
Chapter 8
Leveraging Entities in Document
Retrieval

This chapter focuses on the classic IR task of ad hoc document retrieval and
discusses how entities may be leveraged to improve retrieval performance. At their
core, all document retrieval methods compare query and document representations.
Traditionally, these representations are based on terms (words). Entities facilitate
a semantic understanding of both the user’s information need, as expressed by the
keyword query, and of the document’s content. Entities thus may be used to improve
query and/or document representations. As a first step of that process, entities
that are related to the query need to be identified, thereby establishing a mapping
between queries and entities. As we shall explain in Sect. 8.1, one may go beyond
considering only those entities that are explicitly mentioned in the query. We next
present three different families of approaches, which are illustrated in Fig. 8.1.

• Expansion-based methods utilize entities as a source of expansion terms to enrich
the representation of the query (Sect. 8.2).

• Projection-based methods treat entities as a latent layer, while leaving the
original document/query representations intact (Sect. 8.3).

• Entity-based methods consider explicitly the entities that are recognized in docu-
ments, as first-class citizens, and embrace entity-based representations in “duet”
with traditional term-based representations in the retrieval model (Sect. 8.4).

This particular order corresponds to the temporal evolution of research in this
area, where the tendency toward more and more explicit entity semantics is clearly
reflected. Throughout this chapter, we shall assume that both queries and documents
have been annotated with entities, using entity linking techniques we have discussed
before (see Chap. 5 for documents and Sect. 7.3 for queries). A particular challenge
involved here is how to deal with the uncertainty of these automatic annotations.

In practice, necessitated by efficiency considerations, all methods described in
this chapter are implemented as re-ranking mechanisms. The details are found in
Sect. 8.5. Finally, we present standard datasets and useful resources in Sect. 8.6. We
refer to Table 8.1 for the notation used throughout this chapter.
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Fig. 8.1 Three main ways to leverage entities for improved document retrieval. The represen-
tations are bag-of-words (BoW), bag-of-entities (BoE), and latent entity space (LES). The main
difference between projection-based (b) and entity-based (c) methods is that the former treats
entities as a latent layer between queries and documents, while the latter explicitly models
the entities mentioned in the document and complements the traditional bag-of-words (BoW)
representations with bag-of-entities (BoE) representations

Table 8.1 Notation used in
this chapter

Symbol Description

c(t;x) Count (raw frequency) of term t in the x

d Document (d ∈ D)

D Collection of documents

Dq (k) Top-k ranked documents in response to query q

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Eq (k) Top-k ranked entities in response to query q

Eq Set of query entities

lx Length of the description of x (lx = ∑
t∈x c(t;x))

q Query (q = 〈q1, . . . ,qn〉)
t Term (t ∈ V)

T Type taxonomy

Te Set of types assigned to e

V Vocabulary of terms

8.1 Mapping Queries to Entities

A common component that is shared by all approaches that follow later in this
chapter is the mapping of queries to entities. The goal is to identify a set of entities
that may be semantically related to the query.1 We shall refer to this set Eq of related
entities as query entities. Naturally, not all query entities are equally strongly related
to the query. Therefore, we use the probability P(e|q) to express the likelihood of

1Notice that this is highly related to the task of ad hoc entity retrieval (cf. Chap. 3), as well as to the
candidate entity ranking and semantic linking subtasks in query entity annotation (cf. Sect. 7.3).
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entity e being related to query q . The estimation of this probability may be based on
(1) entities mentioned in the query, (2) entities retrieved directly from a knowledge
base, and/or (3) entities retrieved indirectly, through pseudo-relevant documents.
Let us look at these in order.

• Entities mentioned in the query. The presence of an entity mention in the query
provides a unique opportunity for improving the understanding of the user’s
information need [5]. Entities can be identified and disambiguated using entity
linking techniques, cf. Sect. 7.3. Let Eq be the set of entities that have been
identified in query q . For each of the query entities e ∈ Eq , we let scoreELQ(e;q)

be the associated confidence score. We note that the annotated entity mentions
may overlap (i.e., we are not concerned with forming interpretation sets). For
queries that are associated with a specific entity (i.e., |Eq | = 1), it makes
sense to use that entity’s description as pseudo-feedback information [56]. More
generally, we consider a single entity that has the highest annotation score:

P(e|q) =
{

1 , e = arg maxe∈Eq
scoreELQ(e;q)

0 , otherwise .
(8.1)

Further generalization to an arbitrary number of entities can easily be done, by
introducing a minimum confidence threshold on the annotations:

P(e|q) =
{ 1

Z
scoreELQ(e;q) , scoreELQ(e;q) > γ

0 , otherwise ,

where γ is a score threshold parameter, and Z is a normalization factor, such that
0 ≤ P(e|q) ≤ 1. Additionally, entities relevant to those mentioned in the query
may also be considered [34].

• Entities retrieved from a knowledge base. An alternative route may be taken by
querying a knowledge base directly for relevant entities [18]. We let scoreER(e;q)

be the relevance score of entity e given q . This score may be computed
using any of the entity retrieval methods introduced in Chap. 3. For pragmatic
considerations, only the top-k entities are considered, denoted as Eq(k). P(e|q)

then becomes:

P(e|q) =
{ 1

Z
scoreER(e;q) , e ∈ Eq(k)

0 , otherwise ,

where Z is a normalization coefficient.

• Entities from pseudo-relevant documents. The third method uses the top-ranked
documents retrieved in response to the query, in the spirit of pseudo relevance
feedback [40]. This corresponds to the setting of ranking entities without direct
representations (cf. Sect. 3.4). Formally:

P(e|q) ∝
∑

d∈Dq(k)

P (e|d)P (d|q) , (8.2)
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where Dq(k) denotes the set of top-k highest scoring documents retrieved in
response to query q , P(d|q) corresponds to document d’s relevance to the query,
and P(e|d) is the probability of observing the entity in d . P(e|d) may be taken
as a maximum-likelihood estimate:

P(e|d) = c(e;d)
∑

e′∈d c(e′;d)
,

where c(e;d) is the number of times entity e occurs in document d . Additionally,
the frequency of e across the document collection may also be taken into account
(to demote entities that occur in too many documents) by adding an IDF-like
component, see Eq. (3.6). One alternative to relying on maximum-likelihood
estimation is presented by Meij et al. [40], who re-estimate the probability mass
of the entities using parsimonious language models.

