphere in Π ≡ R2L with
radius (1 − u2

n)
1/2, where δ2

i = u2
2i−1 + u2

2i .

Remark 1 By applying again Proposition 3 we can see that in the above Proposi-
tion 4 the initial vector in R2L can always be considered as u = (δ1, 0, . . . , δL, 0).

Examples of commutative group codes, using the notation of Proposition 3:

1. The spherical code in R4, G1u, where G1 = 〈G1〉, G1 = [
R
( 4π

25

)
,R
( 3π

25

)]
, and

initial vector u = (√2/2, 0,
√

2/2, 0) is a cyclic group code of orderM = 25.
2. The spherical code in R4, G2u, where G2 = 〈G1,G2〉, G1 = [R(π5

)
, I2
]
, G2 =

[
I2,R

(
π
5

)]
and initial vector u as above. Note that G2 ≈ Z5 ×Z5 is not cyclic.

3. For M = 8 the regular anti-prism in R3. In can be described as G3, where G3 =
〈[R(π4

)
,−1

]〉 and v = (0.859533, 0, 0.511081) (Fig. 3).

The following proposition [11, 15, 30] gives a characterization for commutative
group codes in even dimensions as a torus mapping (3) image of lattices in half of
the dimension.

Proposition 5 Let Gu be a commutative group code of orderM in even dimension
n = 2L, where u = (δ1, 0, . . . , δL, 0). If L = q in (7), i.e. if the elements of G are
free from 2×2 reflection blocks, ū = (δ1, . . . , δL), then the inverse image ϕ−1

ū (Gu),
through the torus mapping (3), is the full rank lattice ΛGu generated by the set



114 S. I. R. Costa et al.

Fig. 3 The optimum
commutative group code with
M = 8 in R3: The anti-prism
generated by G = 〈[R π

4 ,−1]〉
and initial vector
(0.859533, 0, 0.511081)

{

vi; vi =
(

2πbi 1δi

M
, . . . ,

2πbi LδL
M

)}

,

which has the orthogonal lattice Λ′ = ∏Lj=1(2πδj )Z as a sublattice. The group G

is isomorphic to ΛGu/Λ
′.

As a consequence of the last proposition the following bound is derived in [30].

Proposition 6 (Bounds for Commutative Group Codes) Bounds for the number
of points M of a commutative group code free from reflection blocks in R2L, with
minimum distance at least d, are given by

M �
πLΠLj=1 δj Δ(Λ)

(
arcsin d4

)L � πLΔL
(
arcsin d4

)L
LL/2

, (9)

where Δ(Λ) is the centre density (2) of the associated lattice described in the
last proposition and ΔL is the maximal centre density of a lattice in RL and u

= (δ1, 0, δ2, 0, . . . , δL, 0) is the initial vector.

As we can see from the above proposition, the search for good spherical codes in
dimension 2L generated by a commutative group of orthogonal matrices is related
to lattices with good packing density in dimension L.

Consider the examples of the spherical codes C1 = G1u, C2 = G2v in R4,

where G1 is generated by G1 =
[
R
(

4 2π
25

)
,R
(

3 2π
25

)]
(G1 = 〈G1〉) and u =

(√
2

2 , 0,
√

2
2 , 0

)
, G2 =

〈[
R
(

2π
25

)
,R
(

10 2π
25

)]〉
, v = (0.741048, 0, 0.671452, 0). The

associated lattices ΛG1 u and ΛG2 v are illustrated in Fig. 4 on the left and on the
right, respectively. C2 is proved to be the commutative group code of order 25 in R4

with the greatest minimum distance. We can observe that the lattice on the right has
greater density than the one on the left (it “approaches” the hexagonal lattice).
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Fig. 4 Lattices which are pre-images of cyclic group codes through torus mappings from group

codes C1 = G1u(left) and C2 = G2v (right), where G1 =
〈[

R
(

4 2π
25

)
,R
(

3 2π
25

)]〉
and u =

(√
2

2 , 0,
√

2
2 , 0

)
, G2 =

〈[
R
(

2π
25

)
,R
(

10 2π
25

)]〉
and v = (0.741048, 0, 0.671452, 0)

6 Constructive Spherical Codes from Lattices

In this section we present three different approaches for the problem of finding good
commutative group codes in even dimensions.

6.1 Commutative Group Codes Obtained from Quotient
of Lattices with Good Packing Density

Considering the bound established in Proposition 6, one strategy to construct good
commutative group codes is to search for orthogonal sublattices of lattices with good
packing density. This is the approach explored in [2] and [34]. For small distances
d or bigM , good commutative codes can be derived.

Consider α = {v1, v2, . . . , vn} and β = {w1,w2, . . . ,wn} bases of lattices Λα
andΛβ ,Λβ ⊂ Λα , and the associated generator matrices Bα , Bβ . Then Bβ = BαH,
where H is an integer matrix. Suppose that β is composed by orthogonal vectors (Λβ
is a suborthogonal lattice). The next proposition [13, Ch. 5] describes the spherical
code in R2L attached to the nested pair of lattices Λβ ⊂ Λα ⊂ RL, Λβ orthogonal,
using the Smith normal form (Sect. 2.1).

Proposition 7 In the notation above, let pi = ‖wi‖, p=
(∑n

j=1

∥
∥wj

∥
∥2
)

1
2 , ci

= pi
p
, c = (c1, c2, . . . , cL) and ϕc be the torus mapping regarding this frame β.

Then to the normalized nested pair (1/p)Λβ ⊂ (1/p)Λα of lattices it is associated
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Table 1 Examples of commutative group codes in Rn, n = 4, 6, 8, 16, constructed through the
quotient of A2,D3,D4, E8 by “orthogonal” sublattices

n M dmin Upper bound Group

4 141,180 0.012706 0.0127061 Z141180

4 423,540 0.00733585 0.00733588 Z423540

6 32 1.1547 1.26069 Z2 ⊕Z2
4

6 2048 0.318581 0.320294 Z8 ⊕Z2
16

8 648 0.707107 0.736258 Z3 ⊕Z3
6

8 10,368 0.366025 0.369712 Z6 ⊕Z3
12

16 65,536 0.707107 0.780361 Z2 ⊕Z6
4 ⊕Z8

16 16,777,216 0.382683 0.392069 Z4 ⊕Z6
8 ⊕Z16

Their minimum distances approach the upper bound (9)

a spherical code in R2L with initial vector (c1, 0, c2, 0, . . . , cL, 0) and generator
group of matrices determined by the Smith normal decomposition of H, as described
in Sect. 2.1.

Starting from this result it is studied in [2] the existence of orthogonal sublattices
of A2, D3, D4, E8, which are the densest lattices in dimensions 2, 3, 4 and 8,
respectively. It is then obtained spherical codes in the double of these dimensions
which approaches the bound of Proposition 6, particularly when M increases
(Table 1).

This kind of spherical code construction was also recently approached in [34] by
using dual lattices in the search for orthogonal sublattices.

Consider a full rank lattice Λ ⊂ Rn, with generator matrix B such that B∗ =
(BT )−1 (generator matrix of the dual lattice) has integer entries. Then we can assert
that A = BB∗ is a generator matrix of an orthogonal sublattice Λ′ of Λ.

A good commutative group code can be asymptotically reached through the
following proposition [34].

Proposition 8 Let Λ be a lattice with generator matrix B such that B∗ = (BT )−1

has integer entries andΛ�w,P a lattice with generator matrix B�w,P = wB∗+P, where
P has integer entries and w is integer. Then the lattice Λw,P with generator matrix
adj(B�w,P) has Λ′

w,P = det(Λ�w,P)Z
L as an orthogonal sublattice. Moreover

1

w
Λ�w,P −→ Λ∗(w → ∞)

and by continuity of the matrix inversion process, 1
det( 1

w
B�w,P)

Λw,P −→ Λ(w → ∞).
In [34], it is discussed the conditions to be imposed on the matrix P to obtain

faster convergence. For a lattice such that the matrix of its dual does not have integer
entries we can consider B�w,P = wB∗ + P, where P = �wB∗ − wB∗.
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Table 2 Performance of
spherical commutative group
codes in dimension 48 using
Proposition 8

P24,1 P24,2

w log10M Distance log10M Distance

7 27.6113 0.177774 31.1194 0.128473

8 28.9791 0.156625 32.5112 0.112635

9 30.1901 0.139890 33.7389 0.100256
10 31.2763 0.126336 34.8371 0.0903175

11 32.2609 0.115147 35.8305 0.0821655

12 33.1610 0.105760 36.7374 0.0753593

In particular, if B is upper triangular and P = Cn = (ci j ) where ci j = 1 if
i = j +1 and ci j = 0 otherwise (cyclic perturbation), the spherical code associated

with Λw,P
Λ′
w,P

is a cyclic group although the convergence is not a fast one.

Example 2 The Leech lattice was considered in [34] as a sublattice of the lattice
E8 ×E8 ×E8 to which it was associated with two perturbation matrices (associated

with different representations of E8), (P24,1 =
[

P8,1 0 0
0 P8,1 0
0 0 P8,1

]

), where

P8,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 −1 0 0 −1 0
0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 1 −1
0 0 1 1 1 0 1 0
−1 −1 0 0 0 −1 0 1
1 1 0 −1 0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the null perturbation, P24,2.
Table 2 illustrates the minimum distance versus the number of points of the

associated spherical codes in R48 using the perturbation matrices P24,1 and P24,2. It
is interesting to note that the code with M = 5.48151 · 1033 points and minimum
distance equal to 0.100256 is comparable with the torus layer code in the same
dimension described in Sect. 7, which is a not commutative group code.

6.2 Optimum Commutative Group Codes

The minimum distance of a commutative group code C, generated by a finite
group of orthogonal matrices G = {G1,G2, . . . ,GM }, depends on the choice
of the initial vector u. So for each G we search for an “optimal” initial vector
(initial vector problem—IVP). It should be also remarked that isomorphic groups
considered with their optimum initial vectors may provide non-congruent spherical
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codes, as it is the case presented in Fig. 4, where both groups G1 and G2 are

isomorphic to cyclic group Z25. For G1 =
〈[

R1(4 2π
25 ),R2(3 2π

25 )
]〉

the best initial

vector is (
√

2/2, 0,
√

2/2, 0) and minimum distance is 0.857441, whereas consid-

ering G2 =
〈[

R1(1 2π
25 ),R2(10 2π

25 )
]〉

(see Proposition 3) the best initial vector is

(0.741048, 0, 0.671452, 0) and the minimum distance is 0.871154.
Therefore, the search for an optimum (with largest minimum distance) n-

dimensional commutative group code withM points requires the consideration of all
orderM groups of orthogonal matrices and the solution of the initial vector problem
for each of these groups. Thus, an efficient search for an optimum commutative
group code requires to classify the non-congruent commutative groups with M
points. This is a crucial aspect to be considered.

In [3] it is proposed a first approach to find optimal cyclic group codes by dis-
carding isometric cases. Even discarding many isometries, the authors estimated that

the number of cases to be tested is of order

(
M/2

n/2

)

, which can be computationally

infeasible for codes with a large number of points. In [40] it is proposed a more
general characterization for non-congruent commutative group codes through a
special triangular basis (Hermite basis) combined with the elimination of isometries
by permutation and also considering the ones related to the Ádám’s condition.
The main result is summarized in the next proposition, which allows a significant

reduction of number cases now estimated to be of order
ML

2Lϕ(M)
where ϕ is the

Euler Phi function.

Proposition 9 Every commutative group code C ⊂ S2L−1 generated by a finite
group G of orthogonal matrices free of 2 × 2 reflection blocks (Proposition 5) is
isometric to a code obtained as image of a lattice ΛGu, u = (δ1, 0, . . . , δL, 0),
where ΛGu is up to scaling factors 2πδi

M
(i = 1, . . . , L), a latticeΛ with a generator

matrix T satisfying the following conditions:

1. T is lower triangular such that:

a. 0 < T(i, i) � T(i + 1, i + 1), ∀ 1 � i � L− 1;
b. 0 � T(i, [1 : i − 1]) < T(i, i), ∀ 2 � i � L;
c. T(i, i) � gcd (T(i, [j : i])) , ∀ 1 � j < i � L;

where T(r, [p : q]) are the elements in the columns p to q of the rth row of T.
2. det(T) = ML−1;
3. There is a matrix H, with integer elements satisfying T H = M IL, where IL is

the L× L identity matrix;

4. The elements of the diagonal of T satisfy T(i, i) = M

ai
where ai is a divisor ofM

(what implies from 2. that (ai)i · (ai+1 . . . al) � M , ∀i = 1, . . . , L).
5. G ≈ Λ/(MZL) and the classification of this group and its generators are

obtained from Smith normal form of H (Sect. 2.1).
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Table 3 Some optimum commutative group codes of orderM in R4

M dmin δ1 δ2 Group Gen. (bij ) Bound

10 1.224 0.707 0.707 Z10 (1 3) 1.474

20 0.959 0.678 0.734 Z20 (3 4) 1.054

30 0.831 0.707 0.707 Z30 (3,5) 0.864

40 0.714 0.607 0.794 Z40 (4 5) 0.750

50 0.628 0.707 0.706 Z50 (7 2) 0.672

100 0.468 0.757 0.653 Z5 ⊕ Z20 (0 20), (5 10) 0.476

200 0.330 0.750 0.660 Z200 (93 1) 0.337

300 0.273 0.656 0.754 Z5 ⊕ Z60 (60 120), (10 15) 0.275

400 0.237 0.686 0.727 Z400 (189 1) 0.238

500 0.211 0.674 0.738 Z500 (13 20) 0.213

600 0.193 0.676 0.736 Z600 (191 198) 0.194

700 0.180 0.718 0.695 Z700 (14 25) 0.180

800 0.168 0.670 0.742 Z800 (16 25) 0.168

900 0.158 0.704 0.709 Z900 (197 2) 0.159

1000 0.149 0.716 0.697 Z1000 (33 4) 0.150

Based on this proposition, it is derived in [40] a two-step algorithm which
searches for an optimum commutative group code C of order M in an even
dimension. The first step consists of storing all matrices T according to Proposition 9
and using the Ádám’s relation to discard isometric groups. For each one of these
matrices T it is established a linear programming problem to determine the initial
vector u which maximizes the minimum distance of the group code ϕū(ΛGu) (3) in
R2L. The algorithm is summarized as a pseudo code in [40]. In Table 3 [40] some
optimum commutative group codes in dimension 4 are displayed.

6.3 A Heuristic Method for Large Number of Points
and Higher Dimensions

Although the approach presented in [40], discussed in the previous section, provides
a significant reduction in the number of non-congruent cases, it still demands a

brute-force search, since ML

2Lϕ(M)
grows fastly with M . For instance, for (2L,M) =

(16, 1024), which corresponds to a commutative group code in S15 ⊂ R16, with
M = 1024 points, the approach proposed in [40] to find the optimal code demands
a full search to a set with about 263 elements. In addition, it also means solving 263

linear programming problems to find the best initial vector for each case.
To overcome this difficulty, a heuristic approach for designing cyclic group codes

in dimension n = 2L is presented in [36]. The idea is to restrict the search to a subset
of candidates that are likely to contain codes with good minimum distances, what is
done by checking only a special set of cyclic group codes.
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According to Proposition 5, a vector vvv = (v1, . . . , vL) ∈ ZL defines a generator
(orthogonal matrix) G of a cyclic group G, if and only if, gcd(v1, . . . , vL,M) = 1.
We can trivially guarantee this condition by choosing v1 = 1 and, of course,
reducing the set of candidates (eventually loosing optimality). This is the first
restriction proposed in [36].

The main reduction in the set of candidates comes from rewriting the bound given
in Proposition 6 in terms of d,

d � 4 sin

(
πLΔL

MLL/2

)1/L

. (10)

It means that the minimum distance of a cyclic group code C(M, 2L) is bounded

by ď := 4 sin
(
πLΛL
MLL/2

)1/L
. By considering the underling lattice of a cyclic group

code, the authors propose to restrict the search for generator vectors v ∈ ZL, such
that

||v‖ � 2M
√
k

π
arcsin(ď/4) (11)

This approach reduces significantly the number of cases to be checked and
allows to find good codes with large number of points in high dimensions. Table 4
presents some results from [36] for 6-dimensional cyclic group codes of order M .
The columns “Exact” and “Heuristic” display the number of cases tested in the full
search approach of [40] and by the heuristic method, respectively. It is possible to

Table 4 Minimal distance of 6-dimensional cyclic group codes for several values of M found by
the heuristic approach compared with the respective upper bound and optimum commutative group
code of the same order

M Exact Heuristic Bound Optimum Heuristic

10 31 25 1.820 1.414 1.345

20 125 25 1.465 1.240 1.190

30 422 25 1.287 1.133 1.056

40 500 25 1.173 1.044 1.007

50 781 25 1.091 0.976 0.946

100 3125 25 0.870 0.804 0.786

200 12,500 500 0.692 0.673 0.633

300 42,188 500 0.605 0.585 0.568

400 50,000 500 0.550 0.540 0.525

500 78,125 500 0.511 0.504 0.479

600 168,750 500 0.481 0.472 0.458

700 178,646 500 0.457 0.445 0.439

800 200,000 500 0.437 0.427 0.415

900 379,688 500 0.420 0.413 0.403

1000 312,500 500 0.406 0.397 0.394
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Fig. 5 Efficiency comparison of cyclic group codes found using the heuristic method and some
commutative group codes found in the literature

see that the codes found by the heuristic approach have minimum distance close to
the correspondent best codes, even testing a few number of candidates.

The codes presented in Fig. 5 were obtained by the heuristic approach consider-
ing at most 512 candidates, what is a very small portion of all the combinatorial
possibilities. For instance, for the smallest case presented in Fig. 5, (M, 2L) =
(26, 16), an exact method would need to check 235 candidates and for (M, 2L) =
(219, 48) the number of candidates is of order 2414. Both cases are computationally
prohibitive because for each candidate we must solve a linear programming problem
for the IVP.

7 Spherical Codes on Torus Layers

The connection between flat tori and commutative group codes, explored in the
previous sections, can also be extended to construct a more general family of
spherical codes, using not only a single flat torus, but a pile of them, designed
carefully in order to achieve a large number M of points, given a target minimum
distance. This idea was originally presented in [38] and then expanded in [39], where
a formal construction is presented.

The construction of a 2L-dimensional spherical code in layers of flat tori (T LSC
codes) starts from a set SC(L, d)+ = {c ∈ SC(L, d), ci ≥ 0, 1 ≤ i ≤ L} of L-
dimensional unit vectors, with non-negative coordinates, such that the distance
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between any two vectors in this set is at least a given number d. Thus, each point
c in SC(L, d)+ defines a flat torus and the distance between two of these flat tori
in R2L at least d (Proposition 1). Each box Pc is then filled with a suitable set of
lattice points (or any other set of points), say YTc ⊂ Pc, in such a way that the
distance, after embedding in the 2L dimension by the mapping defined in Eq. (3), is
not smaller than a target value d, i.e.

‖ϕc(yyy)− ϕc(xxx)‖ ≥ d ∀xxx,yyy ∈ YTc . (12)

As an example, we reproduce here the construction of a 4-dimensional spherical
code in layers of tori. Let us start from a set of 2-dimensional unit vectors defined by

SC(2, d)+ =
{
(cos(α±j ), sin(α±j )), 0 ≤ α±j ≤ π

2

}
,

where α±j = π
4 ± (2j − 1) arcsin

(
d
2

)
and 1 ≤ j ≤

⌊
π−2 arcsin (d/2)

8 arcsin (d/2)

⌋
. These points

belong to the positive quadrant of R2 and the minimum distance between them is at
least d, as illustrated in Fig. 6.

Note that each point in SC(2, d)+ defines a rectangle with sides of length
2π cos(α±j ) and 2π sin(α±j ), and hence a flat torus on the surface of the 4-
dimensional unit sphere, according to the Eq. (3). Moreover, since the distance

Fig. 6 SC(2, d)+ symmetric in relation to y = x
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Fig. 7 Construction of a 4th-dimensional spherical code in layers of flat tori

between any two points in SC(2, d)+ is at least d, the distance between any two
points on different associated tori will be also d.

After setting the layers, the construction of the spherical code is completed by
choosing a suitable set of points inside each one of the rectangles (flattened tori)
defined by SC(2, d)+, providing that the minimum distance given by the Eq. (12)
is satisfied. At this stage, a good option is to fit a dense lattice inside the box and
so to come up with a commutative group code in each layer. The whole process is
illustrated in Fig. 7.

In [39], starting from a orthogonal sublattice of the Leech lattice it is presented
a T LSC in dimension 48 with more than 2113 = 1.03846 · 1034 points placed in 24
layers of flat tori with minimum distance 0.1. This code is generated by using only
12 matrices.

Codes constructed on layers of flat tori have been proved to be very effective
when compared to other state-of-the-art techniques as the well-known wrapped
spherical codes [22], laminated spherical codes [23] and apple-peeling codes [20],
especially for not asymptotically small distances. In addition, such codes present
advantages in the coding/decoding processes inherited from their homogeneous
structure and the underlying lattice codebook in the half of the code dimension.

The ideas behind the construction of torus layer codes have also been used in
other applications, such as coding for continuous alphabet sources, presented in the
next section.
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8 Continuous Constructions

The homogeneous structure of flat tori and lattices can be used in a proposal for
transmitting a continuous alphabet source over an AWGN channel, as discussed in
[41]. Consider the problem illustrated in Fig. 8. Suppose that a value x from a source
with probability density function (pdf) having support [0, 1) has to be transmitted
over a Gaussian (AWGN) channel of dimension N . The encoder will use a function
sss : [0, 1) → R

N and then transmit the encoded value sss(x) over the channel, such
that the receiver will observe a noisy vector yyy = sss(x)+zzz. The objective is to recover
an estimate xxx of the sent value, attempting to minimize the mean square error (mse)
E[(X−X̂)2]. If theN -dimensional Gaussian channel has power P and variance σ 2,
then the average of the transmitted value should be no greater than P , i.e. sss should
satisfy the constraint E[‖sss(x)‖2] ≤ P . This essentially means that the image of
[0, 1) by the mapping sss needs to be contained within a sphere of radius P . On the
other hand, it can be shown that for low noise, the mse of the scheme represented in
Fig. 8 is given by

E[(X − X̂)2] ≈ σ 2
∫ 1

0
f (x) ‖ṡss(x)‖−2 dx := Elow[(X − X̂)2], (13)

The quantity S(x) := ‖ṡss(x)‖ is called the stretch of the curve. Summarizing, we
want to stretch the function as much as possible, but since sss(x) is contained in a
sphere, it has to be twisted or folded. If the distance between the folds of the curve
become too small, large errors will occur frequently when the noise is high, and the
mse will approach Eq. (13) only if the noise is sufficiently low. This is called the
threshold effect.

Constant curvature curves on a flat torus [17] in dimension N = 2L are easily
described as being homogeneous and allow to control the distance between its folds
(“fat strut” problem Fig. 9).

It was shown in [42] that curves on the flat torus determined by the vector ccc =
(1/

√
L)(1, . . . , 1) can be used to obtain the proper scaling of the mse with the

signal-to-noise ratio (SNR). Given a vector aaa ∈ Z
L, the curves considered in [42]

are of the type

sss(x) = ϕccc
(

2π√
L
aaax(mod 1)

)

, (14)

Fig. 8 Continuous encoder

x αs(x) g(y) x̂

z = (z1, . . . , z2N)

s y

zi = N(0, σ)
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Fig. 9 Packing of a curve in a torus of R6, represented in a 3D box

Fig. 10 Encoding process—a flat torus curve in R4, represented in R3, a = (1, 5/4)
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where aaax(mod 1) = aaax−�aaax (Fig. 10), the length of this curve is 2π‖a‖/√L and
the small ball radius of sss(x) is approximately the minimum distance of the lattice
which is the projection of ZL onto the subspace aaa⊥. The stretch is constant and equal
to 2π/

√
L ‖aaa‖2. Thus, projections of the cubic lattice play an important role in the

design of such curves: the denser the projection lattice in the hyperplane aaa⊥ ⊂ RL,
the denser is the curve on the sphere S2L−1 (Fig. 9). The result in [42] states that
if aaa = (1, a, . . . , aL−1) then the correct scaling between mse and SNR is achieved
when a → ∞, but then the associated sequence of projection lattices converges to
Z
L−1.

The problem of the search for lattices in RL−1 which are obtained from
projection of ZL with good packing density is then associated with finding spherical
curves in R2L which are good for transmitting a continuous alphabet source. This
problem was approached in [6, 32] (lifting construction) and also projections from
higher dimensions are considered in [7].

Discrete sets of points selected on a continuous closed curve on a flat torus, as
described in this section, have been used in [37] to approach good commutative
group codes which are cyclic.

By using layers of tori it is possible to generalize the construction in [42] as
it is presented in [8]. In this context, a good collection of tori (i.e. such that each
of them is separated at least a certain distance from each other) can be obtained
by designing a suitable spherical code for a given minimum distance. On the other
hand, finding good curves in each torus is equivalent to finding good projections
of the orthogonal lattice c1Z ⊕ · · · ⊕ cLZ. In this case, it is possible to generalize
the lifting construction and exhibit sequences of projections of c1Z ⊕ · · · ⊕ cLZ

converging to any (L− 1)-dimensional lattice. The construction of curves on torus
layers meaningfully increase the total length of the curves, while keeping a good
distance between their laps, hence enhancing the performance of the codes proposed
in [42] which compare favorably with other previous constructions [43].

8.1 Continuous Curves and Secrecy

Schemes based on continuous curves on layers of flat tori, as described in the
previous section, can also be used to design codes for wiretap channels with
continuous input alphabets as presented in [1].

In this case, a sender wishes to reliably transmit a real valued signal x ∈ R to
a receiver, while preventing an eavesdropper from correctly estimating x. Both the
main channel (from sender to legitimate receiver) and the wiretap channel (sender to
the eavesdropper) are AWGN channels subject to an input average power constraint
P . The wiretap channel is considered to be degraded with respect to the main
channel, i.e. σ 2

w > σ 2
m, where σ 2

m and σ 2
w are the noise variances associated with

the main and wiretap channels.
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Fig. 11 The AWGN wiretap
channel model

To transmit the source value x, the sender employs a spherical code as described
in Sect. 8, i.e. he employs an encoder that maps x onto a codeword s(x) ∈ R2L.
The codeword s(x) is then transmitted to the destination over the main channel
and corrupted by the additive noise vector nb, where nb = (nb,1, . . . , nb,2L),
with nb,i ∼ N(0, σ 2

m). Similarly, the eavesdropper observes the transmission of
s(x) over the wiretap channel, which is corrupted by the noise vector ne, where
ne = (ne,1, . . . , ne,2N), ne,i ∼ N(0, σ 2

w). The legitimate receiver obtains the (main)
channel output sequence y = s(x)+nb, while the eavesdropper obtains the (wiretap)
channel output sequence z = s(x) + ne (Fig. 11). Then both receivers estimate the
source message using some decoder that tries to minimize the mean square error.

As it was shown in [1] a careful parametrization of these codes, which takes into
account their geometrical properties, enables legitimate users to communicate under
a small distortion, while forcing the eavesdropper to operate at large distortions.
Moreover, the proposed construction is tunable, as it provides a simple mechanism
to trade-off reliability and secrecy.
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Nonvariational Semilinear Elliptic
Systems

Djairo G. de Figueiredo

Abstract In this paper we survey questions regarding the existence of solutions of
the Dirichlet problem for systems of semilinear elliptic equations of the type

−Δu = f (x, u, v,∇u,∇v), −Δv = g(x, u, v,∇u,∇v) in Ω, (1)

whereΩ is a bounded subset of RN,N ≥ 3. The existence of solutions is discussed
here using Topological Methods. In order to use this method, the main point is the
proof of a priori bounds for the eventual solutions of the systems above. These
bounds will be obtained by three different methods, namely Hardy-type inequalities,
Moving Planes techniques, and Blow-up. This last method leads to interesting
questions about Liouville problems for systems.

1 Introduction

In this paper we survey some of our results on the solvability of the following system
of semilinear elliptic equations

−Δu = f (x, u, v), −Δv = g(x, u, v) in Ω, (2)

and the more general one, where the nonlinearities depend also on the gradients,
namely

−Δu = f (x, u, v,∇u,∇v), −Δv = g(x, u, v,∇u,∇v) in Ω. (3)

On the above equations u and v are real-valued functions u, v : Ω → R, whereΩ is
some domain in RN,N ≥ 3, and Ω its closure. The regularity of the solutions will
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be detailed later. Although we concentrate in the case of the Laplacian differential

operatorΔ =∑N
j=1

∂2

∂x2
j

, many results stated here can be extended to general second

order elliptic operators. The nonlinearity of the problems appears only in the real-
valued functions f, g : Ω ×R×R×RN ×RN → R.

Viewing the existence of solutions for the Dirichlet problem for the above
systems, we shall discuss mainly the following question pertaining to the above
systems:

• A quick review of the special systems that can be treated by Variational Methods
in Sect. 2

• Our treatment of Nonvariational Systems via Topological Methods is done in
Sect. 3. In order to use this method, we need a priori bounds for the eventual
solutions of the systems above, in order to use Leray-Schauder degree theory.
These bounds will be obtained by three different methods, namely

– Hardy-type inequalities, Sect. 3.1,
– Moving Planes techniques, Sect. 3.2,
– Using Blow-up, Sect. 3.3.

Remark There has been recently an ever-increasing interest in systems of nonlinear
elliptic equations. Many aspects of this recent research are not touched here. Our
objective in this paper is to survey some of our results on Nonvariational Semilinear
Elliptic Systems.

2 On Variational Methods

In this section we study two special classes of systems, the Gradient Systems and
the Hamiltonian Systems, which can be treated by Variational Methods. We say
that the system (3) above is of the Gradient type if there exists a function F :
Ω ×R×R → R of class C1 such that

∂F

∂u
= f, ∂F

∂v
= g,

and it is said to be of the Hamiltonian type if there exists a function H : Ω ×R×
R → R of class C1 such that

∂H

∂v
= f, ∂H

∂u
= g.

Associated with Gradient Systems we have the functional

Φ(u, v) = 1

2

∫

Ω

|∇u|2 + 1

2

∫

Ω

|∇v|2 −
∫

Ω

F(x, u, v), (4)
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which is defined in the Cartesian product H 1
0 (Ω)×H 1

0 (Ω) provided

|F(x, u, v)| ≤ |u|p + |v|q, ∀x ∈ Ω, u, v ∈ R

with p, q ≤ 2N
N−2 , if the dimension N ≥ 3. Associated with Hamiltonian systems

we will first consider the functional

Φ(u, v) =
∫

Ω

∇u.∇v −
∫

Ω

H(x, u, v), (5)

which is defined in the Cartesian product H 1
0 (Ω)×H 1

0 (Ω) provided again that

|H(x, u, v)| ≤ |u|p + |v|q,∀x ∈ Ω, u, v ∈ R

with p, q ≤ 2N
N−2 , if the dimension N ≥ 3. However, it has been observed that

the restriction on the powers of u and v as above is too restrictive in the case of
Hamiltonian systems. We can allow different values of p, q. As a matter of fact the
same values of p, q that have appeared in our work with P. Clement and E. Mitidieri
of equation (3) studied there by Topological Methods, cf. [24] (see also [62, 76].)
The interesting fact is that p, q can take any values 1 < p, q < ∞ with the
restriction that they are below the so-called critical hyperbola

1

p + 1
+ 1

q + 1
= 1 − 2

N

In this more general situation, one has to use fractional Sobolev spaces instead
of H 1

0 (Ω). A reference to this is our paper with P. Felmer [36].

3 Nonvariational Elliptic Systems

In this section we study systems of the general form (2) that do not fall in
the categories of the systems studied in the previous section. Since they are not
variational systems, we will treat them by Topological Methods. This method also
is applied to system (3). The main tool used to prove the existence of a solution
is a result due to Krasnoselskii [64] stated below. The difficulty when one uses
this result is obtaining a priori bounds for the solutions. There are several methods
to tackle this question. We will comment three of them, including the use of
Hardy-type inequalities and Moving Planes. However, the most successful one in
our framework seems to be the Blow-up Method. This method leads naturally to
Liouville type theorems, that is, theorems asserting that certain systems have no
non-trivial solution in the whole space RN or in a half-space RN+ . In Sect. 4, we
present some results on Liouville theorems for systems.
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Theorem 3.1 (Krasnoselskii) Let C be a cone in a Banach spaceX and T : C →
C a compact mapping such that T (0) = 0. Assume that there are real numbers
0 < r < R and t0 > 0 such that

(i) x �= tT x for 0 ≤ t ≤ 1 and x ∈ C , ||x|| = r , and
(ii) There exists a compact mapping H : BR × [0,∞) → C (where BR = {x ∈

C : ||x|| < R}) such that

(a) H(x, 0) = T x for ||x|| = R,
(b) H(x, t) �= x for ||x|| = R and t ≥ 0
(c) H(x, t) = x has no solution x ∈ BR for t ≥ t0

Then

ic(T , Br) = 1, ic(T , BR) = 0, ic(T , U) = −1,

where U = {x ∈ C : r < ||x|| < R}, and ic denotes the Leray-Schauder index. As
a consequence T has a fixed point in U .

When applying this result the main difficulty arises in the verification of
condition (b), which is nothing more than an a priori bound on the solutions of the
system. It is well known that the existence of a priori bounds depends on the growth
of the functions f and g as u and v go to infinity. We have seen when treating
the variational systems that the nonlinearities were restricted to have polynomial
growth. This was a requirement, together with other conditions, in order to get
the associated functional defined, as well as a Palais-Smale condition. Recall that
all problems considered in these lectures refer to equations in dimension N ≥ 3.
In dimension N = 2 the type of nonlinearities allowed is much larger; indeed
nonlinearities of exponential type are allowed, and in this context, one uses the
Trudinger-Moser estimates for functions in Sobolev spaces defined in subsets of R2.
See for instance [45, 47].

3.1 Estimates Using Hardy-Type Inequalities

Brézis-Turner [21] using an inequality due to Hardy proved a priori bounds for
positive solutions of superlinear elliptic equations (the scalar case), namely

−Δu = f (x, u) in Ω, u = 0 on ∂Ω. (6)

In [25], with Clement and Mitidieri, we used the same technique to obtain a priori
bounds for solutions of systems
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−Δu = f (x, u, v,∇u,∇v),
−Δv = g(x, u, v,∇u,∇v) in Ω,
u = v = 0 on ∂Ω

(7)

under the following set of conditions:

(f1) f : Ω ×R×R×RN ×RN −→ R is continuous,
(f2) lim inft→∞ f (x,s,t,ξ,η)

t
> λ1 uniformly in (x, s, t, ξ, η) ∈ Ω × R × R ×

RN ×RN ,
(f3) There exist constants p ≥ 1, C > 0 and σ ≥ 0 such that

|f (x, s, t, ξ, η)| ≤ C(|t |p + |s|pσ + 1)

for all (x, s, t, ξ, η) ∈ Ω ×R×R×RN ×RN ,
(g1) g : Ω ×R×R×RN ×RN −→ R is continuous
(g2) lim inft→∞ g(x,s,t,ξ,η)

t
> λ1 uniformly in (x, s, t, ξ, η) ∈ Ω × R × R ×

RN ×RN ,
(g3) There exist constants q ≥ 1, C′ > 0 and σ ′ ≥ 0 such that

|g(x, s, t, ξ, η)| ≤ C(|s|q + |t |qσ ′ + 1),

for all (x, s, t, ξ, η) ∈ Ω ×R×R×RN ×RN .

In our work [25] two other hyperbolas appeared instead of the critical hyperbola,
due to the limitations coming from the method. This is precisely like in the scalar
case in [21] where the exponent N+1

N−1 appeared instead of N+2
N−2 . Observe that the

intersection of the two hyperbolas below is the Brézis-Turner exponent N+1
N−1 :

1
p+1 + N−1

N+1
1
q+1 = N−1

N+1 ,

N−1
N+1

1
p+1 + 1

q+1 = N−1
N+1 .

(8)

Theorem 3.2 LetΩ be a smooth bounded domain in RN , withN ≥ 4. Assume that
the conditions f1,f2,f3,g2,g3 hold with p, q being the coordinates of a point below
both of the above hyperbolas. Suppose that σ, σ ′ are given by

σ = L

max(L,K)
, σ ′ = K

max(L,K)
,

where

K = p

p + 1
− 2

N
> 0, L = q

q + 1
− 2

N
> 0.

Then the positive solutions of the system (3.2) are bounded in L∞.
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Remark 3.1 If N = 3, then K,L > 0 imply p, q > 2 which is not compatible with
(8). So the case N = 3 needs a special treatment.

Remark 3.2 A priori estimates for solutions of systems of type (3) using Hardy-
Sobolev inequalities in the spirit of [21] has also been considered by Cosner [29];
however, he requires that the growth of nonlinearities has to be (separately) below
the Brezis-Turner exponent N+1

N−1 .

In the proof of the above theorem an essential tool is the proposition below, which
is proved using the inequality

∥
∥
∥
∥
u

ϕτ1

∥
∥
∥
∥
Lr

≤ C‖Du‖Lq , ∀ u ∈ H 1
0 ,

where 1
r
= 1
q
− 1−τ

N
.

This last inequality is an interpolation between a Sobolev inequality and the usual
Hardy inequality [21, 63].

∥
∥
∥
∥
u

ϕ1

∥
∥
∥
∥
Lr

≤ C‖Du‖Lq , ∀ u ∈ W 1,q
0 ,

where q > 1 and ϕ1 is the eigenfunction associated with the first eigenvalue of
(−Δ,H 1

0 (Ω)).

Proposition 3.1 Let r0 ∈ (1,∞], r1 ∈ [1,∞) and u ∈ Lr0(Ω)⋂W 1,r1
0 . Then for

all τ ∈ [0, 1] we have

u

ϕτ1
∈ Lr(Ω), where

1

r
= 1 − τ

r0
+ τ

r1
.

Moreover
∥
∥
∥
∥
u

ϕτ1

∥
∥
∥
∥
Lr

≤ C‖u‖1−τ
Lr0

‖u‖τ
W 1,r1

,

where the constant C depends only on τ , r0, and r1.

Sketch of Proof via Hardy Inequality
The proof given in [25] is rather very technical. So below we just mention the main
steps.

Conditions (f2) and (g2) (superlinearity) imply that the projections of the
positive solutions over the first eigenspace are bounded:

∫

Ω

uϕ1dx < const,

∫

Ω

vϕ1dx < const.
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It then follows that
∫

Ω

f (.)ϕ1dx < const,

∫

Ω

g(.)ϕ1dx < const.

This is then used to estimate
∫

Ω

|Δu| p+1
p =

∫

Ω

|f | p+1
p =

∫

Ω

|f |αϕα |f |1−α+ 1
p ϕ−α,

where 0 < α < 1 is chosen later. In the above relation use Hölder and Hardy, and choose α
in order to obtain at the end:

‖ u ‖
p+1
p

W
2, p+1

p

≤ C
(

‖ u ‖
p+1
p
γ1

W
2, p+1

p

+ ‖ v ‖
q+1
q
γ2

W
2, q+1

q

+1

)

,

‖ v ‖
q+1
q

W
2, q+1

q

≤ C
(

‖ u ‖
p+1
p
γ3

W
2, p+1

p

+ ‖ v ‖
q+1
q
γ4

W
2, q+1

q

+1

)

,

with 0 < γi < 1, i = 1, . . . , 4. This gives

‖ u ‖
W

2, p+1
p

≤ C, ‖ v ‖
W

2, q+1
q

≤ C,

and complete the proof by using a bootstrap procedure.

3.2 Estimates Using Moving Planes

The procedure by this method parallels our work with Lions and Nussbaum [39]
done for the scalar case.

For systems, one has to use Troy’s extension [90] of Gidas–Ni–Nirenberg [58]
for cooperative systems. See also [33].

The main point is to estimate the gradients of eventual solutions of the system
near the boundary, and then use Pohozaev-type (cf. [68, 75]) identities to get bounds
in some Lp norms. Finally bootstrap.

By this method we consider the problem

−Δu = f (v), −Δv = g(u) in Ω, u = v = 0 on ∂Ω,

under the following hypotheses:

(f1) f, g : R+ → R, C1 with f ′, g′ ≥ 0

(f2) ∃α, β ∈ (0,∞) 1 < p, q <∞, s.t. :

lim
s→∞

f (s)

sp
= α, lim

s→∞
g(s)

sq
= β.

The following result is in our paper with Clement and Mitidieri [24].
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Theorem 3.3 Under above hypotheses, Ω convex, and

1

p + 1
+ 1

q + 1
> 1 − 2

N

the positive solutions of the system below are L∞ bounded:

−Δu = f (v), −Δv = g(u)in Ω, u = v = 0 on ∂Ω.

3.3 The Blow-Up Method

The other technique used to obtain a priori bounds for solutions of systems is
the Blow-up Method, first used by Gidas-Spruck in [59] to treat scalar equations.
Since there will be many symmetry assumptions regarding the behavior of the
nonlinearities with respect to the unknowns u, v, it will be more convenient,
henceforth in this section, to replace them by u1, u2. So, let us consider the system
in the form:

⎧
⎨

⎩

−Δu1 = f (x, u1, u2,�u1,�u2) in Ω

−Δu2 = g(x, u1, u2,�u1,�u2) in Ω

u1 = u2 = 0 on ∂Ω,
(9)

where we look for solutions u1, u2 that are real-valued functions defined on a
smooth bounded domain Ω in RN , N ≥ 3, and f and g are real-valued functions
defined inΩ ×R×R×RN ×RN . As far as the regularity of the solutions, we aim
for them to be in C0(Ω) ∩ C2(Ω).

We then write the system as follows, assuming that the leading parts of f and g
involve just pure powers of u1 and u2, and we have

{−Δu1 = a(x)uα11
1 + b(x)uα12

2 + h1(x, u1, u2,�u1,�u2)

−Δu2 = c(x)uα21
1 + d(x)uα22

2 + h2(x, u1, u2,�u1,�u2).
(10)

All along this subsection we assume the following conditions:

(A1) The coefficients a, b, c, d : Ω → [0,∞) are continuous functions.
(A2) The exponents αij ≥ 0 i, j = 1, 2.
(A3) There exist positive constants c1 and c2 such that

|h1(x, s, t, ξ, η)| ≤ c1(1 + |s|β11 + |t |β12 + |ξ |γ11 + |η|γ12)

|h2(x, s, t, ξ, η)| ≤ c2(1 + |s|β21 + |t |β22 + |ξ |γ21 + |η|γ22)
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where

0 ≤ βij < αij i, j = 1, 2.

Later on, we state hypotheses on the exponents γ in order to obtain some
estimates.

The Blow-up Method consists in assuming, by contradiction, that there is no
a priori bound for the solutions of the system (10). So assume that there exists
a sequence (u1,n, u2,n) of positive solutions of (10) such that at least one of the
sequences u1,n or u2,n tends to infinity in the L∞-norm. Without loss of generality,
we may suppose that

max
x∈Ω ||u1,n||β2 ≥ max

x∈Ω ||u2,n||β1,

where β1, β2 are positive constants to be chosen later. Let xn ∈ Ω be a point where
u1,n assumes its maximum: u1,n(xn) = maxx∈Ω u1,n(x). Then the sequence λn =
u1,n(xn)

− 1
β1 is such that λn → 0. The functions

vi,n(x) = λβin ui,n(λnx + xn),

satisfy v1,n(0) = 1, 0 ≤ vi,n ≤ 1 in Ω . One also verifies that the functions v1,n
and v2,n satisfy

{
−Δv1,n = a(·)λβ1+2−β1α11

n v
α11
1,n + b(·)λβ1+2−β2α12

n v
α12
2,n + h̃1(·)

−Δv2,n = c(·)λβ2+2−β1α21
n v

α21
1,n + d(·)λβ2+2−β2α22

n v
α22
2,n + h̃2(·),

(11)

in the domain Ωn = 1

λn
(Ω − xn), where the dot stands for λnx + xn.

The idea of the method is then to pass to the limit as n → ∞ in (11) and obtain
a system either in RN or in RN+ , which can be proved that it has only the trivial
solution. This would contradict the fact that the limit of v1,n has value 1 at the origin.
By compactness the sequence (xn) or a subsequence of it converges to a point x0.
We observe that the limiting system is defined in RN or in RN+ , accordingly to this
limit point (x0) being a point inΩ or in ∂Ω . In the next proposition we make precise
these statements.

Proposition 3.2 The sequences (v1,n) and (v2,n) converge in W 2,p
loc , with 2 ≤ p <

∞, to functions v1, v2 ∈ C2(G)
⋂
C0(G), satisfying the limiting system of (11) in

G = RN or in G = RN+ , provided all the powers of λn in (11) are non-negative.
This limiting system is obtained by removing the terms in (11) where the powers
of λn are strictly positive, the terms where the coefficients vanishes at x0, and the
lower order terms.
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In [72] and [32] special classes of systems were studied. In [41] with Sirakov
we considered more general systems and did a complete discussion of the systems
(1) weakly coupled and (2) strongly coupled. The terminology, which we do below,
is explained by the type of system obtained after the passage to the limit. We next
analyze these two classes.

Definition 3.1 System (10) is weakly coupled if there are positive numbers β1, β2
such that

β1 + 2 − β1α11 = 0 , β1 + 2 − β2α12 > 0 (12)

β2 + 2 − β1α21 > 0 , β2 + 2 − β2α22 = 0

Definition 3.2 System (10) is strongly coupled if there are positive numbers β1, β2
such that

β1 + 2 − β1α11 > 0 , β1 + 2 − β2α12 = 0 (13)

β2 + 2 − β1α21 = 0 , β2 + 2 − β2α22 > 0

Remark 3.3 It follows that if the system (10) is weakly coupled then necessarily we
should have

β1 = 2

α11 − 1
and β2 = 2

α22 − 1
, (14)

which requires that α11 > 1, α22 > 1 and

α12 <
α22 − 1

α11 − 1
α11 and α21 <

α11 − 1

α22 − 1
α22. (15)

Remark 3.4 If the system (10) is strongly coupled, then

β1 = 2(α12 + 1)

α12α21 − 1
and β2 = 2(α21 + 1)

α12α21 − 1
, (16)

which requires that α12α21 > 1 and

α11 <
α21 + 1

α12 + 1
α12 and α22 <

α12 + 1

α21 + 1
α21. (17)

Remark 3.5 In order to take care of the gradients, we assume further the following
conditions:

(A4) If (10) is weakly coupled, γij , i, j = 1, 2 satisfy

γ11 <
2α11

α11 + 1
, γ22 <

2α22

α22 + 1

γ12 <
2α11(α22 − 1)

(α11 − 1)(α22 + 1)
, γ21 <

2α22(α11 − 1)

(α22 − 1)(α11 + 1)
;
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(A5) If (10) is strongly coupled, γij , i, j = 1, 2 satisfy

γ11 <
2α12(α21 + 1)

2α12 + α12α21 + 1
, γ22 <

2α21(α12 + 1)

2α21 + α12α21 + 1

γ12 <
2α12(α21 + 1)

2α21 + α12α21 + 1
, γ21 <

2α21(α12 + 1)

2α12 + α12α21 + 1
.

We observe that the requirements that α11, α22 > 1 and
α12α21 > 1 are known as super-linearity conditions.

Weakly Coupled System After the Blow-up, the limiting system becomes, using
a scaling of the solutions v1, v2:

−Δw1 = wα11
1 (18)

−Δw2 = wα22
2 , in RN,

and

−Δw1 = wα11
1 , (19)

−Δw2 = wα22
2 in RN+

w1 = w2 = 0 on xN = 0.

The existence or not of positive solutions for such systems is the object of the so-
called Liouville type theorems. They will be discussed in the next section. For the
time being we anticipate that

1. the equations in system (18) have only the trivial solution if
0 < α11, α22 <

N+2
N−2

2. the equations in system (19) have only the trivial solution if
1 < α11, α22 <

N+1
N−3 , if the dimension N > 3, cfr [34].

So the following result holds. Conditions (A1), (A2), (A3), (A4) are assumed.

Theorem 3.4 Let (10) be a weakly coupled system with continuous coefficients
a, b, c, d, exponents α′s ≥ 0, and such that a(x), d(x) ≥ c0 > 0 for x ∈ Ω .
Assume also that 0 < α11, α22 < (N + 2)/(N − 2). Then there is a constant C > 0
such that

||u1||L∞, ||u2||L∞ ≤ C

for all positive solutions u1, u2 ∈ C2(Ω) ∩ C0(Ω) of system (10).

Strongly Coupled System As in the case of a weakly coupled system, the limiting
systems are

−Δω1 = ωα12
2 , −Δω2 = ωα21

1 in RN (20)
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and

−Δω1 = ωα12
2 , −Δω2 = ωα21

1 in (RN)+ (21)

with

ω1(x
′, 0) = ω2(x

′, 0) = 0.

So, a contradiction comes if the exponents are such that (20) and (21) have only the
trivial solutionω1 = ω2 ≡ 0. In summary, the following result holds with conditions
(A1), (A2), (A3), (A5) assumed.

Theorem 3.5 Let (10) be a strongly coupled system with continuous coefficients
a, b, c, d, such that b(x), c(x) ≥ c0 > 0 for x ∈ Ω . Assume also that the α
exponents are non-negative. Assume further that the following conditions hold:

(L1) The exponents α12 and α21 are such that the only non-negative solution of

−Δω1 = ωα12
2 , −Δω2 = ωα21

1 in RN

is w1 = ω2 ≡ 0.
(L2) The only non-negative solution of

−Δω1 = ωα12
2 , −Δω2 = ωα21

1 in RN+

with ω1(x
′, 0) = ω2(x

′, 0) = 0 is ω1 = ω2 ≡ 0. Then there is a constant
C > 0 such that

||u1||L∞, ||u2||L∞ ≤ C

for all non-negative solutions (u1, u2) of system (10).

Remark 3.6 Which conditions should be required on the exponents α12 and α21 in
such a way that (L1) and (L2) holds? Again these are Liouville type theorems for
systems, which will be described in the next section.

4 Liouville Theorems

Next we make comments on types of Liouville theorems that are necessary for
completing the proofs of the a priori estimates done by Blow-up in the previous
subsection. An extensive discussion of Liouville theorems can be seen in our
paper [34]. See also [69, 81]

We start with the scalar case:

−Δu = up (22)
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For RN,N ≥ 3, we have the following result:

Theorem 4.1 Let u be a non-negative C2 function defined in the whole of RN , such
that (22) holds in RN . If 0 < p < (N + 2)/(N − 2), then u ≡ 0.

This result was proved by Gidas-Spruck [60] in the case 1 < p < (N +2)/(N −
2). A simpler proof using the method of moving parallel planes was given by Chen-
Li [23], and it is valid in the whole range of p. An elementary proof valid for p ∈
[1, N

N − 2
) was given by Souto [87].

Theorem 4.2 Let u ∈ C2(RN+) ∩ C0(RN+) be a non-negative function such that

{−Δu = up in RN+
u(x′, 0) = 0

(23)

If 1 < p ≤ (N + 2)/(N − 2), then u ≡ 0.

Remark 4.1 This theorem was proved in [59]. It is remarkable that in the case of
the half-space the exponent (N + 2)/(N − 2) is not the right one for theorems of
Liouville type. Indeed, Dancer [30] has proved the following result.

Theorem 4.3 Let u ∈ C2(RN+) ∩ C0(RN+) be a non-negative bounded solution
of (23). If 1 < p < (N + 1)/(N − 3) for N ≥ 4 and 1 < p < ∞ for N = 3, then
u ≡ 0.

Remark 4.2 If p = (N +2)/(N −2), N ≥ 3, then (22) has a two-parameter family
of bounded positive solutions:

Uε,x0(x) =
[
ε
√
N(N − 2)

ε2 + |x − x0|2
]N−2

2

,

which are called instantons.

Liouville for Systems Defined in the Whole of RN

We start considering systems of the form

−Δu = vp, −Δv = uq. (24)

In analogy with the scalar case, the dividing line here between existence and
nonexistence of positive solutions (u, v) defined in the whole of RN should be
the critical hyperbola [24, 62]. Such hyperbola associated with problems of the
form (24) is defined by

1

p + 1
+ 1

q + 1
= 1 − 2

N
, p, q > 0. (25)
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Continuing the analogy with the scalar case, one may conjecture that (24) has no
bounded positive solutions defined in the whole of RN if p, q are below the critical
hyperbola, namely

1

p + 1
+ 1

q + 1
> 1 − 2

N
, p, q > 0. (26)

To our knowledge, this conjecture has not been settled in full so far. Why such
a conjecture? In answering it, let us remind some facts, already contained in the
previous sections. The critical hyperbola appeared in the study of existence of
positive solutions for superlinear elliptic systems of the form

−Δu = g(v), −Δv = f (u) (27)

subject to Dirichlet boundary conditions in a bounded domain Ω of RN . If g(v) ∼
vp and f (u) ∼ uq as u, v → ∞, then system (24) is said to be sub-critical if
p, q satisfy (26). For such systems [in analogy with sub-critical scalar equations,
−Δu = f (u), f (u) ∼ up and 1 < p < (N + 2)/(N − 2)] one can establish
in many cases a priori bounds of positive solutions, prove a Palais-Smale condition
and put through an existence theory by a topological or a variational method. This
sort of work initiated in [24] and [76] has been continued. We have surveyed some
of this work in the previous sections. Recall that the problem in the critical scalar
case (that is, −Δu = |u|2∗−2u in Ω, u = 0 on ∂Ω) has no solution u �= 0
if Ω is a star-shaped bounded domain in RN,N ≥ 3. In the case of systems, the
critical hyperbola appears in the statement: ifΩ is a bounded star-shaped domain in
RN,N ≥ 3, the Dirichlet problem for the system below has no non-trivial solution:

−Δu = |v|p−1v, −Δv = |u|q−1u

if, p, q satisfy (25). This follows from an identity of Pohozaev-type, see Miti-
dieri [68]; also Pucci-Serrin [75] for general forms of Pohozaev-type identities.

Next we describe several Liouville-type theorem for systems.

Theorem 4.4 Let p, q > 0 satisfying (26). Then system (24) has no non-trivial
radial positive solutions of class C2(RN).

Remark 4.3 This result settles the conjecture in the class of radial functions. It was
proved in [68] for p, q > 1, and for p, q in the full range by Serrin-Zou [78]. The
proof explores the fact that eventual positive radial solutions of (24) have a definite
decay at ∞; this follows from an interesting observation (cf. Lemma 6.1 in [68]),
namely:

If u ∈ C2(RN) is a positive radial superharmonic function, then

ru′(r)+ (N − 2)u(r) ≥ 0, for all r > 0.
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Theorem 4.4 is sharp as far as the critical hyperbola is concerned. Indeed, there
is the following existence result of Serrin-Zou [80].

Theorem 4.5 Suppose that p, q > 0 and that

1

p + 1
+ 1

q + 1
≤ 1 − 2

N
. (28)

Then there exist infinitely many values ξ = (ξ1, ξ2) ∈ R+ ×R+ such that system
(24) admits a positive radial solution (u, v) with central values u(0) = ξ1, v(0) =
ξ2. Moreover u, v → 0 as |x| → ∞. So the solution is in fact a ground state for
(24).

The next result extends, as compared with the previous results, the region under
the critical hyperbola where the Liouville theorem holds.

Theorem 4.6

(A) If p > 0 and q > 0 are such that p, q ≤ (N + 2)/(N − 2), but not both equal
to (N + 2)/(N − 2), then the only non-negative solution of (24) is u = v = 0.

(B) If p = q = (N + 2)/(N − 2), then u and v are radially symmetric with respect
to some point of RN .

This theorem is due to de Figueiredo-Felmer [40]. The proof uses the method of
Moving Planes. A good basic reference of this method is [13]. The idea in the proof
of the above theorem is to use Kelvin transform in the solutions u, v of (24), which
a priori has no known (or prescribed) behavior at infinite. By means of Kelvin’s u
and v are transformed in new unknowns w and z satisfying

−Δw = 1
|x|N+2−p(N−2) z

p(x),

−Δz = 1
|x|N+2−q(N−2) w

q(x),
(29)

which now have a definite decay at ∞, provided (p, q) satisfy the conditions of
Theorem 4.6. It is precisely at this point that we cannot take p > N+2

N−2 , because
then one would lose the right type of monotonicity of the coefficients necessary to
put the Moving Plane method to work. So having this correct monotonicity of the
coefficients the method of moving planes can start. This result has been extended by
Felmer [54] to systems with more than two equations.

In Theorems 4.7 and 4.9 below we assume pq > 1 and introduce the notation

α = 2(p + 1)

pq − 1
, β = 2(q + 1)

pq − 1
.

The next result is due to Busca-Manasevich [18] and extends further, as
compared with Theorem 4.6, the region of values of p, q where the Liouville
theorem for system (24) holds.
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Theorem 4.7 Suppose that p, q > 1 and

α, β ∈
(
N − 2

2
, N − 2

)

. (30)

Then system (24) has no non-trivial solution of class C2(RN).

If some behavior of u and v at ∞ is known, the Liouville theorem can be
established for all (p, q) below the critical hyperbola, as in the next result.

Theorem 4.8 Let p > 0 and q > 0 satisfying (26), then there are no positive
solutions of (24) satisfying

u(x) = o(|x|− N
q+1 ), v(x) = o(|x|− N

p+1 ), as |x| → ∞. (31)

The above result is due to Serrin-Zou [78],

Remark 4.4 Observe that Theorem 4.8 extends Theorem 4.4, since radial positive
solutions have a decay at infinity.

Liouville Theorems for Systems Defined in Half-Spaces
Now we look at the system below and state some results on the nonexistence of
non-trivial solutions and also of supersolutions.

⎧
⎪⎪⎨

⎪⎪⎩

−Δu = vp in RN+
−Δv = uq in RN+
u, v ≥ 0 in RN+
u, v = 0 on ∂RN+

(32)

Theorem 4.9 Let p, q > 1 satisfying

max(α, β) ≥ N − 3. (33)

Then the system (32) has only the trivial solution.

Remark 4.5 This result is due to Birindelli-Mitidieri [15].

A Liouville Theorem for a Full System
Now we consider the following system:

−Δu1 = uα11
1 + uα12

2 ,

−Δu2 = uα21
1 + uα22

2 in RN.
(34)

In order to state the next result we introduce the following notation:

α = 2(α12 + 1)

α12α21 − 1
, β = 2(α21 + 1)

α12α21 − 1
.
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Theorem 4.10 System (34) has only the trivial solution if the following conditions
hold:

α11, α22 <
N + 2

N − 2
, min{α, β} > N − 2

2
. (35)

This result is due to de Figueiredo-Sirakov [41], and it relies heavily on results,
which are also proved in [41]: the first one is an extension of a result by Dancer [30],
proved for the scalar case, and the second one is an extension of a result by Busca-
Manasevich in [18]. More details in [34]. See also [71].

Final Remarks on Liouville Theorem for Systems

1. The conjecture on the validity of a Liouville theorem in the whole of RN for
all p and q below the critical hyperbola seems to be unsettled at this moment.
In dimension N = 3 the conjecture was proved by Serrin and Zou in [78]. In
dimensionN = 4 the conjecture has been proved recently by Souplet in [86]. See
also Theorem 4.8 above, where the conjecture is proved provided one supposes
that u or v has at most algebraic growth.

Theorem 4.11 Let u, v ∈ C2(RN+) ∩ C0(RN+) be non-negative solutions of (6.28)

with u = v = 0 on ∂RN+ . If 1 ≤ p, q ≤ N + 2

N − 2
then u = v ≡ 0.

2. Liouville-type theorems for systems of p-Laplacians have been studied recently
by Mitidieri-Pohozaev [70].

3. Liouville theorems for equations with a weight have been considered in
Berestycki, Capuzzo Dolcetta-Nirenberg [12].
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Perfect Simulation and Convex Mixture
of Context Trees

Nancy L. Garcia and Sandro Gallo

Abstract Chains with unbounded memory have attracted lot of attention since the
30s and the pioneering work of Onicescu and Mihoc (Bull Sci Math 59(2):174–
192, 1935) and Doeblin and Fortet (Bull Soc Math France 65:132–148, 1937). The
construction of perfect simulation algorithm for these chains was first presented in
the beginning of the century, and the particular case of discontinuous cases was first
studied in the 2010s. The present paper presents a particular approach to perfect
simulation of possibly discontinuous chains with unbounded memory. The main
idea is to use a representation of the kernel through a convex mixture of probabilistic
context trees.

1 Introduction

Stochastic chains with unbounded memory extend Markov chains in a natural way.
The idea is that the conditional probabilities with respect to the past may depend
on an unbounded part of the past, contrarily to Markov chains, which have bound
memory. Usually, we are given a probability kernel (the equivalent to transition
matrix of Markov chains) and we ask basic questions, such as (i) existence, (ii)
uniqueness, and (iii) statistical properties of the invariant measures specified by the
kernel.

The above questions were originally addressed for these chains, in the stochastic
processes literature, by Onicescu and Mihoc [35] and Doeblin and Fortet [14].
Since then, the literature expanded through several areas, and stochastic chains
with unbounded memory appear with a variety of names. “Chains with complete
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connections” [2, 13, 18] originally coined by Onicescu and Mihoc [35], “chains
of infinite order” [8, 26], “chains with infinite memory” [15, 33], and “g-measures”
[4, 27, 29, 30, 40] in the ergodic theory literature. This reference list is not exhaustive
but can be a starting point for the interested reader. They also are, in an indirect
manner, present in information theory as “ergodic sources” [20, 36, 39], the theory
of stochastic recursive sequences [3], and naturally in statistical physics, since one-
dimensional Gibbs states can be seen as stochastic process, if we see Z as time
instead of “space” (see [17]).

In their seminal paper, Doeblin and Fortet [14] wrote the following:

It seems to us that a hypothesis at the same time natural and fruitful for the study of chains
with complete connections would be to suppose that the conditional probabilities that the
chain enters a state a given an infinite path a depend very few on the remote states of
a, and that in the limit, the transition probabilities do not depend at all on the infinitely
ancient experiences. There exist several nonequivalent ways to translate this hypothesis
mathematically (. . . ).

It turns out that, to answer questions (i)–(iii), the papers in the literature
commonly assume that the conditional probabilities are continuous with respect to
the past (continuity here is to be understood in the infinite product topology as we
will explain later). This is a particular way to translate the hypothesis of [14]. It
also has the advantage that it allows to apply classical methods such as the Ruelle–
Perron–Frobenius transfer operator, or the variational principle, both present in
dynamical systems as well as statistical physics. However, when we do not assume
continuity, even the very basic question of existence becomes harder to solve. In
fact, these methods do not work anymore, at least in the form we find them in the
literature, and extending them to a larger class of dynamics is an interesting problem
in itself. This problem is comparable to that of non-Gibbsianity in statistical physics
[25], and the Dobrushin restoration program.

A nice constructive approach to solve these questions is to present explicitly
the invariant measure (or a finite sample of it). Algorithms that sample from the
invariant measure are called perfect simulation algorithms. Not only does the
construction of a perfect simulation algorithm naturally prove existence but also,
as almost direct consequences, proves uniqueness and other results. Therefore,
designing such an algorithm is, besides interesting in its own matter, a way to answer
basic questions concerning chains with unbounded memory.

In this work, we will be interested in one particular class of algorithms called
coupling from the past (CFTP) algorithms. The history of coupling from the past
(CFTP) algorithms for Markov chains started with the seminal paper of Propp
and Wilson [37]. Their idea was, instead of running the Markov into the future
starting from one fixed initial condition, as it is done for MCMC algorithms, starting
the chain from the past, from any possible initial state, and running all coupled
trajectories up to time 0. If, for some starting point in the past, all the trajectories
coalesce at time 0, then the sample at 0 is drawn from the stationary measure.

For chains with unbounded memory, the first CFTP algorithm was constructed by
Comets et al. [9], under the assumption of uniform continuity. They implicitly took
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advantage of the fact that continuous transition kernels (conditional probabilities)
may be represented as convex mixture of Markov kernels (of increasing, yet finite,
order). This representation is originally due to Berbee [2] and Kalikow [28]. For
their algorithm to work, the continuity rate of the conditional probabilities has to
vanish rapidly to 0, uniformly on the pasts. Gallo [21] constructed a CFTP for chains
for which the continuity rate could vanish very slowly along some pasts (or even
not vanish at all, yielding a discontinuity), but for the other pasts, this continuity
rate had to suddenly fall to 0 after a certain portion of the past. Such chains are
called (unbounded) variable length memory chains, and their dependence on the
past is encoded by a probabilistic context tree. Chains with variable memory were
originally introduced in information theory by Rissanen [38] for data compression,
and then popularized in the statistical literature by Bühlmann and Wyner [5].
However, [21] seems to be the first paper to consider the model from a strictly
probabilistic point of view.

Gallo and Garcia [22] constructed a CFTP algorithm generalizing at the same
time the algorithm proposed by Comets et al. [9] and the one of Gallo [21]. The
main objective of the present paper is to explain, in a detailed way, the difference
between these three algorithms. We will focus on the notion of convex mixture of
probabilistic context trees, which is the main feature behind the algorithm presented
in [22], extending the method of the paper [9]. We adopt an approach close to a mini-
course, in the hope of explaining clearly the differences and similarities among the
algorithms.

2 Stochastic Chains with Unbounded Memory

The present paper is concerned with discrete time stochastic chains, that is,
sequences of random variables . . . , X−1, X0, X1, . . . defined on a probability space
(Ω,A ,P), seen as a temporal evolution. We are interested in stationary sequences,
that is, for any n, the joint distribution of (Xi,Xi+1, . . . , Xi+n) does not depend
on i. In this temporal evolution, the conditional distribution of Xi given the past
. . . , Xi−2, Xi−1 may depend on the whole past. We assume that Xi’s take value in
some finite set A (called alphabet). We can think of A as the set of possible states of
a given physical system, undergoing some random temporal evolution. The simplest
interesting case (excluding the case of independent sequences in which the system
does not depend on its previous states) for our purposes is that of (k-steps) Markov
chains, for which, conditionally on the past, the distribution of Xi only depends on
Xi−k, . . . , Xi−1:

P(Xi = ai |Xi−1−∞ = ai−1−∞) = P(Xi = ai |Xi−1
i−k = ai−1

i−k ) (1)

for any i ∈ Z and any left-infinite sequence ai−∞ := . . . ai−1ai−1 of elements of
A. We sometimes read in the literature that Markov chains are those satisfying (1)
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for k = 1, but this is slightly misleading since a k-steps Markov chain can always
be seen as a 1-step Markov chain on the extended alphabet Ak (cardinal product of
sets), which is still a finite set in our case. So for us, there is only one distinction:
Markov chains, satisfying (1) for some finite k, and non-Markov chains, or chains
with unbounded memory.

Example 1 The simplest example of stochastic chains with unbounded memory
is the undelayed renewal sequences (see [31], for instance). It is defined using a
sequence of i.i.d. {1, 2, . . .}-valued random variables Bi, i ∈ Z as follows:

• X0 = 2,
• For i ≥ 1, Xi = 2 if there exists k ≥ 0 such that i = ∑k

j=0 Bj , Xi = 1
otherwise

• For i ≤ −1, Xi = 2 if there exists k ≥ 1 such that i = −∑k
j=1 B−j , Xi = 1

otherwise.

In other words, the sequence Bi, i ∈ Z, specifies marks on Z and we put 2 on the
marks and 1 elsewhere. Depending on the common distribution of the Bi’s, this is
not a Markov chain of any order. Indeed, for any k ≥ 1, and i �= 0, if a−1−∞ is such
that a−k = 2 and aj = 1 for j = −k + 1, . . . ,−1 and b−1−∞ is such that b−k−1 = 2
and bj = 1 for j = −k, . . . ,−1, then

P(Xi = 2|Xi−1−∞ = a−1−∞) = P(B = k + 1|B ≥ k + 1)

while

P(Xi = 2|Xi−1−∞ = b−1−∞) = P(B = k + 2|B ≥ k + 2).

These quantities are equal if B has geometric distribution, but not in general. This
means that, for any k ≥ 1, . . . , X−1, X0, X1, . . . does not follow the evolution of a
k-steps Markov chain.

FixingX0 = 2 implies that the chain is not stationary; however, it is easy to make
it stationary by a random translation of the origin; see, for example, Theorem I.2.20,
[39].

Let us conclude this example mentioning that its definition is usually done on the
alphabet A = {0, 1}. However, to keep our notation homogeneous along the paper,
we use A = {1, 2}.

2.1 Transition Kernels and Compatible Chains

In order to formalize the notion of unbounded memory, we need to define the
transition kernel, sometimes called family of transition probabilities. Let us denote
byA−N the set of left-infinite sequences of symbols inA (pasts) and a = . . . a−2a−1
an element of A−N. A probability transition kernel on A is a function
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p : A× A−N → [0, 1]
(a, a) %→ p(a|a) (2)

such that

∑

a∈A
p(a|a) = 1 , ∀a ∈ A−N.

If there exists a k ≥ 1 such that for any a, p(a|a) only depends on a−1
−k , this

definition corresponds to a k-steps Markov transition matrix.
In this paper, we will concentrate on weakly non-null kernels, that is,

∑

a

inf
a
p(a|a) > 0. (3)

Given a transition kernel p, starting from a fixed past a, we can construct a

chain (X(a)n )n≥0 by applying iteratively p. In other words, the chain on Z is defined

through X(a)n = an for n ≤ −1 and for any n ≥ 0,

P(X
(a)
n = b|X(a)n−1 = x−1, X

(a)

n−2 = x−2, . . .) = p(b|x). (4)

(Observe that we swap the time ordering in the conditioning event.) The resulting
chain is not stationary since it started from a fixed past a. For the case of nonperiodic
Markov chains in finite alphabet, there is always a stationary process with stationary
marginal distribution given by the limit as n→ ∞ of (4). This is not always the case
for transition kernels that depend on an unbounded part of the past a, which are
precisely the focus of this paper. Unless explicitly mentioned, the transition kernels
p of the present paper will always have this property.

Definition 1 A stationary stochastic chain X = (Xn)n∈Z on A having law μ is said
to be compatible with a kernel p if the latter is a regular version of the conditional
probabilities of the former, that is

μ(X0 = a|X−1−∞ = a) = p(a|a) (5)

for every a ∈ A and μ-almost every a in A−N.

Even with a finite alphabet, existence of the stationary measure (or equivalently,
chain) compatible with a given kernel is not granted.

Example 2 (Example 1 Revisited) Renewal sequences can be seen as a stochastic
process compatible with the following transition kernel: for any a such that a−k−1 =
1 and aj = 0 for j = −k, . . . ,−1,

p(2|a) = 1 − p(1|a) = P(B = k + 1|B ≥ k + 1) =: pk (6)
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It remains to specify p∞ := p(2|a) when a = 0∞, that is, ai = 0 for all
i. Depending on the value of p∞, we have very distinct situations. An extremal
situation occurs when

∑
n

∏n−1
k=0(1 − pk) = ∞ and p∞ > 0. In this case (see [6]),

there exists no stationary process specified by p. Relaxing either condition leads to
existence. Taking p∞ = 0 that the Dirac distribution δ0∞ , associating measure 1 to
a single configuration, the whole 0 sequence is a stationary measure. On the other
hand, assuming

∑
n

∏n−1
k=0(1 − pk) < ∞ also implies existence, of a nontrivial

measure, which is mutually singular to δ0∞ .

As shown by the example above, some assumptions are necessary in order to
ensure existence. Most commonly, the literature focus on continuous kernels.

Definition 2 The kernel p is continuous at a point (past) a, in the product
topology, if

p(a|xa−1
−k )→ p(a|a)

as k → ∞ for any x. This is equivalent to ask that the continuity rate at a, defined
by

βk(a) := sup
a∈A

sup
y,z

|p(a|a−1
−ky)− p(a|a−1

−k z)|,

converges to 0 as k → ∞.

