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Abstract Melting water-ice systems develop complex spatio-temporal interface
dynamics and a non-trivial temperature field. In this contribution, we present com-
putational aspects of a recently conducted validation study that aims at investigating
the role of natural convection for cryo-interface dynamics of water-ice. We will
present an established fixed grid model known as the enthalpy porosity method
(Brent et al., Numer Heat Transf A 13(3):297–318, 1988; Kumar and Krishna,
Energy Procedia 109:314–321, 2017). It is based on introducing a phase field
and employs mixture theory. The resulting PDEs are solved using a finite volume
discretization. The second part is devoted to experiments that have been conducted
for model validation. The evolving water-ice interface is tracked based on optical
images that show both the water and the ice phase. To segment the phases, we use a
binary Mumford Shah method, which yields a piece-wise constant approximation
of the imaging data. Its jump set is the reconstruction of the measured phase
interface. Our combined simulation and segmentation effort finally enables us to
compare the modeled and measured phase interfaces continuously. We conclude
with a discussion of our findings.

Keywords Phase change · Finite volume method · OpenFOAM · Image
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c1, c2 gray scale values
C mushy zone constant
f phase mass fraction
F phase interaction force
g gravitational acceleration
h enthalpy
hm latent heat of melting
k thermal conductivity
p pressure
S Boussinesq term
T temperature
TS solidus temperature
TL liquidus temperature
Tm melting temperature
Tinit initial PCM temperature
Tw wall temperature
u velocity field
V volume
γ phase volume fraction
ε small constant
η dynamic viscosity
Θ temperature deviation(Θ = T − Tm)
ρ density
ρ̄ partial density

1 Introduction

Phase change processes play an important role in a variety of present-day research
fields and industrial applications. A material that undergoes phase change, a so-
called phase change material (PCM), absorbs and releases heat at a constant
temperature Tm or within a certain phase change temperature range, bounded by
the liquidus temperature TL and the solidus temperature TS . PCMs are particularly
relevant to thermal energy storage (TES) systems, because of their large storage
density compared to non-latent TES systems (5–14 times more heat per unit volume
than sensible storage materials [19]). A TES system is an attractive technology
because it is the most appropriate method to correct the gap between demand and
supply of energy [1]. This becomes very important in the context of renewable
energy sources, because most of them depend on time-varying environmental
parameters, such as the wind speed (for wind power plants) or the duration of
solar irradiation (for solar power plants). TES systems are also used for cooling
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applications, e.g. to protect electrical devices. The cheapest PCM for cooling
applications is water-ice. Its melting temperature is 0 ◦C. Beyond this industrial
application, the process of water-ice melting can be found in a variety of scientific
areas, e.g. glaciology or ice sheet modeling.

To simulate phase change heat transfer both the sensible and the latent heat
release or storage must be considered, which translates into a moving boundary
problem as the interface might propagate or retrieve. Such problems can be solved
either with fixed- or deforming grid methods, or a combination of both [20]. Even
though deforming grid methods are in general more accurate than fixed gridmethods
in terms of localizing the phase interface, fixed-grid methods are computationally
muchmore efficient and allow to represent topological changeswith ease. Themajor
advantage of fixed grid methods is that the numerical treatment of the phase change
can be achieved through simple modifications of existing numerical methods, which
allows to model phase change for a variety of complex phase change systems with
relative ease [22]. When the liquid phase of the PCM is convecting, the fluid flow
can have a considerable impact on the heat transfer within the system. Therefore, it is
necessary to both solve for the heat transfer and the fluid flow. A popularmethod that
is used for such phase change processes is the so-called enthalpy porosity method
[4, 13].

Unfortunately, there exists no analytical solution to verify phase change models
with natural convection. However, one-dimensional phase change without natural
convection can be verified by comparison to the analytical solution of the Stefan
problem, which has been already done with great success for the enthalpy-porosity
method [12]. To validate phase change with natural convection, experiments must
be used. A very common benchmark is the melting of a PCM, which is driven
by an isothermal vertical wall in a rectangular cavity. The majority of these
experiments include PCMs with a melting temperature higher than 0 ◦C. Examples
are gallium [8] and n-octadecane [9]. Similar experiments exist for water-ice
[18].

