
Chapter 8
Supply Chain Evaluation
and Methodologies

8.1 Analysis of Performance Factors

The performance factors studied in this research (i.e., risk factors, regional factors,
manufacturing practices) are analyzed from a multivariate perspective to identify
their impact on supply chain performance benefits. Before introducing the concept
of multivariate analysis, below we present a series of supply chain analysis
methodologies reported in Avelar-Sosa et al. (2014), who performed a literature
review of around 100 research articles on this matter. According to the authors,
common methods and techniques for supply chain study include reverse logistics
(RL), analytic hierarchy process (AHP), discriminant analysis (DiA), linear
regression (LR), descriptive analysis (DA), case studies (CS), simulations (Si),
exploratory analysis (EA), factor analysis (FA), and structural equations (SE),
among others. As regards supply chain analysis trends, they include supply chain
quality, flexibility, risk, and agility, information, and communication technologies
(ICTs), enterprise resource planning (ERP), coordination and trust among supply
chain partners, and performance. Table 8.1 summarizes this information.

As Table 8.1 suggests, the wide range of available methods and techniques
opens the door to new horizons in supply chain analysis. Even though Avelar-Sosa
et al. (2014) do not discuss this in detail, most supply chain evaluation methods and
techniques study performance elements and indicators, such as delivery times,
costs, customer service, competitiveness, and integration. Similarly, many of the
reviewed works rely on multivariate methods, such as LR, FA, SE, and AHP, for
evaluating supply chain performance indicators. For instance, even though SE were
originally a research tool for the social sciences, their use has exponentially
increased in other disciplines, such as industrial engineering, to quantify an issue or
research aspect.

Several studies employ multivariate techniques to explore supply chain perfor-
mance factors. For instance, Ranganathan et al. (2011) explored the role of infor-
mation and communication technologies and networks on supply chain
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communication, whereas Swafford et al. (2008) studied the impact of flexible
processes, manufacturing, and distribution/logistics on supply chain agility.
Likewise, some works have relied on multivariate analysis techniques to analyze
the effects of technology on supply chain operations, ERP, and innovation channels.
In fact, as shown in Table 8.2, current trends in supply chain performance analysis
employ multivariate tools in the study of aspects such as ERP, ICTs, and supply
chain coordination, flexibility, and location (Lu et al. 2006; Su and Yang 2010a;
Zhang and Dhaliwal 2009; Ranganathan et al. 2011; Su and Yang 2010b;
Ramanathan and Gunasekaran 2014; Lu et al. 2007; Kim et al. 2013; Autry et al.
2010; Akkermans et al. 2003).

All the studies discussed above have used multivariate analysis as a research tool
in regional contexts. This means that they have managed to consider both internal
and external operational activities, and consequently, they have assessed risk factors

Table 8.1 Trends in supply chain analysis and methodologies

Areas AHP RL FA DiA DA Si SCa SE EA LR

ERP 0 0 0 0 0 0 1 3 0 0

Risk 1 0 0 1 2 1 1 0 0 1

Integration 0 0 0 0 1 0 3 2 0 0

Competitiveness 0 0 0 1 1 0 1 0 0 0

Quality 0 0 0 0 0 0 0 1 0 0

TIC 0 0 0 0 2 2 1 0 0 0

Performance 7 2 4 4 25 11 47 27 2 4

Collaboration 0 0 0 0 2 0 1 2 0 1

Coordination 0 0 0 0 1 2 1 0 0 0

Location 0 0 0 1 3 0 1 0 0 1

Flexibility 0 0 0 0 1 0 0 1 0 0

Agility 0 0 0 0 0 0 1 2 0 0

Trust 0 0 1 0 0 0 0 0 0 0

Source Avelar-Sosa et al. (2014)

Table 8.2 Multivariate methods for supply chain performance analysis

Aspect Linear
regression

Factorial
analysis

Structural
equations

AHP

Agility 0 0 2 0

Risk 0 0 0 1

Collaboration 1 0 2 0

Quality 0 0 1 0

Flexibility 0 0 1 0

Location 1 1 0 0

ERP 0 0 3 0

Technology
adoption

0 0 1 0
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and regional elements. In other words, it is possible to assess supply chain per-
formance from a causality approach. The following sections discuss a series of
causal analysis examples and define the research methodology adopted in this work.

8.2 Multivariate Analysis Methods

8.2.1 Introduction

Multivariate analysis comprises a set of statistical techniques that simultaneously
measure, explain, and predict all the existing relationships between the elements of
a database. These relationships can be of three types:

– Dependence relationships
– Interdependence relationships
– Classical relationships

Dependence relationships occur when one or more dependent variables are
explained by a set of independent variables, whereas interdependence relationships
imply mutual reliance between variables. Finally, classical relationships occur when
relationships surpass the monocriteria approach. An important concept in multi-
variate analysis is causality, which occurs when a phenomenon determines to which
extent another phenomenon occurs. Causality is a cause–consequence relationship
in which one phenomenon causes, to some extent, another phenomenon (Lévy and
Varela 2003).