We note that entity relevance may be estimated selectively or jointly using the above
methods, depending on the type of the query. For example, Xu et al. [56] employ
Eq. (8.1) for queries that can be associated with a single entity; for other queries, the
top-k ranked documents are considered, i.e., Eq. (8.2) is used.

8.2 Leveraging Entities for Query Expansion

Keyword queries are typically too short to describe the underlying information need
accurately. Query expansion is one of the classical techniques used in document
retrieval, dating all the way back to the 1970s [43]. The idea is to supplement the
keyword query with additional terms, thereby having a more elaborate expression of
the underlying information need. These additional terms may be extracted from doc-
uments that are deemed relevant. In most cases, however, there is no explicit feed-
back from the user as to which documents are relevant and which are not. Instead,
one may “blindly” assume that the top-ranked documents are relevant, and extract
expansion terms from these. This technique is known as pseudo (or blind) relevance
feedback and has been thoroughly investigated in the past. In general, pseudo rele-
vance feedback helps more queries than it hurts [39]. Clearly, it can only be effective
when the initial set of retrieved documents is good, otherwise it merely introduces
noise. Prior work has demonstrated the benefits of exploiting external collections
for query expansion [2, 20, 49]. In this section, we will leverage a knowledge base
as an external resource, and utilize entities for query expansion. This can bring in
external semantic signals that may not be available within feedback documents.

First, in Sect. 8.2.1, we describe how traditional document-based feedback
works. The aim of that section is to show how an expanded query model θ̂q can
be constructed and subsequently used for retrieval. Next, in Sect. 8.2.2, we present
a general framework for performing entity-centric query expansion, i.e., estimating
θ̂q with the help of entities. A core component of this framework is term selection,
which may be approached using either unsupervised or supervised methods. These
are discussed in Sects. 8.2.3 and 8.2.4, respectively.
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8.2.1 Document-Based Query Expansion

To give an idea of how traditional (term-based) pseudo relevance feedback works,
we present one of the most popular approaches, the relevance model by Lavrenko
and Croft [33]. This method assumes that there exists some underlying relevance
model R, which generates both the query and the relevant documents. Then, based
on the observed query q (which is a sample from R), we attempt to learn the
parameters of R. The probability of drawing a term t from R is approximated with
the probability of observing that term, given the query:

P(t|R) ≈ P(t|q1, . . . ,qn) .

Lavrenko and Croft [33] present two methods for estimating this conditional
probability. The better performing of the two, referred to as RM1, assumes that
the terms in the query and in relevant documents are sampled identically and
independently from the relevance model (i.i.d. sampling):

P(t|R) ∝
∑

d∈Dq(m)

P (d)P (t|θd )

n∏

i=1

P(qi |θd) , (8.3)

where Dq(m) is the set of top-m highest ranked documents for the original query,
according to some retrieval model (commonly query likelihood, i.e., P(q|θd)).2

These are used as evidence for estimating the relevance model, with m typically set
between 10 and 50 [1, 17, 37, 56]. The prior document probability, P(d), is usually
assumed to be uniform. The term probabilities P(t|θd) and P(qi |θd) are smoothed
term probabilities from the document’s language model (cf. Sect. 3.3.1.1).

The number of expansion terms has a direct impact on retrieval efficiency.
Therefore, in practice, only the top-k expansion terms with the highest probability
are used for expansion, with k typically ranging between 10 and 50 (see, e.g., [1,
5, 17]). Thus, the top-k highest scoring terms according to Eq. (8.3) are taken to
form the expanded query model θ̂q (with the probabilities renormalized such that
∑

t P (t|θ̂q ) = 1).
To avoid the query shifting too far away from the user’s original intent (an issue

known as topic drift), it is common to define the final query model θq as a linear
combination of the maximum likelihood and expanded query models [59]:

P(t|θq) = (1 − λ)
c(t;q)

lq
+ λP(t|θ̂q ) , (8.4)

2We use m to denote the number of feedback documents, as the variable k will be used for the
number of feedback terms.



274 8 Leveraging Entities in Document Retrieval

Fig. 8.2 Entity-based query
expansion. Query entities
(Eq ) are utilized to add and
re-weigh terms in the original
query q, resulting in an
expanded query model θq
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where c(t;q) is the number of times t occurs in q , lq is the total number of terms
in the query, and λ is a mixture parameter. This parameter controls the influence of
the expanded query model and is typically in the range [0.4,0.6] (see, e.g., [1, 56]).
The combination of RM1 with the original query in Eq. (8.4) is commonly referred
to in the literature as RM3 [37]. RM3 is widely regarded as a state-of-the-art model
for pseudo relevance feedback.

Finally, the combined query model θq is used in a second retrieval round to obtain
the final document ranking. For example, using the query likelihood retrieval model
(a.k.a. the standard language modeling approach) the scoring of documents is done
according to:3

log P(q|θd) =
∑

t∈q

P (t|θq) log P(t|θd) ,

where P(t|θd) is the probability of term t in the (smoothed) language model of
document d . Note that any other retrieval model can be used for obtaining the final
document ranking by using θq as a (weighted) query.

8.2.2 Entity-Centric Query Expansion

Given that our focus is on entities, the question we ask is this: Can we use
entities, instead of documents, for estimating an expanded query model? The idea
of entity-centric query expansion is illustrated in Fig. 8.2, where the expanded query
model θq is estimated by utilizing the set of query entities Eq .

As a general framework, we follow the method proposed by Meij et al.
[40], where query expansion is formulated as a double translation process: first,
translating the query to a set of relevant entities, then considering the vocabulary
of terms associated with those entities as possible expansion terms to estimate the

3This formula can be derived by replacing the query term count c(t;q) in Eq. (3.8) with the
probability of the term given the query language model, P (t |θq). Note that this scoring is rank-
equivalent to measuring the Kullback–Leibler divergence between the document and the query
term distributions (KL(θq ||θd)) [1].
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expanded query model. Formally:

P(t|θ̂q ) ∝
∑

e∈Eq

P (t|e,q)P (e|q) . (8.5)

Most existing approaches can be instantiated into Eq. (8.5). The first component,
P(t|e,q), expresses how strongly term t is associated with entity e given q . Meij
et al. [40] further impose a conditional independence assumption between the term
and the query. That is, once an entity is selected for a query, the probability of the
expansion term depends only on that entity: P(t|e,q) ∼= P(t|e). This distribution
governs how terms are sampled from the description of e. We shall refer to it as
term selection. The second component, P(e|q), identifies entities to be used for
query expansion and corresponds to the relevance of e given the query. This latter
component we have already discussed in Sect. 8.1. Therefore, we shall now focus on
the estimation of P(t|e,q), considering both unsupervised and supervised methods.