So, a kernel p is continuous if, and only if, βk(a) vanishes as k diverges, for
any a. Since A is finite, continuity everywhere is equivalent to uniform continuity,
which writes

βk := sup
a
βk(a)→ 0

as k → ∞. When the alphabet is finite, as we assume in this paper, continuity
everywhere implies existence of the stationary measure compatible with p, by
standard machinery (a fixed point argument in the compact set of stationary
measures, see [29], for instance). The second step, once existence is granted, is to
inquire about uniqueness. The first example of nonuniqueness (phase transition) was
given by Bramson and Kalikow [4]. They presented a continuous kernel p uniformly
bounded away from zero, i.e., there exists ε > 0 such that infa,a p(a|a) ≥ ε which
specifies more than one stationary process. A sufficient condition for uniqueness is
that

∑
k β

2
k <∞, as proved in [27].

Example 3 (Example 1 Revisited) Observe that if we assume both,
∑
n

∏n−1
k=0(1 −

pk) < ∞ and p∞ = 0, we technically have two stationary measures, but
these measures are mutually singular. This is referred as non-irreducibility, in the
literature of Markov chains, and it is not as interesting as true phase transitions.
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In the example presented in [4], all stationary measures are mutually absolutely
continuous due to the positivity assumption.

It is easy to find examples of discontinuous kernels for which there exists a
unique stationary measure.

Example 4 (Example 1 Revisited) The continuity rate of this chain can be easily
computed as

βk = sup
a

sup
y,z

|p(2|a−1
−ky)− p(2|a−1

−k z)|

= sup
1−1
−k

sup
y,z

|p(2|a−1
−ky)− p(2|a−1

−k z)|

= sup
l,m≥k

|pl − pm|.

The second equality follows from the fact that p(2|a−1
−ky) = p(2|a−1

−kx) whenever

2 ∈ a−1
−k . (For finite strings w, v ∈ A, |w| ≤ |v|, we use the (abuse of) notation

w ∈ v (resp. w /∈ v) which means “w is (resp. is not) a substring of v”).
So, we understand that the renewal chain is continuous if, and only if, pk is

convergent. The case of nonexistence, exhibited above in Example 2, is indeed
discontinuous. However, it is easy to see that discontinuity does not imply nonexis-
tence. For instance, consider the case in which p2k = ε and p2k+1 = 1 − ε, in such
a way that pk does not converge. Existence follows from

∑
n

∏n−1
k=0(1 − pk) <∞.

If we further assume p∞ > 0, we have uniqueness (see [6]).

In the next section, we introduce probabilistic context trees, a class of kernels
that include the one presented in Example 1. This class of kernels is the base of our
method to study discontinuous kernels.

2.2 Probabilistic Context Tree

We say that a subset of τ ⊂ ∪i≥1A
{−i,...,−1} ∪ A−N is a context tree if it satisfies

the following property. For any a ∈ A−N, there exists a unique element v ∈ τ such
that a−1

−|v| = v, with the convention that |v| = ∞ if v is a left-infinite sequence, in
which case a = v. This element is called the context of a in τ and denoted cτ (a).

According to this definition, we can identify the set τ = {cτ (a)}a∈A−N with the
set of leaves of a rooted tree where each node has either |A| sons (internal node) or
0 sons (leaf).

We say that a kernel p is a probabilistic context tree if

p(a|a) = p(a|b) whenever cτ (a) = cτ (b).

A probabilistic context tree is an ordered pair (τ, pτ ) where τ is a context tree and
pτ = {pτ (a|v)}a∈A,v∈τ is a set of transition probabilities associated to each element
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p4p∞

1 2
root

(b)

Fig. 1 Examples of probabilistic context trees

of τ . Thus, the probabilistic context tree (τ, pτ ) represents the kernel p if for all
a ∈ A−N and a ∈ A

p(a|a) = pτ (a|cτ (a)).

Examples of probabilistic context trees are shown in Fig. 1(a) (for the bounded
case) and (b) (for the unbounded case). In the first one, at each leaf (context) of
the tree, we associate three boxes representing the transition probabilities to each
symbols of A given this context. In the second one, we only need to specify the
probability pi := p(2|1i2); the transition probabilities to 1 are simply 1 − pi . This
latter example is the probabilistic context tree of Example 1.

Stochastic chains X compatible, in the sense of (5), with probabilistic context
trees are called chains with variable length memory.

In terms of continuity, the context tree assumption amounts to say that pasts
a with finite context are continuous in a strong sense, since βk(a) = 0 for any
k ≥ |cτ (a)|. However, nothing is assumed for the remaining pasts, which may
be discontinuity points. In this regard, chains with variable length are a very nice
laboratory, source of examples and counterexamples, as shown by Example 1.

3 Convex Mixtures of Kernels

In this section, we describe our main tool to construct CFTP algorithms, which
is to decompose potentially complicated, and quite general, kernels into a convex
mixture of simple kernels. This section aims also at uniformizing the notation and
compare/contrast the approaches of Comets et al. [9], Gallo [21], and Gallo and
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Garcia [22]. The superscripts “CFF”, “G,” and “GG” in the notation help to make
the parallel.

3.1 Continuous Case: Convex Mixture of Markov Kernels

Berbee [2] and Kalikow [28] proved that a transition probability kernel p is
continuous if, and only if, it can be represented as a convex mixture of Markov
kernels. That is, there exist probability distributions {p0(a)}a∈A and {λk}k≥0 and a
sequence of Markov kernels {pk}k≥1 such that, for any a ∈ A and z ∈ A−N

p(a|z) = λ0p0(a)+
∑

k≥1

λkpk(a|z−1
−k). (7)

This decomposition is not unique. For perfect simulation purposes, there is an
optimal (in terms of the λk’s) decomposition described below [9]. For any a ∈ A
and a−1

−k ∈ Ak , consider the functions

α0(a) := inf
z
p(a|z) , α0 :=

∑

a∈A
α0(a)

and the sequence {αCFF
k }k≥1 defined by

αCFF
k := inf

a−1
−k∈Ak

∑

a∈A
inf
z
p(a|a−1

−k z). (8)

These are, as they say, “probabilistic threshold for memories limited to k preceding
instants.” To assume continuity is equivalent to assume that αCFF

k converges to 1 as
k diverges, and to assume pointwise continuity at a is equivalent to assume that

αk(a) :=
∑

a∈A
inf
z
p(a|a−1

−k z)

converges to 1 as k diverges. Under the continuity assumption, we can choose the
probability distribution {λk}k≥1 used in (7) to be λ0 = λCFF = α0 and λCFF

k =
αCFF
k − αCFF

k−1 for k ≥ 1.
Let us now explain the meaning of decomposition (7). Define a random variable

LCFF taking values on N with probability law {λCFF
k }k≥0. To choose the next symbol

looking at the whole past z using the distribution {p(a|z)}a∈A is equivalent to the
following two-step procedure:

(I) Choose LCFF,
(II) (i) If LCFF = 0, choose the next symbol according to {p0(a)}a∈A,



162 N. L. Garcia and S. Gallo

(ii) If LCFF = k > 0, choose the next symbol looking at z−1
−k and using

{pCFF
k (a|z−1

−k)}a∈A.

Observe that LCFF is independent of everything (in particular, it does not depend on
z). This two-step procedure justifies the terminology “random Markov processes”
introduced by Kalikow [28] regarding continuous chains.

3.2 Dropping the Continuity Assumption

To fix ideas, in the remaining of this section, let us assume the particular case that p
is a transition probability kernel on A = {1, 2} with a single discontinuity point at
1 := 1−N. Then, αCFF

k (a) goes to 1 as k diverges if, and only if, a �= 1. In this case,
αCFF
k does not converge to 1 and the decomposition into Markov kernels cannot be

done.

3.2.1 The Context Tree Assumption

Gallo [21] assumed that p is represented by the probabilistic context tree (τ, pτ ),
with

τ = 1 ∪
⋃

i≥0

⋃

a−1
−�2(i)∈A�

2(i)

a−1
−�2(i)

2 1i , (9)

where �2 : N → N is a deterministic function. This context tree is represented in
Fig. 2.

Making a parallel with the CFF case, we can decompose such kernel as follows,
for any a ∈ A and z ∈ A−N

p(a|z) = pτ (a|cτ (z)) = λ0p0(a)+ (1 − λ0)p
′
τ (a|cτ (z))

where

p′
τ (a|cτ (z)) :=

pτ (a|cτ (z))− λ0p0(a)

1 − λ0
.

Define an N-valued random variable LG which takes value 0 w.p. λ0 or |cτ (z)| w.p.
1 − λ0. The context tree assumption for p means the following. To choose the next
symbol looking at the whole past z using the distribution {p(a|z)}a∈A is equivalent
to the following two-step procedure:

(I) Choose LG,
(II) (i) If LG = 0, choose the next symbol w.p. {p0(a)}a∈A,
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Fig. 2 Graphical
representation of context tree
τ given by (9)

(ii) If LG = |cτ (z)|, choose the next symbol looking at cτ (z) and using
{p′
τ (a|cτ (z)}a∈A.

Observe that the random variable LG is a deterministic function of the past z
whenever its value is not 0: LG = |cτ (z)|.

3.2.2 Convex Mixture of Probabilistic Context Trees

So far, two extreme cases have been considered: LG is a deterministic function of
the past, and LCFF is a random variable totally independent of the past. It is the
objective of the present paper to explain the in-between case proposed by Gallo
and Garcia [22] which combines the two preceding approaches. It allows us to
consider kernels p which are neither necessarily represented by a probabilistic
context tree nor necessarily continuous. This approach is based on the assumption
that (continuing with the case where 1 is the unique discontinuity point)

αGG
k := inf

i≥0
inf

a−1
−k∈Ak

∑

a∈A
inf
z
p(a|1i2a−1

−k z)
k→∞−→ 1. (10)

The αGG
k ’s are probabilistic thresholds for memories going until the kth instant

preceding the last occurrence of symbol 2 in the past. In this case also, we have
that

∑
a∈A infz p(a|a−1

−k z) goes to 1 as k diverges for any a �= 1 and not necessarily
for 1. Notice that the probabilistic context tree assumption introduced in Sect. 3.2.1
satisfies inf

a−1
−k∈Ak

∑
a∈A infz p(a|1i2a−1

−k z) = 1 for k > �2(i), which is slightly

different (neither weaker nor stronger) than (10). Under assumption (10), it will be
shown in the next section that there exist a probability distribution {λGG

k }k≥0 and a
sequence of probabilistic context trees {(τk, pGG

τk
)}k≥0 such that
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Fig. 3 Graphical representation of the context trees τk given by (12)

p(a|z) = λ0p0(a)+
∑

k≥0

λGG
k pGG

τk
(a|cτk (z)). (11)

The kth context tree of decomposition (11) is given by

τk := 1 ∪
⋃

i≥0

⋃

a−1
−k∈Ak

a−1
−k 2 1i . (12)

The sequence of context trees {τk}k≥0 for the present particular case is illustrated in
Fig. 3. Define a random variable KGG taking values −1 w.p. λ0 and k w.p. λGG

k

for k ≥ 0. One more time, let us translate this decomposition into a two-step
procedure:

(I) Choose KGG,
(II) (i) If KGG = −1, put LGG = 0 and choose the next symbol w.p. {p0(a)}a∈A,

(ii) If KGG = k ≥ 0, put LGG = |cτk (z)|, choose the next symbol looking at
cτk (z) and using {pGG

k (a|cτk (z)}a∈A.

Observe that this time, the random variable LGG depends on the past z, but through
a random mechanism using the distribution {λGG

k }k≥0.
In the next section, we state a result in a general framework in which the role

played above by symbol 2 can be played by any finite string w. In this case, we
allow p to have discontinuities at every point z ∈ A−N which does not have w as
subsequence.

4 Perfect Simulation Based on Convex Mixture of
Unbounded Probabilistic Context Trees

In this section, we first decompose a locally continuous transition kernel as a convex
mixture of unbounded probabilistic context trees, and then use this decomposition
to construct a perfect simulation algorithm that stops after a P-a.s. finite number



Perfect Simulation and Convex Mixture of Context Trees 165

of steps. This decomposition relies on the existence of a reference string w that
“identifies” discontinuous pasts. The perfect simulation scheme described here is
a particular case of the one studied in [22], in which (using their terminology) the
probabilistic skeleton has terminal string w.

4.1 The Convex Mixture of Unbounded Probabilistic
Context Trees

Given a finite string w, let

mw(a) := inf{k ≥ 0 : a−k+|w|−1
−k = w}, (13)

with the convention that mw(a) = +∞ if the set of indexes is empty. This is the
size of the smallest suffix of a containingw. Using this definition, define the context
tree

τw0 := {a−1
−mw(a)}a.

Theorem 1 Consider a probability kernel p, and assume that there exists a finite
reference string w for which

αwk := inf
v∈τw0

inf
c−1
−k∈Ak

∑

a∈A
inf
z
p(a|v c−1

−k z)
k→+∞−→ 1. (14)

Then, there exist two probability distributions {λwk }k≥−1 and {pw−1(a)}a∈A, and a
sequence of probabilistic context trees {(τwk , pwτk )}k≥0 such that

p(a|z) = λw−1p
w−1(a)+

∑

k≥0

λwk p
w
τk
(a|cτwk (z)). (15)

Observe that, in Example 1 with p2i = ε and p2i+1 = 1 − ε, we have α2
k = 1

for any k ≥ 0; however, αCFF
k alternates between 1 and 2ε. On the other hand, it

is clear that if αCFF
k converges to 1, this is also the case of αwk for any reference

string w. Thus, our definition is strictly more general than the original one of [9].
In particular, this means that Theorem 1 extends to convex mixture of finite Markov
kernels. Under the new assumptions, we obtain a Kalikow-type decomposition of
our kernels as a mixture of unbounded probabilistic context trees. The fact that our
decomposition involves unbounded probabilistic context trees instead of Markov
kernels is “the price to pay” to allow discontinuities at some points.

Let us mention that this result is a simple instance of a more general decomposi-
tion used (although not explicitly mentioned) by Gallo and Garcia [22]. A result in
the same vein was also obtained in [34] (see Sect. 6).



166 N. L. Garcia and S. Gallo

This result, although not completely new, was not explicitly proved in the
literature, so for completeness we include a proof here. Once we are given the
reference string w, Theorem 1 states that there exists a triplet of parameters
(which is not unique): two probability distributions {λwk }k≥−1 and {pw−1(a)}a∈A,
and a sequence of probabilistic context trees {(τwk , pwk )}k≥0 that controls the
decomposition of the kernel. Section 4.2 is dedicated to the definition of such a
triplet of parameters.

4.2 Proof of Theorem 1: Construction of a Triplet

The definition of our triplet is based on two partitions of [0, 1[ inspired by Comets
et al. [9] and that we now explain. These partitions are of particular interest because
we will use them in the construction of our perfect simulation algorithm in Sect. 4.3.
To avoid overloaded notation, we will omit the superscript w in all the quantities
depending on it, when no ambiguity is possible.

4.2.1 Definition of the First Partition of [0,1[

Recall that the reference string w is fixed, and everything is done according to this
reference string. In particular, it is related to this string that the tree τw0 is constructed
(see, for instance, Fig. 3 for w = 1 and Fig. 5 for w = 12).

Suppose we are given an entire past a ∈ A−N such that cτ0(a) = v with |v| <∞.
We now explain how the length of the intervals constituting the first partition of
[0, 1[ represented in Fig. 4 is chosen. Notice first that a has to be of the form bv

for some b. For any a ∈ A, the interval I (a) has size infz p(a|z) independently of
everything. The remaining intervals have length

|I (a, bv, 0)| = inf
z
p(a|vz)− inf

z
p(a|z)

|I (a, bv, 1)| = inf
z
p(a|vb−1z)− inf

z
p(a|vz)

Fig. 4 Illustration of the first partition (upper part) for a given past a having finite cτ0 (a) and of
the second partition (lower part) which does not depend on the past
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|I (a, bv, k)| = inf
z
p(a|vb−1

−kz)− inf
z
p(a|vb−1

−k+1z) , k ≥ 2.

Due to our assumption that pasts having a w as substring are continuous, we have

inf
z
p(a|vb−1

−kz)↗ p(a|vb), (16)

for any a ∈ A, v ∈ τ0 with |v| <∞, and b ∈ A−N.
As a consequence of (16), we constructed a partition of [0, 1[, which satisfies

∣
∣
∣
∣
∣
∣
I (a) ∪

⋃

k≥0

I (a, a, k)

∣
∣
∣
∣
∣
∣
= p(a|z) , ∀a ∈ A. (17)

Another important property of this partition is that we can construct the interval
I (a, a, k) knowing only the suffix a−1

−(k+cτ0 (a)).

4.2.2 Definition of the Second Partition of [0,1[

For any k ≥ 1, let us define

αk := inf
v∈τ0

inf
b−1
−k

∑

a

inf
z
p(a|vb−1

−kz),

as well as

α0 := inf
v∈τ0

∑

a

inf
z
p(a|vz).

Once again, our assumptions imply that {αk}k≥0 is a [0, 1]-valued nondecreasing
sequence which converges to 1 as k diverges. It follows that denoting α−1 :=∑
a∈A α(a), and using the convention that α−2 = 0, the sequence of intervals

{[αk−1, αk[}k≥−1 constitutes a partition of [0, 1[. See the second partition of
Fig. 4.

4.2.3 Definition of the Triplet of Parameters({λk}k≥−1, {p−1(a)}a∈A, {(τk, pτk
)}k≥0

)

Let U be a random variable with uniform distribution in [0, 1[. We now introduce
one triplet

({λk}k≥−1, {p−1(a)}a∈A, {(τk, pτk )}k≥0
)

that will give the decomposi-
tion stated in Theorem 1. Define
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• For any k ≥ −1,

λk := P(U0 ∈ [αk−1, αk[). (18)

• For any a ∈ A,

p−1(a) := P(U0 ∈ I (a)∣∣U0 ∈ [0, α−1[) = α(a)/α−1. (19)

• For any k ≥ 0, let

τk :=
⋃

v∈τ0:|v|=∞
v ∪

⋃

v∈τ0:|v|<∞

⋃

b−1
−k∈Ak

b−1
−kv , k ≥ 0. (20)

Then, due to the observation made right after Eq. (17), it makes sense to define,
for any finite v ∈ τk , the conditional probability

pτk (a|v) := P

(

U0 ∈ I (a) ∪
k⋃

l=0

I (a, v, l)

∣
∣
∣U0 ∈ [αk−1, αk[

)

. (21)

Two examples of sequences of context trees {τwk }k≥0 on A = {1, 2} are given in
Figs. 3 and 5, the first one with w = 2, and the second one with w = 12.

4.2.4 What About v ∈ τ0 Having Infinite Size?

The reader who arrived here may be asking why we only considered, so far, the
finite contexts of τ0. Finite contexts correspond to continuous pasts for p. The
remaining contexts correspond to pasts having no occurrence of the sequence w,
and as such, possibly discontinuous. In fact, if we are only interested in the perfect
simulation algorithm, we could very well not define anything for these pasts, since,
due to positivity assumption infa,a p(a|a) > 0, these pasts have null probability
of occurrence. Nevertheless, for the sake of definiteness, let us explain how we
could proceed. The effect of discontinuity along a is that (16) does not hold, and
therefore, our partitions are not well defined. Indeed, we only have a partition
up to

∑
a limk infz p(a|vb−1

−kz) which is smaller than 1. But, this is no problem
since the size of the contexts for these pasts is fixed to infinity. We simply define
pτk (a|v) = p(a|v) for those v’s, and this can easily be done through a partition.

4.2.5 Proof of Theorem 1

The convex mixture representation stated in the theorem is a direct consequence of
the definition of the triplet, using a uniformly distributed random variable.
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Fig. 5 Graphical
representation of the context
trees τwk with reference string
w = 1, 2 in Theorem 1

...

τ 12
0

τ 12
1

τ 12
2

4.3 Coupling from the Past

The perfect simulation algorithm presented here works as a mixture of the algo-
rithms presented in [9, 21].

Suppose, for simplicity, that the given kernel is strictly positive, that is, there
exists ε > 0 such that

inf
a,a
p(a|a) = ε.

In addition, consider that p satisfies the condition of Theorem 1 with reference string
w. In order to simplify the notation, we will omit the superscript w in most of the
quantities that depend on this string.

Let us introduce an i.i.d. sequence U = (Ui)i∈Z of random variables uniformly
distributed in [0, 1[. We denote by (Ω,F ,P) the corresponding probability space.

We want to get a deterministic measurable function X : [0, 1[Z→ AZ, U %→
X(U) such that the law P(X(U) ∈ ·) is compatible with p in the sense of (5). The
idea is to use the sequence U together with the partitions of [0, 1[ introduced before
(and illustrated in Fig. 4) to mimic the two-step procedure described in Sect. 3.2.2.
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In particular, for any n ∈ Z, we put [X(U)]n = a whenever Un ∈ I (a). Suppose
that for some time index n ∈ Z there exists a string a−1

−k ∈ Ak such that Un−i ∈
I (a−i ), i = 1, . . . , k, in this case, we put

[X(U)]n−1
n−k = a−1

−k .

We say that this sample has been spontaneously constructed. Now, suppose Un ∈
[αl−1, αl[ for some l ≥ 0. This means that we pick up the context tree τl in the
convex mixture representation of p, and look whether or not there exists a context
in τl which is suffix of [X(U)]n−1

n−k = a−1
−k . If such context exists, then we put

[X(U)]n =
∑

a∈A
a · 1

⎧
⎨

⎩
Un ∈

l⋃

j=0

I (a, a−1
−k , j)

⎫
⎬

⎭
.

If there is no such context (we will write cτl (a
−1
−k ) = ∅), we cannot construct the

state [X(U)]n: we need further knowledge of the past.
In the first case, [X(U)]nn−k has been constructed independently of Un−k−1−∞ and

U+∞
n+1 .
Now, suppose we want to construct [X(U)]0. We generate, backward in time, the

Ui’s until the first time k ≤ 0 such that we can perform the above construction from
time k up to time 0 using only U0

k . A priori, there is no reason for k to be finite.
Theorem 2 gives sufficient conditions for P-almost sure finiteness.

To formalize the above description, let us define for any u ∈ [0, 1[

�(u) :=
∑

k≥−1

k · 1{u ∈ [αk−1, αk[}.

By Theorem 1, �(Ui) = −1 means that we can choose the state of X(U)i
according to distribution p−1(·), and independently of everything else. On the other
hand, �(Ui) = l ≥ 0 means that we have to use the context tree (τl, pτl ) in order to
construct the state of X(U)i . In particular, we recall that for any l ≥ 0 the size of
the context cτl (a

n
m) is |cτ0(anm)| + l.

Let us denote by A� the set of finite strings of letters of A. One of the inputs for
Algorithm 1 (presented below) is the update function F . It is a measurable function
F : [0, 1[×(∅ ∪ A� ∪ A−N) → A ∪ {?} (the interrogation mark has the sense of
indefiniteness) which uses the part of the past we already know, together with the
uniform random variable to compute the present state. It is defined as follows, for
any anm ∈ ∅ ∪ A� ∪ A−N, with −∞ < n < +∞ and −∞ ≤ m ≤ n+ 1,

F(u, anm) :=

⎧
⎪⎨

⎪⎩

∑
a∈A a · 1{u ∈ I (a)} if �(u) = −1

∑
a∈A a · 1

{
u ∈⋃�(u)k=0 I (a, a

n
m, k)

}
if �(u) ≥ 0 and cτ�(u) (a

n
m) �= ∅

? otherwise
(22)
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with the convention that ann+1 = ∅ and for any context tree τ , cτ (∅) = ∅. Here, we
understand that, if w /∈ anm, unless u belongs to [0, α−1[, we cannot construct the
next symbol, and for this reason we put a question mark. This is also the reason why
we do not have to care about pasts with not having w as substring.

When we consider an infinite past z ∈ A−N withw as substring, we have, by (17),

P(F (U, z) = a) = P

⎛

⎝U ∈ I (a) ∪
⋃

k≥0

I (a, z, k)

⎞

⎠ = p(a|z). (23)

When the update function returns the symbol “?”, it means that we do not have
enough knowledge of the past to compute the present state.

We define, for any m ≤ n, the F (Unm)-measurable function L : [0, 1[n−m+1→
{0, 1} which takes value 1 if, and only if, we can construct [X(U)]nm independently
of Um−1−∞ and U+∞

n+1 using the construction described above. Formally,

{L (Unm) = 1} :=
⋃

anm∈An−m+1

n⋂

i=m
{F(Ui, ai−1

m ) = ai}.

Finally, for any −∞ < m ≤ n ≤ +∞, we define the regeneration time for the
window [m, n] as the first time before m such that the construction described above
is successful until time n, that is

θ [m, n] := max{k ≤ m : L (Unk ) = 1} (24)

with the convention that θ [m] := θ [m,m].

4.4 The Algorithm

This algorithm takes as “input” two integers −∞ < m ≤ n < +∞ and the
update function F , and returns as “output” the regeneration time θ [m, n] and the
constructed sample [X(U)]nθ[m,n]. The function F contains all the information we
need about the kernel p, and we suppose that it is already implemented in the
software used for programing the algorithm.

At each time, the set B contains the sites that remain to be constructed. We
initialize with B = {m, . . . , n} and a forward procedure (lines 2–8) attempts to
construct [X(U)]nm using Um, . . . , Un. If it succeeds, then the algorithm stops and
returns θ [m, n] = m and the constructed sample. If it fails, B is not empty and a
backward procedure (“while loop”: lines 10–27) begins. In this loop, each time the
algorithm cannot construct the next site of B, it generates a new uniform random
variable backward in time. At each new generated random variable, the algorithm
attempts to go as far as possible in the construction of the remaining sites of B using



172 N. L. Garcia and S. Gallo

Algorithm 1 Perfect simulation algorithm of the sample [X(U)]nm
1: Input: m, n, F ; Output: θ[m, n], ([X(U)]θ [m,n], . . . , [X(U)]n)
2: Sample Um, . . . , Un uniformly in [0, 1[
3: i ← m, B = {m, . . . , n}, θ[m, n] ← m, [X(U)]nm ← ?n−m+1

4: while F(Ui, [X(U)]i−1
m ) ∈ A and B �= ∅ do

5: [X(U)]i ← F(Ui, [X(U)]i−1
m )

6: B ← B \ {i}
7: i ← i + 1
8: end while
9: i ← m

10: while B �= ∅ do
11: i ← i − 1
12: B ← B ∪ {i}
13: Sample Ui uniformly in [0, 1[
14: while Ui ≥ α−1 do
15: i ← i − 1
16: B ← B ∪ {i}
17: Sample Ui uniformly in [0, 1[
18: end while
19: [X(U)]i ← F(Ui,∅)
20: B ← B \ {i}
21: t ← minB
22: while F(Ut , [X(U)]t−1

i ) ∈ A and B �= ∅ do
23: [X(U)]t ← F(Ut , [X(U)]t−1

i )

24: B ← B \ {t}
25: t ← minB
26: end while
27: end while
28: θ [m, n] ← i

29: return θ [m, n], ([X(U)]θ [m,n], . . . , [X(U)]n)

the uniform random variables that have been previously generated. Theorem 2 gives
sufficient conditions for this procedure to stop after a ¶-a.s. finite number of steps.

This theorem is a consequence of Theorem 4.1 and Proposition 5.1 in [22], since
it can be seen, using their terminology, as a particular case in which the probabilistic
skeleton has terminal string w.

Theorem 2 Consider a kernel p satisfying the conditions of Theorem 1 for some
reference string w and assume moreover that

inf
a∈A inf

a∈A−N

p(a|a) ≥ ε > 0.

According to {αwk }k≥0, we have the following situations.

(i) If
∑
k≥1
∏k−1
j=0 α

w
k = +∞, then θ [0] is P-a.s. finite.

(ii) If
∏
k α

w
k > 0, then θ [0] has summable tail.

(iii) If {1−αwk }k≥0 decays exponentially fast to zero, then θ [0] has exponential tail.



Perfect Simulation and Convex Mixture of Context Trees 173

In particular, in each of these regimes, the CFTP with update function F is feasible
and the output of Algorithm 1 is a sample of the unique stationary chain compatible
with p.

5 Complete Description of a Simple Example on A = {1, 2}

In this section, we focus on the two-letter alphabet A = {1, 2}. Compiling results of
the literature on the uniform continuity case, we have the following:

(i) If (1 − αk) → 0, then there exists at least one stationary measure compatible
[28, 29].

(ii) If
∑
k(1−αk)2 <∞, then there exists a unique stationary measure compatible

[27].
(iii) If

∑
k

∏k−1
i=0 αi = ∞, then we have coupling from the past to perfectly simulate

finite windows of the unique stationary measure. In particular, θ [0] is finite a.s.
[9].

(iv) If
∏
k αk > 0, then we can simulate right-infinite vectors of the stationary

measure, and the chain can be seen as a concatenation of independent vectors
of random size. In particular, θ [0] has summable tail (finite expectation) [9].

The object of the present section is to obtain the same classification for our
non-necessarily continuous chains, those related to the occurrence or not of a fixed
reference string w.

Once we fix a string w, we will need the asymptotic number or binary strings of
length n having no w as substring. This is a well-known topic in combinatorics, and
we refer, for instance, to [19]. Let

|Nn| = #{xn1 ∈ {1, 2}n;w �∈ xn1 }.

The asymptotic behavior of |Nn| can be obtained by expanding locally the
generating function

S(z) =
∞∑

n=0

|Nn|zn.

It is known that (see, for example, Figure I.10, p. 50, [19]),

S(z) = c(z)

z|w| + (1 − 2z)c(z)

where c(z) is the autocorrelation polynomial given by c(z) =∑|w|−1
j=0 cj z

j with cj
equals to 1 if w coincides with its j th shifted version and 0 otherwise. The function
S(z) is a rational function and the asymptotic behavior of its coefficients is given
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by its expansion. If there is a dominant pole ρ = |α1| < |α2| ≤ |α3| ≤ . . . with
multiplicity r , then

|Nn| = O(ρ−n+r ).

Notice that all the above quantity were related tow, so in particular we will adopt
the notation ρ(w) from now on.

Theorem 3 Let ε := infb,a p(b|a) and w the reference string for p. Then, we have
the following results.

(i) If ρ(w) ≥ 1 − ε and αwk → 1 as k diverges, then there exists at least one
stationary measure compatible.

(ii) If ρ(w) ≥ 1 − ε and
∑
k(1 − αwk )2 <∞, then there exists a unique stationary

measure compatible.
(iii) If

∑
k

∏k−1
i=0 α

w
i = ∞, then our coupling from the past perfectly simulates finite

windows of the unique stationary measure. In particular, θ [0] is finite a.s.
(iv) If

∑
k(1 − αwk ) < ∞, then our coupling from the past perfectly simulates

right-infinite vectors of the stationary measure, and the chain can be seen as
a concatenation of independent vectors of random size. In particular, θ [0] has
summable tail (finite expectation).

Proof (Proof of Theorem 3) The items (iii) and (iv) are direct consequences of
Theorem 2, and there is no extra condition on w and ε, else than being finite
for the former and strictly positive for the latter. Items (i) and (ii) follow from
[23] (Corollary 1 and Theorem 2, respectively). Consider the set D of potentially
discontinuous pasts of our kernel p, that is the set of infinite branches of τw0 .
Let us denote Dn = {a−1−n}a∈D and also the upper exponential growth rate of D

as ḡr(D) := lim supn |Dn|1/n. Gallo and Paccaut gave conditions on the set D
which guaranty existence of a stationary compatible measure [23]. They proved
(Corollary 1) that, in the case where infa∈A infa∈A−N p(a|a) = ε > 0, a sufficient

condition is that ḡr(D) < (1 − (|A| − 1)ε)−1. In our case, we have Dn = Nn, and
since we have |A| = 2, it is enough that ḡr(N ) < (1 − ε)−1. By the discussion
preceding the statement of Theorem 3, it is enough that ρ(w) ≥ 1 − ε. In order to
prove (ii) using Theorem 2 of [23], it remains to check their hypothesis (H4) which
reads as follows:

∑

v∈τw0
μ(v)

∑

k≥|v|

⎛

⎝1 − inf
a−1
−k∈Bv

∑

a∈{1,2}
inf
z
p(a|a−1

−k z)

⎞

⎠

2

<∞.

But, in our case, we have, for any v ∈ τw0

inf
a−1
−k∈Bv

∑

a∈{1,2}
inf
z
p(a|a−1

−k z) = αwk−|v|,
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so

∑

k≥|v|

⎛

⎝1 − inf
a−1
−k∈Bv

∑

a∈{1,2}
inf
z
p(a|a−1

−k z)

⎞

⎠

2

=
∑

k≥1

(1 − αwk )2 <∞.

This proves that H4 is satisfied under our condition, and therefore we have
uniqueness.

The condition ρ(w) ≥ 1 − ε is not explicit, so let us give some examples.

1. If w = 1 or 2, then Nn = 1 for any n ≥ 1 and thus ρ(w) = 1.
2. If w = 12 or 21, then we have Nn = n+ 1 for any n ≥ 1 and thus ρ(w) = 1 as

well.
3. The case where w is composed of a single symbol repeated k times, it can be

proven (see p. 309 [19]) that

1

2

(

1 +
(

1

2

)k+1
)

< ρ(w) <
1

2

(

1 +
(

3

5

)k+1
)

.

4. For patterns of length 3 or 4, the values of ρ can be computed explicitly (see
Figure IV.13, p. 272, [19]).

(a) For w = 112, 122, 221, 211, ρ(w) = 0.61803;
(b) For w = 121, 212, ρ(w) = 0.56984;
(c) For w = 1112, 1122, 1222, 2221, 2211, 2111, ρ(w) = 0.54368;
(d) For w = 1121, 1221, 1211, 2212, 2112, 2122, ρ(w) = 0.53568; and
(e) For w = 1212, 2121, ρ(w) = 0.53101.

5. When |w| ≥ 5, ρ(w) is the unique root in (1/2, 6/10) of the equation z|w| + (1−
2z)c(z) = 0 (see Proposition IV.4 in [19]).

So, we see that, except for the cases where w = 1, 2, 12, 21, in which no extra
condition is necessary on ε (since for any ε we have ρ(w) = 1 > 1 − ε in these
cases), all the other cases imply quite strong conditions on ε. For instance, if w =
112, we have ρ(w) = 0.61803, thus we need 0.38197 < ε < 0.5.

6 Recent Bibliography and Some Open Problems

The present paper was about perfect simulation for chains with unbounded memory,
through convex mixture of probabilistic context tree kernels for discontinuous
kernels. Let us conclude by making a more complete compilation of recent results
concerning these topics.
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Concerning Example 1 This example served as a laboratory to explain and
exemplify each notion/result introduced. It turns out that this example is quite
recurrent in the literature, and we refer, for instance, to [1, 6, 7, 10, 16, 32] for
a non-exhaustive list of references where this process is studied regarding several
aspects.

Concerning Perfect Simulation An interesting framework was introduced in [11],
making use of an a priori knowledge about the histories, extracted from the U
sequence used for the CFTP algorithm. Their interest, although completely related
to ours (perfect simulation of discontinuous chains with unbounded memory), is
slightly different in the method. A comparison between efficacy of the results is
presented in [22] through examples. Recently, [12] considered a particular class of
unbounded memory chains, that they called autoregressive processes with noise.
They considered under which conditions on the parameters uniqueness, phase
transition, or successful coupling from the past are obtained. Their phase transition
is due to nonpositivity of the kernel; that is, as we already mentioned earlier (see
Example 3), it is a non-irreducibility situation.

Concerning Existence The only result of the literature which focuses on the issue
of existence for discontinuous kernels is the one of [22]. As explained in the proof
of Theorem 3, the idea is to put all the discontinuous points into a skeleton context
tree, and to ask that the set of infinite branches of this context tree, crossing height
n, does not increase too fast in n. Around the same time, [6] studied the relation
between chains with variable length and transformation of the interval in dynamical
systems. As examples, they studied in detail the existence/uniqueness of stationary
measures for two simple examples, one of which is Example 1.

Concerning Convex Mixture of Context Trees Motivated by statistical inference
for stochastic chains, [34] extends the idea of Kalikow’s convex mixture of Markov
kernels, but in a slightly different approach. Assuming the existence of a stationary
measure μ compatible with some possibly discontinuous kernel p, an optimal
convex mixture of kernels based on μ is constructed. Intuitively, it is optimal in
the sense that it minimizes the look-back sizes implied by the mixture. Doing so,
in particular, it proves that a kernel is μ-a.s. continuous with respect to the given
measure if, and only if, these look-back sizes are μ-a.s. finite.

Some Open Problems

• Concerning perfect simulation, it is still lacking a necessary condition for
existence of CFTP algorithms, when continuity is assumed.

• Another interesting question is how to perfectly simulate without the non-
nullness condition (3). Under the continuity assumption, [11] gave sufficient
conditions. On the other hand, [24] constructed an algorithm able to perfectly
simulate for discontinuous kernel not satisfying (3), but it does not give any
general sufficient conditions for convergence of the algorithm.

• Concerning existence, it would be interesting to construct a kernel with
infa infap(ala)>0 for which there exists no stationary compatible measure.
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Inference in (M)GARCH Models
in the Presence of Additive Outliers:
Specification, Estimation, and Prediction

Luiz Koodi Hotta and Carlos Trucíos

Abstract The (M)GARCH models are probably the most widely used to estimate
and predict volatility. Estimation and prediction of volatility are very important in
many financial applications. One important issue in the application of (M)GARCH
models is the frequent presence of outliers in financial time series and their effects
in all stages of model application. We present some issues involved in making
inference in (M)GARCH models in the presence of additive outliers. Specifically,
we present the effects of outliers on specification, estimation of models, and their
volatility and volatility prediction. We also present some robust methods to estimate
the model and to predict volatility. We emphasize the presentation of robust methods
for volatility forecast density.

1 Introduction

The estimation and prediction of asset return’s volatility is important in numerous
financial applications, such as pricing of financial derivatives, risk assessment, and
portfolio management, see, for instance, [15, 28, 35]. Since the introduction of the
autoregressive conditionally heteroskedastic (ARCH) model by Engle in 1982 [32]
and the generalized ARCH (GARCH) model by Bollerslev in 1986 [10], these
models and their variants have become a reference in modeling univariate asset
return volatility. Because many, and probably most, finance applications involve
more than one asset and the returns of the assets are not independent, the GARCH
models were soon extended to a multivariate framework. The first GARCH type
model for the conditional covariance matrices was proposed by Bollerslev et al. [13],
the VEC-GARCH model. As in the univariate case, many variants soon appeared in
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the literature, generally called multivariate GARCH (MGARCH) models. Because
multivariate modeling involves extra issues, such as estimability due to the huge
number of parameters, positiveness of the volatility matrix, and dependence, many
suggestions appeared to simplify or modify the VEC-GARCH model to deal with
these problems, see, for instance, [3, 9, 38, 76] for good reviews of MGARCH
models.

The success of applying these models, however, can be badly undermined by
well-known stylized fact found in financial data, the presence of outliers [8, 77, 86],
especially the additive outliers. Many papers have studied their negative effects
in all stages of applying the model, from selection or specification to estimation,
prediction, and application. In order to minimize their effects, the main approaches
are to detect the outliers and consider them in the modeling stage or to adopt
robust procedures. In this chapter we present a general review of their effects
and robust approaches, both for univariate and multivariate models. Because, as
pointed out earlier, a large number of models exist, we discuss mostly the univariate
GARCH(1,1) and a version of dynamical conditional correlation (DCC) model
proposed by Engle [34], the corrected DCC (cDCC) model [2]. For the sake of
brevity and because the problem of measuring the effect of outliers and robust pro-
cedures for estimation are better known in the literature, our review will emphasize
robust forecasting in the cDCC model. The remainder of the chapter is organized
as follows. In Sect. 2 we present the uncontaminated GARCH model and the model
contaminated by additive outliers, while in Sect. 3 we present the uncontaminated
and contaminated cDCC models. We also discuss briefly the estimation of the
volatility and of the model and also the prediction. Section 4 presents the effects of
outliers on the specification, estimation, and volatility prediction, and the literature
on influential observation techniques applied to GARCH models. Tests to detect
outliers are presented in Sect. 5. Section 6 presents robust methods to estimate the
models and their volatility and forecast densities. Finally, Sect. 7 presents the final
remarks.

2 GARCH Model

This section presents the multivariate and univariate GARCH models including
uncontaminated and contaminated models. In the following, the observed return is
in fact the observed return filtered by the conditional mean. Besides, when we state
conditional mean or (co)variance, we refer to conditional information given by the
past observation of the (observed) return series.
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2.1 Uncontaminated GARCH Models

The uncontaminated GARCH model was proposed in [10] as a generalization
of ARCH model proposed in [32]. The model is commonly used to represent
the dynamic dependence in the second-order moments of return in economic and
financial time series. The GARCH(1,1) model is defined as

rt = σtεt , (1a)

σ 2
t = ω + αr2

t−1 + βσ 2
t−1, (1b)

for t = 1, . . . , T , where rt is the return observed at time t , σt the Volatility, and
εt is an independent identically distributed process with zero mean and variance
one. The parameters are assumed to satisfy the conditions ω > 0, α, β ≥ 0, and
α + β < 1, which are sufficient for stationarity and positiveness of σ 2

t . The initial
values of (σ 2

0 , r0) come from the unconditional bivariate distribution.

2.2 Contaminated GARCH Model

The GARCH model contaminated by additive outliers was defined by Hotta and
Tsay [52]. The contaminated GARCH(1,1) model is defined as

rt = zt + sign(zt )wtI (t ∈ A), (2a)

zt = σtεt , (2b)

σ 2
t = ω + αz2

t−1 + βσ 2
t−1, (2c)

for t = 1, . . . , T , where rt and all the other terms and parameters are defined as in
Sect. 2.1, including the parameter restrictions, wt represents the size of the outlier at
time t , I (·) is the indicator function, and A is the set of contaminated observations.

2.3 Parameter and Volatility Estimation

Parameter estimation is usually done by applying a Gaussian quasi-maximum
likelihood (QML) estimator which is based on maximizing the logarithm of the
Gaussian likelihood function. Conditional on σ 2

1 and r1, the Gaussian log-likelihood
is given by

l(θ; r) ∝ −
(
T∑

t=2

r2
t

σ 2
t

+
T∑

t=2

log(σ 2
t )

)

, (3)
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where θ is the vector of unknown parameters, and rt and σt are defined as previously.
Hence, the estimated volatility is given by

σ̂ 2
t = ω̂ + α̂r2

t−1 + β̂σ̂ 2
t−1. (4)

Note that, no corrective measures to protect again possible outliers are applied. In
fact, many authors have shown that this estimator is highly affected by outliers,
see, for instance, [18, 68, 82]. Some robust model estimators are presented later in
Sect. 6.1, while robust filters to estimate volatility are presented in Sect. 6.2.

2.4 Forecast Densities

One of the main objectives in modeling financial returns and volatilities is to
produce forecast. Point forecasting is the focus of many books and guidelines.
However, we prefer to emphasize forecast densities instead just point forecast
because forecast densities can be even more important than point forecasts. One
way to obtain forecast densities1 in volatility in a frequentist approach is through
bootstrap procedures. There are several bootstrap procedures in univariate volatility
models but we focus in the procedure of [69] because it has good finite sample
properties. Readers interested in other bootstrap procedures can see, for instance,
[24, 67, 74].

Pascual, Romo, and Ruiz (PRR) [69] propose a procedure to obtain forecast
densities for returns and volatilities in GARCH models. Their bootstrap procedure
is based on the QML estimator and the standard volatility equation. As usual
in residual-based bootstrap procedures, after fitting the model and obtaining the
centered standardized residual, new bootstrap series that will be used in the forecast
are obtained. To allow construction of forecast densities for the one-step-ahead
volatility, the parameters in each bootstrap series are re-estimated and the h-steps-
ahead forecast is obtained. Using this procedure, no assumption about the error
distribution is necessary, and additionally, the re-estimation of the parameters makes
it possible to handle parameter uncertainty. In this section we will not present the
bootstrap algorithm mentioned because in the subsequent sections we will describe
a way to make this procedure more robust.

It is important to mention that this procedure has shown good finite sample
properties in uncontaminated GARCH models. Implementations and extensions to
other univariate volatility models can be found in [45, 54, 81].

1In this chapter we will not present Bayesian methodologies. However, the reader interested can
see [51, 58, 89] for some references.
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3 MGARCH Models

GARCH model were quickly extended to a multivariate framework, see [9, 38, 76]
for good reviews of MGARCH models. Two of the most popular MGARCH models,
which have become benchmarks in multivariate volatility modeling, are the DCC
model of [34] and the cDCC version of [2]. Denote by rt = (r1,t , . . . , rp,t ) the
p-dimensional vector of returns observed at time t .

3.1 Uncontaminated cDCC Model

The DCC model was proposed by Engle [34] and the cDCC version by Aielli [2].
The cDCC model, unlike the constant conditional correlation model proposed by
Bollerslev [12], considers that the correlation structure evolves over time, relaxing
the assumption of a constant correlation structure, which is too restrictive in most
of the financial applications. The cDCC model is defined by Aielli [2] as

rt = H 1/2
t εt , (5a)

Ht = DtRtDt , (5b)

whereHt is the conditional covariance matrix,Rt = diag(Qt)−1/2Qtdiag(Qt)
−1/2

is the conditional correlation matrix, Dt is a diagonal matrix containing the
univariate GARCH(1,1) variances, and εt is an independent and identically
distributed p-dimensional process with mean zero and identity covariance matrix.
For the (1, 1) order, the matrixQt is defined as

Qt = (1 − a − b)S + a diag(Qt−1)
1/2vt−1v

′
t−1diag(Qt−1)

1/2 + bQt−1, (6)

where diag(Qt)1/2 = diag(
√
q11,t , . . . ,

√
qpp,t ), vt = D−1

t rt and S is the
unconditional correlation matrix of diag(Qt)1/2vt . The parameters are assumed to
satisfy a, b ≥ 0 and the stationary conditions a + b < 1.

3.2 Contaminated cDCC Model

The contaminated version of the cDCC model was defined by Boudt et al. [15]. It is
defined as

rt = Zt + AtI (t ∈ B) (7a)

Zt = H 1/2
t εt (7b)

Ht = DtRtDt , (7c)
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where At is the p-dimensional vector of contaminations and B denotes the set of
contaminated observations. For identifiability purposes, each component of At =
(A1t , . . . , Apt )

′ is defined following [52] as

Ait = sign(zit )wit I (t ∈ Bi), (8)

where wit is the size of the outlier of the i-th series at time t and Bi is the set of
contaminated observations on the i-th series.

3.3 Parameters and Model Estimation

The parameters, volatilities, and correlations are usually estimated through the
QML estimator of [2]. The procedure of [2] is a three-step estimator based on the
maximization of the Gaussian quasi-likelihood, which conditional on D1, R1, and
r1 is given by

l (θ, φ, S) ∝ −1

2

T∑

t=2

[
2 log (det (Dt ))+ log (det (Rt ))+ v′tR−1

t vt

]
, (9)

where vt = D−1
t rt . In the first step, the univariate GARCH models are estimated

separately by QML. Secondly, the parameters a and b are estimated also by
QML. Finally, S is estimated, using the estimated parameters, obtained as Ŝ =
∑T
t=1 Q̂

1/2
t v̂t v̂

′
t Q̂

1/2
t

T
. As usual, the volatility and correlation estimates are obtained

replacing the parameters by their estimates. This procedure is not robust to outliers
and the non-robustness has been analyzed in [15] and [84]. For more information
about the estimation of DCC models using composite likelihood, linear and non-
linear Shrinkage procedures see [48, 70] and [36].

3.4 Forecast Densities

Fresoli and Ruiz [41] extend the bootstrap procedure of [69] to the multivariate
case. This algorithm provides forecast densities for returns, volatilities, and also for
conditional correlations in the cDCC model. This algorithm follows the same idea
of the univariate algorithm, but incorporates an appropriate bootstrap procedure
in the correlation equation. This procedure, as well as the univariate version, has
good finite sample properties when applied to uncontaminated series. However,
when applied to contaminated series, the performance of the algorithms is poor.
For instance, [81, 82, 84] show that these bootstrap procedures are highly affected
by additive outliers.
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Outliers are not unusual in time series and their presence can produce devastating
effects on the bootstrap procedures presented previously. For this reason, several
authors have proposed robust procedures to mitigate the effect of outliers, mainly
additive outliers, with consistent results. These procedures are described in the next
section.

We will not present in detail the algorithm of Fresoli and Ruiz because in the
subsequent sections we will present a robustification of this procedure.

4 Effects of Outliers

This section presents a brief review of the literature on the effects of additive
outliers. The effects on specifications are presented in Sect. 4.1, the effects on
estimation in Sect. 4.2, and on volatility estimation and prediction in Sect. 4.3.
We observed in the introduction that estimation and prediction of volatility are
important in several financial applications. However, although it is an important
issue to understand the effect of outliers for financial applications of interest, this is
not pursued in this chapter.

4.1 Effects on Specification

The presence of outliers in time series can lead to two types of errors: wrongly
suggesting conditional heteroskedasticity and failing to detect conditional het-
eroskedasticity. This was first pointed out by Van Dijk et al. [85], who analyzed
the properties of the Lagrange multiplier (LM) test for ARCH models in the
presence of additive outliers. They found out that, when the conditional mean has
an autoregressive component, the LM test rejects the true null hypothesis of no
conditional homoskedasticity too often. Similar conclusions have been reached by
other authors theoretically, using simulation, or by analyzing real-time series, see,
for instance, [1, 7, 16, 31, 39, 40, 46, 61, 63, 66, 78]. Most of the cited papers in
this section propose a robust test to detect conditional heteroskedasticity, see also
[39, 47]. Additionally, in a leverage effect context, [19] show that the presence of
outliers can affect the identification of the asymmetric response of volatility and
could detect spurious asymmetries, asymmetries of the wrong sign or could also
hide the true leverage effect.

4.2 Effects on Estimation

The effect of outliers on estimation is described in many works, when using
simulation or when analyzing real-time series. References [75] and [66] find a large
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effect when using simulation to analyze the effect of a single additive outlier on the
maximum likelihood (ML) estimator of the parameters of the GARCH(1,1) model.
Similar results are found by Verhoeven and McAleer [88], Li and Kao [61], Carnero
et al. [16], Welsch and Zhou [90], Muler and Yohai [68], Ardelean [5] and Carnero
et al. [18] using different estimators, i.e., a single additive outlier can have a strong
effect in the model estimation. As expected the effect is larger when the outlier
is not near the end of the series. Reference [16] presents asymptotic results for
different estimators of ARCH and GARCH(1,1) models. Finite sample properties
are addressed through simulation. The effect persists even when estimated by the
QML method using heavy-tailed distributions instead of the Gaussian distribution.

Reference [14] uses simulation to show the large effect of additive outliers on
Gaussian QML estimators of the bivariate BEKK [33] model and present a robust
M-estimator.

References [43] and [87] show that even outliers of moderate magnitude can have
a large effect on the estimation of multivariate GARCH models. They use simulation
to study the effect of additive outliers on the diagonal BEKK (D-BEKK), CCC,
and DCC models. In all the simulation they use bivariate models and their focus is
on estimating the correlation. They consider single and multiple isolated additive
outliers and patches of additive outliers and find a larger effect on the CCC and
DCC models. References [15] and [80] also find a strong effect on the cDCC model.
Reference [15] presents a robust estimator which is presented in Sect. 6.1.5, while
[80] also presents a simulation comparing the effect of additive outliers on several
robust and non-robust estimators. References [73] and [37] discuss the effect of
outliers in asymmetric GARCH-type models.

4.3 Effects on Volatility Estimation and Prediction

An additive outlier affects the volatility prediction directly through the autore-
gressive coefficient in Eq. (1b) when the outlier occurs in the last observation, or
through the effect on past volatility when the outlier appears before this. However,
an indirect effect can also exist through the effect of the estimation of volatilities
used in the prediction and the parameters of the model. Understanding this indirect
effect is not simple because the outlier can affect not only the estimation of α, β,
and ω, but also the estimation of the volatility of the last observations, which are
used in GARCH(1,1) prediction. In general, one expects to have an increase in the
estimation of the unconditional variance ω/(1−α−β) and the persistence (α+β),
but without a clear indication of the overall indirect effect. There are many works
dealing with the effect of additive outliers on the estimation and prediction of the
volatility, see, for instance, [17, 18, 20, 21, 37, 39, 42, 43, 73, 80, 81, 88]. Most of
the papers contain proposal for a robust estimation and prediction methods. These
are mostly based on a robust estimation of the parameter models and a robust filter
to estimate the volatility. All these papers deal with univariate GARCH models. In
a multivariate context, the papers of [14, 44, 84, 87] can be mentioned.
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5 Detection of Outliers

There is a huge literature on tests to detect additive outliers for univariate GARCH
models. Because of this, we do not present details about the tests, but rather
present the main features of some tests, classifying them by the method used. The
presentation follows [53].

Besides the tests that are listed in the following sections, there are many other
tests. For instance, [75] suggest using the difference between the QML and the
proposed robust two-stage S-estimates to detect outliers or leverage points, [72]
use excess of kurtosis, [4] check whether the observed return is covered by one-
step-ahead interval forecast, [60] use the standardized residuals, [5] present a test
based on the cumulative sum of the squared observations, [26] propose a weighted
forward approach, and [59] present a iterative procedure for four type of outliers.
References [73] and [37] propose tests for asymmetric GARCH-type models.

On the other hand, there are few works addressing the testing for outliers for
MGARCH models. A review of some of these tests is presented in Sect. 5.4.

5.1 Lagrange Multiplier and Likelihood Ratio Tests

Reference [52] presents a Lagrange multiplier test to detect additive outliers. As in
most of the tests proposed to detect outliers, this test is initially developed for a fixed
observation. When the position and the number of outliers are not know, the authors
suggest using the maximum of the test statistics over the entire period and applying
the test iteratively, as in [25]. This type of approach is usually used in almost all
tests when the position and the number of outliers are not known. They also suggest
using simulation to find critical values.

Reference [79] extends the Lagrange multiplier tests to include outliers in every
observation after time τ , which they call level shift outliers while [30] present a
likelihood ratio test to detect additive and volatility outliers. The authors present the
test for an ARMA-GARCH model, but it can be used for the simple GARCH model
with additive outliers. When the positions and number of outliers are not known they
suggest the usual approach as given previously. They also suggest critical values
based on simulation.

5.2 Test Based on ARMA Representation

Reference [39] uses the fact that the square of the series generated by a GARCH
process follows an ARIMA process to propose a method to detect additive outliers,
following the procedure suggested by Chen and Liu [25] for ARMA models. When
the position of the outlier is not known they compute the maximum of the test
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statistics over the entire period and compare it with a threshold value C. The authors
suggest using C = 4, while [22] for the same test, following [88], use C = 10 for
sample size equal to 912. The detection test is used recursively as in [25].

5.3 Test Based on Wavelets

Reference [42] proposes a test based on the coefficients of the discrete wavelet
transform of the residuals on wavelets to detect outliers in volatility models. The
procedure is based on the coefficients from the discrete wavelet transform of the
residuals. The statistics based on detail coefficient have power to detect isolated
and patches of additive outliers. The detection test is used recursively as in [25].
Reference [23] also uses wavelet-based algorithm to detect outliers when modeling
US stock market volatility.

5.4 Test for MGARCH Models

Reference [87] extends the test based on wavelets to multivariate GARCH models.
The authors translate the multivariate problem to a univariate setting by applying
the random projection method. The performance of the tests is evaluated using
simulation for the D-BEKK, CCC, and DCC models with Gaussian and Student-
t error with 7 d.f. with isolated and patches of outliers. A shorter version of this
paper can be found in [44].

5.5 Influential Observation

Although influential observations are not always outliers and not all outliers
are influential, influential analysis using different perturbation schemes can be
used to detect potential outliers. In this sense, we present some papers which
deal with influential analysis in (M)GARCH models. Influence diagnostics for
GARCH models have been studied by Liu [62] for models with elliptical errors (but
without statistical analysis), by Zhang [92] and Zhang and King [93] for models
with Gaussian errors, by Zevallos and Hotta [91] for models with Gaussian or
Student-t errors, and by Hotta and Zevallos [53] as a particular case of conditional
heteroskedastic time series models with Gaussian, Student-t , or generalized
exponential distribution errors.

The papers deal mainly with three perturbations schemes: innovative, additive,
and data perturbations. The last two perturbations are related to additive outliers. In
the additive model’s perturbation scheme, the perturbations are proportional to the
conditional standard error and for the data perturbation scheme the perturbation is
not.
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Reference [93] presents the expressions for the slope and curvature statistics for
the three perturbations schemes using Gaussian errors, while [91] compute them
using Student-t errors and [62] uses elliptical errors. References [93] and [91]
propose using simulation to estimate the distribution of the test statistics to find
threshold values.

There is only one paper dealing with influential analysis in MGARCH models.
Reference [29] presents influential analysis by introducing perturbations to the
conditional variances and covariances in two bivariate GARCH models.

6 Robustness

As mentioned in the previous section, outliers may have a strong effect on model
parameter estimation as well as on volatility and correlation estimation. Outliers also
have a strong impact on the forecast procedures, distorting predictions and giving
a misleading picture of what can be expected in the future, leading to incorrect
decisions. Because there is a large literature we do not cite or present all the
proposed estimators. For instance, we do not discuss bounded influence estimator
of [61], the closed form estimator of [6], or the robust procedures of [26, 49, 50, 71]
and [73]; the last one for asymmetric GARCH models. In this section, we discuss
some alternative approaches meant to be robust to the presence of outliers, showing
good finite sample properties.

6.1 Parameter Estimation

There are many estimators available in the literature to estimate GARCH models
that are meant to be robust to the presence of additive outliers. We introduce briefly
some of the most popular ones to estimate model (2), without taking explicitly the
presence of outliers. Robust estimators are proposed to obtain parameter estimates
that are not affected by atypical observations and also to mitigate the effect of
additive outliers on the volatility and correlation estimates. In general, robustness
depends on the choice of an objective function as well as the choice of threshold
parameters of the objective function. There are many robust estimators derived
from the class of robust M-estimators, see, for instance, [55] for an early simulation
comparison of some M-estimators. In fact, some of the estimators presented in the
following belong to this class of estimators.

6.1.1 QMLt Estimator

In order to mitigate the influence of atypical observations [11] proposes a QML
estimator based on the maximization of the Student-t log-likelihood function.
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Because the Student-t distribution has heavier tails than the Gaussian distribution
it gives less weight to larger innovations. The Student-t log-likelihood, conditional
on σ 2

1 and r1, is given by

l(θ; r) ∝ −
T∑

t=1

⎛

⎝log

⎛

⎝tν

⎛

⎝
rt
√

σ 2
t

⎞

⎠

⎞

⎠− 1

2
log
(
σ 2
t

)

⎞

⎠ , (10)

where θ is the vector of unknown parameters (including the degrees of freedom ν),
r is the vector of observed returns, σ 2

t is the conditional variance defined in Eq.
(2c), and tν(·) is the density of the Student-t distribution with ν degrees of freedom
scaled to have unit variance. Then, the QMLt parameter estimates are defined as

θ̂ = argmax
θ
(l(θ; r)) . (11)

6.1.2 BM Estimator

Reference [68] proposes an M-estimator robust to outliers based on a robust filter
for the volatility. Conditional on σ 2

1 and r1, the objective function is defined as:

M(θ; r) = 1

T − 1

T∑

t=2

ρ(log(r2
t )− log(σ 2

t )), (12)

where θ is the vector of unknown parameters and ρ(x) = m
(
− log

(
f
(
e
x
2

)
e
x
2

))
,

with m(·) being a bounded nondecreasing function and f (·) a centered density
function. Then, the BM (Bounded M) estimator is defined as

θ̂BM =
{
θ̂1 = argminθ MT , MT (θ̂1; r) ≤ M∗

T k(θ̂2; r)
θ̂2 = argminθ M∗

T k, MT (θ̂1; r) > M∗
T k(θ̂2; r),

(13)

whereMT (·, ·) andM∗
T k(·, ·) are both defined as in Eq. (12). The difference between

them is thatMT (·, ·) uses σ 2
t as defined in Eq. (2c) andM∗

T k(·, ·) defines σ 2
t as

σ 2
t = ω + αrc

(
r2
t−1

σ 2
t−1

)

σ 2
t−1 + βσ 2

t−1, (14)

with rc(·) being a robust filter used in the volatility equation to mitigate the influence
of atypical observations and is given by

rc(x) =
{
x, if x ≤ c
c, if x > c,

(15)
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with the threshold constant c being a convenient tradeoff between efficiency and
robustness. For more references about the choice of the threshold c and the
nondecreasing function m(·) see [68].

6.1.3 BQMLt Estimator

The BQMLt estimator, proposed by Carnero et al. [18], follows the same idea of the
BM estimator but uses as objective function the Student-t log-likelihood function.
The BQMLt estimator is defined as

θ̂BQMLt =
{
θ̂1, l(θ̂1, r) ≤ lR(θ̂2, r)

θ̂2, l(θ̂1, r) > l
R(θ̂2, r),

(16)

where l(θ1, r) and lR(θ2, r) are both Student-t log-likelihood functions. However,
l(θ1, r) uses the volatility equation as in Eq. (2c) and lR(θ2, r) uses the robust
volatility equation defined in Eq. (14). Differently from [68], that uses a robust filter
replacing large values by a threshold value, the BQMLt estimator uses the robust
filter that replaces large values by their unconditional expectation. The rc(·) filter is
given as

rc(x) =
{
x, if x ≤ c
1, if x > c,

(17)

with c = 9 for a convenient tradeoff between efficiency and robustness.

6.1.4 MT Estimator

The MT estimator proposed by [65] is an M-estimator for conditional location and
scale models. The robust estimating function is obtained from the Gaussian pseudo
maximum likelihood score function by a downweighting procedure that limits
the potential damaging effects of data points that generate a too large sensitivity
of Gaussian pseudo maximum likelihood. The M-estimator, denoted as θ̂ (MT), is
defined as the solution of the following estimating equation:

T −1
T∑

t=3

A(θ)
(
s(rtt−2; θ)− τθ

)
ω(rtt−2; θ) = 0, (18)

with

At(θ)A(θ) =
[

T −1
T∑

t=3

(
s(rtt−2; θ)− τθ

) (
s(rtt−2; θ)− τθ

)t
ω2(rtt−2; θ)

]−1

,

(19)
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and ω(rtt−2; θ) = min(1, c‖A(θ) (s(rtt−2; θ)− τθ
) ‖−1), rtt−2 = (rt−2, rt−1, rt ),

s(rtt−2; θ) being the score function and τθ a correction factor. The norm ‖ · ‖ is the
L2−norm and c is a constant that controls the degree of robustness; [65] use c = 11.
Furthermore, τθ is computed using the two-step procedure described in the appendix
of [64]. Finally, the volatility is estimated using Eq. (2c) as usual.

6.1.5 BVT Estimator

Reference [15] proposes a robust estimator based on a robust variance target
estimator and on a robust filter of the volatility. This estimator is a modification of
the BM estimator of [68]. The first modification is in the estimation of the marginal
variance, which is estimated as

σ̂ 2(BV T )
z = 1.318

∑T
t=1

(
rt − μ̂

)2
Jt

∑T
t=1 Jt

, (20)

where Jt = I

(
(rt−μ̂)2

(1.4826×MADt,K(rt ))2 ≤ χ2
1 (95%)

)

with I (·) being the indicator

function, μ̂ =
∑T
t=1 rt It∑T
t=1 It

with It = I
(

(rt−Medt,K (rt ))2
(1.4826×MADt,K(rt ))2 ≤ χ2

1 (95%)
)

and the

statistics MADt,K(·) and Medt,K(·) being the median absolute deviation and the
median estimated in window of size K around rt , respectively.

The second modification is in the volatility equation, where a constant cγ is
included in the equation to guarantee that the conditional expectation in the absence
of outliers is still the conditional variance. Then, the volatility equation is given as

σ 2
t−1 = ω + αcγ rc

(
r2
t−1

σ 2
t−1

)

σ 2
t−1 + βσ 2

t−1, (21)

where cγ = E[u]
E[min(u,kγ,1)] with u being a chi-squared random variable with one

degree of freedom and kγ,1 is the γ quantile of the same distribution.
The robust filter rc(·) in the BVT estimator is defined as in Eq. (15). However,

alternative filters can also be used, see, for instance, [82] who use the BVT estimator
with rc(·) defined as in Eq. (17).

Reference [82] reports that, in general, the QML estimator has the best perfor-
mance in the absence of outliers reporting the smallest bias and RMSE. However,
this same estimator has the worst performance when outliers are present in the
series. Estimators such as QMLt, BM, BQMLt, and MT report an improvement
in comparison with the classic QML estimator. Nevertheless, the BVT estimator
presents the best performance for series contaminated by isolated or two consecutive
outliers.
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6.2 Volatility Estimation

In Sect. 6.1 we saw different estimators which are meant to be robust to additive
outliers. Different estimators use different volatility equations, which can be divided
into two groups: standard volatility equations and robust volatility equations. In
the first group no procedure is used to mitigate the propagation of the effect of
outliers on the estimation of the volatility, whereas the other group incorporates
robust filters in the volatility equation to mitigate the outlier effects. Thus, replacing
the parameters by the respective estimated values, the estimated volatility can be
obtained, for instance, through

σ̂ 2
t = ω̂ + α̂r2

t−1 + β̂σ̂ 2
t−1, (22a)

σ̂ 2
t = ω̂ + α̂rc

(
r2
t−1

σ̂ 2
t−1

)

σ̂ 2
t−1 + β̂σ̂ 2

t−1, (22b)

σ̂ 2
t = ω̂ + α̂cγ rc

(
r2
t−1

σ̂ 2
t−1

)

σ̂ 2
t−1 + β̂σ̂ 2

t−1, (22c)

where Eq. (22a) is the standard volatility and Eqs. (22b) and (22c) are robust
volatility equations. The robust volatility Eq. (22b) is used in [68] and [18], whereas
the robust volatility Eq. (22c) is used in [15]. This procedure has been extended to
a leverage effect context by [60].

Some robust procedures are just robust for the parameter estimates and not for
the volatility equation. In these cases, the in-sample volatilities are strongly affected
by outliers. In particular it affects the volatility estimate at t = T , whose effect is
carried out in the prediction. In general, as reported in [82] and [84], estimating the
volatility using the robust filter Eq. (17) results in the best performance.

6.3 Correlation Estimation

Reference [15] proposes a robust estimator of the cDCC models in two stages. In
the first stage, the volatilities of each univariate series are estimated through the
procedure described in Sect. 6.1.5. The second stage estimates the correlation matrix
using the residuals obtained in the first stage. The unconditional correlation matrix
S is calculated in a local window around vt as

RC = c0.95,p

T∑

t=1

Lt

T∑

t=1

vtv
′
tLt , (23)
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with Lt = I (v′t SC−1
t vt < χ2

p(0.95)), SCt = 2 sin
(
π
6 Spt

)
and cγ,p =

E[u]
E[min(u,kγ,p)] , where u has a chi-squared distribution with p degrees of freedom

and kγ,p is the γ quantile of the same distribution. Thus, Ŝ is given by

Ŝ = diag(RC−1/2
11 , . . . , RC

−1/2
pp )× RC × diag(RC−1/2

11 , . . . , RC
−1/2
pp ). (24)

To estimate the conditional correlation and the parameters a and b in the cDCC
specification, [15] use a robust specification given as

Qt = (1 − a − b)S + a × cδ,p × rc(dt−1)

diag(Qt−1)
1/2vt−1v

′
t−1diag(Qt−1)

1/2 + bQt−1, (25)

where dt−1 = v′t−1R
−1
t−1vt−1 (squared Mahalanobis distance). The robust filter rc(·)

in Eq. (25) is defined as

rc(x) =
{
x, if x ≤ c
c/x, if x > c.

(26)

Alternatively, following the ideas of [18] and [82], rc(·) can also be defined as

rc(x) =
{
x, if x ≤ c
E(X)/x, if x > c.

(27)

Then, the robust M-estimator is obtained as

φ̂ = argmax
φ

(

− 1

T

T∑

t=1

[
log (det (Rt ))+ σp,4ρ (dt )

]
)

, (28)

where ρ(x) = −x + σp,4ρtp,4 (exp(x)), ρtp,4(u) = (p + 4) log
(
1 + u

2

)
and

σp,4 = p

E
[
ρ′tp,ν (u)u

] with u being as described previously. The choice of δ and

c is based on a convenient tradeoff between efficiency and robustness. Reference
[15] uses δ = 0.975 and c = χ2

p(δ). The estimated conditional correlation matrix
is obtained by Eq. (25) replacing the parameters by their robust estimates, so that
R̂t = diag(Q̂t )−1/2Q̂tdiag(Q̂t )

−1/2.
Some other approaches to deal with the estimation of the conditional covariance

matrix in a robust framework have been proposed by Boudt and Croux [14], Croux
et al. [27], Iqbal [57] and Trucíos et al. [83].
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6.4 Forecasting

Forecast densities for returns and volatilities are an useful tool in financial econo-
metrics, because as a by-product it is possible to have forecast intervals, which
can be used to measure the uncertainty of return or volatilities. This is helpful to
obtain risk measures, such as the value-at-risk. For instance, [56] investigate the
performance of some robust estimators in the prediction of value-at-risk. In this
section, we will focus only on bootstrap procedures to compute forecast densities.

Forecast densities using bootstrap procedures have been shown to be highly
affected by additive outlier, see, for instance, [82] and [81]. We present two
alternative robust bootstrap procedures to obtain forecast densities and comment
on their finite sample properties.

6.4.1 Mancini and Trojani Algorithm

The robust bootstrap procedure proposed by Mancini and Trojani [65] is based
on the robust estimator described in Sect. 6.1.4 and also on a robust procedure
to estimate the tails of the innovation distribution. Unlike other residual-based
bootstrap procedures, this algorithm does not need re-estimation of the parameters
in each bootstrap replication. The algorithm is computationally simple, since re-
estimation of the parameters is not needed. The main task of the procedure relies on
the estimation of the parameters and tails of the innovations. The algorithm can be
summarized in the following steps:

• Step 1: Estimate the parameters θ by the estimator described in Sect. 6.1.4, θ̂ =
(ω̂, α̂, β̂), and obtain the standardized residuals ε̂t = rt

σ̂t
, t = 1, . . . , T .

• Step 2: Estimate the parameters of the generalized Pareto distribution,
GPD(âl , b̂l) and GPD(âu, b̂u), using the 10% smallest/largest standardized,
residuals respectively.

• Step 3: For h = 1, . . . , H obtain the bootstrap forecast densities of rT+h|T and
σT+h|T repeating B times the recursion

σ̂ ∗2
T+h|T = ω̂ + α̂r̂∗2

T+h−1|T + β̂σ̂ ∗2
T+h−1|T ,

r̂∗T+h|T = ε∗MT,T+hσ̂ ∗
T+h|T ,

(29)

where r̂∗2
T |T = r2

T , σ̂ ∗2
T |T = σ̂ 2

T and ε∗MT,T+h is a random draw defined in Eq. (30).

The bootstrap residuals used in the algorithm are obtained as

ε∗MT,t =

⎧
⎪⎪⎨

⎪⎪⎩

ε∗t , if l ≤ ε∗t ≤ u,
u+ xu,t , if ε∗t > u,
l − xl,t , if ε∗t < l,

(30)
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where l and u are the 10th and 90th percentile of the standardized residuals and xl
and xu are random draws from GPD(âl , b̂l) and GPD(âu, b̂u).

This procedure was originally proposed as a robust way to estimate the VaR.
Moreover, as described in the previous steps, it is also possible to obtain forecast
densities for returns and volatilities. However, it is important to note that in this
algorithm there is no source of variability in the one-step-ahead forecast because in
this algorithm the estimated model is the same for all bootstrap recursions, i.e., the
forecast density is a degenerate distribution.