In this contribution, we present a fixed grid model that uses the enthalpy porosity
method to simulate phase change with natural convection. We implemented this
established model into an OpenFOAM solver. In order to validate the model, we
conducted our own experiments, which are similar to existing benchmark tests but
with high spatio-temporal resolution. The data consist of optical images that show
the motion of the phase interface over time. To extract the phase interface from
the optical images, we use binary Mumford-Shah segmentation. This allows for a
quantitative comparison between the model and the experimental results.
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Fig. 1 Schematic of the physical situation. A two-dimensional cavity is filled with a PCM, which
is present both in liquid, as well as its solid phase. Both phases are separated by the phase interface.
The left boundary is held at constant temperature Tw

2 Model

2.1 Physical Situation

The physical situation is sketched in Fig. 1. A two-dimensional cavity of size a × b

is filled with an initially solid phase change material (PCM) of temperature Tinit.
Due to an imposed temperature Tw at the left boundary, which is higher than the
melting temperature of the PCM Tm, the PCM heats up locally and changes its
phase from solid to liquid. Both phases are separated by a phase interface. The shape
of the phase interface is mainly defined by natural convection. In the presence of
gravitational acceleration g, the density variation in the liquid phase induces natural
convection, which manifests as a clockwise rotational flow field u within the liquid
phase. The presented approach is applicable to a variety of PCMs, e.g. metals or
waxes. In this study, we will however focus on water-ice.

2.2 Model Equations

To formulate a fixed-grid mathematical model that describes the physical problem
of phase change with natural convection, either volume-averaging or classical
mixture theory can be utilized. Here, we will shortly sketch the latter approach
based on mixture theory. Interested readers can find a comprehensive derivation
of the mixture equations using volume-averaging in [15]. The basic idea of mixture
theory is to introduce a scalar field, which stores the information of the PCM state.
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Following [2], we use the phase volume fraction, which is defined as

γi = Vi
∑

i

Vi

(1)

in which Vi is the volume of phase i in a control volume. From Eq. (1), it can be
seen that the value of the phase volume fraction is always between zero and unity.
We further assume full saturation, i.e.

∑

i

γi = 1 (2)

The partial density of phase i is then given by

ρ̄i = γiρi (3)

in which ρi is the density of phase i. The mass fraction of phase i is

fi = ρ̄i
∑

i

ρ̄i

(4)

In this work, we are interested in a two-phase system, which is given by a solid
and a liquid phase. Substituting Eqs. (2) and (3) into the mass fraction (4) yields an
explicit relation for the liquid phase

fL = γLρL

γLρL + γSρS

(5)

In the special case of ρL = ρS , Eq. (5) reduces to fL = γL and analogously fS =
γS .

According to [2], the three mixture balance laws are obtained by summing the
balance laws for the individual phases, i.e. conservation of mass, momentum and
energy for the liquid and solid phase. After some simplifications and introducing a
set of mixture variables and parameters, a system that accounts for incompressible
mixture flow and phase change coupled to natural convection can be derived. It is
given by

∇ · u = 0 (6)

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · (η∇u) + F + S(T ) (7)

∂ (ρh)

∂t
+ ∇ · (ρuh) = ∇ · (k∇T ) (8)
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in which

ρ = γSρS + γLρL (9)

k = γSkS + γLkL (10)

h = fShS + fLhL (11)

η = ηL (12)

u = uS = uL (13)

are the mixture density ρ, mixture thermal conductivity k, mixture enthalpy h,
mixture dynamic viscosity η and mixture velocity u. Note that in the local presence
of both phases, we assume them to move at the same velocity. This assumption is
appropriate, because relative phase motion can be neglected.

Equation (7) is the conservation of momentum, which includes two additional
terms, namely a temperature dependent Boussinesq approximation term S(T ) and
a phase interaction force term F. The Boussinesq approximation term accounts for
natural convection due to buoyancy and is defined as

S(T ) = gρ(T ) (14)

in which ρ(T ) is a polynomial fit to tabulated density data. It should be noted that
the Boussinesq approximation is only valid if the density variation is small, which
is a valid assumption for water.

