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1 Summary

Major progress has been made recently to make FETI-DP and BDDC precondi-
tioners robust with respect to any variation of coefficients inside and/or across the
subdomains. A reason for this success is the adaptive selection of primal constraints
technique based on local generalized eigenvalue problems. Here we introduce a
mathematical framework to transfer this technique to the field of discretizations.
We design discretizations where the number of degrees of freedom is the number
of primal constraints on the coarse triangulation and associated basis functions are
built on the fine mesh and with a priori energy error estimates independent of the
contrast of the coefficients.

2 Hybrid Primal Formulation

Consider the problem of finding the weak solution u : Ω → R of

− divρ ∇ u = ρg = f in Ω,

u = 0 on ∂Ω,
(1)
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where Ω ⊂ R
d for d = 2 or 3 is an open bounded connected domain with

polyhedral boundary ∂Ω , the coefficient ρ satisfies 0 < ρmin ≤ ρ(x) ≤ ρmax
and g is a given forcing data. Define the ρ-weighted L2(Ω)-norm by ‖g‖L2

ρ (Ω) =
‖ρ1/2g‖L2(Ω) and the energy norm by ‖v‖H 1

ρ (Ω) = ‖ρ1/2 ∇ v‖L2(Ω). We obtain the
following stability result:

‖u‖H 1
ρ (Ω) ≤ CP ‖g‖L2

ρ (Ω),

where CP is the weighted Poincaré constant of ‖v‖L2
ρ (Ω) ≤ CP |v|H 1

ρ (Ω) for all

v ∈ H 1
ρ (Ω) vanishing on ∂Ω .

We start by recasting the continuous problem in a weak formulation that depends
on a polyhedral and regular mesh TH , which can be based on different geometries.
Without loss of generality, we adopt above and in the remainder of the text, the
terminology of three-dimensional domains, denoting for instance the boundaries of
the elements by faces. For a given element τ ∈ TH let ∂τ denote its boundary and
nτ the unit size normal vector that points outward τ . We denote by n the outward
normal vector on ∂Ω . Consider now the following spaces:

H 1(TH) = {v ∈ L2(Ω) : v|τ ∈ H 1(τ ), τ ∈ TH },

Λ(TH ) =
{ ∏

τ∈TH

τ · nτ |∂τ : τ ∈ H(div; �)

}
�

∏
τ∈TH

H−1/2(∂τ).
(2)

For w, v ∈ H 1(TH) and μ ∈ Λ(TH ) define

(w, v)TH
=

∑
τ∈TH

∫
τ

wv dx (μ, v)∂TH
=

∑
τ∈TH

(μ, v)∂τ , (3)

where (·, ·)∂τ is the dual product involving H−1/2(∂τ ) and H 1/2(∂τ). Then

(μ, v)∂τ =
∫

τ

div σv dx +
∫

τ

σ · ∇ v dx

for all σ ∈ H(div; τ ) such that σ · nτ = μ. We also define the norms

‖σ‖2Hρ(div;�) = ‖ρ−1/2σ‖20,Ω + ‖ρ−1/2 div σ‖20,Ω,

‖μ‖
H

−1/2
ρ (TH )

= inf
σ∈H(div;�)

σ · nτ =μ on ∂τ , τ∈TH

‖σ‖Hρ(div;�),

|v|2
H 1

ρ (TH )
=

∑
τ∈TH

‖ρ1/2 ∇ v‖20,τ .
(4)
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We use analogous definitions on subsets of TH , in particular when the subset
consists of a single element τ (and in this case we write τ instead of {τ }). We note
that since 0 < ρmin ≤ ρ(x) ≤ ρmax, the space Hρ(div; �) and H 1

ρ (TH ) are equal to
the spaces H(div; �) and H 1(TH ), respectively.

In the primal hybrid formulation [11], u ∈ H 1(TH) and λ ∈ Λ(TH) are such that

(ρ ∇ u,∇ v)TH
− (λ, v)∂TH

= (ρg, v)TH
for all v ∈ H 1(TH),

(μ, u)∂TH
= 0 for all μ ∈ Λ(TH).

(5)

Following Theorem 1 of [11], it is possible to show that the solution (u, λ) of (5)
is such that u ∈ H 1(Ω) and vanishing on ∂Ω satisfies (1) in the weak sense and
λ = ρ ∇ u · nτ for all elements τ .

