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The “Mathemusical” Dynamics Between Music and
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In western tradition, mathematics and music have been connected for more than
2000 years. Despite this long history of relations between the two fields, the in-
terest of “working mathematicians” in this research domain is a rather new phe-
nomenon [9]. Whilst the power of applying mathematics to music has been ac-
knowledged for a long time, it is only thanks to more recent developments that
also music begins to occupy an important place in the development of mathematics.
In fact, music has shown to provide a number of difficult theoretical problems, in
particular for what concerns their constructive formalization and algorithmic solu-
tion. This asks for a permanent feedback between musical thought, mathematical
formalisation and computational modelling, a dynamic movement between differ-
ent disciplines that I suggested to call “mathemusical” [3]. This feedback between
music and mathematics via computer science is illustrated in the diagram of Fig. 1.

This paper provides an overview of the ongoing SMIR (Structural Music Information Research)
Project, supported by the University of Strasbourg Institute for Advanced Study and carried on at
the Institut de Recherche Mathématique Avancée (IRMA) in collaboration with the GREAM
(Groupe de Recherche Expérimentale sur l’Acte Musical) and the Institut de Recherche et
Coordination Acoustique/Musique (IRCAM). For a description of the institutional aspects of the
project, including the list of participants and past and future events, see the official webpage:
http://repmus.ircam.fr/moreno/smir.
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Fig. 1 A diagram showing
the “mathemusical” dynamics
between music and
mathematics via
computer-science

Among the music-theoretical problems showing a remarkable link with interest-
ing mathematical constructions and open conjectures, one may quote the following
ones that have provided the content of a considerable number of Master and PhD
dissertations:1

• Tiling rhythmic canons and their spectral dimensions (via the Fuglede Conjec-
ture)

• Z-relation in music theory and the study of homometric structures in crystallog-
raphy

• Transformational music theory and the categorical classification of direct musical
graphs

• Neo-Riemannian music analysis, spatial computing and Formal Concept Analysis
(FCA)

• Diatonic Theory, Maximally Even Sets and the Discrete Fourier Transform
• Periodic sequences and finite difference calculus
• Chord classification and combinatorial block-designs in music composition

Interestingly, most of these problems are deeply interrelated showing the exis-
tence of a remarkable interplay between algebraic formalization and geometric rep-
resentations of musical structures and processes.2 Moreover, the mathemusical dy-
namics (from music to mathematics to music via computer science and the possible
epistemological and cognitive implications) constitutes a radical change of perspec-
tive with respect to the traditional application of mathematics in the musical domain.

1See http://repmus.ircam.fr/moreno/production for the complete list of students’ work focusing on
these aspects of the relations between music and mathematics.
2This interplay also provides a further example of the duality between temporal and spatial con-
structions which are the two fundamental ingredients of music according to the field medalist Alain
Connes. As he suggested in a conversation with composer Pierre Boulez on the analogy and the
difference between the creative processes in mathematics and music: “Concerning music, it takes
place in time, like algebra. In mathematics, there is this fundamental duality between, on the one
hand, geometry—which corresponds to the visual arts, an immediate intuition—and on the other
hand algebra. This is not visual, it has a temporality. This fits in time, it is a computation, some-
thing that is very close to the language, and which has its diabolical precision. [. . . ] And one only
perceives the development of algebra through music” [15].

http://repmus.ircam.fr/moreno/production
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Fig. 2 A more detailed perspective on the “mathemusical” research diagram of Fig. 1, with the
indication of the three main ingredients of the dynamics (formalisation, generalisation and appli-
cation). The computer science is represented with the icon of OpenMusic, a visual programming
language for computer-aided music theory, analysis and composition currently developed at IR-
CAM and integrating—in its MathTools environment—most of the computational constructions
derived from the “mathemusical” research

Mathemusical problems are characterised by the fact that settling them in an appro-
priate mathematical framework not only gives rise to new musical applications, but
also paves the way to new mathematical constructions. By analysing more care-
fully the different steps of this mathemusical dynamics, one observes that it can be
decomposed into the following three stages:

– Formalization: the initial music-theoretical problem is approached by means of
a combination of mathematical tools enabling to formalize it and revealing its
computational character

– Generalization: the formalized problem is generalized by using a panoply of
mathematical constructions, ranging from abstract algebra to topology and cat-
egory theory and leading to general statements (or theorems)

– Application: once a generalized result has been obtained, it can be applied to mu-
sic by focusing on one of the three main aspects, i.e. the theoretical, the analytical
and the compositional one.3

This decomposition of the mathemusical dynamics, together with the triple per-
spective of the possible musical applications of a general result is shown in Fig. 2.

