
The Space of Planar Soap Bubble Clusters

Frank Morgan

Soap bubbles and foams have been extensively studied by scientists, engineers, and
mathematicians as models for organisms and materials, with applications ranging
from extinguishing fires to mining to baking bread; see for example Cantat et al. [2],
Weaire-Hutzler [15], Morgan [9, Chap. 13], and references therein. Here we provide
some basic results on the space of planar clusters of n bubbles of fixed topology. We
show for example that such a space of clusters with positive second variation is an
n-dimensional manifold, although the larger space without the positive second varia-
tion assumption can have singularities. Earlier work of Moukarzel [12] showed how
to realize a cluster as a certain generalized Voronoi partition, though not canonically.

Soap Bubble Clusters

Definition 1 A planar cluster consists of disjoint circular arcs/line segments meet-
ing in threes at positive angles, enclosing n connected regions, with areas denoted
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A1,A2, . . . ,An. We assume that the cluster is connected and has at least two re-
gions (n ≥ 2). A cluster is in quasi-equilibrium if the arcs meet at 120 degrees. For
equilibrium we further assume that the sum of the curvatures around a path from
a region to itself is 0, or equivalently around a vertex. This condition makes pres-
sure well defined as the sum of the curvatures along a path from the exterior to the
point. An equivalent form of the condition is that circles/lines through a vertex meet
again (each forward or backwards, at infinity in the case of three straight lines), as
follows by the law of sines [9, Fig. 14.1.2]. All of these definitions are preserved by
Möbius (linear fractional) transformations. A cluster is in equilibrium if and only if
the cluster has vanishing first variation of length under smooth deformations of the
plane which preserve the areas [13, Prop. 2.6 and Appendix A]. A cluster is min-
imizing if it minimizes length for given areas. A minimizing cluster has vanishing
first variation and nonnegative second variation.

More generally and technically one might define a soap bubble cluster in RN as
n disjoint regions of finite volume and perimeter such that Lipschitz deformations
inside small balls preserving the volumes cannot reduce the area of the union of
the boundaries [9, §11.3]. In R2 such are equilibrium clusters as defined above [9,
§13.10].

Parameterize clusters of given combinatorial type, with say v vertices and e

edges, by the vertices V1,V2, . . . , Vv , and for each edge from Vi to Vj the ori-
ented area aij = −aji between the edge and a straight line between vertices. Since
e = 1.5v, by Euler’s formula there are 2(n− 1) vertices and 3(n− 1) edges. On this
(7n − 7)-dimensional manifold C the areas Ai and perimeter P are smooth func-
tions. (Using areas aij instead of curvatures avoids ambiguity of large and small
circular arcs of the same curvature.) Since rigid motions infinitesimally have no
fixed points (because by the assumption n ≥ 2 we exclude a circle (n = 1)), there is
a smooth quotient manifold Q of dimension 7n − 10.

Lemma 2 The Jacobian of the area vector (A1,A2, . . . ,An) has full rank n (on C
and on Q).

Proof The area of a region sharing an edge Eij with the exterior can be varied
by varying aij . Adjacent regions can be similarly adjusted by varying the aij of a
shared edge and restoring the area of the outer region. Work your way inward to
obtain arbitrary variations. �

Corollary 3 Level sets of fixed area vector in the spaces of clusters (C and Q)
provide a smooth foliation (by the Inverse Function Theorem).

Theorem 4 The space in Q of equilibrium clusters modulo rigid motions with n
regions with positive second variation for fixed areas is a smooth n-dimensional
manifold, locally parametrized by the areas.

Proof Varying areas smoothly preserves positive second variation equilibria. �
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Fig. 1 A long chain or
“necklace” of n − 1 say unit
curvature bubbles
surrounding a chamber with 0
pressure is floppy

Conjecture 5 An equilibrium of positive second variation is unique for given area
vector and given combinatorial type.

Remarks 6 The theorem and conjecture do not hold with positive second variation
replaced by nonnegative second variation or stability, as observed by Weaire et al.
[16]. As a trivial example, consider a bubble with two small lenses in its bound-
ary, with the extra degree of freedom of the distance between the lenses, yielding a
(3 + 1)-dimensional manifold of stable equilibria. Lenses tend to add an extra di-
mension. In the symmetric case, the two middle arcs can be replaced by arcs of a
different curvature, yielding quasi-equilibria, as pointed out to me by John M. Sul-
livan, another 4-dimensional manifold containing the symmetric case, which is thus
a non-manifold point in the space of quasi-equilibria.