First-generation multivariate analysis emerged in the early 1970s and initially
included techniques such as principal component analysis, factor analysis, dis-
criminant analysis, and multiple regression analysis, among others. First-generation
multivariate analysis techniques used to focus on descriptive research, which relied
on few statistical inferences and less a priori theoretical knowledge. Consequently,
all the social sciences virtually received a dose of empiricism, even though these
techniques could not analyze one construct with multiple observed variables in a
single step, let alone relate these constructs (Roldán and Cepeda 2013). To address
the limitations of the first multivariate analysis techniques, second-generation
techniques emerged in the late 1980s. They were named structural equation models
and recognized that scientific theory implies both empirical and abstract variables.
The purpose of these tools is to link data with theory. Structural equation models
combine two traditions, an econometric perspective that focuses on prediction, and
the psychometric approach that models concepts as latent or non-observable vari-
ables, which in turn are composed of multiple observed and measured variables
(i.e., indicators or manifest variables) (Roldán and Cepeda 2013; Williams et al.
2009).

Latent variables represent theoretical concepts, whereas indicators are used as
inputs in a statistical analysis that provides evidence on the relationships between
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latent variables (Williams et al. 2009). Multivariate analyses are important because
formal science researchers need to take into account multiple observed variables to
understand them better. This implies acknowledging, validating, and assessing the
reliability of the observed elements by means of direct measurement instruments.
Structural equation models have exponentially evolved in the past 30 years thanks
to the increasing use of friendly computer programs that make the estimation tasks
much easier thanks to user manual and spreadsheets. Similarly, structural equation
models are solid grounds to justify variance estimation in modeled cause–effect
relationships.

8.2.1.1 Notion of Causality

Causality comes from the ability of the techniques to confront theoretical propo-
sitions about a cause and an effect without manipulating the variables, that is,
without rigorously controlled experimental designs. Causality refers to a model’s
assumption, rather than to a property or consequence of the technique. Many
variables tend to move along together, yet the mere statistical association between
them is not enough to claim there is causality (Casas 2002). The necessary and
sufficient condition of causality can be expressed as follows: Variable A is a cause
of Variable B if, and only if, every time A occurs, B follows, but B never follows if
A does not occur. Causal relationships occur only in the direction A ! B, since
causality is asymmetric. However, it is impossible to distinguish between isolated
regularities and a causal relationship. Thus, we can claim that a relationship
between two variables is causal when we can rule out the possibility that the
relationship is spurious or not causal (Lévy-Mangin and Varela 2006).

In social sciences, causal analysis refers to a set of strategies and techniques for
developing causal models to explain phenomena in order to contrast them empir-
ically. The origins of causal analysis date back to path analysis. The goal of a path
analysis is to study the effects of some variables, considered as causes, over some
other variables, considered as effects. Even though path analysis is widely
employed in the social sciences, its popularity has lately risen in other fields and
knowledge areas thanks to its versatility and ability to explain dependence and
interference between multiple variables. Later in this chapter, we will discuss the
concept, implications, and considerations of structural equation analyses. That said,
the following section provides a brief description of some of the most common
multivariate analysis methods. Even though they differ from structural equations,
they possess common characteristics. Therefore, it is important to explicitly state
their differences to avoid confusions.
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8.2.2 Multiple Linear Regression

Regression analysis aims at estimating the average value of a dependent latent
variable with respect to the values of one or more additional variables, known as
explanatory variables. In this type of analyses, dependent variables are stochastic,
whereas explanatory variables are generally non-stochastic. Linear regression has
become increasingly popular thanks to the numerous statistical software programs
that rely on it. Moreover, it is a robust process that can be adapted to an infinite
number of scientific and business applications (Montgomery et al. 2006).

Multiple linear regression is a statistical technique that can be both descriptive
and inferential. From a descriptive approach, multiple linear regression has the
following abilities:

– Find the best linear prediction equation.
– Control some factors to evaluate the contribution of some specific variables to a

linear model.
– Find structural relationships (causality studies).

The regression model can be visualized as follows:
Consider the following relationship to explain the behavior of a dependent

variable (Y) with respect to n independent variables (X1, X2, …, Xn).

Y ¼ f X1;X2; . . .;Xnð Þ ð8:1Þ

where f(Xi) is an implicit function form.
When this implicit function form cannot be estimated, f(Xi) can be approached as

follows:

Y ¼
Xn

i¼1

biþ 1Xi þ e ð8:2Þ

For i = 1, 2, …, n, where b are function parameters, and e is the error due to the
linear approximation of Eq. 8.1.

8.2.2.1 The Constant in Regression Analysis

Unlike the other coefficients in the regression equation, b does not measure
changes, but rather indicates the effect measured in dependent variable Y and caused
by the variables excluded from the equation and the linear approximation. In
mathematical models, the constant is the ordinate intercept, or y-intercept, while in
econometric models the interpretation of the constant is different. However, in some
cases, as in cost functions, which include fixed costs, the regression constant can be
interpreted as the intercept.
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8.2.2.2 Coefficient Estimation

So far, we have discussed how coefficients can be interpreted, but we have not
addressed how they are estimated. The goal of a regression analysis is to find the
best estimation of the model parameters to make a close approximation to the real
Y. Once all the b parameters are estimated, the residual would be the difference
between the observed value of variable Y and the value predicted for variable
Y based on the values estimated for the b parameters.