It is this fruitful double movement, from music to mathematics and backwards,
which is at the heart of a growing international research activity where computer
science is positioned in the middle of this feedback, as an interface for connecting
the musical and mathematical domains. We simplify the picture by considering a
homogeneous intermediate level corresponding to the place occupied by computer

3As largely documented, these three aspects are deeply interconnected, particularly in Twentieth-
Century music and musicology. See [3] for a detailed account of music-theoretical, analytical and
compositional applications of the algebraic methods in contemporary music research.
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science with respect to music theoretical and mathematical research. By analyz-
ing more carefully the different music theoretical problems, one may nevertheless
distinguish the cases in which the computer-aided models are directly built in the
formalization process as in the case of problems asking for a computational ex-
ploration of the solution space, more than a search of a general underlying math-
ematical theory. To this family belong, for example, typical enumeration problems
such as the classification of all possible Hamiltonian paths and cycles within music-
theoretical geometric spaces, such as the Tonnetz and their multi-dimensional exten-
sions [8]. Conversely, there are cases in which the computational models are built
starting from some general algebraic results, as in the case of the construction of
tiling rhythmic canons corresponding to the decomposition of a cyclic group of or-
der n into a direct sum of two non-periodic factors (i.e. two subsets of periodicity
equal to n).4 The ubiquitous role of computational modeling in the mathemusical
dynamics clearly show that one may balance the usual Leibnizian perspective of
music as an exercitium arithmeticae by proposing that also the reverse hypothesis
holds, according to which mathematics can be considered, in some special cases, as
an exercitium musicae [4].

The new interplay which I propose to establish among algebra, topology and
category theory in the service of computational musicology is also necessary to suc-
cessfully tackle difficult “mathemusical” problems which are linked to open con-
jectures in mathematics. This is the case of two major problems that have been the
object of study in the last fifteen years and which can be approached in a new way:
the construction of tiling rhythmic canons and the classification of homometric mu-
sical structures. Tiling canons are special rhythmic canons having the property of
tiling the time axis by temporal translation of a given rhythmic pattern [5]. This
compositional process is deeply connected with an open conjecture in mathematics
dating from the 1970s, i.e. Fuglede or “Spectral Conjecture” [7]. This conjecture
turns out to be also linked to homometry theory, a field in mathematical combi-
natorics that originates in crystallography, where one may find crystals having the
same X-ray spectrum without being isometric. Analogously, composition naturally
provides examples of musical homometric structures having the same distributions
of intervals but being not equivalent up to elementary musical transformations such
as transpositions or inversions. The deep connection between tiling and homometry
comes from the observation that if a rhythmic pattern tiles the musical line by trans-
lation (i.e. it generates a tiling rhythmic canon), so does any rhythmic pattern that is
homometric to the initial one. Moreover, in this tiling process one only has to con-
sider tiling canons associated to factorizations of a cyclic group as a direct sum of
two non-periodic subsets, since all the other canons verify Fuglede’s Conjecture [2].

This new perspective on the mathematical relevance of many music-theoretical
constructions, with an emphasis on their computational character, probably played
an important role in the change of perspective by mathematicians on music and
mathematics as a research field. This led in 2007 to the constitution of an interna-

4See [7] for a description of Tiling Canons as a key to approach open Mathematical Conjectures.
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tional society (the “Society for Mathematics and Computation in Music”)5 and the
launching of the first mathematical Journal devoted to “mathemusical” research (the
“Journal of Mathematics and Music”, edited by Taylor and Francis).6 The recogni-
tion of the mathematical dimension of the research carried on in this domain en-
abled the inscription in 2010 of “Mathematics and Music” as an official research
field within the Mathematics Subject Classification of the American Mathematical
Society (under the code 00A66). Although the research conducted by the members
of this community mainly focused on classical or contemporary art music, there is
a growing interest on popular music, whose theoretical problems are often as deep
as those belonging to contemporary music. The SMIR project clearly suggests the
necessity to push the boundaries between music genres and to look at new pos-
sibilities of interaction between contemporary art music and popular music, both
providing rich music-theoretical constructions for possible collaborations between
mathematicians, computer scientists, musicologists and composers.