6.4.2 Trucíos, Hotta, and Ruiz Algorithm

The bootstrap procedure proposed by Trucíos et al. [82] is a robustification of the
procedure of [69]. It is based on a robust estimator of the parameters and on a robust
filter to estimate the volatility in the entire bootstrap procedure. The algorithm can
be summarized in the following steps:

• Step 1: Estimate the parameters θ by the estimator described in Sect. 6.1.5,
θ̂ = (ω̂, α̂, β̂), and obtain the corresponding standardized residuals ε̂t = rt

σ̂t
,

t = 1, . . . , T where σ̂t is obtained by Eq. (22c). Denote by F̂ε the empirical
distribution of the centered standardized residuals.

• Step 2: Generate a bootstrap series r∗. For t = 1, . . . , T ,

r∗t = σ ∗
t ε

∗
t ,

σ ∗2
t+1 = ω̂ + α̂σ ∗2

t cγ rc

(
r∗2
t

σ ∗2
t

)

+ β̂σ ∗2
t ,

(31)

where ε∗t are bootstrap extractions from F̂ε, σ ∗2
1 = σ̂ 2

1 and the filter rc(·) is
defined in Eq. (34). Estimate the parameters, θ̂∗ using the same procedure used
in Step 1.

• Step 3: Obtain h-steps-ahead forecast for returns and volatilities as

σ̂ ∗2
T+h|T = ω̂∗ + α̂∗σ̂ ∗2

T+h−1|T cγ rc

(
r∗2
T+h−1|T
σ̂ ∗2
T+h−1|T

)

+ β̂∗σ̂ ∗2
T+h−1|T ,

r̂∗T+h|T = ε∗T+hσ̂ ∗
T+h|T ,

(32)

for h = 1, . . . , H, and where r̂∗T |T = rT , ε∗T+h are bootstrap extractions from F̂ε
and σ̂ ∗2

T |T is obtained using the recursion

σ̂ ∗2
t |T = ω̂∗ + α̂∗σ̂ ∗2

t−1|T cγ rc

(
r2
t−1

σ̂ ∗2
t−1|T

)

+ β̂∗σ̂ ∗2
t−1|T , (33)
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for t = 2, . . . , T , σ̂ ∗2
1|T = σ̂ 2

1 and rc(·) defined as

rc(x) =
{
x, if x ≤ c
ε∗2
t , if x > c,

(34)

with c = 9 for a tradeoff between robustness and efficiency in the context of
Gaussian errors.

• Step 4: Repeat steps 2 and 3 B times to obtain B bootstrap replicates
(r̂

∗(1)
T+h|T , . . . , r̂

∗(B)
T+h|T ) and (ŝ∗(1)T+h|T , . . . , ŝ

∗(B)
T+h|T ) for rT+h and sT+h, respectively.

This bootstrap procedure has good finite sample properties in both contaminated
and uncontaminated series. This algorithm is computationally more expensive than
the MT procedure since re-estimation in each replication is needed. However, the
estimator used in this algorithm is faster than the one used in the MT algorithm.
Thus, the time to process this algorithm is not comparatively much longer than the
processing time of the MT algorithm.

6.4.3 Trucíos, Hotta, and Ruiz Algorithm: Multivariate Version

In this section, we introduce the multivariate version of the algorithm described
in the previous subsection. This procedure proposed by Trucíos et al. [84] extends
the bootstrap algorithm of [82] in a multivariate way and the bootstrap procedure
of [41] in a robust way. The main idea follows [82], and the algorithm is based
on a robust estimator for the parameters, volatilities, and correlations and on
robust filters for volatilities and correlations. The algorithm is constructed for the
dynamic conditional correlation models but the ideas behind it can be used in other
multivariate GARCH models. The robust algorithm can be summarized as

• Step 1: Estimate the model parameters (ψ̂) by the procedure described in
Sect. 6.3 and obtain ε̂t = Ĥ

−1/2
t rt . Denote the corresponding empirical distri-

bution function by F̂ε̂.
• Step 2: Using ψ̂ and ε∗ ∼ F̂ε̂, generate multivariate bootstrap series r∗t
• Step 3: Fit the cDCC model on r∗t and obtain ψ̂∗.
• Step 4: Compute h-steps-ahead bootstrap forecast for returns, volatilities, and

correlations by recursion using the bootstrap estimated parameters ψ̂∗ and the
original multivariate series rt ,

• Step 5: Repeat steps 2–4, B times, and compute (r̂∗1
T+h|T , . . . , r̂∗BT+h|T ),

(D̂∗1
T+h|T , . . . , D̂∗B

T+h|T ) and (R̂∗1
T+h|T , . . . , R̂∗B

T+h|T ) where h = 1, . . . , H .

The main difference between this and the algorithm of [41] is that the model
parameters are estimated using a robust procedure instead of the classic approach
of [2]. The volatility and correlation are estimated using robust filters instead of the
standard filters. Basically, standard equations are replaced by

σ ∗2
i,t = ω̂i + α̂ir∗2

i,t−1cγ rc

(
r∗2
i,t−1

σ ∗2
i,t−1

)

+ β̂iσ ∗2
i,t−1, (35)
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and

Q̂∗
t = (1 − â∗ − b̂∗)Ŝ∗ + â∗

[
diag(Q̂∗

t−1)
1
2 ε

′∗
t−1ε

∗
t−1diag(Q̂

∗
t−1)

1
2

]
+ b̂∗Q∗

t−1, (36)

respectively, see [15] and [84] for details.
The algorithms of [69] and [65] overestimate the coverage for returns when

outliers are present near to the end of the sample period. However, the robust
alternative of [82] presents estimated coverage closer to the nominal value than
the other algorithms. The advantage of the procedure of [82] is only marginal for
uncontaminated series, and all procedures have a good performance in the absence
of outliers. For volatilities, the presence of outliers affects directly the construction
of the forecast densities. In some cases the failure coverage is almost 100% when
the algorithms of [69] and [65] are used. As reported by Trucíos et al. [82], the
distortion of the forecast in the presence of outliers is strong and the results are
disastrous when outliers appear near the end of the sample period.

7 Conclusion and Final Remarks

The (M)GARCH models are probably the most used to estimate and predict
volatility. Estimation and prediction of volatility are very important in many
financial applications. One important issue in the application of (M)GARCH models
is the frequent presence of outliers in financial time series and their effects in all
stages of model application. Because of these drawbacks, there is a huge literature
analyzing the effect of outliers and procedures to mitigate this effect. We present
some issues involved in the inference in (M)GARCH models in the presence of
additive outliers, which are the most important type of outliers found in financial
time series. Because there is already an extensive literature on the subject we had
to focus on only some issues. We decided to emphasize the presentation of the
literature on the effect of the outliers and on robust inference, but mostly on the
prediction intervals. This decision is based mostly on the importance of prediction
intervals and the fact this problem has been investigated less. Although many papers
have been published dealing with outliers, there is still a lot to be done, mainly on
MGARCH models and procedures, depending on the final application.
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Notes on Newton’s Method After 1960

José Mario Martínez

Abstract Some Newtonian ideas will be reported with respect to research areas that
emerged in numerical Mathematics after, approximately, 1960. For the problems
of solving nonlinear equations and unconstrained optimization, Quasi-Newton
methods, which stayed in the mainstream of numerical optimization for more than
30 years, will be motivated and discussed. The topic of complexity in unconstrained
optimization will be introduced and some fundamental results will be rigorously
proved. Newtonian algorithmic schemes in Linear Programming, which emerged
after 1984 and presently represent competitive alternatives for large-scale problems,
will be commented. Finally, surprising negative results concerning the capacity
of Newton’s method to detect approximate solutions of constrained optimization
problems will be reported.

1 Introduction

Every undergraduate student of Mathematics, Physics, or Engineering learns that
Newton’s method is a powerful tool for solving equations and that this method
converges very fast if the initial approximation is reasonably close to the solution.
Moreover, in most situations, fast convergence occurs even if the initial approx-
imation is poor. Fast convergence means, in general, “quadratic” convergence, a
property that guarantees that the number of correct digits at some iteration approxi-
mately doubles the corresponding number at the previous one. Later, students learn
that there are many methods in numerical mathematics that are called “Newtonian”
or, simply, “Newton” for solving different practical problems. Popular knowledge
about these methods guarantee that they all are “good,” in the sense that they are
very fast close to the solutions and that enjoy other theoretical and practical excellent
properties. More recently, it became accepted the idea that, not only “every Newton
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Fig. 1 Newton’s iteration for
solving a scalar equation

is good” but, also, “every good is Newton,” because several methods that were well
known as being effective and having nice convergence properties were shown to be,
in one sense or another, versions of Newton’s method [22].

Newton’s idea is the following: Given a complicated problem and some approx-
imation to its solution, one builds a simpler and solvable problem and we postulate
that its solution is a better approximation to the solution of the original problem
than the previously computed approximation. The simpler problem is built using
information available at the current approximation.

The Newtonian paradigm can be applied to many problems, even nonmath-
ematical ones. The most simple case consists of finding a solution of a scalar
equation g(x) = 0. If xk is an approximate solution, the presumably better
approximation xk+1 is obtained by solving (when possible) the linear equation
g(xk)+ g′(xk)(x − xk) = 0. See Fig. 1.

In the same way, we define the Newtonian iteration when the problem is to solve
a nonlinear system of equations g(x) = 0, where g : Rn → Rn. In this case, the
Jacobian g′(xk) is an n× n matrix and finding the new iterate involves the solution
of an n× n linear system of equations.

One of the most popular applications of solving nonlinear systems comes from
the unconstrained minimization of scalar functions. If f : Rn → R, g = ∇f is its
gradient, and H = g′ = ∇2f is its Hessian, the iterate defined by the solution of
g(xk)+ g′(xk)(x − xk) = 0 defines a stationary point (perhaps a minimizer) of the
quadratic approximation f (xk)+ 〈g(xk), x − xk〉 + 1

2 (x − xk)T H(xk)(x − xk).
Thus, the simple problem that corresponds to the minimization of an n-

dimensional scalar function f consists of minimizing a quadratic function, a
problem that, in turn, is roughly equivalent to solving a linear system of equations.

We use to say that the simple problem associated with every iteration of a
Newtonian method is a Model of the original problem. In unconstrained opti-
mization, Newton deals with quadratic models, although different interpretations
are possible, as we will see later. Before 1960, it was believed that minimizing
functions with more than 10 variables employing Newton’s method was very hard
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because of complications solving “big” linear systems and the computation of
second derivatives. These complications motivated the upraise of the quasi-Newton
age, as we will see in Sect. 2.

2 Quasi-Newton Age

The quasi-Newton age arose around 1960 associated to the unconstrained minimiza-
tion problem:

Minimize f (x), (1)

where f : Rn → R. The Steepest Descent method (or Cauchy’s method, or
Gradient method [10]) for solving (1) proceeds, at each iteration, computing the
gradient g(xk) and performing a “line search” along that direction with the aim of
obtaining a better approximate solution:

xk+1 = xk − tkg(xk), (2)

where tk > 0 is such that, at least, f (xk+1) < f (xk). If g(xk) does not vanish,
this condition is always verified if tk is small enough because the direction −g(xk)
is a “descent direction.” Many alternatives exist for deciding the most convenient
value of tk . Cauchy’s method is easy to implement and relatively cheap since
performing one iteration only needs computation of function values and a gradient
(no Hessians), while linear algebra calculations associated with (2) are trivial.
Moreover, memory requirements for the implementation of (2) are minimal.

However, the sequences generated by the Cauchy method usually converge to
stationary points of (1) (points where g(x) = 0) very slowly. This is because
Cauchy’s method reflects a “greedy” way of taking decisions. According to the
steepest descent point of view, the decision maker stays at xk , verifies the character-
istics of its problem in a very small neighborhood of the present approximation, and
takes a decision based only on such “myopic” observation. Of course, problems do
not behave far from the actual approximation in the same way as they do close to it.
For this reason, the number of iterations needed to achieve good solutions could be
unacceptably large.

On the other hand, Newton’s method seems to work in a very different way.
Instead of taking a quick decision based on local considerations, Newton “stops
to think” about the choice of a good model that, perhaps, should reflect problem
features in a smarter way. This model will correspond to the minimization of the
quadratic that coincides with the objective function f up to its second derivatives
(not only the first ones). The consequence is that, in general, the goal of obtaining
very good approximate solutions in a small number of iterations is achieved but,
on the other hand, the computational effort to perform an iteration is considerably
bigger than the one required by Cauchy.
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The dream of the pioneers of the quasi-Newton age [13, 18] was to devise
algorithms for solving (1) that, at the first iterations, behave as Cauchy and, at the
end, behave as Newton. The rationale behind this idea is that, at the beginning, when
we are probably far from the solution, there is no reason to lose a lot of time building
or solving a good model, whereas, close to the solution (at the end), the Newtonian
model reflects very accurately the original problem and, therefore, Newtonian
iterations produce very fast approximations. (The local convergence properties
of Newton’s methods for solving nonlinear systems were known several decades
ago.) On the other hand, quasi-Newton iterations should involve considerably less
computational effort than Newton steps.

By (2), the gradient method with line searches takes the form

xk+1 = xk − tkHkg(xk) (3)

with Hk = I (the Identity matrix) for all k ∈ N. Moreover, a line-search version of
Newton’s method also has the form (3) withHk = ∇2f (xk)−1. Should it be possible
to devise a method of the form (3) in which H0 = I and Hk ≈ ∇2f (xk)−1 for k
large with moderate computational cost per iteration? Methods with such purpose
were ultimately called “quasi-Newton methods” and their development and analysis
dominated mainstream research in computational optimization for more than three
decades.

By the Mean Value Theorem, we have that:

[ ∫ 1

0
∇2f (xk + tsk)dt

]

sk = yk, (4)

where

sk = xk+1 − xk and yk = g(xk+1)− g(xk).

Then, since the matrix [∫ 1
0 ∇2f (xk + tsk)dt] is an average of the Hessians of f

in the segment [xk, xk+1], it turns out that the Hessian ∇2f (xk+1) approximately
satisfies the “secant equation”

Bsk = yk. (5)

The secant system has n equations and n2 unknowns (the entries of B). The
number of unknowns can be reduced to (n + 1)n/2 considering that Hessians are
symmetric matrices and (5) defines an affine subspace in the space of matrices. If
Bk is an approximation to ∇2f (xk), it is natural to define Bk+1, the approximation
to ∇2f (xk+1), as some kind of projection of Bk on the affine subspace defined by
the secant equation. For example, the BFGS method, which is the most popular
quasi-Newton method for unconstrained minimization, is defined by:

xk+1 = xk − tkB−1
k g(x

k)
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and

Bk+1 = Bk + yk(yk)T

(yk)T sk
− Bks

k(sk)T Bk

(sk)T Bksk
. (6)

The interpretation of (6) as a (variable with respect to xk) projection on the set of
solutions of (5) may be found in the classical book by Dennis and Schnabel [15].

The BFGS method may be defined without explicitly mentioning the inverse of
any matrix, since the inverse of Bk+1 in (6) can be computed in terms of the inverse
of Bk by means of a judicious application of the Sherman–Morrison formula [19].

The line-search parameter tk is used to guarantee sufficient descent of f (xk+1)

with respect to f (xk). Algorithms for choosing tk differ in degrees of sophistication
and cause different numerical behaviors of the methods so far implemented.

Quasi-Newton methods were generalized to solving arbitrary nonlinear systems
of equations by Broyden [5] and many followers. Generalizations include taking
advantage of specific structures (for example, nonlinear least squares problems),
using sparsity patterns of Hessians or Jacobians, direct updates of factorizations
[25], nonlinear systems coming from constrained optimization, and many others.

Roughly speaking, as one can expect quadratic local convergence from Newton’s
method, superlinear convergence is usually observed, and many times proved, in
quasi-Newton algorithms. The pioneers’ project of devising methods that smoothly
evolve from Cauchy behavior to Newtonian behavior was only partially successful.
Most practitioners believe that, when it is affordable to use Newton in unconstrained
optimization or nonlinear systems, the Newton alternative is more efficient than
quasi-Newton ones. The motivation for quasi-Newton methods decreased with the
development of algorithmic differentiation [21], sparse matrix techniques [16],
and the use of iterative methods for solving the Newtonian linear equation [14].
However, quasi-Newton ideas emerge frequently in modern optimization in com-
bination with new techniques for multiobjective problems, equilibrium problems,
constrained and nonsmooth optimization, and many others.

3 Linear Programming

Linear Programming is the problem of minimizing a linear function subject to linear
inequalities and equalities. Every Linear Programming problem can be reduced to
the Standard Form:

Minimize cT x subject to Ax = b and x ≥ 0. (7)

A point x ∈ Rn is a solution of (7) if and only if it satisfies the KKT conditions:

c + AT y − z = 0, xj zj = 0 for all j = 1, . . . , n, (8)
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for some y ∈ Rm and z ≥ 0, together with the feasibility conditions

Ax = b, x ≥ 0. (9)

Moreover, if the Linear Programming problem has a solution, then one of its
solutions is a vertex of the polytope defined by (9). See [28] and many other
textbooks.

The latter property motivates the best known method for solving Linear Pro-
gramming problems: The Simplex Method, invented by George Dantzig in 1949
[12], proceeds visiting vertices of the polytope (9) always reducing the objective
function value. Since the number of vertices is finite, the Simplex Method finds a
solution of (7), when such a solution exists, in a finite number of steps.

The Simplex Method was the standard procedure for solving Linear Pro-
gramming problems until 1984 and, perhaps, still is. However, at least from the
theoretical point of view, this method has a drawback: In the worst case, it may need
to visit all the vertices of a polytope for finding a solution and, since the number
of vertices grows exponentially with the number of variables, the computer time
needed to solve a large problem may be, in the worst case, unaffordable. This
drawback motivated, in 1979, the introduction of a new method by Khachiyan
[24] who showed that a solution with arbitrary chosen precision can be found
in polynomial time. However, Khachiyan’s method was shown very soon to be
ineffective in practical computations.

In 1984, Karmarkar [23] introduced a new method for Linear Programming,
enjoying similar convergence properties as Khachiyan’s method, for which he
claimed that, especially for large problems, the performance was orders of mag-
nitude better than the performance of the Simplex algorithm. His results and
claims attracted the attention of the whole optimization community. Karmarkar’s
method, whose practical performance could not be reproduced by independent
experiments, introduced new ideas, as projective transformations, approximation
by means of interior points, and potential functions, that seemed to be in the kernel
of polynomiality proofs and practical performance. Later, it was verified that the
only new idea that was crucial both for proofs and for practical behavior was the
interiority of the sequence of iterates generated by the method. See [20].

Independently of the eventual discard of the original Karmarkar’s method,
his work had the merit of motivating a lot of fruitful research that showed that
challenging alternatives to the Simplex method may exist. Ultimately, the challenge
of the so-called Interior Point methods motivated an enormous improvement in
Simplex implementations.

Modern descriptions of Interior Point methods are closely related to the Newton
paradigm. In fact, from (8) and (9) we may extract the nonlinear system of
equations:

c + AT y − z = 0, Ax = b, xj zj = 0 for all j = 1, . . . , n. (10)
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If (x, y, z) is a solution of (10) such that x ≥ 0 and z ≥ 0, we have that x is a
solution of (7).

But, (10) is a nonlinear system of equations with 2n+m equations and unknowns,
then using Newton’s method is an interesting alternative for its solution. On the other
hand, we are interested only in solutions such that x ≥ 0, z ≥ 0, which justifies the
decision of starting with x0 > 0, z0 > 0 and to maintain xk > 0, zk > 0 throughout
the calculations. It is not recommendable to admit xkj = 0 or zkj = 0 because,

in this case, Newton’s method would maintain xk+1
j = 0 (or zk+1

j = 0) for all
k. Therefore, the pure Newtonian iterations must be modified in order to prefer the
positivity (interiority) of xk and zk . This is usually done by means of the introduction
of (close to 1) damping parameters. Namely, if (xk, yk, zk) (with xk > 0 and zk > 0)
is the current iteration and (dx, dy, dz) is the increment computed by one iteration
of Newton’s method for solving the nonlinear system (10), we will compute:

(xk+1, yk+1, zk+1) = (xk + θkdx, yk + θkdy, zk + θkdz),

in such a way that the new iterate remains interior and the difference with respect to
the pure Newton iterate is cautiously small.

The procedure described above is called Primal-Dual Affine-Scaling method. In
Newtonian terms, this is a damped Newton method that preserves interiority. This
method behaves well except when some variable xj (or zj ) becomes close to zero
when it must be positive at the solution. In order to understand the best succeeded
procedures for improving the robustness of the primal-dual affine-scaling method,
let us assume first that (xk, yk, zk) is such that

c + AT yk − zk = 0, Axk = b, xk > 0, and zk > 0.

Clearly, (xk, yk, zk) is a solution of the nonlinear system

c + AT y − z = 0, Ax = b, xj zj = xkj zkj , j = 1, . . . , n.

This means that we already know a solution of the system

c + AT y − z = 0, Ax = b, xj zj = txkj zkj , j = 1, . . . , n (11)

with x > 0, z > 0, for t = 1, whereas we wish a solution for t = 0. The Primal-
Dual Affine-Scaling (Newton) step is an aggressive attempt of achieving the solution
for t = 0. If this attempt is considered to be unsuccessful (for some more or less
theoretical justified criterion), the natural procedure is to try a less ambitious value
of t > 0. For approximating the solution of (11) for the new value of t , starting
from an iterate (xk, yk, zk), a Newton-like iteration is also employed that may use
the same matrix factorization as the one employed for finding the Primal-Dual
Affine-Scaling step. Variations of this idea define the best succeeded modern Interior
Point methods for Linear Programming. It is remarkable that a problem traditionally
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solved by means of a combinatorial procedure as Simplex, later challenged by the
nonstandard ideas of Khachiyan and Karmarkar, eventually found in the Newton
paradigm one of the most promising solution tools for many difficult, especially
large-scale, situations.

4 Convergence and Complexity in Unconstrained
Optimization

Numerical methods for solving general continuous optimization problems are
iterative. Since finding global minimizers without employing the specific structure
of the problems is very difficult, we generally rely on methods that guarantee
convergence to points that satisfy necessary optimality conditions (hopefully, local
minimizers). Classical convergence theories analyze the sequences generated by
optimization methods and prove that the sequence of gradients tend to zero or
that the gradient vanishes at limit points. These “global” theories say nothing
about the speed of convergence. Many times they are complemented with “capture
theorems” that say that, when an iterate is close enough to a local minimizer with
good properties, convergence to the local minimizer takes place with satisfactory
convergence rate.

Only recently, it has been considered to be relevant to compute bounds for
the computer effort that is necessary to achieve a predetermined precision ε. For
example, if one assumes that “precision ε” means that the norm of the gradient is
smaller than ε, the question is about the number of iterations and function-gradient
evaluations that are necessary to achieve such precision, as a function of ε, the
functional value at the initial point, characteristics of the problem, and parameters
of the method.

Being a bit more formal than in the previous sections, we will assume here that
f : Rn → R has continuous first derivatives g(x) = ∇f (x) and that a Lipschitz
inequality for the gradient holds. As a consequence, by Elementary Calculus, there
exists γ > 0 such that

f (x + s) ≤ f (x)+ g(x)T s + γ ‖s‖2. (12)

This assumption is “slightly” weaker than saying that f has bounded second
derivatives on Rn. We are going to analyze the worst-case complexity of a version
of Cauchy’s method, with the aim of relating this analysis with analogous analyses
concerning Newton’s method.

There is a reason for considering that Cauchy’s method is also a Newton-like
method: In Newton, for minimizing functions, we use to say that the objective
function is approximated, locally, by a quadratic model. Analogously, in Cauchy
we may think that we approximate the objective function, locally, by a linear model.
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Equivalently, in Newton we approximate the gradient by a linear model whereas in
Cauchy we approximate the gradient by a constant vector, namely, the gradient at
the current iterate.

The difficulty in this point of view about Cauchy is that, in general, linear
functions do not admit minimizers. Therefore, the “Newtonian subproblem” cannot
be solved. We will fix this inconvenience observing that, although the linear model
g(xk)T (x − xk) does not have a minimizer, the “regularized” version of this model:
g(xk)T (x − xk)+ ρ

2 ‖x − xk‖2 has a unique solution independently of the value of
the regularizing parameter ρ > 0. Moreover, if we choose ‖·‖ as the Euclidian norm
‖ · ‖2, the minimizer of g(xk)T (x−xk)+ ρ

2 ‖x−xk‖2 is given by x = xk− 1
ρ
g(xk).

This idea is formalized in the following algorithm.

Algorithm 4.1
Let x0 ∈ Rn and α > 0 be given. Initialize k ← 0.

Step 1 Set ρ ← 1/2.
Step 2 Solve the subproblem

Minimize g(xk)T s + ρ‖s‖2,

obtaining the solution strial . (Note that strial = − 1
2ρ g(x

k) if ‖ · ‖ = ‖ · ‖2.)
Step 3 (Test the sufficient descent condition)

If

f (xk + strial) ≤ f (xk)− α‖strial‖2, (13)

set sk = strial , xk+1 = xk + sk , k ← k + 1, and go to Step 1.
Otherwise, set ρ ← 2ρ and go to Step 2.

When ‖ · ‖ is the Euclidian norm, Algorithm 4.1 is Cauchy’s method with the
most simple line-search procedure (backtracking dividing the trial step by 2) and
the clothes of regularization.

Lemma 4.1 If ρ ≥ γ + α, the sufficient descent condition (13) is fulfilled.

Proof By (12), the hypothesis of this lemma, and Step 2 of the algorithm,

f (xk + s) ≤ f (xk)+ g(xk)T s + γ ‖s‖2

= f (xk)+ g(xk)T s + (γ + α)‖s‖2 − α‖s‖2

≤ f (xk)+ g(xk)T s + ρ‖s‖2 − α‖s‖2 ≤ f (xk)− α‖s‖2.

This completes the proof. *,
By Lemma 4.1, the first term in the sequence {1/2, 1, 2, 4, 8 . . .} bigger than

γ + α necessarily defines a value of ρ for which (13) holds. As a consequence, the
following corollary holds.
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Corollary 4.1 At each iteration of Algorithm 4.1, after a maximum of 1+ log2(γ +
α) tests (backtrackings, functional evaluations) we necessarily obtain the descent
condition and the final ρ for which (13) holds and satisfies:

ρ < 2(γ + α).

For the sake of simplicity, assume now that ‖·‖ = ‖·‖2. Then, strial = − 1
2ρ g(x

k)

and, so, by Corollary 4.1, ‖sk‖ ≥ 1
4(γ+α)‖g(xk)‖. Then, by the sufficient descent

condition,

f (xk+1) ≤ f (xk)− α

16(γ + α)2 ‖g(x
k)‖2.

Then, if ‖g(xk)‖ ≥ ε,

f (xk+1) ≤ f (xk)− α

16(γ + α)2 ε
2. (14)

Assume that ftarget < f (x0) is arbitrary. Then, (14) implies that the number of
iterations at which ‖g(xk)‖ ≥ ε and f (xk) > ftarget is bounded by:

[f (x0)− ftarget ]16(γ + α)2
α

ε−2. (15)

Thus, by Corollary 4.1, the number of evaluations is bounded by:

[f (x0)− ftarget ][1 + log2(γ + α)]16(γ + α)2
α

ε−2. (16)

Both expressions (15) and (16) have the form cε−2, where c is a constant that
only depends on characteristics of the problem (γ ), parameters of the algorithm
(α), the initial point x0, and, of course, the target with respect to which we desired
to estimate the computational effort. The dependence on the precision required is
represented by ε−2. For this reason, we generally say that the complexity of the
algorithm is O(ε−2).

“Gradient-related” methods for unconstrained optimization are characterized by
the generation of directions dk that are related to g(xk) by means of angle and
relative-size conditions as:

g(xk)T dk ≤ −θ‖g(xk)‖2‖dk‖2 and ‖dk‖ ≥ β‖g(xk)‖, (17)

where θ ∈ (0, 1) and β > 0 are algorithmic parameters. These conditions are
sufficient to show that gradient-related methods have complexity O(ε−2).

Quasi-Newton methods (as BFGS) also enjoy the worst-case complexityO(ε−2)

when conveniently safeguarded in order to satisfy gradient-related conditions. The
standard BFGS method (without safeguards) does not satisfy such property. In fact,



Notes on Newton’s Method After 1960 213

there exist counterexamples that show that all the limit points generated by this
popular method may be such that the norm of the gradient does not vanish at all
[11, 26]. Of course, this prevents the possibility of satisfactory complexity results.

Newton’s method with line searches may also generate sequences with associated
gradients that are bounded away from zero [27]. This cannot happen when Newton’s
method is coupled with a “trust-region” strategy, which guarantees that every limit
point is stationary. In spite of this, it has been shown that even Newton’s method
with the robust trust-region strategy has worst-case complexity not better than
O(ε−2) [6].

It is disappointing that, with Newton’s method plus traditional globalization
procedures, a complexity better than O(ε−2) cannot be obtained. Fortunately,
the reason is that the “traditional globalization procedures” are not the natural
globalization procedures that should be used for Newton. Mimicking the complexity
proof given for Cauchy, we will show that a better complexity result may be obtained
for Newton, if one replaces quadratic regularization with cubic regularization and
quadratic sufficient descent with cubic convergence descent with respect to ‖strial‖.
Analogous results with variations with respect to the sufficient descent criterion
were given in [3, 7, 29].

In order to define Algorithm 4.2, assume that the Hessian ∇2f (x) exists for all
x ∈ Rn.

Algorithm 4.2
Let x0 ∈ Rn and α > 0 be given. Initialize k ← 0.

Step 1 Set ρ ← 0.
Step 2 Solve the subproblem

Minimize g(xk)T s + 1

2
sT∇2f (xk)s + ρ‖s‖3,

obtaining the solution strial . If the subproblem has no solution (which may occur
only if ρ = 0), reset ρ ← 1 and repeat Step 2.

Step 3 (Test the sufficient descent condition)

If

f (xk + strial) ≤ f (xk)− α‖strial‖3, (18)

set sk = strial , xk+1 = xk + sk , k ← k + 1, and go to Step 1.
Otherwise, set ρ ← 2ρ and go to Step 2.

The complexity proof for Algorithm 4.2 needs to assume that the Hessian ∇2f

is Lipschitz continuous for all x ∈ Rn. This implies, as in the case of (12), that there
exists γ2 > 0 such that, for all x, s ∈ Rn,

f (x + s) ≤ f (x)+ g(x)T s + 1

2
sT∇2f (x)s + γ2‖s‖3 (19)
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and

‖g(x + s)‖ ≤ ‖g(x)+ ∇2f (x)s‖ + γ2‖s‖2. (20)

Lemma 4.2 below is entirely analogous to Lemma 4.1.

Lemma 4.2 If ρ ≥ γ2 + α, the sufficient descent condition (18) is fulfilled.

Proof By (19), the hypothesis of this lemma, and Step 2 of the algorithm,

f (xk + s) ≤ f (xk)+ g(xk)T s + 1

2
sT∇2f (xk)s + γ2‖s‖3

= f (xk)+ g(xk)T s + 1

2
sT∇2f (xk)s + (γ2 + α)‖s‖3 − α‖s‖3

≤ f (xk)+ g(xk)T s + 1

2
sT∇2f (xk)s + ρ‖s‖3 − α‖s‖3

≤ f (xk)− α‖s‖3.

This completes the proof. *,
Moreover, as in Corollary 4.1, we have:

Corollary 4.2 At each iteration of Algorithm 4.2, after a maximum of 1+ log2(γ2+
α) tests we necessarily obtain the descent condition (18) with

ρ < 2(γ2 + α).

By Corollary 4.2, after computer time that only depends on γ2 (characteristic of
the problem) and α (characteristic of the algorithm), we obtain a decrease at least
α‖strial‖3. Recall that in Algorithm 4.1 the corresponding decrease was α‖strial‖2.
In Algorithm 4.1, our proof finished showing that ‖sk‖ was bigger than a multiple

of ‖g(xk)‖. Here, we will show that ‖sk‖ is bigger than a multiple of ‖g(xk+sk)‖ 1
2 .

In other words, we will prove that ‖g(xk + sk)‖ is smaller than a multiple of ‖sk‖2.
In fact, by (20),

‖g(xk + sk)‖ ≤ ‖g(xk)+ ∇2f (xk)sk‖ + γ2‖sk‖2.

So, assuming, for simplicity, that ‖ · ‖ = ‖ · ‖2, using that ∇(‖s‖3) = 3s‖s‖, and
the fact that gradient of the objective function of the subproblem must vanish at sk ,
we have that:

‖g(xk + sk)‖ ≤ ∥∥g(xk)+∇2f (xk)sk + 3ρsk‖sk‖∥∥+ 3ρ‖sk‖2 + γ2‖sk‖2

= (3ρ + γ2)‖sk‖2.
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Then, since the final ρ accepted at (18) is smaller than 2(γ + α),

‖g(xk + sk)‖ ≤ [6(γ2 + α)+ γ2]‖sk‖2.

Thus,

‖sk‖ ≥ ‖g(xk+1)‖ 1
2√[6(γ2 + α)+ γ2] .

By (18), this implies that, at each iteration of Algorithm 4.2,

f (xk+1) ≤ f (xk)− α ‖g(xk+1)‖3/2

[6(γ2 + α)+ γ2]3/2 .

Therefore, the number of iterations for which ‖g(xk+1)‖ ≥ ε and f (xk+1) ≥ ftarget
is bounded above by c[f (x0)−ftarget ]ε−3/2, where c is a constant that only depends
on γ2 and α. As in the case of Algorithm 4.1, by Corollary 4.2, this implies that the
worst-case complexity of the Newtonian Algorithm 4.2 is O(ε−3/2).

This rather simple result, as several analogous ones [3, 7, 17, 29], confirms
the intuition that some version of Newton’s method should have better worst-case
complexity than every gradient-related method.

A straightforward generalization of Algorithm 4.2 consists of replacing the sub-
problem with the minimization of the q-th Taylor polynomial plus a regularization
of the form ρ‖s‖q+1 and replacing (18) with

f (xk + strial) ≤ f (xk)− α‖strial‖q+1.

Assuming Lipschitz conditions on the derivatives of order q and following, mutatis
mutandi, the proof for the case q = 2, we obtain an algorithm with complexity
O(ε(q+1)/q). Slight variations of this algorithm have been given in [3].

5 Newton in Constrained Optimization

The smooth constrained optimization problem consists of minimizing a smooth
function f (x) subject to h(x) = 0 and g(x) ≤ 0, where h : Rn → Rm and
g : Rn → Rp are, also, sufficiently smooth. For simplicity, this section will be
restricted to the case in which there are not inequality constraints, although all the
arguments apply straightforwardly to the case p > 0. Then, the problem considered
here is

Minimize f (x) subject to h(x) = 0. (21)
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In unconstrained optimization, it is quite natural to require, as stopping criterion
for computer algorithms, the condition ‖∇f (xk)‖ ≤ ε because ∇f (x) = 0 is a
necessary condition for every local minimizer. However, in constrained optimization
we have the additional requirement on the feasibility of the approximate solution
and, moreover, a computable necessary condition based on the gradients of f and
the constraints does not exist. In fact, the Lagrange conditions (called KKT in the
presence of inequalities) establish that

∇f (x)+
m∑

i=1

λi∇hi(x) = 0 (22)

should hold for suitable multipliers λ ∈ Rm, but these conditions are guaranteed
to hold at a minimizer only if such point satisfies a “constraint qualification.” For
example, the problem of minimizing x subject to x2 = 0 has an obvious global
minimizer at x = 0, but (22) does not hold.

This inconvenience raises the question about the practical convergence test that
should be used in numerical algorithms designed to solve (21). Some authors
employ stopping criteria based on “scaled KKT conditions.” Instead of requiring
that

∥
∥
∥
∥
∥
∇f (x)+

m∑

i=1

λki∇hi(x)
∥
∥
∥
∥
∥
≤ ε (23)

they stop their algorithms when

1

max{1, ‖λk‖∞}

∥
∥
∥
∥
∥
∇f (x)+

m∑

i=1

λki∇hi(x)
∥
∥
∥
∥
∥
≤ ε, (24)

a weaker condition than (23) that may hold close to a minimizer at which constraint
qualifications are not fulfilled [8, 9]. However, (24) may hold in simple problems at
points that are arbitrarily far from the solution. For example, consider the problem
of minimizing x2 subject to 0x = 0 and take xk = 1020. Clearly, (24) holds with
ε = 10−10 and λk = 2 × 1030. Thus, the criterion (23) may be useful to save
computer work when convergence of an algorithm is in fact occurring to a correct
minimizer but may also lead to incorrect decisions when the iterate is far from a
solution.

Fortunately, an interesting result concerning the approximate fulfillment of (22)
at local minimizers exists. Although local minimizers may not satisfy (22), they do
satisfy the approximate version of this system of equations. By this we mean that, if
x∗ is a local minimizer, given ε > 0 arbitrary small, there exist x ∈ Rn and λ ∈ Rm

such that ‖x − x∗‖ ≤ ε, ‖h(x)‖ ≤ ε, and ‖∇f (x) +∑m
i=1 λi∇hi(x)‖ ≤ ε. See

[1, 4] and other papers that study Sequential Optimality Conditions.
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As a consequence, the following is a well-justified stopping criteria for algo-
rithms that aim to solve (21):

‖h(xk)‖ ≤ ε,
∥
∥
∥
∥
∥
∇f (xk)+

m∑

i=1

λki∇hi(xk)
∥
∥
∥
∥
∥
≤ ε. (25)

The natural question that arises is: Given a particular algorithm for solving (21)
that converges to a minimizer x∗, is it possible to prove that, for all ε > 0, an iterate
xk , associated with suitable multipliers λk , exists? If the answer is positive, the
algorithm will eventually stop satisfying (25). It has been proved that this is the case
of penalty and Augmented Lagrangian algorithms [4]. Surprisingly, it can be shown
in very simple examples that, when Newton’s method is applied to the nonlinear
system that includes h(x) = 0 and (22), the resulting sequence xk may converge to
a minimizer of (21) but the KKT-residual ‖∇f (xk)+∑m

i=1 λ̃
k
i∇hi(xk)‖ is bounded

away from zero independently of the value of λ̃k . This means that, even converging
to the solution, Newton’s method would never detect that such convergence occurs
[2]. Therefore, no complexity results associated with the condition (25) is possible
for Newton’s method. The example given in [2] consists of minimizing x1 subject
to ‖x‖2

2 = 0, with n ≥ 2. Starting with λ1 > 0, the sequence generated by Newton’s
method converges to the solution x = 0 but the norm of the KKT-residual is bounded
away from zero (bigger than (

√
5−1)/4 if n = 2) for most initial choices of x0. The

simplicity of this example is amazing and suggests that this “failure” of Newton’s
method might occur frequently in practical problems in which optimality cannot be
easily detected by other means.
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Minimal Surfaces and Their Gauss Maps

Francesco Mercuri and Luquesio P. M. Jorge

Abstract In this paper we will discuss some classical results in minimal surfaces
theory, related to the Gauss map of such surfaces. In the last section we will
comment on some work in progress and some open problems related to one of these
results.

1 Introduction

It is generically accepted that the theory of minimal surfaces starts with the work
of the Italian mathematician J. N. Lagrange who, in 1760, posed the following
problem:

consider a bounded open set  ⊆ R
2 with smooth boundary ∂ and a smooth function

φ : ∂ −→ R. Find a smooth function f :  −→ R such that f|∂ = φ and the graph of f
has area smaller or equal to the area of the graph of any other smooth function g :  −→ R

such that g|∂ = φ.

Lagrange approach to the problem is the, by now, basic approach of the calculus
of variations. Suppose that f is a solution of the problem. Consider a function η :
 −→ R such that η|∂ = 0. Then the function ft = f + tη agrees with φ on ∂ 
and the area of its graph is

Aη(t) =
∫

 

[

1 +
(
∂ft

∂x

)2

+
(
∂ft

∂y

)2
] 1

2

dxdy.
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Since f is supposed to be a solution of the problem, the function Aη(t) has a
minimum at t = 0, hence A′

η(0) = 0. A simple calculation gives

A′
η(0) = −

∫

 

div

(
∇f

√
1 + ‖∇f ‖2

)

ηdxdy = 0.

Since A′
η(0) = 0, ∀ η with η|∂ = 0, it follows that solutions of the problem are

solutions of the equation

div

(
∇f

√
1 + ‖∇f ‖2

)

= 0. (1)

Equation (1) is called the minimal surface equation or the Euler Lagrange
equation of the problem.

Remark 1.1 It turns out, from the regularity theory for elliptic partial differential
equations, that a solution of (1) is a real analytic function (see also Lemma 2.7).

Some years later J. B. Meusnier was looking for a good concept of curvature
of a regular surface M in R

3. He considered a point p ∈ M and a unit normal
vector N ∈ [TpM]⊥. For a unit tangent vector v ∈ TpM he considered the plane
determined by N and v and passing through p. Cutting M with such a plane he
obtain a plane curve and he denoted by kp(v) the (oriented) curvature of this curve.
It turns out that the function kp(v) has a unique minimum value, km(p), and a unique
maximum value, kM(p). These two numbers are called the principal curvatures of
M at p and were introduced earlier by Euler.

Given the principal curvatures we can define

• the Gaussian curvature of the surface, K(p) = km(p)kM(p),
• the mean curvature, H(p) = 1

2 (km(p)+ kM(p)).
Meusnier showed that a function f is a solution of (1), if and only if its graph

has vanishing mean curvature. This leads to the following definition.

Definition 1.2 A regular surface in R
3 is called a minimal surface if its mean

curvature vanishes identically.

Remark 1.3 Following Gauss, a concept should be considered only if it is “pregnant
with theorems.” He certainly had many important results involving the Gaussian
curvature, but not so many involving the mean curvature. So he never seriously
considered the latter concept.

We will take a slightly more general approach. Consider a surfaceM , i.e., a two-
dimensional differentiable manifold, that, for simplicity, we will assume connected
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and oriented by a positive atlas of smooth charts {( α,ψα)}.1 Let f : M −→ R
3

be an immersion. Then f induces a Riemannian metric onM ,

〈X, Y 〉p := 〈df (p)(X), df (p)(Y )〉, X, Y ∈ TpM,

which make f an isometric immersion. We can define the Gauss map

n : M −→ S2 = {x ∈ R
3 : ‖x‖ = 1},

where n(x) ∈ [df (x)(TxM)]⊥ ⊆ R
3 is the unit vector such that (ψu,ψv,n(x)) is a

positively oriented basis of Tf (x)R3. If ( ,ψ) is a positive chart, then

n(ψ(u, v)) = ψu ∧ ψv
‖ψu ∧ ψv‖

so n is a well-defined smooth map.

Remark 1.4 If f is an immersion, then for all x ∈ M there exists a neighborhood
U of x such that f (U) is a regular surface in R

3. So, for local considerations, we
can identifyM with f (M).

Consider the differential of the Gauss map

dn(x) : TxM −→ Tn(x)S
2 = TxM

and the operator Ax = −dn(x). The operator Ax is called the shape operator at x
or the second fundamental form. It turns out that Ax is a symmetric operator whose
eigenvalues are exactly the principal curvatures.

Lagrange did not give any example of solutions of Eq. (1) (except for the trivial
ones, i.e., the affine functions). There where many efforts to produce examples and
characterize minimal surfaces with special properties. We will recall now some
results in this direction.

Theorem 1.5 (Meusnier) If f is a solution of Eq. (1) whose level curves are
straight lines segments, then

f (x, y) = A arctan
y − y0

x − x0
+ B, x0, y0, A,B ∈ R

i.e., the graph is an open part of a helicoid (figure a below).

1That is, an atlas such that the change of coordinates has positive Jacobian.
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Theorem 1.6 (Sherk) If f is a solution of Eq. (1) of the form f (x, y) = g(x) +
h(y), then

f (x, y) = a−1 log

(
cos ax

cos ay

)

, a ∈ R

(figure b below).

Theorem 1.7 (Euler) A minimal surface of revolution is an open part of the
catenoid

(cos v sinh u, sin v cosh u, u),

up to rigid motions, or of a plane (figure c below).

Theorem 1.8 (Catalan) A ruled minimal surface is an open part of a helicoid or
of a plane.

We refer to [2] for proofs and further information.

Around 1866 A. Enneper and K. Weierstrass gave a special parametrization for
minimal surface, today known as the Weierstrass representation formula, which
turns out to be a basic tool for producing examples of minimal surfaces. We will
discuss this parametrization in Sect. 3.

We point out that the above results are, essentially, locally in nature. Probably
the first global result is due to Bernstein who, around 1915, proved the following

Theorem 1.9 (Bernstein) Let f : R2 −→ R be a solution of the minimal surface
equation. Then f is an affine function, i.e., its graph is an affine plane.

Remark 1.10 Bernstein’s theorem should be compared with Liouville’s theorem
which states that a bounded harmonic function f : R2 −→ R is constant. However,
in the first one, there are no conditions on the behavior of the function at infinity.

We will discuss in the next sections a couple of results that generalize Bernstein’s
theorem (see Remarks 2.35 and 4.2).
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Remark 1.11 A natural question is if a similar theorem holds for functions f :
R
n −→ R which verify Eq. (1). Surprising enough the answer is positive if n ≤ 7,

but there are counterexamples for n ≥ 8.

A basic question in the theory is the existence of a minimal surface whose
boundary is a given simple closed curve !. This question has a long and rich history
dating from the experiments of the Belgian physicist J. Plateau in 1847. He showed
that dipping a wire on a soap solution we obtain a soup film which is a minimal
surface and it is stable for small perturbations, i.e., is a local minimum for the area
functional. So we have an “experimental proof” of the existence of minimal solution
spanning a given boundary. But a “mathematical proof” proved to be a much more
difficult task. It was only in 1930 that we have a first general answer to the question
when, independently, Douglas (see [6]) and Radó (see [18]) proved the existence of
a “minimal map” from a disk to R

3, mapping the boundary of the disk onto a given
rectifiable Jordan curve. A proof that the map is in fact an immersion, i.e., a minimal
surface, appeared around 1960. There are still various problems under investigation,
for example, the problem of uniqueness. If we consider the set of Jordan curves
in R

3, with a suitable topology, the subset for which the solution of the Plateau
problem is unique is dense. Strangely enough the complement of this subset is also
dense, and in fact there exist curves that bound an uncountable number of solutions.
Naturally we are talking of geometrically distinct solutions, i.e., solutions up to a
reparametrization. Also the existence of solutions with more complicate topology is
an interesting field of investigation. We will not treat these questions here and refer
to [4, 12] and the references therein for an introduction to these problems.

2 Stability

LetM be a surface, that, for simplicity we will assume connected and oriented, and
let f : M −→ R

3 be an immersion. A domain D ⊆ M will be a connected,
relatively compact open set such that the boundary is a finite union of disjoint
piecewise smooth curves.

Definition 2.1 Let D ⊆ M de a domain. A (proper) variation of f , supported on
D, is a smooth function F : (−ε, ε)×M −→ R

3 such that:

(1) F(0, x) = f (x),
(2) the restriction of F to {t0} ×M is an immersion,
(3) F(t, x) = x if x �∈ D.

When clear from the context we will simply say that F is a variation of f .

Given a variation F , the variational vector field is the vector field

VF (x) := dF(0, x)

(
∂

∂t

)

.
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Clearly V is a vector field along f 2 vanishing outside D. Set

Ft : M −→ R
3, Ft (x) = F(t, x).

Since Ft is an immersion, we can consider in M the induced metric and we will
denote by AF (t) the area of D with respect to the induced metric. Then

Lemma 2.2 (First Variational Formula)

dAF (t)

dt
(0) = −2

∫

M

〈Hn, VF 〉dM,

where H is the mean curvature, and VF is the variational vector field.

In particular if D has minimal area for all variations, f|D is a minimal surface.
But in general a minimal surface is just a critical point of the area functional,
not necessarily a minimum, not even a relative minimum.3 In order to decide if
a minimal surface is a relative minimum of the area functional we have to look at
the second derivative of the area functional. To compute this derivative we need
some preliminaries.

LetM be a Riemannian surface. If u : M −→ R is a smooth map, the Laplacian
of u, "u, is defined as

"u = div∇u,

where the gradient ∇u and the divergence are taken in relation to the metric ofM .
It is useful, sometimes, to work in special local coordinates. Let U ⊆ R

2 be an
open set with coordinates (u, v).

Definition 2.3 A local parametrization ψ : U −→ M of a Riemannian surface M
is isothermal if

‖ψu‖ = ‖ψv‖ = λ, 〈ψu,ψv〉 = 0,

where λ : U −→ R is a positive smooth function and subscripts denoted derivatives.
The coordinates (u, v) will be called isothermal coordinates (or isothermal

parameters).

The following is well known

Theorem 2.4 LetM be a Riemannian surface. Then ∀ p ∈ M there are isothermal
coordinates in a neighborhood of p.

Remark 2.5 In the case of minimal surfaces a simpler proof can be found in [16].

2That is, a map V : M −→ TR3 such that V (x) ∈ Tf (x)R3.
3That is, a minimum with respect to nearby surfaces bounding the same curve.
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Remark 2.6 If M is a connected oriented Riemannian surface, we can choose a
positive atlas of isothermal coordinates. Once we do this, the changes of coordinates
are conformal, hence holomorphic (where defined). A differentiable surface with
such an atlas is called a Riemann surface.

In terms of isothermal coordinates the Laplacian is given by

" = λ−2
(
∂2

∂2u
+ ∂2

∂2v

)

,

and the Gaussian curvature is given by

K = −" log λ.

The following lemma is easy to prove

Lemma 2.7 If f : M −→ R
3 is an isometric immersion, f (u, v) =

(f1(u, v), f2(u, v)f3(u, v)), then

"f = ("f1,"f2,"f3) = 2Hn,

hence f is minimal if and only if the coordinate functions are harmonic. In
particular the coordinate functions of a minimal immersion are real analytic
functions, and so are the Gaussian and mean curvature functions.

Let D ⊆ M be a domain. We will assume, for simplicity, that M is oriented and
let n : D −→ S2 be the Gauss map associated with the (fixed) orientation. We will
denote by H = H(D) the space of continuous functions on M , vanishing outside
D, whose gradient exists almost everywhere and its norm is square integrable.

Remark 2.8 The space H has a natural norm given by

‖u‖2 =
∫

D

u2dM +
∫

D

‖∇u‖2dM.

The subspace of smooth functions is dense in H , so, in many cases, we can assume
that a function in H is smooth.

If u ∈ H we consider the normal variation

Fu(t, x) = f (x)+ tu(x)n(x),

whose variational vector field is

V = VF = un.
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Theorem 2.9 (Second Variational Formula) The second derivative of the area
functional in the V direction is

I (V, V ) =
∫

D

u(−"u+ 2Ku)dM.

We refer to [12] for a proof.
The quadratic form I is called the index form for D. If the index form is not

positive semi-definite, the domain is not a relative minimum of the area functional.
It turns out that, for local minimality questions, it is not restrictive to consider only
normal variations. In particular if the index form of D is positive definite, then D is
a local minimum of the area functional.

Definition 2.10 Let f : M −→ R
3 be a minimal immersion and let D ⊆ M be a

domain. We will say that D is stable (resp. strongly stable) if the index form of D
is positive semi-definite (res. positive definite).

An important concept related to stability is the following:

Definition 2.11 A normal field J = un is called a Jacobi field if

−"u+ 2uK = 0. (2)

Definition 2.12 Let f : M −→ R
3 be an immersion and let D ⊆ M be a

domain.

1. ∂D is said to be a conjugate boundary if there exists a Jacobi field un with
u ∈ H \ {0}.

2. The multiplicity or nullity of a conjugate boundary, denoted by ν(D), is the
dimension of the space of Jacoby fields un, u ∈ H .

3. ∂D is a first conjugate boundary if it is a conjugate boundary and for all domains
D′ ⊆ D, ∂D′ is a conjugate boundary if and only if D = D′.

Remark 2.13 In the theory of geodesics we have analogous concepts. If M is a
Riemannian manifold and γ : [0, a] −→ M is a geodesic, a vector field J along γ
is a Jacobi field if J̈ + R(γ̇ , J )γ̇ = 0 where J̈ is the second covariant derivative of
J along γ and R is the curvature tensor. A point t0 ∈ [0, a] is conjugate to 0 if there
exists a non-trivial Jacoby field vanishing at 0 and t0. Then the geodesic γ is a local
minimum for the energy functional acting on curves joining γ (0) and γ (a) if there
are no conjugate values in [0, a). The corresponding assertion is true in our context,
i.e., if for all domains D′

� D ∂D′ is not a conjugate boundary, then D is stable.

We will give now a short proof of the following fact:

Theorem 2.14 If D ⊆ M is a domain and ∂D is a first conjugate boundary, then
ν(D) = 1.
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Proof Set J = {u ∈ H : −"u+ 2uK = 0}. Since ∂D is conjugate, J �= {0}. Fix a
point p ∈ D. Define the linear map

L : J −→ R, L(u) = u(p).

Consider u ∈ J \ {0}. It is known that either u(p) �= 0 or u change sign in D. In
the latter case consider a connected componentD′ of the complement of the zero set
of u. This is a domain properly contained in D, and u vanishes on ∂D′. Hence ∂D′
is a conjugate boundary, contradicting the fact that ∂D is a first conjugate boundary.
Hence u(p) �= 0 and so L is injective and surjective, hence an isomorphism. It
follows that dim J = 1 = ν(D). *,
Definition 2.15 Let E be a real vector space and let I : E −→ R be a quadratic
form. The index of I is the superior of the dimensions of subspaces of E on which
I is negative definite.

Definition 2.16 If f : M −→ R
3 is a minimal immersion andD ⊆ M is a domain,

we define the index of D, i(D), as the index of the index form of D.

In the theory of geodesics, the celebrated theorem of Morse states that if M is a
Riemannian manifold and γ : [0, a] ⊆ R −→ M is a geodesic, the index of γ , i.e.,
the index of the second derivative of the energy functional, is the number of instants
t ∈ [0, a) conjugate to 0, counted with multiplicity. This result has been generalized
for minimal surfaces by Smale. He considered a domain D in a minimal surfaceM
and a flow of contractions, i.e., a family of diffeomorphisms φt : M −→ M, t ≥ 0,
such that

• φ0 = 1M ,
• φt (D) ⊂ φs(D) if t > s,
• limt−→∞A(φt (D)) = 0.

Theorem 2.17 (Morse-Smale) Let D and φt be as above and set Dt = φt (D).
Then

i(D) =
∑

t>0

ν(Dt ).

For λ ∈ R we consider the space

#λ = {u ∈ H : "u+ λu = 0}.

If dim#λ = nλ > 0 then λ is an eigenvalue of the operator −". It follows from
the spectral theory of such an operator, that the eigenvalues of −" form a countable
set of positive numbers and we can order them in such a way that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .
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Remark 2.18 When dealing with more than one domain we will write λi(D) in
order to avoid confusions.

We state now some well-known basic properties of the eigenvalues of −".

Theorem 2.19

(1) If u ∈ #λ the u is analytic.
(2) If u ∈ H \ {0},

λ1 ≤
∫

M
‖∇u‖2dM
∫

M
u2dM

.

and equality holds if and only if u ∈ #λ1 .
(3) If u ∈ #λ1 then u(x) �= 0, ∀ x ∈ D.
(4) If u ∈ #λi , i > 1, then u changes sign in D.
(5) If D′ ⊆ D then λ1(D

′) ≥ λ1(D), and equality holds if and only if D′ = D.

Example 2.20 Consider the unit sphere S2 ⊆ R
3. Let u : S2 −→ R, u(x, y, z) = z

(a spherical harmonic of the first kind) and consider the restriction ũ of u to the half
sphere S2+ = {(x, y.z) ∈ S2 : z > 0}. It is easily seen that "ũ + 2ũ = 0. The
function ũ vanishes on ∂S2+ and is positive in the interior of S2+, hence, by items (3)
and (4) of Theorem 2.19, λ(S2+) = 2. Also, for any proper subdomain D ⊂ S2+,
λ1(D) > 2, by item (5) of the same theorem.

The following fact, of interest in itself, will be useful later.

Theorem 2.21 The spherical caps of S2 minimize the first eigenvalue of −" among
all domains with the same area.

Proof See [17] *,
Let f : M −→ R

3 be a minimal immersion. Since the Gauss curvature is analytic
(see Lemma 2.7) either the Gauss curvature vanishes identically, in which case
f (M) is an open subspace of an affine plane, or the zeros of K are isolated, hence
finite in number on every domain in M .4 We will assume that K is not identically
zero, and will set

M0 = M \ {x ∈ M : K(x) = 0}.

If x ∈ M0, dn(x) is an isomorphism and we can define a new metric inM0 setting

〈X, Y 〉0 = 〈dn(X), dn(Y )〉, ∀ X, Y ∈ TM0.

4Since a domain is relatively compact according to our definition.
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We will denote by dM0 the volume form with respect to this metric and by "0
the Laplace operator of this metric. Then, as it is easily seen,

" = −K"0, (3)

dM0 = −KdM. (4)

LetD ⊆ M be a domain and u ∈ H(D). We will denote by ũ the restriction of u
toM0 ∩D.

Lemma 2.22 Let X = un. Then

(1) The index form is given by

I (X,X) = −
∫

D∩M0

(ũ"0ũ+ 2ũ2)dM0,

(2) X is a Jacobi field if and only if

"0ũ+ 2ũ = 0.

Proof The first assertion follows from dM0 = −KdM and the fact thatM \M0 has
measure zero. The second one follows from " = −K"0 and continuity.

Next we will prove a first result relating stability and eigenvalues of the
Laplacian.

Theorem 2.23 (Schwarz) Let f : M −→ R
3 be a minimal immersion and let

D ⊆ M be a domain. Assume that n(D) is a domain in S2 with first eigenvalue of
−"0 smaller than 2. Then D is not stable.

Proof Since the zero curvature points in D are finite in number, n : D −→ n(D)
is a branched covering map and n(∂D) ⊆ ∂n(D). Let v be a function in the first
eigenspace of n(D). Consider u = v ◦ n. Then u is a function in H(D) and

"0u+ λ1u = 0.

Consider the vector field along D, X = un and denote, as before, by ũ the
restriction to D ∩M0. Then, by Lemma 2.22,

I (X,X) = −
∫

D∩M0

[ũ"0ũ+ 2ũ2]dM0 = (λ1 − 2)
∫

D∩M0

ũ2dM0 < 0.

The operator "0 is, essentially, the Laplacian on the sphere S2 and we will use
the same symbol for the two operators. It follows from Theorem 2.23, that a domain
whose image by the Gauss map contains properly an hemisphere is not stable.

The next result relates stability with the image of the Gauss map of a domain.
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Theorem 2.24 (Barbosa-do Carmo) If f : M −→ R
3 is a minimal immersion

and D ⊆ M is a domain such that A(n(D)) < 2π , then D is strongly stable.

Proof (Sketch) The proof is by contradiction. Suppose D is not stable. Then, by
Theorem 2.17, there is a domainD′ ⊆ D such that ∂D′ is a first conjugate boundary.
The heart of the proof is the existence of a function v ∈ H(n(D′)) such that

∫

n(D′)
‖∇v‖2 ≤ 2

∫

n(D′)
v2. (5)

Once we have such a function we proceed as follows. From Theorem 2.19 (2), we
have λ1(n(D′)) ≤ 2. Consider a spherical cup C such thatA(C) = A(n(D′)) < 2π .
Then λ1(C) > 2 (see Example 2.20) and, by Theorem 2.21,

λ1(n(D′)) ≥ λ1(C) > 2,

a contradiction.
We will sketch the construction of the function v.
Since ∂D′ is a first conjugate boundary, we have a Jacobi field un, u ∈ H(D′), u

positive in D′. If p ∈ D′, the Gauss map in a suitable neighborhood of p looks like
n(z) = zn, with respect to a complex local coordinate z (see also Sect. 5). We set
ν(p) = n. Observe that ν(p) = 1 ifK(p) �= 0. Given q ∈ n(D′) the set n−1(q)∩D′
is finite and we define

v(q) =
∑

p∈n−1(q)∩D′
ν(p)u(p).

Then v vanishes on ∂n(D′) and is positive in the interior. The proof that v verify
Eq. (5) is not simple and we refer to [1] for it.

Essentially the same proof shows the following “companion” if Theorem 2.23.

Theorem 2.25 Let D ⊆ M be a domain such that λ1(n(D)) > 2. Then D is
strongly stable.

Example 2.26 A good example to keep in mind is the catenoid. Consider the
domain of the catenoid between the panes z = −ε, z = N, 0 ≤ ε ≤ N . Then the
image of this domain is a spherical ring shaped domain bounded by two parallels. If
ε = 0 then the area of the spherical image is less than 2π , so the domain is stable.
If ε > 0, then, by a limiting argument, if N is sufficiently large, the first eigenvalue
is smaller than 2. Hence the domain is not stable. In particular the estimates in the
above results are sharp.

Next we will consider stability from a global point of view.

Definition 2.27 Let f : M −→ R
3 be a minimal immersion. We will say thatM is

stable if every domain inM is stable.
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Before describing the next result, which characterizes complete stable minimal
surfaces, we will recall a basic fact in Riemann surfaces theory, the uniformization
theorem.

Theorem 2.28 (Uniformization Theorem) Let M be a Riemann surface. Then
there is a conformal covering map π : M̃c −→ M , where M̃c is either the complex
plane C, the unit disk D = {z ∈ C; |z| < 1} or the sphere S2.

Definition 2.29 The space M̃c in the theorem above is called the conformal
universal covering ofM .

Remark 2.30 The disk and the plane are obviously diffeomorphic but they are not
conformally equivalent since there are no non-constant conformal maps from the
plane to the disk, by Liouville’s theorem.

Remark 2.31 If f : M −→ R
3 is an isometric immersion, with M compact and

without boundary, then there exists a point in M where the Gaussian curvature is
positive (for example, a point p ∈ M such that f (p) has maximal distance from
the origin). If f is a minimal immersion, its Gaussian curvature is non-positive and
so M cannot be compact. Since π : M̃c −→ M is conformal and the coordinate
functions of f are harmonic, so are the ones of f ◦ π , hence f ◦ π is a minimal
immersion and M̃c cannot be compact. In particular its conformal universal covering
of a minimal surface is either the complex plane C or the unit disc D.

The following result is due to do Carmo and Peng (see [5]) and, independently,
to Fisher Colbrie and Shoen (see [8]).

Theorem 2.32 Let f : M −→ R
3 be a complete minimal immersion. Then, ifM is

stable, f (M) is a plane.

Proof (Sketch) We will start with the following:

Lemma 2.33 Let π : M̃ −→ M be a conformal covering map. Then f ◦π : M̃ −→
R

3 is a complete stable minimal surface.

Proof By Remark 2.31 f ◦ π is minimal. Also it is well known that M̃ , with the
covering metric, is complete. It remains to show that it is stable. Suppose that D̃ is
a domain which is not stable. Then there exists a domain D̃′ ⊆ D̃ such that ∂D̃′ is a
first conjugate boundary. Hence we have a function ũ ∈ H(D̃′), positive in D̃′, such
that "ũ − 2Kũ = 0. Consider q ∈ π(D̃′) := D′. Since D̃′ is relatively compact,
π−1(q) ∩ D̃′ is a finite set of points say {p1, . . . , pk}. Set

u(q) =
k∑

1

ũ(pi).

Then u ∈ H(D′) and is positive in D′. As in Theorem 2.24, it is possible to show
that

∫

D′
‖∇u‖2dM ≤ 2

∫

D′
−Ku2dM
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and the same argument as in Theorem 2.24 shows that D′ is not stable, a
contradiction.

By the lemma, we can assume that M is simply connected. Then, by the
uniformization theorem, M is conformally equivalent to either the complex plane
C or the unit disk D. Assume the latter and let ds2 = λ2|dz|2 be the induced metric.

We will proceed by contradiction supposing that the Gaussian curvature is not
identically zero.

Set φ = λ−1. Then we have

K = −φ2"0φ
−1, ∇ = φ∇0, " = φ2"0, dM = φ2dA, (6)

where ∇0, "0, dA are the gradient, the Laplacian, and the area form with respect to
the flat metric.

Since M is stable, we have, for every piecewise smooth compactly supported
function u : M −→ R,

∫

M

(u"u− 2u2K)dM ≤ 0. (7)

Using (6) we have that (7) can be written as

∫

D

(u"0u+ u2"0 log λ2)dA ≤ 0. (8)

Replacing u by φu in Eq. (6) we have

∫

D

(φu"0(φu)+ u2φ2"0 logφ−2)dA ≤ 0. (9)

Since uφ has compact support, integration by parts give

∫

D

φu"0φudA = −
∫

D

(u2|∇0φ|2 + φ2|∇0u|2 + 2〈∇0u,∇0φ〉0)dA, (10)

∫

D

u2φ2"0 logφ−2dA = 4
∫

D

(φu〈∇0u,∇0φ〉0 + u2|∇0φ|2)dA. (11)

where | · | and 〈·, ·〉0 are the norm and scalar product of the flat metric. Adding (10)
and (11), we get

3
∫

D

|∇0φ|2dA ≤
∫

D

φ2|∇0u|2dA− 2
∫

D

φu〈∇0u,∇0φ〉0dA. (12)
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Using the inequality

|φu〈∇0u,∇0φ〉0| ≤ ε|∇0φ|2u2 + ε−1|∇0u|2φ2, ∀ ε > 0,

we obtain

Lemma 2.34 There exists a positive constant b such that

∫

M

|∇φ|2u2dM ≤ b
∫

M

φ2|∇u|2dM.

Let Br be the geodesic ball of radius r , and θ ∈ (0, 1). Let u : M −→ R be a
function which vanishes outside Br , it is 1 in Bθr and is linear in Br \ Bθr . From
Lemma 2.34 we have
∫

Br

|∇φ|2dM ≤ b

(1 − θ)2r2

∫

M

φ2dM = b

(1 − θ)2r2

∫

Br

dA = πb

(1 − θ)2r2
.

Letting r −→ ∞, we get |∇φ| = 0, hence φ = constant and the metric ds2 is
not complete, a contradiction.

With similar techniques we can treat the case in which M is conformally
equivalent to C.

Remark 2.35 Let f : R2 −→ R be a solution of the minimal surfaces equations.
Then the graph of f is a complete minimal surface. Moreover, given a domain in
the graph of f , the image of this domain by n is strictly contained in a hemisphere
and has area smaller than 2π . Hence, by Theorem 2.25, the domain is stable.
Hence, as a corollary of Theorem 2.32, we have that f is affine, i.e., the Bernstein’s
Theorem 1.9.

3 The Weierstrass Representation Formula

The Weierstrass representation formula is a basic tool in the study of minimal
surfaces in R

3 because, on one hand, it is a “machine” to produce examples of
minimal surfaces and, on the other hand, it allows to use the powerful theory of
holomorphic functions to treat theoretical problems. We will start with the local
version.

Consider C ∼= R
2 with the complex coordinate z = u + iv, i = √−1 and the

differential operators

∂

∂z
= 1

2

(
∂

∂u
− i ∂
∂v

)

,
∂

∂z
= 1

2

(
∂

∂u
+ i ∂
∂v

)
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In particular, if U ⊆ C is an open set, a function g : U −→ C is holomorphic if
and only if

∂g

∂z
= 0.

The local version of the Weierstrass representation formula can be stated as
follows.

Theorem 3.1 (Weierstrass Representation) Let  ⊆ C be an open set and let
f :  −→ R

3 be a conformal minimal immersion. Consider the “complex tangent
vector”

∂f

∂z
=
∑

φiei,

where ei is the standard basis of R3 and the φi’s are complex valued functions.
Then

(1)
∑ |φi |2 �= 0,

(2)
∑
φ2
i = 0,

(3)
∂φi

∂z
= 0.

Conversely, given functions φi verifying the condition above, if  is simply
connected, the function f :  −→ R

3, given by

fi(z) = 2Real

∫

γ

φidz, i = 1, 2, 3,

is a well-defined conformal minimal immersion. Here Real stands for the real part
and the integral is taken along a curve γ in  joining a fixed point z0 to z.

Remark 3.2 In Theorem 3.1, the first condition tells us that f is an immersion, the
second one that f is conformal and the last one that f is minimal.

The second condition in Theorem 3.1 says that, essentially, one of the three
function depends only on the other two. Set

ω = φ1 − iφ2, g = φ2

ω
.

Then ω is a holomorphic function and g a meromorphic one. Moreover, given ω and
g, we can recover the φi’s:

2φ1 = (1 − g2)ω, 2φ2 = (1 + g2)ω, φ3 = gω. (13)
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Remark 3.3 To make sense to the above procedure we have to ask that g has a pole
of order m at z if and only if ω has a zero order 2m at z.

Definition 3.4 The pair (g, ω) is called the Weierstrass data of f .

The geometry of the immersion can be described in terms of Weierstrass data.
For example, the metric is given by

ds2 = |ω|2(1 + |g|2)2|dz|2,

and the Gaussian curvature by

k = −
(

2|g′|2
|ω|(1 + |g|2)2

)2

.

The function g has a very interesting geometric interpretation. Let σ : S2 −→
C ∪ {∞} be the stereographic projection from the north pole. The following is easy
to prove:

Lemma 3.5 g = σ ◦ n.

Let M be a Riemann surface, with an atlas of isothermal coordinates, and let
f : M −→ R

3 be a conformal minimal immersion. The function g is a well-defined
meromorphic function from M to C, by Lemma 3.5. It turns out that the locally
defined holomorphic 1-forms ωdz coincide in the intersection of the domains and
so they define a global holomorphic 1-form that we still denote by ω. Now, if we
suppose that the zeros of ω are related to the poles of g as in Remark 3.3 and that the
forms below in (14) have no real periods,5 we can recover f from the Weierstrass
data by integration:

f (z) = Real

∫ z

z0

((1 − g2)ω, (1 + g2)ω, 2gω), (14)

where the integral is along a smooth curve joining a fixed point z0 to z.

Remark 3.6 In the construction of examples using the formula above, the hard point
is, in general, the proof that the forms in question have no real periods.

Example 3.7 ConsiderM = C, g(z) = −iez, ω(z) = e−zdz. Then g has no poles
and ω has no zeros. Since the domain is simply connected, the forms in (14) have
no periods and we have

f (u, v) = (cos(v) sinh(u), sin(v) sinh(u), v), z = u+ iv

i.e., a helicoid.

5A period of a 1-form is the value of the integral of the form along a closed curve.
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Example 3.8 Let M = D be the unit disk, g(z) = z, ω = 4dz(1 − z4)−1. Again g
has no poles, ω has no zeros, and the domain is simply connected. After integration,
and some calculations, we have

f (u, v) =
(
u, v, log

cos v

sin u

)
,

i.e., the Scherk’s surface.

Example 3.9 Consider M = C, g(z) = −ex, ω = −e−zdz. Again we are in a
“good situation” and integration gives

f (u, v) = (cos v sinh u, sin v cosh u, u)− (0, 0, 1),

i.e., a catenoid (up to a translation). Such a parametrization wraps the plane around
the (geometric) catenoid infinitely many times.

An alternative way to obtain a catenoid is the following: take M = C \
{0}, g(z) = z, ω(z) = z−2dz. Since M is not simply connected we have to
check that the forms have no real periods. Since π1(M) ∼= Z, and the forms
are closed, it is sufficient to consider the integrals of those forms on the unit
circle γ (t) = (cos t, sin t), t ∈ [0, 2π ]. A simple calculation shows that the first
two forms have no periods and the third one has purely imaginary periods. After
integration we get

f (u, v) =
(

−u
(

1 + 1

u2 + v2

)

+ 1,−v
(

1 + 1

u2 + v2

)

, log(u2 + v2)

)

,

which is a parametrization of the catenoid, up to a translation.