8.2.3 Unsupervised Term Selection

The probability distribution P(t|e) is estimated by selecting expansion terms from
the description or surface forms of a given query entity (e ∈ Eq ). (Notice that term
selection here depends only on the entity, and not on the original query.)

Entity Description One of the simplest ways to perform term selection is to
pick the most important terms from the entity’s term-based representation, which
we refer to as the entity description. Following our notation from before and
assuming a single-field entity representation, we write c(t;e) to denote the count
(raw frequency) of term t in the description of e. Further, we introduce the shorthand
notation w(t,e) for the importance of term t given e. Commonly, this is estimated
using the TF-IDF (here: TF-IEF) weighting scheme:

w(t,e) = TF(t,e) × IEF(t) ,

where term frequency TF and inverse entity frequency IEF have been defined in
Eqs. (3.1) and (3.2), respectively. Another popular choice is to use entity language
models, i.e., w(t,e) = P(t|θe). (We refer back to Sect. 3.3.1.1 for the construction
of entity language models.) Once term scores are computed, P(t|e) is formed by
taking the top-k terms and re-normalizing their scores:

P(t|e) =
{ 1

Z
w(t,e) , t ∈ V(k)

0 , otherwise ,

where V(k) is the set of top-k terms with the highest score, and Z is a normalization
coefficient. Xu et al. [56] further exploit the structured nature of entity descriptions,
by taking a linear combination of term scores across multiple entity fields. When
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the entity does not have a ready-made description available in the knowledge
repository, terms may be sampled from documents that mention the entity [40].
Instead of considering entity-term co-occurrences on the document level, they may
be restricted to smaller contexts, such as the sentence mentioning the entity or a fixed
sized window of words around the entity mention [18]. The key difference between
the above methods is how the entity description is obtained; we have covered all
these variants earlier in the book, in Chap. 3.

Surface Forms Another approach is to use the various surface forms (aliases) of
the query entities as expansion terms [18, 34]. The main intuition behind doing
so is that by including the different ways an entity can be referred to (i.e., its
“synonyms”), documents relevant to that entity can be retrieved more effectively.
Name variants of an entity can be conveniently enumerated as a separate field in its
description. Then, the estimation of P(t|e) is performed as before, except that the
term importance score is based on c(t;fn), instead of c(t;e), where fn is the field
holding the name variants of e.

8.2.4 Supervised Term Selection

So far, it has been implicitly assumed that all expansion terms are useful and
benefit retrieval performance, when added to the original query. This assumption
was challenged by Cao et al. [8], who showed that not all expansion terms are
actually valuable. Some terms are neutral (do not affect performance), while others
are in fact harmful. They further demonstrated that it is difficult to tell apart good
expansion terms from bad ones based solely on term distributions. One needs to
incorporate additional signals to be able to select useful expansion terms. Therefore,
Cao et al. [8] propose to combine multiple features using supervised learning to
predict the usefulness of expansion terms. This task may be formulated as a binary
classification problem (separating good expansion terms from bad ones) [8] or cast
as a ranking problem (ranking expansion terms based on their predicted utility) [5].
We follow the latter approach and specifically focus on ranking expansion terms
given a particular query entity e and the query q . The resulting term importance
score score(t;e,q) may be plugged into Eq. (8.5) as an estimate of P(t|e,q). Note
that the dependence of the expansion term on the original query is kept.

8.2.4.1 Features

Brandão et al. [5] present five specific feature functions for entity-based query
expansion. The order in which we discuss them corresponds to their usefulness
(from most to least useful).

The first two features are simple statistical measures of term frequency, which
rely on fielded entity descriptions. Term frequency is the total number of times t

occurs across the set Fe fields of the entity:
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TF(t,e) =
∑

fe∈Fe

c(t;fe) .

The term spread feature measures the spread of a term across multiple fields, by
counting in how many different fields the term occurs:

TS(t,e) =
∑

fe∈Fe

1(c(t;fe) > 0) ,

where 1() is a binary indicator function.
Term proximity accounts for the proximity between an expansion term and the

original query terms in the description of the entity:

TP(t,q,e) =
n∑

i=1

m∑

w=1

cw(t,qi;e)
2w−1 ,

where cw(t,qi;e) is the total number of co-occurrences of terms t and qi , within an
unordered window size of w, in the description of e. In [5], entities are represented
by their Wikipedia pages, and windows are measured in terms of sentences, up to
m = 5.

The last two features are taxonomic, utilizing the types of entities. Let Et denote
the set of entities that contain the term t: Et = {e′ ∈ E : c(t;e′) > 0}. Further,
let Ee be the set of entities that share at least one type with the query entity e:
Ee = {e′ ∈ E : Te ∩ Te′ �= ∅}. The similarity between the sets of related entities Et

and Ee may be measured using Dice’s coefficient:

DC(t,e) = 2
|Et ∩ Ee|

|Et | + |Ee| .

Another option is to use mutual information:

MI(t,e) =
{

|Et ∩ Ee| log |Et∩Ee|
|Et |×|Ee |, |Et ∩ Ee| > 0

0, otherwise .

All the above features score candidate expansion terms with respect to a given
query entity. It is also possible to leverage information associated with entities in
a knowledge base, without utilizing query entities directly. A specific example of
such an approach is given by Xiong and Callan [52], who select expansion terms
that have similar type distributions with that of the query.

The type distribution of a term is estimated according to:

P(y|θt ) = P(t|y)
∑

y ′∈T P(t|y ′)
,
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where T is the type taxonomy and the term probability of a type P(t|y) is
approximated based on the term’s frequency in the descriptions of all entities with
that type:

P(t|y) =
∑

e∈y c(t;e)
∑

e∈y le
.

Similarly, the type distribution of the query is estimated according to:

P(y|θq) = P(q|y)
∑

y ′∈T P(q|y ′)
,

where P(q|y) is the product of the query terms’ likelihood given type y:

P(q|y) =
∏

qi

P (qi |y) .

Then, expansion terms are selected based on the similarity of their type distributions
θt to the type distribution of the query θq , measured by negative Jensen–Shannon
divergence:

scoreJSD(t;q) = −1

2
KL(θq ||θq,t ) − 1

2
KL(θt ||θq,t ) , (8.6)

where

P(y|θq,t ) = 1

2

(
P(y|θq) + P(y|θt )

)
.