The Originality of a Structural Approach in MIR (Music
Information Research)7

More specifically, the SMIR project proposes to approach “mathemusical” research
by pushing further the fruitful interplay between algebraic computations, topologi-
cal representations and categorical formalisations. It has two interdisciplinary levels.
The first interdisciplinary degree arises within the field of music itself by treating
simultaneously, as we have seen, a wide spectrum of different musical genres, rang-
ing from contemporary art music to popular music, including rock, pop, jazz and
chanson. Surprisingly, far from being easy to formalize, the compositional process
in popular music can be a very rich research domain, particularly once the harmonic
structures are represented in a topological way through the formalization of the Ton-
netz and their generalized versions as simplicial complexes [13, 14]. Figure 3 shows
the construction of the Tonnetz as a simplicial complex starting from the topological
representation of notes (0-cells), intervals (1-cells), 3-note chords (2-cells) and their
self-assembly by identification of a common edge.

The second degree of interdisciplinarity of the project relies in the use of dif-
ferent mathematical concepts in a structural approach which is in contrast to the
current state of Music Information Research (MIR), mainly relying on the applica-
tion of statistical methods in signal processing. Instead of focusing on the signal
content, our approach emphasizes the symbolic aspects of musical representations
and their structural algebraic, topological and categorical formalisations. For exam-
ple, a musical chord progression can be seen as a family of subsets of a cyclic or

5See http://www.smcm-net.info/.
6See http://www.tandfonline.com/toc/tmam20/current.
7Following the Roadmap described in [41], we prefer to consider MIR as the field of Music
Information Research instead of limiting the scope of purely Music Information Retrieval.

http://www.smcm-net.info/
http://www.tandfonline.com/toc/tmam20/current
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Fig. 3 The Tonnetz as a simplicial complex obtained by self-assembly of major and minor chords
viewed as 2-cells. See [13]

dihedral group, as a path in a simplicial complex space or, in a more abstract way,
as a collection of functors and natural transformations. As an example, let us take
the generating hexagonal shape of the Tonnetz structure (see Fig. 4). The simplest
way to describe this shape is to consider it as a collection of symmetries relying
major and minor chords. More precisely, according to the neo-Riemannian music
analysis,8 there are three ways of transforming a major chord into a minor chord
by preserving two common notes and these three symmetries correspond to the R,
P and L transformations. The R transformation (as “relative”), changes for exam-
ple the C major chord into the A minor chord, whereas the P transformation (as
“parallel”) and the L transformation (as “Leading-Tone operator”) change respec-
tively the C major chord into the C minor and the E minor chord. In a categorical
framework, generalizing the K-net theory (or Klumpenhouwer Networks), the neo-
Riemannian transformations are viewed as natural transformations between major
and minor chords represented as labelled graphs with vertices corresponding to the
notes and arrows corresponding to transposition and inversion operations [35]. By
definition a transposition by hsemi-tons is an operation indicated by Th that sends
a generic element xof the cyclic group of order 12 (i.e. a pitch-class in the musi-
cal set-theoretical terminology) into x + h (modulo 12). Similarly, one may define
the generic inversion operation indicated by Ik that sends a pitch-class x into k − x

(always modulo 12).