Remark 3.10 The Weierstrass representation formula holds, mutate mutandis, for
minimal surfaces in R

n, n ≥ 3. The important point is that the domain is two-
dimensional.

Remark 3.11 The Weierstrass representation formula asked, for a long time, for
a generalization to the case of minimal surfaces in more general spaces. The first
two conditions in Theorem 3.1 have an obvious extension, while the third one is
replaced by an integral differential equation involving the Riemannian connection of
the ambient manifold. This equation is, in general, very difficult to solve explicitly,
but, depending on the ambient manifold, arguments ad hoc can be used to produce
explicit solutions hence examples and general results. This is still an active field of
investigation.
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4 On the Image of the Gauss Map: The General Case

As we have seen in Sect. 3 the Gauss map of a minimal surface is a meromorphic
map. A classical problem in minimal surface theory is to know which results from
the classical complex function theory remain true for the Gauss map. For example,
there is a Picard type theorem for the Gauss map of a complete minimal surface?
Questions like this were asked since the middle of the last century and still puzzle
researchers in the field. L. Nirember conjectured, around 1950, that the image of
the Gauss map of a complete non-flat minimal surfaces in R

3 is dense. A positive
answer to this conjecture was given by Osserman (see [15] and [14]). We will sketch
now Osserman’s proof.

Theorem 4.1 (Osserman) Let f : M −→ R
3 be a complete, non-flat, minimal

surface. Then the image of the Gauss map is dense.

Proof (Sketch) The map f ◦ π : M̃c −→ R
3 is a complete minimal immersion,

if we consider in M̃c the covering metric. By Remark 2.31 M̃c is either the plane
or the disk. The Gauss maps of f ◦ π and of f have the same image so we may
consider the Gauss map as a meromorphic map defined on M̃c. If M̃c = C the
theorem follows from the classical Liouville’s (or Picard) theorem. So we suppose
that M̃c is the unit disk. Let us suppose that the Gauss map misses a neighborhood
of a point, that, without loss of generality, we can assume to be e3 = (0, 0, 1). Then,
for the Weierstrass data we have:

• there exists a constant A <∞ such that |g(z)| < A ∀ z ∈ M̃c,
• ω(z) �= 0, ∀ z ∈ M̃c, since g has no poles (see Remark 3.3).

Consider the map F : M̃c −→ C defined by

F(z) =
∫ z

0
ω(ξ)dξ.

Since M̃c is simply connected and ω is holomorphic, F is well defined, F(0) = 0,
and F is locally invertible since F ′(z) = ω(z) �= 0. LetH be a local inverse defined
in a neighborhood of 0. Observe that H cannot be defined in the all of C otherwise
it would be a bounded entire holomorphic function, hence constant. So

R = sup{r ∈ R : H is defined for all z with |z| < r} <∞.

In particular there is a v ∈ C with |v| = R such that H cannot be defined in a
neighborhood of v. Consider the curve σ(t) = tv, t ∈ [0, 1) and let γ (t) = H(σ(t).
Then is not difficult to prove that

• γ is a divergent curve, i.e., for every compact set K ⊆ M̃c there exist t0 with
γ (t0) �∈ K ,

• the length of γ is R <∞.
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But these two facts contradict the completeness of the metric and the theorem
follows.

Remark 4.2 We observe that, in particular, Theorem 4.1 generalizes Bernstein
theorem, since an entire graph is complete and its Gauss map covers at most an
hemisphere. Hence, if it is minimal, has to be flat.

Remark 4.3 Really Osserman showed a slight more general result: the complement
of the image of the Gauss map of a complete non-flat minimal surface has zero
logarithmic capacity.

Subsequently Xavier in [20] improves considerably Osserman result showing
that the Gauss map of a complete, non-flat, minimal surface omits at most 6 points.
Finally Fujimoto proved in [7] that the Gauss map of such a surface omits at most
4 points. Fujimoto result is sharp since the Gauss map of the Sherk surface misses
exactly 4 points.

5 On the Image of the Gauss Map: The Finite Total
Curvature Case

In [14] Osserman studies the size of the complement of the image of the Gauss map
for the class of complete minimal surfaces of finite total curvature, i.e., minimal
surface for which

∫

M

kdv > −∞.

For this class of minimal immersions he proved the following basic properties:

Theorem 5.1 Let f : M −→ R
3 be a complete non-flat minimal surface of finite

total curvature. Then

(1) M is conformally equivalent to a compact surfaceM minus a finite set of points
E = {w1, . . . , wk}.

(2) The Gauss map extends to a branched covering map n : M −→ S2.

Using Theorem 5.1 and the Weierstrass representation formula, he proved the
following:

Theorem 5.2 Let f : M −→ R
3 be a complete, non-flat, minimal surface of

finite total curvature. Then the Gauss map omits at most three points. Moreover,
if χ(M) = 2 the Gauss map omits at most two points.

Although not clear from Osserman’s proof, the general case and the finite total
curvature case are very different in nature. While the general case is a problem
in value distribution theory for holomorphic functions in the disk, the finite total
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curvature case is of topological nature. We will try to explain the last assertion. For
this we will introduce a more general class of surfaces.

Definition 5.3 LetM be a complete Riemannian surface and let f : M −→ R
3 be

an isometric immersion. We will say that f is of finite geometric type if

(1) M is diffeomorphic to a compact surface M minus a finite set of points E =
{w1, . . . , wk},

(2) the Gauss map of f extends to a branched covering map n : M −→ S2,

Remark 5.4 Let f : M −→ R
3 be an immersion of finite geometric type. The fact

that the Gauss map extends to a branched covering of M over S2 means that this
extension is a covering map outside a finite number of points, the branch points
of the map. The set of such branch points is finite and includes the points of zero
Gaussian curvature and, possibly, some of the ends. For such a branch point v, a
small punctured neighborhood is mapped onto its image as a covering map of order
ν(v). The number β(v) = ν(v) − 1 is called the branching number at v. Observe
that if v is not a branch point then β(v) = 0. In particular M is non-flat and the
Gaussian curvature of M vanishes only at a finite set of points.

The following fact is well known in covering space theory:

Theorem 5.5

− 2dg(n) = χ(M)+
∑

w∈M
β(w) (Riemann-Hurevitz relation), (15)

where dg(n) is the degree of the Gauss map and χ(M) is the Euler characteristic
ofM .

When clear from the context we will also say that M is a surface of finite
geometric type.

Remark 5.6 Clearly complete, non-flat, minimal surfaces of finite total curvature
are immersions of finite geometric type. The latter is a quite wider class. For
example, it is stable for local small deformations near points of non-zero Gaussian
curvature while minimal surfaces are not.

Remark 5.7 The concept of surface of finite geometric type can be extended to
the case of hypersurfaces of R

n+1. In this case condition (3) is replaced by the
condition that the set of zeros of the Gauss-Kronecker curvature, i.e., the zeros of
the determinant of the second fundamental form, does not disconnect M . The basic
idea in introducing such hypersurfaces is that while the complex analysis methods
for minimal surfaces, i.e., the Weierstrass representation formula, do not extend to
the higher dimensional case, some of the topological methods do extend.

Definition 5.8 The points of E or, sometimes, punctured neighborhoods of such
points, are called the ends of M.
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The behavior of an immersion of finite geometric type near the ends is described
in [10]. We will recall some basic facts. Let w ∈ E be an end. The tangent space of
M at w, as a linear subspace of R3, is well defined, namely TwM = [n(w)]⊥. It can
be shown that, for a sufficiently small neighborhood ofw, the immersion, composed
with the projection over TwM , is a covering map over the complement of a disk, of
finite degree I (w).

Definition 5.9 The number I (w) is called the geometric index of w.

Remark 5.10 Geometrically, I (w) counts the number of times that f warps a
punctured neighborhood of w around the direction n(w). If I (w) = 1 there exists a
suitable punctured neighborhood W of w such that the projection of f (W) over
[n(w)]⊥ is 1 − 1. Hence f (W) is a graph over the complement of a big ball
B ⊆ [n(w)]⊥. In particular f|W is a homeomorphism onto its image, i.e., an
embedding. Conversely, if f|W is an embedding, I (w) = 1.

We will compute the Euler characteristic of M by counting the indexes of a
suitable vector field onM . Let ξ be a fixed unit vector in R

3 such that ξ is a regular
value of the Gauss map and ξ �= ±n(wi), wi ∈ E. Consider the tangent vector field
η(x) = Px(ξ) where Px is the projection onto TxM . η is the gradient of the height
function hξ (x) = 〈f (x), ξ 〉, which is a Morse function since ξ is a regular value
of n. We observe that η extends to a tangent vector field on M , setting, for w ∈ E,
η(w) = ξ − 〈n(w), ξ 〉n(w). Then the singularities of η are the points in n−1(±ξ)
and, possibly, the ends.

In [3] is shown that the Gauss curvature of a surface of finite geometric type is
non-positive. In particular the index of η at a point in n−1(±ξ) is −1. For the ends
we have the following:

Lemma 5.11 The index of η at an end w is 1 + I (w).
Proof We will sketch the proof for the case in which the end is embedded (see
Remark 5.10) and refer to [3] for the general case.

The orthogonal projection of η over the complement of B ⊆ [n(w)]⊥ is
almost constant. Hence the index on the sphere bounding B is zero. Hence we
can extend the projection to a non-vanishing vector field on B. We can take the
stereographic projection of [n(w)]⊥ over the sphere S2. The image of the projection
of η, η̃ gives a vector field on the sphere with just one singularity at the south
pole, hence the index of this singularity is 2. Since the composition of f with the
projection into [n(w)]⊥ and the stereographic projection is an orientation preserving
diffeomorphism of a small punctured neighborhood ofw onto a small neighborhood
of the south pole, the conclusion follows.

Adding up the indexes of η we get

Theorem 5.12

χ(M) = 2dg(n)+
∑

w∈E
[I (w)+ 1] (Total curvature formula). (16)
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Remark 5.13 The total curvature formula was first proved by Osserman in [14],
as an inequality, using the Weierstrass representation formula. So Osserman proof
works only for minimal surfaces. The equality was proved in [10] and in [3] using
only the topological properties of a surface of finite geometric type.

At this point a suitable combination of the Riemann-Hurevitz relation and the
total curvature formula gives

Theorem 5.14 The Gauss map of a surface of finite geometric type misses at most
3 points.

Proof Let {ξ1, . . . , ξl} be the set of points omitted by the Gauss map. Set

Ai = {w ∈ E : n(w) = ξi}, B = {w ∈ E : n(w) �= ξi ∀ i},
C = {q ∈ M : ν(q) > 1}.

Let n = −dg(n). Then Eq. (15) becomes

χ(M) = 2n+
l∑

i=1

∑

p∈Ai
(1 − ν(p))+

∑

p∈B
(1 − ν(p))+

∑

p∈C
(1 − ν(p)). (17)

Observe that

∑

p∈Ai
ν(p) = n,

l∑

i=1

|Ai | + |B| = |E|.

Then we have

χ(M) = (2 − l)n+ |E| −
∑

p∈B
ν(p)+

∑

p∈C
(1 − ν(p)). (18)

Comparing Eq. (18) with Eq. (16), we obtain

0 <
∑

w∈(∪Ai)∪B
I (w) = (4 − l)n−

⎡

⎣
∑

p∈B
ν(p)−

∑

p∈C
(1 − ν(p))

⎤

⎦ . (19)

Therefore l < 4.

There are no examples of surfaces of finite geometric type, in particular complete
minimal surface with finite total curvature, whose Gauss map misses three points.
There have been various tentatives to prove the following conjecture that we will
call the Osserman conjecture:

Conjecture 5.15 The Gauss map of a complete minimal surface with finite total
curvature omits at most two points.
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We will discuss now some results in the direction of giving a positive answer to
Osserman conjecture.

Proposition 5.16 Let f : M −→ R
3 be a surfaces of finite geometric type. If the

Gauss map omits 3 points then χ(M) ≤ 0. Moreover, if χ(M) = 0 we have:

(1) l = |E|, i.e., all ends are omitted,
(2) B = ∅ = C,
(3)

∑
I (pi) = |E|, i.e., all ends are embedded.

Proof Just combine (19) with the total curvature formula.

A unit vector ξ ∈ S2 is a regular value of the Gauss map if its inverse image
n−1(ξ) does not contain flat points. In particular ν(p) = 1 ∀ p ∈ n−1(ξ). In order
to extend this concept to an end w ∈ E, we have to take into account first that the
curvature goes to zero approachingw and second that the end may not be embedded.
The latter fact is measured by the geometric index I (w). These considerations lead
to the following definition:

Definition 5.17 We will say that an end w ∈ E is non-degenerate if ν(w) ≤ 1 +
I (w).

Examples 5.18 Let f : M −→ R
3 be a minimal surface, w an end with n(w) =

e3. Suppose that the end is embedded. Then the end may be parameterized as the
graph of a function F , defined on the complement of a disk in the {e1, e2} plane. If
z = x1 + ix2 is the complex coordinate in this plane, F is of the form

F(z) = a log |z| + b + 〈z0, z〉|z|−2 +O(|z|−2),

where z0 is a given vector in the plane (see [19]). If a �= 0 the end is of catenoid
type. If a = 0, z0 �= 0 we have a simple flat end. In both cases the end is non-
degenerate.

There are also many examples of non-degenerate ends which are not embedded.
For example, for the (unique) end w of the Enneper surface, we have I (w) =
3, ν(w) = 1, hence the end is non-degenerate, but not embedded.

Theorem 5.19 If f : M −→ R
3 is a surface of finite geometric type and all end

are non-degenerate, then the Gauss map omits at most two points.

Proof Suppose that the Gauss map omits the (distinct) values ξi, i = 1, 2, 3.
Assume first that ξ1 = −ξ2. Computing χ(M) (≤ 0 by Corollary 5.16) and
counting the singularities of η, we obtain

0 ≥ χ(M) =
∑

w∈A1∪A2

[I (w)+ 1 − ν(w)] +
∑

w∈A3∪B
[I (w)+ 1],
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which together with the condition ν(w) ≤ 1 + I (w) imply A3 ∪ B = ∅, a
contradiction. Assume now that no two of the ξi’s are parallel. Then we have

0 ≥ χ(M) =
∑

w∈A1

[I (w)+ 1 − ν(w)] − n+
∑

w∈A2∪A2∪B
[I (w)+ 1],

which again lead to the contradiction A3 ∪ B = ∅.

For minimal surfaces Y. Fang proved, in [9], the following:

Theorem 5.20 If f : M −→ R
3 is a complete minimal surfaces with finite total

curvature and
∫

M

k ≥ −20π,

then the Gauss map misses at most two points.

Remark 5.21 Those results should take care of the hard cases, since, intuitively, the
more complicated the topology/geometry is, the “more surjective” the Gauss map
should be. But it turns out that this is not the case!

6 Work in Progress and Some Problems

The main idea behind the proof of Theorem 5.14 is to consider the gradient of the
function hξ which is the projection of the surface onto the ξ -axes. In the last few
years we have tried a “dual approach,” i.e., considering projection of the surface onto
a plane. The general philosophy is that the singularities of such maps are strongly
related to the topology ofM . There are classical results due to Levine, Whitney, and
others that relate the topology of a compact surface to the singularities of maps of
these surfaces into a plane (see [11, 21] between others). We were able to extend
some of these results to the case of surfaces of finite geometric type, but still we will
need something finer to give a positive answer to Osserman conjecture.

We are also studying a different approach: find a locally invertible conformal
map π : C −→ M . If such a map exists, the composition with the Gauss map will
provide a holomorphic function φ : C −→ S2 that, by Picard theorem, misses at
most two points. The existence of such a function may be established looking at
solutions of a Beltrami type equation

∂

∂z
W = μ ∂

∂z
W,

where μ is an expression in the coefficients of the metric. Curvature estimates at
the ends should imply that sup(|μ(z)|) < 1, a fact that guarantees the existence of
solutions.
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A natural question on this line is the characterization of minimal surfaces of
finite total curvature whose Gauss maps miss exactly two points. In [13] Miyaoka
and Sato constructed examples of minimal spheres (or tori) punctured tree times
whose Gauss maps miss two points that are not antipodal. What can we say if the
two missed points are antipodal?

We can also ask the same question for surfaces as above whose Gauss maps miss
just one point.

The characterizations above may be intended in terms of the type and number
of the ends, the value of the total curvature, and the genus g of the surface. For
example, we can ask if there are minimal surfaces of finite total curvature, with one
end of Enneper type, i.e., I (w) = 3, two ends of catenoid type, i.e., I (w) = 1 and
total curvature −4π(g + 1).
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Galois Theories: A Survey

Antonio Paques

Abstract We present an overview of the various Galois theories that appeared in
the literature since Évariste Galois until to the present day, accompanied with a bit
of the inherent history.

1 A Brief Introduction

The celebrated work of Évariste Galois (1811–1832) constitutes a true landmark in
the development of mathematics.

On the one hand, it gave a definitive answer to one of the main problems of that
time, namely: to decide under what conditions an algebraic equation, regardless of
its degree, is solvable by radicals, that is, has roots that can be described in terms of
radicals involving its own coefficients.

On the other hand, the ideas contained in that work contributed meaningly to
the arising of a modern algebraic language, thanks to the contributions of Richard
Dedekind (1831–1916), Leopold Kronecker (1823–1891), and Emil Artin (1898–
1962) among other mathematicians, and theories such as the classical field theory
(in particular, the finite field theory that allowed the arising of an error-correcting
codes theory), the group theory, the linear algebra, the commutative algebra, the
algebraic geometry, the algebraic theory of numbers, the arithmetic of fields and,
in particular, new Galois theories. It is this last item that we will deal on in this
manuscript.
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2 A Bit of the Starting History

Galois’s work, in spite of its great importance, came to be published only in
1846, by Joseph Liouville (1809–1882), in the Journal of Mathématiques Pures
et Appliqueés. However, its 60-page text was still difficult to understand and did
not arouse greater interest in the scientific community at the time. Despite the
contribution of Enrico Betti (1823–1892) in the sense of to make this text clearer,
detailing certain still obscure passages, and completing some demonstrations, the
ideas and discoveries of Galois were only known and appreciated in all their
amplitude with the publication in 1870 by Camille Jordan (1838–1922) of his
“Traité des substitutions et des équations algébriques.” From there, the theory of
Galois gains notoriety and inspires the arising of similar theories in more general
by contexts. We mention, by way of illustration, some of the works published in the
period 1880–1950, due respectively to

1. Charles Émile Picard (1856–1941) and Ernest Vessiot (1865–1952): a differential
Galois theory for homogeneous linear differential equations (see [58]),

2. Wolfgang Krull (1899–1971): a Galois theory for field extensions of infinite
dimension [61],

3. Henri Cartan (1904–2008) and Nathan Jacobson (1910–1999): a Galois theory
for division rings [20, 52],

4. Jean Dieudonné (1906–1992), Gerhard Hochschild (1915–2010), Goro Azumaya
(1920–2010), and Tadasi Nakayama (1912–1964): a Galois theory for simple
rings [4, 33, 51, 71, 72].

3 A Comment

Roughly speaking, in his work Galois dealt with the following basic objects:

1. a polynomial f (X) with coefficients, in general, in a subfield K of the complex
number field C,

2. the field of the roots (or the splitting field) of f (X), that is, the smallest subfield
L of C including K and all the complex roots of such a polynomial, later called
a Galois extension of K , and

3. the group AutKL of all K-automorphisms of L, indeed the group of the
permutations of the roots of f (X) leaving invariant the coefficients of f (X),
later called the Galois group of f (X).

Essentially, Galois dealt with a group acting on a field by automorphisms and
investigated the correlation between the set of all subfields of such a given field,
including the subfield of the invariants under such a given action, and the set of all
subgroups of the given group.

Taking into account such remarks, one can even say that the foundations of the
theory developed by Galois consist in fact of two main theorems:
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– a definition theorem that presents a list of equivalent statements that characterize
the notion of a Galois extension, and

– a correspondence theorem that states a bijection between the subfields of a
Galois field extension L of a given field K , including K , and the set of all
subgroups of the group AutKL, later called Fundamental Theorem of Galois
Theory.

Our aim is to address the many contributions to generalize such theorems to other
contexts that appeared in the literature along of these last seventy years.

4 Definition Theorem

4.1 On Finite Field Extensions

The formalism to enounce this theorem for finite field extensions starts with Artin
[3] proving the equivalence of the following statements for any finite field extension
L of a field K:

(a) The order of the group AutK(L) is equal to the dimension of L over K .
(b) K is the field of the elements x of L such that σ(x) = x for all σ ∈ AutK(L).
(c) L is a splitting field of a separable polynomial with coefficients in K .
(d) L is a normal and separable extension of K .

Such statements are also equivalent to several other ones, in special to the
following:

(e) There exists a one-to-one correspondence between the subfields of L including
K and the subgroups of AutK(L).

Any finite field extension L of a field K satisfying one of the equivalent
statements above enumerated is called a Galois extension of K .

Another fact that deserves to be pointed out is the following: any field extension
L ⊇ K together with any group G of K-automorphisms of L determine a new
algebraic structure, namely the skew group algebra L�G, which is defined as being
the L-vector space with basis {ug | g ∈ G}, endowed with a multiplication induced
by the rule

(xug)(yuh) = xg(y)ugh, for all x, y ∈ L and g, h ∈ G,

as well as a canonical algebra homomorphism ϕ from L�G to the algebra EndK(L)
of all K-endomorphisms of L, defined by

ϕ(xug) : y %→ xg(y), for all x, y ∈ L and g ∈ G.
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This map ϕ is indeed injective, by a result due to R. Dedekind, known in the
literature as Dedekind’s lemma, which ensures, in particular, that the elements of G
as ring endomorphisms of L are free over L. In the case that L is finite dimensional
over K and G = AutK(L) the statements above listed are equivalent to

(f) ϕ is an algebra isomorphism,

which indeed ensures that the product inL�G corresponds to the product of matrices
of order equal to the square of the order of G with entries in L.

This last statement is in particular very special because it has opened the door
that allowed to extend the notion of Galois extension to the context of commutative
rings.

4.2 On Commutative Ring Extensions

Maurice Auslander (1926–1994) and Oscar Goldman (1925–1986) were the first to
introduce in the literature the notion of Galois extension for commutative rings,
with the publication in 1960 of their celebrated paper “The Brauer group of a
commutative ring” [7], which established the foundations of a general theory of
separable algebras over a commutative ring.

Following them, given a commutative ring S, a subring R of S and a finite
subgroup G of the group AutR(S) of all ring automorphisms of S leaving R
elementwise fixed, S is called a Galois extension of R relative to G if S is a finitely
generated projective R-module (i.e, as R-module S is a direct summand of a free
R-module of finite rank), and the map ϕ : S � G → EndR(S) similarly defined as
above is a ring isomorphism. In particular, if S and R are fields the corresponding
definition coincides with the one given above in the previous subsection. Hence,
such definition is indeed the correct generalization of the notion of a Galois
extension to the context of commutative rings.

The Galois theory for commutative rings is due to Stephen U. Chase, David
K. Harrison, and Alex Rosenberg (1926–2007), published later in 1965 in their
celebrated paper “Galois theory and Galois cohomology of commutative rings”
[23]. In this paper they present a new list of statements characterizing the notion
of Galois extension for commutative rings, which we will enumerate below. To do
this we need before some complementary information.

On Separability

First of all some words about separability. In the field case this concept concerns to
the simplicity of roots of a polynomial, that is, an extension field L of a field K is
said to be separable over K if every element of L is a root of multiplicity 1 of its
minimal polynomial over K .
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In a more general approach the following statements are equivalent:

(a) L is a separable finite field extension of K .
(b) L is a projective L⊗K L-module via the multiplication map μ : L⊗K L→ L.
(c) μ is an (L,L)-bimodule homomorphism that splits.
(d) L is a direct summand of L⊗K L as an L⊗K L-module.

Such characterizations of separability in the field case have induced the following
definition in the most general context of algebras (not necessarily commutative) over
commutative rings: an algebra A over a commutative ring R is said to be separable
over R (or R-separable) if the multiplication map μ : A⊗R A → A is an (A,A)-
bimodule homomorphism that splits. A more detailed approach about separability,
from fields to algebras, can be seen in [75] (see also [74]).

Notice that in the definition of separability for algebras it is not required any
kind of finiteness. However, if A and R are fields, then the finite dimension of A
over R is forcibly recovered (see, for instance, [62, Proposition III.3.2]). Moreover,
the elements of an R-separable algebra in general are not roots of any polynomial
with coefficients in R, for instance, the rational field Q is a Z-separable algebra but
none element of Q \ Z is integral over Z.

On Strong Distinctness

Two algebra homomorphisms σ, τ : A → B are said to be strongly distinct if for
every nonzero idempotent e ∈ B there exists x ∈ A such that σ(x)e �= τ(x)e.
Evidently, these notions “distinct morphisms” and “strongly distinct morphisms”
coincide if, for instance, B is either a field, a domain, a local ring or more generally a
connected ring. Furthermore, strong distinctness is equivalent to Dedekind’s lemma
in the context of separable algebras (see [47, Proposition 2.1]).

On S � G-Modules

The notation S�G, where S ⊇ R is a commutative ring extension andG ⊆ AutR(S)
is a subgroup, is analogous to the one introduced in the former subsection, that
is, S � G denotes the free S-module with basis {ug | g ∈ G} endowed with an
structure of a noncommutative R-algebra via the multiplication induced by the rule:
(xug)(yuh) = xg(y)ugh, for all x, y ∈ S and g, h ∈ G.

Every left S � G-module M is in particular an S-module on which the group G
acts. We will denote byMG the R-submodule of the elements ofM invariant by the
action of G, that is,MG = {m ∈ M | ug ·m = m, for all g ∈ G}. In particular S is
a left S � G-module via the action xug · y = xg(y), for all x, y ∈ S and g ∈ G, and
in this case SG = {y ∈ S | g(y) = y}.

The definition theorem to characterize a Galois extension as introduced in [23]
by Chase, Harrison and Rosenberg (CHR, for short) is the following:
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Theorem 4.1 ([23, Theorem 1.3]) Let S ⊇ R be a commutative ring extension
andG a finite group of ring automorphisms of S. Then, the following statements are
equivalent:

(a) SG = R, S is separable over R and the elements of G are all pairwise strongly
distinct.

(b) There exist elements xi, yi in S, 1 ≤ i ≤ n, such that
∑

1≤i≤n xig(yi) = δ1,g1S ,
for all g ∈ G.

(c) S is a finitely generated projectiveR-module and the map ϕ : S�G→ EndR(S),
given by ϕ(xug)(y) = xg(y), is an isomorphism of S-modules and R-algebras.

(d) For any left S�G-moduleM the map μ : S⊗RMG → M , given by μ(x⊗m) =
xm is an isomorphism of S-modules.

(e) The map ψ : S ⊗R S → ∏
g∈G S, given by ψ(x ⊗ y) = (xg(y))g∈G, is an

isomorphism of S-algebras.
(f) SG = R and for each maximal ideal m of S and each 1 �= g ∈ G there exists
y ∈ S such that g(y)− y /∈ m.

If a triple (S, R,G) is as in Theorem 4.1, S is called a Galois extension of R with
Galois group G if one of the equivalent statements listed above is satisfied.

Theorem 4.1 is undoubtedly the closest to the classical definition theorem for
fields, one can even say that it is a natural generalization of the previous one. In the
context of commutative connected rings, that is, rings whose unique idempotents are
0 and 1, like fields, it is clear how much this generalization is absolutely natural, for
in such cases the notions of distinct automorphisms and strongly distinct coincide.
However, it is not an absolute generalization for commutative rings because the
assumed restriction on the idempotents.

A more general approach to commutative rings is due to Orlando Eugênio
Villamayor (1923–1998) and Daniel Zelinsky (1922–2015).

Villamayor and Zelinsky (VZ, for short) dealt with rings with no restriction on
their idempotents and developed a theory, so-called weak Galois theory, between
the years 65–69, published in two articles entitled respectively “Galois theory
with finitely many idempotents” [90] and “Galois theory with infinitely many
idempotents” [91]. In their theory a ring extension S ⊇ R is called weak Galois
if the following three conditions are satisfied:

(a) S is a separable R-algebra,
(b) S is a finitely generated projective R-module, and
(c) SAutR(S) = R.

Notice that any Galois extension in the sense of CHR satisfies the above three
conditions, that is, it is a Galois extension in the sense of VZ. Also, the definition
of weak Galois extension makes no mention of any fixed subgroup of the group
AutR(S). Actually, a weak Galois extension turns out to be Galois with respect to
several distinct finite subgroups of AutR(S).
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4.3 On Ring Extensions

We will divide this subsection into two parts.

4.3.1 Still on Group Actions

In addition to the contributions mentioned in Sect. 2, particularly due to Cartan,
Jacobson, Dieudonné, Hochschild, Azumaya, and Nakayama, in specific ring
contexts, many other mathematicians have also contributed to the research related
to a Galois theory for rings in general. The list of them is long, but particularly
we would like to highlight the contributions of DeMeyer [30, 31], Kreimer [59],
Kanzaki [55, 56], Ferrero [45, 46], Dress [40], Cohen [26], Cohen, Fischman and
Montgomery [27], Montgomery [66], Montgomery and Passman [68], Passman
[80], and Kharchenko [57] among many others.

The equivalent statements that characterize the notion of a Galois extension in the
general ring case are analogous to those listed in Theorem 4.1. With the necessary
adequations to this new context, the definition theorem is enounced as follows:

Theorem 4.2 Let S ⊇ R be a ring extension and G a finite group of ring
automorphisms of S such that SG = R. Then, the following statements are
equivalent:

(a) The map ψ : S ⊗R S → ∏
g∈G S, given by ψ(x ⊗ y) = (xg(y))g∈G, is an

isomorphism of left S-módulos.
(b) There exist elements xi, yi,∈ S, 1 ≤ i ≤ n, such that

∑
1≤i≤n xig(yi) = δ1,g1S

for all g ∈ G.
(c) S is a finitely generated projective right R-module and the map ϕ : S � G →

End(SR), given by ϕ(xug)(y) = xg(y), is an isomorphism of left S-modules
and right R-modules.

(d) For any left S �G-moduleM the map μ : S⊗RMG → M ,given by μ(x⊗m) =
xm is an isomorphism of left S-modules.

(e) The map δ : S ⊗R S → S � G, given by δ(x ⊗ y) = ∑
g∈G xg(y)ug , is an

epimorphism of S � G-bimodules.
(f) StS = S � G, where t =∑g∈G ug .
(g) S is a generator for the category of all left S � G-modules. *,
With respect to the above statement (f) we observe that S can be seen as an (S, R)-
subbimodule of S � G via x ↪→ xt , hence the notation StS makes sense. Actually,
StS is an ideal of S � G. The ring S is called a Galois extension of R with Galois
group G if one of the above statements holds.

It is also interesting to notice that such a definition of Galois extension keeps a
very close relation with a suitable Morita context. By Morita context we mean a
sixtuple (A,B,U, V, γ, δ) where A and B are rings, U is a (A,B)-bimodule, V is
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a (B,A)-bimodule, γ : U ⊗B V → A is an A-bimodule map and δ : V ⊗A U → B

is a B-bimodule map, and the following two associative conditions hold:

u · δ(v ⊗ u′) = γ (u⊗ v) · u′ e δ(v ⊗ u) · v′ = v · γ (u⊗ v′),

for all u, u′ ∈ U e v, v′ ∈ V . If γ and δ are isomorphisms we say that this context
is strict and, in this case, the categories AMod and BMod are equivalent via the
mutually inverse equivalences V ⊗A − :AMod →BMod and U ⊗B − :BMod →
AMod. When it happens we also say that the ringsA and B are Morita equivalent. If
AU is faithfully projective, that is, AU is faithful, projective, and finitely generated,
then it is enough the surjectivity of γ and δ in order to have the strictness of the
above context [82, Theorems 4.1.4 and 4.1.17].

Now take a triple (S, R,G) as in Theorem 4.2 and notice that S is an R-bimodule
(resp., a S � G-bimodule) via the multiplication of S (resp., via the following left
and right actions: xug · y = xg(y) = ϕ(xug)(y) and y · xug = g−1(xy)). Also, it
is straightforward to see that if δ and t are as above defined and γ : S ⊗S�G S → R

is the R-bimodule map given by γ (x ⊗ y) = t · (xy), then the sixtuple (R, S �
G, S, S, γ, δ) is a Morita context. Furthermore, if S is a Galois extension of R, then
the additional statements listed below are also equivalent:

(h) γ is surjective.
(i) t · S = R.
(j) S is a generator for the category of all right R-modules.
(l) The Morita context (R, S � G, S, S, γ, δ) is strict.

It follows from the above that the notion of Galois extension is equivalent to the
strictness of the corresponding Morita context, whenever the map γ is surjective.
This map γ is also called the trace map because it induces by restriction the map
tS/R : S → R given by tS/R(x) = t · x =∑g∈G g(x). In the commutative case the
map γ is surjective and therefore we have Theorem 4.1 expanded by six additional
statements. In particular the notion of Galois extension and the strictness of the
above described Morita context are equivalent in the commutative case.

4.3.2 On Hopf Actions

The theories dealt with in the previous subsections can be considered generalizations
of the Galois theory for fields in the context of group actions on rings or algebras in
general.

In this subsection we will deal with another generalization, the one that extends
the classical Galois theory to the context of Hopf algebra actions (shortly, Hopf
actions) on algebras. Such a generalization is quite natural considering that, given
a fields extension L ⊇ K and a subgroup G of AutK(L), the action of G on L
determines univocally an action of the group algebra KG on the K-algebra L via
λg · x := λg(x), for all λ ∈ K , g ∈ G e x ∈ L. Group algebras are perhaps the
simplest examples of Hopf algebras.
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In all what follows K will denote a commutative ring. A Hopf algebra is a K-
algebra H provided with two K-algebra homomorphisms Δ : H → H ⊗K H
(called comultiplication) and ε : H → K (called counit), and a K-algebra
anti-homomorphism S : H → H (called antipode) satisfying the following
properties:

1. (Δ⊗ IH ) ◦Δ = (IH ⊗Δ) ◦Δ,
2. (ε ⊗ IH ) ◦Δ ≡ IH ≡ (IH ⊗ ε) ◦Δ,
3. S ∗ IH = 1Hε = IH ∗ S,

where IH denotes the identity map of H and, for all f, g ∈ EndK(H), f ∗ g =
μ ◦ (f ⊗ g) ◦Δ, with μ : H ⊗K H → H denoting the multiplication of H .

For simplicity we will use the Heyneman-Sweedler notation for Δ, that is,
Δ(h) = h1 ⊗ h2 (summation understood), for all h ∈ H .

In order to illustrate the above definition we will consider the following three
classical examples:

Exemples 4.3

(1) For any group G, the group algebra KG is a free K-module with basis G
provided with a multiplication induced by the rule (ag)(bh) = abgh, for all
a, b ∈ K e g, h ∈ G, whose identity element is 1K1G. Furthermore, KG is a
Hopf algebra with comultiplication, counit, and antipode given, respectively, by
the maps

Δ(g) = g ⊗ g, ε(g) = 1K e S(g) = g−1,

for all g ∈ G.
(2) For any finite group G, the dual KG∗ of the group algebra KG is a free K-

module with basis {pg | g ∈ G} given by the rule pg(h) = δg,h for all g, h ∈
G, and has a Hopf algebra structure with multiplication induced by the rule
pg ∗ ph = δg,hpg , whose identity element is the counit ε

KG
of KG. Notice

that ε
KG

= ∑g∈G pg . The comultiplication, counit, and antipode of KG∗ are,
respectively, given by the maps

Δ
KG∗ (pg) =

∑

h∈G
ph ⊗ ph−1g, ε

KG∗ (pg) = pg(1G) = δ1G,g

and

S
KG∗ (pg) = pg−1 ,

for all g ∈ G.
(3) The enveloping U(g) of a Lie algebra g is also a Hopf algebra with comultipli-

cation, counit, and antipode, respectively, defined as follows:

Δ(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0 and S(x) = −x,

for all x ∈ g, with multiplicative extension to U(g).



256 A. Paques

The notion of Galois-Hopf extension has its roots in the CHR Galois theory, whose
ideas were initially extended by S.U. Chase and M.E. Sweedler to the context of
coactions of Hopf algebras (shortly Hopf coactions) on algebras in [24]. The general
definition is due to Kreimer and Takeuchi and appears in [60]. To present it, we need
some preparation.

Let A be a K-algebra and H a Hopf algebra. We say that A is a (left) H -module
algebra if there exists a linear map · : H ⊗K A → A (called a left action of H on
A) such that

1. A is a left H -module via the action h⊗ a %→ h · a,
2. h · (ab) = (h1 · a)(h2 · b),
3. h · 1A = ε(h)1A,

for all a, b ∈ A e h ∈ H . It can be easily seen that the set

AH = {a ∈ A | h · a = εH (h)a, for allh ∈ H },

of the elements of A invariant by · is a subalgebra of A.
We say that A is a (right) H -comodule if there exists a linear map ρ : A →

A⊗K H (called a right coaction of H on A) such that

1. (IA ⊗Δ) ◦ ρ = (δ ⊗ IA) ◦ ρ,
2. (IA ⊗ ε) ◦ ρ = ⊗1K ,

where IA denotes the identity map of A.
We say that A is a (right) H -comodule algebra if

1. A is a right H -comodule via the coaction ρ : a %→ a0 ⊗ a1,
2. ρ is an algebra homomorphism.

The set

AcoH = {a ∈ A | ρ(a) = a ⊗ 1H },

of the elements of A coinvariant by ρ is also a subalgebra of A.
If H is a finitely generated projective K-module, then its dual H ∗ =

HomK(H,K) is also a Hopf algebra with

– multiplication given by (f ∗ f ′)(h) = f (h1)f
′(h2),

– unit given by 1H ∗ = εH ,
– comultiplication given by ΔH ∗(f ) = f1 ⊗ f2 ⇐⇒ f (gh) = f1(g)f2(h)

– counit given by εH ∗(f ) = f (1H ),
for all g, h ∈ H e f, f ′ ∈ H ∗.

For the sequel we will assume that H is a Hopf algebra that as a K-module is
finitely generated and projective.

In this context the notions of H -module algebra and H -comodule algebra are,
respectively, dual, that is, an algebra A is a left H -module algebra if and only if it is
a right H ∗-comodule algebra. In this case the coaction ρ : A → A ⊗K H ∗, of H ∗



Galois Theories: A Survey 257

on A, is given by

ρ(a) = a0 ⊗ a1 ⇐⇒ h · a = a1(h)a0,

for all a ∈ A e h ∈ H . Moreover, AcoH
∗ = AH .

Example 4.4 Let G be a finite group of K-automorphisms of a K-algebra A.
Then A is a left KG-module algebra via the action given by h · a = h(a) =∑
g∈G pg(h)g(a), for all a ∈ A and h ∈ G, if and only if A is a right KG∗-

comodule algebra via the coaction given by ρ(a) =∑g∈G g(a)⊗pg , for all a ∈ A.

Furthermore, a ∈ AcoKG if and only if
∑
g∈G g(a) ⊗ pg = ρ(a) = a ⊗ ε

KG
=

∑
g∈G a⊗pg , if and only if g(a) = a, for all g ∈ G, if and only if a ∈ AG = AKG.

Now we are in conditions to introduce the definition of a Hopf-Galois extension.
Let A be a right H -comodule algebra and ρ : A → A⊗K H the coaction of H

on A. We say that A is a right H -Galois extension of AcoH if the map

β : A⊗AcoH A→ A⊗K H, a ⊗ b %→ (a ⊗ 1H )ρ(b)

is bijective. Analogously, if A is a left H -module algebra then A is a right H ∗-
comodule algebra, AcoH

∗ = AH and A is a right H ∗-Galois extension of AH if the
corresponding map β : A ⊗AH A → A ⊗K H ∗ is bijective. Notice that the map β
is a homomorphism of left A-modules. The definition of a left H -Galois extension
is similar.

Example 4.5 Consider A and G as in Example 4.4. Observe that A ⊗K KG∗ and∏
g∈G A are isomorphic K-algebras via the map

∑
g∈G ag ⊗ pg %→ (ag)g∈G. Em

particular, β(a⊗b) =∑g∈G ag(b)⊗pg %→ (ag(b))g∈G, hence A is aKG∗-Galois

extension of AKG if and only if A is a Galois extension of AG, with Galois group
G (see Theorem 4.2(a)).

There are several equivalent definitions of a Hopf-Galois extension, similar
to those from CHR theory (see Theorem 4.1) coming from the contributions of
Kreimer and Takeuchi in [60], Ulbrich in [89], Doi and Takeuchi in [38], Cohen,
Fischman and Montgomery in [27], and Ouyang in [73]. In order to enumerate such
definitions we need to introduce the notions of integral and smash product.

Un element t of a Hopf algebra H is called a right (resp., left) integral in H
if th = ε(h)t (resp., ht = ε(h)t), for all h ∈ H . The set of the right (rep., left)
integrals in H is a submodule of H and is denoted by

∫ r
H

(resp.,
∫ l
H

). For instance,

if H = KG (resp., H = KG∗, with G being finite), then então
∫ r
H

= ∫ l
H

= Kt

with t =∑g∈G g (resp., t = p1G ).
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Given a left H -module algebra A, the smash product of A by G is the
noncommutativeK-algebra, denoted by A#G, which as aK-module coincides with
the tensor product A⊗K H and has multiplication induced by the rule

(a#h)(b#l) = a(h1 · b)#h2l,

for all a, b ∈ A and h, l ∈ H , whose unit is 1A#1H . For instance, if H = KG, then
A#H and A � G are isomorphic as K-algebras.

The algebras A and H can be seen as subalgebras of A#H , via the respective
immersions a ↪→ a#1H and h ↪→ 1A#h, for all a ∈ A and h ∈ H . Also, if M is a
left A#H -module, thenM also is a left A-module, a left H -module and

MH = {m ∈ M | h ·m = ε(h)m, for all h ∈ H }

is a left AH -submodule ofM .

Theorem 4.6 Let A be a leftH -module algebra and assume thatH as aK-module
is finitely generated and projective. Then the following statements are equivalent:

(a) A is a H ∗-Galois extension of AH .
(b) There exists elements x1, . . . , xm, y1, . . . , ym ∈ A and T ∈ ∫ r

H ∗ such that∑
1≤i≤m xi(h · yi) = T (h)1A, for all h ∈ H .

(c) A is a right finitely generated and projective AH -module and the map ϕ :
A#H → End(AAH ), given by ϕ(a ⊗ h)(x) = a(h · x), for all a, x ∈ A and
h ∈ H , is an isomorphism of algebras.

(d) For any left A#H -module M , the map μ : A⊗AH MH → M , given by μ(a ⊗
m) = a·m, for all a ∈ A andm ∈ MH , is an isomorphism of leftA#H -modules.

(f) If 0 �= t ∈ ∫ l
H

, then the map [, ] : A⊗AH A→ A#H , given by [a, b] = atb, is
surjective.

(g) A is a generator in the category of all left A#H -modules. *,
Notice that if one takes H = KG in Theorem 4.6, with G being finite, then

Theorem 4.2 in the K-algebras context is recovered.

5 Correspondence Theorem

5.1 On Group Actions

5.1.1 In the Classical Galois Theory for Field Extensions

As it is well known, in this context the theorem of correspondence is the following:

Theorem 5.1 (Fundamental Theorem of Galois Theory) Let L be a Galois
extension field of a field K and G = AutK(L). Then there exists a one-to-one
correspondence between the subgroups of G and the subfields of L including K .
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Such a correspondence associates to each subgroup H of G the subfield of L
given by

LH = {x ∈ L | h(x) = x, for all h ∈ H }

and to each subfield F of L including K the subgroup of G given by

HF = {g ∈ G | g(x) = x, for all x ∈ F } = AutF (L).

*,
As seen in Sect. 4.2, any Galois extension field L of a field K is a K-separable

algebra and any of its subfields containing K is a K-separable subalgebra of L.
Hence, under such an approach one can say that indeed Theorem 5.1 assures
the existence of a bijection between subgroups of G and subalgebras of L that
are separable over K . Also, distinct restrictions of distinct elements of G to any
subalgebra of L are strongly distinct. This is the approach in the CHR Galois theory.

5.1.2 In the CHR Galois Theory for Commutative Ring Extensions

LetR, S, andG be as in Theorem 4.1. For each subalgebra T of S and each subgroup
H of G we denote

HT = {g ∈ G | g(t) = t, for all t ∈ T } and SH = {s ∈ S | h(s) = s, for all h ∈ H }.

Clearly HT is a subgroup of G as well as SH is a subalgebra of S that contains R.
A subalgebra T of S is called G-strong if distinct restrictions of any distinct two

elements of G to T are strongly distinct as maps from T to S.
In the sequel we have the correspondence theorem called the fundamental

theorem of the Galois theory due to Chase, Harrison and Rosenberg (shortly, CHR
Galois theory). In fact, this theorem is a natural consequence of a more general
theorem of correspondence due to Grothendieck for group actions on sets, which
we will see in the next subsection.

Theorem 5.2 (Fundamental Theorem of CHR Galois Theory) Let S be a Galois
extension of R with Galois group G.

Then there exists a one-to-one correspondence between the subgroups of G and
the subalgebras of S including R that are G-strong and separable over R.

Such a correspondence associates to each subgroup H of G the subalgebra SH

of S and to each G-strong and R-separable subalgebra T of S including R the
subgroup HT of G. *,
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5.1.3 In the Grothendieck’s Approach for Group Actions on Sets

The theory of Galois due to Grothendieck, in its totality, is contextualized in the
schema language [50] (also see [2]). A version of this theory in the specific context
of fields was presented by Dress in [39] and by Borceux and Janelidze in [15,
Chap. 2]. Basically this theory presents a new interpretation of the classical Galois
theory for field extensions in terms ofK-algebras that are L-split (hence, finite) and
G-sets, where L is a Galois extension of K with G = AutK(L).

Our purpose in this subsection is to present a generalization of Theorem 5.2
following the Grothendieck’s approach for group actions on sets. As in the previous
subsection rings and algebras are assumed to be commutative.

Let S ⊇ R be a ring extension and A an R-algebra. We say that A is weakly
S-split if there is n > 0 such that S ⊗R A is isomorphic to Sn as S-algebras. The
following example gives us a good illustration of this concept.

Example 5.3 It is well known that if a field L is a finite and separable extension
of a field K , then there exists an element α in L such that L = K[α] � K[X]

(mα,K(X))

where mα,K(X) denotes the minimal polynomial of α over K . Besides this, if N is
a splitting field of mα,K(X) including L, then there exist pairwise distinct elements
α1 = α, α2, . . . , αn ∈ N such that mα,K(X) =∏1≤i≤n(X− αi), which implies the
following sequence of algebra isomorphisms

N ⊗K L � N ⊗K K[X]
(mα,K(X))

� N [X]
∏

1≤i≤n(X − αi) �
∏

1≤i≤n

N [X]
(X − αi) � Nn.

Hence, L is a weakly N -split algebra.

If S ⊇ R is a ring extension, then any weakly S-split R-algebra A gives rise to
the finite set X(A) of all maps from A to S given by the following composition of
maps:

ϕi = πi ◦ ϕ ◦ ı : A ı→ S ⊗ A ϕ→ Sn
πi→ S

where ı : a %→ 1R ⊗ a is the canonical immersion of A into S ⊗ A (notice that
1R = 1S), ϕ is the algebra isomorphism ensured by the assumption on A, and πi is
the canonical projection from Sn onto its ith-summand. By construction, ϕ(s⊗a) =
(sϕi(a))1≤i≤n, for all s ∈ S and a ∈ A.

Given a group G and a nonempty set X, we say that X is a G-set if G acts on
X by permutations of its elements, that is, if there exists a group homomorphism
from G into the group SX of all permutations of X. For instance, G itself or more
generally the set G/H of all left cosets of any subgroup H in G is a G-set via the
action given by g′ · gH = g′gH , for all g, g′ ∈ G.

If S ⊇ R is a ring extension with the additional condition that S is faithful,
projective, and finitely generated as R-module (shortly, faithfully projective), then
given any weakly S-split R-algebra A and any group G of R-automorphisms of S,
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it is straightforward to check that the set X(A), as above constructed, is a G-set if
and only if ϕi and gϕj are strongly distinct for all 1 ≤ i, j ≤ n and g ∈ G.

Furthermore, S is a G-set in an obvious way and if X is a given G-set then the
set Map(X, S) of all maps from X to S is also a G-set via the action g · f = gfg−1

for all f ∈ Map(X, S) and g ∈ G. Such a set is also an S-algebra with the usual
pointwise operations of addition and multiplication, and, in particular, the set A(X)
of all invariants in Map(X, S) by the action of G is an R-subalgebra. Besides this,
if X is finite and S is a Galois extension of R with Galois group G in the sense of
CHR, then A(X) is weakly S-split via the map ϕ : S ⊗R A(X) → S#X given by
ϕ(s ⊗ f ) = (sf (x))x∈X [47, Lemma 3.3].

An R-algebra A is called S-split, for any ring extension S ⊇ R, if A is weakly
S-split and X(A) is a G-set.

Let us denote by S (R) the category whose objects are S-split R-algebras and
whose morphisms are algebra homomorphisms, and by F (G) the category whose
objects are finite G-sets and whose morphisms are maps between G-sets that
commute with the action of G.

Theorem 5.4 (Galois-Grothendieck Correspondence Theorem) Let S ⊇ R be a
Galois extension of R with Galois group G in the sense of CHR. The map

A : F (G)→ S (R), X %→ A(X),

is a (contravariant) functor that induces an (anti) equivalence between such
categories, with inverse given by the functor

X : S (R)→ F (G), A %→ X(A) = {ϕi | 1 ≤ i ≤ n},

where the ϕi’s are the maps from A to S such that S ⊗R A ϕ→ Sn, s ⊗ a %→
(sϕi(a))1≤i≤n, is an isomorphism of S-algebras.

Theorem 5.2 is indeed a consequence of Theorem 5.4. In order to see this it
is enough to check firstly that if S ⊇ R is a Galois extension of R with Galois
group G in the sense of CHR and H is any subgroup of G then A(G

H
) and SH are

isomorphic as R-algebras via the map θ : A (G
H

) → SH given by θ(f ) = f (H),
for all f ∈ A (G

H

)
. Secondly, under the same assumption on S, R, and G, and using

the previous result, to check that any subalgebra T of S isG-strong and R-separable

if and only if T = SHT
(
= A

(
G
HT

))
.

5.1.4 In the VZ Galois Theory for Commutative Ring Extensions

As seen in the Sect. 5.1.2, the CHR Galois theory establishes, for a given Galois
extension S ⊇ R with Galois group G, a bijection between all the subgroups of G
and (not all) R-separable subalgebras of S.
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Differently, the VZ Galois theory developed in [90] establishes a bijection
between all R-separable subalgebras of S and suitable (not all) subgroups (called
“fat”) of AutR(S).

The VZ Galois theory in [91] applies to any commutative ring, without any
restriction on the idempotents. The strategy used by Villamayor and Zelinsky in
[91] to develop such a theory consisted in using boolean localization to get Galois
extensions for which the theory developed in [90] could be applied. However, the
notion of Galois extension, as considered in [90], was not good enough for such
a strategy to work well (see the second example in [91, Sect. 4]). Hence, it was
necessary to use a weaker notion. The good notion of Galois extension compatible
with the use of Boolean localization, adopted in [91] for the desired end, is the
following: a ring extension S ⊇ R is called a weak Galois extension of R if

1. S is R-separable,
2. S is projective and finitely generated as an R-module, and
3. there exists a finite setW of automorphisms of S such that SW = R.

The Galois correspondence in [91] establishes a bijection between all R-
separable subalgebras of S and the subgroups (not all) ofG satisfying an appropriate
“closing condition.”

Inspired by the ideas and results of Grothendieck, Villamayor, and Zelinsky,
Magid developed in [65] a completely general Galois-Grothendieck theory for
commutative rings that generalizes both the theories due respectively to CHR and
VZ.

5.1.5 In the Noncommutative Ring Context

As far as we know, in the noncommutative ring context there is not a Galois
correspondence theorem like as in the Galois theory due to Chase, Harrison, and
Rosenberg, except perhaps in some specific situation like, the one of semiprime
algebras.

A correspondence theorem in the setting of semiprime algebras is due to
Vladislav Kharchenko who, in order to obtain his result, introduced in [57] the
notion of X-inner automorphisms (the “X” corresponding to the first letter of
Kharchenko’s name in Russian language) by using the extension of an automor-
phism of a ring to the corresponding Martindale quotient ring.

To recall Kharchenko’s Galois correspondence, let R be a prime algebra over a
fixed field K and Q the symmetric quotient algebra of R. An automorphism of R is
called X-inner if it is inner as an automorphism of Q, otherwise it is called X-outer.

A group G of automorphisms of R is called X-outer if the unique X-inner
automorphism in G is the identity map of R.

Given a group G of automorphisms of R, as usual RG denotes the subalgebra
of the invariants in R by the action of G. If in particular G is a finite X-outer
group of automorphisms of R, then the group of all automorphisms of R fixing
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RG elementwise coincides with G and in this case R is called a Galois extension
of RG.

A subring R′ of R is called rationally complete or (according to Montgomery
and Passman in [68]) ideal-cancellable if for any nonzero ideal I of R′ and x ∈ R,
the inclusion relation Ix ⊆ R′ implies x ∈ R′.

Theorem 5.5 (Kharchenko’s Galois Correspondence Theorem) Let R be a
prime ring and G be a finite group of X-outer automorphisms of R. Then the map
H %→ RH gives a one-to-one correspondence between the subgroups of G and the
rationally complete subrings of R including RG. *,

5.2 On Hopf Actions

There is a natural correspondence between the actions of a group G on a K-algebra
R and the actions of the corresponding group algebra KG over R. As seen in part
2 of Sect. 4.3.2, KG is a Hopf algebra. Furthermore, KG is cocommutative (i.e., its
comultiplication is invariant by the canonical flip map), and, if K is a field, KG is
also pointed (i.e., its left or right comodules are all one dimensional).

All such above facts stimulated investigations on Hopf actions in order to
extend to this context the Kharchenko’s ideas and results. Specifically, to extend
the notion of X-outer automorphisms to the context of finite-dimensional pointed
Hopf algebras, not necessarily cocommutative, in order to get a generalization of
Kharchenko’s Galois Correspondence Theorem for group actions. Contributions
came from several Hopf-algebraists including, in particular, A. Milinski, S. Westre-
ich, A. Masuoka, T. Yanai, V. Ferreira, L. Murakami, and the author. Their results
concern to the Galois theory for Hopf actions on prime algebras and appeared in
several papers, specially in [69, 92, 93] and [44].

Contributions from Milinski, Westreich, Masuoka, and Yanai converged to a
generalized correspondence theorem (see [94, Theorem 2.13]) which Ferreira,
Murakami, and the author applied to prove a one-to-one correspondence theorem
for homogeneous and faithful Hopf algebras actions on free algebras [44]. This last
mentioned theorem will be presented in the sequel.

Recalling notations, FI denotes the subalgebra of the invariants in F by the
action of I , for all free subalgebra F of R and all right coideal subalgebra I of
H . Following [44, Corollary 3.2], if R is a free algebra and H is a Hopf algebra
acting homogeneously on R then RI is a free subalgebra of R, for all right coideal
subalgebra I of H .

Theorem 5.6 ([44, Theorem 1.2]) Let X be a nonempty and nonsingular set and
R = K〈X〉 the free algebra on X over a field K . Let H be a finite-dimensional
pointed Hopf algebra acting homogeneously and faithfully on R.Then the maps

φ : F %→ FH ,F → I and ψ : I %→ RI ,I → F
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give a one-to-one correspondence between

• F : the set of all free subalgebras of R including RH

• I : the set of all right coideal subalgebras of H including K.1H *,
For more about correspondence theorems in the setting of Hopf actions, we

recommend the interesting survey by Montgomery [67].

6 Partial Actions

6.1 Partial Group Actions

Partial actions of groups on algebras is a very young theory which had its origin in
the paper by Exel [41] related to the study of operators algebras. His main purpose in
that paper was to develop a method that would allow him to describe the structure of
C∗-algebras under actions of the circle group. For more detailed information on this
subject, we recommend his recently published book “Partial Dynamical Systems,
Fell Bundles and Applications” [43].

The first approach of partial group actions on algebras, in a purely algebraic
context, appears later in a paper by Dokuchaev and Exel [36].

A partial action of a group G on a (not necessarily unital) algebra S over a
commutative ring K is a collection α of ideals Sg (g ∈ G) of S and isomorphisms
of (not necessarily unital) K-algebras αg : Sg−1 → Sg such that:

(i) S1 = S and α1 is the identity map of S,
(ii) αgαh ≤ αgh, for all g, h ∈ G.

Condition (ii) of the above definition means that αgh is an extension of αgαh, that
is, the domain S(gh)−1 of the second map contains the domain αh−1(Sh ∩ Sg−1) of
the first one and both the maps coincide on this last set. If Sg = S and αgαh = αgh
for all g, h ∈ G, then α is called global.

Partial group actions can be easily obtained by restrictions from global ones in
the following way: take a global action β ofG on a given K-algebra S′ and an ideal
S of S′, and put Sg = S∩βg(S) and αg = βg|S

g−1 , for all g ∈ G. It is straightforward
to check that the collection α = (Sg, αg)g∈G is a partial action of G on S.

It is natural to ask whether partial actions are all of the above type. In the
topological context the answer is affirmative and due to Abadie [1, Theorem
1.1]. Nevertheless, in the purely algebraic context some restrictive assumption is
required, namely, the partial given action α must be unital, that is, the corresponding
ideals Sg , g ∈ G, must be unital. This result is due to Dokuchaev and Exel and
appeared in [36, Theorem 4.5].

In all what follows we will deal only with partial actions α = (Sg, αg)g∈G of
G on S where each ideal Sg is unital with identity element denoted 1g . It is clearly
seen that each 1g is a central idempotent in S, for all g ∈ G. Notice that in such a
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situation each partial isomorphisms αg turns out to become an endomorphism of S
given by x %→ αg(x1g−1) for all x ∈ S.

A Galois theory for unital partial group actions was developed by Dokuchaev,
Ferrero, and the author in [37], extending the CHR Galois theory to this new setting.

In order to present the corresponding definition and correspondence theorems we
need some preparation. Actually, such a preparation consists of simple adaptations
to the partial situation of the necessary concepts that appear in the global case.

The partial version of the global skew group ring is given by the following direct
sum of ideals

S �α G = ⊕g∈GSgδg,

(where the δg’s are simply placeholders), endowed with the usual addition and the
multiplication induced by the rule

(xδg)(yδh) = aαg(y1g−1)δgh, for all g, h ∈ G, x ∈ Sg and y ∈ Sh.

Two elements g, h ∈ G are called strongly distinct with respect to the partial
action α of G on S (shortly, α-strongly distinct) if for every nonzero idempotent
e ∈ Sg ∩ Sh there exists x ∈ S such that αg(x1g−1)e �= αh(x1h−1)e. A subalgebra
T of S is called α-strong if the restrictions to T (via α) of any two distinct elements
of G are α-strongly distinct.

Given a subalgebra T of S, let

HT = {g ∈ G | αg(x1g−1) = x1g for all x ∈ T }.

In general HT is not a subgroup of G, we refer to [37, Sect. 6] for examples.
For any subgroup H of G the partial action α of G on S induces by restriction a

partial action αH = (Sh, αh)h∈H of H on S. We denote by SαH the subalgebra of
the invariants in S by the action of αH , that is,

SαH = {x ∈ S | αh(x1h−1) = x1h for all h ∈ H }.

If H = G, we denote such a subalgebra by Sα.
The algebra S is called an α-partial Galois extension of R = Sα ifG is finite and

there exist elements xi, yi ∈ S, 1 ≤ i ≤ n, such that
∑

1≤i≤n xiαg(y1g−1) = δ1,g
for all g ∈ G.

As in the global case the map ϕ : S �α G → End(SR), given by ϕ(xdδg)(y) =
xαg(y1g−1), is a homomorphism of left S-modules and right R-modules.

Every left S �α G-moduleM is a left S-module and

MG = {x ∈ M | 1gδg · x = 1gx, for all g ∈ G}

is a left R-module. Notice that S is a left S �α G-module via ϕ and in this case SG

coincides with Sα .
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Theorem 6.1 Let α = (Sg, αg)g∈G be a partial action of a finite group G on a
K-algebra S and Sα = R. Then the following statements are equivalent:

(a) S is an α-partial Galois extension of R.
(b) S is finitely generated and projective as right R-module and ϕ is an isomor-

phism.
(c) For any left S�αG-moduleM the mapμ : S⊗RMG → M , given byμ(x⊗m) =

xm is an isomorphism of left S-modules.
(d) The map ψ : S ⊗R S → ∏

g∈G Sg , given by ψ(x ⊗ y) = (xαg(y1g−1))g∈G, is
an isomorphism of left S-módulos.

(e) The map δ : S ⊗R S → S �G, given by δ(x ⊗ y) =∑g∈G xαg(y1g−1)δg , is an
epimorphism of S �α G-bimodules.

(f) StS = S �α G, where t =∑g∈G 1gδg .
(g) S is a generator for the category of all left S �α G-modules. *,

A Morita context connecting R and S �α G similar to the one constructed in
the global case also exists in the partial case and the equivalence of statements
analogous to the global ones (h)–(j) also holds, provided that S is an α-partial Galois
extension of R.

A correspondence theorem is given only in the commutative ring context.

Theorem 6.2 Let S be an α-partial Galois extension of R = Sα . Then the maps

H %→ SH and T %→ HT

give a one-to-one correspondence between the subgroupsH ofG and the separable
subalgebras T of S including R, which are α-strong and such that HT is a group.

*,

6.2 Partial Hopf Actions

One can say that the papers [36] and [37], on which the previous subsection is
based, constitute the starting point of the motivation for investigations on partial
actions by Hopf algebras, among other structures such as semigroup algebras,
groupoid algebras, weak Hopf algebras, Hopf algebras of multipliers, and also Hopf
categories. In this subsection we will deal only with partial Hopf actions.

The notion of partial Hopf action was inspired by that of partial group action.
Indeed, any unital partial action α of a groupG on an algebra A over a commutative
ring K gives rise to the K-linear map

α : KG⊗K A→ A, denoted by α(ug ⊗ a) = ug � a = αg(1g−1)
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satisfying the following conditions:

1. u1 � a = a
2. (ug � (ab) = (ug � a)(ug � b)
3. ug � (uh � a) = (ug � 1A)(ugh � a) = (ugh � a)(ug � 1A),

for all g, h ∈ G and a, b ∈ A.
Conversely, anyK-linear map ∗ : KG⊗KA→ A, denoted by ∗(ug⊗a) = ug∗a,

and satisfying conditions similar to those above ones, determines a unital partial
action α = (Ag, αg)g∈G ofG on A, where Ag = ug ∗A, with identity 1g = ug ∗1A,
and αg : Ag−1 → Ag given by αg(x1g−1) = ug ∗ x.

A (left) partial action (or a partial Hopf action, for short) of a Hopf algebra H on
aK-algebra A is aK-linear map � : H ⊗K A→ A, denoted by �(h⊗x) = h�x,
that satisfies the following conditions:

1. 1h � a = a
2. h� (ab) = (h1 � a)(h2 � b)
3. h� (k � a) = (h1 � 1A)(h2k � a),
for all h, k ∈ H and a, b ∈ A. The pair (�, A) (or simply A) is called a (left)
partialH -module algebra. It is straightforward to check that � is global if and only
if h� 1A = ε(h)1A.

If, in addition, � also satisfies

(4) h� (k � a) = (h1k � a)(h2 � 1A),

it is called symmetric.
As seen above there is a one-to-one correspondence between unital partial group

actions of a group G on a K-algebra A and (left) symmetric partial Hopf actions of
KG on A.

Right partial Hopf actions are defined symmetrically.
Examples of partial H -module algebra can be obtained from a global one by

restriction in the following way: take an H -module algebra B via a (left) global
action b %→ h · b, for all b ∈ B and h ∈ H , and A a unital ideal of B with identity
element 1A. Then A = 1AB and it becomes a partial H -module algebra via the
action h� a = 1A(h · a). Actually any partial H -module algebra is of this type by
[6, Theorem 1].

The subalgebra of the invariants in A by � is given by

AH = {a ∈ A | h� (ab) = a(h� b) , for all h ∈ H and b ∈ A}.

It is straightforward to check that

a ∈ AH ⇔ h� a = a(h� 1A)

and if, in addition, � is symmetric the following also holds

a ∈ AH ⇔ h� a = (h� 1A)a, for all h ∈ H.
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In particular, in this case, H � 1A is contained in the centralizer of AH in A.
As in the global case, for the definition of a partial Hopf-Galois extension we

need to introduce the notion of (right) partial H -comodule algebra.
By a (right) partial coaction of H on an algebra A we mean a K-linear map

ρ : A→ A⊗H , denoted ρ(a) = a0 ⊗ a1 (Sweedler notation), such that

1. ρ(ab) = ρ(a)ρ(b)
2. (IA ⊗ ε)ρ(a) = a
3. (ρ ⊗ IH )ρ(a) = (ρ(1A)⊗ 1H )((IA ⊗Δ)ρ(a))
for all a, b ∈ A. The pair (A, ρ) (or simplyA) is called a (right) partialH -comodule
algebra. Notice thatA is a right (global)H -comodule algebra if and only if ρ(1A) =
1A ⊗ 1H .

Examples of partial Hopf coactions can also be obtained from global ones.
Indeed, if (B, ρ) is a right global H -comodule algebra and A is a right ideal of
B with identity 1A, then the map ρ̄ : A→ A⊗H given by ρ̄(a) = (1A ⊗ 1H )ρ(a)
induces a right partial coaction of H on A. And, any right partial Hopf coaction is
of this type by [6, Theorem 4].

The subalgebra of the coinvariants of A under ρ is given by

AcoH = {a ∈ A | ρ(ab) = aρ(b), for all b ∈ A}.

It is easy to check that

a ∈ AcoH ⇔ ρ(a) = aρ(1A)⇔ ρ(ba) = ρ(b)a, for all b ∈ A.

In the sequel we will assume that H is projective and finitely generated as K-
module. Under such an assumption any left partial action � of H on A induces a
right partial coaction ρ� of H ∗ on A such that

h� a = a1(h)a0, whenever ρ�(a) = a0 ⊗ a1, for all a ∈ A and h ∈ H.

Moreover, if H coacts (partially) on A via ρ on the right side, then H ∗ acts
(partially) on A via �ρ on the left side by

f �ρ a = f (a1)a0, whenever ρ(a) = a0 ⊗ a1, for all a ∈ A and f ∈ H ∗.

And, in this case, AH
∗ = AcoH .

A (right) partial H -comodule algebra (A, ρ) is called a partial H -Galois
extension of AcoH (or equivalently a (left) partial H ∗-Galois extension of AH

∗
)

if the map

can : A⊗AcoH A→ A⊗H induced by a ⊗ b %→ (a ⊗ 1H )ρ(b)

is bijective, where A⊗H = (A⊗K H)ρ(1A).
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Such a definition was firstly given by Caenepeel and Janssen in [19], with
some other equivalent definitions in a categorical language. Some other equivalent
definitions due to Alves and Batista also appeared in [5]. A complete list of
equivalent statements that characterize a partial Hopf-Galois extension, in a way
similar to those presented in the previous subsection, is still under construction and
will appear in a forthcoming paper by F. Castro, D. Freitas, G. Quadros, and the
author.

7 Final Comments

In order not to overstretch this manuscript we omitted many examples, some
essential references indicative of the advances of the current research on Galois
theory, and even sketches of the proofs of the results presented. In an attempt to
remedy a little bit this situation we will indicate below some additional references.

1. For the classical Galois theory for field extensions we refer, for instance, to [70,
81] and [83].

2. For the reader interested in learning more about separability, we refer to [70] (in
the field case) and [7, 32] and [62] (in the general ring case).

3. A detailed proof of Teorema 5.2, as presented by Chase, Harrison, and Rosen-
berg, can be seen in [23] and also in [32] and [74].

4. Examples of Galois extensions for group actions on commutative rings can be
found in [74] and [75].

5. The Galois-Grothendieck theory, as presented in this manuscript, was totally
inspired in [39] and [47] and extend the corresponding results of [39] to the
commutative ring setting.

6. Partial results about Galois correspondence of CHR-type, in the setting of not
necessarily comutative rings can be found, for instance, in [85, 86] and [87].

8. There are in the literature some nice survey-type papers. We refer to [67] and [94]
for Hopf actions, [76] for partial Hopf actions and [14, 34], and [35] for partial
actions in general.

9. In the last ten years new advances related to the study of new Galois theories
have been made in both the contexts of partial and global actions. As references
we recommend, for instance, [8–13, 16–19, 21, 22, 25, 28, 29, 42, 48, 49, 53, 54,
63, 64, 77–79, 84] and [88].
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On the Geometry and Topology
of the Commutator of Unit Quaternions

Alcibiades Rigas and Dan A. Agüero Cerna

Abstract This is a narrative rather than a survey of the research relevant to the
subject of the title, done basically at IMECC, Unicamp, from 1982 to 2005. Many
people, including students, as well as the first author, contributed. The second author
compiled the material in his master’s dissertation (Cerna, On the geometry and
topology of the commutator of unit quaternions. Master’s Dissertation, IMECC,
Unicamp, 2016) and he is not responsible for imprecisions, for forgetting to give
credit where due, etc. We consider known a little basic homotopy, like the exact
sequence of a fibration, a few basic homotopy groups of spheres, and the Bott
periodicity for Spin,U , and Sp, and also basic definitions of Riemannian geometry.

1 Introduction and Our Motivation

In the early 1970s, Jeff Cheeger and Detleff Gromoll [7] published their famous
“soul theorem”:

Every complete open Riemannian manifold M with nonnegative sectional
curvature (K ≥ 0) is diffeomorphic to the total space of a vector bundle over a
totally geodesic compact submanifold S, the soul, embedded as the zero section:
R
n ��� M −→ S.
Consequently, the totally geodesic soul has K ≥ 0 as well. Obviously, there was

a search for examples and as far as I know, the immediate question “do all vector
bundles over spheres (regular, not exotic) admit complete Riemannian metrics with
K ≥ 0,” is still not answered completely [15, 22, 42]. There were some partial
answers back then and one of them [36] showed that if you add a large enough
trivial bundle to any vector bundle over any sphere, then the Whitney sum admits a
complete Riemannian metric with K ≥ 0. Some of the attention shifted to vector
bundles away from the stable range. Let us take a quick look.
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Over S1 we have the trivial cylinder S1×R and the infinite Möbious band S1×Z2

R, both of which can be nonnegatively curved.
The SO(n)-principal bundles over S2 are easily obtained from the lens spaces

S3/Zn through the free quotient by S1 employing the commutativity of the complex
numbers. That you get all principal ones with group S1 follows from the homotopy
ladder of the pullback diagram, which implies that π1(Total space) classifies. So,
since π1(S

3/Zn) = Zn, the boundary operator ∂ : π2(S
2) −→ π1(S

1), which in
this case is essentially the classifying map, has ∂(1) = n, so we get them all. All
these lens spaces have K > 0 and the total space of the associated vector bundle
S3/Zn ×S1 R

2 inherits K ≥ 0 by O’Neill’s Riemannian submersion theorem. So,
all vector bundles over S2 admit K ≥ 0.

All vector bundles over S3 are trivial due to the basic fact that π2G = 0 for all
compact semisimple Lie groups G, so they admit the product metric with K ≥ 0.

The first nontrivial case is bundles over S4. Let us restrict to principals, with
simply connected group if the fiber has three or more dimensions, for brevity. Note
that there is an added motivation here from Theoretical Physics, since S4 is the one
point compactification of space–time and it seems like a reasonable assumption that
potentials die out at infinity. So, doing physics or geometry over the 4-sphere is
meaningful.