Notice that the estimate in Eq. (8.6) depends only on the query and not on the
query entities. Further note that all unsupervised term importance estimates from
Sect. 8.2.3 can also be used as features in supervised term selection.

8.2.4.2 Training

To be able to apply supervised learning, target labels are required. The question
is: How to measure if a term is a good expansion term? Cao et al. [8] propose to
identify the ground truth labels of terms according to their direct impact on retrieval
effectiveness. Formally, the gain attained by appending the candidate expansion
term t to the original query q (denoted by the ⊕ operator) is measured as:

δ(t) = ζ(q ⊕ t) − ζ(q)

ζ(q)
,

where ζ can be any standard IR evaluation measure, such as MAP or NDCG. Then,
terms above a certain threshold (0.005 in [8]) may be considered as good expansion
terms (target label +1), while the rest being bad terms (target label −1).

Instead of measuring the direct impact of terms with respect to some retrieval
measure, Xiong and Callan [52] use their influence on ranking scores. We write
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R+ and R− to denote the set of relevant and irrelevant documents for query q ,
respectively. Further, score(d;q) denotes the retrieval score of document d for q .
The gain from a term over the retrieved documents is then calculated as:

δ(t) = 1

|R+|
∑

d∈R+

(
score(d;q ⊕ t) − score(d;q)

)

− 1

|R−|
∑

d∈R−

(
score(d;q ⊕ t) − score(d;q)

)
.

Xiong and Callan claim that this latter formulation “reflects an expansion term’s
effectiveness more directly” [52]4 and performs better experimentally.

8.3 Projection-Based Methods

Traditional keyword-based IR models have an inherent limitation of not being able
to retrieve (relevant) documents that have no explicit term matches with the query.
While query expansion can remedy this to some extent, the limitation still remains.
Concept-based retrieval methods attempt to tackle this challenge by relying on
auxiliary structures to obtain semantic representations of queries and documents
in a higher-level concept space. Such structures include controlled vocabularies
(dictionaries and thesauri) [28, 47], ontologies [9], and entities from a knowledge
repository [23]. Our interest here is in the latter group.

The overall idea is “to construct a high-dimensional latent entity space, in which
each dimension corresponds to one entity, and map both queries and documents to
the latent space accordingly” [35]. The relevance between a query and a document
is then estimated based on their projections to this latent entity space. This approach
allows to uncover hidden (latent) semantic relationships between queries and
documents. See Fig. 8.1b for an illustration.

This idea is related to that of topic modeling, as developed in latent semantic
indexing [19] and latent Dirichlet allocation [3]. While topic models can now
be computed on web-scale [32], their utility to improve retrieval effectiveness is
limited. For example, Yi and Allan [57] have demonstrated that relevance models
(cf. Sect. 8.2.1) consistently outperform more elaborate topic modeling methods.
Latent entity representations, on the other hand, may be obtained at a relatively
low cost, are easy to interpret, and have been clearly shown to improve retrieval
effectiveness.

In this section, we present three specific approaches for ranking documents using
latent entity representations.

4It is more direct in the sense that changes in a given evaluation metric only happen if a given
expansion term manages to affect the ranking scores to an extent that documents exchange
positions.
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8.3.1 Explicit Semantic Analysis

Explicit semantic analysis (ESA) is an influential concept-based retrieval method
by Gabrilovich and Markovitch [26], where “the semantics of a given word are
described by a vector storing the word’s association strengths to Wikipedia-
derived concepts” [23]. Unlike in latent semantic analysis (LSA) [21], the use of a
knowledge repository gives meaningful interpretation to each element (concept) in
the vector representation, hence the name “explicit.” Work on ESA has primarily
focused on using Wikipedia as the underlying knowledge repository [22, 23, 25, 26].
Nevertheless, it may be used with any other knowledge repository, provided that
it has a sufficient coverage of concepts and concepts have textual descriptions
associated with them. For terminological consistency, we will continue to use
the term “entity” instead of “concept,” when referring to entries of a knowledge
repository,5 but follow the terminology “concept vector” and “concept space” from
the original work.

8.3.1.1 ESA Concept-Based Indexing

The semantic representation of a given term t is a concept vector of length |E |:
t = 〈

w(e1,t), . . . ,w(e|E|,t)
〉
,

where each element of the vector corresponds to an entity in the knowledge
repository and its value quantifies the strength of the association between term
t and the given entity. For a given term-entity pair, w(e,t) is computed by taking
the TF-IDF weight of t in the description of e (in ESA, the Wikipedia article
of e). Further, cosine normalization is applied to disregard differences in entity
representation length:

w(e,t) = TFIDF(t,e)
√∑

t ′∈V TFIDF(t ′,e)2
.

The semantic representation of a given piece of text (bag of terms) is computed by
taking the centroid of the individual terms’ concept vectors. Formally, the concept
vector corresponding to input text z is given by z = 〈w(e1,z), . . . ,w(e|E|,z)〉. Each
element of this vector represents the relatedness of the corresponding entity to the
input text. The value of the j th vector element is calculated as:

w(ej,z) = 1

lz

∑

t∈z

c(t;z) w(ej,t) ,

where lz is the length of z and c(t;z) is the number of times term t appears in z. See
Fig. 8.3 for an illustration.

5We refer back to Sect. 1.1.1 for the difference between concepts and entities.
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Fig. 8.3 Semantic representation of a piece of text (z) using explicit semantic analysis (ESA) [26]

Given that these concept-based vectors are sparse, with most weights being zero,
they can be efficiently represented using an inverted index. These inverted index
representations of concept vectors are further pruned by retaining only the top-k
entities with the highest weights. In [23], this cutoff is applied to both term and
text concept vectors (t and z, respectively), with k set to 50. This helps to eliminate
spurious and insignificant entity associations and also reduces index size.

8.3.1.2 ESA Concept-Based Retrieval

The semantic similarity between query q and document d may be computed by
mapping both to the ESA concept space, and taking the cosine similarity of their
concept vectors. That is, score(q;d) = cos(q,d), where q and d denote the concept
vectors corresponding to q and d , respectively.