8This approach takes origin in the writings of the German musicologist Hugo Riemann who pro-
posed a “dualistic” perspective of Euler’s Tone System [23] based on inversional relations between
major and minor chords. After a first algebraic formalisation by David Lewin through the concept
of GIS or Generalized Interval System [26], neo-Riemannian theory and analysis has progressively
integrated mathematical concepts belonging to topology and algebraic geometry [11] and shown
its relevance to the analysis of a popular music repertoire [13].
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Fig. 4 The hexagonal cycle generating the Tonnetz and represented in a categorical framework
displaying the transformations between major and minor chords viewed as labelled graphs with
vertices corresponding to the notes and arrows corresponding to transposition operations. See [36]

One of the interests of using a categorical approach instead of a group-action
based approach in the representation of musical structures such as chords or melodic
patterns relies in the possibility to provide a flexible notion of equivalence rela-
tion, not necessarily linked to an underlying group action. More precisely, in the
usual enumeration and classification of harmonic structures, two chords A and B

are considered as equivalent if there exists a musically-relevant9 group Gacting on
the family of all possible chord structures (i.e. the family of subsets of the cyclic
group of order 12 seen as the space of pitch-classes where the algebraic structure
has been forgotten) and such that Aand Bare related via a transformation f belong-
ing to G. Music offers many example where one would feel the need to establish a
formal equivalence relation between chords which are not orbits with respect to an
underlying group action. The categorical approach10 enables precisely to overcome

9To the class of “musically-relevant” groups acting on the family of all possible chords belong
groups such as the cyclic group of order 12 (or group of transpositions), the dihedral group of
order 24 (or group of transposition and inversions) and the affine group of order 48 (or group of
“augmentation”, i.e. applications f of the form f (x) = ax + b, where a belongs to the set of
invertible elements of Z12 and b is any possible transposition factor). By using a term which has a
strong philosophical meaning [25], we suggested to call “paradigmatic” a classification approach of
musical structures based on an underlying group action [3]. This provides an elegant formalization
of the most common chord catalogues, from Anatol Vieru’s catalogue of transposition classes
of chords [42] to Mazzola/Morris catalogue of affine orbits [27, 31], including Julio Estrada’s
catalogue of “identities” [17].
10Category theory was originally introduced in music theory by Guerino Mazzola in his disser-
tation Gruppen und Kategorien in der Musik [27] and further extended in Geometrie der Töne
[28] and The Topos of Music [29]. For an alternative approach to the categorical formalization of
music theory, see Fiore and Noll [18] and our series of papers dealing with the categorical inter-
pretation of Klumpenhouwer Networks, initially within the framework of Topos of Music [30] and,
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Fig. 5 Three chords
belonging to Anton Webern’s
Drei Kleine Stücke, Op. 11/2
which literally share the same
type of transpositions and
inversions without being in
the same orbit under the
action of the cyclic, dihedral
or affine groups. See [36]

some limitations of the paradigmatic approach by establishing isomorphic relations
between configurations of elements (i.e. objects and morphisms between objects) in-
stead of pre-existing “types” of chords. An example is shown in Fig. 5 where three
chords are “strongly isographic” (i.e. they have the same configuration of arrows)
despite the fact that they do not belong to the same orbit under the action of any the
three “musically-relevant” groups we mentioned before (cyclic, dihedral and affine
groups).

A (Very) Short Journey Through Some Tools and Research Axes
of the SMIR Project

As we have seen by briefly describing some examples of the interplay between al-
gebraic, topological and categorical approaches, the SMIR project proposes to use
structural approaches in Music Information Researches based on advanced mathe-
matics. These approaches include the search of algebraic invariants to classify mu-
sical structures, the use of simplicial complexes to represent musical spaces, the
use of Galois lattices and ordered structures, together with persistent homologi-
cal tools and functorial approaches to describe graph-theoretical musical construc-
tions. These theoretical concepts are systematically accompanied by computational
modelling including spatial computing, a non-conventional paradigm in computer
science aiming to reformulate in spatial terms the data structures and their formal
manipulations, as in the case of the simplicial representation of the Tonnetz and its
possible generalisations. The panoply of tools and theoretical constructions which

successively, through the set-up of generalized K-nets called “Poly-Klumpenhouwer Networks”
[35–37].



From Music to Mathematics and Backwards. . . 85

are potentially useful within a structural approach to music information research can
be classified into the three main research axes that will be shortly described in the
following sections.