Case 1. The principal S1 or SO(2) bundles over S4 are classified by π4CP
∞ ∼=

π3S1 = 0, and there is only the trivial one.
Case 2. S3 ��� P −→ S4 are classified by π4QP

∞ ∼= π3S
3 ∼= Z : much to look

for here but let us take one more step first.
Case 3. S3 × S3 ��� T −→ S4, classified by π3(S

3 × S3) ∼= Z × Z. Models
for these bundles were usually described (except for T = Sp(2)) by joining two
copies of D4 × (S3 × S3) along their common boundary using a map ∂D4 =
S3 −→ S3 × S3 defined by the two integers (m, n) like q %−→ (qm, qn).

Note that Case 2 is contained in Case 3 and the Hopf fibration S3 ��� S7 −→ S4

relates Case 3 to the principal bundles S3 ��� P −→ S7. Following the same
classification ritual as above, there are π6(S

3)-many isomorphism classes of these
principal bundles. It was known since 1950, through the work of Serre [27], that
this group is Z12 and that it is generated by the homotopy class of the commutator
of quaternions: S3 × S3 2 (p, q) %−→ pqp−1q−1 ∈ S3, this map factors through
S3 ∧ S3 = S6 −→ S3 and its homotopy class in π6S

3 generates this group of
principal bundles. We will see further on using elementary means how this works.
For the time being, we register that in 1983 [37] algebraic models for all elements
in Case 3 (and consequently Case 2) were constructed as sub-bundles of Sp(n) ���
Sp(n + 1) −→ S4n+3. To include the bundles over S7 in the picture, we pull back
the principal S3 ��� Pn −→ S4 by the Hopf map h : S7 −→ S4 and the basic
diagram is
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S3 S3 S3

↓ ↓ ↓
Sp(1)n ��� P̃n −→ Pn −→ S7

↓ ↓ ↓ −h
S3 ��� S7 −→ S4 −→ S4 −→ BS3

h fn j

where fn is a map of degree n and j is the inclusion of S4 = QP 1 ⊂
limn→∞QPn = BS3, the classifying map for P̃n is j ◦ fn ◦ h. Here, Sp(1)n means
the group Sp(1) ∼= S3 acting by the diagonal inclusion in the group of quaternionic
matrices Sp(n), i.e., as q %→ diag(q, q, . . . , q). The accounting of the P̃n’s, as
related to the homotopy class of a power of the commutator of quaternions, was
wrong originally and was later corrected by Barros [2].

Let us take a look at the details of the simplest cases.
For n = 1, f1 = idS4 , we have P1 = Sp(2). This is due to the definition of the

group Sp(n) = {A ∈ Q(n × n) | AA∗ = I } and this is equivalent to A∗A = I .

In the case of Sp(2) �

(
a c

b d

)

, we get aa + bb = cc + dd = aa + cc = 1

and ab + cd = 0, ab + cd = 0. The free action by the

(
1 0
0 q

)

, q ∈ Sp(1),

subgroup from the right defines a principal Sp(1) ≡ S3 bundle over the first column,

i.e., Sp(1) ��� Sp(2) −→ S7. The S3 action by the diagonal

(
p 0
0 p

)(
a c

b d

)

as a subgroup commutes with the right action by q and so it descends to a (free)
action on the orbit space (first column) S7. The quotient is QP 1 ≡ S4 and the
projection is classically written as the Hopf map or Hopf fibration, with formula

h

(
a

b

)

=
( |a|2 − |b|2

2ab

)

∈ S4, the unit sphere in R ⊕ lim ImQ. The relations

from the definition of Sp(2) above show that Sp(2) = h∗(−h), pullback, where

the horizontal map covering h is the projection to the second column

(
a c

b d

)

%−→
(
c

d

)

∈ S7. There is an algorithmic construction in [36] that extends this diagram

S3 S3

↓ ↓
S3 ��� Sp(2) −→ S7

↓ ↓ −h
S3 ��� S7 −→ S4



278 A. Rigas and D. A. A. Cerna

to the big diagram above for every n ∈ Z. For example, P̃3 is the ten-dimensional

submanifold of Sp(3) �

⎛

⎝
a −b |b|2 x

b bab y

0 a
√

1+ |b|2 z

⎞

⎠ . Note that S3 acts by the diagonal

⎛

⎝
q

q

q

⎞

⎠ from the left and S3 acts by quaternionic multiplication from the right on

the last column. These two commuting actions determine a free S3 × S3 = Spin(4)
action with quotient S4. This is the meaning of the large diagram above. One keeps
adding zeros to the first column and the rest of the columns, except the last one,
are made out of expressions like aba or bab or a |a|2 , etc., equivariant with respect
to the diagonal action by S3 from the left. There is an algorithm that constructs
P̃n+1 from P̃n. Some of these bundles are trivial, isomorphic to S7 ×S3, which ones
we learn from Barros’ accounting. The formulas for this equivalence depend on a
homotopy, essentially the commutator of quaternions to the 12th power homotopic
to a constant, which is true from J.-P. Serres’ work. From this one gets some exotic
7-spheres as free quotients S3 ��� S7 × S3 −→ Σ7. This fact is not original,
it follows from Wall’s work [41] that S7 × S3 is diffeomorphic to Σ7 × S3 for
every homotopy sphere Σ7 ∈ Z28 the group Γ7 of manifolds homeomorphic to the
Euclidean 7-sphere. This fact immediately implies that there are free quotients as
stated above, for every Σ7. The novelty is that for some exotic 7-spheres the action
would be explicitly described by a formula once we know how (pqp−1q−1)12 is
homotopic to a constant as a map : S6 −→ S3. Curiously, this seems to be still
unknown.

2 Duran’s Idea

In the late 90’s, Carlos Duran gave new life to these problems by reshaping the
presentation of the quaternionic commutator using Differential Geometry [12]. We
take a quick look at his idea and use the formulas to present elementary proofs
of some facts that were known for decades employing relatively heavy machinery.
Afterwards, we will get back to the consequences of Duran’s work in the description
of exotic phenomena by simple formulas.

We begin with Sp(1) ��� Sp(2) −→ S7 first column projection as described
above.

First, let us take a quick look at the trivialization of this bundle using the
quaternionic algebra. Let U = {(

a
b

) ∈ S7 | a �= 0
}

and V = {(
a
b

) ∈ S7 | b �= 0
}

.

A partial section of the bundle over U can be of the form

(
a x

b a

)

∈ Sp(2). Using

A∗A = AA∗ = I , we have ax + ba = 0 we get x = −aba |a|−2 . So, the bundle
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is

(
a −(aba |a|−2) · p
b a · p

)

over U , p ∈ Sp(1) = S3. Similarly, over V one can

trivialize as

(
a b · q
b −(bab |b|−2) · q

)

, q ∈ Sp(1). Over U ∩ V = {ab �= 0}, setting

equal the (2,1) coordinates we get q = −baba |a|−2 |b|−2 which is essentially the
commutator of the two unit quaternions b|b|−1 and a|a|−1. This says that a certain
transition function is the commutator of quaternions. This, by itself, is practically
nothing, since transition functions do not classify principal bundles. It was proved,
however, by nonelementary means, first by Borel and Serre [4] and then by James
[26], that in this case the homotopy class of this commutator in π6S

3, generates this
group which is isomorphic to Z12.

Given any principal bundle G ��� P −→ M , where G is a numerable
topological group,M is a numerable topological space, and P is the pullback bundle
of the universal G ��� EG −→ BG by some f : M −→ BG. Homotopic maps
pull back isomorphic bundles and EG is always contractible. So, if M is a sphere,
M = Sn, the isomorphism classes of G ��� P −→ Sn are in 1-1 correspondence
with πnBG and this in turn is isomorphic to πn−1G. In our case G = S3 and
M = S7, so ∂(1) ∈ π6S

3 classifies the principal S3 ��� P −→ S7. According
to J.-P. Serre, there are 12 such isomorphism classes and we say that P generates
this group if ∂(1) is a generator of Z12 = π6S

3. Note now that π6Sp(2) = 0 since
it is already stable. So, ∂(1) generates π6S

3, as follows from the exact homotopy
sequence of S3 ��� Sp(2) −→ S7, and we can choose it to be = 1. A geometric
approach to constructing a map S6 −→ S3 whose class is ∂(1), where 1 is the class
of idS7 , was Duran’s idea. A geometer sees a sphere as made out of geodesics, each
of length π , joining the north pole N to the south pole S. These are parametrized by
their unit tangent vectors at N, say X ∈ TNS7. Take N = 1, S = −1 in S7 ⊂ Ca.
So, X ∈ S6 can be taken to be a unit vector in lim ImCa. (The Cayley algebra,
Ca, and its imaginary subspace will be described next). If we can lift the geodesic
γX(t) continuously to curves ΓX(t) from, say, I ∈ Sp(2) all the way to the fiber

over −1, which is (projection)−1(−1) = S3(−1) =
{(−1 0

0 q

)

, q ∈ S3
}

, then

the homotopy class of S6
� X %→ ΓX(1) ∈ S3 will be ∂(1) = ∂[idS7 ] ∈ π6S

3.
This is, basically, a consequence of the definition of the boundary map of a fibration
applied to our bundle, for ∂ : π7S

7 −→ π6S
3. A tool in the Riemannian geometry

of fibrations is a Riemannian submersion. In our case, the projection to the first
column of Sp(2), call it pr , preserves the metric on a smoothly defined horizontal
complement HA of the vertical space VA, which in turn is the tangent space of the
fiber at every point (matrix) A ∈ Sp(2). The vertical distribution is born integrable:
the fibers are submanifolds of Sp(2). The horizontal distribution is, in general,
not integrable, unless the bundle is trivial. The metric on the total space makes
HA ⊥ VA, so TASp(2) = HA⊕VA, and the Riemannian metric on the base (here S7)

is such that ‖pr∗X‖S7 = |X|Sp(2) for any horizontal vectorX. Of course, pr∗V = 0
for any vertical V .
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The useful property of a Riemannian submersion is that one can lift curves
from the base to the total space, so that the tangent vectors of the lifted curve are
horizontal at every point. We call such a lift a horizontal lift. Moreover, a simple
differential geometry argument shows that a geodesic that is horizontal at one point
is everywhere horizontal. So, one can lift Euclidean geodesics in S7 to horizontal
geodesics in Sp(2), provided that we have a submersion metric on Sp(2) that
projects to the Euclidean metric on S7. It helps calculations if the Euclidean metric
is of sectional curvature = 1, then we have a good formula for the geodesics. Duran
noticed that the usual bi-invariant metric on Sp(2) does not project to a Euclidean
metric on S7 (it projects to an ellipsoidal one). This had been noticed before and I,
for one, had given up on this. As we will see, “this” relates to understanding some of
the geometry of a generator of the homotopy 7-spheres, the Gromoll–Meyer sphere
[24].

Let us get back to Duran. His idea was to change the metric on Sp(2) so that
we get a Riemannian submersion to (S7,K = 1) as we would like. It is worth
reproducing this idea here.

The tangent space TISp(2) =
{

X =
(
x −w
w s

)

, x, s ∈ lim ImQ, w ∈ Q

}

. The

action of Sp(1) = S3 is from the right as a subgroup:

(
a c

b d

)

�
(

1 0
0 q

)

=
(
a cq

b dq

)

,

with pr

(
a c

b d

)

=
(
a

b

)

∈ S7.

The square length of X relative to the bi-invariant metric on Sp(2) is |x|2 +
2 |w|2 + |z|2 and the Euclidean square length of (pr)∗X is |x|2 + |w|2 . We want to
change the metric on Sp(2) to project to the K = 1 metric on S7.

Note that the action of Sp(2) on itself, by left multiplication commutes with the
•-action of S3, so it induces an action on the base S7, and so does the action of

the subgroup S3
�

(
p 0
0 1

)

from the right. The first remark, together with the fact

that Sp(2) ∼= Spin(5) acts on the Euclidean S7 by isometries, suggests that a left
invariant metric on Sp(2) should work. A Kaluza–Klein metric (K-K) is constructed
on a bundle, roughly, following the steps below:

Assign a metric to each fiber. Here, we have fiber = S3 and we give all of them
the Euclidean K = 1 metric.

Define a smooth connection, i.e., a complementary spaceHA to the tangent space
of the fiber VA at each pointA ∈ Sp(2). Here, we takeHA to be the orthogonal space
to each fiber relative to the bi-invariant metric of Sp(2).

DeclareH orthogonal to V at each point and put a metric (smoothly) on each H .
Here, we take the metric on HA to be the one that makes the isomorphism (pr)∗ :
HA −→ TprAS

7 an isometry.
In our case (metric on VA independent of pr(A)), the fibers are totally geodesic

and pr is a Riemannian submersion on (S7,K = 1).
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Trivializing T Sp(2) through left translations (LB,B ∈ Sp(2)) we get
TBSp(2) = VB + HB that goes by applying left translation by B−1 = B∗ to

VI ⊕HI =
{(

0 0
0 s

)

, s ∈ lim ImQ

}

⊕
{(
x −w
w 0

)

, x ∈ lim ImQ, w ∈ Q

}

, with

LB∗(VB) = VI and LB∗(HB) = HI . This is an easy consequence of the definition
of the K-K metric on Sp(2) above. In short, ∀B ∈ Sp(2), LB acts by bundle maps
preserving V ⊕ H , so the connection is preserved together with its metric as well
as the fiber metric and induces an isometric action on (S7,K = 1).

Remember that we are looking for a formula for the boundary map of S3 ���
Sp(2) −→ S7, that is expected from lifting horizontally to Sp(2) Euclidean
geodesics of S7 from 1 to −1. As we saw, this amounts to following the horizontal
geodesics γX(t) in Sp(2) with its K-K metric up to the fiber over −1 ∈ S7. Here,
X ∈ HI , above. Take a unitary X. The end points of all these geodesics compose a

map from the unit 6-sphere S6
� X %→ γX(π) ∈

(−1 0
0 S3

)

≡ S3. This Duran does

in two steps: first he deals with the case

(
x −r
r 0

)

∈ HI , r ∈ R and then replaces r

with any w ∈ Q. The calculations are elementary and the final formula is

γX(t) =
(

cos(t)+ sin(t)x − sin(t)etxw
sin(t)w w

|w| (cos(t)− sin(t)x)etx w|w|

)

so γX(π) =
(
−1 0
0 − w

|w|e
πx w

|w|

)

, and S6
� X =

(
x

w

)

%→ w
|w|e

πx w
|w| ∈ S3.

This is the geometric version of the classifying map of the bundle and also the
commutator of quaternions. At first glance, it looks like we are dividing by zero
at the points where w = 0, x a unitary element in lim ImQ. But, then eπx = −1
in the center of S3, so it slides out and the denominators cancel out. It rests the
doubt: which one is “faster,” division by zero or commutation with a central element.
However, all calculations done up to here are smoothly dependent on the parameters
and the formula describes a smooth phenomenon. Indeed, one can readily see,
applying high-school calculus, that the formula is essentially sin θ

θ
, which is analytic,

[14]. So, commutation is faster than division by zero.
We can show using elementary topology that this map, call it β : S6 −→ S3, is

homotopic to the commutator of quaternions, which also factors as a map S6 −→ S3

[16]. Up to now, we have proved with elementary means that the commutator of
quaternions is homotopic to the analytic map β and its homotopy class generates the
set of principal S3 bundles over S7, identified with π6S

3. That this group isomorphic
to Z12 is a consequence of Serre’s work [27], but it also follows through more
elementary means as we will see.
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3 Linear Algebra

Next, we employ the linear algebra and geometry of Spin(n), 3 ≤ n ≤ 8, and the
exceptional Lie Group G2 in relation with the commutator of quaternions β and in
search of a homotopy between β12 and a constant. Recall that as mentioned above,
such a homotopy would furnish explicit formulas describing exotic phenomena.
This was our motivation.

The Cayley algebra Ca is a nonassociative, noncommutative algebra on R
8 =

Q ⊕ Q, the last division algebra on the R
n′s. The usual definition of the Cayley

product is: for

(
a

b

)

,

(
c

d

)

in Q⊕Q, we have

(
a

b

)(
c

d

)

=
(
ac − db
da + bc

)

∈ Q⊕Q.

A convenient basis is

(
1
0

)

= e0,

(
i

0

)

= e1,

(
j

0

)

= e2,

(
k

0

)

= e3,

(
0
1

)

=

e4,

(
0
i

)

= e5,

(
0
j

)

= e6,

(
0
k

)

= e7. Note that e0 = 1, the unit element, e2
r = −1

and eres = −eser for r �= s, both ≥ 1. Conjugation

(
a

b

)

=
(
a

−b
)

and we have

for α, β ∈ Ca, αβ = βa, αα = αα = |α|2, the Euclidean square length in R
8. So,

for α �= 0, α−1 = α |α|−2 and the basis {er} above is orthonormal with respect to
the Euclidean metric on R

8. Also, |αβ| = |α| |b| and left, resp., right multiplications
by unitary elements are isometries with respect to the Euclidean scalar product:
Lα(η) = αη satisfies |αη| = |η| if |α| = 1. Same with Rα(η) = ηα.

The Triality Principle (T) ∀A ∈ SO(8), ∃(B,C) ∈ SO(8) × SO(8) a unique
pair modulo common sign, i.e., (B,C) or (−B,−C), such that ∀ξ, η ∈ Ca we have
A(ξη) = B(ξ)C(η).

This property was first described by Study at the beginning of 1900s and was
formalized by Elie Cartan in the early 1920s as “duality” [5]. To prove it, note
that if ξ ∈ S7 ⊂ Ca is a unit vector, then the reflection in Ca = R

8 relative
to the hyperplane perpendicular to ξ is given by Ref lξ (x) = −ξxξ . Note that
x = 1

2 (x + x)+ 1
2 (x − x) so 2〈x, y〉 = xy + yx and x2 = 2Re(x)x − |x|2 . Now,

test the formula for x = ξ and for x ⊥ ξ . Since the formula describes an isometry,
this ends the proof.

The Moufang Identities (M) In the 1930s, Emily Moufang in her doctoral thesis
proved that the following identities hold: ∀α, x, y ∈ Ca, one has

α(xy)α = (αx)(yα)
(αxα)y = α[x(αy)]
x(αyα) = [(xα)y]α
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α(xy) = (axa)(αy)
(xy)α = (xα)(αyα)
α(xy)α = (αxα2)(α2yα)

If (xp1)(p1y) = (xp2)(p2y),∀x, y ∈ Ca, then p1 = ±p2.
The proofs of these identities are relatively elementary and can be found in most

algebra texts dealing with Ca.
The nonassociativity of Ca can be seen from (e2e4)e7 = −e1 �= e1 = e2(e4e7).

Given x, y, z ∈ Ca, the element (xy)z − x(yz) ≡ [x, y, z] ∈ Ca is called the
associator of the three elements. Analogous to the commutator of quaternions, the
associator of Cayley numbers factors through to a map A : S21 −→ S7. It turns out
[A] ∈ π21S

7 ∼= Z120 and it should be interesting to know how is A120 homotopic to
a constant map.

A corollary of a theorem of Artin says that any subalgebra of Ca generated by
two elements is associative.

What follows is described in [8–11].
Now, we remember (T). All triplets (A,B,C) that satisfy (T) form a subgroup

of the Cartesian product SO(8) × SO(8) × SO(8). Each element A ∈ SO(8) is
a product of an even number of reflections. Suppose A = Ref lξ ◦ Ref lη, then,
using the appropriate Moufang identities, A = Ref lξ (−η(xy)η) = ξ(η(xy)η)ξ =
ξ [(ηx)(yη)]ξ = [ξ(ηx)][(yη)ξ ] ≡ [Lξ ◦ Lη(x)][Rξ ◦ Rη(y)] = B(x)C(y) with
B = Lξ ◦ Lη, C = Rξ ◦ Rη. One can show easily the pair ±(B,C) to be unique.
For a product of an even number of reflections A(x) = Ref lu2r ◦ . . . ◦ Ref lu1 =
u2r (. . . u2(u1xu1)u2 . . .)u2r , the negative sign and conjugation appear an even
number of times and they cancel out. The appropriate Moufang identity implies
A(xy) = [u2r (. . . u2(u1x) . . .)][(. . . (yu1)u2 . . .)u2r ] = B(x)C(y).

We will show that this subgroup is isomorphic to Spin(8), the universal (double)
covering group of SO(8) with projection (A,B,C) %−→ A. Note that the A
and B uniquely determine C, so we claim that the triality triple provides an
explicit representation of Spin(8) in SO(8) × SO(8). It is immediately seen that
the projection to A is a double covering group morphism onto SO(8) and it is
also connected: the path (A(t), B(t), C(t)), t ∈ [0, π ], where A(t) = Ref le1 ◦
Ref le1 exp(tπe1) , B(t) = Le1 ◦Le1 exp(tπe1), C(t) = Re1 ◦Re1 exp(tπe1), joins the point
(I, I, I ) to (I,−I,−I ). We still need to show that this group is simply connected.
We leave this part for a collective proof: all 3 ≤ n ≤ 8 together. For now, call this
group Spin(8)′ subgroup of the Cartesian product of three copies of SO(8).

Define SO(8) � A %−→ Ã ∈ SO(8) where Ã(x) = A(x).
Proposition If (A,B,C) ∈ Spin(8)′, then all the following triples also live in
Spin(8): (C, B̃, A), (Ã, C̃, B̃), (C̃, Ã, B), (B̃, C, Ã), and (B,A, C̃).

Proof We show only the first one, the proof of the rest is similar: ∀x ∈ Ca,
|x|2A(y) = A(x(xy)) = B(x)C(xy). So, |x|2 B(x)A(y) = B(x)B(x)C(xy) =
|x|2 C(xy) because B is orthogonal. So, C(xy) = B̃(x)A(y) and (C, B̃, A) ∈
Spin(8)′.
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The center ZSpin(8)′ = {(I, I, I ), (I,−I,−I ), (−I, I,−I ), (−I − I, I )} ∼=
Z2 × Z2 and the quotient of all automorphisms by the internal ones, i.e., the
ExtAut(Spin(8)) is parametrized by the group of automorphisms of Z2 × Z2, that
is the permutation group of three elements, usually denoted by S3. The six elements
of S3 correspond to the six external automorphisms of Spin(8)′. In detail, these
are:

(1) id,
(2) δ(A,B,C) = (C, B̃, A)
(3) τ(A,B,C) = (Ã, C̃, B̃)
(4) γ (A,B,C) = τ ◦ δ(A,B,C) = (C̃, Ã, B)
(5) γ 2(A,B,C) = (B̃, C, Ã)
(6) δ ◦ γ (A,B,C) = (B,A, C̃).

The automorphism γ expresses the basic properties of triality and has order 3.
Each one of the other two, δ and τ , has order two. Rigorously speaking, triality is
represented by the group S3, above, but it is usual to say that triality is {id, γ, γ 2}.
Lemma 3.1 If A ∈ SO(7), then Ã = A.

Proof A(1) = 1 and being orthogonal, A preserves Re(Ca) ⊕ Im(Ca), so, for
α = α0 + α1 ∈ Re(Ca)⊕ Im(Ca) we get Ã(α) = A(a0 − a1) = A(a0)−A(a1) =
A(a0)+ A(a1) = A(α).

Define: Spin(7)′ ⊂ Spin(8)′ to be the subgroup of all (A,B,C) ∈ Spin(8)′
with A ∈ SO(7). Similarly, Spin(6)′ = {(A,B,C) ∈ Spin(7)′ | A(e1) = e1} =
(A,B,C) | A ∈ SO(6)}, Spin(5)′ = {. . . A(1) = 1, A(e1) = e1, A(e2) = e2},
Spin(4)′ has A(e3) = e3 as well, i.e., A ∈ SO(4) and finally Spin(3)′ has also

A(e4) = e4, i.e., A ∈
(
I5 0
0 SO(3)

)

⊂ SO(8).
Note that Spin(7)′ = {(A,B, B̃) ∈ Spin(8)′}: because ∀x ∈ Ca,

|x|2 = |x|2A(1) = A(xx) = B(x)C(x) and B,C being orthogonal, from
|x|−2 B(x)C(x) = 1 follows C(x) = B̃(x).

The group of all algebra automorphisms of Ca is denoted by G2, so G2 = {A ∈
SO(8) | A(xy) = A(x)A(y)}. So, (A,A,A) and (A,−A,−A) are the two triality
triples corresponding to A ∈ G2. Since any automorphism preserves the unit = 1,
A(1) = 1 and G2 ⊂ SO(7). And, also G2 ⊂ Spin(7)′.
Claim G2 is the fixed point group of the automorphism γ .

Proof If γ (A,B,C) = (A,B,C), then (A,B,C) = (A, Ã, Ã) with A ∈ SO(7).
So, A = Ã and (A,B,C) = (A,A,A),A ∈ G2. Clearly, γ fixes G2.

Claim (1) Fix(τ) = Spin(7)′, (2) Fix(δ) = γ (Spin(7)′), (3) Spin(7)′ ∩
γ (Spin(7)′) = Spin(7)′ ∩ γ 2(Spin(7)′ = γ (Spin(7)′ ∩ γ 2(Spin(7)′) = G2.
The proofs are immediate.
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Proposition 1 The following maps define principal bundles:

(a) Spin(7)′ ��� Spin(8)′ −→ S7 with (A,B,C) %→ A(1)
(b) Spin(6)′ ��� Spin(7)′ −→ S6 with (A,B, B̃) %→ A(e1)

(c) Spin(5)′ ��� Spin(6)′ −→ S5 with (A,B, B̃) %→ A(e2)

(d) Spin(4)′ ��� Spin(5)′ −→ S4 with (A,B, B̃) %→ A(e3)

(e) Spin(3)′ ��� Spin(4)′ −→ S3 with (A,B, B̃) %→ A(e4)

(f) G2 ��� Spin(8)′ −→ S7 × S7 with (A,B,C) %→ (A(1), B(1))
(g) G2 ��� Spin(7)′ −→ S7 with (A,B, B̃) %→ B(1)
(h) G2 ��� γ (Spin(7)′) −→ S7 with (B,A,B) %→ B(1).

Proof We just show (h). The fiber over 1 = B(1) isG2, because B(x) = B(x ·1) =
A(x)B(1) = A(x). So, A = B (in G2). The rest are similar.

Time to show that our Spin(k)′ are simply connected and therefore equal to
Spin(k).

We have defined the Lie group epimorphism f : Spin(8)′ −→ SO(8),
f (A,B,C) = A. So, ker(f ) = {(I, I, I ), (I,−I,−I )} ∼= Z2 and f is a double
cover. Similarly for k = 7, 6, 5, 4, 3.

Claim Spin(k)′ is simply connected and the projection c : Sp(1) = S3 −→ SO(3)
with c(q) a matrix in SO(3) sends the imaginary quaternion x ∈ lim ImQ = R

3

to qxq. And, c is an epimorphism of Lie groups with Ker(c) = {1,−1}, a double
covering connected and simply connected.

Claim Since π1S
3 = 0, it is the universal cover of SO(3) and therefore Sp(1) ≡

S3 = Spin(3). To show Spin(4) = S3 × S3, take S3 × S3
� (p, q) %−→ F(p, q) ∈

SO(4) that maps the vector v ∈ R
4 ≡ Q to pvq. F : S3 × S3 −→ SO(4)

is the universal (double) cover. Clearly, it is a group morphism with ker(F ) =
{(1, 1), (−1,−1)}. Equality of dimensions implies that F is an epimorphism. We
write D = lp ◦ rq , by abuse of notation and we are done.

Now, we show Spin(4)′ = S3 × S3. Take A ∈ SO(4) ⊂ SO(8). From above,

∃(p, q) ∈ S3 × S3, with A =
(
I4 0
0 lp ◦ rq

)

. Take B =
(
rq 0
0 lp

)

, C =
(
lq 0
0 lp

)

.

Then, Spin(4)′ = {(A,B,C),A,B,C as indicated}. It is easy to verify using the
multiplication rule for Ca that this is a triality triple in Spin(4)′ and that the map
from S3×S3 is a Lie group isomorphism. Therefore, Spin(4)′ = Spin(4). The exact
homotopy sequence of Spin(4)′ ��� Spin(5)′ −→ S4 implies that π1Spin(5)′ = 0
and so Spin(5)′ = Spin(5). Similarly, Spin(6)′ = Spin(6), Spin(7)′ = Spin(7),
and Spin(8)′ = Spin(8).

Triality provides explicit identifications Spin(5) ∼= Sp(2), Spin(6) ∼= SU(4) :
Roughly speaking, we can represent SU(4) in SO(8) as all matricesA that commute
with complex multiplication by i on C

4 = R
8. We replace this complex multipli-

cation by Le1 . Spin(6) � (A,B, B̃) %→ γ (A,B, B̃) = (B,A,B) ∈ Spin(8). So,
B(e1x) = A(e1)B(x) = e1B(x), i.e., B ◦Le1 = Le1 ◦B and B ∈ SU(4). A similar
consideration shows that Sp(2) is all matrices in SO(8) that commute with two
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mutually anti-commuting linear complex structures: quaternionic multiplications by
i, and by j on Q

2 = R
8. Replace these quaternionic multiplications by the Cayley

ones Le1, Le2 . We also get an isomorphism Sp(2) ∼= Spin(5). For details, see [9].
These, together with the lower spins, above, and SU(2) = Sp(1) = S3 are the
only identifications between elements of different infinite families of compact Lie
groups, a fact known since E. Cartan in the 1920s through classification of their
Lie Algebras. The novelty here is the unique argument and the formulas for the
isomorphisms provided by triality.

Next, we consider two faithful representations of S3 in G2 and the resulting
representation of SO(4) ⊂ G2.

1. S3
� q %→

(
I3 0
0 lq

)

= φ(q) ∈ G2, 2. S3
� p %→

(
lp ◦ rp 0

0 rp

)

= ψ(p) ∈ G2,

3. S3 × S3
� (p, q) %→

(
lp ◦ rp 0

0 lq ◦ rp
)

= Φ(p, q) ∈ G2, the last one has kernel

{(1, 1), (−1,−1)} = Z2 so it defines an inclusion of SO(4). The verifications are a
consequence of the definition of the Cayley product through two quaternions. Note

that Φ(1,−1) =
(
I3 0
0 −I4

)

= A and the image of Φ consists of all X ∈ G2, that

commute with A. Note that A2 = I7 and define the involutive inner automorphism
of G2, call it σ , by σ(X) = AXA−1 = AXA. As we saw, Fix(σ ) = ker(Φ), so σ
factors throughG2/SO(4) −→ G2 and the Cartan inclusion of the symmetric space
in the group is σ̃ ([X]) = Xσ(X−1) = XAX−1A−1 = [X,A], the commutator with
A. The image is a totally geodesic inclusion into the group (following E. Cartan) and
this symmetric space parametrizes the quaternionic subalgebras of Ca. This can be
proved easily from the above and it was known to Cartan.

Another fact seems worth noting in this context: The inclusions φ,ψ above
induce distinct morphisms in π3S

3 = Z −→ Z = π3G2 : φ(1) = 1 and ψ(1) = 3.
This is a consequence of G2 ��� SO(7)→ RP 7, SO(7) ��� SO(8) −→ S7, their
exact homotopy sequences and elementary considerations, for example, the triality

triple

(
lq 0
0 I4

)

,

(
lq 0
0 I4

)

,

(
I4 0
0 rq

)

.

Next, we take a close look at G2. From e0 = 1, e1 = (
i
0

)
,. . . ,e7 = (0

k

)
and the

multiplication rule of Ca, we deduce the multiplication table of the orthonormal
basis {ej } of Ca.

−1 e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −1 e1 e2 e3

e5 −1 −e3 e2

e6 −1 −e1

e7 −1
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If Aj is the j th column of the matrix A in G2, automorphisms of Ca, then the
Cayley product AiAj obeys the same rule as in the table above.

For S3
q defined above, we have the principal bundle S3

q ��� Spin(5) −→ S7

with projection π(A,B, B̃) = B(1). (Subgroup multiplies from the right). Routine
proof. We can express the pullback diagram Sp(2) = h∗(−h) at the beginning of
the section. First note that the quotient Spin(4) ��� Spin(5) −→ S4 is
(A,B, B̃) %→ A(e3) = (e1B(1))(B(1)e2) ∈ S4 ⊂ R

5 = span{e3, . . . , e7} ⊂
R

8 = Ca [9].
The Hopf map in terms of Cayley products, instead of quaternionic ones, was

done in [10]. We reproduce it here:
For any orthonormal pair (J,K) ∈ lim ImCa × lim ImCa, equivalently, for

any element of the unit tangent bundle of S6, define δ : S7 −→ S7, by δ(α) =
(Jα)(αK) and note that it is orthogonal to 1, J , and K . So, the image, being a unit
vector, lives in the sphere S4 specified above and the map h(α) = (e1α )(αe2) is
isomorphic, as a principal S3 bundle, to the Hopf map described at the beginning.

Remark The map −h has class in π7S
4 � π7S

7 + π6S
3 = Z + Z12, [h] = 1 ±

Σb, where b generates π6S
3 and Σ is the suspension. The sign depends on the

choice of orientation. The formula for h reflects the nonassociativity of Ca, just
as the alternative formula S3 2 q %→ qiq ∈ S2 reflects the noncommutativity of

quaternions. h is the invariant projection of the free S3 action on S7.

(
a

b

)

q =
(
aq

bkqk

)

. There is an algebraic relation between three Hopf-type maps at different

levels to be described later. For now, we note that the pullback diagram above is in

triality/Cayley terms
(A,B, B̃) %−→ B̃ (e4)

↓ ↓
B(1) %−→ A (e3)

. The proofs are in [9].

4 Infinitesimal Triality and Ĝ2 ⊂ ŜO(7)

Here, we denote with Ĝ the Lie algebra of the Lie group G identified with TeG.
Consider the curve Γ (t) = (A(t), B(t), C(t)) ∈ Spin(8), with Γ (0) = (I, I, I )

and Γ ′(0) = (A0, B0, C0), take the derivative at t = 0 of A(t)(ξη) = B(t)(ξ) ·
C(t)(η). We have

A0(ξη) = B0(ξ) · η + ξ · C0(η), (1)

this is the infinitesimal version of Triality. It is convenient to write it as ̂Spin(8) =
{(X,Xλ,Xρ) ∈ ŜO(8)×ŜO(8)×ŜO(8)},whereX(ξη) = Xλ(ξ)·η+ξ ·Xρ(η). So,
̂Spin(7) = {(X,Xλ, X̃λ) ∈ ̂Spin(8)}. The automorphisms γ, δ, and τ of Spin(8)

define, by linearity, Lie Algebra automorphisms of ̂Spin(8), for example, dγ =
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γ̂ (X,Xλ,Xρ) = (X̃ρ ,X̃,Xλ). It is not hard to show that the maps 1
2 (id + τ) and

1
3 (id+γ +γ 2) are the Killing–Cartan projections of ̂Spin(8) onto ̂Spin(7) and Ĝ2.

5 Generators of Some Homotopy Groups

Toda et al. [40] showed using triality that π7SO(7) � Z and is generated by the
conjugation of Cayley numbers: S7 2 α %→ Cα = (La ◦Rα,Lα ◦Rα2 , La2 ◦Rα) ≡
Ψ (α) ∈ Spin(7) the triality triple of Cayley conjugation by α is a consequence of
the appropriate Moufang identity. Note that the matrix B in the triple (A,B,C) ∈
Spin(8) determines the triple, so we can say B ∈ Spin(7). That is, fα = La ◦ Rα2

generates π7Spin(7) = Z. The identity α(xy) = (αxα)(αy) implies α %→ Θ(α) =
(Lα, Lα ◦ Rα,Lα) ∈ Spin(8) ∼= Spin(7) × S7. The group π7SO(7) is already
stable due to the triviality of Spin(8) ∼= Spin(7)× S7, and one can write easily the
formulas for the isomorphism as well as their inverses [34]. Note that the classes
[Θ] and [Ψ ] provide the spin versions of the homotopy generators in question.

Back to G2 now we recall that any D ∈ G2 is determined by D(e1) = x,
D(e2) = y, and D(e4) = z : its first, second, and fourth columns (the third one
being 1st × 2nd). So, 〈x, y〉 = 〈z, x〉 = 〈z, y〉 = 〈z, xy〉 = 0. It follows that the
action G2 × S6 −→ S6 with (D,X) %→ DX, X is a unit element in lim Im(Ca), is
transitive, and the orbit of e1 covers the whole S6.

Claim The isotropy of e1 is a subgroup H ⊂ G2 isomorphic to SU(3). In fact, the
homogeneous bundle SU(3) . . . G2 −→ S6 is a reduction of the unit tangent bundle
of S6, namely SO(6) . . . SO(7) −→ S6.

The proof is relatively a routine one and we omit it, but for a few remarks:
Consider the unitary Cayley number α ∈ S7 with α = exp 2π

3 e1 ∈ S7, so α lives
in the parallel six sphere at 120◦ and α3 = 1. Consider Λ = Cα ≡ Lα ◦ Rα ∈ G2
because α2 = α. It fixes e1 and can easily show that Λ commutes with all elements
of H , i.e.,Λ ∈ Z(H), the center of H . Similarly, Cα2 ∈ Z(H) which is {I,Λ,Λ2}.
Note now that for any α ∈ S6

2π
3

the map fα has values in G2. In fact, it is an

injection with image S6 ⊂ G2. Each such a = cos 2π
3 + sin 2π

3 J , for J ∈ S6
π ,

i.e., J 2 = −I, LJ a linear complex structure in Spin(8). Consider now the 7-
cell e7 = {cos(t) + sin(t)J, J 2 = −1, 2π

3 ≤ t ≤ π} ⊂ S7, the unitary Cayley
sphere. The map Spin(7) 2 (A,B, B̃) %→ B(1) ∈ S7 defines a principal bundle
G2 . . . Spin(7) −→ S7 and from the map Ψ above the projection to S7 induces
π7Spin(7) ∼= Z 2 1 %→ 3 ∈ Z ∼= π7S

7. The homotopy diagram of this fibration
says that ∂(1) �= 0 ∈ π6G2, since 1 /∈ Imageπ7Spin(7), but ∂(3) = 0 and ∂
is an epimorphism, since π6Spin(7) = π6Spin(8) = 0 in the stable range. So,
π6G2 ∼= Z3 and is generated by the class of Cα | S6

2π
3

, by the definition of the

boundary map.
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Claim This map is the inclusion of the conjugate orbit of Λ ∈ ZSU(3) into G2
[11].

The proof of this is straightforward and is omitted. Note, however, that
(G2, SU(3)) is not a symmetric pair and thatΛ has order 3 (not 2) and the inclusion
of this orbit in the third roots of I in G2 is not a totally geodesic submanifold of
G2; however, it is diffeomorphic to S6. The “not totally geodesic” part is a result of

computing the relevant Lie brackets to show that Ŝ6 ≡ ŜU(3)
⊥ ⊂ Ĝ2 is not a Lie

Triple System. It is a minimal submanifold, though, being an isolated orbit of the
conjugate action of G2 on itself.

Now, we take a tour of elementary diagram chasing to indicate how to prove in
a naive way that π3S

3 ∼= Z12. Recall that Spin(3) = Sp(1) = S3, Spin(6) ∼=
SU(4), Spin(5) ∼= Sp(2), and Spin(8) is diffeomorphic to Spin(7) × S7. The

said diagram is the following:

Spin(3) ↪→ SU(3) ↪→ G2 ↪→ Spin(7)
...

...
...

...

Spin(5) ↪→ Spin(6) ↪→ Spin(7) ↪→ Spin(8)
↓ ↓ ↓ ↓
S7 = S7 = S7 = S7

, all

projections onto S7 are (A,B,C) %→ B(1). From SU(4) ↪→ SU(5) → S9, we
get π7SU(4) ∼= π7SU = Z and π6SU(4) ∼= π6SU = 0. From the homotopy
sequence of SU(3) ↪→ G2 → S6, we get
. . . π7G2 → π7S

6 → π6SU(3)→ π6G2 → π6S
6 → . . . .

Recall now that π7S
6 ∼= Z2. So, if π7G2 = 0, then π6SU(3) ∼= Z2 ⊕ Z3 ∼=

Z6. Now, the homotopy sequence of G2 . . . Spin(7) → S7, remembering that the
homotopy class of α %→ Cα generates π7SO(7) [40], we get that the triality triple
(Cα, Lα ◦Rα2 , L

a2 ◦Rα) generates π7Spin(7). Projecting this generator to S7 sends

α %→ Lα ◦ Rα2(1) = α3, so Z = π7Spin(7) = Z 2 1 %→ 3 ∈ Z = π7S
7 and this

map is a monomorphism, so ∂ : π8S
7 = Z2 → π7G2 is an epimorphism and the

last group is either 0 or Z2. To show next that it is zero. This was calculated by
Mimura [30] using less elementary means.

From π6Spin(6) = π6SU(4) = 0 and π7Spin(6) = π7SU(4) = Z in the exact
sequence of Spin(6) · · · Spin(7)→ S6, we get
π7Spin(6) = Z 2 1 %→ 2 ∈ Z = π7Spin(7).
Now, use this information on the homotopy ladder of the two middle columns

of the big diagram to follow 1 ∈ Z around the square and get that the vertical
image of this 1 is 6 ∈ Z = π7S

7 and therefore, π6SU(3) ∼= Z6. Feed this (1 %→
2) information back into the homotopy ladder of the two left columns of the big
diagram and get, again following the square around, that π7Spin(5) = Z 2 1 %→
2 ∈ Z = π7Spin(6), vertically down to 12 ∈ Z = π7S

7, so π6Spin(3) ≡ π6S
3 ∼=

Z12, as promised to prove with an elementary argument. Remember that there is still
one group pending, π7G2 = 0 (and not Z2). Let ϕ be a generator of π8S

7 = Z2, then
ϕ3 also generates. Consider now the homotopy sequence of G2 · · · Spin(7) → S7,
call the projection p and recall that p(A,B,B)̃ = B(1). Let S8 2 x %→ (A,B, B̃) =
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(Cφ(x), Lϕ(x)◦Rϕ(x)2 , Lϕ(x)−2 ◦Rϕ(x)−1) ∈ Spin(7) and this projects to ϕ(x)3 ∈ S7,
whose class generates, i.e., the class of p ◦ Conj ◦ ϕ generates π8S

7 = Z2 and p∗
is onto π8S

7 and π7G2 is squashed between two zero maps and is zero.
Now, look at S3

q . . . G2 → V, where V stands for V7,2 the 2-orthonormal frames

in Euclidean R
7 = Imaginary Ca. This represents the two first columns of a

matrix in G2 (the third one is their Cayley product and the rest quotient out by the
right action of the subgroup S3

q ). The homotopy sequence of this fibration implies
(since π7G2 = 0) that
∂ : π7V 	 π6S

3 → π6G2 → π6V . . . which gives us, after a moment’s
reflection, that π7V = Z4 and so Z4 	 Z12 
 Z3. Of all these groups, we have
nice maps generating them and the generator of the last one has its third power
a constant. This may be a good point to start looking for a homotopy between

b

(
x

w

)12

=
(
w
|w|e

πx w
|w|
)12

and a constant. There is an algebraic section ψ : Z3 →
Z12, say, 1 %→ 4[b]. A generator of π7V can be S7 2 α %→ (αe1α, αe2α) ≡
H(α) ∈ V as a consequence of V = SO(7)/SO(5) and the [40] theorem that
Cayley conjugation generates π7SO(7). So, ∂[H ] = 3[b]. A convenient generator
of Z4 ⊕Z3, from this point of view, seems to be ∂[H ] ⊕ψ(1) = 3[b] ⊕ψ(1). Note
that ψ(1) = 4[b].

Thomas Püttmann, in his Habilitationsschrift [33], has done some remarkable
work exhibiting formulas describing generators of geometrically relevant homotopy
groups and some of the geometry behind the cancellations that determine the order
of these groups. Between them is π7Sp(2). It is a pity that he never published his
manuscript. See also [35].

6 Hopf Maps

The classical formula for the three Hopf maps S3 → S2, S7 → S4, and S15 → S8

(the last one is not a principal bundle since S7, the fiber, is not a group) is
(
X
Y

)

%→ (|X|2−|Y |2
2XY

)
and we already saw an alternative formula for the first one (q %→ qiq).

Such a formula, based on the nonassociativity of Ca, is Ca 2 α %→ (e1α)(αe2) ∈
S4 ⊂ R

5 = span{e3, . . . , e7}. In fact, one can use any pair of (J,K) ∈ V, in place
of (e1e2), just as one can use any unitary vector λ ∈ Imaginary Q, in place of i
in the last case. The proof is elementary linear algebra [10]. Now, consider another
Hopf-type map, which we used above. H ′ : S7 × S6 → S6 with H ′(α, J ) = αJα

in the unitary S6 ⊂ lim ImCa. We saw that for each fixed J ∈ S6 (domain), say
e1 ∈ S6, the map α %→ αe1α generates π7S

6 = Z2. There three Hopf maps H

(2)
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(above), H ′ and h : S7 × V → S6 with h(α, (J,K)) = (Jα)(αK) satisfy the
algebraic formula below, for all α ∈ S7,m, n ∈ Z, ∗ = (e1, e2), the basepoint of
V = V7,2, defining h(β, ∗) ≡ (e1β)(βe2):

h(αm,H(αn)) = H ′(αn, h(αm+3n, ∗)). (3)

For the proof, one uses the Moufang identities [10].

Example (αe1α)(αe2α) = αh(α3)α.

One can use this formula to look for an explicitly described (by formulas) trivial
principal bundleE(12) over S7, and, equivalently, look for a formula for a generator
of π7Sp(2) = Z in the following sense: The pullback of E(1) = Sp(2) by the 12th
power map from S7 is trivial and so it has a section. This is equivalent to producing
a map β : S7 → S7 such that −h ◦β(α) = h(α12) and the matrix with columns α12

and β(α) represents a generator of π7Sp(2). Inversely, suppose we are given a map
g : S7 → Sp(2) with [g] = 1 ∈ Z = π7Sp(2). It is immediate that the columns
of the matrix g(α) both have degree 12 or (−12). Then, g provides a section of
the pullback of the bundle Sp(2) over its first column. Consequently, it provides
a bundle isomorphism S7 × S3 ∼= g∗1(Sp(2)). So, the homotopy classes of their
classifying maps are equal or 0 = [g1] ∈ Z12. But, the classifying map of all these
bundles is the boundary map ∂ : π7S

7 → π6S
3, and we have seen that it is the

commutator of quaternions.
At the end of [10], there is a sketch of a possible path to obtaining a formula

for a homotopy between the 12th power of the commutator of quaternions and a
constant. There is also a neat formula for the Cartan inclusion of the symmetric
space Λ : G2/SO(4) ↪→ G2. This inclusion is the conjugate orbit of the matrix

Σ =
(
I3 0
0 −I4

)

a square root of I and the Cartan inclusion is [A] %→ AΣA−1 =
LA3 ◦ LA2 ◦ LA1 , where Aj is the j th column of any matrix A in the given class.
One can use this combined with the principal bundle SO(3) · · ·V7,2 → G2/SO(4)
with projection s to define φ = Λ ◦ s ◦H and try to produce a generator of π7Sp(2)
following the suggestions of [10]. Püttmann in his work mentioned above gave a
formula for a generator of π7Sp(2) with column maps of degree 12 but not related
to the Cayley power.

7 The Geometry of the Commutator and Exotic Phenomena

In 1956, John Milnor showed there are exotic 7-spheres: smooth 7-manifolds,
homeomorphic but not diffeomorphic to the usual S7. The first examples are
linear (non-principal) S3 bundles over S4. In 1962, [29] classified all manifolds
homeomorphic to Sn for n ≥ 5, and [21] constructed an invariant, based on
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cohomological data, capable of distinguishing differential structures on 7-, 11-,
and 15-dimensional manifolds. The homeomorphic spheres denoted by Σn may
be constructed as a topological quotient of a union of two closed discs glued
along their boundaries by a diffeomorphism, which is not isotopic to the identity:
Σn = Dn ∪σ Dn and σ : Sn−1 = ∂Dn → ∂Dn = Sn−1 is a diffeomorphism
of degree one, i.e., orientation preserving, but σ cannot be continuously deformed
to idSn−1 through diffeomorphisms. This means that σ and idSn−1 belong to a
different element of π0Diff

+Sn−1. Composition of diffeomorphisms goes through
to define a group structure on π0Diff

+Sn−1, denoted by Γn, the group of homotopy
n-spheres. This is an Abelian group isomorphic to the h-cobordism classes of
comotopy n-spheres under the connected sum operation: #, usually denoted by Θn.
So, Γn ∼= Θn. The isomorphism is given by using the diffeomorphism σ . For details,
see [28]. For n ≥ 5, every homotopy sphere is homeomorphic to Sn, a result due to
Smale.

In 1972, Gromoll and Meyer [24] constructed, using geometry, aΣ7 ∈ Γ7 ∼= Z28
and using the Eells–Kuiper invariant showed that it is a generator.

8 The G-M Sphere

The Gromoll–Meyer sphere is the quotient of the following free action � : S3 ×
Sp(2) → Sp(2) : q �

(
a c

b d

)

=
(
qaq qc

qbq qd

)

; it is easy to check that it consists

of a subgroup product by diagonal (q, q) from the left and subgroup product by
diagonal (q, 1) from the right. It is free and so we get a principal bundle with
a compact 7-manifold as a quotient. Using the fact that diagonal inclusion (q, q)
induces π3S

3=Z 2 1 %→ 2 ∈ π3Sp(2) = Z and the diagonal inclusion (q, 1) induces
1 %→ −1, we conclude from the homotopy exact sequence that the quotient is 3-
connected. Elementary algebraic topology now implies that the seven-dimensional
quotient is a homology sphere. Smale’s work [38] implies that it is homeomorphic
to the 7-sphere and we denote it byΣ7

1 . The basic feature was that it inherits a metric
of nonnegative sectional curvature by Riemannian submersion from the bi-invariant
metric of Sp(2), since the subgroup action is by isometries from each side. So, Σ7

1
has K ≥ 0. Duran uses the diagram

S3

... �

S3 · · · Sp(2)→ Σ7
1

• ↓
S7

(4)

and notes that the fibers of � and • through all elements of SO(2) ⊂ Sp(2)
(all entries are real) coincide, the action of Sp(2) from the left is by •-bundle
isomorphisms, and that the subgroup multiplication by diagonal (1, p) from the
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right commutes with the �-action as does SO(2) from the left. We saw at the
beginning that the bi-invariant metric of Sp(2) does not project to the round metric
on S7 and followed Duran’s idea to use the Kaluza–Klein process to put a Left
Invariant metric on Sp(2), call it g, whose quotient metric on S7is the Euclidean
K ≡ 1. The •-fibers are totally geodesic in the Duran metric. It follows that g is
right invariant by diagonal (r, s) ∈ S3 × S3. So, the metric g also (as well as the bi-
invariant one) projects to a K ≥ 0 Riemannian metric on Σ7

1 with isometry group
S1 × S3. Furthermore, if we denote with [A] the �projection to Σ7

1 we get that
any unit geodesic γΣ of Σ7

1 starting from [I ] reaches [−I ] at time π and returns
to [I ] at time 2π. To prove the last statement, lift γΣ to a �-horizontal geodesic
γ ∈ (Sp(2), g) from I. Note that γ is •-horizontal too, sinceH�(I) = H•(I ). So, γ
projects to some geodesic γS from 1 to −1 at time π and is back at time 2π, since
S7 has K = 1. So, γ cuts the •-fibers at times π, respectively, 2π. But, the fibers of
• and � coincide at all points of SO(2) and γΣ satisfies the conditions.

It follows that Σ7
1 with the induced metric (from g) has this Blaschke property

at all points of SO(2), since this subgroup of Sp(2) acts by isometries on Σ7
1

preserving geodesics, etc.
We reproduced Duran’s formula (above) for unit horizontal, rel. • or �, geodesics

of (Sp(2), g) from I . From the formula follows γX(2π) =
(

1 0
0 w

|w|e
2πx w

|w|

)

and

the tangent vector γ ′
X(t) =

(− sin(t)+ cos(t)x −(cos(t)+ sin(t)x)etxw
− cos(t)w − sin(t)wetxw

)

and

γ ′
X(π) =

(−x eπxw
w 0

)

. Putting all this information together with the Blaschke

property at [I ] and [−I ], Duran concludes that Σ7
1 is the union of two closed

7-discs made out of geodesics of length π/2 the first one from [I ] and the
second from [−I ], with their boundary 6-spheres identified by the diffeomorphism

σ
(
x
w

) = ([b(
x
w)]x[b(

x
w)]

−1

[b(xw)]w[b(xw)]
−1

)
, i.e., acts on each component x,w, through the projection

S3 → SO(3) then “(3 × 3) matrix on 3 vector.” Note that Re(w) remains unchanged
by σ, but still σ depends on it through b. Remember that b

(
x
w

) = w
|w|e

πx w
|w| is

the Blakers–Massey element, essentially the commutator of quaternions, whose
homotopy class in π6S

3 generates this group isomorphic to Z12.

Although there does not exist linear algebra based on Cayley numbers, due
to their nonassociativity, the formulas for b : S6 → S3 and σ ∈ Diff+S6

above generalize (just replace quaternionic coordinates with Cayley ones) to give
a generator of π14S

7 as well as exotic diffeomorphisms of S14 [14].
An elementary calculation shows that σn = σ ◦ σ ◦ · · · ◦ σ is just

(
x

w

)

%→
([
b
(
x
w

)]n
x
[
b
(
x
w

)]−n
[
b
(
x
w

)]n
w
[
b
(
x
w

)]−n
)
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and also for negative values of n. Also, b ◦ σ = b, i.e., b is σ invariant. Although
there is no analog to the Gromoll–Meyer construction of Σ7

1 to the 15-dimensional
case, one can redo the arguments in a different way and extend some of the results
above to Σ15 = D15 ∪σ D15 an exotic 15-sphere, generating a subgroup of index
2 in Γ15 ∼= Z2 ⊕ Z8.128 with the operation #k1Σ

15 = D15 ∪σk D15. As many Σ7

are linear (non-principal) S3 bundles over S4 so are many Σ15′s linear S7 bundles
over S8. It would be interesting to know if one can replace two, or even all three,
of the spheres with exotic ones in the Hopf fibration S7 · · · S15 → S8. By the way,
Γ8 ∼= Z2. Some progress in this direction was done in Llohann Dalagnol Sperança’s
PhD thesis at IMECC under the supervision of Duran [39].

9 Exotic Involutions

In [1] was proved using Cerf’s work [6] that ρ = α ◦ σ is a free, exotic involution
on S6, for α the antipodal involution α

(
x
w

) = (−x
−w
)
. It is elementary to show free

and “involution” using the σ -invariance of b. Note too that α ◦ σ = σ−1 ◦ α.
Now, replace quaternions for Cayley numbers. All arguments involved take place in
span{1, X,W,XW } ⊂ Ca, which is associative, so they generalize to the Cayley
case. If Re(w) = 0, i.e.,

(
x
w

) ∈ S5 ⊂ ImaginaryQ× ImaginaryQ, a unit vector,
then the restriction of ρ to S5 and, respectively, to S13 is still a free involution. It is
shown that the four free involutions are exotic, i.e., not isotopic to the antipodal
map of the relevant sphere, so each of the respective quotient manifolds is an
exotic real projective space RPn, n = 5, 6, 13, 14. It follows from topological
classifications of involutions on S5 and S13 that the quotients S5/ρ and S13/ρ are
not even homeomorphic to the corresponding standard projective spaces [32]. It is
quite instructive to follow the drawing showing the steps for the case n = 5 as it
is easy to picture in R

3, which we used to picture in the plane since high school.
The only thing one has to remember is that conjugation by a unit quaternion q on
Imaginary Q ≡ R

3 is a rotation about the axis defined by Imaginary Q. So,
conjugating Imaginary Q by b

(
x
w

)
is a rotation about the axis defined by w

|w|
x
|x|

w
|w| .

The degenerate cases, x = 0 or w = 0, offer no difficulty. Before we close this
section, we remark on the action A : Z2 ×Diff+(Sm)→ Diff+(Sm) defined by
(−1) ·h = α◦h◦α−1. This action preserves the group structure ofDiff+, which is
composition. It is easily seen to descend to an action on π0Diff

+(Sm) ≡ Γm+1, by
permuting the connected components of Diff+(Sm). In particular, A(n) = −n on
Γ7. It is true also that α◦σk ≡ ρk is also a free involution on each of our chosen Sm.
One can show, employing actionA some known results, like: [31]: Every orientation
reversing diffeomorphism of S6 is isotopic to a free involution. In this context, it
seems interesting to know if there exist orientation preserving diffeomorphisms f ,
respectively, g (isotopic to σ 14) with A(f ) = f , respectively, g2 = idS6 . The
inverse involution B(f ) = f−1 may help in this context: note that it follows from
the relations above that A(σk) = B(σk) for all k ∈ Z. That is, the powers of σ
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are contained in the subset of Diff+(S6), where the orbits of the actions A and B
coincide. Are there other elements in this set? Do there exist orientation preserving
diffeos η of S6, with isotopy class 4 ∈ Z28 and η7 = idS6 ? Such elements of finite
order could help express the structure of Γ7. (Just imagine a map ϕ : S6 → S3 with
[ϕ] = 1 ∈ Z12 = π6S

3 with ϕ12 =constant).

10 Non-cancellation Phenomena

In [25] are given examples of three manifolds M,N,R, such that, M and N
are not homotopy equivalent, but M × R is diffeomorphic to N × R; in other
words, you cannot cancel R in the equation M × R = N × R. They called
this a “non-cancellation phenomenon.” In his PhD thesis at IMECC, Barros [2]
showed some examples of existence related to S3 bundles over S4 and S7. See
also [3]. At that time, we could not produce any explicit formula. Such a formula
became possible only after Duran’s work [1] as I will describe below. But, first
let us look at some non-explicitly described examples. Let Σ7 be any homotopy
7-sphere. It follows using moderately easy Topology (Σ7 is framed cobordant
to S7, Σ7 × S3 is framed cobordant to S7 × S3, the obstruction to them being
diffeomorphic lives in the Wall group L10(0),which is zero, 10 being the dimension
of the product). The same is true for the bundle of orthonormal frames SO(8) =
S7 × SO(7) ∼= Σ7 × SO(7) = ΣO(8). Here, L28(0) = 0. So, there are free
actions and exotic quotients S3 · · · S7 × S3 → Σ7 for each Σ7 ∈ Γ7. Analogously,
SO(7) · · · SO(8) → Σ7. These are the bundles of orthonormal frames of the 7-
spheres, that are all parallelizable. De Sapio [20] showed that the total spaces of
the bundles of orthonormal frames of all homotopy n-spheres are diffeomorphic
to SO(n + 1). It is an elementary fact that for any two Riemannian metrics on a
compact manifold, the bundles of orthonormal frames are isomorphic. So, there
are, at least, as many exotic free actions SO(n) × SO(n + 1) → SO(n + 1)
as many exotic structures exist on Sn. I know of no exact formula describing
such an action. However, there is an exact description of two actions r1, r2 :
(Z2 ×S3)× (S6 ×S3)→ (S6 ×S3), such that the two actions are not differentiably
conjugate, i.e., there is no diffeomorphism f : S6 × S3 → S6 × S3, such that
g � f (z) = f (g • z), for all g ∈ (Z2 × S3) and all z ∈ (S6 × S3); but
r1and r2 restricted to {1} × S3 are differentiably conjugate and also, restricted
to Z2 × idS3 are, again, differentiably conjugate. Here, we use Z2 ≡ {−1, 1}.
The actions are the consequence of the •, respectively, � actions of S3 on Sp(2)
restricted to the trivialization over each of the two S6 equators of S7, respectively,
Σ7

1 . The action of Z2 is the restriction of multiplication by −I on the same sets.
The trivialization is done through Duran’s formula for γ(xw)

(
π
2

)
. The two actions are

r2
(
(1, p),

((
x
w

)
, q
)) = ((

x
w

)
, pq

)
and r2

(
(−1, p),

((
x
w

)
, q
)) =

((−x
−w
)
, pqb

(
x
w

))
;

the other action is r1
(
(1, p),

((
x
w

)
, q
)) =

((
pxp
pwp

)
, qp

)
and r2

(
(−1, p),

((
x
w

)
, q
)) =
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(
ρ−1
(
x
w

)
, qb
(
x
w

))
. If r1 and r2 were differentiably conjugate, then S6/ρ(Z2) would

be diffeomorphic to RP 6, which is not. The restrictions of r1, r2 to (1 × S3)

coincide. The restrictions to (−1×S3) are conjugate to each other by the involutive

diffeomorphism F
((
x
w

)
, q
) =

((
qxq
qwq

)
, q
)
.

11 An Infinite Family of Gromoll–Meyer Spheres

One can imitate the Gromoll–Meyer action of S3 on the pullback of the principal
bundle (denoted by E1) S3 · · · Sp(2) → S7 by the nth Cayley power of S7 [16].
Let

(cos(t)+sin(t)x
sin(t)w

) = α %→ αn = (cos(nt)+sin(nt)x
sin(nt)w

) = αn with x ∈ Im Q, w ∈
Q, |x|2 + |w|2 = 1, be the nth power map ψn(α) = αn. Call En the pullback of E1
by ψn. The ten-dimensional manifold representing the total space of En, denoted
by the same symbol En, consists of all (β, γ ) ∈ S7 × S7 ⊂ Q × Q with <<
ψn(β), γ >>= 0. Here, << η, θ >>= ηtrθ is the standard Hermitian product
on Q × Q. The free action of the fiber S3 is on the vector θ from the right and the
free left action by q ∈ S3, imitating �, the Gromoll–Meyer action is q � (η, θ) =
(qηq, qθ). Remember that η, θ have two quaternionic coordinates, say, η = (a

b

)
so

qηq = (
qaq
qbq

)
and qθ = (

qc
qd

)
. The same reasoning applied to the free quotient of

Sp(2) = E1 by the Gromoll–Meyer action shows that the (free again) quotient of
En by the �action of S3 (just described) is again a 7-manifold homeomorphic to S7,
denoted now by Σ7

n . It turns out quite naturally that Σ7
n represents the n(mod 8)

element of Z28 = Γ7. There is equivariance too: Let Z2 × Z2 be the subgroup
(±1 0

0 ±1

)

⊂ Sp(2). For all n, En admits a smooth action, denoted by •, by the

group Z2 × Z2 × S3 that commutes with the free � action. As follows: the matrix
B ∈ Z2×Z2 acts as B •(η, θ) = (Bη,Bθ) and p ∈ S3 acts as (η, θp). The induced
effective action onΣ7

n is by Z2 ×Z2 ×SO(3). OnΣ7
0 ≡ S7, this is the linear action

(B,±p)(a
b

) = ( ±a
±pbp

)
.

It is shown that for all n even Σ7
n is equivariantly homeomorphic to S7 with

the above linear Z2 × Z2 × SO(3) action, while all Σ7
2m+1 are equivariantly

homeomorphic to Σ7
1 , the Gromoll–Meyer sphere, with respect to the same action.

The fixed point sets are spheres in all even spheres. But, in the odd spheres, there are
three-dimensional fixed point sets with fundamental groups Z2 and Z3. In particular,
the subsets of En with η ∈ Im Q × Im Q project to invariant submanifolds
Σ5
n ⊂ Σ7

n . These are Z2 × Z2 × SO(3) diffeomorphic to S5 for n even and
to the Brieskorn sphere W 5

3 if n is odd. Moreover, the sphere Σ5
n is minimal for

every (±1) × SO(3) invariant metric on Σ7
n . The invariant Σ5

n is dual to the

invariant circle Σ1
n , the quotient of

(
cos θ − sin θ
sin θ cos θ

)

in En. Moreover, all points of
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the invariant circle Σ1
n ⊂ Σ7

n have the wiedersehen property, Σ1
n and Σ5

n have
constant distance π

2 and the obvious (from this geometry) map Σ1
n � Σ

5
n → Σ7

n

is a homeomorphism. This invariant geodesic join structure is used in the proofs
of the previously mentioned results. A very broad generalization of these results
was recently released [23], showing, between other results, that all exotic 7-spheres
admit SO(3) invariant metrics with nonnegative sectional curvature.

12 Homotopy Revisited

We can feed the Duran procedure in the commutator homotopy problem [17]. This
article is an overview of much of the work described here. Essentially, we apply the
Duran horizontal lifting of Euclidean geodesics in the diagram right after claim 4
above. Naturally, we have to endow the Lie groups Sp(2), SU(4), and Spin(7) with
left invariant metrics that are also right invariant under subgroups: Sp(1)×Sp(1) ⊂
Sp(2), U(3) ⊂ SU(4), andG2 ⊂ Spin(7). These metrics on the total spaces induce
the K ≡ 1 metric on the base S7 by Riemannian submersion. Lifting horizontally
the Euclidean geodesics of S7 from the identity elements of the Lie groups up to the
corresponding fibers over the south pole, we get maps from S6 = unit (T1S

7) →
Fiber. These fibers are diffeomorphic to the subgroups Sp(1), SU(3), resp., G2.

The maps, denoted by b : S6 → Sp(1)−, φ : S6 → SU(3)−, and χ : S6 → G−
2 ,

represent generators of the relevant π6. Each two of these maps are homotopic to
each other in the bigger fiber. We can see this “unfolding” of b to φ and χ as follows.
Start from a geodesic γv of S7 from the north pole with initial unitary tangent vector
v ∈ S6 and let γ Spv and γ SUv denote the horizontal lifts to Sp(2), respectively,
SU(4). Both lifts project to the same curve γv , so the bundle inclusion above implies

γ
Sp
v (t) ∈ γ SUv (t) ·

(
1 0
0 SU(3)

)

for all t ∈ R. The homotopy H(t, v) = γ SUv (π) ·
γ SUv (t)−1 ·γ Spv (t) attains values in SU(3)− and we haveH(0, v) = γ SUv (π) = φ(v)
and H(π, v) = γ Spv (π) = b(v). So, H is a homotopy between b and φ with values
in SU(3)−. Similarly, we can describe homotopies between b, φ, χ with values in
G−

2 . To see the cancellations in homotopy, we employ algebraic identities and ad hoc
exercises [10], [33] together with the above homotopies. As a result, [33] presents a
homotopy in SU(3) between b6 and a constant.

In [18], it is shown that any homotopy between b12 and the constant map
S6 −→ {1} ∈ S3 cannot be SO(3) equivariant. This explains a little the difficulty
of producing such a formula: there is a braking of symmetry. This is a consequence
of a description in a general equivariant setting of the results in [1] and also in [19].



298 A. Rigas and D. A. A. Cerna

References

1. U. Abresch, C.E.Duran, T. Püttmann, A. Rigas: Wiedersehen metrics and exotic involutions on
Euclidean spheres. J.Reine Angew. Math. 605, 1–21 (2007).

2. T. E. Barros, Fenómenos de não cancelamento relacionados a S3 fibrados. Tese de Doutorado,
IMECC, Unicamp (1997) and Correction for the paper “S3bundles and exotic actions” Bull.
Soc. Math. France 129(4), 543–545 (2001).

3. T. E. Barros, A Rigas: The role of commutators in a non - cancellation phenomenon. Math.
Jour. Okayama Univ., 43, 73–93 (2001).

4. A. Borel, J.-P. Serre: Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math. 75,
409–448 (1953).

5. E. Cartan: Le principe de dualité et la theorie des groups simples et semi-simples. Bull. Sci.
Math. 49, 361–374 (1925).

6. J. Cerf: La stratification naturelle des espaces de fonctions differentiables réeles et le théorème
de la pseudo-isotopie. Inst. Hautes Études Sci. Publ. Math. 39, 5–173 (1970).

7. J. Cheeger, D. Gromoll: On the structure of complete manifolds of non negative curvature.
Ann. of Math. 96, 413–443 (1972).

8. L. M. Chaves: Resultados sobre a geometria dos fibrados. Tese de Doutorado, IMECC,
Unicamp (1992).

9. L. M. Caves, A. Rigas: From the triality viewpoint. Note di Matematica 18, no. 2, 155–163
(1998).

10. L. M. Chaves, A. Rigas: Hopf maps and triality. Math. Jour. Okayama Univ. 38, 197–208
(1996).

11. L. M. Chaves, A. Rigas: On a conjugate orbit of G2. Math. Jour. Okayama Univ. 33, 155–161
(1991).

12. C. E. Duran: Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of S6.
Geom. Dedicata 88, 199–210 (2001).

13. Dan A. Agüero Cerna: On the geometry and topology of the commutator of unit quaternions.
Master’s Dissertation, IMECC, Unicamp (2016).

14. C.E. Duran, A. Mendoza, A. Rigas: Bakers-Massey elements and exotic diffeomorphisms of
S6 and S14. Trans. Am. Math. Soc. 356 (12), 5025–5034 (2004).

15. O. Dearricot, F. Galaz-García, L. Kennard, C. Searle, G Weigart, W. Ziller: Geometry of
manifolds with non negative sectional curvature. Lecture notes in Mathematics 2110.

16. C.E. Duran, T. Püttmann, A. Rigas: An infinite family of Gromoll-Meyer spheres. Archiv der
Math. (printed ed.) 95, 269–282 (2010).

17. C.E. Duran, T. Püttmann, A. Rigas: Some Geometric formulas and cancellations in Algebraic
and Differential Topology. Matem. Contemp. 28, 133–149 (2005).

18. C.E. Duran, A. Rigas: Equivariant homotopy and deformations of diffeomorphisms. Differ.
Geo. Appl. 27(2), 206–211 (2009).

19. C.E. Duran, A. Rigas, L. Dallagnol Sperança: Bootstrapping Ad-equivariant maps, diffeomor-
phisms and involutions. Matem. Contemp. 35, 27–39 (2008).

20. R. De Sapio: Manifolds homeomorphic to sphere bundles over spheres. Bull. Amer. Math. Soc.
75(1), 59–63 (1969).

21. J. Eells, N. Kuiper: An invariant for certain smooth manifolds. Annali Mat. Pura e Appl. 60,
93–110 (1962).

22. l. Florit, W. Ziller: Non negatively curved Euclidean submanifolds in codimension two. Comm.
Math. Helv. (Printed ed.) 91, 629–651 (2016).

23. S. Goette, M. Kerin, K. Shankar: Highly connected 7-manifolds and non negative sectional
curvature. Preprint (2017).

24. D. Gromoll, W. Meyer: An exotic sphere with non negative sectional curvature. Ann. of Math.
100, 401–406 (1974).

25. P. Hilton, G. Mislin, J. Roitberg: Sphere bundles over spheres and non cancellation phenomena.
J. London Math. Soc. 6, 15–23 (1972).



On the Geometry and Topology of the Commutator of Unit Quaternions 299

26. I.M. James: On H-spaces and their homotopy groups. Quart. Jour. Math. Oxford Ser. (2) 11,
161–179 (1960).

27. J.-P. Serre: Cohomologie modulo 2 des complexes d’ Eilenberg MacLane. Comm. Math. Helv.
27, 198–232 (1953).

28. A. Kosinski: Differentiable Manifolds. Dover Publications (2007).
29. M. A.a Kervaire, J. Milnor: Groups of homotopy spheres. Ann.of Math. 77, 504–537 (1963).
30. M. Mimura: Homotopy groups of Lie groups of low rank. Jour. of Math. Kyoto Univ., 6(2),

131–176 (1967).
31. B. Mann, E. Miller: The construction of the Kervaire sphere by means of an involution. Mich.

Math. J. 27, 301–308 (1980).
32. W. Oledzki: Exotic involutions of low dimensional spheres and the eta invariant. Tohoku Math.

J. 52, 173–198 (2000).
33. T. Püttmann: Einige Homotopiegruppen der klassischen Gruppen aus geometrischer Sicht.

Habilitationsschrift, Ruhr-Universität Bochum (2004).
34. T. Püttmann, A. Rigas: When is RPn×Spin(n) diffeomorphic to Sn×SO(n) and how. Math.