The phase interaction force F accounts for momentum production due to phase
interactions [2]. According to [21], the flow regimewithin cells that contain portions
of both phases can be interpreted as a porous medium. Hence, the flow can be
described by Darcy’s law. This behavior can be accounted for by defining

F = Au (15)

A is large in the liquid phase (γL = 1) and small in the solid phase (γL = 0).
This allows for flow in the liquid phase, whereas it suppresses it in the solid phase.
A commonly used continuous function with this properties is the Kozeny-Carman
relation [21]

A = −C
(1 − γL)2

γ 3
L + ε

(16)

Here, ε (typically ε = 10−6) is a stabilizing parameter that is used in order to
prevent division by zero and C denotes the mushy zone constant. It should be noted
that C has no direct physical significance and has to be calibrated with data. In
non-isothermal phase change processes the PCM develops a mushy region rather
than a sharp phase interface. In this case, adjusting the mushy zone constant can be
exploited to model the resulting porosity near the mushy phase interface.
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2.3 Source-Based Method for Phase Change

In order to solve the energy equation, which is given in enthalpy form, we need to
introduce an equation that relates the enthalpy to the temperature. The enthalpies of
the solid and liquid phases are given by

hS =
∫ T

Tm

cp,SdT (17)

hL =
∫ T

Tm

cp,LdT + hm (18)

in which hm is the latent heat of melting and cp,S as well as cp,L are the heat
capacities of the solid and liquid phase, respectively.

Over a temperature range of 20K, the percentage heat capacity change is in
the order of 5% for ice and 1% for water. If we assume phase-wise constant heat
capacities, which is a valid approximation as long as the temperature range within
the PCM is small, Eqs. (17) and (18) simplify to

hS = c̄p,S(T − Tm) (19)

hL = c̄p,L(T − Tm) + hm (20)

From Eq. (5), it can be seen that if the densities of the solid and liquid phases are
equal, the mass fraction (4) has the same value as the volume fraction, i.e. fk = γk .
The difference between water and ice density is in the order of 10%, i.e. the mass
fraction roughly equals the volume fraction. Due to simplicity and because we do
not expect the result to be qualitatively different, we will restrict ourselves to ρS ≈
ρL and substitute the mass fraction in the mixture enthalpy Eq. (11) by the volume
fraction, which yields

h = γShS + γLhL (21)

Substituting the approximations for the solid (19) and liquid enthalpy (20) into the
equation for the mixture enthalpy (21) yields

h = c̄p(T − Tm) + γLhm (22)

in which c̄p = γLc̄p,L + γSc̄p,S is the mixture heat capacity. We can now substitute
the mixture enthalpy (22) into the energy equation, which yields

∂(ρc̄pΘ)

∂t
+ ∇ · (

ρuc̄pΘ
) = ∇ · (k∇Θ) − hm

(
∂ (ργL)

∂t
+ ∇ · (ρuγL)

)

(23)

in which Θ = T − Tm denotes the deviation from the melting temperature.
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The left-hand side and the first term of the right-hand side of Eq. (23) matches
the standard transient convection-diffusion energy equation that describes sensible
heat transfer. The remaining term accounts for the latent heat transfer due to phase
change.

2.4 Solution Algorithm for the Energy Equation

Equation (23) contains two unknowns, namely the temperature Θ and the liquid
volume fraction γL. These two fields, however, are intrinsically coupled. In order to
solve Eq. (23), a relation between the temperature and the liquid volume fraction is
required. In our work we follow [17] and use a piecewise linear function

γL =

⎧
⎪⎪⎨

⎪⎪⎩

0, T < TS

T −TS

TL−TS
, TS ≤ T ≤ TL

1, T > TL

(24)

This approach assumes that the phase change occurs within a narrow temperature
range TL − TS , rather than at a fixed temperature.