The Interplay Between Mathematical Morphology and Formal
Concept Analysis in Computational Musicology

By using some recent results that we obtained concerning the connections between
topology, music and Formal Concept Analysis [19, 39], on the one hand, and some
existing relations between Mathematical Morphology [40] and Formal Concept
Analysis [20] on the other hand [10], the project will investigate how to combine
Formal Concept Analysis and Mathematical Morphology in order to approach in a
new way some classical problems of Music Information Research. One of the most
prominent examples is the automatic retrieval of musical structure. Some promis-
ing results have been obtained by Pierre Relaño in his Master dissertation devoted
to the application of techniques developed within the field of mathematical mor-
phology to the lattice representation of musical structures, with a special focus on
harmony [38].

Generalized Tonnetze, Persistent Homology and Automatic
Classification of Musical Styles

The SMIR project will build on some recent findings concerning the simplicial com-
plexes and neo-Riemannian music analysis [13, 14] in order to study the problem of
automatic classification of musical styles via a purely topological approach based
on techniques such as persistent homology, which appears as a fundamental tool
in the field of Topological Data Analysis. As in the case of this new research area
that emerged from the application of computational topology in data analysis, by
computing persistent homology from musical data sets it is possible to characterise
the underlying musical space with a “topological signature” that reveals its struc-
tural properties. Some interesting results have been obtained by Mattia Bergomi in
his PhD dissertation that is the first doctoral thesis devoted to the application of
persistent homology to automatic style classification [11]. This approach has been
successively applied to a structural computational analysis of popular music [12].

Category Theory and Transformational (Computer-Aided) Music
Analysis

Several other “mathemusical” problems emerged in the recent years, which ask for
extending the mathematical framework by also including tools and constructions
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belonging to other fields of mathematics, in particular category theory. As a theory
of abstract mathematical structures, category theory is in fact particularly suitable
for unifying different music-theoretical constructions. As we have shown, it consti-
tutes the natural mathematical framework for the so-called “transformational music
theory” [35]. Following our first attempt at developing a category-based approach
to creativity [6], we will explore in this project different categorical constructions at
the basis of the creative process in music analysis and composition. As we suggested
elsewhere [1], category theory also provides very powerful conceptual tools that can
have crucial theoretical implications for cognitive sciences and mathematical psy-
chology. We strongly believe that the fact of coupling an algebraically formalized
geometrical approach, such as the transformational one, with a computational per-
spective has some crucial theoretical implications for cognitive sciences and math-
ematical psychology. One simple way to have the intuition of this change is to com-
pare the transformational approach in music analysis with some mathematically-
oriented directions in developmental psychology and cognition, such as Halford and
Wilson’s neostructuralistic approach [22], Ehresmann and Vanbremeersch’s Model
of Memory Evolutive Systems [16] and Phillips and Wilson’s Categorical Compo-
sitionality [32]. From an epistemological point of view, transformational analysis
provides an instantiation, in the music domain, of Gilles-Gaston Granger’s articula-
tion between the “objectal” and the “operational” dimensions [21]. This duality was
considered by the French epistemologist as the foundational basis for the very no-
tion of “concept” in philosophy.11 From the perspective of developmental psychol-
ogy, among the three problematics which—according to the psychologist Olivier
Houdé—mark the renewal of Piaget’s genetic epistemology, category theory oc-
cupies a central place [24]. Differently from the structural approach which Piaget
developed starting from his logical treatise [33] and which also constitutes the con-
ceptual framework of his researches on the “abstraction réfléchissante”, category
theory introduces, according to Houdé, a new element in the operational thinking.
Morphisms enable to take into account an “aspect of logical-mathematical cogni-
tion which does not proceed from the transformation of the reality (operations and
grouping of operations) but which takes into account the simple relational activity
[mise en relation]”.12 Being capable of integrating these epistemological and cogni-
tive aspects within a theoretical research will be one of the major challenges of the
SMIR project. Starting from the reflections of mathematicians on the phenomeno-
logical account of contemporary mathematics, and comparing these authors with
some more epistemological orientations on the cognitive aspects of the phenomeno-
logical method, the structural Music Information Researcher might find the way
to constitute a new conceptual space within which some mathematical problems
raised by music open new perspectives enabling to enrich the philosophical quest.
This would surely lead to a better understanding of the interplay between algebraic
formalizations, topological descriptions and categorical representations of musical
structures and processes.

11See, in particular, the article “Contenus formels et dualité”, reprinted in [21].
12See [24] as well as Piaget’s posthumous Morphismes et catégories [34].
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