One issue that arises here is that long documents are difficult to map to the
concept space. As Egozi et al. [23] explain, “a small part of a long document
might be relevant to the current query, but the semantics of this part may be
underrepresented in the concepts vector for the full document.” The proposed
solution, motivated by prior work on passage-based retrieval [7], is to break up
the document into shorter passages. In [23], passages are of fixed length and
overlapping. Each passage, s ∈ d , is represented by its own concept vector, s, and
matched against the query. The final retrieval score combines the full document’s
similarity score with that of the best performing passage:

scoreESA(q;d) = cos(q,d) + max
s∈d

cos(q,s) .

Due to the fact that queries are short and noisy, the initially generated query concept
vector needs further refinement. Egozi et al. [23] propose to utilize the idea of
pseudo relevance feedback for this purpose. First, keyword-based retrieval (using q)
is performed on the passage level. Then, the top-k passages are treated as pseudo-
relevant (i.e., positive) examples, while the bottom-k passages are taken to be
pseudo-non-relevant (i.e., negative) examples. Then, a subset of the initial query
entities is selected, based on the positive and negative example passages, resulting
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in a modified query q′. Finally, documents are ranked using the refined concept-
based query q′. We refer to [23] for further details on how to select which entities
to retain in the modified query concept vector.

8.3.2 Latent Entity Space Model

Liu and Fang [35] present the latent entity space (LES) model, which is based on a
generative probabilistic framework. The document’s retrieval score is taken to be a
linear combination of the latent entity space score and the original query likelihood
score:6

scoreLES(q;d) = α
∑

e∈E
P(q|e)P (e|d)

︸ ︷︷ ︸
LES score

+(1 − α) P (q|d) . (8.7)

In the absence of labeled training data, Liu and Fang [35] suggest to set interpolation
parameter α to a value between 0.5 and 0.7. The latent entity space score is
calculated as a linear combination over latent entities (e ∈ E) and involves the
estimation of two components: query projection, P(q|e), and document projection,
P(e|d). Next, we detail the estimation of these two probabilities.

Query Projection The probability P(q|e) may be interpreted as the likelihood of
the query q being generated by entity e. A straightforward option is to base this
estimate on the language model of the entity, θe. This language model may be
constructed from the entity’s description (cf. Sect. 3.3.1.1). The query projection
probability is then computed by taking a product over the query terms (which is
essentially the query likelihood score of the entity):

P(q|e) =
∏

t∈q

P (t|θe)
c(t;q) .

Another approach to estimating this probability is to leverage the set of query
entities Eq (which we have obtained in Sect. 8.1) in a pairwise manner:

P(q|e) ∝
∑

e′∈Eq

sim(e,e′) P (e′|q) , (8.8)

where sim(e,e′) may be any symmetric pairwise similarity measure (in [35] the
cosine similarity between θe and θe′ is used; see Sect. 4.5.1 for other possibilities),
and P(e′|q) is the query association probability for e′.

Liu and Fang [35] find that the latter, entity-similarity-based method works
better than the former, unigram-based approach. Using Eq. (8.8) implies that the
summation in Eq. (8.7) can be restricted to the set of query entities Eq as opposed to

6In [35], the scores of the two components are re-normalized to make them compatible.
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Table 8.2 Features used in EsdRank [51]

Group Description

Query-entity features

P (e|q) Query-entity association probability (cf. Sect. 8.1)

scoreER(e;q) Entity retrieval score (relevance of e given q)

sim(Te,Tq ) Type-based similarity between the entity (Te) and the query (Tq )

maxSim(e,Eq) Max. pairwise similarity between e and other query entities e′ ∈ Eq

avgSim(e,Eq ) Avg. pairwise similarity between e and other query entities e′ ∈ Eq

Entity-document features

sim(e,d) Textual similarity between e and d

sim(Te,Td ) Type-based similarity between the entity (Te) and the document
(Td )

numMentioned(E i
e,d) Number of related entities (at most i hops from e) mentioned in d

Other features

IDF(e) IDF score of the entity (based on the number of documents that are
annotated with e)

quality(d) Quality score of d (document length, SPAM score, PageRank, etc.)

Note that many of these features are instantiated multiple times, using different similarity methods
or parameter configurations

the entire entity catalog E , which will have a significant positive effect on efficiency.
It is further shown in [35] that the quality of entity language models θe can have a
significant impact on end-to-end retrieval performance.

Document Projection The probability P(e|d) may be interpreted as the projection
of document d to the latent entity space. It may be estimated using existing docu-
ment retrieval models, e.g., by computing entity likelihood (i.e., the probability of e

generated from the language model of d). Liu and Fang [35] estimate P(e|d) based
on the negative cross-entropy between the document and entity language models:

P(e|d) = exp (−CE(θe ‖ θd)) = exp
(∑

t∈V
P(t|θe) log P(t|θd)

)
.

8.3.3 EsdRank

The idea of using entities as a bridge between documents and queries may also
be expressed in a discriminative learning framework. Xiong and Callan [51]
introduce EsdRank for ranking documents, using a combination of query-entity
and entity-document features. These correspond to the notions of query projection
and document projection components of LES, respectively, from before. Using
a discriminative learning framework, additional signals can also be incorporated
easily, such as entity popularity or document quality. Next, we present these main
groups of features, which are summarized in Table 8.2. We then continue by briefly
discussing the learning-to-rank algorithm used in EsdRank.
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8.3.3.1 Features

Query-entity features include the following:

• Query entity probability, which can be computed by different methods in the
query-to-entity mapping step (cf. Sect. 8.1).

• Entity retrieval score, which may be computed by using any standard retrieval
model (such as LM, BM25, SDM) to score the query against the entity’s
description (in the case of unstructured entity representations) or a given entity
field (in the case of structured entity representations).

• Type-based similarity between the target types of the query, Tq , and the types
of the entity, Te. The former may be computed using the target type detection
methods we presented in Sect. 7.2, while the latter is provided in the knowledge
base. Specifically, Xiong and Callan [51] consider the top three types identified
for the query.

• Entity similarity considers the similarity between the candidate entity and
other query entities in a pairwise manner. Then, these pairwise similarities
are aggregated by taking their maximum or average.

Entity-document features comprise the following:

• Text-based similarity is measured between the document and the entity
description (or fields thereof). These may be computed, e.g., by using cosine
similarity or by applying standard retrieval models (LM, BM25, SDM, etc.) to
score documents by treating the entity description as the search query.

• Type-based similarity may be computed between documents and entities, simi-
larly to how it is done for queries and entities. Assigning types to the document
may be approached as a multiclass classification problem or as a ranking problem
(as it was done for queries in Sect. 7.2). Ultimately, the top-k types, i.e., with the
highest confidence score, are considered for the document (k = 3 in [51]).