8.2.2.3 Statistics and Hypotheses Testing

Once the parameters are estimated, a set of statistical analyses are performed to
assess the model’s fit as well as the usefulness and precision of the estimations. The
most common statistical tools for linear regression analyses are the following:

– Coefficient of determination

If all the observations coincided with the regression equation, a model would
have the perfect fit. However, this is rarely the case. Since statistical models usually
have positive and negative errors (e), it is important to have a measure of how well
the observed outcomes are replicated by the model, according to the proportion of
total variation of outcomes explained by the model. The coefficient of determina-
tion, denoted R2, is a measure of goodness of fit and can be calculated as follows:

R2 ¼
Pm

j¼1 Ŷj � �Y
� �2

Pm
j¼1 Yj � �Y

� �2 ð8:3Þ

In Eq. 8.3, the numerator is the sum of squares due to regression (SSR), and the
denominator stands for the total sum of squares (TSS). The coefficient of deter-
mination ranges from 0 to 1. That is from 0 to 100% of the variation in Yj that is
explained by SSR. Even though R2 is a goodness of fit index, it should not be
overused, since it can increase its value when more explained variables are added in
the analysis, even though they are not significant.

– Significance of the regression coefficient

It is not enough to know how well a regression line fits the data, or to know the
standard error of the estimates. It is equally important to know whether dependent
variable Y is truly related to independent variable(s) X. To this end, we must
perform a statistical test to determine whether the coefficients for variables X are
different from 0.
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8.2.3 Path Analysis

Path analysis (PA) can assess the fit of theoretical models that comprise a series of
dependence relationships. Additionally, path analysis does not test causality but
rather helps select or make inferences between causal hypotheses (Batista and
Coenders 2000). PA can be considered as an extension of the multiple regression
model. Not only does PA highlight the direct contribution from a set of independent
variables, but it also emphasizes on the interaction among predictor variables and
their direct influence on dependent variables. PA was originally developed in the
early years of the twentieth century by Sewall Wright for phylogenetic studies.
Later on, it was introduced to the social sciences thanks to the contributions of de
Blalock (1964), Duncan (1966), and Boudon (1965), cited by Pérez et al. (2013).
Similarly, PA became increasingly popular among psychology, sociology, eco-
nomics, political sciences, and ecology studies, among others.

Unlike PA, in which each construct is represented by observed variables,
structural equation models measure latent variables using multiple measures for
their representation, thereby modeling the measurement error. Latent variables are
theoretical constructs that cannot be directly measured, but they are associated with
a set of manifest or observed variables. Although manifest variables can be directly
measured, it should not be assumed that measurements are an exact reflection of the
variable. In other words, random and unpredictable factors can hinder error-free
measurements (Weston and Gore 2006; Pérez et al. 2013).

Researchers employing PA perform a series of regressions to analyze relation-
ships between independent and dependent variables; that said, some variables can
be both dependent and independent, depending on the relationship that is implied.
Similarly, it is important to evaluate the goodness of fit of the model, that is, the
extent to which the model represents the relationships between the studied vari-
ables. Path coefficients explain the impact of one variable over another variable by
decomposing this impact in three blocks or paths: path from the independent
variable to the intermediate variable, path from the intermediate variable to the
dependent variable, and the rest of the path leading to the final variable. By using
path coefficients, it is possible to know the correlations between variables after
analyzing the set of effects: direct, indirect, or spurious.

As depicted in Fig. 8.1, PA is represented by diagrams that illustrate hypo-
thetical models. In this sense, it is important to consider the following guidelines to
correctly develop diagrams:

• An arrow must be used to indicate the relationship between two variables. The
direction of the arrow indicates the direction of the relationship.

• A bidirectional arrow must be used to represent covariance between variables.
• Arrows represent path coefficients that indicate the magnitude of the effects in

the relationships between two variables.
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• Those variables that receive an influence from other variables are referred to as
endogenous variables. Those variables that influence other variables are known
as exogenous.

• Observed variables are represented by squares, whereas latent variables are
depicted using circles or ellipses.

• Direct effects occur directly from one variable to the other.
• An indirect effect between two variables occurs through one or more mediator

variables.

Path models can decompose associations between latent variables through
standardized coefficients, which are simply direct effects. On the other hand,
indirect effects are estimated by multiplying the path coefficients found between
two interrelated variables along the causal line. The statistical significance of any of
the given effects can be calculated by dividing the non-standardized coefficients by
the standard error. The result is a z value that allows determining the significance of
the studied variables (Weston and Gore 2006). Most of the statistics used in PA
assume that a multivariate distribution is normal. In this case, a violation to the
assumption would be a problem, since it could affect the accuracy of the statistical
test, suggesting incorrectly that there is a good fit. Therefore, it is important to
conduct some tests before estimating the parameters. Some of these tests include
measuring the data at the ordinal or nominal level, measuring collinearity, and using
10–20 cases per parameter and at least 200 observations (Kline 2005).

Structural equation analysis is similar to path analysis since it provides direct and
indirect estimations for the observed variables. This property is illustrated in
Fig. 8.1. Similarly, there is a wide range of computer programs currently available
to support statistical analyses. The study of causal relationships emerged from a
technique called multivariable analysis, initially proposed to work with experi-
mental data. Structural equation analysis is a practical and versatile tool; it can
effectively and efficiently adapt to all types of research and extract important and
detailed information. In conclusion, PA models can have a large explanatory power.
Even though they are highly similar to regression, they assume that there exist
linear relationships between two observed variables, which implies that one vari-
able has an effect over another (Casas 2002).