Following [21], we linearize Eq. (23) and introduce an iterative corrector
approach

∂(ρc̄pΘk+1)

∂t
+∇·

(
ρuc̄pΘk+1

)
= ∇·

(
k∇Θk+1

)
−hm

(
∂

(
ργ k

L

)

∂t
+ ∇ ·

(
ρuγ k

L

)
)

(25)

in which γ k
L is the known volume fraction of the previous iteration k and Θk+1 is

the solution variable of the current iteration. The updated temperature Θk+1 does
not match the temperature determined through relation (24) based on the volume
fraction of the previous iteration k. Therefore, an energy conserving updating of the
volume fraction is used [7, 12]

γ k+1
L = max

[

min

[

γ k
L + λ

c̄p

hm

(
Θk+1 − Θk+1

cons

)
, 1

]

, 0

]

(26)

with

Θk+1
cons = TS + (TL − TS) γ k

L − Tm (27)

in which λ is a relaxation factor. According to [22], values between 0.5 and 0.7
provide efficient convergence for both one- and two-dimensional problems. The
consistent temperature equation (27) directly follows from the volume fraction tem-
perature relation (24). Equation (26) further assures that no over- and undershooting
of the volume fraction occurs, i.e. the values will be always between zero and unity.
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2.5 Summary of the Iterative Solution Procedure

Incorporating the stated equations, the following iterative solution procedure is
applied to solve the energy equation (23):

1. Either set an initial liquid volume fraction γ k
L if it is the first time step or use the

volume fraction of the previous time step.
2. Solve the linearized energy equation (25) for Θk+1.
3. Calculate the temperature Θk+1

cons , which is consistent to the volume fraction from
the previous iteration using Eq. (27).

4. Update the volume fraction γ k+1
L using Eq. (26). Go back to step 2 if the

convergence threshold is not reached, i.e. if the error of the volume fraction is
not smaller than a certain tolerance.

2.6 Implementation

For this work we used OpenFOAM, which is an object oriented open source C++
library to solve PDEs [10, 23]. We implemented the enthalpy porosity method by
extending buoyantBoussinesqPimpleFoam (OpenFOAM 5.0), which is a transient
solver for buoyant, turbulent flow of incompressible fluids that uses the PIMPLE
algorithm for pressure velocity coupling.

2.7 Mushy Zone Constant Sensitivity

The sensitivity of the mushy zone constant with respect to the resulting phase
interface has been studied for gallium [13] and for lauric acid [11]. Both studies
conclude that the mushy zone constant significantly influences the shape of the
resulting phase interface. So it should be chosen carefully in order to obtain reason-
able results. To our knowledge, such sensitivity studies have not been conducted for
water-ice PCMs. Since we want to validate our phase change simulations against
water-ice PCMs, we also studied the results for different mushy zone constants.
Figure 2 shows the phase interfaces at 600 and 900 s. The simulations have
been conducted on a quadratic uniform mesh of 102,400 quadrilateral cells using
adiabatic boundaries, except for the left boundary at which a Dirichlet condition
of 30.5 ◦C is applied. Furthermore, we use no-slip conditions at all boundaries and
temperature dependent thermophysical material properties. The initial temperature
is Tinit = −20 ◦C. It can be seen, that the phase interface oscillates for a mushy
zone constant of C = 106. Increasing the mushy zone constant yields a smoother
phase interface. Furthermore, the plot shows that the phase interface converges if
the mushy zone constant is increased. Based on our findings, we chose a value of
C = 1010 for all following simulations.
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Fig. 2 Melting from an isothermal vertical wall using different mushy zone constants

3 Validation Experiment

3.1 Apparatus and Instrumentation

The experimental setup is shown in Fig. 3. It consists of a PCM container, which
is made out of plexiglas and one optical as well as one infrared camera. In order
to observe the melting process, the PCM container has two circular windows of
different materials, namely plexiglas for the optical camera and germanium for the
infrared camera. In this work, we will focus on the results of the optical camera. The
PCM container is equipped with two heater blocks of size 30×60×20mm3 that are
in contact with the PCM. Each heater block contains two heating cartridges, which
can be controlled independently. The heater blocks contain temperature sensors for
temperature control. A feedback loop sustains a predefined temperature by means
of a straight-forward feedback control.

