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1 Introduction

The choice of coarse spaces play an important role in the design of fast and
robust Schwarz methods for problems of multiscale nature. Standard methods with
standard coarse spaces have often difficulties to solve such problems, and even
fail to converge due to computing in the finite precision arithmetic. The purpose
of this paper is to propose a robust coarse space, adaptively enriched, for solving
second order elliptic problems in three dimensions with highly varying coefficients,
using the standard finite element for the discretization and the overlapping additive
Schwarz method as the preconditioner. The coefficient may have discontinuities
both inside and across subdomains. The convergence of the proposed method, as
presented in the paper, is independent of the distribution of the coefficient, as well
as the jumps in the coefficients, when the coarse space is chosen large enough. For
similar works on domain decomposition methods addressing such problems, we
refer to [7, 17] and the references therein.

Additive Schwarz methods for solving elliptic problems discretized by the finite
element, which was proposed over 30 years ago, have been studied extensively over
the past decades, see [16, 18] for an overview. It is known in general that if the
coefficients are discontinuous across subdomains but are varying moderately with
in each subdomain, then the standard coarse spaces are enough to generate additive
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Schwarz methods which are robust with respect to those jumps, cf. e.g. [16, 18].
This is however not true in the case when the coefficients may be highly varying and
discontinuous almost everywhere, the fact which has in recent years drawn several
researchers’ attraction, cf. e.g. [2–15, 17].

In the present work, we extend some of the ideas presented in those papers, and
propose to construct a coarse space based on the vertices of the subdomains and a
twofold enrichment of the coarse space, which is done through solving two specially
designed lower dimensional eigenvalue problems, one on each face common to
two neighboring subdomains and one on each interior edge of the subdomains,
and chosing the first few eigenfunctions corresponding to the bad eigenmodes. The
analysis show that the condition number bound of the resulting system depends only
on the threshold used to choose the bad eigenvalues.

The remainder of the paper is organized as follows: in Sect. 2 we introduce
our differential problem, and its finite element discretization. In Sect. 3 a classical
overlapping Additive Schwarz method is presented. Section 4 is devoted to the
construction of our adaptive coarse space and Sect. 5 gives the theoretical bound
for the condition number of the resulting system.

2 Discrete Problem

We consider the following elliptic boundary value problem: Find u∗ ∈ H 1
0 (Ω)

∫
Ω

α(x)∇u∗∇v dx =
∫

Ω

f v dx, ∀v ∈ H 1
0 (Ω), (1)

where α(x) ≥ α0 > 0 is the coefficient, Ω is a polyhedral domain in R
3 and

f ∈ L2(Ω). Let Th be the quasi-uniform triangulation of Ω consisting of closed
tetrahedra such that Ω̄ = ⋃

K∈Th
K . Let hK denote the diameter of K , and h =

maxK∈Th
hK the mesh parameter for the triangulation.

We will further assume that α is piecewise constant on Th without any loss
of generality. We assume that there exists a coarse nonoverlapping partitioning
of Ω into open connected Lipschitz polytopes Ωi , called structures, such that
Ω = ⋃N

i=1 Ωi and they are aligned with the fine triangulation, in other words a
fine triangle of Th can be contained in only one of the coarse substructures. For the
simplicity of presentation, we further assume that these substructures form a coarse
triangulation of the domain which is shape regular in the sense of [1].

LetFij denote the open face common to subdomainsΩi andΩj , and let E denote
an open edge of a substructure, not in ∂Ω . We denote with Ωh, ∂Ωh, Ωih, ∂Ωih,
Fij,h, and Eh, the sets of vertices of the elements of Th, corresponding to Ω , ∂Ω ,
Ωi , ∂Ωi , Fij , and E , respectively



ASM with an Adaptive Vertex Based Coarse Space in 3D 477

Let Sh be the standard linear conforming finite element space defined on the
triangulation Th,

Sh = Sh(Ω) := {u ∈ C(Ω) ∩ H 1
0 (Ω) : v|K ∈ P1, K ∈ Th}.

The finite element approximation u∗
h of (1) is then defined as the solution to the

following problem: Find u∗
h ∈ Sh such that

a(u∗
h, v) = (f, v) , ∀v ∈ Sh. (2)

Note that α can be scaled without influencing the solution, hence we can easily
assume that α(x) ≥ 1. As ∇u∗

h is piecewise constant over the fine elements, we
can further assume that α is piecewise constants over the elements of Th, since∫
K α∇u∇v dx = (∇u)|K(∇v)|K

∫
K α(x) dx.