Fig. 8.1 Example of path
analysis. Source Wright
(1971)
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8.2.4 Factor Analysis

Factor analysis is a technique for generating structures of theoretical models and
hypotheses that can be tested empirically, without previous model specifications or
without considering either the number of factors or their relationship (Lévy-Mangin
and Varela 2006). Factor analysis, as depicted in Fig. 8.2, is a way to take a mass of
data and shrink it into a smaller and more meaningful data set that is also more
manageable. A factor is a set of observed variables that have similar response pat-
terns. The number of factors extracted by means of factor analysis is lower than the
number of analyzed variables. Once the average values and the standard deviation
values are calculated for each construct, it is important to analyze the component
matrix to determine whether the items truly belong to the construct wherein they are.

Extracted factors are enough to summarize most of the information contained in
original variables. Factor analysis shows which variables are explained by other
variables. For instance, in Fig. 8.2, factor 1 (F1) is explained by variables V1 and
V2. Moreover, F1 is related to factors F2, F3, and F4. Similarly, variables V1 and V2

have their own measurement errors: e1 and e2, respectively. Factor analysis models
that describe the correlations from a set of observed variables V1, V2 … Vn in terms
of a reduced number of common factors, known as latent variables, are represented
as a linear equations system as follows (García Ochoa et al. 2017):
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Fig. 8.2 Example of factor analysis. Source Prepared by the authors
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V1 � l1 ¼ k11f1 þ k12f2 þ � � � þ k1kfk þ e1
V2 � l2 ¼ k21f1 þ k22f2 þ � � � þ k2kfk þ e2
..
. ..

. ..
.

Vi � li ¼ ki1f1 þ ki2f2 þ � � � þ kikfk þ ei
..
. ..

. ..
.

Vp � lp ¼ kp1f1 þ kp2f2 þ � � � þ kpkfk þ ep

ð8:4Þ

In Eq. 8.4, Vi represents the observed variables obtained from the data base,
although when standardized, they would have zero mean and unit variance for all
i = 1, 2, … p. On the other hand, k11, k12, …, kk represent regression coefficients,
usually known as weights or factor loadings; f1, f2, …, fk are the latent common
factors, known as latent variables or non-directly observed variables, each one of
them with zero mean/unit variance. Finally, residuals ei are unobserved distur-
bances from the unique or specific factors. The model only works with interval
variables with the same direction (García Ochoa et al. 2017).

8.2.5 Structural Equations (SE)

To describe the relationship between a variable of interest and a predictor variable
when it is believed that the latter influences on the former, researchers usually rely
on a simple regression model (Silva and Schiattino 2008). However, when in this
relationship more than one predictor variable affects the variable of interest, it
would be more convenient to propose a multiple linear regression model. Now, let
us suppose that the relationship is even more complex: the variable of interest
affects variable X, which in turn is influenced by many more variables. Linear
regression would not be enough to study this relation, since more equations are
necessary. In his work on path analysis, Wright (1932) discussed such complex
relationships. Later, Jöreskog (1988) proposed the name structural equations.
Structural equation analysis can explain dependence relationships between inde-
pendent and dependent latent variables. Figure 8.3 shows an example of structural
equation analysis, where F1, F2, F3, and F4 represent independent variables
explained by observed variables V1, V2, V3, V4, etc. The question mark going from
F1 to V1 represents the percentage that explains this independent variable.

The unknown arrows connecting F1, F2, … etc., to variable Result indicate the
level of importance of the factors associated either positively or negatively to this
variable and the relationship between them. When researchers deal with a series of
interrelated events, structural equation modeling (SEM) is the most appropriate
tool, since it can simultaneously examine dependency relationships. Two of the
most important characteristics of SEM are as follows:
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• SEM can estimate multiple relationships and interrelated dependence.
• SEM can represent both unobserved concepts in these relationships and the error

measurement in the estimation process.

As depicted in Fig. 8.3, the model allows proposing causal relationships
between the variables: That is, some variables cause an effect on others and can
transfer these effects to other variables, thereby creating concatenations of variables
(Ruiz et al. 2010). Structural equation models are a family of multivariate statistical
models that can estimate effects and relationships among multiple variables.
Similarly, SEM emerged from the need to rely on more flexible regression models.
Structural equation models are less restricted, if compared to regression models,
since they can integrate measurement errors in both criterion (dependent) variables
and predictor (independent) variables. Likewise, structural equation models can be
viewed as factor analysis models that allow for both direct and indirect effects
between factors. Mathematically speaking, these models are more difficult to esti-
mate if compared to other multivariate models, such as regression models or factor
analysis models.

SEM became popular in 1973 thanks to the appearance of the Linear Structural
Relations (LISREL) program (Jöreskog and van Thillo 1973). Later on, LISREL
was improved, thereby giving birth to LISREL VI (Jöreskog and Sörbom 1986),
which offered a more diverse range of estimation methods. Another method tra-
ditionally used for performing structural equation analysis was EQS (abbreviation
for “equations”) (Bentler 1985). Nowadays, various estimation programs, such as
the Analysis of Moment Structures (AMOS) software can facilitate the task
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Fig. 8.3 Example of structural equations. Source Own
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(Arbuckle 1997). The influence of estimation programs on SEM has been so strong,
that structural equation models are often referred to as LISREL models, yet inter-
national literature reports them as structural equation models or SEMs.