• Graph-based similarity considers the relationships of the entity. Let E i
e denote

the set of entities that are reachable from entity e in i hops, where i ∈ [0..2] and
E0

e = {e}. Then, graph-based similarity in [51] is measured by the number of
entities in E i

e that are mentioned in d .

Other features may include, among others:

• Entity frequency, which reflects the popularity of the entity within the corpus and
can be measured, e.g., using IDF.

• Document quality indicators, such as document length, URL length, SPAM
score, PageRank score, number of inlinks, etc.

8.3.3.2 Learning-to-RankModel

Xiong and Callan [51] introduce Latent-ListMLE, which extends the ListMLE [50]
method. ListMLE is a listwise learning-to-rank algorithm that uses a parametric
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model to estimate the probability of a document ranking being generated by a query.
Then, it employs maximum likelihood estimation (MLE) to find the parameters
that maximize the likelihood of the best ranking. One important assumption that
ListMLE makes, to keep the optimization problem tractable, is that the probability
of a document being ranked at a given position i is independent from all those
documents that are ranked at earlier positions, 1 . . . i − 1.

Latent-ListMLE extends ListMLE by adding a latent layer of candidate entities in
the generation process. Similarly to ListMLE, it is assumed that the probabilities of
selecting entities and documents at each position are independent of those that have
been selected at earlier positions. However, instead of conditioning the document
ranking probability directly on the query, first entities are sampled based on the
query, then the probability of a document ranking is conditioned on the sampled
entities. The probability of a document ranking d = 〈d1, . . . ,dk〉 given q is:

P(d|q;w,θ) =
k∏

i=1

∑

e∈Eq

P
(
di |e,Dq(i,k)

)
P(e|q) ,

where Dq (i,k) = {di, . . . ,dk} is the set of documents that were not ranked in
positions 1, . . . ,i − 1. The parameters of the model, w and θ , are learned using
MLE and the EM algorithm. We refer to Xiong and Callan [51] for the details.

8.4 Entity-Based Representations

The main difference between the approaches in the previous section and those
that will follow below is that instead of projecting documents to a latent entity
layer, we will make use of explicit entity annotations of documents. We shall
assume that the document has been annotated by some entity linking tool. The
resulting set Ed of entities will be referred to as document entities. Entities may
be blended with terms in a single representation layer, such as it is done in
entity-based language models (Sect. 8.4.1). Alternatively, a separate bag-of-entities
representation may be introduced and combined with the traditional bag-of-terms
representation (Sect. 8.4.2).

8.4.1 Entity-Based Document Language Models

Raviv et al. [42] introduce entity-based language models (ELM), which consider
individual terms as well as term sequences that have been annotated as entities (both
in documents and in queries). They implement this idea by extending the vocabulary
of terms (V) with entities (E). We shall write x to denote a vocabulary token, which
here may be a term or an entity, x ∈ V ∪ E . Further, we write c(x;d) to denote
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the (pseudo) count of x in document d . The representation length of the document
is then given by ld = ∑

x∈d c(x;d). The maximum likelihood estimate of token x

given d is defined as:

P(x|d) = c(x;d)

ld
. (8.9)

This maximum likelihood estimate is then smoothed with a background (collection-
level) language model analogously to how it is done for unigram language models,
e.g., using Dirichlet smoothing:

P(x|θd) = c(x;d) + μP(x|D)

ld + μ
, (8.10)

where μ is a smoothing parameter, and the collection language model is also a
maximum likelihood estimate, computed over the set D of documents:

P(x|D) =
∑

d∈D c(x;d)
∑

d∈D ld
.

What remains to be defined is how the token pseudo-counts are computed. Raviv
et al. [42] propose two alternatives:

• Hard confidence-level thresholding Only those entity annotations are consid-
ered in the document that are above a given (pre-defined) threshold τ ∈ [0,1].
That is, the pseudo-count of token x is (1) the raw frequency of the term in the
document, if the token is a term, and (2) the total number of mentions of the entity
in the document with a minimum annotation confidence of τ , if x is an entity:

c̃(x;d) =
{

λ c(x;d) , x ∈ V
(1 − λ)

∑ld
i=1 1(xi = x,scoreEL(xi;d) ≥ τ ) , x ∈ E ,

where xi refers to the token at position i in the document and scoreEL(xi;d) is
the entity linking confidence associated with that token. The binary indicator
function 1() returns 1 if its argument evaluates to true, otherwise returns 0. The
λ parameter controls the relative importance given to term vs. entity tokens.

• Soft confidence-level thresholding Instead of considering only entity
annotations above a given threshold and treating them uniformly, the second
method recognizes all entities that are linked in the document and weighs them
by their corresponding confidence levels:

c̃(x;d) =
{

λ c(x;d) , x ∈ V
(1 − λ)

∑ld
i=1 1(xi = x) scoreEL(xi;d) , x ∈ E .
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The ranking of documents is based on the negative cross-entropy (CE) between the
query and document language models:7

scoreELM(d;q) = −CE(θq ||θd) =
∑

x∈V∪E
P(x|θq) log P(x|θd) ,

where the query language model θq is a maximum-likelihood estimate (as in
Eq. (8.9), but by replacing q with d). The document language model θd is instanti-
ated by Eq. (8.10).

8.4.2 Bag-of-Entities Representation

Entity-based language models use a single representation layer, in which terms
and entities are mixed together. We shall now discuss a line of work by Xiong et
al. [53–55], where the term-based and entity-based representations are kept apart
and are used in “duet.” That is, queries and documents are represented in the term
space as well as in the entity space. The latter is referred to as the bag-of-entities
representation. Recall that we have already discussed this idea in the context of the
ad hoc entity retrieval task in Sect. 4.2.2.8

8.4.2.1 Basic Ranking Models

Xiong et al. [53] present two basic ranking models based on bag-of-entities
representations.