J. Okayama Univ. 45, 111–115 (2003).
35. T. Püttmann, A. Rigas: Presentations of the first homotopy groups of the unitary groups.

Comment. Math. Helv. 78(3), 648–662 (2003).
36. A. Rigas: Riemannian metrics of non negative sectional curvature on stable vector bun-

dles over spheres. Ph.D. thesis, University of Chicago (1974) and Geodesic generators of
πn(O), πn+1(BO). J. Diff. Geom. 13, 527–545 (1978).

37. A. Rigas: S3 fibrados e ações exóticas. Tese de Livre docência, IMECC, Unicamp (1983) and
S3 bundles and exotic actions. Bull. Soc. Math. de France 112, 69–92 (1984).

38. S. Smale: Generalized Poincaré’s conjecture in dimensions greater than four. Ann. of Math.
74, 391–406 (1961).

39. L.Dallagnol Sperança: Geometria e Topologia de Cobordos. Tese de Doutorado, IMECC,
Unicamp, (2012).

40. H. Toda, Y. Saito, I. Yokota: Note on the generator of π7SO(n). Mem. Coll. Sci. Univ. Kyoto,
Ser. A, XXX, Math. No. 3, 227–230 (1957).

41. C.T.C. Wall: Classification problems in differential topology, VI. Topology 6, 273–296 (1967).
42. W. Ziller: Examples of Riemannian manifolds with non negative sectional curvature. Metric

and comparison Geometry. Surv. Diff. Geom., ed. K.Grove and J. Cheeger. International Press,
63–102, (2007).



Life in the Rindler Reference Frame:
Does a Uniformly Accelerated Charge
Radiate? Is There a Bell ‘Paradox’? Is
Unruh Effect Real?

Waldyr A. Rodrigues Jr. and Jayme Vaz Jr.

Abstract The determination of the electromagnetic field generated by a charge
in hyperbolic motion is a classical problem for which the majority view is that
the Liénard-Wiechert solution which implies that the charge radiates is the correct
one. However we analyze in this paper a less known solution due to Turakulov
that differs from the Liénard-Wiechert one and which according to him does not
radiate. We prove his conclusion to be wrong. We analyze the implications of both
solutions concerning the validity of the Equivalence Principle. We analyze also two
other issues related to hyperbolic motion, the so-called Bell’s “paradox” which is
as yet source of misunderstandings and the Unruh effect, which according to its
standard derivation in the majority of the texts is a correct prediction of quantum
field theory. We recall that the standard derivation of the Unruh effect does not resist
any tentative of any rigorous mathematical investigation, in particular the one based
in the algebraic approach to field theory which we also recall. These results make
us to align with some researchers who also conclude that the Unruh effect does not
exist.

1 Introduction

There are some problems in Relativity Theory that are continuously source of
controversies, among them we discuss in this paper: (a) the problem of determining
if a uniformly accelerated charge does or does not radiate1; (b) the so-called Bell’s
paradox; and (c) the Unruh effect.2

1This problem is important concerning one of the formulations of the Equivalence principle.
2We call the reader’s attention that the references quoted in this paper are far from complete, so we
apologize for papers not quoted.
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In order to throw some light on the controversies we discuss in detail in Sect. 2
the concept of (right and left) Rindler reference frames, Rindler observers, and a
chart naturally adapted to a given Rindler frame. These concepts are distinct and thus
represented by different mathematical objects and having this in mind is a necessary
condition to avoid misunderstandings, both of mathematical and of physical nature.

In Sect. 3 we analyze Bell’s “paradox” that even having a trivial solution seems
to not have been understood for some people even recently for it is confused with
another distinct problem which if one does not pay the required attention seems
analogous to the one formulated by Bell.

In Sect. 4 we discuss at length the problem of the electromagnetic field generated
by a charge in hyperbolic motion. First we present the classical Liénard-Wiechert
solution, which implies that an observer at rest in an inertial reference frame
observes that the charge radiates. Next we analyze (accepting that the Liénard-
Wiechert solution is correct) if an observer comoving with the charge detects or
no radiation. We argue with details that contrary to some views it is possible for
a real observer living in a real laboratory3 in hyperbolic motion to detect that the
charge is radiating. Our conclusion is based (following [41]) on a careful analysis
of different concepts of energy that are used in the literature, the one defined in an
inertial reference frame and the other in the Rindler frame. In particular, we discuss
in detail the error in Pauli’s argument.

But now we ask: Is it necessary to accept the Liénard-Wiechert solutions as the
true one describing the electromagnetic field generated by a charge in hyperbolic
motion? To answer that question we analyzed the Turakulov [57] solution to this
problem, which consisting in solving the wave equation for the electromagnetic
potential in a special systems of coordinates where the equation gets separable. We
have verified that Turakulov solution (which differs form the Liénard-Wiechert one)
is correct (in particular, by using the Mathematica software). Turakulov claims that
in his solution the charge does not radiate. However, we prove that his claim is
wrong, i.e., we show that as in the case of the Liénard-Wiechert solution an observer
comoving with the charge can detect that it is emitting radiation.

In Sect. 5 we discuss, taking into account that it seems a strong result the fact
that a charge at rest in the Schwarzschild spacetime does not radiate [41], what
the results of Sect. 4 implies for the validity or not of one of the forms in which
Equivalence principle is presented in many texts.

Section 6 is dedicated to the Unruh effect. We first recall the standard pre-
sentation (emphasizing each one of the hypothesis used in its derivation) of the
supposed fact that Rindler observers are living in a thermal bath with a Planck
spectrum with temperature proportional to its local proper acceleration and thus
such radiation may excite detectors on board. Existence of the Unruh radiation
and Rindler particles seems to be the majority view. However, we emphasize that
rigorous mathematical analysis of standard procedure (which is claimed to predict

3This, of course, means that the laboratory (whatever its mathematical model) [9] must have finite
spatial dimensions as determined by the observer at any instant of its propertime.
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the Unruh effect) done by several authors shows clearly that such a procedure
contains several inconsistencies. These rigorous analyses show that the Unruh effect
does not exist, although it may be proved that detectors in hyperbolic notion can get
excited, although the energy for that process comes from the source accelerating
the detector and it is not (as some claim) due to fluctuations of the Minkowski
vacuum. We recall in Appendix 2 a (necessarily resumed) introduction to the
algebraic approach to quantum theory as applied to the Unruh effect in order to
show how much we can trust each one of the suppositions used in the standard
derivation of the Unruh effect. Detailed references are given at the appropriate
places.

Section 7 presents our conclusions and in Appendix 1 we present our conventions
and some necessary definitions of the concepts of reference frames, observers,
instantaneous observers, and naturally adapted charts to a given reference frame.

2 Rindler Reference Frame

A proper understanding of almost any problem in Relativity theory requires that
we know (besides the basics of differential geometry4) exactly the meaning and
the precise mathematical representation of the concepts of: (a) reference frames
and their classification; (b) a naturally adapted chart to a given reference frame;
(c) observers; and (d) instantaneous observers. The main results necessary for the
understanding of the present paper and some other definitions are briefly recalled in
Appendix 1.5 It is essential to have in mind that most of the possible reference
frames used in Relativity theory are theoretical instruments, i.e., they are not
physically realizable as a material system. This is particularly the case of the
right and left Rindler reference frames and respective observers that we introduce
next.

Let σ : I → M , s %→ σ(s) a timelike curve in M describing the motion of an
accelerated observer (or an accelerated particle) where s is the proper time along σ .
The coordinates of σ in ELP gauge (see Appendix 1) are

xμσ (s) = xμ ◦ σ (s) (1)

and for motion along the x3 = z axis it is

(xoσ )
2 − (x3

σ )
2 = − 1

a2
σ

, (2)

4Basics of differential geomety may be found in [12, 18, 20, 36]. Necessary concepts concerning
Lorentzian manifods may be found in [39, 50].
5More details may be found in [23, 45].
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Fig. 1 Some integral lines of the right R and left L Rindler reference frames

where aσ is a real constant for each curve σ . In Fig. 1 we can see two curves σ and
σ ′ for which 1

aσ
= 1 and 1

aσ ′
= 2. To understand the meaning of the parameter aσ

in Eq. (2) we write

x0
σ (s) =

1

aσ
sinh(aσ s), x3

σ (s) =
1

aσ
cosh(aσ s). (3)

The unit velocity vector of the observer is

vσ (s) = σ∗(s) := vμ(s) ∂
∂xμ

= cosh(aσ s)
∂

∂t
+ sinh(aσ s)

∂

∂z
.

Now, the acceleration of σ is

aσ = d

ds
σ∗(s) = aσ

(

sinh(aσ s)
∂

∂t
+ cosh(aσ s)

∂

∂z

)∣
∣
∣
∣
σ

(4)

and of course, aσ · vσ = 0 and aσ · aσ = −a2
σ .
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2.1 Rindler Coordinates

Introduce first the regions I, II, F, and P of Minkowski spacetime

I = {(t, x, y, z) | −∞ < t <∞,−∞ < x <∞, ,−∞
< y <∞, 0 < z <∞}, (5)

and two coordinate functions (x0, x1, x2, x3) and (x′0,x′1,x′2,x′3) covering such
regions. For e ∈ M it is {x0(e) = x0 = t, x1(e) = x, x2(e) = y, x3(e) = z} and
{x′0(e) = t, x′1(e) = x = x, x′2(e) = y = y, x′3(e) = z} with6

z = ±
√
z2 − t2, t = tanh−1

(
t

z

)

, |z| ≥ |t | ,

x0 = t = z sinh t, x3 = z = z cosh t in region I,

x0 = t = −z sinh t, x3 = z = −z cosh t in region II (6)

and

z = ±
√
t2 − z2, t = tanh−1

(z

t

)
, |t | ≥ |z| ,

x0 = t = z cosh t, x3 = z = z sinh t in region F,

x0 = t = −z cosh t, x3 = z = −z sinh t in region P. (7)

The right Rindler reference frame R ∈ sec T I has support in region I and is
defined by

R = z√
z2 − t2

∂

∂t
+ t√

z2 − t2
∂

∂z
= 1

z

∂

∂t
,

z > 0; |z| ≥ t. (8)

The left reference Rindler frame L ∈ sec T II is defined by

L = z√
z2 − t2

∂

∂t
+ t√

z2 − t2
∂

∂z
= 1

z

∂

∂t
,

z < 0 : |z| ≥ t. (9)

6Of course the coordinates (t, x, y, z) cover all M but the coordinates (t, x, y, z) do not cover all
M , they are singular in origin.
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Then, we see that in I ⊂ M , (t , x1, x2, z) as defined in Eq. (6) are a naturally
adapted coordinate system to R [(nacs|R)] and L [(nacs|L)]. With D being the
Levi-Civita connection of g, the acceleration vector field associated with R is

a = DRR = 1

z

∂

∂z
. (10)

Also,

aσ = d

ds
σ∗(s) = aσ

∂

∂z

∣
∣
∣
∣
σ

(11)

i.e., aσ = DRR|σ = 1
z
∂
∂z

∣
∣
∣
σ
= aσ ∂∂z

∣
∣
σ

. Moreover, recall that since σ is clearly an

integral line of the vector field R, it is vσ = R|σ .
Remark 1 Note that in Eq. (8) (respectively Eq. (9)) it is necessary to impose z > 0
(respectively, z < 0), this being the reason for having defined the right and left
Rindler reference frames.

2.2 Decomposition of DR

Recall that the Minkowski metric field g = ημνdx
μ ⊗ dxνreads in Rindler

coordinates (in region I)

g = gμνdxμ ⊗ dxv = z2dt ⊗ dt − dx ⊗ dx − dy ⊗ dy − dz ⊗ dz

= ηabγ a ⊗ γ b (12)

where {γ 0, γ 0, γ 2, γ 3} = {zdt, dx, dy, dz} is an orthonormal coframe for T ∗I
which is dual to the orthonormal frame {e0, e1, e2, e3} = {R = 1

z
∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z }

for T I. We write

D ∂
∂xν
dxμ = −Γ μ···νι dxι, Debγ

a = −Γ a··
·bcγ

c (13)

and keep in mind that it is Γ a·c
·b· = −Γ c·a

·b· (and of course, Γ μ···νι = Γ μ···ιν )
Define the 1-form field (physically equivalent to R)

R = g(R, ) = Rμdxμ = zdx0 = γ 0. (14)
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Then, as well known7 DR has the invariant decomposition

DR = a ⊗ R + ωR + + + 1

3
Eh, (15)

with

a : = g(a, ),

ωR : = ωμνdxμ ⊗ dxv = 1

2

(
Rσ ;τ − Rτ ;σ

)
hσμh

τ
νdx

μ ⊗ dxv

+ : = +μνdxμ ⊗ dxv =
[

1

2

(
Rσ ;τ + Rτ ;σ

)
hσμh

τ
ν −

1

3
Ehστh

σ
μh
τ
ν

]

dxμ ⊗ dxv

E : = div R = Rμ;μ = δR
h : = (gμν − RμRν

)
dxμ ⊗ dxv (16)

where a and ω are, respectively, the (form) acceleration and the rotation tensor (or
vortex) of R, + is the shear tensor of R, and E is the expansion ratio of R.

Now, dγ 0 = dz ∧ dx0 = 1
z γ 3 ∧ γ 0 and thus γ 0 ∧ dγ 0 = 0 which implies that

ωR = 0. See Appendix 1 and details in [45].
This means that the Rindler reference frame R is locally synchronizable, but

since R is not an exact differential R is not proper time synchronizable, something
that is obvious once we look at Fig. 1 and see that for each time t > 0 of the inertial
reference frame I = ∂/∂t the Rindler observers following paths σ and σ ′ (which
have of course, different proper accelerations) have also different speeds, so their
clocks (according to an inertial observer) tic-tac at different ratios.

2.3 Constant Proper Distance Between σ and σ ′

We can easily verify using the orthonormal coframe introduced above that since
dγ i = 0, i = 1, 2, 3 it is Γ i

ab = Γ i
ba for i = 1, 2, 3 and a,b = 0, 1, 2, 3 and also

from the form of dγ 0 we realize that Γ 0··
·00 = Γ 0·0

·0· = −Γ 0·0
·0· = 0. Thus,

E = δR = −γ a�Dea(γ
0) = Γ 0··

·abγ a�γ b = ηabΓ 0··
·ab = −Γ a·0·a· = Γ a··

·a0 = 0
(17)

and we realize that each observer following an integral line of R, say σ1 will
maintain a constant proper distance to any of its neighbor observers which are
following a different integral line of R.

7See, e.g., [45].
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Of course, proper distance between an observer following σ and another
one following σ ′ is operationally obtained in the following way: Using Rindler
coordinates at an event, say e1 = (0, 0, 0, z1) the observer following σ sends a
light signal to σ ′ (in the direction e3) which arrives at the σ ′ worldline at the event
e2 = (t2, 0, 0, z1 + �) where it is immediately reflected back to σ arriving at event
e3 = (t3, 0, 0, z1). So, the total coordinate time for the two-way trip of the light
signal is t3 and immediately we get (from the null geodesic equation followed by
the light signal)

t2 = ln

(

1 + �

z1

)

,

t3 − t2 = ln

(

1 + �

z1

)

(18)

and thus

t3 = 2 ln

(

1 + �

z1

)

. (19)

Now, the observer at σ evaluates the total proper time for the total trip of the signal,
it is z1t3. The proper distance is by definition

dσσ ′ := 1

2
z1t3 = z1 ln

(

1 + �

z1

)

. (20)

Equation (20) shows that proper distance and coordinate distance are different in a
Rindler reference frame.

Remark 2 A look at Fig. 1 shows immediately that inertial observers in I = ∂/∂t

will find that the distance between σ and σ ′ is shortening with the passage of t time.
It is opportune to take into account that despite the fact that the Rindler coordinate
times for the going and return paths are equal (the coordinate time being equal to
proper time in σ ) measured by the inertial observers are different and indeed as it is
intuitive the return path is realized in a shorter inertial time.

Remark 3 Of course, if R = 1
z ∂/∂t is physically realizable by a rocket with the

constraint that, e.g., z1 ≤ z ≤ (z1+�) then it needs to have a very special propulsion
system, with its rear accelerating faster than the front. We do not see how such a
rocket could be constructed.8

8Note that the original Rindler reference frame R for which (0 < z < ∞) is only supposed to be
a theoretical construct, it obviously cannot be realized by any material system.
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3 Bell ‘Paradox’

In [3] it is proposed the following question:

Three small spaceships, A, B, and C, drift freely in a region of spacetime remote from other
matter, without rotation and without relative motion, with B and C equidistant from A
(Fig. 1).

On reception of a signal from A the motors of B and C are ignited and they accelerate
gently (Fig. 2)

Let ships B and C be identical, and have identical acceleration programmes. Then (as
reckoned by an observer at A) they will have at every moment the same velocity, and so
remain displaced one from the other by a fixed distance. Suppose that a fragile thread is
tied initially between projections from B to C (Fig. 3). If it is just long enough to span the
required distance initially, then as the rockets speed up, it will become too short, because of
its need to FitzGerald contract, and must finally break. It must break when at a sufficiently
high velocity the artificial prevention to the natural contraction imposes intolerable stress.

Then Bell continues saying:

Is this really so? This old problem came up for discussion once in the CERN canteen. A
distinguished experimental physicist refused to accept that the thread would break, and
regarded my assertion, that indeed it would, as a personal misinterpretation of special
relativity. We decided to appeal to the CERN Theory Division for arbitration, and made
a (not very systematic) canvas of opinion in it. there emerged a clear consensus that the
tread would not break.

Of course many people who give this wrong answer at first get the right answer on further
reflection.

Recently Motl [35] wrote a note saying that Bell did not understand Special
Relativity since the correct answer to his question is the CERN majority (first sight)
view. Now, reading Motl’s article one arrives at the conclusion that he did not
understand correctly the formulation of Bell’s problem. Indeed, the problem that

Fig. 2 Figure 1 in Bell [3]
(adapted)

A
B

C
Fig. 3 Figure 2 in Bell [3]
(adapted) B

C

B

C
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1 2 3 4 5

1

2

3

4

5

z

t

Fig. 4 Spacetime diagram for Bell’s question with ships B (tick line on the left) and C (tick line
on the right) having the same acceleration relative to the inertial observer A

is correctly analyzed in [35] was the one in each ships B and C are modelled as
two distinct observers following two different integral lines of the Rindler reference
frame R introduced in the previous section.

It is quite obvious to any one who reads Sect. 1 that in this case (which is not
the Bell’s one) B and C did not have the same acceleration programme as seem by
observer A (represented by a particular integral line of the inertial frame I = ∂/∂t

the t axis in Fig. 4).
In the case of Bell’s question ships B and C are modelled (as a first approxima-

tion) as observers, i.e., as the timelike curves

t2B − x2
B = − 1

a2
B

,

t2C − (xC − d)2 = − 1

a2
C

= − 1

a2
B

,

where to illustrate the situation we draw Fig. 4 with aB = 1 and d = 2. It is
absolutely clear from Fig. 4 that the distance between B and C any instant t > 0
as determined by the inertial observer is the same as it was at t = 0, when B and C
start accelerating with the same accelerating programme.

A trivial calculation similar to the one in Sect. 2.3 above shows that proper
distance between B and C as determined by B (or C) is increasing with the
coordinate time t used by these observers which are modelled as integral lines
of the Rindler reference frame R. As a consequence of this fact we arrive at the
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conclusion that the thread cannot go during the acceleration period to its natural
Lorentz deformed configuration and thus will break.

Bell’s problem illustrates that bodies subject to special acceleration programs do
not go to their Lorentz deformed configuration immediately. After the acceleration
programme ends the body will acquire adiabatically its Lorentz deformed configu-
ration. More on this issue is discussed in [44].

4 Does a Charge in Hyperbolic Motion Radiate?

4.1 The Answer Given by the Liénard-Wiechert Potential

It is usually assumed (see, e.g., [26, 30, 31, 40–42] that the electromagnetic potential
A = Aμ(x)dx

μ ∈ sec T ∗M generated by a charged particle in hyperbolic motion
with world line given by σ : R →M , s %→ σ(s), with parametric equations given by
Eq. (3) and electric current given J = Jμ(x(s))dx

μ
∣
∣
σ

= eVμ(s))dx
μ
∣
∣
σ

sec T ∗M
where

vμ(s) := d

ds
xμ ◦ σ(s), v := (v0, v) =

(
1√

1 − v2
, 0, 0,

vi√
1 − v2

)

, (21)

Jμ(x) = e
∫

dsvμ(s)δ
(4)(x′ − x ◦ σ(s)) (22)

is given by the solution of the differential equation

�Aμ = Jμ (23)

through the well-known formula

Aμ(x) = e
∫

d4xDr(x − x′)Jμ(x′) (24)

where Dr(x − x′) is the retarded Green function9 given by

Dr(x − x′) = 1

2π
θ(x0 − x′0)δ(4)[(x − x′)2]

= θ(x0 − x′0)
4πR

δ(x0 − x′0 − R) (25)

9I.e., a solution of �Dr(x − x′) = δ(4)(x − x′).



312 W. A. Rodrigues Jr. and J. Vaz Jr.

with from the light cone constraint in Eq. (25)

R = |x − x(σ (s)| =
∣
∣
∣x

0 − x0(s)

∣
∣
∣ . (26)

Thus using Eq. (25) in Eq. (24) gives the famous Liénard-Wiechert formula, i.e.,

Aμ(x) = e

4π

vμ(s)

v · [x − x(σ (s))]
∣
∣
∣
∣
s=s0

(27)

and putting γ = 1/
√

1 − v2, we have

v · [x − x(σ (s))] = γR(1 − v • n) (28)

and thus

A0(t, x) = e

4π

1

(1 − v • n)R

∣
∣
∣
∣
ret
, A(t, x) = e

4π

v
(1 − v • n)R

∣
∣
∣
∣
ret

(29)

where ret means that the value of the bracket must be calculated at the instant
x0(s0) = x0 − R.

We also have for the components of the field F = dA ∈ sec
∧2
t∗M

Fμν(x) = e

4π

1

v · [x − x(σ (s))]
d

ds

[ [x − xσ (s)]μvν − [x − xσ (s)]νvμ
v · [x − x(σ (s))]

]

ret

(30)

and taking into account that [x − xσ (s)] = (R,Rn), vμ = (γ,−γ v) and putting
•
v = dv/dt it is

dvμ

ds
= γ 2

(
γ 2v•v̇,−

(
v̇ + γ 2v(v•v̇)

))
(31)

and

d

ds
[v · (x − x(σ (s))] = −1 + (x − x(σ (s)))α dv

α

ds
(32)

and thus we get

E(t, x) = e

4π

[
(n − v)

γ 2(1 − v • n)3R2

]

ret
+ e

4π

[
n × [(n − v)× v̇
γ 2(1 − v • n)3R

]

ret
, (33)

B(t, x) = n × E(t, x). (34)



Life in the Rindler Reference Frame: Does a Uniformly Accelerated Charge. . . 313

Since

n × [(n − v)× v̇ = (n • v̇)(n − v)− n · (n − v)v̇ (35)

we see that for the hyperbolic motion where v is parallel to v̇ and

v(t) = aσ t
√

1 + a2
σ t

2
ê3,

v̇(t) = aσ 1

(1 + a2
σ t

2)3/2
ê3

the Liénard-Wiechert potential implies in a radiation field, i.e., a field that goes in
the infinity (radiation zone) as 1/R.

In Jackson’s book [26] (page 667) one can read that when a charge is accelerated
in a reference frame where its speed is |v| 4 1, the Poynting vector associated with
the field given by Eqs. (33) and (34) is

S = E × B = |E|n (36)

and the power irradiated per solid angle is [26]

dP

dΩ
= e2

(4π)2
(n × v̇) (37)

Thus the total instantaneous irradiated power (for a nonrelativistic accelerated
charge) is

P = 2

3

e2

4π
|v̇|2 , (38)

a result known as Larmor formula.
The correct formula valid for arbitrary speeds and with Pμ = mVμ (as one can

verify after some algebra) is

P = −2

3

1

4π

e2

m2

(
dPμ

ds

dPμ

ds

)

= 2

3

1

4π
e2γ 6

[
|v̇|2 − (v × v̇)2

]
. (39)

Remark 4 Equation (37) shows that the radiated power in a linear accelerator is,
of course, bigger for electrons than for, e.g., protons. However, as commented by
Jackson [26] even for electrons in a linear accelerator with typical gain of 50 MeV/m
the radiation loss is completely negligible. In the case of circular accelerators like
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synchrotrons since the momentum p = γmv changes in direction rapidly we can
show that the radiated power (predicted from the Liénard-Wiechert potential) is

P = 2

3

1

4π

e2

m2 γ
2ω2 |p|2 (40)

where ω is the angular momentum of the charged particle. This formula fits well the
experimental results.

4.2 Pauli’s Answer

In this section we use the same parametrization as before for the coordinates of the
charged particle in hyperbolic motion. Let e (see Fig. 5) be an arbitrary observation
point with coordinates x = (x0 = t, x1, x2, x3 = z). In what follows for simplicity
of writing we denote the expression for the Lenard-Wiechert potential (Eq. (27)) as

Aμ(x) = e

4π

vμ(s)

v · [x − x(σ (s))] , (41)

but we cannot forget that at the end of our calculations we must put s = s0. We have,
explicitly for the velocity of the particle (moving in the x3-direction with aσ = 1)

v0(s) = cosh s, v3(s) = sinh s (42)

and so

v · [x − x(σ (s))] = x0 cosh s − x3 sinh s = x3 sinh(s − x0)

= z sinh(s − t). (43)

Then, we have

A0(x) = e

4π

cosh s

z sinh(s − t)
, A3(x) = e

4π

sinh s

z sinh(s − t)
(44)

which are Eqs. (249) in Pauli’s book [43].
Pauli’s argument for saying that a charge in hyperbolic motion does not radiate

is as follows:

(i) Consider the inertial reference frame I ′ where the charge is momentarily at rest
at the instant (x0

e′ − R) = t0. This is the time coordinate (in the coordinates of
the inertial frame I ) of the event e0 in Fig. 5.

A naturally adapted coordinate system for the reference frame I ′ is (v = |v|)
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x′0 = t0 + γ (x0 − vx3),

x′3 = z0 + γ (x3 − vx0),

x′1 = x1, x′2 = x2 (45)

and

∂x′0

∂x0 = γ = cosh s,
∂x′0

∂x3 = − sinh s,

∂x′3

∂x0
= −γ v = − sinh s,

∂x′3

∂x3
= cosh s, (46)

from where it follows that the components of the potential A in the new coordinates
{x′μ} are

A′0(x′) = e

4π

1

z sinh(s − t)
, A′3(x′) = 0. (47)

As a consequence of Eq. (47) it follows that the magnetic field B′ as measured in
the reference frame I ′ is null, thus the Poynting vector in this frame S′= E′ × B′ =
0 and thus (according to Pauli) an observer instantaneously at rest at event e0 with
respect to the charge will detect no radiation.

(ii) To conclude his argument Pauli considers a second inertial reference frame Ĭ

where the events o and e′ are simultaneous and where e′ is an event on the world
line of another observer at rest in the R frame which supposedly will receive—
if it exists—the radiation field emitted by the charge at event e0 (see Fig. 5). A
naturally adapted coordinate system to Ĭ is

x̆0 = γ̆ (x0 − v̆x3),

x̆1 = x1, x̆2 = x2,

x̆3 = γ̆ (x3 − v̆x0), (48)

with

v̆ = sinh t/ cosh t, γ̆ = (1 − v̆2)−1/2 = cosh t. (49)

A trivial calculation gives

Ă0(x̆) = e

4π

coth(s − t)
√
(x̌3)2 − (x̌0)2

, Ă3(x̆) = e

4π

1
√
(x̌3)2 − (x̌0)2

. (50)
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Fig. 5 Graphic for presenting Pauli’s argument

and since B̆ = (F32, F13, F21) = 0 it follows that the Poynting vector S̆ = Ĕ ×
B̆ = 0. Thus an instantaneous observer (e′, Ĭ e′) in the Ĭ frame momentously at rest
relative to instantaneous observer (e′,Re′) observer in the R frame at the considered
event will also not detect any radiation emitted from e0.

4.2.1 Calculation of Components of the Potentials in the R Frame

Using an obvious notation we write the components of the electromagnetic potential
in the R frame as A(x′(e)) = (A0(t, z), 0, 0,−A3(t, z)) and we have

A0 = ∂x0

∂x0A0 + ∂x3

∂x0A3 = e

4π
coth(t−s)|s=s0 ,

A3 = ∂x0

∂x3A0 + ∂x3

∂x3A3 = − e

4πz
tanh(s − t)|s=s0 . (51)

So,

−→
E (t, z) := (0, 0,F03(t, z)),

−→
B (t, z) = 0, (52)

F03(t, z) = ∂

∂t
A3(t, z)

∣
∣
∣
∣
s=s0

− ∂

∂z
A0(t, z)

∣
∣
∣
∣
s=s0

(53)
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and again the Poynting vector
−→
E × −→

B is null. So, by Paul’s argument the observers
at rest in the R frame will detect no radiation.

4.3 Is Pauli Argument Correct?

In order to evaluate if Pauli’s argument is correct we recall that the Liénard-Wiechert
potential A ∈ sec

∧1
T ∗M by construction is in Lorenz gauge, i.e., δA = 0

and moreover it satisfies the homogeneous wave equation for all spacetime points
outside the worldline of the accelerated charge, i.e.,

♦A = −dδA− δdA = −δdA = 0 (54)

where ♦ is the Hodge Laplacian, and δ is the Hodge coderivative. Since F = dA ∈
sec
∧2
T ∗M and

♦F = −dδdA− δddA = −dδdA = 0 (55)

it follows that the electromagnetic field satisfies also a wave equation.

Remark 5 Well, it is a common practice to call an electromagnetic field satisfying

the wave equation a electromagnetic wave. So, despite the fact that
−→
B = 0 observers

outside the worldline of the accelerated charge (and living in the same accelerated
laboratory) will perceive a pure electric wave.

In our case

F = F03dx0 ∧ dx3 (56)

and the energy momentum tensor of the electromagnetic field

T = Tμνdxμ ⊗ dxν ∈ sec T 2
0M (57)

in the coordinates {xμ} (naturally adapted to the Rindler frame R) has only the
following non-null component:

T00(t, z) = 1

2
|F03(t, z)|2 . (58)

So an observer, following the worldline σ ′ with z = z0 = constant (z > 1)
will detect a pseudo-energy density “wave” passing through the point where he is
located. Moreover, if this observer carries with him an electric charge say e′ he will
certainly detect that his charge is acted by the electromagnetic field with a (1-form)
force
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F = e′vσ ′�F = v0
σ ′F03dx3 (59)

and he certainly will need more pseudo energy or better more Minkowski energy
(fuel in his rocket) to maintain his charge (with mass m′) at constant acceleration
than the energy that he would have to use to maintain at a constant acceleration a
particle with mass m′ and null charge.

Also, since the energy arriving at the σ ′ worldline must be coming from energy
radiated by the charge following σ , an observer maintaining the charge e (of mass
m) at constant acceleration will expend more Minkowski energy than the one
necessary for maintaining at a constant acceleration a particle with mass m and
null charge.

4.4 The Rindler (Pseudo) Energy

It is a well-known fact that outside the worldline σ of the accelerating charge the
electromagnetic energy-momentum tensor has null divergence, i.e., satisfy

D · T = 0 (60)

where D is the Levi-Civita connection of g. Since K = ∂
∂t is a Killing vector field

for the metric g as it is obvious looking at the representation of g in terms of the
coordinates {xμ} adapted to the R = 1

z K frame we have that the current

JR = KνTνμdxμ (61)

is conserved, i.e.,

δ
g
JR = −∂�JR = − 1√− det g

∂

∂xμ

(√− det gKνTμν
)
= 0. (62)

Then, of course, the scalar quantity10

E =
∫

Σ
′ �JR (63)

is a conserved one. However, take notice that differently of the case of the similar
current calculated with the Killing vector field ∂/∂t it does not qualify as the zero
component of a momentum covector (not covector field). See details in [47].

10If N ⊂ M is the region where JR has support, then ∂N = Ξ + Ξ ′ + � where Ξ and Ξ ′ are
spacelike surfaces and JR is null in � (spatial infinity).
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In our case we have

∂

∂xμ
(
zTμ0
) = 0 (64)

Consider the accelerating charge following the σ worldline (for which z = 1
and s = t) surrounded by a 2-dimensional sphere Σt of constant radius r = R at
time t. Now, from propertime s1 = t1 to propertime s2 = t2 the surface Σt moves
producing a world tube in Minkowski spacetime.

Since

∂

∂x0

(
zT0

0

)
= − ∂

∂xi

(
zTi0

)
(65)

the quantity E (t1 %→ t2) given by

E (t1 %→ t2) =
∫ t2

t1
dt
∫∫∫

r2 sin θdrdθdϕ
∂

∂t

(
zT0

0

)

= −∫ t2
t1
dt
∫∫∫

r2drdΩ
∂

∂xi

(
zTi0

)

= −∫ t2
t1
dt
∫∫ (

zTi0

)
ni R

2dΩ (66)

(where {r, θ, ϕ} are polar coordinates associated with {x1, x2, x3} and ni are the
components of the normal vector to Σt ) is null since Ti0 = 0.

Thus if the observer following σ (of course, at rest relative to the accelerating
charge) decides to call E (t1 %→ t2) the energy radiated by the charge he will arrive
at the conclusion that he did not see any radiated energy.

But of course, E (t1 %→ t2) is not the extra Minkowski energy (calculated above)
necessary for the observer to maintain the charge at constant acceleration. Parrott
[42] quite appropriately nominates E (t1 %→ t2) the pseudo-energy, other people as
authors of [14] call it Rindler energy.

Conclusion 1 What seems clear at least to us is that whereas any one can buy
Minkowski energy (e.g., in the form of fuel) for his rocket no one can buy the
“magical” Rindler energy.

4.5 The Turakulov Solution

In a paper published in the Journal of Geometry and Physics [56] Turakulov
presented a solution for the problem of finding the electromagnetic field of a charge
in uniformly accelerated motion by directly solving the wave equation for the
potential A ∈ sec

∧1
T ∗M using a separation of variables method instead of using
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the Liénard-Wiechert potential used in the previous discussion. Since this solution
is not well known we recall and analyze it here with some details.

Turakulov started his analysis with the coordinates (t, x, y, z) introduced in
Sect. 2 and proceeds as follows. In the t = constant Euclidean semi-spaces he
introduced11 toroidal coordinates (u, v, ϕ) by

z = a sinh u

cosh u+ cos v
, ρ = a sin v

cosh u+ cos v
,

u = tanh−1
(

2az

z2 + ρ2 + a2

)

, v = tanh−1
(

2az

z2 + ρ2 − a2

)

. (67)

(where ρ = +√x2 + y2) and also introduced their pseudo Euclidean generaliza-
tions for the other domains, i.e.,

z = a sinu

cos u+ cos v
, ρ = a sin v

cos u+ cos v
,

u = tan−1
(

2az

−z2 + ρ2 + a2

)

, v = tan−1
(

2az

−z2 + ρ2 − a2

)

. (68)

Let σ be the world line a uniformly accelerate charge, as we know it corresponds to
z =constant and thus the surfaces u = constant forms a family of spheres defined
by the equation

(z− a coth u0)+ ρ2 = a sinh−1 u (69)

involving the charge. The Minkowski metric in region I and II using the coordinates
(t,u, v, ρ) reads

g =
(

a

cosh u+ cos v

)2 (
sinh2 u dt ⊗ dt − du⊗ du− dv ⊗ dv − sin2 vdϕ ⊗ dϕ

)

(70)
and for regions F and P it is

g =
(

a

cosh u+ cos v

)2 (
− sin2 u dt ⊗ dt + du⊗ du− dv ⊗ dv − sin2 vdϕ ⊗ dϕ

)
.

(71)

11Toroidal coordinates (also called bispherical coordinates) is discussed in Section 10.3 in volume
II of the classical book by Morse and Feshbach [34].
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As we know the potential AT in the Lorenz gauge δAT = 0 satisfies the wave
equation δdAT = 0 Then supposing (as usual) that the potential is tangent to the
integral lines of R we can write12

AT = Θ(u, v)dt (72)

and the general solution of the wave equation is

Θ(u, v) = α0(cosh u− 1)+∑∞
n=1αn sinh u

d

du
Pn(cosh u)Pn(cos ν), (73)

where Pn are Legendre polynomials and α0,αn are constants. The field of a charge is
simply specified only by the first term with α0 = e the value of the charge generating
the field. Thus, if the charge is at u = ∞ we have for regions I and II and P and F

ATI,II = e(cosh u− 1)dt, ATP,F = e(cos u− 1)dt. (74)

In terms of the coordinates (t, x, y, z), writing AT = ATμdxμ we have the following
solution valid for all regions13:

AT0 = − z

z2 − t2
(
t2 − ρ2 + z2 − a2

Λ+Λ−
− 1

)

,

AT3 = t

z2 − t2
(
t2 − ρ2 + z2 − a2

Λ+Λ−
− 1

)

,

AT1 = AT2 = 0,

Λ±(t, x, y, z) =
√

(
√
z2 − t2 ± a)2 + x2 + y2. (75)

From these formulas we infer that

FT = Ftudt ∧ du = −e sinh udt ∧ du (76)

and thus an observer comoving with the charge will see only an “electric field”
which for him is in the u-direction and the pseudo energy evaluated beyond a given
sphere u = u0 of radius r is

12Here the value of the charge is e/4π = 1.
13We have verified using the Mathematica software that indeed A0 and A3 satisfy the wave
equation. Note that there is are signal misprints in the formulas for A0 and A3 in [56] and the

modulus
√∣
∣z2 − t2∣∣ in those formulas is not necessary.
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E = e2

2r
. (77)

Thus, Turakulov concludes as Pauli did that there is no radiation. But is his
conclusion correct?

4.5.1 Does the Turakulov Solution Imply that a Charge in Hyperbolic
Motion Does Not Radiate?

Recall that in Sect. 4.3 we showed that supposing that the Liénard-Wiechert solution
is the correct one then Pauli’s argument is incorrect since an observer following
another integral line of R will see an electric “wave” (recall Eq. (58)). We now make
the same analysis as the one we did in the case of the Turakulov solution in order to
find the correct answer to our question. We first explicitly calculate the electric and
magnetic fields in the inertial frame I = ∂/∂t . We have

Ex = 8a2xz

Λ3+Λ3−
, Ey = 8a2yz

Λ3+Λ3−
,

Ez = −4a2[x2 + y2 + a2 − z2 + t2]
Λ3+Λ3−

,

Bx = 8a2yt

Λ3+Λ3−
, By = −8a2xt

Λ3+Λ3−
, Bz = 0. (78)

The Poincaré invariants of the Turakulov solution I1 := E2−B2 and I2 := E • B
are

I1 = 16a4

Λ6+Λ6−
[(x2 + y2 − z2 + t2)2 + 4(x2 + y2)(z2 + t2)], I2 = 0. (79)

This shows that an inertial observer at rest at (x, y, z) will detect a time dependent
electromagnetic field configuration passing through his observation point. Of
course, it is not a null field, but it certainly qualifies as an electromagnetic wave.
And what is important for our analysis is that the field carries energy and momentum
from the accelerating charge to the point (x, y, z).

Indeed, consider a charge q at rest in the Rindler frame following an integral line
σ ′ of R with constant Rindler coordinates (t, x = x0, y = y0 z = z0) and thus with

inertial coordinates (t, x0, y = y0, z =
√

z2
0 + t2).

As determined by the inertial observer the density of real energy and the Poynting
vector arriving from the uniformly accelerated charge moving along the z-axis of the
inertial frame to where the charge q is located are:
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1

2
(E2 + B2) = 1

2
Λ̊−6+ Λ̊−6−

(
128(x2

0 + y2
0)t

2 + 64a4(x2
0 + y2

0)z
2
0

+16a4(x2
0 + y2

0 + a2 − z2
0)

2
)
,

S = i
32a4x0

Λ̊6+Λ̊6−
(x2

0 + y2
0 + a2 − z2

0)t + j
−32a4y0

Λ̊6+Λ̊6−
(x2

0 + y2
0 + a2 − z2

0)t

+ k
64a4

√

z2
0 + t2

Λ̊6+Λ̊6−
(x2

0 + y2
0)t,

Λ̊± =
√

(z0 ± a)2 + x2
0 + y2

0 (80)

Thus, we see that indeed there is a flux of real energy and momentum arriving at

the charge q located at (t, x0, y = y0, z =
√

z2
0 + t2).

Moreover, the Lorentz force FL acting on the charge q (according to the inertial
observer) is

FL = qE + qvσ ′ × B, (81)

depends on t and is doing work on the charge q. So, an observer comoving with the
charge q will need to expend more real energy to carry this charge than to carry a
particle with zero charge.

More important: since the energy arriving at the charge q is the one produced by
the charge e generating the field we arrive at the conclusion, as in the case of the
Pauli solution that an observer carrying the charge e will speed more energy (fuel of
its rocket) than when it carries a particle with zero charge.

Remark 6 We already observed in [32] that the use of the retarded Green’s function
may result in non-sequitur solutions in some cases. Most important is the fact that in
[58] it is observed that the Green’s function for a massless scalar field is the integral
(ω = k0)

G(x, x′) = 1

(2π)4

∫

d3k
∫

dω
e−i(ω(t−t ′)−k·(x−x′))

k2 − ω2 (82)

and the evaluation of the integral is done in all classical presentations in the complex
ω-plane and thus its result depends, as is well known from the path of integration
chosen. But, contrary to what is commonly accepted this is not necessary for the
integrand is not singular. This can be shown as follows. Recalling that G depends
only on

τ 2 − r2 = (t − t ′)2 − (x − x′)2
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we can choose a coordinate system where (x − x′)2 = 0 for the point under
consideration, Then, introducing the coordinates

+ = ω2 − k2, ξ = tanh−1(|k| /ω),
ω(t − t ′)− k · (x − x′) = +ς cosh ξ (83)

Eq. (83) becomes after some algebra

G(τ, r) = 1

4π3

∫

d+

∫

dξ

∫

dθ

∫

dϕ sin θ sinh3 ξ+2ei+ς cosh ξ . (84)

This important result obtained in [58] shows explicitly that it is possible to evaluate
the Green’s function without introducing the “famous” iε prescription! Turakulov
also observed that putting λ = +ς the Eq. (84) gives

G(τ, r) = π2

ς2

∫

dλλ

∫

dξ sinh2 ξeiλ cosh ξ . (85)

The conclusion is thus that integration only predetermines the factor 1/ ς2 and it
is now possible to select any path of integration in the complex plane, which means
that the retarded Green’s function is create by inserting a non-existence singularity
into the integrand!

Moreover, in it is shown in [58] that the use of the retarded Green’s function
produces problems with energy-conservation when, e.g., a charge is accelerated in
an external potential. Finally we observe that in [57] it is shown that when there are
infinitesimally small changes of the acceleration there is emission of radiation.

5 The Equivalence Principle

Consider first the statements (a) and (b):

(a) an observer (say Mary) living in a small constantly accelerated reference frame
(e.g., a “small” world tube, with non-transparent walls of the reference frame
R) following an integral line σ of the R frame and for which DRR|σ = a|σ ;

(b) an observer (say John) living in a “small” reference frame, (e.g., a “small”
world tube, with non-transparent walls of the reference frame Z in a Lorentzian
spacetime structure (M, g,D, τ g,↑) modelling a gravitational field (generated
by some energy-momentum distribution) in General Relativity theory and such
that DZZ|λ = a|λ = a|σ .
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Then a common formulation of the Equivalence Principle14 says that Mary or
John cannot with local15 experiments determine if she(he) lives in a uniformly
accelerated frame in Minkowski spacetime or in the gravitational field modelled
by (M, g,D, τ g,↑).

Now, as well known (since long ago) and as proved rigorously (under well
determined conditions) in [42] a charge in a static gravitational field in General
Relativity theory does not radiate if it follows an integral line of a reference frame
like Z in (b). An observer comoving with the charge will see only an electric field
and thus will see no radiation since the Poynting vector is null.

Does this imply that the Equivalence Principle holds for local experiments with
charged matter?

Well, if we accept that the Liénard-Wiechert solution is the correct one, then the
answer from the analysis given in the previous section is no (see also, [30, 31, 42].
In particular Parrot’s argument is the following: since there is no radiation in the
true gravitational field an observer at rest in the Schwarzschild spacetime following
a worldline λ will spend the same amount of “energy” to maintain at constant
acceleration a|λ = a|σ a particle with mass m and null charge and one with mass m
and charge e �= 0.

Since we already know that in the R frame it is clear that an observer σ will
spend different amounts (of Minkowski) energy to maintain at constant acceleration
a|λ = a|σ a particle with mass m and null charge and one with mass m and charge
e �= 0.

Of course, even supposing that the Liénard-Wiechert solution is the correct one
many people do not agree with this conclusion and some of the arguments of the
opposition are discussed in [42].

Remark 7 From our point of view we think necessary to comment that Parrot’
s argument would be a really strong one only if the concept of energy (and
momentum) would be well defined in General Relativity, which is definitively not
the case [45–47]. However, take notice that the quantity defined as “energy” by
Parrot (the zero component of current of the form given by Eq. (61), where in this
case K is a timelike Killing vector field for the Schwarzschild metric is not the
component of any energy-momentum covector field, it looks more as the concept
of energy in Newtonian physics. Anyway, the quantity of the pseudo “ energy”
necessary to carry a particle in uniformly accelerated motion will certainly be
different in the two cases of a charged and a non-charged particle. In our opinion
what is necessary is to construct an analysis of the problem charge in a gravitational

14A thoughtful discussion of the Equivalence Principle and the so-called Principle of Local Lorentz
Invariance is given in [44].
15Of course, by local mathematicians means a (4-dimensional) open set U of the appropriate
spacetime manifold. So, by doing experiments in U observers will detect using a gradiometer tidal
force fields (proportional to the Riemann curvature tensor) if at rest in Z in a real gravitational field
and will not detect any tidal force field if living in R in Minkowski spacetime. For more details
see, e.g., [38, 44].
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theory where energy-momentum of a system can be defined and is a conserved
quantity [45, 46].

On the other hand, if we accept that Turakulov solution as the correct one then
again the Equivalence Principle is violated and for the same reason than in the case
of the Liénard-Wiechert solution as discussed in Sect. 4.5.1.

So, which solution, Liénard-Wiechert or Turakulov is the correct one?
An answer can be given to the above question only with a clever experiment and

for the best of our knowledge no such experiment has been done yet.

6 Some Comments on the Unruh Effect

6.1 Minkowski and Fulling-Unruh Quantization of the
Klein-Gordon Field

(u1) To discuss the Unruh effect it is useful to introduce coordinates such that the
solution of the Klein-Gordon equation in these variables becomes as simple as
possible. A standard choice is to take (t, x, y, z) and (t′, x′, y′, z′) for regions I
and II defined by16

t = 1

a
tanh−1

(
t

z

)

, z = 1

2a
ln[a(z2 − t2)], x = x, y = y

t = 1

a
exp(az) sinh(at), z = 1

a
exp(az) cosh(at), |z| ≥ t, z > 0,

t′ = 1

a
tanh−1

(
t

z

)

, z′ = 1

2a
ln[a2(z2 − t2)], x′ = x, y′ = y.,

t = 1

a
exp(az′) sinh(at′), z = −1

a
exp(az′) cosh(at′), |z| ≥ t, z < 0,

t, z ∈ (−∞,∞), a ∈ R
+. (86)

Take notice that in regions I and II the coordinates t and z are respectively
timelike and spacelike and in region II the decreasing of t corresponds to the increase
of t .

The Minkowski metric in these coordinates (and in the regions I and II) reads

g = exp(2az)dt⊗dt−dx⊗dx−dy⊗dy− exp(2az)dz⊗dz = ηabg
a ⊗ gb,

g0 = exp(az)dt, g1 = dx, g2 = dy, g3 = exp(az)dz. (87)

16Note that (t, z) differs form the coordinates (t, z) introduced in Sect. 2.
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(u2) The right and left Rindler reference frames are represented by

R = 1

exp(az)
∂/∂t, t ∈ (−∞,∞), |z| ≥ t, z > 0,

L = 1

exp(az)
∂/∂t, t ∈ (−∞,∞), |z| ≥ t, z < 0. (88)

and they are not Killing vector fields.17

Consider the integral line, say σ of R given by x, y = constant and
z = z0 = constant. We immediately find that its proper acceleration is

aσ = 1/
√
g00(z0). (89)

(u3) However, the vector fields

I = ∂/∂t,
ZI = ∂/∂t,with t ∈ (−∞,∞), |z| ≥ t and z > 0,

ZII = ∂/∂t,with t ∈ (−∞,∞), |z| ≥ t and z < 0, (90)

are Killing vector fields, i.e., L∂/∂tg = LZIg = LZIIg = 0. The inertial
reference frame I besides being locally synchronizable is also propertime
synchronizable, i.e., g(I, ) = dt and the fields ZI and ZII although does
not qualify as reference frames (according to our definition) play an important
role for our considerations of the Unruh effect. The reason is that both fields
in the regions where they have support are such that

ZI = g(ZI, ) = exp(2az)dt,with t ∈ (−∞,∞), |z| ≥ t and z > 0,

ZII = g(ZII, ) = exp(2az)dt,with t ∈ (−∞,∞), |z| ≥ t and z > 0.
(91)

Thus the field I can be used to foliate all M as M = ∪t (R×Σ(t)) where
Σ(t) � R

3 is a Cauchy surface. Moreover, the field ZI (respectively ZII) can be
used to foliate region I (respectively region II) as I = ∪t(R×ΣI(t)) (respectively
II = ∪t(R×ΣII(t))) where ΣI(t) � ΣI and ΣII(t) � ΣII are Cauchy surfaces.

We now briefly describe how the Unruh effect for a complex Klein-Gordon field
is presented in almost all texts18 dealing with the issue.

17This can easily be verified taking into account that LRg = 2ηabLRg
a ⊗ gb and recalling that if

R = g(R, ) = g0 we may evaluate [45] as LRg
a = d(g0 · ga)+ g0�dga.

18E.g., in [14, 17, 25, 52, 53, 59, 63]. The presentations eventually differ in the use of other
coordinate systems.
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(u4) Let φ ∈ sec(C⊗∧0
T ∗M). Our departure point is to first solve the Klein-

Gordon equation

− δdφ + μ2φ = 0 (92)

valid for all M , in the global naturally adapted coordinates (in ELP gauge)
to I and next to solve it in regions I and II using the coordinates defined in
Eq. (86) (and then extend this new solution for allM). In the first case we use
the t = 0 as Cauchy surface to given initial data. In the second case we use
the t = 0 Cauchy surface to give initial data (see below).

The positive energy solutions will be called Minkowski modes for the first case
and Fulling-Unruh modes for the second case (i.e., the solutions in regions I and
II). In order to simplify the writing of the formulas that follows we introduce the
notations

φM(x) = φM(t, x, y, z), φI(l) = φI(t, x, y, z), φII(l
′) = φII(t, x, y, z),

k · x = kαxα, ωk = k0 = +
√

k2 + μ2, k · k = (k0)
2 − k2 = μ2, k2 = k • k,

q = (k1, k2), r = (x1, x2) = (x, y) and ,

q • r = k1x
1 + k2x

2, ν = +
√

q2 + μ2. (93)

Observing that in region II the timelike coordinate t′ decreases when t increases
we have that the elementary modes (of positive energy) which are solutions of the
Klein-Gordon equation in the three regions:

φMk(x) = [(2π)32ωk)]−1/2e−ik·x,

φIνq(l) = [(2π)22ν)]−1/2FIνq(z)e
−i(νt−q•r),

φIνq(l
′) = [(2π)22ν)]−1/2FIIνq(z)e

+i(νt′+q•r), (94)

with

FIνq(z) = (2π−1)1/2CIq
1

Γ (iν)

( ν

2a

)iν
Kiν(νz),

FIIνq(z
′) = (2π−1)1/2CIIq(a)

1

Γ (iν)

( ν

2a

)iν
Kiν(νz

′), (95)

where CIq are arbitrary “phase factor,” Γ is the gamma function, and Kiν are the
modified Bessel functions of second kind.
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Remark 8 Before we continue it is important to emphasize that the concept of
energy defined in regions I and II is indeed the pseudo-energy concept that we
discussed in previous section.

(u5) We use the positive frequencies in standard way in order to construct Hilbert
spaces H , HI, and HII by defining the well-known scalar products for the
spaces of positive energy-solutions. This is done by introducing the spaces of
square integrable functions KM,KI, and KII, respectively, of the forms

ΦM(x) =
∫

d3k[a(k)φMk(x)+ ā∗(k)φ∗
Mk(x)]

ΦI(l) =
∫ ∞

0
dν

∫

d2q[bIν(q)φIνq(l)+ b̄∗Iν(q)φ∗
Iνq(l)]

ΦII(l
′) =

∫ ∞

0
dν

∫

d2q[bIIν(q)φIIνq(l
′)+ b̄∗IIν(q)φ∗

IIνq(l
′)] (96)

where a, bIν, bIIν, ā, b̄Iν, b̄IIν are arbitrary square integrable functions (ele-
ments of L(R3)).

Take notice that φ̂I + φ̂II can be extended to allM by extending φIνq and φIIνq(l)

to allM.
Now, we construct in the space of these functions the usual inner products (J =

M, I, II)

〈ΦJ ,ΨJ 〉J = i
∫

Σ

dΣna(Φ∗
J

∂

∂xaJ
ΨJ −ΦJ ∂

∂xaJ
Ψ ∗
J ) (97)

where J = M, I, II and xaJ denotes the appropriate variables for each domain and
finally we construct as usual the Hilbert spaces H ,HI, and HII by completion of
the respective K spaces and na are the components of the normal to the spacelike
surface Σ .

In particular, choosingΣ to be hypersurface t = 0 for the Minkowski modes and
t = 0 for the Rindler modes we have

〈φMk, φMk′ 〉M = δ(k − k′), 〈φ∗
Mk, φ

∗
Mk′ 〉M = −δ(k − k′),

〈φIνq, φIν′q′ 〉I = δ(ν − ν′)δ(q − q′), 〈φIνq, φIν′q′ 〉I = −δ(ν − ν′)δ(q − q′),

〈φIIνq, φIν′q′ 〉II = δ(ν − ν′)δ(q − q′), 〈φIIνq, φIIν′q′ 〉II = −δ(ν − ν′)δ(q − q′),

〈φMk, φ
∗
Mk′ 〉M = 0, 〈φIνq, φ

∗
Iν′q′ 〉I = 0, 〈φIIνq, φ

∗
IIν′q′ 〉II = 0. (98)

(u6) From H ,HI, and HII we construct the Fock-Hilbert space F (H ), F (HI)

and F (HII) which describe all possible physical states of the quantum fields

φ̂M(x) =
∫
d3k

[
a (k) φMk + ā† (k) φ∗

Mk

]
, (99a)
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φ̂I(l) =
∫ ∞

0
dν
∫
d2q

[
bIν (q) φIνq(l)+ b̄†

Iν (q) φ
∗
Iνq(l)

]
, (99b)

φ̂II(l
′) =

∫ ∞

0
dν
∫
d2q

[
bIIν (q) φIIνq(l

′)+ b̄†
IIν (q) φ

∗
Iνq(l

′)
]
, (99c)

which are operator valued distributions acting, respectively, on F
(H ),F (HII)F (H ) and where the a,a†, bIν,b

†
Iν and bIIν,b

†
IIν (respectively

ā,ā†, b̄Iν, b̄
†
Iν and b̄IIν, b̄

†
IIν) are destruction and creation operators for

positive (respectively negative) charged particles. We have for the non-null
commutators:

[ā (k) , ā† (k′)] = [a (k) , a† (k′)] = δ(k − k′),

[b̄Iν (q) , b̄Iν′
(
q′)] = [bIν (q) ,bIν′

(
q′)] = δ(ν − ν′)δ(q − q′),

[b̄IIν (q) , b̄IIν′
(
q′)] = [bIIν (q) ,bIIν′

(
q′)] = δ(ν − ν′)δ(q − q′). (100)

We suppose that we have a second quantum field construction for all
Minkowski spacetime (with eigenfunctions properly extended for all domains)
once we choose as the one-particle Hilbert space HII ⊕ HI. Now, take notice
that [63]

F (HII ⊕ HI) � F (HII)⊗ F (HI). (101)

(u7) The Minkowski vacuum and the vacua for regions I, II are defined, respec-
tively, by the states |0〉M ∈ F (H ), |0〉I ∈ F (HI), |0〉II ∈ F (HII) such
that

a (k) |0〉M = ā (k) |0〉M = 0 ∀k,

bIν(q)|0〉I = b̄Iν(q)|0〉I = 0, and bIIν (q) |0〉II = b̄IIν (q) |0〉II = 0,∀q,ν.

(102)

The respective particle number operators for modes k, Iν, and IIν are Nk =
a† (k) a (k) , N̄k = a† (k) a (k) , NIνq = b†

Iν (q) bIν (q) , N̄Iνq =
b†

Iν (q) bIν (q) and NIIνq = b†
IIν (q) bIIν (q) , N̄IIνq = b†

IIν (q) bIIν (q) . Of
course,

M 〈0|Nk|0〉M = 0, I〈0|NIνq|0〉I = 0, II〈0|NIIνq|0〉II = 0,

M 〈0|N̄k|0〉M = 0, I〈0|N̄Iνq|0〉I = 0, II〈0|N̄IIνq|0〉II = 0. (103)

(u8) In some presentations it is supposed that the quantum field in regions I + II
obtained through the above quantization procedures can be described by

φ̂I + φ̂II (104)
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acting on F (HII ⊕ HI). However, here we suppose that the quantum field
φ̂′ in regions I + II is described by an “entangled field” made from φ̂I(x) and
φ̂II(x) acting on F (HII)⊗ F (HI), i.e., described by

φ̂′ = 1II ⊗ φ̂I + φ̂II ⊗ 1I (105)

acting (see Eq. (101)) on the Fock-Hilbert space F (H1I)⊗ F (H1).

Moreover, it is taken as obvious that (see e.g., [59]) it is not necessary to analyze
what happens in regions F and P.

6.2 “Deduction” of the Unruh Effect

(u9) As it is well known the delta functions in Eqs. (98) and (100) lead to problems
and so to continue the analysis it is usual to introduce in the Hilbert spaces19

H ,HI, and HII countable basis, which we denote in Fourier space by

fm,l,1(k) = 1− 3
2 exp

(

−2πik • l
1

)

χ[(|m|−1/2)1,(|m|+1/2)1](k), (106)

where 1 ∈ R
+ (has inverse length dimension) and χS is the characteristic

function of the set S.20 The functions fm,l,1(k) are localized in Fourier space
around21 m = (m1,m2,m3) and have wave number vector l = (�1, �2, �3),
and thus in R

3 they are localized around l with wave number vector m. We
immediately have that22

∫

dkf ∗
m,l,1(k)fm′,l′,1(k)

:= 1

13 δmm′
∏

i

∫ (mi+1/2)1

(mi−1/2)1
dki exp

(

−2πiki(�i − �′i )
1

)

= δmm′δ��′

(107)

and

19Note that H ,HI, and HII are isomorphic to L2(R3).
20For each m = (m1,m2,m3) it is S = {(x1, x2, x3) | (mi − 1/2)1 < xi < (mi + 1/2)1, xi ∈
R, i = 1, 2, 3}.
21The mi, �i ∈ Z, i = 1, 2, 3.
22Take notice that in the term exp

(
− 2πiki (�i−�′i )

1

)
in Eq. (108) ki�i does not mean that we are

summing in the indice i.
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∑

l∈Z3
fm,l,1(k)fm,l,1(k′) = χ [(|m|−1/2)1,(|m|+1/2)1](k)δ(k − k′),

∑

l,m∈Z3
fm,l,1(k)fm,l,1(k′) = δ(k − k′). (108)

(u10) Now, in the Hilbert spaces H , HI, and HII we construct the positive
frequencies solutions of the Klein-Gordon equation, i.e.,

ΦM,m,l,1 (x) =
∫

d3kfm,l,1(k)φMk(x),

ΦI,m,l,1 (l) =
∫ ∞

0
dν

∫

d2qfm,l,1(k)φIνq(l),

ΦII,m,l,1 (l
′) =

∫ ∞

0
dν

∫

d2qfm,l,1(k)φIIνq(l
′). (109)

We have

〈ΦM,m,l,1 , ΦM,n,l′,1 〉M = δmm′δ��′ , 〈Φ∗
M,m,l,1

, Φ∗
M,n,l′,1 〉M = −δmm′δ��′ ,

〈ΦI,m,l,1 , ΦI,m′,l′,1 〉I = δmm′δ��′ , 〈Φ∗
I,m,l,1 , Φ

∗
I,m′,l′,1 〉I = −δmm′δ��′ ,

〈ΦII,m,l,1 , ΦII,m′,l′,1 〉II = δmm′δ��′ , 〈Φ∗
II,m,l,1 , Φ

∗
II,m′,l′,1 〉II = −δmm′δ��′,

〈ΦM,m,l,1 , Φ∗
M,n,l′,1 〉M = 0, 〈ΦI,m,l,1 , Φ

∗
I,m′,l′,1 〉I = 0,

〈ΦII,m,l,1 , Φ
∗
II,m′,l′,1 〉II = 0 (110)

and so

φMk(x) =
∑

l,m∈Z3
fm,l,1(k)ΦM,m,l,1 (x),

φIνq(l) =
∑

l,m∈Z3
fm,l,1(k)ΦI,m,l,1 (l),

φIIνq(l
′) =

∑

l,m∈Z3
fm,l,1(k)ΦII,m,l,1 (l

′). (111)

The field operators are then written as

φ̂M(x) =
∑

l,m∈Z3

[
am,l,1φM,m,l,1 (x)+ ā†φ∗

M,m,l,1
(x)
]
, (112a)

φ̂I(l) =
∑

l,m∈Z3

[
bIm,l,1φIνq(l)+ b̄†

Im,l,1
φ∗

Iνq(l)
]
, (112b)

φ̂II(l
′) =

∑

l,m∈Z3

[
bIIνφIIνq(l)+ b̄†

IIνφ
∗
Iνq(l)

]
, (112c)
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with

am,l,1 =
∫

d3kf ∗
m,l,1(k)a (k) ,

bIm,l,1 =
∫ ∞

0
dν

∫

d2qf ∗
m,l,1(k)bIν(q),

bIIm,l,1 =
∫ ∞

0
dν

∫

d2qf ∗
m,l,1(k)bIIν(q) (113)

and analogous equations for the operators ām,l,1 , b̄Im,l,1 and b̄IIm,l,1 . The non-null
commutators are

[am,l,1 , a
†
m′,l′,1

] = δmm′δll′ , [bJm,l,1 ,bJ′m′,l′,1 ] = δJJ′δmm′δll′ ,

[bJm,l,1 ,bJm′,l′,1 ] = δJJ′δmm′δll′ (114)

with J = I, II (and analogous equations involving the operators ām,l,1 , b̄Im,l,1 and
b̄IIm,l,1 ). Of course,

M 〈0|am,l,1a†
m′,l′,1

|0〉M = 1, I〈0|bm,l,1b†
m′,l′,1

|0〉I = 1, II〈0|bm,l,1b†
m′,l′,1

|0〉II = 1

(115)
and analogous equations involving the operators ām,l,1 , b̄Im,l,1 and b̄IIm,l,1 .

(u11) The Fulling-Rindler vacuum |0〉F := |0〉II ⊗ |0〉I ∈ F (H ′) is then defined
by

1II ⊗ bIm,l,1 |0〉F = 1II ⊗ b̄Im,l,1 |0〉F = 0,

bIIm,l,1 ⊗ 1I|0〉F = b̄IIm,l,1 ⊗ 1I|0〉F = 0. (116)

(u12) Let φ̂M,I+II be the representation in F (HII) ⊗ F (HI) of the restriction of
the field φ̂M given by Eq. (99a) to regions I + II. It is a well-known fact [21]
that the Minkowski quantization of the Klein-Gordon field and the Unruh
quantization producing φ̂′ are not unitary equivalent.23

Anyhow, it is supposed that we can identify

F (H )|H ′ = F (H ′) = F (H1)⊗ F (H1I) (117)

and writing

φ̂M,I+II = 1II ⊗ φ̂M,I + φ̂M,II ⊗ 1I

23See Appendix 2 to know how this result is obtained in the algebraic approach to quantum theory.
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we thus put

φ̂M,I+II = φ̂′. (118)

(u13) Under these conditions the relation between those representations is sup-
posed to be given by the well-known Bogolubov transformations which
express the operators b,b† as functions of the operators a, a†. We have
(J = I, II)

bJm,l,1 =
∑

l,m∈Z3
am,l,1ΞJm,l,m′,l′,1 + ā†

m,l,1
ΥJm,l,m′,l′,1,

b̄Jm,l,1 =
∑

l,m∈Z3
a†m,l,1ΥJm,l,m′,l′,1 + ām,l,1ΞJm,l,m′,l′,1. (119)

The explicit calculation of the operators bJm,l,1 and b̄Jm,l,1 is done by first
evaluating ΞJm,l,m′,l′,1 and ΥJm,l,m′,l′,1. The well-known result is [54]

ΞJm,l,m′,l′,1

=
∫ ∞

0
dν

∫ ∞

−∞
dp1

∫ ∫ ∫ ∫

dk1dk2dp2dp3[f ∗
m1,�1,1

(ν)fm′
1,�

′
1,1
(p1)

× f ∗
m2,�2,1

(k1)f
∗
m3,�3,1

(k2)fm2,�2,1(p2)fm3,�3,1(p3)ΞJν,pk (120)

(with analogous expression for ΥJm,l,m′,l′,1 where ΞJν,pk is substituted by
ΥIν,pk ) with

ΞIν,pk = 1

2π
δ(p1 − k1)δ(k2 − p2)e

πν
2 |Γ (iν)|

(
ν

ωk

) 1
2
(
ωk + p3

ωk − p3

) iν
2

,

ΥIν,pk = 1

2π
δ(p1 − k1)δ(k1 − p1)e

− πν
2 |Γ (iν)|

(
ν

ωk

) 1
2
(
ωk + p3

ωk − p3

) iν
2

(121)

Next bJm,l,1 and b̄Jm,l,1 are approximated for the case where 1 is very small
and such that 1m3 ≈ 1 by the corresponding bJν (q). We have that

ν %→ νm3
: m31, ωk %→ ωm′ :=

√

12
∑

i

(m′
i )

2 + μ2 (122)

and thus using this approximation we write
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ΞIm,l,m′,l′,1 = 1√
2π
Θ

(

m3 + 1

2

)

δm1,m
′
1
δ�′1,0δm2,m

′
2
δm′

3,0
δ�2,�

′
2
δ�3,�

′
3

× 1√
ωn

1
√

1 − e−2πνm3

(
ωm′ +m′

31

ωm′ −m′
31

) iνm3
2

,

ΥIm,l,m′,l′,1 = 1√
2π
Θ

(

m3 + 1

2

)

δm1,m
′
1
δ�′1,0δm2,−m′

2
δ
m

′
3,0
δ�2,−�′2δ�3,−�′3

× 1√
ωn

1
√

1 − e−2πνm3

(
ωm′ +m′

31

ωm′ −m′
31

) iνm3
2

. (123)

where the errors 7ΞIm,l,m′,l′,1 and 7ΥIm,l,m′,l′,1 are estimated to be of order
1.

Denoting by |0, II, I〉M the restriction of the Minkowski vacuum state |0〉M to
the region II + I we have putting νm3 = νj /a that, e.g., the expectation value of
particles of type b†

Im,l,1
in the state |0, II, I〉M is:

M 〈0, II, I|1II ⊗ b†
Im,l,1

bIm,l,1 |0, II, I〉M

= 12

2π
δ�10 M 〈0, II, I||0, II, I〉M 1

e2πνj /a − 1

∑

j∈Z
1

ωj
(124)

Equation (126) shows that even if we suppose that M 〈0, I, II||0, II, I〉M =
M 〈0|0〉M = 1, the vector bIm,l,1 |0, II, I〉M ∈ F (H1) ⊗ F (H1I) has not a finite
norm, thus showing that the procedure we have been using until now is not a
mathematical legitimate one.

(u14) Nevertheless, taking the above approximation for the Bogolubov transforma-
tion as a good one for at least a region where 1m3 ≈ 1, the state |0, II, I〉M is
written

|0, II, I〉M = Ω−1 exp
{∑

j,m1
e−2πνm1

((
b+

IIm,l,1

)nj ⊗ 1I

+1II ⊗
(

b+
Im,l,1

)nj )} |0〉II ⊗ |0〉I

= Ω−1∏

j

∑
ne

−πnνj /a|ňj 〉II ⊗ |ňj 〉I, (125)

where Ω is a normalization constant and |ňj 〉J = |ňj 〉J + |0〉J, J = I, II.
(u15) Using the fact that regions I and II are causally disconnected, i.e., observers

following integral lines of R can only detect right Rindler particles it is sup-
posed that these observers can only describe (according to standard quantum
mechanics prescription) the state of the Minkowski quantum vacuum by a
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mixed state [63], i.e., a density matrix obtained by tracing over the states
of the region II the pure state density matrix ρ̂ = |0, I, II〉M 〈0, I, II|M . The
result is

ρ̂I = trI(ρ̂) = Ω−1∏

j

∑
ne

−2πnνj /a|nj 〉I ⊗ I〈nj |, (126)

which looks like a thermal spectrum with temperature parameter a/2π .

Remark 9 Take notice that for an observer following the worldline σ with
z =constant in region I the local temperature of the thermal radiation is [59]

T (z) = 1√
g00(z)

a

2π
(127)

and thus T (z)
√
g00(z) is a constant. This is extremely important for otherwise

thermodynamical equilibrium (according to Tolman’s version [55]) would not be
possible in the R frame.

(u16) Given Eq. (126) since nνj is the value of the pseudo energy in the |nj 〉I state
and since ρ̂I looks like a thermal density matrix ρT = e−H/T it is claimed
that:

The Minkowski vacuum in region I is seem by observers living there as a
thermal bath at temperature a/2π of the so-called Rindler particles, which
can excite well designed detectors [24, 25, 49, 53, 59, 60, 63]. Even more,
it is claimed, (e.g., in [53]) that the Rindler particles are irradiated from the
boundary of the region I (which is supposed to be “analogous” to the horizon
of a blackhole which is supposed to radiate due to the so-called Hawking
effect).

(u17) The fact is that a rigorous mathematical analysis of the problem, based on
the algebraic approach to field theory24 (which for completeness, we recall
in Appendix 2), it is possible to show that the hypothesis given by Eq. (117)
and thus Eq. (124) are not correct. Indeed, there we recall that strictly
speaking the density matrix ρ̂ and thus ρ̂I are meaningless. Also, many
people have serious doubts if Fulling-Rindler vacuum |0〉F := |0〉II⊗|0〉I.can
be physically realizable. These arguments are, in our opinion stronger ones
and the reader is invited to at least give a look in Appendix 2 (where the main
references on original papers dealing with the issue of the algebraic approach
to the Unruh effect may be found) in order to have an idea of the truth of what
has just been stated.

(u18) As it is the case of the problem of the electromagnetic field generated by a
charge in hyperbolic motion, there are several researchers that are convinced
that the Unruh effect does not exist.

24First applied to the Unruh effect problem in [27].
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Besides the inconsistencies recalled in Appendix 2 several others are discussed,
e.g., in [1, 9, 13, 19]. The most important one in our opinion has been realized in
[19] where it is shown that both in the conventional approach and in the algebraic
approach to quantum field theory it is impossible to perform the quantization of
Unruh modes in Minkowski spacetime. Authors claim (and we agree with them)
that Unruh quantization in a Rindler frame implies setting a boundary condition for
the quantum field operator which changes the topological properties and symmetry
group of the spacetime (where the Rindler reference frame has support) and leads
to a field theory in the two disconnected regions I and II. They concluded that the
Rindler effect does not exist.