For this work, we will study the case of an isothermal vertical wall. So we do not
use the bottom heater. The dimensions of the inner PCM container are 30 × 107 ×
114mm3.
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Fig. 3 Experiment assembly

3.2 Experimental Procedure

Before each experiment, the PCM container was removed from the experiment
assembly, which was located in an approximately 22 ◦C warm laboratory. The
container was filled with liquid water and put into a freezer in order to transform
the water into ice. The water level was always above the side heater before freezing.
To obtain better ice qualities, a low power heat source has been placed close to
the water surface, so that the solidification proceeds from the bottom to the top
of the container. Otherwise high stresses could have damaged the PCM container.
After a certain amount of time, the ice temperature was approximately −20 ◦C.
Then, the container has been removed from the freezer and reassembled into the
experimental setup. Then, the heater configuration including the target temperature
was set. The logging of data started together with the activation of the vertical heater
block. A switch-on temperature of 29 ◦C and a switch-off temperature of 30 ◦C in
the feedback control led to temperatures of the heater block oscillating between
28 ◦C and 33 ◦C due to thermal inertia of the heater blocks.

4 Image Segmentation

To extract the water-ice interface from the optical images, we use the concept of
image segmentation. Since there are just two different segments (water and ice), we
are facing a two-phase image segmentation problem.

Let Ω ⊂ R
2 denote the image plane. Given an image g : Ω → R, we are

searching for a piecewise constant segmentation, i.e. two gray values c1, c2 and a
regionO ⊂ Ω that minimizes

E[O, c1, c2] =
∫

O
(g − c1)

2 dx +
∫

Ω\O
(g − c2)

2 dx + νPer(O).
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Here, Per(O) is the perimeter of O, i.e. the length of the phase interface. For a
fixed O, the optimal gray values c1 and c2 are just the average values of g inside O
and Ω \ O respectively. The minimization with respect to O is difficult. Denoting
fi := (g − ci)

2, we consider the so-called binary Mumford-Shah functional [14]

EMS[O] =
∫

O
f1 dx +

∫

Ω\O
f2 dx + νPer(O).

Minimizing EMS is a nonconvex optimization problem, since the set of subsets of
Ω is not convex. Fortunately, a strongly convex reformulation of this problem is
available. The main idea is to replace O by a function w : Ω → R. This leads to
the functional

EUC[w] =
∫

Ω

w2f1 dx +
∫

Ω

(1 − w)2 f2 dx + νTV[w],

where TV[w] denotes the Total Variation of w. Denoting by χO the characteristic
function ofO, it is easy to show thatEMS[O] = EUC[χO]. In this sense, minimizing
EUC over BV (Ω), the set functions with finite Total Variation, is a relaxation of the
problem to minimize EMS over the subsets of Ω . The former is a strongly convex
problem and as such its unique minimizer can be computed efficiently. Moreover,
this minimizer encodes a minimizer of the original non-convex problem. One can
show [3, 5] that

w∗ = argmin
w∈BV (Ω)

EUC[w] ⇒ {w∗ > 0.5} ∈ argmin
O⊂Ω

EMS[O]

where {w > 0.5} is the 0.5-superlevel set of w, i.e. {x : w(x) > 0.5}. That
means the optimization with respect to O can be solved by minimizing EUC and
thresholding the minimizer. The numerical optimization uses a dual formulation.
Recall that the Total Variation is defined as

TV[w] = sup
q∈K

∫

Ω

w∇ · qdx

where K = {
q ∈ C∞

c (Ω,Rd) : |q(x)| ≤ 1 for all x ∈ Ω
}
. Thus, EUC can be

minimized by solving a saddle point problem (minimizing in the primal variable
w, maximizing in dual variable q). Efficient and simple first order algorithms for
this are well known [6].
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5 Results and Discussion