One of the goals of empirical research is to discover causal relationships between
variables. This goal is achievable when researchers work with experimental and
controllable concepts, such as physical phenomena. However, most of the variables
studied in social science and behavioral studies are impossible to control, which is
why researchers must rely on other alternatives. The social sciences frequently
study abstract and intangible concepts known as constructs, which can only be
measured indirectly with the help of indicators. In this sense, SEMs are useful tools
in the study of linear causal relationships. These models do not prove causality but
can support researchers in decision-making situations by rejecting those hypotheses
that contradict the data or the structure of the covariance (i.e., the subjacent rela-
tionships between the variables) (Casas 2002).

Overall, a structural equation model comprises two models: the measurement
model and the structural model. A measurement model represents the part that can
be measured; that is, the part that describes how latent variables are measured by
their corresponding manifest indicators. Measurement models inform on the
validity and reliability of the observed indicators. On the other hand, a structural
model describes the relationships between latent variables. The importance of a
SEM-based analysis resides in the ability of the analysis to confirm a theory, or
explain it to some extent, and build constructs to estimate latent variables with
respect to measured variables. SEM-based models are useful tools in disciplines
such as psychology, marketing, social sciences, and recently, engineering.

In the industrial engineering domain, the application of SEM is still at its early
stages and thus provides great opportunities for improvement. Common SEM-based
studies conducted in this area evaluate the impact of information networks on supply
chain (SC) performance or assess the effects of SC risk on manufacturing and dis-
tribution processes (Swafford et al. 2006). Likewise, the literature reports SEM-based
analyses of lean processes and supply logistics integration (Prajogo et al. 2016), SC
collaboration (Ramanathan and Gunasekaran 2014), SC flexibility and its impact on
knowledge transfer (Blome et al. 2014; Jin et al. 2014), or even the effects of SC
flexibility and agility in the fashion industry (Chan et al. 2017). There are also studies
aiming at analyzing the relationship between competitiveness and customer satis-
faction (Subramanian et al. 2014), as well as the impact of green SC (Mangla et al.
2014), resilience (Govindan et al. 2015) and information systems (Qrunfleh and
Tarafdar 2014; Tarafdar and Qrunfleh 2017).

8.3 Structural Equation Modeling (SEM)

Model design and development procedures and methodologies have greatly varied
in the last twenty years. Initially, researchers used to work merely with observed
variables, and all the underlying structures were clear and evident. The idea of
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measuring unobserved constructs emerged among the social sciences and fueled the
evolution of overall measurement systems, methods, and techniques. Covariance
structure models first became popular thanks to Jöreskog, Keesing, and Wiley and
their works on simultaneous equations. Later on, from 1967 to 1978, these models
were increasingly popularized thanks to the LISREL software and related programs.

Covariance structure models are within interdependence models for a confir-
matory factor analysis of any order or degree and for dependency models in the case
of a causal analysis. Scales can be either measurable or non-measurable (categorical
scales vs. ordinal scales), and they indicate the level of dependence at various
levels. The use of causal models has exponentially increased over time, since they
allow researchers to analyze complex construct networks, wherein each network is
measured by multiple variables (Lévy-Mangin and Varela 2006). In this sense,
causal models can be considered as superior if compared to traditional statistical
techniques, since they can incorporate abstract and unobservable constructs (Fornell
1982, 1983).

SEM is a second-generation statistical analysis technique employed to develop
or test research theories. SEM includes a family of multivariate statistical tools to
estimate effects and relationships among multiple variables. SEM’s major advan-
tage is that it proposes the type and direction of the hypothetical relationships
between variables. Then, it estimates the parameters (Ruiz et al. 2010). Finally, note
that structural equations are not only used for covariance structures, but also for
variance structures in which a given percentage of variance can be explained
through explanatory constructs and variables. Therefore, it is important to mention
that modeling is possible thanks to the application of Partial Least Squares (PLS),
which estimate the parameters. This type of modeling is known as PLS-SEM.

8.3.1 Partial Least Squares (PLS)

PLS-based SEM allows researchers to perform multiple regressions between latent
variables (Batista and Coenders 2000). The goal is to depict in a model how some
variables affect other variables, considering they are interrelated (Valencia et al.
2017). PLS is a multivariate analysis technique for testing structural equation
models. It allows researchers to develop a comprehensive model in order to esti-
mate path models that involve latent constructs indirectly measured by multiple
indicators. Similarly, PLS can reflect the theoretical–empirical conditions where
some theoretical situations are scarce or changing (Wold 1985).

The goal of PLS-based modeling is to predict which latent and observed vari-
ables are dependent. This can be achieved by maximizing the explained variance
(R2) contained in dependent variables. Definitely, PLS is designed to explain the
variance of dependent latent variables, that is, to analyze the importance of the
relationships and the resulting R2 coefficient. Likewise, if compared with
covariance-based methods, the PLS-based technique is rather confirmatory, not
exploratory. Rather than estimating the variance of all the variables, PLS analyzes
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the data and relies on a sequence of Ordinary Least Squares (OLS) iterations and
multiple regressions performed for each construct.

As a SEM technique, PLS sees each construct as a theoretical construct repre-
sented by its own indictors. However, the relationships between constructs must be
defined with respect to previously established knowledge (theory) about the
research phenomenon (Loehlin 1998). PLS relies on an iterative algorithm in which
parameters are calculated by a series of least squares regression. The term partial
refers to the fact that the iterative procedure involves separating the parameters
instead of estimating them simultaneously (Batista and Coenders 2000).
Furthermore, PLS can deal with complex models that contain a large number of
constructs and interrelationships. It offers less strict suppositions on data distribu-
tion and can work with nominal, ordinal, or even interval data.