Since each subdomain inherits a local triangulation Th(Ωk) from Th(Ω), two
local subspaces can be defined as the following,

Sh(Ωi) := {u|Ωi
: u ∈ Sh} and Sh,0(Ωi) := Sh(Ωi) ∩ H 1

0 (Ωi),

along with a local projection operator Pi : Sh → Sh,0(Ωi) as the following, find
Piu ∈ Sh,0(Ωi) such that

ai(Piu, v) = ai(u, v), ∀v ∈ Sh,0(Ωi),

where ai(u, v) := a|Ωi (u, v) = ∫
Ωi

α(x)∇u∇v dx.
The discrete harmonic part of u ∈ Sh(Ωi) is defined as Hiu := u − Piu, or

equivalently asHiu ∈ Sh(Ωi) which satisfies the following,

{
ai(Hiu, v) = 0, ∀v ∈ Sh,0(Ωi),

Hiu(s) = u(s), ∀s ∈ ∂Ωih.
(3)

We say that a function u ∈ Sh is discrete harmonic if it is discrete harmonic in each
subdomain, i.e. u|Ωi = Hiu|Ωi ∀i.

3 Additive Schwarz Method

In this section, we present the overlapping additive Schwarz method for the discrete
problem (2). We refer to [16, 18] for a more general discussion of the method.
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3.1 Decomposition of Sh

The space Sh is decomposed into the local subspaces {Vi}i , and the global coarse
space V0, as follows.

Vi = {u ∈ Sh : v(x) = 0 ∀x ∈ Ωh \ Ωi}, i = 1, . . . , N,

where u ∈ Vi can take nonzero values at the nodes that are in Ωi and on ∂Ωi

only, giving {Vi}i as subspaces with minimal overlap. The global coarse space V0 is
defined in Sect. 4. For i = 0, . . . , N , the projection like operators Ti : Sh → Vi are
defined as

a(Tiu, v) = a(u, v), ∀v ∈ Vi. (4)

Now, introducing the additive Schwarz operator as T := T0 + ∑N
i=1 Ti, the

original problem (2) can be replaced with the following equivalent problem: Find
u∗

h such that

T u∗
h = g, (5)

where g = ∑N
i=0 gi and gi = Tiu. Note that gi may be computed without knowing

the solution u∗
h of (2): a(gi, v) = (f, v) for all v ∈ Vi.

4 Adaptive Vertex Coarse Space

We introduce our adaptive vertex based coarse space in this section. Each edge E
inherits a 1D triangulation Th(E) from Th. For each edge Eh, let Sh(E) be the space
of traces of functions of Sh on the edge, that is the space of continuous piecewise
linear functions on Th(E), let Sh,0(E) = Sh(E)∩H 1

0 (E) be its subspace with compact
support, and let the edge bilinear form aE(u, v) : Sh,0(E)×Sh,0(E) → R be defined
as

aE (u, v) =
∑

e∈Th(E)

∫
e

αeu
′v′ ds, (6)

where αe = maxe⊂∂K αK is the maximum value of the coefficient over the
tetrahedra sharing the fine edge e ∈ Th(E). Here u′, v′ are the weak derivatives
of u, v ∈ Sh,0(E). The definition of the form aE (u, v), in particular the definition of
α, is introduced in a way which enables us to estimate this form from above by the
sum of energy norms over all subdomains which share this edge.



ASM with an Adaptive Vertex Based Coarse Space in 3D 479

4.1 Vertex Based Interpolation Operator

We introduce the vertex interpolation operator IV : Sh(Ω) → Sh(Ω) as follows.
For u ∈ Sh(Ω)

• IV u(x) = u(x) where x is a crosspoint (a subdomain vertex inside Ω),
• IV u on each edge E satisfies, cf. (6):

aE(IV u, v) = 0, ∀v ∈ Sh,0(E). (7)

• IV u(x) = 0 at all x ∈ Fij,h for each face Fij ,
• IV u is discrete harmonic in the sense as described in Sect. 2.

Note that IV u is uniquely determined by the values of u at the crosspoints, as (7)
uniquely determines IV u at the edge interior nodes, IV u is equal to zero at all face
interior nodes, and then extended as discrete harmonic to the subdomain interior
nodes, cf. (3). The auxiliary coarse space V̂0 is then defined as the image of this
interpolation operator IV , that is V̂0 := Im(IV ) = IV Sh.The coarse space V0 is
the algebraic sum of V̂0 and a sequence of small subspaces built with functions that
are extensions of certain eigenfunctions of the two particular classes of eigenvalue
problems presented below.

4.2 Eigenvalue Problems

We start by introducing the two classes of local eigenvalue problems, one on the
subdomain edges or the edge interfaces, and one on the subdomain faces or the face
interfaces.