• Coordinate Match ranks documents based on the number of query entities they
mention:

scoreCM(d;q) =
∑

e∈Eq

1
(
c(e;d) > 0

)
. (8.11)

• Entity Frequency also considers the frequency of query entities in documents:

scoreEF(d;q) =
∑

e∈Eq

c(e;q) log c(e;d) . (8.12)

7Note that scoring based on cross-entropy CE(θq ||θd ) is rank-equivalent to scoring based on
Kullback–Leibler divergence KL(θq ||θd) [58].
8Interestingly, the idea of a bag-of-entities representation was proposed independently and
published at the same conference by Hasibi et al. [30] and Xiong et al. [53] for entity retrieval
and document retrieval, respectively.
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Fig. 8.4 Overview of the explicit semantic ranking (ESR) model [55]. The steps are: (1) entity
linking in queries (1a) and in documents (1b); (2) computing pairwise entity similarities; (3) max
pooling along the query dimension; (4) bin-pooling; (5) ranking documents using the histogram
counts as features

These ranking functions are used to re-rank the top-k documents retrieved by a
standard term-based retrieval model (k = 100 in [53]). Despite their simplicity, both
models were shown to significantly outperform conventional term-based retrieval
models [53].

8.4.2.2 Explicit Semantic Ranking

The explicit semantic ranking (ESR) [55] model incorporates relationship infor-
mation from a knowledge graph to enable “soft matching” in the entity space.
Figure 8.4 depicts an overview of the approach.

ESR first creates a query-document entity similarity matrix S. Each element
S(e,e′) in this matrix represents the similarity between a query entity e ∈ Eq and a
document entity e′ ∈ Ed :

S(e,e′) = cos(e,e′) ,

where e is the embedding vector of entity e. In [55], entity embeddings are trained
based on neighboring entities (i.e., entity relationships) in a knowledge graph.

ESR performs two pooling steps. The first one is max-pooling along the query
dimension:

s(d) = max
e∈Eq

S(e,Ed ) .

The second step is bin-pooling (introduced as matching histogram mapping in [29]),
to group and count the number of document entities according to the strength of their
matches to the query:

Bi(q,d) = log
∑

j

1(sti ≤ sj (d) < edi ) , (8.13)
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Fig. 8.5 Query-document
matching in the word-entity
duet framework [54] q d

qt dt

deqe

where [sti,edi ) is the score range for the ith bin, and Bi(q,d) is the number of
entities that fall into that bin. The bin ranges in [55] are [0,0.25), [0.25,0.5),
[0.5,0.75), [0.75,1), [1,1]. Negative bins are discarded. The rightmost bin with
range [1,1] counts the exact matches in the entity space, while the other bins
correspond to various degrees of soft matches. The resulting bin scores Bi are fed
as features to a standard learning-to-rank model.

8.4.2.3 Word-Entity Duet Framework

Most recently, Xiong et al. [54] present the word-entity duet framework, which
also incorporates cross-space interactions between term-based and entity-based
representations, leading to four types of matches. The idea is illustrated on Fig. 8.5,
where qt and dt denote the bag-of-words, while qe and de denote the bag-of-entities
representations of the query and the document, respectively. Each element in these
vectors corresponds to the frequency of a given term/entity in the query/document.
Based on these representations, query-document matching may be computed in four
different ways:

• Query terms to document terms (match(qt,dt )): This corresponds to traditional
term-based matching between a query and a document, and can be computed
using standard retrieval models (e.g., LM or BM25) on various document fields
(title and body in [54]).

• Query entities to document terms (match(qe,dt )): Relevance matching is
performed by using the names or descriptions of query entities as (pseudo-
)queries, and employing standard retrieval models to score them against the
document (title or body fields).

• Query terms to document entities (match(qt,de)): Similar in spirit to the
previous kind of matching, the relevance between the query text and document
entities is estimated by considering the names and descriptions of those entities.
However, since the document may mention numerous entities, only the top-k
ones with the highest relevance to the query are considered. Specifically, Xiong
et al. [54] consider the top three entities from the document’s title field and the
top five entities from the document’s body.

• Query entities to document entities (match(qe,de)): Matches in the entity space
can be measured using the coordinate match and entity frequency methods, cf.
Eqs. (8.11) and (8.12). Additionally, matches can also be considered by using
entity embeddings from a knowledge graph. In particular, Xiong et al. [54] learn
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entity embeddings using the TransE model [4] and then use the ESR matching
histogram scores (cf. Eq. (8.13)) as query-document ranking features.

The four-way matching scores from above are combined in a feature-based ranking
framework.

8.4.2.4 Attention-Based Ranking Model

A main challenge with entity-based representations is the inherent uncertainty of
automatic query entity annotations. It is inevitable that some entity mentions will be
mistakenly linked, especially in short queries. Consequently, documents that match
these (erroneous) entities would end up being promoted in the ranking. Xiong et al.
[54] address this problem by developing an attention mechanism that can effectively
demote noisy query entities.

A total of four attention features are designed, which are extracted for each
query entity. Entity ambiguity features are meant to characterize the risk associated
with an entity annotation. These are: (1) the entropy of the probability of the
surface form being linked to different entities (e.g., in Wikipedia), (2) whether
the annotated entity is the most popular sense of the surface form (i.e., has the
highest commonness score, cf. Eq. (5.3))), and (3) the difference in commonness
scores between the most likely and second most likely candidates for the given
surface form. The fourth feature is closeness, which is defined as the cosine
similarity between the query entity and the query in an embedding space. Specif-
ically, a joint entity-term embedding is trained using the skip-gram model [41]
on a corpus, where entity mentions are replaced with the corresponding entity
identifiers. The query’s embedding is taken to be the centroid of the query terms’
embeddings.

We write Φqt ,dt , Φqe,dt , Φqt ,de , and Φqe,de to refer to the four-way query-
document features in the word-entity duet framework (cf. Sect. 8.4.2.3). Attention
features are denoted as ΦAttn. Using these five groups of features, the AttR-Duet
model aims to learn a ranking function score(d;q) that will be used for re-ranking
an initial set of candidate documents.

The architecture of AttR-Duet is shown in Fig. 8.6. The model takes four matrices
as input: Rt , Re, At , and Ae. In the following, we will suppose that the query
contains n words q = 〈q1, . . . ,qn〉 and there are m query entities Eq = {e1, . . . ,em}.
Rt and Re are ranking features for terms and entities, respectively. The rows of these
matrices are made up of the word-duet feature vectors corresponding to each query
term/entity:

Rt (qi, :) = Φqt ,dt (qi) � Φqt ,de (qi)

Re(ej, :) = Φqe,dt (ej ) � Φqe,de (ej ) ,

where � is a vector concatenation operator. At and Ae are attention features for
terms and entities, respectively. Recall that the main objective is to handle the
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Fig. 8.6 Architecture of the AttR-Duet model [54]. The left side models query-document
matching using the four-way term-entity features. The right side models the importance of query
entities via attention features. The combination of these two yields the final document score

uncertainty of query entity annotations. Therefore, for terms, uniform attention is
used; for entities, we employ the attention features introduced above:

At (qi, :) = 1

Ae(ej, :) = ΦAttn(ej ) .