Researchers have demonstrated that PLS-based mathematical methods are fairly
rigorous and robust (Romero et al. 2006). That said, the mathematical model is
flexible in the sense that it does not establish premises related to measurement
levels, data distribution, or sample sizes. The main goal is to perform a predictive
causal analysis on complex problems that are backed up by little theory or research.
It is a correlation-based technique designed to extract the main components from an
X matrix of predictor variables and those from the related Y matrix to better predict
the variables of the Y matrix. The main components of the X matrix are selected in a
way they can completely predict the variables of the Y matrix. Therefore, the
components of both matrices are intimately interrelated.

In conclusion, PLS can be a powerful tool thanks to its flexibility: It demands the
least number of requirements in terms of measurement scales, sample size, and
residual distributions. In large-sample models, the findings from both approaches
(PLS-based and covariance-based) are different (Loehlin 1998). Sample size has an
impact on the robustness of the statistics. As Gefen et al. (2000) suggest, even in
PLS, the sample size should be a large multiple of the number of constructs in the
model, since PLS is based on linear regression. Experts recommend using at least
ten times more data points than the number of items in the most complex construct
in the model (Barclay et al. 1995).

PLS algorithms were originally developed by Wold (1985) to address problems
in the estimation procedures when multicollinearity and overparameterization occur
(Chin 1998). Likewise, PLS can model both formative and reflective constructs.
The former are those indicators that form or determine a construct, whereas the
latter are a reflection of the underlying variation in the construct (Diamantopoulos
2008; Bollen 1989). As a result of its ability to model latent constructs under
non-normality conditions and with small-sized and medium-sized samples (Chin
et al. 2003), the PLS optimization technique has recently become an exclusive
object of study.
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8.3.2 Characteristics of PLS Path Modeling

PLS path modeling has the following four characteristics: (1) normality in data
distribution is not assumed, since it is a nonparametric method that can work with
relatively non-normal data; (2) few variables can be used for each construct; (3) the
model can include a large number of indicator variables (more than 50 attributes);
and (4) it is assumed that all the measured variance is used to explain or predict the
proposed causal relationships (Hair et al. 2012, 2013). PLS-SEM methods are
nonparametric optimization techniques that do not need the usual requirements of
normal data to apply the maximum likelihood estimation (MLE) method. PLS-SEM
methods represent analytic techniques associated with regression, since they
combine a prediction-oriented econometric perspective with a psychometric
viewpoint. This characteristic allows developing models with latent variables and
their corresponding indicators. Similarly, it allows for greater flexibility when
modeling a theory (Roldán and Cepeda 2013). Table 8.3 introduced below reports
the foremost advantages of PLS path modeling.

PLS suits better predictive applications and theory development. It can be
employed to suggest possible relationships and propositions that can be eventually
proved, or even to confirm research theories (Chin 2010). Furthermore, PLS path
modeling does not impose any assumption whatsoever regarding a specific distri-
bution of data, and it avoids two serious problems: inappropriate solutions and
factors indeterminacy. Finally, PLS path modeling sets minimum requirements as
regards measurement scales (ordinal or nominal); that is, it does not demand scale
uniformity (Sosik et al. 2009).

PLS modeling is robust against three inadequacies (a) skewed instead of sym-
metric distributions for manifest variables, (b) multicollinearity within blocks of
manifest variables and between latent variables, and (c) misspecification of the
structural model with small samples (Reinartz et al. 2009; Ringle et al. 2009a; Chin
2010). This method might be more appropriate when the objective is application or
prediction, when the research phenomenon is relatively new or changing, when the

Table 8.3 Characteristics of PLS path modeling

Criterion PLS characteristic

Approach Variance-based

Objective Prediction-oriented

Assumptions Nonparametric (predictor specification)

Hypothesis Optimal prediction precision

Latent variable scores Explicitly estimated

Parameter estimates Consistent as indicators and sample size increase

Minimal sample size 30–100 cases

Epistemic relationship Can be modeled in either formative or reflective mode

Implications Optimal for prediction accuracy
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research work is interactive, or when the model is complex and has multiple
indicators or latent variables, regardless of the level of solidness of the theoretical
context (Chin 2010).

PLS path modeling can explain causal relationships between multiple variables,
each one of them measured through one or more indicators. Unobservable variables
hold a given relationship with observed variables. Such relationship can be viewed
as a reflection effect. Each indicator can be defined as a linear function of the latent
variable plus an error term. The correlation among indicators increases internal
consistency. This is usually confirmed by the dimensionality, reliability, and
validity tests performed on the model. Similarly, another way to view variables is as
a relationship of a formative effect, in which latent variables are not always rep-
resented in the traditional fashion. They are rather composed by causal indicators,
which are the linear combination of those indicators plus a disturbance.