(u19) Despite this fact, in a recent publication [11] authors that pertain to the
majority view (i.e., those that believe in the existence of the thermal
radiation) state:

Then, instead of waiting for experimentalists to perform the experiment, we use
standard classical electrodynamics to anticipate its output and show that it reveals
the presence of a thermal bath with temperature TU in the accelerated frame. Unless
one is willing to question the validity of classical electrodynamics, this must be seen
as a virtual observation of the Unruh effect.

Well, authors of [11] also believe that a charge in hyperbolic motion radiates,
and that the correct solution to the problem is the one given by the Liénard-
Wiechert potential. But what will be of the statement that we cannot doubt classical
electrodynamics if turns out that the Turakulov solution is the correct one (i.e.,
experimentally confirmed)?

Another important question is the following one: does a detector following an
integral line of R get excited?

(u20) Several thoughtful analyses of the problem done from the point of view of an
inertial reference frame show that the detector gets excited. This is discussed
in [14] and a very simple model of a detector showing that the statement is
correct may be found in [37]. But, of course, it is necessary to leave clear
that this excitation energy can only come from the source that maintains the
detector accelerated and it is not an excitation due to fluctuations of the zero
point of the field as claimed, e.g. in [1].

7 Conclusions

There are some problems in Relativity Theory that are source of controversies
since a long time. One of them has to do with the question if a charge in
uniformly accelerated motion radiates. This problem is important, in particular, in
its connection with one of the forms of the Equivalence Principle. In this paper we
recalled that there are two different solutions for the electromagnetic field generated
by a charge in hyperbolic motion, the Liénard-Wiechert (LW) one (obtained by
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the retarded Green function) and the less known one discovered by Turakulov in
1994 (and which we have verified to be correct, in particular using the software
Mathematica). According to the LW solution the charge radiates and claim that an
observer comoving with the charge does not detect any radiation is shown to be
wrong. This is done by analyzing the different concepts of energy used by people
that claims that no radiation is detected. Turakulov claims in [56] that his solution
implies that there is no radiation. However, we have proved that he is also wrong, the
reason being essentially the same as in the case of the Liénard-Wiechert solution.
On the other hand, we recalled that a charge at rest in Schwarzschild spacetime
does not radiate. Thus, if the LW or the Turakulov solution is the correct one, then
experiment with charges may show that the Equivalence Principle is false.

Another problem which we investigate is the so-called Bell’s “paradox.” We
discussed it in detail since it is, as yet, a source of misunderstandings.

Finally, we briefly recall how the so-called Unruh effect is obtained in almost all
texts using some well ideas of quantum field theory. We comment that this standard
approach seems to imply that an observer in hyperbolic motion is immersed in a
thermal bath with temperature proportional to its proper acceleration. Acceptance
that this is indeed the case is almost the majority view among physicists. However,
the fact is that the standard approach does not resist a rigorous mathematical
analysis, in particular when one uses the algebraic approach to quantum field theory.
Thus as it is the case with the problem of determining the electromagnetic field of
a charge in hyperbolic motion there are dissidents of the majority view. Having
studied the arguments of several papers we presently agree with [9, 19] that there is
no Unruh effect. However, it is not hard to show that a detector in hyperbolic motion
on the Minkowski vacuum gets excited, but the energy producing such excitation,
contrary to some claims (as, e.g., in [1]) does not come from the fluctuations of the
zero point field, but comes from the source pushing the charge.

Appendix 1: Some Notations and Definitions

(a1) Let M be a four-dimensional, real, connected, paracompact, and non-compact
manifold. We recall that a Lorentzian manifold as a pair (M, g), where g ∈ sec T 0

2M

is a Lorentzian metric of signature (1, 3), i.e., ∀e ∈ M,TxM � T ∗
eM � R

4. More-
over, ∀x ∈ M, (TxM, gx) � R

1,3, where R
1,3 is the Minkowski vector space We

define a Lorentzian spacetimeM as pentuple (M, g,D, τg,↑), where (M, g, τg,↑))
is an oriented Lorentzian manifold (oriented by τg) and time oriented25 by ↑, and
D is the Levi-Civita connection of g. Let U ⊆ M be an open set covered, say, by
coordinates (y0, y1, y2, y3). Let U ⊆ M be an open set covered by coordinates
{xμ}. Let {eμ = ∂μ} be a coordinate basis of TU and {ϑμ = dxμ} the dual basis
on T ∗U , i.e., ϑμ(∂ν) = δ

μ
ν . If g = gμνϑ

μ ⊗ ϑν is the metric on TU we denote

25Please, consult, e.g., [45].
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by g = gμν∂μ ⊗ ∂ν the metric of T ∗U , such that gμρgρν = δμν . We introduce also
{∂μ} and {ϑμ}, respectively, as the reciprocal bases of {eμ} and {ϑμ}, i.e., we have

g(∂ν, ∂μ) = δμν , g(ϑμ,ϑν) = δμν . (128)

(a2) Call (M � R
4,g,D, τg,↑) the Minkowski spacetime structure. WhenM �

R
4 there is (infinitely) global charts. Call (x0, x1, x2, x3) the coordinates of one of

those charts. These coordinates are said to be in Einstein-Lorentz-Poincaré (ELP)
gauge. In these coordinates

g = ημνdxμ ⊗ dxνand g = ημν ∂

∂xμ
⊗ ∂

∂xν
(129)

where the matrix with entries ημν and also the matrix with entries ημν are diagonal
matrices diag(1,−1,−1,−1).

(a3) In a general Lorentzian structure if Q ∈ sec T U ⊂ sec TM is a time-like
vector field such that g(Q,Q) = 1, then there exist, in a coordinate neighborhood
U , three space-like vector fields ei which together with Q form an orthogonal
moving frame for x ∈ U [12, 45].

(a4) A moving frame at x ∈ M is a basis for the tangent space TxM . An
orthonormal (moving) frame at x ∈ M is a basis of orthonormal vectors for TxM .

(a5) An observer in a general Lorentzian spacetime is a future pointing time-like
curve σ : R ⊃ I → M such that g(σ∗, σ∗) = 1. The timelike curve σ is said to be
the worldline of the observer.

(a6) An instantaneous observer is an element of TM , i.e., a pair (x,Q), where
x ∈ M , and Q ∈ TxM is a future pointing unit timelike vector. SpanQ ⊂ TxM is
the local time axis of the observer and Q⊥ is the observer rest space.

(a7) Of course, TxM = SpanQ ⊕Q⊥, and we denote in what follows SpanQ =
T and Q⊥ = H , which is called the rest space of the instantaneous observer. If
σ : R ⊃ I → M is an observer, then (σu, σ∗u) is said to be the local observer at u
and write TσuM = Tu ⊕Hu , u ∈ I .

(a8) The orthogonal projections are the mappings

pu = TσuM → Hu , qu : TσuM → Tu. (130)

Then if Y is a vector field over σ then pY and qY are vector fields over σ given by

(pY)u = pu(Yu), (qY)u = qu(Yu). (131)

(a9) Let (x,Q) be an instantaneous observer and px : TxM → H the orthogonal
projection. The projection tensor is the symmetric bilinear mapping h : sec( TM×
TM)→ R such that for any U,W ∈ TxM we have:

hx(U,W) = gx(pU,pW) (132)
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Let {xμ} be coordinates of a chart covering U ⊂ M , x ∈ U and αQ = gx(Q, ).
We have the properties:

(a) hX = gX − αQ ⊗ αQ

(b) h|Q⊥ = gx
∣
∣
Q⊥

(c) h(Q, ) = 0
(d) h(U, ) = g(U, )⇔ g(U,Q) = 0
(e) p = hμν ∂

∂xμ

∣
∣
x
⊗ dxν |x

(f) trace(hμν ∂
∂xμ

∣
∣
x
⊗ dxν |x) = −3

(133)

The result quote in (a3) together with the above definitions suggests to introduce
the following notions:

(a10) A reference frame for U ⊆ M in a spacetime structure (M,g,D, τg,↑) is
a time-like vector field which is a section of T U such that each one of its integral
lines is an observer.

(a11) Let Q ∈ sec TM be a reference frame. A chart in U ⊆ M of an oriented
atlas of M with coordinate functions (yμ) and coordinates (y0(e) = y0, y1(e) =
y1, y2(e) =y2, y3(e) = y3) such that ∂/∂y0 ∈ sec T U is a timelike vector field
and the ∂/∂yi ∈ sec T U (i = 1, 2, 3) are spacelike vector fields is said to be a
possible naturally adapted coordinate chart to the frame Q (denoted (nacs − Q) in
what follows) if the space-like components of Q are null in the natural coordinate
basis {∂/∂xμ} of T U associated with the chart. We also say that (y0, y1, y2, y3) are
naturally adapted coordinates to the frame Q.

Remark 10 It is crucial, in order to avoid misunderstandings, to have in mind
that most of the reference frames used in the formulation of physical theories are
theoretical objects, i.e., a reference frame does not need to have material support in
the region where it has mathematical support.

(a12) Reference frames in Lorentzian spacetimes can be classified according to
the decomposition of DQ and according to their synchronizability. Details may be
found in [45]. We analyze in detail the nature of the right Rindler reference frame
in Sect. 2. Here we only recall that Q is locally synchronizable if its rotation tensor
ω (coming form the decomposition of Q = g(Q)), is such that ω ∧ dω = 0, and
we can show ω = 0 ⇐⇒ Q ∧ dQ = 0. Also, Q is synchronizable if besides being
irrotational also there exist a functionH on U and a timelike coordinate, say u (part
of a naturally adapted coordinate system to Q) such that Q = Hdu. Finally, Q is
said to be propertime synchronizable ifQ = du.

(a13) We also used in the main text the following conventions:

g(A,B) = A ·B, g(C,D) = C ·D,
A,B ∈ sec TM, C,D ∈ sec

∧1
T ∗M. (134)

and the scalar product of Euclidean vector fields is denoted by •.
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(a14) Moreover, d and δ denote the differential and Hodge codifferential
operators acting on sections of

∧
T ∗M and � denotes the left contraction operator

of form fields [45].

Appendix 2: C� Algebras and the Unruh “Effect”

The reason for including this Appendix in this paper is for the interested reader to
have an idea of how much he can trust the standard approach recalled in the main
text which results in the claim that Rindler observers live in a thermal bath. The
algebraic approach to quantum field theory is based on C�-algebras26 which are
now briefly recalled.

(b1) Let then be A a C∗-algebra over C whose some of its elements may be
associated to the observables27 (associated to the quantum field φ̂). We recall that a
representation of a C∗-algebra is a linear mapping

f : A → B(H), A %→ f (A), f (A�) = f (A)†. (135)

where B(H) is an algebra of bounded linear operators on a Hilbert space H. The
observables are associated with elements A = A∗, where � denotes the involution
operation in A , i.e., A A � = 1 and † denotes the Hermitian conjugate in B(H)

(b2) A representation (f,H) of A is said faithful if f (A) = 0 if A = 0 and
(f,H ) is irreducible if the only closed subspaces of H invariant under f are {0}
and H.

(b3) Let L ⊂ H be a non-zero closed subspace of invariant under f . Let P̂L be
the orthogonal projection operator on L . A subrepresentation of fL is the mapping

fL : A → B(H), A %→ f (A)P̂L . (136)

(b3) Two representations, say (f1,H1) and (f2,H2) of A are said to be unitarily
equivalent if there exists an isomorphism U :H1 → H2, such that

Uf1(A )U−1 = f2(A ). (137)

(b4) A state on A is a mapping

26For a succint presentation of C∗-algebras, enough for the understanding of the following see,
e.g., [16]. There the reader will find the main references on the algebraic (and axiomatic) approach
to quantum field theory. Also, the reader who wants to know all the details concerning the algebraic
approach to the Unruh effect must study the texts quoted below which has been heavily used in the
writing of this Appendix 2.
27I.e., the self-adjoints elements of A .
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ω : A → R,

ω(1) = 1, ω(A�A) ≥ 0,∀A ∈ A . (138)

(b5) A pure state ω on A is one that cannot be written as a non-trivial convex
linear combination other states. On the other hand, a state ω on A is said to be
mixed if it can be written as a non-trivial convex linear combination other states.

(b6) It is important to recall that a result (theorem) due to Gel’fand, Naimark,
and Segal (GNS) [22, 48] establishes that for any ω on A there always exists a
representation (fω,Hω) of A and Φω ∈ Hω (usually called a cyclic vector) such
that fω(A )Φω is dense in Hω and

ω(A) = 〈Φω|fω(A)|Φω〉. (139)

Moreover the GNS result warrants that up to unitary equivalence, (fω,Hω) is the
unique cyclic representation of A .

(b7) The folium F(ω) of ω on A is the set of all abstract states that can
be expressed as density matrices on the Hilbert space of the GNS representation
determined by Hω.

(b8) Given states ω1, ω2 on A they are said quasi-equivalent if and only if
F(ω1) = F(ω2). The states ω1, ω2 on A are said to be disjoint if F(ω1) ∩ F(ω2) =
∅.

(b9) It is possible to show that:

(i) Any irreducible representation has no proper subrepresentations and in this
case if ω1 and ω2 are pure states, quasi-equivalence reduces to unitary
equivalence and disjointness reduces to non-unitary equivalences;

(ii) When ω1 and ω2 are mixed states they in general are not quasi-equivalent or
disjoint.

This happens when, e.g., ω1 has disjoint representations and one of then is
unitarily equivalent to ω2.

(b10) For our considerations it is important to recall the following result [8]:
The states ω1 and ω2 are disjoint if and only if the GNS representation of fω1+ω2

determined by ω1 + ω2 satisfies

(fω1+ω2 ,Hω1+ω2) = (fω1 ⊕ fω2 ,Hω1 ⊕ Hω2), (140)

i.e., the direct sum of the representations fω1 and fω2 . Elements of Hω1+ω2 are
denoted by

|Φω1+ω2〉 = |Φω1〉 ⊕ |Φω2〉 (141)
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(b11) To continue the presentation it is necessary to use a particular C∗-algebra,
namely the Weyl algebra28 AW(M) which encodes (see, e.g., [10]), in particular an
exponential version of the canonical commutation relations for the Klein-Gordon
field used in the analysis of the Unruh effect in this paper. Use of the Weyl algebras is
opportune because in a version appearing in [29] it leads to a net of algebras {A (U)}
where if U ⊂ M is an open set of compact closure which qualifies as a globally
hyperbolic spacetime structure (U, g|U , D|U , τg

∣
∣
U
,↑) then if U ⊂ U ′ ⊂ M it is

A (U) ⊂ A (U ′).
(b12) It is also necessary to know the following result [6–8]:
Let Z ∈ sec T U where U qualifies as a globally hyperbolic spacetime which is

foliated with Cauchy surfaces29 Σ(u). Let n ∈ sec TM be the unit normal to Σ , a
member of the foliation. Only if for some ε ∈ R, Z satisfies

Z · Z ≥ εZ · n ≥ ε2 (142)

there exists a procedure that associates with Σ a so-called quasi-free state ωΣ on
A(M).

(b13) Quasi-free states are the ones for which the n-point functions of quantum
field theory are determined by the two point functions and their importance here
lies in the fact that it can be shown that the GNS representation of ωΣ has a natural
Fock-Hilbert space structure F (Σ) where ωΣ is represented by the vacuum state
|0〉Σ ∈ F (Σ). Thus, ωΣ qualifies as a candidate for the vacuum state.

Remark 11 Note that if we take Z equal to I since it is irrotational (and a Killing
vector field), it can be used to foliate M and for I Eq. (142) is satisfied. Then we
naturally can construct ωM on A representing the state |0〉M ∈ F (H ). Also, if we
take Z = ZI or Z = ZII (as defined in Eqs. (90)) since these fields besides being
Killing vector fields are also irrotational, they can be used to foliate regions I and II
where the respective Cauchy surfaces are of course, spacelike surfaces orthogonal
respectively to ZI and ZIi. In these cases, Eq. (142) is violated near the “ horizon”
and it is not possible to construct30 ωI on A (I) and ωII on A (II).These states are
the ones associate with the vacuum states |0〉I and |0〉II described above.

(b14) We have now the fundamental result:
The states ωM |A (I) (respectively ωM |A (II)) and ωI (respectively ωII) are disjoint.

(b15) To understand what is the meaning of this statement it is necessary to recall
the definition of a von Neumann algebra [62].(denoted W ∗-algebra). It is a special
type of a C∗-algebra of bounded operators on a Hilbert space that is closed in the
weak operator topology and contains the identity operator.

28Also called Symplectic Clifford Algebra [15, 64].
29u is a parameter indexing the foliation.
30The states ωI on A (I) and ωII on A (II) are called Boulware vacuum states[5].
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(b16) What is important for us here is that if A is a C∗-algebra identified with
the space of bound operators B(H ) of an appropriate Hilbert space then A is a
W ∗-algebra if and only if

A = A ′′, (143)

where A ′ denotes the so-called commutant of A , i.e., the set of operators that
commute with all elements of A . Of course, A ′′ denotes the commutant of the
commutant and is called bicommutant.

(b17) Given a representation (f,H) of A we denote f ′′(A ) the so-called double
commutant of f (A ). It is called the von Neumann algebra and denotedWf (A ). If
the commutant f ′(A ) is an Abelian algebra Wf (A ) is called type I and it is the
case given von Neumann theorem that if ω is a state on A then Wf (A ) can be
identified with B(Hω) for a GNS representation (fω,Hω).

(b18) A factorial state ω on A (and their GNS representation Φω ∈ Hω) is one
for which the only multiples of the identity are elements ofWfω(A ) ∩Wfω(A )′.

(b19) A normal state ω on A (and their GNS representation Φω ∈ Hω) is one
whose canonical extension to a state ω̆ ∈ Wfω(A ) is countably additive.

(b20) Von Neumann algebras can also be of types [4] II and III. Type III are
important for the sequel and it is one where factors are factors that do not contain
any nonzero finite projections at all.

(b21) Given these definitions it is possible to show the following results
concerning C∗-algebras:

(b21a) If f and f ′ are non-degenerate representations of A , then they are quasi-
equivalent if and only if there is a ∗-isomorphism

i : Wf (A )→ Wf ′(A ),

i(f (A)) = f ′(A) (144)

(b21b) The representations f and f ′ are quasi-equivalent if and only if f has no
subrepresentation disjoint from f ′ and vice versa.

(b21c) A representation of a A is factorial if and only if every subrepresentation
of f is quasi-equivalent to f ′.

From (b21a) it follows (see, e.g., [10]) that fωI (respectively fωII ) and
fωM |A (I) (respectively fωM |A (II)) are not isomorphic since WfωI(A ) (respectively
WfωI(A )) is a von Neumann algebra of type I whereasW fωM |A (I) (A ) (respectively

W fωM |A (II) (A )) is a von Neumann algebra of type III [2].

(b22) It is the case that in general not to be quasi-equivalent does not implies
being disjoint, but in our particular case ωI (respectively ωII) is a pure state
which is irreducible and as such has no non-trivial representation. Also, ωM |A (I)
(respectively ωM |A (II)) is factorial and (c) implies that it is equivalent to each one
of its subrepresentation. Finally, from (a) it follows that fωI (respectively fωII )
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and fωM |A (I) (respectively fωM |A (II) ) is disjoint if and only if they are not quasi-
equivalent.

Now, what does it mean that fωI (respectively fωII ) and fωM |A (I) (respectively
fωM |A (II) ) is disjoint?

(b23) Recall, e.g., that what ωM has to say about region I is given by ωM |A (I)
and from what we already recalled above cannot be represented by a density matrix
in the representation fωI , in particular for any representation on A (I).This happens
because it is impossible to write A (M) as a tensor product A ′ ⊗ A (I) for some
A ′. This result is called expressive incompleteness.

(b24) Despite expressive incompleteness we have the following result by Verch
[61]:

On U ⊂ I ⊂ M (which is open and of compact closure) let f ω
M
| A (U) be

the GNS representation constructed from ω
M

restrict to the image ω
M
|A (U) under

f ω
M

of A (U) (and completing in the natural topology of Hω
M

) and analogous

construct31 ωI|A (U) the image of ωI under f ωI
|A (U)32. Then,f ω

M
| A (U) and

f ωI
|A (U) are quasi-equivalent.

(b25) The result presented in (b24) is the only one that would permit legitimately
to physicists to talk about ωM and ωI as being quasi equivalents, for indeed as
already recalled fωM and fωI are indeed disjoint representations of the algebra of
observables A and thus not unitarily equivalents.

(b26) Anyway, the above result implies that only if we do measurements on
observables of the algebra A in regions of non-compact closure can distinguish the
representations fωM and fωI .

(b27) Finally one can ask the question: is fωM |A (U) and fωM |A (U) where again
U ⊂ I ⊂ M (open and of compact closure) quasi equivalent?

The answer to this question is (for the best of our knowledge) not known and this
is another hindrance that makes one to affirm that no convincing theoretical proof
that the Unruh effect is a real effect exists.

(b28) In the standard “deduction” (Sect. 6.1) of the Unruh effect it is claimed
that the uniformly accelerated observer detects a thermal bath. Supporters that the
effect is a real one try to endorse their claim by using the notion of KMS states33

(which as well known generalizes the notion of equilibrium state) [6–8, 28, 33].
In fact, Sewell [51] argues that the restriction of the Minkowski vacuum ωM to
region I, i.e., ωM |A (I) (=ωM |I) can be formulated as an algebraic state on AI which
satisfies the KMS condition at temperature β−1 = a/2π relative to the notion of
time translation defined by vector field ZI = ∂/∂t (which then generates the one-
parameter group of automorphism au=t). However, it is necessary to have in mind

31Please, do not confuse ωI|A (U) with ωI|A (U) .
32The states ω

M
|A (U) and ωI |A (U) are quasi free-Hadamard states, i.e., states for which

33Recall that a KMS state is an algebraic state (ζu, β) on A where ζu : A → A one parameter
group of automorphisms and 0 ≤ β < ∞ such that the condition ω(AζuβB) = ω(BA). It is a
basic result that a state satisfying the KMS condition at t act as a thermal reservoir, in the sense
that any finite system coupled to it reaches thermal equilibrium at “temperature” T = β−1.
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that the proof that ωM |I is a KMS state does not imply that it is a thermal bath of
Rindler particles. The assumption that it is is only a suggestive one. The reason for
that statement is that as commented in the main text a detector can indeed be excited
when in uniform accelerated motion, but the excitation energy does not come from
the pseudo energy of any hypothetical thermal bath, but from the real energy (as
inferred from an inertial reference frame) of the source accelerating the device.
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Flag Type of Semigroups: A Survey

Luiz A. B. San Martin

Abstract In this chapter, we present an overview of the theory of semigroups in
semi-simple Lie groups and its applications to dynamical systems, control systems,
and random dynamical systems. A great deal of the results to be surveyed appeared
first in Ph.D. theses by students of the Department of Mathematics of IMECC.

The piece of semigroup theory to be discussed here was constructed with the
purpose of understanding semigroups with non-empty interior in semi-simple Lie
groups. A characteristic of this theory is that it is built upon the actions of the
semigroups on the flag manifolds of the Lie groups. These actions contain crucial
information about the semigroups due to the strong structural properties of the semi-
simple Lie groups.

The concept of flag type of a semigroup emerges as a synthesis of several results
about the actions of the semigroups on the flag manifolds. This concept gives a
classification of semigroups via block decompositions, much like the Jordan form
of matrices. More than that, it provides key information about the structure of the
semigroups in the semi-simple Lie groups. The results to be surveyed in this chapter
exploit the concept of flag type to describe properties of the semigroups as well as
to get applications to control and dynamical systems.

1 Control Sets and Flag Type

Let S×X → X be an action of a semigroup S in the topological spaceX. A control
set for the action is a subset D ⊂ X such that D ⊂ cl (Sx) for all x ∈ D and D
is maximal with this property. The control set is invariant if clD = cl (Sx) for all
x ∈ D.

The control sets are building blocks to the construction of the orbits of the action
of a semigroup. These sets appeared in the literature of control systems, and hence
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the name. The invariant control sets were first considered in Arnold–Kliemann [6] as
supports of invariant (stationary) measures for diffusion processes. The control sets
were exhaustively studied in Colonius–Kliemann [20] that established their main
dynamical properties.

In the paper Arnold–Kliemann–Oeljeklaus [7], the action of a semigroup S
of matrices on the projective space P

d emerges as a tool to study Lyapunov
exponents of linear stochastic equations. In [7], it is proved that there is a unique
invariant control set under the accessibility assumption that the orbits of S have
non-empty interior. Uniqueness of the invariant control set is relevant to understand
the invariant measures for the stochastic processes defined by the differential
equations.

Some results of [7] were extended to projective bundles in San Martin–Arnold
[59]. The results of these two papers [7, 59] are the starting point of the development
of the results to be surveyed in this paper.

In [61], the invariant control sets were studied in a much larger setup obtaining
the following crucial characterization.

Theorem 1.1 ([61]) Let G be a connected and noncompact semi-simple Lie group
and PΘ ⊂ G a parabolic subgroup, so that FΘ = G/PΘ is a flag manifold of G.
If S ⊂ G is a semigroup with intS �= ∅, then the action of S on FΘ has a unique
invariant control set CΘ .

Moreover, CΘ is the closure of the open set (CΘ)0 whose elements
are the attractor fixed points attΘ (h) with h running through the regular
elements in intS.

In the group G = Sl (d,R), a parabolic subgroup PΘ is a subgroup of block
upper diagonal matrices where Θ is a set of indices that tells the sizes of the
diagonal blocks of the matrices in PΘ . If these sizes are k1, . . . , ks , then FΘ =
G/PΘ identifies with the manifold of flags (V1 ⊂ · · · ⊂ Vs) of subspaces of R

d

with dimensions dimVi = k1 + · · · + ki . Clearly, the projective space P
d−1

and the Grassmannians Grk (d) are included among the flag manifolds. A matrix
h ∈ Sl (d,R) is regular if it is diagonalizable with (real) distinct eigenvalues. This
way, the second part of the above theorem when applied to FΘ = P

d−1 means that
(CΘ)0 is the set of eigenspaces associated to the highest eigenvalues of the regular
matrices h ∈ intS. In a Grassmannian FΘ = Grk (d), the attractor attΘ (h) of a
regular h is the sum of the eigenspaces associated to the k largest eigenvalues. Thus,
(CΘ)0 ⊂ Grk (d) is made of these k-dimensional subspaces again with h running
through intS.

The full description of the control sets in the flag manifolds is done in [75]. To
state it, we let W be the Weyl group of G. If h ∈ G is a regular element, then its
action in the maximal flag manifold F has exactly |W | fixed points which we denote
by fix (h,w) with w ∈ W . In this notation, fix (h, 1) is the only attractor fixed point
of h.

The control sets are characterized in terms of the fixed points fix (h,w) with h
regular in intS. The core D0 of a control set D is defined by D0 = {x ∈ D :
intSx ∩ intS−1x �= ∅}. The control set is said to be effective ifD0 �= ∅. In this case,
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D0 is open and dense inD. The core of the (unique) invariant control set, mentioned
in Theorem 1.1, is called the attractor set of S. The repeller set of S is the attractor
set of S−1.

Theorem 1.2 ([75]) Let G be a connected and noncompact semi-simple Lie group
and S ⊂ G a semigroup with intS �= ∅. Let F be the maximal flag manifold of G.
For each w ∈ W , the set

(Dw)0 = {fix (h,w) ∈ F : h ∈ Sreg}

is the core of a control set Dw, where Sreg is the set of regular elements in intS. The
control sets Dw, w ∈ W , exhaust the effective control sets for S in F. (D1 is the
unique invariant control set.)

In a partial flag manifold FΘ , the control sets are given by πΘ (Dw), w ∈ W ,
where πΘ : F → FΘ is the canonical projection.

In G = Sl (d,R), we have F = Sl (d,R) /P where P is the subgroup of
upper triangular matrices and F is identified to be the manifold of complete flags
of subspaces. Also, W is the group of permutations of {1, . . . , d}.

A regular element h is diagonalizable in basis β = {v1, . . . , vd} with the
eigenvalues ordered so that λ1 > · · · > λd . Then, fix (h,w) = (V1 ⊂ · · · ⊂ Vd)
where Vi = 〈vw(1), . . . , vw(i)〉. So that the control sets of S in F recover in some
extent the bases diagonalizing the regular elements h ∈ intS.

The map w %→ Dw defined by the above theorem is not in general injective. The
results that give the full picture of this map are proved with the assumption that G
has finite center which ensures that theK component of the Iwasawa decomposition
is compact. This compactness enables to prove the following theorem about a
transitive action of S on a flag manifold of G. This theorem is a basic tool to prove
forthcoming results.

Theorem 1.3 Suppose that G has finite center and let S ⊂ G be a semigroup with
intS �= ∅. If S acts transitively on some flag manifold FΘ of G, then S = G.

The next result gives an algebraic characterization of the level sets of w %→ Dw.

Theorem 1.4 ([75]) Suppose thatG has finite center. Then, there exists a subgroup
WS ⊂ W such that Dw1 = Dw2 if and only if WSw1 = WSw2. The subgroup WS is
parabolic in the sense that there is a set Θ (S) of simple reflections such that WS is
the subgroup WΘ(S) generated by the reflections in Θ (S).

For G = Sl (d,R), the simple reflections in the permutation group W are the
permutations (i, i + 1). Hence, the set Θ (S) of simple reflections determines a
partition of {1, . . . , d}. In turn, the partition yields a parabolic subgroup PΘ(S)
given by block upper triangular matrices where the sizes of the diagonal blocks
are equal to the partition elements. The parabolic subgroup PΘ(S) gives rise to the
flag manifold FΘ(S) = G/PΘ(S). The same relationship between a subset of simple
reflections, a parabolic subgroup, and a flag manifold holds in general.
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Definition 1.5 The flag type (or parabolic type) of a semigroup (intS �= ∅) is
given either by the set Θ (S) of simple reflections such that WS = WΘ(S)or by
the parabolic subgroup PΘ(S) or the flag manifold FΘ(S) = G/PΘ(S).

The following results were proved also in [75]. They characterize the flag type
in terms of the geometry of the control sets and the Jordan decompositions of the
elements in the interior of S.

Theorem 1.6 Assume that G has finite center. Let E be a flag manifold and denote
by π : F → E the canonical projection from the maximal flag manifold and by CE

the invariant control set of S in E. Then, E = FΘ(S) (the flag type of S) if and only
if the following two conditions hold:

1. C = π−1 (CE), where C is the invariant control set in F.
2. CE is contractible by every h ∈ Sreg, that is, hnCE shrinks to a point as n→ ∞.

FΘ(S) is minimal among the flag manifolds that satisfy the first property and
maximal with the second property.

Theorem 1.7 Assume that G has finite center. Take g ∈ intS and write its Jordan
decomposition as the product of commuting elements g = mhn where m is elliptic,
h hyperbolic, and n unipotent. Then, the attractor set of h in FΘ(S) is a fixed point.
Conversely, there exists a hyperbolic element h ∈ intS such that FΘ(S) is the flag
manifold which is minimal with the property that the attractor fixed point set of h
reduces to a point.

For a matrix g ∈ Sl (d,R), the component h in the Jordan decomposition g =
mhn is a diagonal matrix h = diag{a1, . . . , ad} (in some basis) where ai = |λi | with
λi running through the eigenvalues of g. If a1 ≥ a2 ≥ · · · ≥ ad , then the attractor
set of h in FΘ reduces to a fixed point if and only if the partition of {1, . . . , d}
given by the multiplicities of ai refines the partition of the parabolic subgroup PΘ .
Hence, Theorem 1.7 says that the Jordan block decomposition of any g ∈ intS is
a refinement of the block decomposition of PΘ(S) (w.r.t. different bases) and there
is a diagonalizable h ∈ intS with exactly the same block decomposition as PΘ(S)
(if the eigenvalues of h are ordered decreasingly). For the particular case, when
FΘ(S) is the projective space P

d−1, the theorem shows that any g ∈ intS has a
principal (real) eigenvalue. This is one of the statements of the classical Perron–
Frobenius theorem that considers the semigroup SW of matrices leaving invariant a
cone W ⊂ R

d , whose flag type is Pd−1. Thus, a particular instance of Theorem 1.7
is a generalization of Perron–Frobenius theorem.

There is a natural partial ordering between the control sets saying that D1 < D2
ifD2 is attained fromD1 by the action of the semigroup, that is, if there are x ∈ D1,
y ∈ D2, and g ∈ S such that gx = y. A related concept is the domain of attraction
A (D) of a control set which is defined by

A (D) = {x : ∃g ∈ S, gx ∈ D}.
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For example, in a flag manifold, the invariant control set C of S is maximal w.r.t this
ordering and its domain of attraction is the whole flag manifold. On the other hand,
still in a flag manifold, the core C∗ of the invariant control of S−1 is a control set of
S which is minimal w.r.t. the partial order.

In [68], the ordering between the control sets Dw were given algebraically in
terms of the Bruhat–Chevalley order in the Weyl group which is defined from the
way w ∈ W is generated by simple reflections.

Theorem 1.8 ([68]) For w ∈ W , let Dw denote the control set in the maximal
flag manifold F as given by Theorem 1.2. Let w1, w2 ∈ W . Then, the following
statements are equivalent:

1. Dw1 ≤ Dw2 .
2. There exists w ∈ W such that w1 ≥ w and w ∈ WSw2, that is, Dw = Dw2 .

The domain of attraction of the control sets is given in [68] in terms of the
Schubert cells. In order to describe these domain of attractions, it is developed in
[68] an alternative way to write down the Schubert cells.

Let αi be a simple root and denote by si the reflection w.r.t. αi . Denote by Pi =
P{αi } the parabolic subgroup defined by Θ = {αi} and by Fi = G/Pi the associated
flag manifold. If πi : F → Fi is the fibration from the maximal flag manifold F and
A ⊂ F, then we write

γi (A) = π−1
i πi (A)

for the union of the fibers πi : F → Fi throughA. It is proved in [68] that a Schubert
cell in F has the form γ1 · · · γn{b} for suitable b ∈ F where γ1 · · · γn is associated to
a reduced expression w = s1 · · · sn of w ∈ W as a product of simple reflections.

Theorem 1.9 ([68]) Let C∗ = D (w0) be the minimal control set where w0 is the
principal involution of W (that is, the element of largest length). Then, for any
w ∈ W the domain of attraction A (Dw) of Dw is given by

A (Dw) = γ1 · · · γn
(
C∗) . (1)

Here, the sequence γ1, . . . , γn comes from a reduced expression

w0w = sn · · · s1.

Examples of control sets and flag types of semigroups were produced in several
places (see [9, 9, 24, 32, 74, 77]).

Apart from the above results, the flag type of a semigroup S encodes several
geometric and algebraic properties of S that will be described later.

In [43, 86], there is an application of the flag type to study control sets on the
adjoint orbits Ad(G)H where H is such that h = expH is hyperbolic. (It is
proved in [26] that these orbits are diffeomorphic to the cotangent bundles of the
flag manifolds.) The fact to be remarked are:
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1. As happens to the flag manifolds the control sets are given by the set of fixed
points of the regular elements in intS. This permits to parametrize them by the
Weyl group.

2. There are no invariant control sets unless S = G.
3. Different control sets are not related by their ordering, that is, a control set is not

reached by the action of the (proper) semigroup from another control set.

2 Topological Properties

An open subsemigroup of a Lie group may have two kinds of connected compo-
nents, namely components K such that K2 ∩ K = ∅ and components that are
themselves subsemigroups (e.g., the semigroup (2, 3) ∪ (4, 6) ∪ (6,+∞) ⊂ R has
the two types of components).

The following result proved in [50] describes the semigroup components in terms
of control sets. It is the first of the topological results to be recalled here.

Theorem 2.1 ([50]) Let G be a noncompact semi-simple Lie group and S ⊂ G an
open semigroup. Denote by C+ (respectively, C−) the attractor set (respec., repeller
set, that is, the attractor set of S−1) of S in the maximal flag manifold.

Given a pair of connected components K1 of C+ and K2 of C−, there exists
a unique semigroup component Γ of S such that K1 and K2 are, respectively, the
attractor and repeller sets of Γ . Therefore, S has card

(
C+) · card

(
C−) semigroup

components.

In [54, 55], the connected components of a semigroup S are related to the
algebraic property of reversibility, that is, to the set of g ∈ G such that S ∩ gS
is not empty.

Another topological result goes back to a classical theorem of Cartan saying that
the manifold underlying a Lie group is the product of a compact Lie group by a
Euclidian space R

n. This result implies that the bulk of the topology of a Lie group
is concentrated in a compact Lie group. The next result shows that this happens
with semigroups as well with the proviso that the semigroup S is infinitesimally
generated, that is, S = 〈expW 〉 whereW is a cone in the Lie algebra g of the group.
Such condition is needed in the proofs to get homotopies with the aid of 1-parameter
semigroups.

Theorem 2.2 ([2, 78]) Let S = 〈expW 〉 be an infinitesimally generated semigroup
with non-empty interior in a noncompact semi-simple Lie group G. Let FΘ(S) =
G/PΘ(S) be the flag type of S and denote by KΘ(S) the maximal compact subgroup
of the Levi component of PΘ(S). Then, there exists a coset gKΘ(S) that is a
deformation retract of S. Hence, the homotopy groups of S andKΘ(S) are the same.

In Sl (d,R), a groupKΘ(S) has the form SO (k1)×· · ·×SO (ks)where k1, . . . , ks
are the sizes of the block diagonal matrices defining PΘ(S). Hence, an open
semigroup S ⊂ Sl (d,R) has the homotopy type of a product of special orthogonal
groups.
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An example is the homotopy type of the semigroup S = Sl+ (d,R) ⊂ Sl (d,R)
of matrices with nonnegative entries. Its flag type is the projective space P

d−1 =
FΘ(S) which is associated to the partition {1} ∪ {2, . . . , d} of {1, . . . , d}. Hence,
KΘ(S) = SO (d − 1) that has the same homotopy type as Sl+ (d,R).

3 Maximal Semigroups

A maximal subsemigroup of a group is a semigroup which is not properly contained
in a proper semigroup. A general result says that a subsemigroup S of a topological
groupGwith intS �= ∅ is contained in a maximal semigroup (see Hilgert–Hofmann–
Lawson [28]). The concept of flag type for semigroups in semi-simple Lie groups
suggests a refinement of the notion of maximality, namely a Θ-maximal semigroup
is a semigroup S (intS �= ∅) with flag type Θ which is not properly contained in a
semigroup with the same flag type. If Θ is the complement of a singleton (which
means that FΘ is a minimal flag manifold), then aΘ-maximal semigroup is maximal
in G. So that in semi-simple Lie groups maximality of semigroups with non-empty
interior is a particular case of Θ-maximality.

In [71], the Θ-maximal (and hence the maximal) semigroups were characterized
with the aid of the so-called B-convex sets in the flag manifolds.

Any flag manifold FΘ is in duality to another flag manifold FΘ∗ whose points
parametrize the open Bruhat cells of FΘ and conversely. For example, the projective
space P

d−1 is dual to the Grassmannian Grd−1 (d) in the sense that a subspace
V ∈ Grd−1 (d) defines the open Bruhat cell of lines in P

d−1 that are transversal
to V . This way, a dual of a set C ⊂ FΘ is the set C∗ ⊂ FΘ∗ given by x ∈ FΘ∗
such that the open cell defined by x contains C. The same way one defines the dual
D∗ ⊂ FΘ of a subset D ⊂ FΘ∗ .

A B-convex set C ⊂ FΘ is defined to be a set such that C = (C∗)∗. With these
notions, we have the following characterization of the Θ-maximal semigroups.

Theorem 3.1 ([71]) A semigroup S with intS �= ∅ isΘ-maximal if and only if there
exists a B-convex set C ⊂ FΘ with C = cl (intC) such that S is the compression
semigroup of C, that is,

S = {g ∈ G : gC ⊂ C}.

In this case, C is the invariant control set of S. The semigroup S is maximal if and
only if it is Θ-maximal and FΘ is a minimal flag manifold.

A B-convex set may be quite wild. For example, if G = Sl (2,R), then the only
flag manifold is the projective line P1 which is self-dual. Since an open Bruhat cell is
the complement of a point, any proper subset is B-convex. Hence, the compression
semigroup of any proper subset C = cl (intC) ⊂ P

1 is a maximal subsemigroup of
Sl (2,R) (a similar picture holds in the groups with real rank 1). On the other side,
it is proved in [71] that the connected B-convex subsets of a projective space P

d−1
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(viewed as flag manifold of Sl (d,R)) are those subsumed by a pointed convex cone
W ⊂ R

d . Hence, the compression semigroup SW of the double cone W ∪ −W is
maximal in Sl (d,R).

4 Integration on Semigroups

In this section, the flag type is applied to measured theoretic questions in semi-
simple Lie groups. The first question goes back to the path breaking paper by
Furstenberg [25] that generalizes to semi-simple Lie groups the classical representa-
tion of harmonic functions in the disk known as Poisson space. Afterwards, we look
at the behavior of the Helgason–Laplace transform of the indicator function of a
semigroup and the so-called moment Lyapunov exponent associated to a probability
measure. These questions are clarified by the flag type of a semigroup.

4.1 Poisson Spaces

If ν is a probability measure in a group G, a function f on G is called
ν-harmonic if

f (g) =
∫

G

f (gh) dν(h).

The Poisson space for ν is a compact G-space Π with a ν-invariant probability
measure μ (the Poisson measure) such that there exists a one-to-one correspondence
between bounded (respectively, left uniformly continuous) ν-harmonic functions
on G and measurable (respectively, continuous) functions on Π . The Poisson
formula performs the bijective relation: given a left uniformly continuous bounded
ν-harmonic function, there exists a unique continuous function f̂ on Π such that

f (g) =
∫

Π

f̂ (gx) dμ(x).

Let G = KAN be an Iwasawa decomposition of a semi-simple group G, with
the corresponding decomposition of the Lie algebra g = k ⊕ a ⊕ n. Let M be the
subgroup of G which is the centralizer of A in K . If ν is absolutely continuous,
the main results in Furstenberg [25] establish that: (1) A Poisson space of G is a
homogeneous space of the form Πν = G/MνAN , where the Mν is a subgroup of
M containing its identity componentM0, and henceΠν is a covering of the maximal
flag manifold F = G/MAN of the groupG; (2) If the identity of the group belongs
to the interior of the support of some convolution power νk , then the Poisson space is
the maximal flag manifold F = G/MAN itself, also called Furstenberg boundary.
This condition implies that the semigroup S = Sν generated by the support of ν
coincides with G.
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In [34, 40], it was considered the case where the semigroup Sν is proper but has
non-empty interior. The key point is to identify the subgroup Mν of M such that
Πν = G/MνAN . As in other cases, the idea is to get Mν through the action of
Sν on homogeneous spaces of G. Here, however, the right places are not the flag
manifolds of G; that is, the flag type of Sν is not enough to obtainMν .

As in other instances, assume that G has finite center so that K and M are
compact subgroups. The homogeneous space G/M0AN is compact as well and
the canonical fibration π : G/M0AN → F = G/MAN is a covering with a
finite number of leaves. By compactness, there are invariant control sets of Sν in
G/M0AN , possibly more than one although all of them are projected by π to the
unique invariant control set C ⊂ F.

Theorem 4.1 Let D be an invariant control set in G/M0AN . Define

M(D) = {m ∈ M/M0 : D ·m = D}

where D · m stands for the right action of M/M0 on G/M0AN . Then, Mν =
π−1

0 (M(D)) where π0 : M → M/M0 is the canonical fibration.

The following theorem says in particular that in case Sν is connected the
parabolic type of Sν completely determinesMν .

Theorem 4.2 Suppose that the invariant control set C ⊂ F is connected (this
happens if Sν is itself connected). Then, Mν = M ∩ P 0

Θ(Sν)
where Θ (S0) is the

flag type of Sν and P 0
Θ(Sν)

is the identity component of PΘ(Sν).

4.2 Characteristic Function

Let G be a noncompact connected semi-simple Lie group with finite center and
S ⊂ G a semigroup with non-empty interior. The question addressed here is the
convergence of the Helgason–Laplace spherical transform of S, that is, integrals
over S of the type

IS (λ, u) =
∫

S

eλ(a(g,u))dg (2)

where dg is the Haar measure of G. To write the integrand, we take an Iwasawa
decomposition G = KAN and let a be the Lie algebra of A. In the integral, the
parameters are λ ∈ a∗ and u ∈ K while the function a (g, u) = logh ∈ a if
gu = khn ∈ KAN is the Iwasawa decomposition of gu.

The integral IS (λ, u) is called the characteristic function of S by analogy with
the characteristic function IW of a cone W ⊂ R

d which is the classical Laplace
transform of the indicator function of W . The characteristic function IW of a cone
is extensively used in the statistic literature since it yields an “exponential model.”
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As happens usually to Laplace transforms, the integral (2) may be +∞ for some
values of (u, λ). This poses the question of determining the domain of convergence
of IS (λ, u).

Such domain of convergence is provided in [2, 78] in terms of the flag type of S.
The domain is divided into two pieces, the λ ∈ a∗ and the u ∈ K components.

As to the K component, it is noted that the integrand eλ(a(g,u)) as a function of
u ∈ K factors to a function on the full flag manifold F = K/M since it is invariant
by right multiplication of u by any m in the subgroup M . This permits to write,
for g ∈ G and x ∈ F, a (g, x) = a (g, u) where x = ux0 and x0 is the origin of
F = K/M .

This way, IS (λ, u) can be seen as a function defined in a∗ ×F and the domain of
convergence of theK-component is actually determined by a subset of the maximal
flag manifold F.

In order to state the domain of convergence for the radial component λ, define
for a subset Θ the partial chamber

(
a∗Θ
)+ = {γ ∈ a∗Θ : ∀α ∈ Σ, 〈α, γ 〉 > 0}

which is an open cone in the annihilator a∗Θ of Θ and put

C +
Θ =

⋂

α∈Π+\〈Θ〉+

(
dΘDΘα + 2ρΘ + (a∗Θ

)+)

where dΘ = dimFΘ , DΘ = dimF − dimFΘ , and ρΘ(H) = 1
2 tr
(

ad(H)|n+
Θ

)
if

H ∈ a. Since C +
Θ is the intersection of a finite number of translates of

(
a∗Θ
)+, it is

an open cone in a∗Θ as well.
The following convergence theorem on the flag type FΘ(S) of S is one of the

main results of [39, 81].

Theorem 4.3 ([78]) Let S ⊂ G be a proper semigroup with intS �= ∅ and flag type
Θ = Θ (S). Then,

IS (λ, x) =
∫

S

eλ(a(g,x))dg (3)

converges for any λ ∈ −C +
Θ(S) and x in the core C0 of the invariant control set C of

S in F.
In case Θ (S) = ∅ and FΘ is the maximal flag manifold, we have convergence if

λ+ 2ρ belongs to the Weyl chamber − (a∗)+.
If S = G, then IS (λ, x) = +∞ for all (λ, x).

This theorem can be improved by the remark that IS (λ, x) ≤ IT (λ, x) if T is a
semigroup containing S. Hence, IS (λ, x) converges if x belongs to the attractor set
of T which may be larger than C0. In [2, 78], a Θ (S)-maximal semigroup T ⊃ S
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is defined as a compression semigroup of a B-convex set D ⊃ CΘ(S). Namely,
D is the complement of the union of the domains of attraction of the control sets
in FΘ(S) different from the invariant control set CΘ(S). It can be proved that D is
B-convex (see Sect. 3 above) and hence its compression semigroup T is indeed
Θ (S)-maximal.

It is a classical fact that Laplace transforms are analytic functions. For the
Helgason–Laplace transform (3), it is proved in [78] the following partial result
on the smoothness of IS (λ, x).

Theorem 4.4 If Θ (S) = ∅, then IS (λ, x) is analytic as a function of x in its
domain for fixed λ ∈ −C +. If the flag type Θ (S) �= ∅, then IS (λ, x) is C k with k
becoming larger as the size of λ increases.

Example As an example of a characteristic function, let S = Sl+ (d,R) ⊂ Sl (d,R)
be the semigroup of matrices with nonnegative entries. Its flag type FΘ(S) is the
projective space P

d−1 and C0 is the interior of the subset subsumed by the positive
orthant Rd+ ⊂ R

d .

Thanks to the fact that the groupA ⊂ Sl (d,R) of diagonal matrices with positive
entries is contained in Sl+ (d,R) and acts transitively in C0 it is possible to compute
explicitly the characteristic function of S. It is given by the analytic function defined
on C0 by

IS (sλ1, [x]) = ds/2IS (sλ1, [x0]) (x1 · · · xd)1/d

if x = (x1, . . . , xd) ∈
(
intRd+

) ∩ Sd−1. In this expression, d is the dimension, x0 =
(1, . . . , 1), and λ1 is the generator of a∗Θ(s) which is the linear map that associates
to a diagonal matrix its first eigenvalue.

4.3 Moment Lyapunov Exponents

Let G be a noncompact semi-simple Lie group and μ a probability measure on G.
Denote by Sμ the semigroup generated by the support suppμ of μ and assume that
intSμ �= ∅.

Take Iwasawa decompositions g = k⊕ a⊕ n and G = KAN . For g ∈ G, write
g = ueH(g)n ∈ KAN with H (g) ∈ a. The map σ (g, k) = H (gk), g ∈ G, k ∈ K
descends to a map say a : G× F → a where F is the maximal flag manifold of G.
It satisfies the cocycle property

a (gh, y) = a (g, hy)+ a (h, y) .

Take λ ∈ a∗. The λ-moment Lyapunov exponent γλ (x) in the “direction” of
x ∈ F is defined by
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γλ (x) = lim
n→+∞ sup

1

n
log
∫

G

eλa(g,x)μ∗n (dg)

where μ∗n is the nth convolution power. (For this definition to make sense, it must
be assumed that the integrals are finite which holds if

∫

G
eλa(g,x)μ (dg) <∞ for all

λ. For instance, if suppμ is compact, then the integrals are finite.)
The following results relate the moment Lyapunov exponents with the flag type

of Sμ.

Theorem 4.5 ([70]) Suppose that Sμ = G. Then, for every λ ∈ a∗ and x ∈ F, there
exists p < 0 such that

γpλ (x) > 0.

Now, let FΘ be the flag type of Sμ (assuming that Sμ is proper). Denote byΣ the
simple system of roots and by Φ the corresponding set of dominant weights. Also,
let ΦΘ be the dominant weights corresponding to Θ , that is,

Φ \ΦΘ = {ω ∈ Φ : ∀α ∈ Θ, 〈α,ω〉 = 0}.

The cone generated byΦ \ΦΘ is the closure of the partial chamber
(
a∗Θ
)+ given by

λ ∈ a∗ such that 〈λ, α〉 > 0 if α ∈ Σ \Θ and 〈λ, β〉 = 0 if β ∈ Θ .

Theorem 4.6 ([70]) Let Θ be such that FΘ is the flag type of Sμ. Take λ ∈
cl
(
a∗Θ
)+

. Then, there exists x ∈ F such that

γpλ (x) ≤ 0

for all p < 0.

The following theorem is a partial converse to the previous one and implies the
first theorem.

Theorem 4.7 ([70]) Let Θ be such that FΘ is the flag type of Sμ. Take λ in the
subspace spanned by Θ . Then, for all x ∈ F, there exists p < 0 such that

γpλ (x) > 0.

5 Controllability and Transitive Actions

In a semi-simple noncompact Lie group G with finite center, a proper semigroup S
with intS �= ∅ cannot act transitively on any flag manifold of G (see Theorem 1.3
above). As proved in [69], after a preparation in [76], proper semigroups do not act
transitively in almost all homogeneous spaces of G.
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Theorem 5.1 ([69]) Let G be a semi-simple noncompact Lie group with finite
center, L ⊂ G a closed subgroup, and S ⊂ G a subsemigroup with intS �= ∅.
Then, the following two conditions are necessary for S to act transitively inG/L.

1. The action of L on FΘ(S) is minimal, that is, every orbit of L in FΘ(S) is dense.
2. There exists a sequence gn ∈ L which is contractive in FΘ(S); that is, there exists

an open Bruhat cell σ such that gnσ shrinks to a point as n→ ∞.

If S is the compression semigroup of its invariant control set CΘ(S), then the
conditions are sufficient as well.

A kind of subgroup that satisfies both conditions of this theorem is a lattice L ⊂
G, which is a discrete subgroup such that G/L admits a finite G-invariant measure.
In such a homogeneous space, Poincaré’s recurrence theorem permits to show that
every semigroup S with intS �= ∅ acts transitively in G/L.

On the other hand in [76], there is the example of Sl (2n,R) /Sp (n,R) where
a proper semigroup S ⊂ Sl (2n,R) acts transitively if the flag type of S is the
projective space P

d−1. The subgroup Sp (n,R) ⊂ Sl (2n,R) is one of the few
subgroups L with a finite number of connected components such that there are
semigroups acting transitively in G/L. For a subgroup L with a finite number of
connected components, there are the following strong restrictions so that it satisfies
the conditions of Theorem 5.1.

Theorem 5.2 ([69]) Suppose that L has a finite number of connected components
and satisfies the two conditions of Theorem 5.1 for a flag manifold FΘ . Let L0 be
the identity component of L. Then,

1. L0 also satisfies the conditions;
2. L0 is reductive, noncompact, and acts transitively in FΘ ;
3. FΘ is a flag manifold of L0.

In the thesis [31], one can find several pairs (L,G) of noncompact semi-simple
Lie groups with L ⊂ G that have a common flag manifold.

One of the motivations to look at transitive actions of semigroups is the
controllability problem for control systems. Let

ġ = X (g)+
m∑

i=1

uiYi (g) (4)

be a control system in G where X and Y1, . . . , Ym are right invariant vector fields
and ui : R+ → R are control functions such that u1 (t) Y1 +· · ·+um (t) Ym assume
values in a certain subset U of the Lie algebra g ofG. The controllability properties
of (4) are described by the semigroup S generated by the exponentials etZ with
Z ∈ X + U and t ≥ 0. This semigroup has non-empty interior if and only if X and
Y1, . . . , Ym generate the Lie algebra g of G.

The control system (4) is said to be controllable if S = G. The above results on
the transitivity of S allows to study controllability by looking at transitive actions
on homogeneous spaces. For instance, (4) is controllable if and only if its control



362 L. A. B. San Martin

semigroup S acts transitively on some (and hence all) flag manifold ofG. Instead of
a flag manifold, one can take any homogeneous space not falling into the conditions
of Theorem 5.1.

A complete picture of the controllability in Sl (2,R) was obtained in [8, 14] by
analyzing the action of the control semigroup on the projective line P

1. A sample
result is given as follows.

Theorem 5.3 Suppose that X, Y ∈ sl (2,R) generate sl (2,R). Then, the control
system ġ = X (g) + uY (g), u ∈ [−ρ, ρ] is controllable if and only if the segment
{X + uY : u ∈ [−ρ, ρ]} meets the open double cone

{Z ∈ sl (2,R) : detZ > 0}.

Other results for rank 1 Lie groups appear in [51] for the group SO (1, n).
A method that emerges from the existence of the flag type comes from the fact

that if S is a proper semigroup then the invariant control set CΘ(S) is contractible in
the flag type FΘ(S). In [5, 82, 83], this fact was exploited to get the next result. In its
statement, we denote by G(α) the subgroup generated by exp g±α . For instance, if
G = Sl (d,R) or Sl (d,C), then a G(α) is a subgroup of matrices leaving invariant
a subspace 〈ei, ej 〉 spanned by two basic vectors and which is the identity in the
subspace spanned by the remaining basic vectors. In this case, G(α) is isomorphic
to Sl (2,R).

Theorem 5.4 LetG be a connected simple Lie group with Lie algebra g and S ⊂ G
a semigroup with intS �= ∅. Then, S = G if there is a root α with G(α) ⊂ S in the
following cases:

1. g is complex.
2. g = sl (l + 1,R).
3. g = sp (l,R) and α is a long root.
4. g is the split real form associated to G2 and α is a short root.

The proof of this theorem consists in showing that in any flag manifold FΘ there
is a compact orbit ofG(α) that must be contained in the invariant control set of S but
is not contractible in FΘ permitting to conclude that S must be the whole group G.
In case g is complex, the compactG(α)-orbit is a 2-sphere so the second homotopy
group π2 (FΘ) is worked out to check noncontractibility. In the other cases, the orbit
in question is a circle and the fundamental group shows up.

In [83], the same technique was applied to other subgroups besides G(α).
The choice of the subgroup G(α) in Theorem 5.4 was inspired by the following

result by Jurdjevic–Kupka [36].

Theorem 5.5 Suppose that A and B are d × d trace zero matrices such that

1. B = diag{b1, . . . , bd} with bi − bj �= br − bs if (i, j) �= (r, s) and
2. A = (aij

)
satisfies a1nan1 < 0.

Then, the control system ġ = Ag + uBg is controllable in Sl (d,R) if A and B
generates the Lie algebra sl (d,R).
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This theorem was generalized to semi-simple Lie groups in Jurdjevic–Kupka
[37] and motivated several papers in the 1980s containing improvements and
generalizations (see El Assoudi-Gauthier-Kupka [23]).

The relationship between these classical results and Theorem 5.4 is that in the
very first step of the proof of Theorem 5.5 it is shown that the control semigroup
contains a subgroup G(α), namely the Sl (2,R) subgroup of the subspace spanned
by the basic vectors e1 and ed . Hence, the proof of Theorem 5.5 reduces to
Theorem 5.4. It should be said that the methods of [5, 82, 83] are global hence
Theorem 5.4 is not restricted to infinitesimally generated semigroups as are the
needs of Theorem 5.5.

In the same vein as Theorem 5.5, it was proved in [62] the following result for
discrete-time control systems.

Theorem 5.6 Consider the discrete-time control system

gn+1 = eA+uBgn (5)

in Sl (d,R) with A and B trace zero d × d matrices. Suppose that B =
diag{λ1, . . . , λd} with λ1 > · · · > λd . If A = (

aij
)
, denote by AB the matrix

which is zero on the diagonal and whose entries i, j, i �= j are given by
aij
λj−λi .

Assume that A and B generates sl (d,R) and that

(−1)k+1a+k (A
B)a−k (A

B) > 0

for all k = 1, . . . , d where a+k (AB) (respectively, a−k (AB)) is the upper right
(respectively, lower left) k × k minor of AB .

Then, (5) is controllable, that is the semigroup generated by eA+uB , u ∈ R, is the
whole Sl (d,R).

This theorem was extended to the symplectic group in [17, 19].
The papers [52, 53] study the existence of cones invariant by bilinear control

systems in R
d (that are the same as invariant systems in the group Gl (d,R)). This

kind of question was posed by Sachkov [58] where it is conjectured that a bilinear
control system is not controllable if and only if there is a cone W ⊂ R

d invariant
by the system. It is shown in [52, 53] that this conjecture is not true. Furthermore,
necessary and sufficient conditions for the existence of invariant cones are given in
terms of the flag type of the semigroup generated by the control system.

6 Dynamical Systems

Let φt (t ∈ Z or R) be a continuous flow on a metric space (X, d). For ε, T > 0, an
(ε, T )-chain (or pseudo-orbit) of φt is given by a finite sequence of points x1, . . . , xk
and times t1, . . . , tk−1 ≥ T such that d

(
φti (xi) , xi+1

)
< ε, i = 1, . . . , k − 1. A
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subsetM ⊂ X is chain transitive if for any pair of points x, y ∈ M there are (ε, T )-
chains starting in one of the points and ending at the other for all ε, T > 0. Chain
transitive sets that are maximal by set inclusion are used as tools to build Morse
decompositions in the context of Conley theory (see Conley [21]).

In [16, 46–48], and in the thesis [44], semigroup theory was applied to study
maximal chain transitive sets. The idea is to “close chains” with continuous
maps yielding to the definition of the semigroups Sε,T , ε, T > 0, which are
the semigroups generated by continuous maps that are ε-close (in their domains)
to some φt , t > T . The semigroups Sε,T were named shadowing semigroups.
The principles relating the shadowing semigroups to the chain transitive sets are
summarized in the following items:

1. There exists an (ε, T )-chain starting at x ∈ X and ending at y ∈ X if and only if
y ∈ Sε,T x;

2. The maximal chain transitive sets of the flow φt are obtained by shrinking a
family of control sets, sayDε,T , of the semigroups Sε,T as ε → 0 and T → +∞.

These facts are true under suitable assumptions on the space X. In [16],
shadowing semigroups Sε,T are taken in the local group of local homeomorphisms
ofX and the above facts are proved with a local transitivity hypothesis. These results
are generalized in [44, 46, 47] in two directions, namely the shadowing semigroups
are taken in the whole space of continuous functions and more importantly the
theory is developed in Hausdorff topological spaces.

The idea of the shadowing semigroups was used in [15, 19] in a different context,
namely for the study of the chain control sets of semigroup actions.

The following theorem is an application of the shadowing semigroup method
combined with the description of the control sets on the flag manifolds discussed
in Sect. 1. In the next statement, we use the notation fix (h,w) for a connected
component of the fixed point set of the hyperbolic element h ∈ G in a flag manifold
FΘ . These components are parametrized by the elements w of the Weyl group W in
such a way that fix (h, 1) is the only attractor fixed point set.

Theorem 6.1 ([16, 48]) Let G be a noncompact semi-simple Lie group and φt a
flow on X × G which is right invariant, that is, φt (x, gh) = φt (x, g) h so that
φt (x, g) = (θt (x) , ρ (t, x) g) where θt is a flow on X and ρ is a cocycle over θ
with values in G.

If FΘ is a flag manifold of G, then we have a flow ψt on X × FΘ given by
ψ (x, f ) = (θt (x) , ρ (t, x) f ). Suppose that the flow θt is chain transitive. Then,
there exists a hyperbolic element hφ ∈ G and a continuous map σ : X → {ghφg−1 :
g ∈ G} such that the maximal chain transitive sets of ψ (Morse components) are
given by

Mw =
⋃

x∈X
{x} × gxfix

(
hφ,w

)
g−1
x

where gx ∈ G is such that σ (x) = gxhφg−1
x .
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For instance, inG = Sl (d,R), a hyperbolic element hφ is a diagonal matrix with
positive entries. If FΘ is the projective space P

d−1, then a fixed point component
fix
(
hφ
)

is the set of lines contained in an eigenspace of hφ . Thus, the maximal
chain transitive sets onX×P

d−1 (Morse components) are obtained from a Whitney
decomposition of the bundleX×R

d . This is the content of the theorem by Selgrade
[84] (see also [20]). Hence, Theorem 6.1 generalizes Selgrade’s theorem with an
independent proof.

In [16, 48], the above theorem is worked out in the more general setting of a right
invariant flow in a principal bundleQ→ X with structural groupG (not necessarily
the trivial oneX×G). Also, in [48], there are results for semiflows which bring some
subtleties related to the invariant subsets.

Proposition – Definition 6.2 Let hφ be as in Theorem 6.1. Then, there exists a
unique flag manifold FΘ(φ) which is maximal with the property that the attractor
fixed point set fix

(
hφ, 1

)
of hφ in FΘ(φ) is a singleton. This flag manifold is called

the flag type for the Morse decomposition of φt .

Now, let G = KAN be an Iwasawa decomposition of G. If φt (x, g) =
(θt (x) , ρ (t, x) g) is a right invariant flow on X ×G write for x ∈ X and u ∈ K ,

ρ (t, x) u = kt (x, u) at (x, u) nt (x, u) ∈ KAN.

The component kt (x, u) is a flow that is understood via the induced flows on the flag
bundles X × FΘ . The characteristic exponents are given by the asymptotics of the
component at (x, u). The mapping at (x, u) is a multiplicative cocycle (with values
in A) that factors to a cocycle over X× F where F is the maximal flag manifold. Its
logarithm a (t, x, u) = log at (x, u) is an additive cocycle. The limits

λ (x, u) = lim
t→∞

1

t
a (t, x, u) (6)

are the (vector valued) Lyapunov exponents of the flow.
Related to the Morse decomposition, it was introduced by Colonius–Kliemann

[20] the concept of Morse spectrum set that measures the growth ratio along chains.
The Morse spectrum ΛMo (M ) ⊂ a over a chain component M of the flow is
defined by evaluating the cocycle a (t, x, u) along chains in M taking into account
the jumps of the chains. In [42, 79], the concept of Morse spectra of [20] was
extended to the vector valued cocycle a (t, x, u). Their main properties were derived
in the light of the Morse decomposition on the flag bundles and the flag type of a
flow.

Theorem 6.3 ([42, 79]) For w ∈ W , let Mw be the Morse component in X × F

as in Theorem 6.1 where F is the maximal flag manifold. Write M+ = M1 for the
attractor component. Then, the Morse spectra ΛMo (Mw) ⊂ a satisfy the following
properties:
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1. For every w ∈ W , we have

ΛMo (Mw) = w−1ΛMo(M
+),

so that the whole Morse spectra is read off from the spectrum of the attractor
component.

2. The spectra ΛMo
(
M+) of the attractor component is invariant by the subgroup

Wφ ⊂ W that fixes Hφ = log hφ .
3. ΛMo

(
M+) is contained in the interior of

⋃
w∈Wφ

clCw, where Cw is the Weyl
chamber associated to w.

4. ΛMo
(
M+) intercepts the closure of every chamber Cw, w ∈ Wφ .

5. Different Morse spectra do not overlap. (This fact is not true for linear flows
on vector bundles as shown in [20], Example 5.5.11. The point here is that the
vector bundle Morse spectra are images under linear maps of the vector valued
spectra. Overlappings of the images may occur.)

The limits (6) (that is, the vector valued Lyapunov exponents) are analyzed in
[3, 41] where it is offered an analogous of the classical multiplicative ergodic
theorem of Oseledets. For this theorem, one must have in advance a probability
measure ν on the base space which is invariant by the flow on X. Then, it is proved
that for ν-almost every x ∈ X the limit (6) exists for every point in the fiber
over x. If ν is an ergodic measure, then there is a flag type ΘLy (ν) describing the
decomposition of the fibers given by the level sets of the Lyapunov exponents.

About the spectra, there are also the following results:

1. In [4, 41], there are necessary and sufficient conditions ensuring that the flag type
ΘLy (ν) given by the multiplicative ergodic theorem equals the flag type ΘMo
coming from the Morse decomposition. In general, ΘLy (ν) ⊂ ΘMo. Equality
between the two flag types means that the measurable Oseledets decomposition
is well behaved in the sense that it has a continuous extension to all of the base
space.

2. The differentiable dependence of the Lyapunov exponents as a function of the
flow is treated in [24, 85] where the flow φ on a principal bundle Q is perturbed
as φγ with γ varying in the gauge group G (Q) of Q. It is proved that if ω
belongs to the annihilator of ΘMo, then ω

(
ΛLy
)

depends differentiable of γ ,
recalling that the G (Q) has the structure of a Banach Lie group (usually infinite
dimensional). This is a generalization of a result by Ruelle [56] that is proved for
a continuous linear flow leaving invariant a cone. One of the main achievements
of [24, 85] is to put in evidence the Morse decomposition as a tool to look at the
differentiability properties of the Lyapunov exponents.
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Generic Singularities of 3D Piecewise
Smooth Dynamical Systems

Marco Antonio Teixeira and Otávio M. L. Gomide

Abstract The aim of this paper is to provide a discussion on the current directions
of research involving typical singularities of 3D nonsmooth vector fields. A brief
survey of known results is also presented.

We describe the dynamical features of a fold–fold singularity in its most basic
form and we give a complete and detailed proof of its local structural stability (or
instability). In addition, classes of all topological types of a fold–fold singularity
are intrinsically characterized. Such proof essentially follows from some lines laid
out by Colombo, García, Jeffrey, Teixeira, and others and it offers a rigorous
mathematical treatment under clear and crisp assumptions and solid arguments.

One should highlight that the geometric–topological methods employed lead us
to the mathematical understanding of the dynamics around a T-singularity. This
approach lends itself to applications in generic bifurcation theory. It is worth to
say that such subject is still poorly understood in higher dimension.

1 Introduction

Certain aspects of the theory of nonsmooth vector fields (piecewise smooth vector
fields) have been mainly motivated by the study of vector fields near the boundary
of a manifold. Concerning this topic, many authors provided results and techniques
which have been very useful in piecewise smooth systems. It is worthwhile to cite in
the 2-dimensional case works from Andronov et al., Peixoto, and Teixeira (see [1,
18, 23]) and in higher dimensions the works from Sotomayor and Teixeira, Vishik,
and Percell (see [19, 22, 31]). In particular, in [31], Vishik provided a classification
of generic points lying in the boundary of a manifold, using techniques from Theory
of Singularities.
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Many papers have contributed to the analysis and generic classification of
singularities of 2D Filippov systems (Kuznetsov et al., Guardia et al., and Kozlova
among others, see [12, 14, 15]). Specifically with respect to the fold–fold singularity,
we point Ekeland (see [6]) and Teixeira (see [25]). Regarding the n-dimensional
problem, we point out the work from Colombo and Jeffrey (see [9]) which analyzes
an n-dimensional family having a two-fold singularity, nevertheless the generic
classification for n > 2 is much more complicated and still poorly understood.

As far as we know, the first approach where a generic 3D fold–fold singularity
was studied was offered by Teixeira in [24] where one finds a discussion on some
features of the first return mapping defined around this singularity. Maybe due to
this fact, the invisible fold–fold singularity is known as T-singularity.

In [10], Filippov provided a mathematical formalization of the theory of piece-
wise smooth vector fields. In the last chapter of [10], Filippov studied generic
singularities in 3D piecewise smooth systems, and a systematic mathematical
analysis of the behavior around a fold–fold singularity was officially arisen.
However, most of the proofs were only roughly sketched and would require a better
explanation and interpretation. In particular, the proofs of the results concerning
the fold–fold singularity were obscure and unfinished. Many works appeared lately
trying to explain it (see [7, 8, 11, 21, 27]).

In [27], Teixeira established necessary conditions for the structural stability of the
fold–fold singularity and he proved that it is not a generic property. Nevertheless,
the case of the invisible fold–fold point having a hyperbolic first return map was not
understood. He also provided results concerning asymptotic stability.

In [7, 8, 11], Jeffrey et al. also studied the problem of classification of the
structural stability around a fold–fold singularity. More specifically, in [11], the
authors studied the behavior of a 2-parameter semi-linear model Zα,β having a
T-singularity at Z0,0. By studying the first return map explicitly, they have found
countably many curves γk in a region of the parameter space, where the topological
type βk of a system in γk satisfies βk �= βl provided k �= l. Moreover, they predict
the existence of classes of structural stability between the curves γk in this region.

Guided by these results, we show that in the region of the parameter space
considered in [11], a general Filippov system Z having a T-singularity at p always
has a first return map with complex eigenvalues. It brings several consequences to
the behavior of Z around p; in particular, it produces a foliation of this region in the
parameter space depending on the argument of the eigenvalues of Z, such that two
systems in different leaves are not topologically equivalent near the T-singularity,
which means that there is no class of stability in this region of parameters. It provides
a negative answer to the questions raised in [11] concerning to the validity of the
results for general Filippov systems around a T-singularity.

A 3D-fold–fold singularity is an intriguing phenomenon that has no counterparts
in smooth systems, and the complete characterization of the local structural stability
of a 3D-nonsmooth system around an elliptic fold–fold singularity has been an
open problem over the last 30 years. In this work, we believe that all existing
mathematical gaps were filled up and the precise statement of results and proofs
were well established.
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It is worth to mention that the methods and techniques used in this paper provide
a solution from a geometric–topological point of view. In addition, we present a
generic and qualitative characterization of a fold–fold singularity, in order to clarify
any fact concerning the generality of the results.

2 Setting the Problem

In what follows, we summarize a rough overall description of the basic concepts
and results in order to set the problem.