5.1 Image Segmentation Results

Figures 4 and 5 show the images taken from the experiment at 600 and 900 s,
respectively. A small portion of the two heater blocks is visible on the left and at
the bottom. The heater blocks have been used as a reference to scale the image
pixels to the size of the experiment. It can be seen that the water is dark compared
to the ice, which enabled us to apply our segmentation approach. To compensate
for the somewhat non-uniform illumination inherent to our experimental setup, we
estimated the background illumination of the scene by applying the morphological
opening and closing operator to the first frame of the video and subtracted this
illumination estimate from each video frame before applying the segmentation.
Empirically, we found that initial gray values (c1 and c2) of 0.3 and 0.5 work best
for the images, which were taken from the experiment. The result of the image
segmentation is plotted on top of the images. Even though the phase interfaces have
been detected very good, there are some small artifacts due to similar gray values,
e.g. at the circumference of the window in Fig. 4. To better compare the experiment
and our numerical results, we arbitrarily chose nine data points (plotted as circles),
which are equidistant in y-direction.
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(0.0142 m, 0.040 m)
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(0.0205 m, 0.050 m)

(0.0211 m, 0.055 m)
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y 
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]

Fig. 4 Image taken from the experiment after 600 s and segmentation result, as well as the position
of nine data points (circles)
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t = 900 s

(0.0080 m, 0.015 m)

(0.0099 m, 0.020 m)

(0.0118 m, 0.025 m)

(0.0139 m, 0.030 m)

(0.0167 m, 0.035 m)

(0.0209 m, 0.040 m)

(0.0258 m, 0.045 m)

(0.0300 m, 0.050 m)

(0.0309 m, 0.055 m)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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0.05

0.06
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Fig. 5 Image taken from the experiment after 900 s and segmentation result, as well as the position
of nine data points (circles)

The effect of natural convection due to buoyancy is clearly visible in the images.
The heating at the left wall causes a decrease in density of the nearby water, which
on the other hand induces a flow field in upward direction. Near the phase interface,
heat is absorbed by the ice so that the density increases relative to the average
temperature within the water phase. As the water flows in downward direction along
the phase interface, it constantly cools down. As a consequence the temperature and
hence the melting rate is higher near the top compared to the bottom. The whole
process results in a circular flow field in clockwise direction.

5.2 Comparison with Experiment

In order to compare the experimental results to our model, we used a quadratic
uniformmesh of 102,400 quadrilateral cells. Using a computational domainwith the
same size of the inner PCM container domain would be computationally inefficient,
since most of the space is occupied by ice. Instead, we use a smaller computational
domain of 0.06 × 0.06m2, which is large enough to include the entire water phase
throughout the simulation. In order to use temperature dependentmaterial properties
for water-ice, we used approximations that fit tabular data from the literature, e.g.
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from [16]. To give an example, the density of the water has been approximated using

ρL =
3∑

i=0

Ri

(
T − Tref

)i + R4
(
T − Tref

)2.5 (28)

in which Tref = 273.15K, R0 = 999.79684 kg/m3, R1 = 0.068317355 kg/m3/K,
R2 = −0.010740248 kg/m3/K2, R3 = −2.3030988 × 10−5 kg/m3/K3 and R4 =
0.00082140905 kg/m3/K2.5.

Except for the left wall at which a Dirichlet condition of 30.5 ◦C is applied, all
boundaries are adiabatic. We further assigned no-slip conditions on all walls. The
initial temperature was set to Tinit = −20 ◦C. The solidus and liquidus temperatures
were set to TS = −0.05 ◦C and TL = 0 ◦C, respectively. The mushy zone constant
was set toC = 1010 based on our findings in the sensitivity analysis. For the iterative
solution of the energy equation, we used a tolerance of 10−8 for the liquid volume
fraction.