4.2.1 Eigenvalue Problem on Edge Interface

Find the eigen pairs (λEj , ψE
j ) ∈ R+ × Sh,0(E)

aE (ψE
j , v) = λEj bE (ψE

j , v), ∀v ∈ Sh,0(E), (8)

where aE (u, v) is as defined in (6), and

bE (u, v) = h−4
∫

GE
αû v̂ dx, (9)

and GE is a 3D layer around and along the edge E , defined as the sum of all fine
tetrahedra of Th those touching E by a fine edge or a vertex, and û, v̂ ∈ Sh are
the discrete zero extensions of u, v ∈ Sh,0(E). The scaling in the form bE (u, v),
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and in the form bkl(u, v) in (11) below, comes from an inverse inequality and the
lines of the proof of Theorem 1, which will be provided in a full version of this
paper published elsewhere. The functionsψE

j are extended inside as follows, taking
zero values at the nodal points of all remaining edges and faces, and then extending
further inside as discrete harmonic in the sense as described in Sect. 2. The extension
is denoted by the same symbol. Writing the eigenvalues in the increasing order, i.e.
0 < λE1 ≤ λE2 ≤ . . . λEME for ME = dim(Sh,0(E)), we define the local edge spectral

component of the coarse space as follows. Let VE = Span(ψE
j )

nE
j=1,where nE ≤ ME

is the number of eigenfunctions ψE
j , whose eigenvalues λEj are less then a given

threshold prescribed for each subdomain by the user.

4.2.2 Eigenvalue Problem on Face Interface

Each face Fkl inherits a 2D triangulation consisting of triangles Th(Fkl), and a local
face finite element space Sh(Fkl) being the space of traces of Sh onto Fkl , and
Sh,0(Fkl) = Sh(Fkl) ∩ H 1

0 (Fkl). We introduce F I,ij as the sum of closed triangles
of Th(Fkl) such that all their nodes are not in ∂Fkl .

The face eigenvalue problem is then to find the eigen pairs (λkl
j , ψkl

j ) ∈ R+ ×
Sh,0(Fkl) such that

akl(ψ
kl
j , v) = λ

Fkl

j bkl(ψ
kl
j , v), ∀v ∈ Sh,0(Fkl), (10)

where

akl(u, v) =
∑

τ⊂FI,kl

∫
τ

ατ ∇u(x)∇v(x), bkl(u, v) = h−3
∫

GFkl

αû v̂ dx, (11)

and ατ = maxτ⊂∂K αK is the maximum value of the coefficient over the tetrahedra
sharing the fine face τ ∈ Th(FI,kl ), GFkl

is a 3D layer of tetrahedra around and
along the face Fkl , defined as sum of all fine tetrahedra of Th those touching Fkl by
a fine face, a fine edge or a vertex, and û, v̂ ∈ Sh are the discrete zero extensions
of u, v ∈ Sh,0(Fkl). The functions ψkl

j are extended inside as follows, taking zero
values at the nodal points of all remaining faces and edges, and then extending
further inside as discrete harmonic in the same sense as in Sect. 2. The extension is
denoted by the same symbol.

Again, by writing the eigenvalues in the increasing order as 0 ≤ λkl
1 ≤ λkl

2 ≤
. . . λkl

Mkl
for Mkl = dim(Sh,0(Fkl)), we can define the local face spectral component

of the coarse space as follows. Let Vkl = Span(ψkl
j )

nkl

j=1,where nkl ≤ Mkl is the

number of eigenfunctionsψkl
j whose eigenvalues λkl

j are less than a given threshold
provided by an user.
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Finally, The coarse space V0, after the enrichment takes the following form:

V0 = V̂0 +
∑

Fkl⊂Γ

Vkl +
∑
E⊂Γ

VE . (12)

Note that V̂0 = IV Sh, as defined in Sect. 4.1.

Remark 1 The bilinear forms bE(u, v), cf. (9), and bkl(u, v), cf. (11), can be defined
in other ways. For instance, we can consider larger layers GE or GFkl

, or even
consider nonzero extensions of u ∈ Sh,0(E) and u ∈ Sh,0(Fkl), but with minimal
energy. We can also take the bilinear forms to be equal to the restrictions of the
scaled original energy form to their respective layers or to the whole substructures,
that is following the ideas of [10–12]. In all cases, we will have similar estimates as
in Theorem 1 in the next section.

5 Condition Number

Following the abstract Schwarz framework, cf. [16, 18], and the classical theory of
eigenvalue problems, we can show the following theoretical bound on the condition
number for the preconditioned system of our method.

Theorem 1 For all u ∈ Sh, the following holds,

c

(
1 + max

E

1

λnE+1
+ max

Fkl

1

λnkl+1

)
a(u, u) ≤ a(T u, u) ≤ C a(u, u),

where C, c are positive constants independent of the coefficient α, the mesh
parameter h and the sudomain size H .
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