For a more interesting example, a long chain or “necklace” of n − 1 say unit
curvature bubbles surrounding a chamber with 0 pressure as in Fig. 1 is floppy, with
a multi-parameter family of configurations with the same areas and pressures. To
compute the dimension, note that you can slide each bubble around the adjacent
one, for n− 2 free parameters, minus 2 for them to match up and 1 for rigid rotation
and 1 more to preserve the area of the central chamber, for a total of n − 5. These
necklaces can probably be shown minimizing by the methods of Cox et al. [3]. The
symmetric one also sits in a one-parameter family of varying area and pressure of
the central chamber, apparently not available in the non-symmetric case, so that the
space is not a manifold at that point. For smaller area the pressure goes negative and
the cluster becomes unstable. For larger area the pressure goes positive, the cluster
becomes strictly stable, and all of the areas can be varied, but the cluster is no longer
floppy.

Is the set of equilibria of fixed combinatorial type connected? Equilibria with
nonnegative second variation? For fixed area vector?

The theorem and proof hold if length is replaced by any smooth, uniformly con-
vex norm. For equilibrium, curves meet in threes such that the unit duals of the tan-
gent vectors and the (constant) generalized curvatures both sum to zero. See [8, 11].
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It is unknown whether the manifold of Theorem 4 is locally parametrized by
pressures, except for double bubbles in R2, where the only stable double bubble is
the standard double bubble [10].

Dimension of Equilibria

An upper bound on the dimension on the space of equilibria is given by placing the
vertices (2v) and the orientation of the curves leaving one vertex (1), which deter-
mines the orientations at adjacent vertices, etc., minus rigid motions (3), for a total
of 2v − 2 = 4n − 6. Fenyes [4] proved that if every bubble has at least three sides
the conditions on each edge that the angle of the curve with the chord is the same at
both ends (which he denotes by sij ) are independent on vertices plus orientations,
which yields a bound of 3v − 3 − 1.5v = 1.5v − 3 = 3n − 6. Adding v − 1 curva-
ture constraints would bring the estimate down to 0.5v − 2 = n − 3, just 3 less than
expected, probably due to some minor dependence among the curvature constraints.
Indeed, none are needed for the triple bubble (v = 4), and using v − 4 instead of
v − 1 would yield exactly the expected n. So probably generically the dimension is
due to placing v vertices, choosing directions at each vertex, the sij edge constraints,
the curvature constraints, and modding out by rigid motions:

2v + v − 1.5v − (v − 4) − 3 = 0.5v + 1 = n.

To prove Fenyes’s lemma, sending the conjugate vertex to infinity, one has
straight lines from points xi , xj , and xk meeting xh at 120 degrees. The result holds
because for fixed xi , xj , xk and directions from each of them, the point xh is the
only point where circular arcs from xi , xj , and xk in those directions can meet at
120 degrees.

Question Is the space of equilibria of given combinatorial type connected? for
given area vector?

Small Clusters

Any two vertices support a 1-parameter family of quasi-equilibrium double bubbles,
all equilibria by trigonometry, all minimizing by the planar double bubble theorem
[9]. The number of parameters equals 4 − 3 [rigid motions] = 1, and 1 + 1 = 2.

Any three vertices uniquely determine the fourth vertex and a triple quasi-
equilibrium bubble (easy in the most symmetric case, in general by Möbius trans-
formations), which in fact are equilibria. By Wichiramala [18], they are minimizing.
The number of parameters is 6 − 3 = 3 (or the previous 2 plus the 1-parameter fam-
ily of decorations).
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Similarly any such three vertices and an appropriate fourth on the triple bubble
determine a standard 4-bubble. The number of parameters equals 6 + 1 − 3 = 4 (or
the previous 3 plus 1).

A 4D family of equilibrium 3-clusters is given by a circle decorated by two
lenses. In the symmetric case, the two middle arcs can be replaced by arcs of a
different curvature, as pointed out to me by John M. Sullivan, yielding another 4D
family of quasi-equilibria.

The standard type 4-cluster similarly admits quasi-equilibria. Start with an equal-
area double bubble, with one bubble above the other. Decorate the two vertices
symmetrically to produce a 4-bubble symmetric under horizontal as well as vertical
reflection. Now lengthen the horizontal line in the middle and replace the top and
bottom arcs with others of smaller curvature to maintain the 120-degree angles.