Figure 6 shows the comparison of the phase interface positions of the experiment
and the simulation at 600 and 900 s. The phase interface obtained by the simulation
qualitatively fits the experimental results, even though there is a significant offset
between both results. It can be seen that the maximum melting rate is located at the
top for both the experiment and the simulation results. The maximum error is at the
top (y = 0.06m). It is smaller at 600 s, at which the phase interface is captured
really well, compared to the results at 900 s. At a height of approximately 0.05m,

0 0.01 0.02 0.03 0.04 0.05 0.06

x [m]

0

0.01

0.02
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0.04

0.05

0.06

y 
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Experiment 600 s
Simulation 600 s
Experiment 900 s
Simulation 900 s

Fig. 6 Comparison of the phase interface positions of the experiment and the simulation at 600
and 900 s
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the phase interface of the simulation and the experiment intersect and below 0.05m
the phase interface position of the simulation migrates slower than it was observed
in the experiment.

Besides the fact that we simulated the process using a two-dimensional domain
instead of a more realistic three-dimensional domain, there are some additional
error sources and uncertainties, which could explain the discrepancy between the
experiment and the numerical results. The initial temperature of the ice is inferred
from the preparation procedure. However, we tested the range of possible initial
temperatures between −25 ◦C and 0 ◦C and discovered only a small sensitivity.
A larger error could result from too idealized boundary conditions. We assumed
adiabatic walls, except for the boundary at which the heater is located. In the
experiment, the water-ice PCM was in contact to plexiglas walls, which will
introduce a heat sink, because the experiment has been conducted in a laboratory
with an ambient temperature of 22 ◦C. The heater has been modeled by using a
Dirichlet boundary condition. However, the heater temperature oscillates between
28 ◦C and 33 ◦C due to the control loop.

6 Conclusions and Outlook

In this contribution we describe an established fixed grid model to simulate phase
change processes with natural convection. The model is based on the enthalpy
porosity method, a phase field method, which can be derived from classical mixture
theory.We use an iterative corrector approach to solve the resulting nonlinear energy
equation. The final system of PDEs that describes the incompressible mixture flow
with phase change has been solved using OpenFOAM. The method uses a parameter
referred to as the mushy zone constant. A sensitivity study suggests that the mushy
zone constant should be high in order to capture the physical regime of water-ice.

In order to validate the model, we conducted experiments in which water-ice was
melted from an isothermal vertical wall. We tracked the water-ice interface using
optical images, which resulted in experimental data of the phase interface at high
spatio-temporal resolution. In order to utilize this data, we used the Mumford Shah
method to segment the phases in the imaging data and to quantify the phase interface
position. Our results demonstrate the proficiency of this approach for water-ice
segmentation in images. It allows for comparison between the simulation and the
experiment.

We observed good qualitative agreement regarding the shape throughout the
whole evolution of the phase interface. Measured from the left boundary, the
maximum distance of the phase interface is near the top, which directly follows
from the buoyancy-induced flow field in the liquid phase. Although the results
look qualitatively similar, there is, however, a an error between the simulation and
experiment in terms of the phase interface position.

This inconsistency is still under investigation. Possible explanations include too
idealized boundary conditions in the simulation and a bad insulation regarding
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the experiment. These must be investigated in the future, either by extending the
simulation or by conducting tailored experiments using a redesigned experimental
setup with less uncertainties than introduced by the present setup. Following various
previous work, we assumed that the density difference between water and ice does
not play a major role. The validity of this assumption also needs to be assessed more
carefully in future work.

In general, both our capability to simulate complex multi-physics problems, as
well as our capability to acquire data grew extensively in recent years. Optimal
combination of both that result in high quality model validation strategies at high
spatio-temporal resolution are, however, rare. Standard practice is often rather to
compare sophisticated models to a sparse data set, or to analyze large data sets with
very idealized models. Exceptions exist for certain processes, e.g. as relevant for
meteorology, but cannot be easily extended to arbitrary process models. On our
way to explore sophisticated model validation strategies at high spatio-temporal
resolution, we proposed to set up a tailored laboratory experiment and designed
data processing to match ideally with our major simulation goal. Inconsistencies
between the simulation and experiment are accessible, which would be hard to
acknowledge if validation had been done with sparse data only. Our next steps will
be twofold, namely specifically investigating the inconsistencies between model
and experiments in the concrete conducted validation study, and more generally
continue to work on flexible, integrated validation strategies for coupled multi-
physics systems.
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