8.3.3 Observed Variables and Latent Variables

One of the most relevant concepts in SEM is that of latent variable. Latent variables
cannot be directly observed or measured with a generally accepted instrument
(Schumacker and Lomax 2004). Similarly, latent variables are composed of man-
ifest variables, also known as observed variables or indicators. In PLS path mod-
eling, a latent variable is obtained through a linear combination of its observed
variables (indicators) (Loehlin and Beaujean 2016). It is generally assumed that no
measurement is perfect (Bollen 1989). As reported by Haenlein and Kaplan (2004),
every real-world observation comes with a measurement error, which can comprise
two parts: a random error and a systematic error. Random errors are statistical
fluctuations mainly caused by the order of the survey items or by biased responses.
On the other hand, systematic errors are due to the method’s variance. In this sense,
the value of an item is always the sum of three parts: the real value, the random
error value, and the systematic error value.

When relying on PLS path modeling, three steps must be followed: Determine
the nature of the relationship between indicators and constructs, assess indicator
reliability and validity, and interpret structural coefficients and thus determine the
model’s adequacy. Additionally, PLS path models are analyzed and interpreted in
two stages (Roldán and Cepeda 2013):

– Stage 1: Assess model reliability and validity. The goal at this stage is to
determine whether the theoretical concepts under study are being appropriately
measured through the observed variables. Reflective constructs are used to
measure validity (i.e., the used measurement exactly measures what it is sup-
posed to measure) and reliability (i.e., consistency of the results), whereas
formative constructs are used to measure multicollinearity in indicators and the
weights of manifest variables.
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– Stage 2: Assess the structural model. The goal at this stage is to assess the
magnitude and significance of the model relationships. This stage considers
aspects such as explained variance, standardized regression coefficients, as well
as their respective significance levels, to name but a few.

These two stages are performed to guarantee construct validity and reliability
before the researcher can draw conclusions from the model (Barclay et al. 1995).
These two stages are thoroughly discussed in the following chapter.

8.3.4 Sample Size in PLS Path Modeling

The PLS method usually guarantees high statistical prediction accuracy, even with
small-sample models (e.g., 35–50 cases). However, when large samples are
involved (i.e., more than 200 cases), estimation precision accuracy usually increases
(Hair et al. 2009). Moreover, covariance-based and variance-based PLS methods
usually differ in accuracy with large-sized samples.

8.3.5 Specifications of PLS Path Modeling

SEM is a unique, systematic, and integrative analysis technique because it can
evaluate both measurement models and structural models. Measurement models
show how each latent variable is represented by indicator variables, whereas
structural models describe hypothesized causal relationships that occur among a set
of dependent and independent constructs. Measurement and structural models can
be mathematically represented by using simultaneous equations. Since structural
equation models are developed according to available literature, hypothesized
causal relationships can be visually represented. Structural equation models can
model the degree to which observed variables do not perfectly describe a construct
of interest.

Similarly, they can incorporate unobservable constructs measured through
indicators (i.e., items, attributes, observed variables) and model the relationships
among multiple predictor variables (i.e., independent or exogenous variables) and
result variables (i.e., dependent or endogenous variables). Finally, structural
equation models can combine and compare a priori knowledge and hypotheses with
empirical data. To represent measurement and structural models, there must be
enough indicators of each latent variable. A rule of thumb is that there need to be at
least two indicators per latent variable in order to avoid problems when calculating
degrees of freedom. That said, the ideal number of indicators is five or six (Hair
et al. 2009). Figure 8.4 illustrates an example of both a measurement model and a
structural model.
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8.3.6 Basic Terminology

This section discusses basic SEM terminology for both measurement models and
structural models. The figures introduced below support the presented terminology.
Each one of these figures is a part of Fig. 8.4, which was presented in the previous
section.

To begin with, it is important to bear in mind that those variables that cannot be
directly measured, but are rather represented by one or more observed variables, are
known as constructs. Graphically, constructs are represented by circles or ellipses.
There are two types of constructs: exogenous (n) and endogenous (g). Exogenous
constructs act as predictor or causal variables, whereas endogenous constructs
receive the causality of exogenous constructs. Indicators (or manifest variables) are
observed variables representing attributes or items obtained from questionnaires or
surveys. Graphically, observed variables are represented by squares (Roldán and
Cepeda 2013).

Figure 8.5 illustrates a set of unidirectional relationships between variables.
These relationships are depicted by arrows and represent those causal relationships
than can occur internally (i.e., between constructs) and externally (i.e., between
each latent variable and its indicators). Reflective indicators are unobservable
constructs that reflect preexisting theoretical constructs. On the other hand, for-
mative constructs cause or give rise to latent theoretical constructs.

Figure 8.6 depicts a series of parameters to be estimated. The direction of the
arrows indicates the direction of the causality. As the figure illustrates, causality
goes from construct (g) to its indicators (Yi), and these indicators must be highly
correlated. In other words, they must have high internal consistency levels (as
defined by Cronbach’s alpha, the composite reliability index, and the average
variance extracted) to be able to explain that construct. The error is associated with
the individual measures of each indicator.

The reflective measure for the ith indicator is (Yi); (g) represents the construct,
and (ki) is the factor loading of construct g over Yi: Similarly, ei is the specific
measurement error of Yi, and n stands for the number of reflective indicators used to
value the construct. This is denoted in Eq. 8.5.

Fig. 8.4 A measurement model and a structural model in SEM. Source Own
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Yi ¼ kigþ ei; i ¼ 1; . . .; n ð8:5Þ

Figure 8.6 also depicts the regression coefficients between endogenous latent
variables bij and exogenous latent variable cji, as well as the equation errors in
structural model f1. Causality arrows emerge from exogenous latent variables and
are directed toward endogenous latent variables. Measurement errors for exogenous
latent variables are noted as di.