The matching part (left side of Fig. 8.6) consists of two convolutional neural
networks (CNNs), one for matching query terms (Rt ) and another for matching
query entities (Re) against the document d . The convolution is applied on the
term/entity dimension, “assuming that the ranking evidence from different query
words [terms] or entities should be treated the same” [54]. Using a single CNN
layer, one filter, and a linear activation function, the matching scores of terms and
entities can be written as the following linear models:

ft (qi) = wm
t · Rt (qi, :) + bm

t

fe(ej ) = wm
e · Re(ej, :) + bm

e ,

where · is the dot product; ft and fe are n- and m-dimensional vectors, respectively;
{wm

t ,wm
e ,bm

t ,bm
e } are the matching parameters to learn.

The attention part (right side of Fig. 8.6) also contains two CNNs, one for query
terms (At ) and one for query entities (Ae), using the same convolution idea as
before. Using a single CNN layer and ReLU activation (to ensure non-negative
attention weights), the attention weights on terms and entities can be written as:

αt(t) = ReLU
(
wa

t · At (t, :) + ba
t

)

αe(e) = ReLU
(
wa

e · Ae(e, :) + ba
e

)
,

where {wa
t ,w

a
e,b

a
t ,b

a
e } are the attention parameters to learn.

The final model, AttR-Duet, combines the matching and attention scores as:

scoreAD(d;q) = ft · αt + fe · αe .
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The matching part and attention parts of the model are learned simultaneously, by
optimizing pairwise hinge loss:

L(q,R+,R−) =
∑

d∈R+

∑

d ′∈R−
[1 − score(d;q) + score(d ′;q)]+ ,

where R+ and R− denote the set of relevant and non-relevant documents, respec-
tively, and [ ]+ is the hinge loss.

8.5 Practical Considerations

Efficiency is a key concern when serving search results. Compared to traditional
term-based approaches, the computational overhead involved with the presented
approaches stems from two components: (1) identifying the query entities, and
(2) leveraging query entities in document scoring. Modern entity linking tools can
already handle (1) with low latency, cf. Sect. 7.3. As for (2), document scoring is
typically implemented as a re-ranking mechanism. That is, an initial retrieval is
performed using the original query and a standard retrieval method, such as BM25
or LM. Then, the top-k scoring documents are re-ranked using the more advanced
retrieval method. This is the same standard practice as in learning-to-rank [38].
Using a smaller k can result in markedly improved efficiency compared to a larger k.
At the same time, using lower k values limits the scope, and hence potential, of the
advanced method. A typical k value used in published work is around 100 [35, 51].

The efficiency of query expansion methods (Sect. 8.2) can be strongly affected
by the number of expansion terms used (e.g., Meij et al. [40] consider maximum ten
expansion terms). For approaches that operate with entity-based representations of
documents (Sects. 8.4 and 8.3) entity annotations of documents can be performed
offline and the linked entities can be stored in an inverted index structure. Similarly,
entity descriptions can be constructed and indexed offline.

8.6 Resources and Test Collections

Experimental evaluation is commonly conducted using the test suites of the
TREC 2009–2014 Web track [11–16], which employ the ClueWeb09 and
ClueWeb12 collections. Additionally, the Robust04 newswire collection has
also been used, with a set of topics from the ad hoc task in TREC 6–8
(#301–450) and topics developed for the TREC 2003–2004 Robust track (#601–
700) [48]. See Table 8.3 for an overview. The reference knowledge base is
typically Freebase, due to the availability of Freebase-annotated versions of the
ClueWeb corpora, released by Google, referred to as the FACC1 dataset [27];
see Sect. 5.9.2. In addition to document annotations, the FACC1 dataset also
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Table 8.3 Test collections for evaluating document retrieval methods that leverage entities

Document collection #Documents TREC topics #Queries

Robust04 528k Ad hoc #301–450, Robust #601–700 250

ClueWeb09-B 50M Web #1–#200 200

ClueWeb12-B13 52M Web #201–#300 100

contains manual entity annotations for the TREC 2009–2012 Web track queries.
These annotations are limited to explicitly mentioned entities; 94 out of the
200 queries contain an entity. Dalton et al. [18] provide manually revised query
annotations to improve recall, resulting in 191 of the 200 queries containing an
entity.9 For obtaining automatic entity annotations, TAGME [24] is a popular
choice.

8.7 Summary

In this chapter, we have focused on leveraging entities for ad hoc document
retrieval. The guiding principle behind these approaches is to obtain a semantically
richer representation of the user’s information need by identifying entities that
are related to the query. This knowledge can then be utilized in the document
retrieval process in various ways. In particular, we have discussed three families
approaches: (1) expansion-based, which uses entities as a source for expand-
ing the query with additional terms; (2) projection-based, where the relevance
matching between a query and a document is performed by projecting them to
a latent space of entities; and (3) entity-based, where explicit semantic represen-
tations of queries and documents are obtained in the entity space to augment
the term-based representations. Moving from (1) to (2) and then from (2) to
(3) corresponds to making increasingly more explicit use of entities, which, as
it turns out, also translates to increasingly higher retrieval effectiveness. Entity-
based representations, according to the current state of the art, can outperform a
language modeling baseline by over 80% and a strong learning-to-rank baseline
by over 20% in terms of NDCG@20, measured on the ClueWeb09-B collec-
tion [54].

8.8 Further Reading

It is also possible to combine the different perspectives of the discussed methods in a
hybrid approach. For example, the EQFE method by Dalton et al. [18] uses explicit
entity annotations of documents and performs query expansion based on entities
and their properties (types and categories). Thereby, it bears some characteristics of

9http://ciir.cs.umass.edu/downloads/eqfe/.

http://ciir.cs.umass.edu/downloads/eqfe/
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both entity-based representations and expansion-based methods. However, they do
not use query expansion in the conventional sense (i.e., creating an expanded query
model), but rather expand ranking features which are combined in a learning-to-rank
approach.

Entity-based text representation may be utilized in many other tasks, e.g.,
computing document similarity [44], text classification [10], or question answer-
ing [6, 45]. Medical search is another prominent example for the use of controlled
vocabulary representations, with a lot of work conducted in the context of the TREC
Genomics track [31, 36, 46].
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