In the spirit of [3, 11] we consider the decomposition

H 1(TH) = P
0(TH) ⊕ H̃ 1(TH),

where P
0(TH) is the space of piecewise constants, and H̃ 1(TH) is its L2

ρ(τ )

orthogonal complement, i.e., the space of functions with zero ρ-weighted average
within each element τ ∈ TH

P
0(TH) = {v ∈ H 1(TH ) : v|τ is constant, τ ∈ TH },

H̃ 1(TH) = {ṽ ∈ H 1(TH ) :
∫

τ

ρṽ dx = 0, τ ∈ TH }.
(6)

We then write u = u0 + ũ, where u0 ∈ P
0(TH) and ũ ∈ H̃ 1(TH), and find from (5)

that

(ρ ∇ ũ,∇ ṽ)TH
−(λ, ṽ)∂TH

= (ρg, ṽ)TH
for all ṽ ∈ H̃ 1(TH),

(λ, v0)∂TH
= −(ρg, v0)TH

for all v0 ∈ P
0(TH),

(μ, u0 + ũ)∂TH
= 0 for all μ ∈ Λ(TH ).

(7)

Let T : Λ(TH ) → H̃ 1(TH ) and T̃ : L2(Ω) → H̃ 1(TH ) be such that, given
τ ∈ TH , μ ∈ Λ(TH ) and g ∈ L2

ρ(Ω), for all ṽ ∈ H̃ 1(TH ) we have

∫
τ

ρ ∇(T μ) · ∇ ṽ dx = (μ, ṽ)∂τ ,

∫
τ

ρ ∇(T̃ g) · ∇ ṽ dx = (ρg, ṽ)τ . (8)

Note from the first equation of (7) that ũ = T λ + T̃ g, and substituting in the other
two equations of (7), we have that u0 ∈ P

0(TH ) and λ ∈ Λ(TH ) solve

(μ, γ T λ)∂TH
+ (μ, u0)∂TH

= −(μ, γ T̃ g)∂TH
for all μ ∈ Λ(TH),

(λ, v0)∂TH
= −(ρg, v0)TH

for all v0 ∈ P
0(TH).

(9)
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From now on we drop the trace operator γ .
We use the unknowns u0 and λ to reconstruct the u as follows:

u = u0 + ũ = u0 + T λ + T̃ g. (10)

Unlike the HMM [3] and DEM [1], the methods we describe below approximate
Λ(TH) by multiscale basis functions with larger support and with the lowest global
energy property which decay exponentially, achieving optimal energy approxima-
tion without requiring regularity of the problem.

3 Primal Hybrid Finite Element Methods

Let Fh be a partition of the faces of elements in TH , refining them in the sense that
every (coarse) face of the elements in TH can be written as a union of faces of Fh.
Let Λh ⊂ Λ(TH) be the space of piecewise constants on Fh, i.e.,

Λh = {μh ∈ Λ(TH ) : μh|Fh is constant on each face Fh ∈ Fh}.

For simplicity, we do not discretize H 1(τ ) and H(div; τ ) for τ ∈ TH . We
remark that the methods develop here extend easily when we discretize H(div; τ )

by simplices or cubical elements with lowest order Raviart–Thomas spaces or
discretize H 1(τ ) fine enough to resolve the heterogeneities of ρ(x) and to satisfy
inf-sup conditions with respect to the space Λh.

We then pose the problem of finding u0h ∈ P
0(TH ) and λh ∈ Λh such that

(μh, T λh)∂TH
+ (μh, u

0
h)∂TH

= −(μh, T̃ g)∂TH
for all μh ∈ Λh,

(λh, v0)∂TH
= −(ρg, v0h)TH

for all v0h ∈ P
0(TH ).

(11)

We note that T restricted to τ , denoted by T τ : Λτ
h → H̃ 1(τ ) solves

(ρ ∇(T τ μτ
h),∇ v)τ = (μτ

h, v)∂τ for all v ∈ H̃ 1(τ ),

and note that ρ ∇(T τμτ
h) · nτ = μh on ∂τ . Note also that (μh, T μh)∂TH

= 0
implies T μh = 0 and μh = 0. As (11) is finite dimensional, it is well-posed since it
is injective. We define our approximation as in (10), by

uh = u0h + T λh + T̃ g. (12)

Simple substitutions yield uh, λh solve (5) if Λ(TH ) is replaced by Λh, i.e.,

(ρ ∇ uh,∇ v)TH
− (λh, v)∂TH

= (g, v)TH
for all v ∈ H 1(TH),

(μh, uh)∂TH
= 0 for all μh ∈ Λh.
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We also assume that Λh is chosen fine enough so that

|u − uh|2H 1
ρ (TH )

= (
λ − λh, T (λ − λh)

)
TH

≤ H̃2‖g‖2
L2

ρ (Ω)
,

where H̃ represents a “target precision” the method should achieve. For instance,
one could choose H̃ = H or H̃ = hs for some 0 < s ≤ 1. It must be mentioned
that λh is never computed, only an approximation of order H̃.