8.3.6.1 Estimations in PLS Path Modeling

Making estimations in the structural model implies estimating all the parameters. In
covariance-based SEM, parameters are usually estimated using the maximum
likelihood estimation (MLE) method. The goal of MLE is to find the parameter
values that maximize the likelihood function, given the observations (Lomax and
Schumacker 2012). Ordinary Least Squares are another common estimation
method. OLS is a PLS-based and iteration-based method that can estimate unknown
parameters through simple and multiple regressions (Chin and Newsted 1999).
Thanks to a bootstrapping or resampling procedure, the OLS method diminishes
convergence effects and finds, after a few iterations, an optimal solution.

Fig. 8.5 Structural equation model with indicators, example. Source Own
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Considering Fig. 8.7 as the reference, the estimation process can be explained as
follows:

– The first iteration shows an initial value for g by simply adding values Y1. . .; Yj
(i.e., factor loadings k1. . .; kj are set to 1).

– To estimate weights c1. . .; ci in the regression analysis, g is the dependent
variable and X1; . . .Xi are the independent variables.

– These estimations are used as weightings in a linear combination of X1; . . .Xi,
thereby giving a value for n.

Fig. 8.6 Parameters to be estimated in a structural equation model. Source Own

Fig. 8.7 Parameter estimation process diagram. Source Own
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– Factor loadings k1. . .; kj are estimated through simple regressions of c1. . .; ci
over n. The previous loadings are transformed into weightings to establish a
linear combination of c1. . .; ci as the new estimation for g.

– The procedure is repeated until the difference between the subsequent iterations
is small.

– Finally, the simple regression coefficient b is calculated as the difference
between the punctuations of both latent variables: n and g.

– This segmentation process for the estimation of parameters is useful for complex
models and small samples.

8.3.7 Evaluation Criteria for the Measurement Model

The measurement model is employed to assess the reliability of the items contained
in a construct or latent variable. The most common latent variable coefficients are
those of internal reliability, composite reliability, convergent validity, and dis-
criminant validity. However, it is also imperative to consider aspects such as
multicollinearity, which is usually measured by the Variance Inflation Factors
(VIF) index. The following paragraphs thoroughly discuss each one of these latent
variable coefficients.

8.3.7.1 Reliability and Internal Consistency

Item reliability is measured using the loadings associated to a construct, which must
be higher than 0.70. This implies that the variance shared between the construct and
its indicators is higher than the error variance. Loadings of values 0.50 and 0.60 can
be accepted at early stages of scale development (Chin 1998). Internal consistency
is a measure of how well a series of items explain a construct, whereas composite
reliability involves the standardized loading for each item and the measurement
error. Equation 8.6 introduces the reliability estimation formula.

qn ¼
P

kið Þ2
P

kið Þ2 þ P
ei

ð8:6Þ

where qn stands for construct reliability; ki represents the standardized loadings of
each observed variable; and ei indicates the variance error for each observed
variable (Fornell and Larcker 1981).
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8.3.7.2 Convergent Validity

Convergent validity implies that a given number of items represent the unidi-
mensionality of a construct (Ringle et al. 2009b). Unidimensionality is measured
through the average variance extracted index (AVE), which measures the overall
amount of variance in the indicators accounted for by the latent construct. A rule of
thumb is to set 0.5 as the minimum acceptable value, which implies that over 50%
of the variance of a construct is due to its indicators.

8.3.7.3 Discriminant Validity

Discriminant validity measures to what extent a construct shares more variance with
its indicators than with other model constructs. Discriminant validity can be con-
firmed by demonstrating that the correlations between the constructs are lower than
the square root of the AVE. Another way to confirm discriminant validity is to
analyze the correlations between the scores of a targeted construct and the scores of
the items from the other non-targeted constructs (i.e., cross-loadings).
Cross-loadings indicate how strongly a construct item loads on the other
non-targeted factors. Constructs must load stronger on their corresponding items
than on any other item from any other model construct.

8.3.7.4 Multicollinearity

Multicollinearity refers to a high degree of correlation (linear dependency) among
several independent variables or indicators. Collinearity in constructs is usually
measured with the VIF index, setting 3.3 as the maximum value (Hair et al. 2012).
Finally, to assess measurement models, statistical significance is considered by
using a two-tailed Student’s t-distribution. A level of significance equal to or higher
than 0.5 indicates that a targeted indicator is relevant to a construct.

8.3.7.5 Evaluation Criteria for the Structural Model

To evaluate the fit of a structural model, the research hypotheses must be validated
through a significance test performed on each of the estimated coefficients. The
one-tailed t-test is performed in situations where researchers predict a relationship
or difference in a specific direction (i.e., positive or negative relationships) (Hair
et al. 1999); however, when researchers can predict a relationship or difference but
do not know in what direction, a two-tailed t-test is performed. A model’s fit is
measured according to the level of prediction for the independent latent variables,
as indicated by R-Squared (R2). R2 values indicate the overall amount of variance in
dependent latent variables that can be explained by the model. Every path or
relationship between constructs should have an R2 value higher than 0.3. Moreover,
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predictive variance for each dependent construct, as indicated by Q2, must be higher
than 0. All the latent variable coefficients (for measurement models) and model fit
and quality indices (for structural models) are thoroughly discussed in the following
chapter, which addresses the methodology of this work.
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