The first equilibrium cluster not to arise from repeated decorations is the flower
with four petals around a 4-sided central bubble as in Fig. 2 below. Is it part of a
5-dimensional family of equilibria? (Yes, next paragraphs.) Are they stable? (I think
so.) Are there more quasi-equilibria? (Yes, similar to previous constructions.)

As Sullivan (email 2014) pointed out, “It’s easy to find a 4-parameter family: note
that in the symmetric cluster, the size of the inner bubble can be varied; then apply
Möbius transformations including scaling. What this doesn’t give is clusters of the
form where the four bubbles in the ring around the center alternate large, small,
large, small [because any inversion keeping one pair of opposites equal makes the
other pair unequal]. But I think those could be constructed easily explicitly (with D2
symmetry).”

An easy way to construct these 5-clusters with D2 symmetry is to note that a
quarter is part of a double bubble with a lens (which may extend outside the double
bubble). So start with a double bubble, with one bubble above the other, with a
centered lens (three parameters) and slide the lens until the line perpendicular to
two upper circular arcs is perpendicular to the line perpendicular to the two lower
circular arcs. Now reflection across the two lines yields the desired 5-cluster. At least
for nearly equal petal areas, these clusters are all stable [1]. Now Möbius inversion
yields a 5-parameter family of equilibrium 5-clusters (without imposed symmetry).

The space of circular arc triangles with three 120-degree angles has dimension 3
(vertices arbitrary by linear fractional transformations and uniqueness obvious from
equilateral case).

3D Clusters

The space of clusters in space is harder to parameterize; we follow the methods of
White [17] (see his Intro. and Thm. 3.1). We consider clusters defined as smooth
surfaces meeting in threes at positive angles along smooth curves, which in turn
meet in fours at positive angles, enclosing n connected regions, with volumes de-
noted Vi . An equilibrium cluster consists of constant-mean curvature surfaces (not
necessarily spherical) meeting in threes at 120 degrees along smooth curves, which
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in turn meet in fours at equal angles of cos−1(−1/3) ≈ 109 degrees [9, 11.3]. We
assume that a cluster is connected and has at least two regions (n ≥ 2). At a given
equilibrium cluster C, we consider perturbations as follows. First we perturb the
singular points, replacing the singular curves by homothetic copies. Next via real-
analytic transverse vectorfields u,v we perturb each singular curve by a smooth
linear combination of u and v vanishing at the endpoints. We adjust each compo-
nent of the surface by the harmonic function with the given change in boundary
values. Finally, via a real-analytic transverse vectorfield w, we perturb each com-
ponent of the surface by a smooth multiple of w vanishing at the boundary. This
process parameterizes a neighborhood in the space of clusters of a given cluster
with a neighborhood of the origin in a space of smooth functions.

We take as our space of smooth functions the Banach space C2,α (fixed
0 < α < 1) of twice Hölder differentiable functions under the standard C2,α norm,
making the space of clusters a smooth Banach manifold. The enclosed volume vec-
tor is a real-analytic function on this linear space. The advantage of the Hölder
spaces is that harmonic functions inherit the smoothness of the boundary values
up to the boundary. White [17, §1.5] explains how to modify the space to make it
separable. A good reference on Banach manifolds is provided by Lang [6].

Theorem 7 The space of clusters of n bubbles modulo rigid motions with positive
second variation in RN is a smooth n-dimensional manifold, locally parametrized
by the volumes.

Proof We consider perturbations as above of a fixed cluster with positive second
variation. As in the 2D case, now by the inverse function theorem on Banach mani-
folds, the space is C∞ foliated by submanifolds of fixed volume vector. The theorem
follows. (Because the range of the volume vector V is finite dimensional, there is
trivially a subspace complementary to ker DV , yielding the desired local isomor-
phism of the tangent space with ker DV × Rn, which by the inverse function theo-
rem implies that the space of clusters is locally diffeomorphic to {V =0} × {V }.) �

Remarks It is unknown whether the manifold is locally parametrized by pressures,
even for double bubbles in R3, where it was a major advance to prove that pressure
is strictly decreasing in volume for area-minimizing double bubbles ([5, Thm. 3.2],
[9, 14.5]).