2.1 Filippov Systems

For simplicity, let M be a connected bounded region of R3 and let f : M → R be
a smooth function having 0 as a regular value, therefore Σ = f−1(0) is a compact
embedded codimension one submanifold of M which splits it in the sets M± =
{p ∈ M;±f (p) > 0}.

Denote the set of germs of vector fields of class C r at Σ by χr . Endow χr with
the C r topology and consider Ωr = χr × χr with the product topology.

If Z = (X, Y ) ∈ Ωr , then a nonsmooth vector field is defined in some
neighborhood V of Σ inM as follows:

Z(p) = F(p)+ sgn(f (p))G(p), (1)

where F(p) = X(p)+Y (p)
2 and G(p) = X(p)−Y (p)

2 .

Definition 1 The Lie derivative of f in the direction of the vector field X ∈ χr at
p ∈ Σ is defined by Xf (p) = X(p) · ∇f (p). The tangency set of X with Σ is
given by SX = {p ∈ Σ; Xf (p) = 0}.

If X1, . . . , Xn ∈ χr , the higher order Lie derivatives are defined as:

Xn . . . X1f (p) = Xn(Xn−1 . . . X1f )(p),

that is, Xn . . . X1f (p) is the Lie derivative of the smooth function Xn−1 . . . X1f

in the direction of the vector field Xn at p. In particular, Xnf (p) denotes the Lie
derivative Xn . . . X1f (p), where Xi = X, for i = 1, . . . , n.

If Z = (X, Y ) ∈ Ωr , then the switching manifold Σ generically splits into three
distinct open regions (Fig. 1):
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(a () b () c)

Σ

X

Y

Fig. 1 Regions in Σ : Σc in (a), Σss in (b), and Σus in (c)

• Crossing Region: Σc = {p ∈ Σ; Xf (p)Yf (p) > 0};
• Stable Sliding Region: Σss = {p ∈ Σ; Xf (p) < 0, Yf (p) > 0};
• Unstable Sliding Region: Σus = {p ∈ Σ; Xf (p) > 0, Yf (p) < 0}.

Consider the sliding region of Z as Σs = Σss ∪Σus .
The tangency set of Z will be referred as SZ = SX ∪ SY . Notice that Σ is the

disjoint union Σc ∪Σss ∪Σus ∪ SZ .
The concept of solution of Z follows Filippov’s convention. More details can be

found in [10, 12, 30].
We highlight that the local solution of Z = (X, Y ) ∈ Ωr at a point p ∈ Σs is

given by the sliding vector field:

FZ(p) = 1

Yf (p)−Xf (p) (Yf (p)X(p)−Xf (p)Y (p)) . (2)

Remark 1 Notice that FZ is a vector field tangent to Σs . The singularities of FZ in
Σs are called pseudo-equilibria of Z.

Definition 2 If p ∈ Σs , the normalized sliding vector field is defined by:

FNZ (p) = Yf (p)X(p)−Xf (p)Y (p). (3)

Remark 2 If R is a connected component of Σss , then FNZ is a re-parameterization
of FZ in R, and they have exactly the same phase portrait. If R is a connected
component of Σus , then FNZ is a (negative) re-parameterization of FZ in R, then
they have the same phase portrait, but the orbits are oriented in opposite direction.

If Z = (X, Y ) ∈ Ωr , consider all the integral curves of X inM+, all the integral
curves of Y in M−, and the integral curves of FZ in Σs . In this work, any oriented
piecewise smooth curve passing through q is considered as a solution of Z through
q.

2.2 Σ-Equivalence

An orbital equivalence relation is defined in Ωr(M) as follows:
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Definition 3 Let Z0, Z ∈ Ωr be two germs of nonsmooth vector fields. We say
that Z0 is topologically equivalent to Z at p if there exist neighborhoods U and V
of p inM and an order-preserving homeomorphism h : U → V such that it carries
orbits of Z0 onto orbits of Z, and it preserves Σ , i.e., h(Σ ∩ U) = Σ ∩ V .

The concept of local structural stability at a point p ∈ Σ is defined in the natural
way.

Definition 4 Z0 ∈ Ωr is said to be Σ-locally structurally stable if Z0 is locally
structurally stable at p, for each p ∈ Σ .

Denote the space of germs of nonsmooth vector fields Z ∈ Ωr which are Σ-
locally structurally stable by Σ0.

2.3 Reversible Mappings

We introduce concepts which will be useful throughout this work. More details can
be found in [38, 40].

Definition 5 A germ of an involution at 0 is a C r germ of a diffeomorphism ϕ :
R

2 → R
2 such that ϕ(0) = 0, ϕ2(x, y) = (x, y), and det[ϕ′(0, 0)] = −1.

The set of all germs of involutions at 0 is denoted by I r and it is endowed with
the C r topology. ConsiderWr = I r × I r endowed with the product topology.

Definition 6 Let ϕ = (ϕ0, ϕ1), ψ = (ψ0, ψ1) ∈ Wr be two pairs of involutions
at 0. Then, ϕ and ψ are said to be topologically equivalent at 0 if there exists a
germ of a homeomorphism h : (R2, 0) → (R2, 0) which satisfies hϕ0 = ψ0h and
hϕ1 = ψ1h, simultaneously.

The local structural stability of a pair of involutions inWr is defined in the natural
way. The proof of the next theorem can be found in [24] as well as more details about
involutions.

Theorem 1 A pair of involutions (ϕ, ψ) is locally and simultaneous structurally
stable at 0 if and only if 0 is a hyperbolic fixed point of the composition ϕ ◦ ψ .
Moreover, the structural stability in the space of pairs of involutions is not a generic
property.

3 Generic Singularities

In this section, we present the classification of the generic points of Σ .

Definition 7 Let Z = (X, Y ) ∈ Ωr , a point p ∈ Σ is said to be a tangential
singularity of Z if Xf (p)Yf (p) = 0 and X(p), Y (p) �= 0.
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Definition 8 Let Z = (X, Y ) ∈ Ωr , a point p ∈ Σ is said to be aΣ-singularity of
Z if p is either a tangential singularity or a pseudo-equilibrium of FZ . Otherwise, it
is said to be a regular–regular point of Z

Definition 9 Let Z = (X, Y ) ∈ Ωr . A tangential singularity p ∈ Σ is said to be
elementary if it satisfies one of the following conditions:

(FR) - Xf (p) = 0, X2f (p) �= 0, and Yf (p) �= 0 (resp. Xf (p) �= 0, Yf (p) = 0,
and Y 2f (p) �= 0). In this case, p is said to be a fold–regular (resp. regular–fold)
point of Σ .

(CR) - Xf (p) = 0, X2f (p) = 0, X3f (p) �= 0, and Yf (p) �= 0 (resp. Xf (p) �=
0, Yf (p) = 0, Y 2f (p) = 0, and Y 3f (p) �= 0), and {df (p), dXf (p), dX2f (p)}
(resp. {df (p), dYf (p), dY 2f (p)}) is a linearly independent set. In this case, p
is said to be a cusp–regular (resp. regular–cusp) point of Σ .

(FF) - If Xf (p) = 0, X2f (p) �= 0, Yf (p) = 0, Y 2f (p) �= 0, and SX � SY at p.
In this case, p is said to be a fold–fold point of Σ .

Definition 10 Define Ξ0 as the set of all germs of nonsmooth vector fields Z ∈ Ωr
such that, for each p ∈ Σ , either p is a regular–regular point of Z or p is an
elementary tangential singularity.

From [31], we derive the following result:

Proposition 1 Ξ0 is an open dense set of Ωr .

In order to classify Σ0, we assume, without loss of generality, that p is either a
regular–regular point or an elementary tangential singularity.

The next step is devoted to characterize the locally structurally stable systems at
generic singularities.

Lemma 3.1 Let Z = (X, Y ) ∈ Ωr and assume that R is a connected component
of Σs . Then:

1. The sliding vector field FZ is of class C r and it can be smoothly extended beyond
the boundary of R.

2. If p ∈ ∂R is a fold–regular point of Z, then FZ is transverse to ∂R at p.
3. If p ∈ ∂R is a cusp–regular point of Y , then FZ has a quadratic contact with ∂R

at p.

This result is proved in [27]. It is a very useful tool to construct topological
equivalences.

Theorem 2 Let Z = (X, Y ) ∈ Ωr , then:

1. Z is locally structurally stable at a regular–regular point p ∈ Σ if and only if
p ∈ Σc or p ∈ Σs and, in the second case, p is either a regular point or a
hyperbolic singularity of FZ .

2. Z is locally structurally stable at any fold–regular singularity p ∈ Σ .
3. Z is locally structurally stable at any cusp–regular singularity p ∈ Σ .

The proof of this result can be found in [10, 12].
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4 Statement of the Main Results

Define the following subsets of Ωr :

• Σ(G): Z ∈ Ωr such that each point p ∈ Σ is either a tangential singularity or a
regular–regular point.

• Σ(R): Z ∈ Ωr such that for each regular–regular point p ∈ Σ of Z we have
either p ∈ Σc or p ∈ Σs and, in the second case, p is either a regular point or a
hyperbolic singularity of FZ;

• Σ(H): Z ∈ Ωr such that for each visible fold–fold point p ∈ Σ , the normalized
sliding vector field FNZ has no center manifold in Σs .

• Σ(P ): Z ∈ Ωr such that for each invisible–visible point p ∈ Σ , the normalized
sliding vector field FNZ is either transient in Σs or it has a hyperbolic singularity
at p. Moreover, if φX is the involution associated to Z, then it satisfies:

1. φX(SY ) � SY at p;
2. FNZ and φ∗

XF
N
Z are transversal at each point of Σss ∩ φX(Σus);

3. φX(SY ) � FNZ in a neighborhood of p.

• Σ(E): Z ∈ Ωr such that for each T-singularity p ∈ Σ , the first return map φZ
associated to Z has a fixed point at p of type saddle with both local invariant
manifoldsWu,s

loc contained in Σc.

Remark 3 If Z has a visible–invisible fold–fold singularity at p, then the roles ofX
and Y in the condition Σ(P ) are interchanged.

The main result of this work is the following theorem.

Theorem 3 Z ∈ Ωr is locally structurally stable at a T-singularity p if and only if
it satisfies condition Σ(E) at p.

The following theorem is proved in [7, 10] and a detailed proof clarifying some
obscure points is presented.

Theorem 4

i) Z ∈ Ωr is locally structurally stable at a hyperbolic fold–fold singularity p if
and only if it satisfies condition Σ(H) at p.

ii) Z ∈ Ωr is locally structurally stable at a parabolic fold–fold singularity p if
and only if it satisfies condition Σ(P ) at p.

Theorem 5 Σ0 = Σ(G) ∩Σ(R) ∩Σ(H) ∩Σ(P ) ∩Σ(E).
Theorem 6 Σ0 is not residual in Ωr .

As a corollary of the characterization Theorem 5, we obtain:

Corollary 4.1

i) Σ0 is an open dense set in Σ(E). Moreover, Σ(E) is maximal with respect to
this property.
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ii) If Z /∈ Σ(E), then Z has ∞-moduli of stability.

In addition, if Z has a T-singularity at p and φZ has complex eigenvalues, then
a neighborhood V of Z in Ωr is foliated by codimension one submanifolds of Ωr

corresponding to the value of the argument of the eigenvalues of the first return map.
Moreover, the topological type along the corresponding leaf is locally constant.

We conclude that the local behavior around a T-singularity implies in the non-
genericity of Σ0 in Ωr .

5 Fold–Fold Singularity

5.1 A Normal Form

In this section, we derive a normal form to study the fold–fold singularity and we
present some consequences. This section is mainly motivated by the normal form of
a fold point obtained by S. M. Vishik in [31] and some variants such as [7, 10, 11].

Proposition 2 If Z = (X, Y ) ∈ Ωr is a nonsmooth vector field having a fold–fold
point at p such that SX � SY at p, then there exist coordinates (x, y, z) around p
such that f (x, y, z) = z and Z is given by:

X(x, y, z) =
⎛

⎝
α

1
δy

⎞

⎠ and Y (x, y, z) =
⎛

⎝
γ + O(|(x, y, z)|)
β + O(|(x, y, z)|)
x + O(|(x, y, z)|2)

⎞

⎠ , (4)

where δ = sgn(X2f (p)), sgn(γ ) = sgn(Y 2f (p)), α, β, γ ∈ R.

Proof (Outline) Use the coordinates (x, y, z) of Theorem 2 from [31] to put X in
the form X(x, y, z) = (0, 1, δy) and f (x, y, z) = z. Now, consider the Taylor
expansion of Y in this coordinate system and perform changes to put Yf (x, y, z) =
x + O(|(x, y, z)|2).
Definition 11 If Z ∈ Ωr has a fold–fold singularity at p, then the coordinate
system of Proposition 2 will be called normal coordinates of Z at p and the
parameters of Z in the normal coordinates will be referred as normal parameters
of Z at p. Denote Z = Z(α, β, γ ).
Remark 4 If γ = ±1, α = V +, and β = V −, then this normal form and the model
used in [7, 8, 11] have the same semi-linear part. Geometrically, V + (V −) measures
the cotangent of the angle θ+ (θ−) between X(0) (Y (0)) and the fold line SX (SY ).
See [8] for more details.

Corollary 5.1 If Z = (X, Y ) ∈ Ωr is a nonsmooth vector field having a fold–fold
point at p such that SX � SY at p, then there exist coordinates (x, y, z) around p
defined in a neighborhood U of p inM , such that:
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1. f (x, y, z) = z;
2. SX ∩ U = {(x, 0, 0); x ∈ (−ε, ε)}, for ε > 0 sufficiently small;
3. SY ∩ U = {(g(y), y, 0); y ∈ (−ε, ε)}, for ε > 0 sufficiently small, where g is a

C r function such that g(y) = O(y2), i.e., SY0 is locally a smooth curve tangent
to the y-axis.

Proof (Outline) It follows directly from Proposition 2 and the Implicit Function
Theorem.

Proposition 3 Let Z = (X, Y ) ∈ Ωr be a nonsmooth vector field having a fold–
fold point at p such that SX � SY at p. Then, the normalized sliding vector field of
Z has a singularity at p and it is given by

FNZ (x, y) =
(
α −δγ
1 −δβ

)

·
(
x

y

)

+ O(|(x, y)|2), (5)

in the normal coordinates of Z at p, where δ = sgn(X2f (p)), sgn(γ ) =
sgn(Y 2f (p)), α, β, γ ∈ R.

Proof (Outline) It follows directly from the expression of Z in this coordinate
system.

Finally, we can classify a fold–fold singularity in four topologically distinct
classes:

Definition 12 A fold–fold point p of Z = (X, Y ) ∈ Ωr is said to be:

• a visible fold–fold if X2f (p) > 0 and Y 2f (p) < 0;
• an invisible–visible fold–fold if X2f (p) < 0 and Y 2f (p) < 0;
• a visible–invisible fold–fold if X2f (p) > 0 and Y 2f (p) > 0;
• an invisible fold–fold if X2f (p) < 0 and Y 2f (p) > 0, in this case, p is also

called a T-singularity.

Remark 5 Notice that the visible–invisible case can be obtained from the invisible–
visible one by performing an orientation reversing change of coordinates. Also, we
refer to a visible, invisible–visible/visible–invisible, invisible fold–fold point as a
hyperbolic, parabolic, elliptic fold–fold point, respectively (Fig. 2).

(a) (b) (c) (d)

Σ

X

Y

Fig. 2 Fold–fold singularity: (a) hyperbolic, (b) and (c) parabolic, and (d) elliptic
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5.2 Sliding Dynamics

In this subsection, we discuss the sliding dynamics around a fold–fold singularity.
This is a matured topic which has been well developed in [8, 10, 28].

From Proposition 2 and Lemma 3.1, we already know the behavior of the sliding
vector field near a fold–fold singularity in a generic scenario (not only for the
truncated system).

Let Z = Z(α, β, γ ) ∈ Ωr having a fold–fold singularity at p, and consider its
normalized sliding vector field FNZ in normal coordinates.

Consider:

R1
E = {(α, β, γ ) ∈ R

2 ×R+; αβ > γ and α < 0, β < 0}
R2
E = R

2 ×R+ \ R1
I

R1
H = {(α, β, γ ) ∈ R

2 ×R−; αβ < γ and α > 0, β < 0}
R2
H = R

2 ×R− \ R1
V

R1
P = {(α, β, γ ) ∈ R

2 ×R−; αβ < γ and β − α > −2
√−γ }

R2
P = {(α, β, γ ) ∈ R

2 ×R−; αβ < γ and α > 0}
R3
P = {(α, β, γ ) ∈ R

2 ×R−; αβ > γ, β + α > 0 and β − α < −2
√
γ }

R4
P = {(α, β, γ ) ∈ R

2 ×R−; αβ > γ, β + α < 0 and β − α < −2
√−γ }

We claim that:

Claim 1 If p is an elliptic fold–fold singularity and (α, β, γ ) ∈ R1
E , then FZ has an

invariant manifoldW in Σs passing through p and each orbit of FZ is transverse to
SZ and reaches p asymptotically toW (for a finite positive time inΣss and negative
time in Σus).

Claim 2 If p is an elliptic fold–fold singularity and (α, β, γ ) ∈ R2
E , then FZ has

an invariant manifoldW in Σs passing through p and each orbit is transverse to SZ
and does not reach p, with exception ofW .

Claim 3 If p is a hyperbolic fold–fold singularity and (α, β, γ ) ∈ R1
H (resp.

(α, β, γ ) ∈ R2
H ), then FZ is of the same type of claim 1 (resp. claim 2) for reverse

time.

Claim 4 If p is a parabolic fold–fold singularity and (α, β, γ ) ∈ R1
P , then each

orbit in Σss (resp. Σus) is transverse to SX (resp. SY ) and reaches SY (resp. SX)
transversally for a positive finite time. In this case, we say that FZ has transient
behavior in Σs .

Claim 5 If p is a parabolic fold–fold singularity and (α, β, γ ) ∈ R2
P , then there

exist two invariant manifolds W1 and W2 in Σs passing through p which divide
Σss (and Σus) in three sectors. The intermediate sector is of hyperbolic type and in
the other sectors the orbits are transversal to SZ and go away from p (the orientation
of the orbits is given in Fig. 3).
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E
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H
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H
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R4
P

R3
P

R1
P

α αα

β ββ

Fig. 3 Sliding dynamics near a fold–fold singularity of type elliptic (a), hyperbolic (b), and
parabolic (c). In each case, the regions above are outlined in the (α, β)-parameter space for a
fixed value of γ

Claim 6 If p is a parabolic fold–fold singularity and (α, β, γ ) ∈ R3
P then there

exist two invariant manifolds W1 and W2 in Σs passing through p which divide
Σss in three sectors. In the intermediate sector, each orbit reaches p for a finite
positive time asymptotically toW1. In the left one, each orbit is transverse to SY and
reaches p for a finite positive time asymptotically toW1. In the right one, each orbit
is transverse to SX and goes away from p. The behavior in Σus is similar and can
be seen in Fig. 3.

Claim 7 If p is a parabolic fold–fold singularity and (α, β, γ ) ∈ R4
P , then FZ has

the same behavior as in claim 6 for reverse time and changing the role of W1 and
W2, SX and SY , right and left.

Claim 8 If (α, β, γ ) is not in any of these regions, then FZ presents bifurcations in
Σs .

All these claims can be straightforwardly verified by analyzing the linear part of
the normalized sliding vector field FNZ . We omitted the proofs due to the limitation
of space.

6 Proofs of Theorems 3 and 4

This section is devoted to prove Theorems 3 and 4. In the sequel, we develop some
Lemmas and Propositions which will lead us to the proof of the Theorems.
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Assume that Z ∈ Ωr has a T-singularity at p. Therefore, we have a first return
map φ of Z defined around p. In order to study the local structural stability of Z, it
will be crucial to study the dynamics of φ. Now, we derive the existence and some
properties of ϕ.

Lemma 6.1 Let Z = (X, Y ) ∈ Ωr be a nonsmooth vector field having a T-
singularity at p such that SX � SY at p. There exist two involutions φX : (Σ, p)→
(Σ, p) and φY : (Σ, p)→ (Σ, p) associated to the folds X and Y such that:

• Fix(φX) = SX;
• Fix(φY ) = SY ;
• φ = φX ◦ φY is a first return map of Z such that φ(p) = p.

The proof of Lemma 6.1 can be found in [5] (Lemma 1). A straightforward
verification shows the following results.

Lemma 6.2 If φ = ϕ ◦ψ , where ϕ and ψ are involutions of R2 at 0, then φn ◦ϕ =
ϕ ◦ φ−n and ψ ◦ φn = φ−n ◦ ψ, for each n ∈ Z.

Proposition 4 If φ = ϕ ◦ ψ , where ϕ and ψ are involutions of Σ at p, then the
invariant manifolds Ws and Wu of φ at p are interchanged by ϕ and ψ in the
following way:

ψ(Ws) ⊂ Wu and ϕ(Wu) ⊂ Ws.

Now, using the normal coordinates of Z = (X, Y ) at an elliptic fold–fold
singularity, we obtain the following expressions for the associated involutions.

Lemma 6.3 Let Z = (X, Y ) ∈ Ωr be a nonsmooth vector field having a T-
singularity at p such that SX � SY at p. Consider the normal coordinates (x, y, z)
of Z at p. Then, the involutions φX and φY are given by

φX(x, y) = (x − 2αy,−y) and φY (x, y) =
(

−x,−2β

γ
x + y

)

+ h.o.t., (6)

in these coordinates, where α, β, γ are the normal parameters of Z at p.

Finally, we associate the local structural stability of Z at an elliptic fold–fold
singularity with the local structural stability of the pair of involutions associated to
Z.

Lemma 6.4 Let Z0 = (X0, Y0) ∈ Ωr such that p is a T-singularity for Z0. If
Z0 is locally structurally stable at p in Ωr , then the pair of involutions (φX0 , φY0)

associated to Z0 is locally and simultaneously structurally stable at 0 inWr .

Proof In fact, since p is a T-singularity of Z0, there exist neighborhoods V of Z0
in Ωr and V of p in M , such that each Z ∈ V has a unique Teixeira singularity at
q(Z) ∈ V ∩Σ .

Consider the map F : V → Wr given by:
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F(X, Y ) = (φX, φY ), (7)

where φX and φY are the involutions at (0, 0) of R
2 associated to X and Y ,

respectively.
From the continuous dependence of solutions with respect to initial conditions

and parameters, it follows that F is a continuous map.
Moreover, there exists a neighborhood U of (φX0 , φY0) in Wr , such that, for

each (τ, ψ) ∈ U , there exists a vector field Z = (X, Y ) ∈ V such that τ = φX and
ψ = φY , and it can be done in a continuous fashion.

Then, reducing V if necessary, it follows that F : V → Wr is an open
continuous map.

Since Z0 is locally structurally stable at p in Ωr , V can be reduced such that
every Z ∈ V is topologically equivalent to Z0.

Thus, if Z ∈ V , there exist a fold–fold singularity q(Z) ∈ Σ of Z (with the same
type of p) and a topological equivalence h : (V1, p)→ (V2, q(Z)) between Z0 and
Z, where V1 and V2 are neighborhoods of p inM , such that q(Z) ∈ V2.

In particular, it induces a homeomorphism h : Σ ∩ V1 → Σ ∩ V2 such that
h(p) = q(Z). Using coordinates, (x, y, z) around p and (u, v,w) around q(Z)
such that f (x, y, z) = z and f (u, v,w) = w, the induced homeomorphism h can
be seen as h : U1 → U2, where U1 and U2 are neighborhoods of (0, 0) in R

2 and
h(0, 0) = (0, 0).

Now, given (x, y) ∈ Σ − SX0 (sufficiently near from (0, 0)), it follows from the
definition of the involution φX0 that the points (x, y) and φX0(x, y) are connected by
an orbit γ0 ofX0 contained inM+. Analogously, the points h(x, y) and φX(h(x, y))
are connected by an orbit γ of X contained inM+.

Since h is a topological equivalence such that h(Σ) ⊂ Σ , it follows that h(γ0) =
γ and

h(φX0(x, y)) = φX(h(x, y)). (8)

It is trivial to see that (8) is also true when (x, y) ∈ SX0 , by observing that
h(SX0) = SX. Hence, h is an equivalence between the germs of involution φX0 and
φX.

Analogously, by changing the roles of X and Y , it can be shown that h is also an
equivalence between the involutions φY0 and φY .

We conclude that h is a (simultaneous) topological equivalence between the pairs
of involutions (φX0 , φY0) and (φX, φY ).

Since Z is arbitrary in V , it follows that every pair of involutions in U is
topologically equivalent to (φX0 , φY0), and since U is open in Wr , it follows that
(φX0 , φY0) is local and simultaneous structurally stable inWr .

The following result is obtained by combining Theorem 1 and Lemma 6.4.
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NH- Non-hyperbolic

Fig. 4 Regions of the (α, β)-parameter space with the corresponding behavior of the first return
map ϕ, for a fixed value of γ > 0

Proposition 5 Let Z0 ∈ Ωr having a T-singularity at p, and let (φX0, φY0) be the
pair of involutions of R2 at (0, 0) associated to Z0. If 0 is not a hyperbolic fixed
point of φY0 ◦ φX0 , then Z0 is locally structurally unstable at p.

A simple computation of eigenvalues and eigenvectors allows us to study the
fixed point p of the first return map φ:

Lemma 6.5 Let Z = (X, Y ) ∈ Ωr be a nonsmooth vector field having a T-
singularity at p such that SX � SY at p. Let (α, β, γ ) be the normal parameters
of Z at p.

1. If αβ(αβ − γ ) ≤ 0, then 0 is not a hyperbolic fixed point of φ. In addition, if
αβ(αβ − γ ) < 0, then φ has complex eigenvalues.

2. If αβ(αβ − γ ) > 0, then 0 is a saddle point of φ (Fig. 4). In addition, if λ,μ are
the eigenvalues of φ such that |μ| < 1 < |λ|, and vμ, vλ are the correspondent
eigenvectors, then:

a. If α > 0 and β > 0, then vμ, vλ ∈ Σs .
b. If α > 0 and β < 0, then vμ ∈ Σc and vλ ∈ Σs .
c. If α < 0 and β > 0, then vμ ∈ Σs and vλ ∈ Σc.
d. If α < 0 and β < 0 then vμ, vλ ∈ Σc.

Proposition 6 LetZ0 = (X0, Y0) ∈ Ωr be a germ of nonsmooth vector field having
a T-singularity at p. Let (α, β, γ ) be the normal parameters of Z0 at p. If αβ(αβ −
γ ) ≤ 0, then Z0 is locally structurally unstable at p.

Proof It follows directly from Proposition 5 and the fact that p is not a hyperbolic
fixed point of the first return map φ0 = φX0 ◦ φY0 associated to Z0. In the sequel,
we present an explicit argument for the local structural instability of Z0. It is mainly
based on [4] and the Blow-up procedure (see [2]).

Let φ0 : (Σ, p) → (Σ, p) be the (germ of) first return map associated to Z0 at
p. From the conditions assumed in the Theorem, it follows that φ0 has eigenvalues
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λ± = a ± ib, where a2 + b2 = 1. Using the normal form of Z0 and basic linear
algebra, it is easy to find coordinates (x, y) of Σ at p, such that:

φ0(x, y) = (ax − by, bx + ay)+ O(|(x, y)|2).

Consider the germs of functions h1, h2 : (R2, 0)→ (R2, 0), given by:

h1(x, y) = (x, y) and h2(x, y) =
√

x2 + y2(x, y).

Notice that h1, h2 are germs of homeomorphisms if we exclude the origin in their
domains.

If (x, y) �= (0, 0), a straightforward computation shows that:

ψ0(x, y) = h−1
2 ◦ φ0 ◦ h1(x, y) = 1

√
x2 + y2

φ0(x, y).

Therefore, φ0 and ψ0 are topologically equivalent. Using the polar change of
coordinates ζ(r, θ) = (r cos(θ), r sin(θ)), where r > 0 and θ ∈ R/2πZ, we write
ψ0 ◦ ζ as

ψ0 ◦ ζ(r, θ) =
(

cos(θ + τ)
sin(θ + τ)

)

+ O(r),

where a + ib = eiτ .
If r → 0, ζ blows up the singularity r = 0 into the circle S1 = R/2πZ, and the

map ζ−1 ◦ ψ0 ◦ ζ induces a dynamics in S1 given by (Fig. 5)

ψ0([θ ]) = [θ + τ ].

Let Z be a small perturbation of Z0, take it small enough such that the normal
parameters (α̃, β̃, γ̃ ) of Z are close enough to (α, β, γ ).

If φ is the first return map associated to Z at the fold–fold point q(Z) ≈ p, then
it has eigenvalues λ̃± = ã ± ib̃.

Fig. 5 Blowup of p into S1
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Applying the same procedure to φ, we can blow up its singularity q(Z) into S1,
and the dynamics in S1 is induced by ψ : S1 → S1, given by ψ(θ) = θ + τ̃ , where
ã + ib̃ = eiτ̃ .

Now, if h : V (p) → V (q(Z)) is an equivalence between Z0 and Z, then
h(SX0) = SX. In adequate coordinates, it means that h(x, 0) = (f (x), 0), where
f is a homeomorphism of the real line such that f (0) = 0.

Notice that the motion of SX0 ∩ {x ≥ 0} (resp. SX ∩ {x ≥ 0}) around the
origin through φ0 (resp. φ) is given by the orbit γ0 = {ψ0

n
(0), n ∈ Z} (resp.

γ = {ψn(0), n ∈ Z}).
Since h is an equivalence, it follows that the orbits γ0 and γ have the same

topology. Nevertheless, if τ ∈ Q (resp. τ /∈ Q), we can take Z (sufficiently near
of Z0) such that τ̃ /∈ Q (resp. τ̃ ∈ Q). Therefore, γ0 is a periodic orbit and γ is
dense in S1 (resp. γ0 is dense in S1 and γ is a periodic orbit).

It means that, when τ ∈ Q (and γ0 is periodic), the curves φn(SX) are tangent to
a finite number of directions at p, i.e., there existm vectors v1, . . . , vm in TpΣ such
that Tpφn(SX) = span{vi(n)}, for some i(n) ∈ {1, . . . , m}, for each n ∈ N. Hence,
we conclude that

⋃
φn(SX) has zero measure in Σ .

On the other hand, if τ /∈ Q (and γ0 is dense), we have that for each v ∈ TpΣ ,
there exist a sequence φnk (SX), such that Tpφnk (SX) = span{vk}, and vk → v when
k → ∞. We conclude that

⋃
φn(SX) has full measure in Σ .

From these facts, we can see that the orbits φn0 (SX0) and φn(SX) do not have the
same topology (Fig. 6).

Now, aΣ-equivalence betweenZ0 andZ has to satisfy h(SX0) = SX and h◦φ0 =
φ◦h. Since φn0 (SX0) and φn(SX) have different topological type, it follows that there
is no Σ-equivalence between Z0 and Z.

We conclude that, in any neighborhood of Z0 in Ωr we can find a nonsmooth
vector field Z such that Z0 is not topologically equivalent to Z at p. Therefore, Z0
is locally structurally unstable at p.

SX

φ(SX )φ2(SX )

φn(SX )

SX

p

θ0Blow-up of p

Fig. 6 Behavior of SX when θ /∈ Q
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Remark 6 Let τZ be the argument of the eigenvalues a ± ib of the first return map
φ associated to Z.

If Z0 is a nonsmooth vector field satisfying the hypotheses of Proposition 6, then
a neighborhood V0 of Z0 inΩr is foliated by codimension one submanifolds ofΩr

corresponding to the value of τZ , i.e., Z1 ∈ V0 and Z2 ∈ V0 lie on the same leaf if
and only if τZ1 = τZ2 .

The topological type of the first return map is locally constant along each leaf.
Moreover, if Z1 and Z2 are elements of V0 lying on different leaves of the foliation,
then they are not topologically equivalent.

We conclude that Z0 has ∞-moduli of stability. (See [4, 16, 17] for more details.)

Now, we can prove Theorem D.

Theorem 7 Σ0 is not residual in Ωr .

Proof (Proof of Theorem D) It follows directly from Theorem 6. In fact, letZ0 ∈ Ωr
and let (α0, β0, γ0) be the normal parameters of Z0 at p, they satisfy α0β0(α0β0 −
γ0) < 0.

From continuity (and Implicit Function Theorem), there exist neighborhoods V
of Z0 in Ωr and V of p inM , such that each Z has a T-singularity at q(Z) ∈ V .

Moreover, if we apply Proposition 2 to Z at q(Z), the normal parameters
(α, β, γ ) of Z at q(Z) also satisfy αβ(αβ − γ ) < 0.

From Theorem 6, each Z ∈ V is locally structurally unstable at the fold–fold
singularity q(Z) ∈ V ∩Σ . It means that each Z ∈ V is locally structurally unstable
at a point q(Z) ∈ Σ , hence each Z ∈ V is Σ-locally structurally unstable. Thus,
V ⊂ Ωr \Σ0 and Σ0 is not residual in Ωr .

Notice that the results obtained until this point are mainly concerned with the
foliation F generated by a nonsmooth vector field near a T-singularity. The sliding
dynamics does not have influence on these results. Nevertheless, the existence of
sliding vector fields will be extremely important in the classification of the structural
stability of a T-singularity having a first return map with hyperbolic fixed point.

Proposition 7 LetZ0 = (X0, Y0) ∈ Ωr be a germ of nonsmooth vector field having
a T-singularity at p. Let (α, β, γ ) be the normal parameters of Z0 at p. If either
αβ ≥ γ and α, β > 0 or αβ < 0, then Z0 is locally structurally unstable at p.

Proof In the conditions of the theorem, we can use Lemma 6.5 to conclude that the
first return map φ0 of Z0 has a local invariant manifold of the saddle contained in
Σs .

Without loss of generality, assume thatWs ⊂ Σs . Notice that the map φ2
0 has the

same invariant manifolds of φ0, but it has both positive eigenvalues 0 < λ < 1 < μ.
Generically (i.e., Ws � W at p, where W is the invariant manifold of claim 2 in

Sect. 5.2), we have that the sliding vector field F0 of Z0 is transverse to Ws ∩ Σss
for a small neighborhood of p. Let V = U ∩Σs , where U is a neighborhood of p
such that F0 is transverse toWs ∩ V (Fig. 7).

Since λ > 0, we have that φ2
0(W

s) ⊂ φ2
0(V ) ∩ V.Moreover,
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Fig. 7 Vector field F0 near
Ws

p

SY

SX

Ws

φ2n
0 (W

s) ⊂ φ2n
0 (V ) ∩ φ2(n−1)

0 (V ) ∩ · · · ∩ φ2
0(V ) ∩ V,

for each n ∈ N.
Let Rn be the open set φ2n

0 (V ) ∩ φ2(n−1)
0 (V ) ∩ · · · ∩ φ2

0(V ) ∩ V . Notice that, in
each region φ2i

0 (V ), we have a (push-forwarded) vector field

Fi = (φ2i
0 )

∗(F0),

defined on it. Therefore, there are n + 1 vector fields defined on Rn. Moreover, we
can reduce Rn such that Fi and Fj are transversal at each point of Rn, for i �= j ,
generically. In fact, consider the expressions of φX, φY , and FNZ in the normal
coordinates. Consider the curves γ±(t) = tv±, where v± are the eigenvectors
associated to the eigenvalues λ± of dφ2

0 . A simple computation shows that:

F±
ij (t) = det(Fi(γ±(t)), Fj (γ±(t))) = A±

ij (α, β, γ )t
2 + O(t3),

where A±
ij is a rational function depending on α, β, and γ .

Clearly, if A±
ij �= 0, then Fi and Fj are transversal in a neighborhood of γ±. In

particular, they are transversal in a neighborhood ofWs .
SinceA±

ij = 0, for each i, j = 0, 1, 2, defines a zero measure set in the parameter
space (α, β, γ ), we achieved our goal.

Notice that each vector field Fi in Rn defines a codimension one foliation Fi

of Rn (Rn is foliated by the integral curves of the vector field Fi). Moreover,
(F0, . . . ,Fn) is in general position (by the reduction of Rn). In particular, for
n = 2, we obtain 3 foliations (F0,F1,F2) of R2. This is called a 3-web in R2
(see [3] and [20]) (Fig. 8).

Since R2 is a 2-dimensional manifold, it follows that these foliations are
structurally unstable in the following sense. If (F̃0, F̃1, F̃2) are the foliations
correspondent to a nonsmooth vector field Z̃ ≈ Z0, then there exists at least one
Z̃ such that there is no homeomorphism h : R2 → R̃2 satisfying h(Fi ) = F̃i , for
every i = 0, 1, 2, preserving the leaves of each foliation.

Clearly, the property above has to be preserved by a Σ-equivalence, hence there
exists a Z sufficiently near of Z0 which is topologically different from Z0 near p.
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The instability of Z0 at p follows directly from these facts.

Remark 7 In general, the Theory of Webs used in the last Theorem is developed
for foliations on C

n. Nevertheless, we can identify Σ with C at p (since Σ is 2-
dimensional) and apply the results of this theory for this case.

Now, let Z0 = (X0, Y0) ∈ Ωr be a germ of nonsmooth vector field having a
Teixeira singularity at p. Let (α, β, γ ) be the normal parameters of Z0 at p and
assume that αβ ≥ γ and α, β < 0.

Let Z ∈ Ωr be any small perturbation of Z0 and denote their first return maps by
φ and φ0, respectively. Our goal is to construct a topological equivalence between
Z and Z0.

Using the Implicit Function Theorem and the continuous dependence between
Z0 and its normal parameters, we can deduce the following result.

Lemma 6.6 There exists a neighborhood V of Z0 such that, for each Z ∈ V , FNZ
and FNZ0

have the same topological type and the first return map φ of Z has a saddle
at the origin with both local invariant manifolds in Σc.

Remark 8 In what follows, V will denote the neighborhood of Lemma 6.6.

Now, we prove the existence of an invariant nonsmooth diabolo in an analytic
way, this result was achieved by M. Jeffrey and A. Colombo for the semi-linear case
(see [7]).

Proposition 8 Let Z0 = (X0, Y0) ∈ Ωr be a nonsmooth vector field having a T-
singularity at p such that the normal parameters (α, β, γ ) ofZ0 at p satisfy αβ ≥ γ
and α, β < 0. Then, Z0 has an invariant nonsmooth diabolo D0 which prevents
connections between points of Σus and Σss through orbits of Z.

Proof From Lemma 6.6, it follows that the first return map φ0 = φX0 ◦ φY0

associated to Z0 has a hyperbolic saddle at p with both eigenvectors in Σc.
Notice that the local stable manifold of the saddle Ws is tangent to the

eigenvector v− correspondent to the eigenvalue λ and the local unstable manifold of
the saddle Wu is tangent to the eigenvector v− correspondent to the eigenvalue μ,
where |λ| < 1 < |μ|.

Fig. 8 Foliations F0,F1,
and F2 originated from the
vector fields F0, F1, and F2,
respectively, nearWs

p

SY

SX

Ws
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Moreover,Ws andWu are curves onΣ passing through p transverse to SX ∪ SY
at p andWs � Wu at p (p is hyperbolic). Using coordinates (x, y) at p (which put
Z0 in the normal form (4)), we can see that SX0 = Fix(φX0) is the x-axis, SY0 =
Fix(φY0) is a curve tangent to the y-axis at 0, and Ws and Wu are curves passing
through 0 contained in the second and the fourth quadrants which are transverse to
SX0 ∪ SY0 at 0.

Therefore, we have the following situation:

SY0

SX0

Ws

Wu

From Proposition 4, it follows that φX0(W
u) ⊂ Ws . Now, the image of a point

in the semi-plane {y > 0} through φX0 is a point in the semi-plane {y < 0} by the
construction of φX0 . It means that the branch of Wu in the second quadrant has to
be taken into the branch ofWs in the fourth quadrant.

Also, φY0(W
s) ⊂ Wu. Notice that SY0 splits R2 in two connected components,

C− and C+. From the construction of φY0 , the image of a point in C− through φY0

is a point in C+. It means that the branch of Ws in the fourth quadrant is taken into
the branch ofWu in the second quadrant.

These connections produce an invariant (nonsmooth) cone with vertex at the
fold–fold point which contains Σus in its interior. Analogously, we prove that
there exists an invariant (nonsmooth) cone with vertex at the fold–fold point which
contains Σss in its interior. These two cones produce the required nonsmooth
diabolo (see Fig. 9).

Fig. 9 A nonsmooth diabolo
D0 of Z0

p
Σ us

Σ ss

Wu

Ws
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Remark 9 In other words, there is no communication between Σus and Σss in this
case.

Remark 10 Notice that the existence of the invariant diabolo D0 implies that
the T -singularity p0 has stable and unstable invariant manifolds of dimension 2,
and this is a phenomena which has no counterpart in smooth vector fields of
dimension 3.

Now, we proceed by constructing a homeomorphism between Z ∈ V and Z0.

Lemma 6.7 If Z ∈ V , there exists an order-preserving homeomorphism h :
Σs(Z0)→ Σs(Z) which carries orbits of FZ0 onto orbits of FZ .

The proof of this lemma follows straightforwardly from Lemmas 3.1 and 6.6.

Definition 13 If φ : (R2, 0)→ (R2, 0) is a germ of diffeomorphism at 0 having a
saddle at 0, then the deMelo–Palis invariant of φ is defined as:

P(φ) = log(|λ|)
log(|μ|) ,

where λ,μ are the eigenvalues of dφ(0) such that |λ| < 1 < |μ|.
Remark 11 In fact, the deMelo–Palis invariant P is a moduli of stability for φ. (See
[16, 17].)

Proposition 9 If Z ∈ V , there exists a homeomorphism h : Σ → Σ which is
a continuous extension of the homeomorphism h : Σs(Z0) → Σs(Z) given by
Lemma 6.7, such that φ ◦ h = h ◦ φ0, i.e., it is a topological equivalence between φ
and φ0.

Proof The proof of this proposition is divided into steps.
Let h : Σs(Z0)→ Σs(Z) be the homeomorphism obtained in Lemma 6.7.
Notice that Z has a T-singularity at q(Z) ≈ p. Since FNZ0

and FNZ are transversal
to SZ0 \ {p} and SZ \ {q(Z)}, respectively, we can easily continuously extend h on
Σs(Z0) via limit to obtain

h : Σs(Z0)→ Σs(Z).

Step 1: The first task is to define a fundamental domain for the first return
maps, φ and φ0.

We will detail it for φ0. The process to construct the fundamental domain of φ is
completely analogous.

By the Linearization Theorem (see [13]), we may assume that φ0 is linear.
Moreover, we can consider coordinates (x, y) of Σ at p such that:

φ0(x, y) = (λ0x, μ0y),

where λ0, μ0 are the eigenvalues of φ0 such that |μ0| < 1 < |λ0|.
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Fig. 10 Change of
coordinates

Ws
Wu

SX0

SY0

Σ ss

Σ us

Ws

Wu

SX0

SY0

Σ ss

Σ us

By the position of SX0 , SY0 , and the invariant manifolds of the saddle, obtained
in Proposition 8, it follows that:

• SX0 is a curve passing through 0, with one branch in the first quadrant and another
in the fourth;

• SY0 is a curve passing through 0, with one branch in the first quadrant and another
in the fourth;

• SX0 is tangent to the line y = k0x;
• SY0 is tangent to the line y = K0x;
• 0 < k0 < K0.

See Figure 10.
Without loss of generality, consider that SX0 = {y = k0x} and SY0 = {y = K0x}

and assume that these lines are the fixed points of φX0 and φY0 , respectively. It will
reduce our work, nevertheless it generates no loss of generality, since the same can
be done with the original sets.

From the existence of the invariant diabolo in Proposition 8, it follows that
φ−1

0 (SX0) is a line in the same quadrants containing SX0 ; moreover, its inclination
is greater than K0.

Define:

ω0 = {(x, y); k0x ≤ y ≤ K0x} and ω̃0 = φY0(ω0).

Notice that R0 = ω0 ∪ ω̃0 is the region delimited by the lines SX0 and φ−1
0 (SX0).

Now, it is immediate that φn0 (SX0) → Wu when n → ∞ and φn0 (SX0) → Ws

when n → −∞. Therefore, the first and the third quadrants are partitioned by
φn0 (R0), n ∈ Z.

In other words, ifQ = {(x, y); xy > 0}, then

Q =
⋃

n∈Z
φn0 (R0).

Therefore, we say that R0 is the fundamental domain of φ0 (Fig. 11).
Similarly, we can consider coordinates (x, y) of Σ at p such that:

φ(x, y) = (λx, μy),
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Fig. 11 Fundamental domain
R0 = ω0 ∪ ω̃0 in the first
quadrant

Ws

Wu

φ− 1
0 (R0)φY0 (SX0 )ω0 SY0 ω0

SX0

φ(R0)

where λ,μ are the eigenvalues of φ such that |μ| < 1 < |λ|. Therefore, there exists
R = ω ∪ ω̃, where ω is the region delimited by SX and SY and ω̃ = φY (ω).

Also,Q =⋃n∈Z φn(R), and R is the region delimited by SX and φ−1(SX).
In both cases, each orbit of φ0 (and φ) passes a unique time in each sector of the

partition ofQ.
Step 2: Extending the domain of h into h : Q→ Q.
Notice that h : ω0 → ω is already defined (it is the homeomorphism h :

Σs(Z0)→ Σs(Z) in these coordinates).
If q ∈ ω̃0, then q = φY0(q̃), for some q̃ ∈ ω0, therefore, define:

h(q) = φY (h(q̃)).

Clearly, it is a continuous extension of h from ω0 into R0. Now, we have defined
a homeomorphism h : R0 → R.

The extension toQ follows in a natural way (since it is defined in a fundamental
domain).

In fact, if q ∈ Q, there exist a unique q̃ ∈ R0 and a unique n ∈ Z, such that
q = φn0 (q̃). Define:

h(q) = φn(h(q̃)).

Clearly, h : Q→ Q is a homeomorphism satisfying:

h(φ0(q)) = φ(h(q)),

for each q ∈ Q.
Step 3: Extending h on bothWu andWs in a continuous fashion.
This is the most delicate part of the proof. Consider an arbitrary continuous

extension of h onWs .
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Now, the difficult task is to continuously extend it to Wu, and it will be only
possible because

P(φ0) = −1 = P(φ),

where P is the deMelo–Palis invariant.
Only the extension in the first quadrant will be detailed. The extensions in the

other quadrants are similar.
We extend φ in the following way.
Fix w = (d, 0) ∈ Wu, then there exists a sequence wi = φ

Ni
0 (yi) such that

Ni → ∞ when i → ∞ and yi is a sequence contained in SX0 ∩ {x, y > 0} such
that yi → 0 when i → ∞, which satisfies:

lim
i→∞φ

Ni
0 (yi) = w.

Notice that the homeomorphism h is already defined for the sequence wi . Since
we want a continuous extension and an equivalence, we must define:

h(w) = lim
i→∞h(φ

Ni
0 (yi)) = lim

i→∞φ
Ni (h(yi)).

Our work is to prove that the limit above exists. In this case, h will be extended
on Wu by doing this process for every q ∈ [w,φ0(w)] and then extend it through
the images of this fundamental domain by φ0.

Now, we prove the existence of the limit.
Since h(SX0) = SX and φn(SX)→ Wu as n→ ∞, it follows directly that:

lim
i→∞π2(φ

Ni (h(yi))) = 0.

Therefore, π2(h(w)) = 0 and it is well-defined. The problem happens for the
first coordinate. Consider:

1. w = (d, 0);
2. yi → 0, yi ∈ SX0 , for every i;
3. Ni → such that φNi0 (yi) = wi → w;
4. ti → ∞, xi → x ∈ Ws such that yi = φti0 (xi).

See Figure 12.
Now, denote ỹi = h(yi), x̃i = h(xi), w̃i = φNi (ỹi), di = π1(wi), d̃i = π1(w̃i),

ai = π2(xi), and ãi = π2(h(xi)). Hence, we must prove that d̃i converges.
Notice that since h is continuously extended for Ws and the sequence xi

converges to x ∈ Ws , it follows that ãi is a convergent sequence. Denote ã = lim ãi ,
and notice that

d̃i = π1(φ
Ni (h(yi))) = λNiπ1(ỹi).
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Fig. 12 Sequences (xi), (yi),
and (wi)

x xixi+1

0

yi
yi+1

wi

wi+1

w
Wu

Ws

SX0

Now, observe that:

ỹi = h(yi) = h(φti0 (xi)) = φti (x̃i ) = (λti π1(x̃i), μ
ti π2(x̃i)).

Since ỹi ∈ SX = {y = kx}, it follows that:

π1(ỹi) = 1

k
π2(ỹi) = 1

k
μti π2(x̃i).

Hence:

d̃i = 1

k
λNiμti π2(x̃i) = 1

k
λNiμti ãi ,

and applying the logarithm, we obtain:

log(d̃ik) = Ni log(λ)+ ti log(μ)+ log(ãi).

With the same process, we also obtain:

log(dik0) = Ni log(λ0)+ ti log(μ0)+ log(ai).

Since log(dik0) and log(ai) converge, it follows that Ni log(λ0) + ti log(μ0)

converges.
Now, using that P(φ0) = P(φ), it is immediate that Ni log(λ) + ti log(μ)

converges.
Since ãi → ã, it follows that d̃i converges and the proof is complete.

Remark 12 Notice that both φ and φ0 are composition of elements of Wr ;
therefore, a perturbation of the first return map φ0 still is a composition of
two involutions. Hence, the diffeomorphism φ0 is perturbed only over the
codimension one submanifold P−1(−1) of Diff(R2, 0) (space of germs of
diffeomorphisms at 0).
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It follows straightforwardly from the previous results:

Proposition 10 Let Z0 = (X0, Y0) ∈ Ωr be a germ of nonsmooth vector field
having a Teixeira singularity at p. Let (α, β, γ ) be the normal parameters of Z0 at
p. If αβ ≥ γ and α, β < 0, then Z0 is locally structurally stable at p.

Finally, we conclude the proof of Theorem 3:

Proof (Proof of Theorem 3) Notice that Z satisfies conditionΣ(E) at p if, and only
if, the normal parameters (α, β, γ ) of Z at p satisfy αβ ≥ γ and α, β < 0.

The result follows directly from Propositions 6, 7, and 10,

7 Proofs of Theorems 4, 5 and Corollary 4.1

In this section, we intend to discuss the hyperbolic and the parabolic case of the
fold–fold singularity in order to complete the characterization of Σ0.

7.1 Hyperbolic Fold–Fold

Let Z = (X, Y ) ∈ Ωr be a nonsmooth vector field having a hyperbolic fold–fold
point at p such that SX � SY at p. Consider the normal coordinates (x, y, z) of Z at
p and let (α, β, γ ) be the normal parameters of Z at p. In this case, we do not have
any orbit of X or Y connecting points of Σ , therefore the local structural stability
of Z at p depends only on the sliding dynamics which is generically characterized
in Sect. 5.2.

Proposition 11 Let Z0 = (X0, Y0) ∈ Ωr be a nonsmooth vector field having a
visible fold–fold point at p such that SX0 � SY0 at p. Let (α0, β0, γ0) be the normal
parameters of Z0 at p. Then, Z0 is locally structurally stable at p if and only if
(α0, β0, γ0) ∈ R1

H ∪ R2
H .

Proof (Outline) The first implication is obvious since FZ0 presents bifurcations in
Σs . To prove the converse, let (α0, β0, γ0) be the normal parameters of Z0 at p.
Using Implicit Function Theorem, we can find a neighborhood V of Z0 inΩr such
that every Z ∈ V has a hyperbolic fold–fold point q(Z) near p and the normal
parameters of Z at q(Z) are close to (α0, β0, γ0).

Now, it is easy to construct a homeomorphism h : Σ → Σ carrying sliding
orbits of FZ0 onto sliding orbits of FZ . Extend it to a germ of homeomor-
phism h : (M, p) → (M, q(Z)) using the flows in the same way of [10]
(Lemma 3, page 271).
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7.2 Parabolic Fold–Fold

Let Z = (X, Y ) ∈ Ωr be a nonsmooth vector field having an invisible–visible fold–
fold point at p such that SX � SY at p. Consider the normal coordinates (x, y, z) of
Z at p, and let (α, β, γ ) be the normal parameters of Z at p.

Proceeding as in the elliptic case, Z has an involution φX associated to the
invisible fold of X, and recall that it is given by

φX(x, y) = (x − 2αy,−y),

in normal coordinates. Now, we use it to study the connections between sliding
orbits, when they exist.

Lemma 7.1 LetZ = (X, Y ) ∈ Ωr be a nonsmooth vector field having an invisible–
visible fold–fold point at p such that SX � SY at p. Let (α, β, γ ) be the normal
parameters of Z at p. Then, φX(SY ) � SY at p if and only if α �= 0.

Proof From Corollary 5.1, we have that SY = {(g(y), y); y ∈ (−ε, ε)}, for some
ε > 0, where g is a smooth function with g(y) = O(y2). Therefore, T0SY =
span{(0, 1)}.

On the other hand, φX(SY ) = {(g(y) − 2αy,−y); y ∈ (−ε, ε)}. Then,
T0φX(SY ) = span{(−2α,−1)}. The result follows from these expressions.

Lemma 7.2 LetZ = (X, Y ) ∈ Ωr be a nonsmooth vector field having an invisible–
visible fold–fold point at p such that SX � SY at p. Let (α, β, γ ) be the normal
parameters of Z at p. Then, φX(Σus) ∩Σss = ∅ if and only if α > 0.

Proof In fact, in these coordinates, SY = {(g(y), y); y ∈ (−ε, ε)}, and φX(SY ) =
{(g(y) − 2αy,−y); y ∈ (−ε, ε)}, for some ε > 0, where g is a smooth function
with g(y) = O(y2).

Therefore, T0φX(SY ) = span{(−2α,−1)}. The sliding region Σs is the region
delimited by SX and SY .

Since T0SY = span{(0, 1)} and T0SX = span{(1, 0)}, it follows that φX(SY ) ⊂
Σs if and only if α > 0.

We conclude the proof by noticing that if φX(SY ) ⊂ Σc, then φX(Σus) ⊂ Σc.
Nevertheless, if φX(SY ) ⊂ Σs , then the region delimited by SY and φX(SY ) in Σus

is carried into the region delimited by SY and φX(SY ) in Σss .

Remark 13 In other words, there exist orbits of X inM+ connecting distinct points
in the sliding region Σs if and only if α > 0.

Definition 14 If φ : Σ → Σ is a diffeomorphism and F is a vector field inΣ , then
define the reflected vector field of F by φ as φ∗F .

Remark 14 The reflected vector field of F by φ can also be referred as transport
of F by φ.
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Lemma 7.3 LetZ = (X, Y ) ∈ Ωr be a nonsmooth vector field having an invisible–
visible fold–fold point at p such that SX � SY at p. Let (α, β, γ ) be the normal
parameters of Z at p.

Assume that there exists a region S ⊂ Σus such that S̃ = φX(S) ⊂ Σss , and
suppose that S is maximal with respect to this property. If 2(α + β)(αβ − γ ) �= 0,
then FNZ and the transport of FNZ by φX are transversal vector fields defined in S̃.

Proof Consider F0 = FNZ and F1 = φ∗FNZ , where φX is the involution associated
to X.

Clearly, F0 and F1 are transversal at q ∈ Σ if and only if F0(q) and F1(q) are
linearly independent vectors.

Considering the normal coordinates (x, y, z) at p. Define

D(x, y) = det

(
F0(x, y)

F1(x, y)

)

. (9)

Notice that D(x, y) �= 0 if and only if F0 and F1 are transversal at (x, y).
Now, we use the expressions of the vector field in these coordinates to derive an
approximation for the function D.

Since φX is a linear involution, it follows that φ−1
X = φX and dφX = φX,

therefore:

F1(x, y) = dφX(FNZ (φ−1
X (x, y)))

= φX(FNZ (φX(x, y)))
(10)

In order to compute D, we must analyze the influence of the higher order terms
in the computation of FNZ . From Proposition 2, we have that:

X(x, y, z) =
⎛

⎝
α

1
−y

⎞

⎠ and Y (x, y, z) =
⎛

⎝
γ + F̃ (x, y, z)
β + G̃(x, y, z)
x + H̃ (x, y, z)

⎞

⎠ , (11)

where F̃ (x, y, z) = O(|(x, y, z)|), G̃(x, y, z) = O(|(x, y, z)|), and H̃ (x, y, z) =
O(|(x, y, z)|2).

Hence, the sliding vector field is given by:

FNZ (x, y) =
(
α γ

1 β

)

·
(
x

y

)

+
(
αH(x, y)+ yF(x, y)
H(x, y)+ yG(x, y)

)

,

where F(x, y) = F̃ (x, y, 0) = O(|(x, y)|), G(x, y) = G̃(x, y, 0) = O(|(x, y)|),
and H(x, y) = H̃ (x, y, 0) = O(|(x, y)|2).

Using the expressions of FNZ and φX(x, y) = (x − 2αy,−y), we obtain:

D(x, y) = y2[−2(α + β)(αβ − γ )+ P1(x, y)].
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where P1(x, y) = O(|(x, y)|).
Now, if (α+β)(αβ−γ ) �= 0, then the x-axis is the only solution ofD(x, y) = 0,

near the origin. Therefore, the vector fields F0 and F1 are transversal in the region
S ∪ S̃, since it does not contain points of the x-axis.

Remark 15 Notice that in the curves α+β = 0 and αβ = γ , the higher order terms
may produce curves in S ∪ S̃ where the vector fields are not transversal, and they
can be broken by small perturbations (making α + β �= 0 or αβ �= γ ). Clearly, this
situation implies the instability of the system.

Lemma 7.4 LetZ = (X, Y ) ∈ Ωr be a nonsmooth vector field having an invisible–
visible fold–fold point at p such that SX � SY at p. Let (α, β, γ ) be the parameters
given by Proposition 2 associated to Z at p. If 2α(α + β) − γ �= 0, then FNZ is
transversal to φX(SY ) in Σs .

Proof In the coordinates of Proposition 2, we have that SY = {(g(y), y, 0); y ∈
(−ε, ε)}, for ε > 0 sufficiently small, where g is a C r function such that g(y) =
O(y2).

Therefore, φX(SY ) = {(g(y)−2αy,−y); y ∈ (−ε, ε)}. Since φX(SY ) is tangent
to the curve γ (y) = (−2αy,−y) at the origin, it is sufficient to prove that FNZ is
transversal to γ .

Clearly, FNZ is transversal to γ at γ (y) if and only if

T (y) = FNZ (γ (y)) · (γ ′(y))⊥ �= 0. (12)

Now, we use the expression of FNZ in these coordinates to obtain an approxima-
tion of T . In fact,

FNZ (γ (y)) = FNZ (−2αy,−y) = (−2α2y − γy,−2αy − βy)+ O(y2)

and

(γ ′(y))⊥ = (−2α,−1)⊥ = (1,−2α).

Substituting these expressions in (12), we obtain:

T (y) = [2α(α + β)− γ ]y + O(y2)

Therefore, if the condition 2α(α + β) − γ �= 0 is assumed and y �= 0, then FNZ
is transversal to φX(SY ). Since Σs does not contain points where y �= 0 (because
they belong to SX), the result follows.

Remark 16 In the curve 2α(α + β)− γ = 0, the higher order terms can be used to
produce a curve such that FNZ is tangent to ϕX(SY ) in every point. Such structurally
unstable phenomena is avoided.
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Proposition 12 Let Z0 = (X0, Y0) ∈ Ωr be a nonsmooth vector field having an
invisible–visible fold–fold point at p such that SX0 � SY0 at p. Let (α0, β0, γ0) be
the normal parameters of Z0 at p. Then, Z0 is locally structurally stable at p if and
only if the following statements hold:

1. (α0, β0, γ0) ∈ ∪4
i=1R

i
P ;

2. α0 �= 0;
3. 2α0(α0 + β0)− γ0 �= 0;
4. α0 + β0 �= 0, if α0 > 0.

Moreover, there exist only eleven topologically distinct classes of local structural
stable systems at invisible–visible fold–fold points.

Proof (Outline) Proceeding as is the proof of Theorem 11. Consider the neighbor-
hood V of Z0 such that the correspondent parameters (α, β, γ ) of any Z ∈ V are
in the same region of (α0, β0, γ0).

Let Z = (X, Y ) ∈ V . If there are no orbits of X connecting points of Σss and
Σus , then the proof can be done in the following way. We omit some details in this
case, since it is very similar to the visible case.

• Construct h : Σs(Z0) → Σs(Z) carrying orbits of F0 onto orbits of FZ . In
addition, extend it to SX0 ∪ SY0 via limit. Hence, h(SX0) = SX and h(SY0) = SY ;

• For each p ∈ Σ \ SX0 , there exists t0(p) �= 0 such that ϕX0(t0(p), p) ∈ Σ .
Similarly, there exists an analogous time t (p) �= 0 for the vector field X;

• If p ∈ Σs , then h(p) is already defined. Assume that p ∈ Σc. If ϕX0(t0(p), p) ∈
Σs , then define:

h(p) = ϕX(−t (ϕX0(t0(p), p)), h(ϕX0(t0(p), p))).

• Using Tietze Extension Theorem, we can extend h over Σc;
• Now, using the same idea of the third item, we can extend it to the whole Σ ;
• Extend it toM+ using the flow of X0, X, and h : Σ → Σ ;
• Following the same idea of the hyperbolic case, extend it toM−;
• Hence, we construct a germ of homeomorphism h : M → M at p, with h(p) =
q(Z), which is an equivalence between Z0 and Z. Then, Z0 is locally structurally
stable at p.

Suppose that there exists a connection between Σss and Σus for Z0 and Z.
Denote by S0 and S, the regions of Σs presenting connections.

From the previous Lemmas of this subsection, it is possible to say that F0 and
φ∗
X0
F0 are transversal in each point of S0, and the same holds for FZ and φ∗

XFZ
in S.

Therefore, the orbits of F0 and φ∗
X0
F0 define a coordinate system in S0, such as

the orbits of FZ and φ∗
XFZ in S.

Hence, let h be a function carrying SY0 onto SY , and h(0) = 0. Now, we can use
these coordinate systems to construct h : S0 → S satisfying
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h ◦ φX0 = φX ◦ h.

By the transversality of F0 to φX0(SY0) (resp. FZ to φX(SY )), it is possible to
extend h on Σs(Z0) using the sliding orbits. Then, we have a homeomorphism
h : Σs(Z0)→ Σs(Z) carrying sliding orbits onto sliding orbits.

By construction, if x ∈ S, then φX(h(x)) = h(φX0(x)). With this, we can use the
same idea from the previous case without connections to extend such map to a germ
of homeomorphism h : M → M at p, with h(p) = q(Z), which is a topological
equivalence between Z0 and Z at p.

7.3 Proof of Theorem 4

Notice that Z satisfies condition Σ(H) at p if, and only if, the normal parameters
(α, β, γ ) of Z at p satisfy the hypotheses of Proposition 11.

Moreover, Z satisfies condition Σ(P ) at p if, and only if, the normal parameters
(α, β, γ ) of Z at p satisfy the hypotheses of Proposition 12.

The result follows directly from Propositions 11 and 12.

7.4 Proof of Theorem 5

From Proposition 1, it follows that Σ0 ⊂ Σ(G).
The result follows from Theorems 2, 3, and 4.

7.5 Proof of Corollary 4.1

From the characterization of Σ0, we can see that Σ(G), Σ(R), Σ(H), and Σ(P )
are open dense sets in Ωr .

Nevertheless, we also prove thatΣ(E) is not residual inΩr . Therefore, it follows
thatΣ0∩Σ(E) is open dense inΣ(E) andΣ(E) is the biggest set with this property.
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Appendix A
Non-smooth Dynamical Systems (NSDS):
Reflections and Guidelines

Marco Antonio Teixeira

A.1 Introduction

In this note, I intend to discuss in very general terms what is currently occurring
with an emerging structure theory of geometric and qualitative nature in non-smooth
dynamical systems (NSDS) theory. Currently, the great interest in such theory
is displayed by the rapid growth in the number of publications and specialized
meetings in the area in recent decades. I believe that the main challenge in the study
of NSDS is to understand and clarify some of the often very complicated dynam-
ical behaviors and establish a precise mathematical framework for the problems
encountered therein. This subject has been tainted with the reputation of being lax,
mainly because there is an endless list of experimental research in genuine applied
sciences. Due to the explosion of scientific developments in the smooth theory
in the last century, NSDS has not attracted an expressive number of theoretical
mathematicians. In my own research, I have experienced many challenges and
extreme mathematical difficulties to elucidate a lot of problems in NSDS. On the
other hand, I may say that some technical difficulties in general NSDS are rather
formidable. My first motivation to study this field was the theoretical paper of
Ekeland [1] where the main problem in Calculus of Variations was discussed via
piecewise smooth systems. Personal discussions with V. Arnold, H. Sussman, I.
Kupka, J. Sotomayor, and D. Anosov were also stimulating. In what follows, I
briefly indicate directions in which the field can be developed as well as two
very natural questions that are raised in this context: “How does the dynamical
mathematical community react to these developments? Does the study of non-
smooth systems have to be motivated by real-world applications?”
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A.1.1 Some Words from Mauricio Peixoto

In the early 1970s, I was a young PhD student at USP-São Paulo and had been
invited by J. Sotomayor to give a talk at IMPA on my master’s thesis “On Stratified
Sets.” Mauricio Peixoto was a professor at USP-São Paulo and was constantly using
the Rio-São Paulo air shuttle. That day, we traveled back together to São Paulo and
of course being considered him (together with Leopoldo Nachbin) as the greatest
Brazilian mathematician, I was anxious to have his intake on mathematical research.
Inside the plane, at one point I naively asked him about a subject that intrigued me.
I said: “Professor Maurício, something I find curious in Mathematics is an area
that studies Differential Equations with Complex Time, since as I see it does not
exist in the real world.” He replied, “In Mathematics what matters in any problem
is to have mathematically consistent statements that are, non trivial and to have
correct proofs of what is asserted. Keep this advice always and be careful in saying
whether something in mathematics is important or not.” His philosophical view on
mathematical development made quite an impression on me and I have treasured it
and always follow the words of the Master.

A.2 Some of Non-smooth Dynamical Systems

(a) Why Filippov?
It is clear that in studying the phase portrait of a differential equation the

first object that comes to mind is the behavior of the solutions. I emphasize that
the concept of a solution of a differential equation with second discontinuous
member is not universal. Usually, it obeys a certain convention that is, a
priori, stipulated or it is defined ad hoc according to the problem. The lack
of uniqueness of solutions requires of course extra attention. For simplicity, we
have chosen as the basis of our theoretical study the Filippov Convention due to
its essentially geometric character although I understand that the Caratheodory
Convention would be the most natural choice. Nowadays, the book of Filippov
seems to be unanimously accepted as an important contribution to dynamical
systems theory. On the other hand, some recent results have motivated me to
better understand the Utkin sliding mode convention (see [2–4] and references
therein).

(b) Take any heuristically proved result and try to give a rigorous mathematical
proof.
Obviously, there may be controversy over what is actually a heuristically
proved result. Observe that it is common to find heuristic results for specific
models and build upon them for generalization. In my point of view and in the
strictly mathematical world, the above procedure has, philosophically speaking,
a high scientific value. In short, our task would be to give formal mathematical
justifications to the conclusions.



Non-smooth Dynamical Systems (NSDS): Reflections and Guidelines 405

(c) Try to give non-smooth versions to classical results of the smooth world.
It is evident that this scenario is purely theoretical and in each case the first
step would be to detect whether such a procedure is trivial or not. Hypotheses
and new statements must be highly clear and new techniques and/or methods
are welcome. To exemplify, in the literature we find the results of Classical
Averaging Theory very well settled when one tries to detect limit cycles in
NSDS (see [1] and references therein).

(d) Look for problems, for which there are no counterparts in the smooth universe.
In this item, the best argument is to cite the existence of the elliptical fold–
fold singularity in high dimensions. There is no phenomenon in the smooth
universe that is a counterpart of this singularity. Moreover, the proof of its
stability/instability is indeed very complicated and uses several nontrivial
techniques. Finding objects without smooth counterparts is a hard task, perhaps
with arduous abstraction power. It seems that an analysis of the robustness of
typical minimal sets would be highly encouraging.

(e) Approximating an NSDS by smooth systems (regularization).
The regularization process of a non-smooth system Z0, known as Sotomayor–
Teixeira regularization, consists in approximating this system by m-parameter
families Zk (k = (k1, k2, . . . .km)) of smooth systems. It is worthwhile to cite
two directions: (1) depending on the characteristic of Z0, each Zk can have
a very interesting intrinsic behavior under which deserves a deep analysis.
(2) Sometimes, information about the behavior of Zk can contribute to the
understanding of the dynamics of Z0. This can be observed in works involving
averaging theory and also in the bridge established between NSDS and Singular
Perturbation Theory. It would seem to me absolutely essential to reflect on the
scope of general regularizations.

A.3 Miscellaneous in Geometric and Qualitative Theory in
Non-smooth Dynamical Systems

1. Perturbative results are inherent to the methodology of structural stability and
bifurcation theory. So, it is very important to specify the topological space to
which the systems belong.

2. Some titles may be borrowed from the smooth universe whose contents can
be successfully exploited: generic bifurcation (Local and Global), stability
theorems, normal forms, ergodic theory (in certain classes, Lyapunov expo-
nents could be, rigorously, extended to non-smooth systems), new trends in
hyperbolic theory, generalization of Melnikov’s method, Conley index, piecewise
continuous mappings, synchronization, singular perturbation theory, integrabil-
ity (piecewise Hamiltonian theory), NSDS tangent to continuous foliations,
symmetries in NSDS (including Refractive Systems), stochastic differential
equations, etc.. . .
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3. Another point that also deserves reflection is one in which a smooth vector
field is approximated by non-smooth systems. This assertion comes from the
fact that many continuous phenomena, for purely technical reasons, are modeled
by differential equations with discontinuous second member. In this direction, I
recall the phenomenon named “Pinching” (see [5] and references therein).

4. Interesting problems appear when the switching set is not a differentiable
manifold (see [6–8] and references therein).

5. I confess that I tried to understand the substance of the most practical models
presented in various congress by engineers and physicists and I was unsuccessful.
I would like to really understand something of the machinery but unfortunately
cannot recognize a “good mathematical model.”

6. Why study piecewise smooth systems? One finds in real life and in various
branches of science distinguished phenomena whose mathematical models are
expressed by discontinuous systems and deserve a systematic analysis. However,
sometimes the treatment of such objects is far from the usual techniques or
methodologies found in the smooth universe. This might be a good time to reflect
on the role of the discussions found in [9–11]. In what follows, we reproduce the
abstract of [9]:

“Abstract - Despite the aphorism “Nature does not make jumps” (attributed
to Newton, Leibniz, Linnaeus,. . .!!) it is frequently useful to work, either
descriptively or prescriptively, with simplified models which involve switching
between different modes of evolution. We describe a variety of examples of such
modeling with particular attention to some situations in which the interpretation
of the reduced model is a matter of concern.”

In [10, 11], one finds arguments that invite us to a discussion about the (non)
use of a complete presentation of cases and subcases that appear in the general
theory of NSDS.

The following paragraphs were selected from a P. Glendining’s talk:
“To paraphrase Mike Field:

a. Although most of dynamical systems theory for the last fifty years has
been smooth, the real technological innovations and applications (computers,
control, mechanics, some biological models) are not smooth.

b. If you want a car to stop when the brakes are applied, don’t choose an analytic
or smooth system!!!”

A.4 Conclusion

The present work looks primarily to the future. It is mainly concerned with the
intrinsic significance of the classification results in NSDS and to its range of
applicability in other areas of science. Moreover, the importance of providing
readily accessible proofs of the statements is assessed. Finally, I hope this text will
help young researchers to face challenges in developing and performing consistent
research projects in NSDS.
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