The above approach and Theorem 7 hold for piecewise smooth clusters (stratified
manifolds) in RN . More generally and technically one could define an (equilibrium)
soap bubble cluster in RN as n disjoint regions of finite volume and perimeter such
that Lipschitz deformations inside small balls preserving the volumes cannot reduce
the area of the union of the boundaries [9, 11.3]. In R2 and R3 such are equilib-
rium clusters as previously defined, although in R3 it is not known whether every
four-curve singularity satisfies the local area minimization condition [7]. In higher
dimensions, it is not known whether such general equilibrium clusters are piecewise
smooth (stratified manifolds).
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Fig. 2 A 4-flower and a schematic of its representation in de Sitter spacetime, where points (rep-
resenting planar circles) occur in equally spaced triples on geodesics by the equilibrium conditions
at each junction of the soap film. Aaron Fenyes

de Sitter Spacetime

The following theorem was communicated to me by Aaron Fenyes, who also pro-
vided Figs. 2 and 3.

Theorem 8 (Fenyes, 2014) There is a natural correspondence between connected
n-junction immersed equilibrium clusters in the plane with a point at infinity and
the algebraic variety of n triples of points in de Sitter spacetime, each triple evenly
spaced at distances 2π/3 on an oriented line, the 3n (not necessarily distinct) points
in antipodal pairs.

For simplicity of description, we are assuming that the junctions of the cluster
are distinct and that the triples on oriented lines are distinct (although for example
you could have the same triple evenly spaced on the same line with opposite orien-
tations, corresponding to three films meeting at two points, as in the double bubble).
The triple associated to a junction consists of the oriented circles/lines leaving the
junction, the orientation of their line giving their counterclockwise order around the
junction.

Figures 2 and 3 provide a schematic representation in de Sitter spacetime of the
4-flower discussed above and a two-parameter family of deformations.

Proof of Theorem 8 de Sitter spacetime S consists of the oriented spacelike lines in

M = (3 + 1)-dimensional Minkowski spacetime = {2 × 2 Hermitian matrices}
(see [14]). Three oriented circles/lines meet at two points at 2π/3 radians if and only
if they are collinear and evenly spaced at distances 2π/3 in de Sitter spacetime, and
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Fig. 3 Two families of deformations of the representation in de Sitter spacetime of the 4-flower.
Aaron Fenyes

the orientation of the line determines their cyclic order and hence which of the two
points is in the cluster. The pairing of the points in antipodal pairs corresponds to
the fact that each circle/line leaves one junction and enters another; hence appears
with both orientations, antipodal points in S. �
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Appendix: Decoration

Proposition 9 A 3-sided bubble in a cluster can be expanded or shrunk (even to a
point) without affecting the rest of the cluster.

Proof sketch Given a 3-sided bubble, use a linear fractional transformation to map a
vertex to infinity and the other point where the two incident edges meet to the origin.
The third edge is mapped to one side of an equilateral 3-sided bubble centered at
the origin. Now map its third vertex to infinity. Our original bubble is now mapped
to an equilateral 3-sided bubble, which can be shrunk or expanded without affecting
the rest of the cluster. �

To show failure for k-sided bubbles, we need the following lemma about double
bubbles. We know from double bubbles that when a circular arc splits into two

http://newton.ac.uk/programmes/FMS/fmsw02.shtml
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others in an equilibrium cluster and they continue until they meet again, the curve
that emerges is a continuation of the original circular arc.

Lemma 10 For a double bubble consisting of bubbles of radius r1 and r2, increas-
ing r2 causes the distance d between their centers to decrease if r2 < 0.5r1 and
increase if r2 > 0.5r1.

Proof See Morgan [9, Fig. 14.1.2]. By the law of cosines,

d2 = r2
1 + r2

2 − r1r2.

Therefore 2d(dd/dr2) = 2r2 − r1, which is negative if r2 < 0.5r1 and positive if
r2 > 0.5r1. �

Proposition 11 In general, a bubble cannot vary pressure without affecting the rest
of the cluster.

Proof Consider a bubble in contact with three other surrounding, fixed, say smaller,
bubbles. As its pressure decreases and it grows, it must move farther from all three—
impossible. The other three are connected if you like by chains of smaller bubbles. �

Remark 12 The easier, well-known Decoration Proposition, that you can insert a
three-sided bubble at a triple junction, follows from inversion to infinity of the other
point where the three curves meet, which exists by double bubble trigonometry. In
3D, such an argument, based on triple bubbles, holds only if the six surfaces meeting
at the tetrahedral junction are all spherical. How do you prove a general decoration
theorem in 3D?
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