Above, and in what follows, c denotes an arbitrary constant that does not depend
on H , H̃, h, ρ. For details and proofs, see [7]. See also [6] for a related multiscale
conforming method.

4 Adaptive BDDC Spectral Decomposition I

Let τ ∈ TH , F a face of ∂τ , and let Fc
τ = ∂τ\F . Define

Λτ
h = {μh|∂τ : μh ∈ Λh},ΛF

h = {μh|F : μh ∈ Λτ
h},ΛFc

τ

h = {μh|Fc
τ

: μh ∈ Λτ
h}.

Denote μτ
h = {μF

h ,μ
Fc

τ

h } with μτ
h ∈ Λτ

h, μ
F
h ∈ ΛF

h and μ
Fc

τ

h ∈ Λ
Fc

τ

h , and define

T τ
FF : ΛF

h → (ΛF
h )′, T τ

F cF : ΛF
h → (Λ

Fc
τ

h )′

T τ
FFc : Λ

Fc
τ

h → (ΛF
h )′, T τ

F cF c : Λ
Fc

τ

h → (Λ
Fc

τ

h )′,

andnotethat (μh, T
τμh)∂τ = (μF

h , T τ
FF μF

h )F +
(μF

h , T τ
FF cμ

Fc
τ

h )F + (μ
Fc

τ

h , T τ
F cF μF

h )F c
τ

+ (μ
Fc

τ

h , T τ
F cF cμ

Fc
τ

h )F c
τ
.

It follows from the properties of T τ that T τ
FF and T τ

F cF c are symmetric and positive
definite matrices, and follows by Schur complement arguments that

(μF
h , T τ

FF μF
h )F = ({μF

h , 0}, T τ {μF
h , 0})∂τ

≥ min
ν

Fc
τ

h ∈ Λ
Fc
τ

h

({μF
h , ν

F c
τ

h }, T τ {μF
h , ν

F c
τ

h })∂τ = (μF
h , T̂ τ

FF μF
h )F , (13)

T̂ τ
FF = T τ

FF − T τ
FFc(T

τ
F cF c)

−1T τ
F cF

and the minimum is attained at ν
Fc

τ

h = −(T τ
F cF c)

−1T τ
F cF μF

h .
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To take into account high-contrast coefficients, we consider the following
generalized eigenvalue problem: Find (αF

i , μF
i,h) ∈ (R,ΛF

h ) such that:

1. If the face F is shared by elements τ and τ ′ we solve

(νF
h , (T τ

FF + T τ ′
FF )μF

h,i )F = αF
i (νF , (T̂ τ

FF + T̂ τ ′
FF )μF

h,i )F , ∀νF
h ∈ ΛF

h .

2. If the face F is on the boundary ∂Ω we solve

(νF
h , T τ

FF μF
h,i)F = αF

i (νF
h , T̂ τ

FF μF
h,i )F , ∀νF

h ∈ ΛF
h .

The use of such generalized eigenvalue problems is known in the domain decom-
position community as “adaptive selection of primal constraints”. It is used to make
preconditioners robust with respect to coefficients; see [9, 12] for RT0 and BDM1
where only face eigenvalue problems for two- as well as for three-dimensional
problems. Here, we apply this technique to design robust discretizations; see [4, 6]
on related work for classical FEM discretizations.

Now we decompose ΛF
h := Λ

F,�
h ⊕ Λ

F,Π
h where

Λ
F,�
h := span{μF

h,i : αF
i < α∗}, Λ

F,Π
h := span{μF

h,i : αF
i ≥ α∗}.

From (13) we know that αF
i ≥ 1. The parameter α∗ is defined by the user and

it controls how fast is the exponential decay of the multiscale basis functions.
We point out that the dimension of the space Λ

F,Π
h is related to the number of

connected subregions on τ̄ ∪ τ̄ ′ with large coefficients surrounded by regions with
small coefficients. Finally, let Λh = ΛΠ

h ⊕ Λ
�
h , where

ΛΠ
h := {μh ∈ Λh : μh|F ∈ Λ

F,Π
h for all F ∈ ∂TH },

Λ
�
h := {μh ∈ Λh : μh|F ∈ Λ

F,�
h for all F ∈ ∂TH }.

(14)

5 NLSD-Nonlocalized Spectral Decomposition Method I

Define the operator P : H 1(Ω) → Λ
�
h such that for w ∈ H 1(TH ),

(μ
�
h , T Pw)∂TH

= (μ
�
h ,w)∂TH

for all μ�
h ∈ Λ

�
h . (15)

Let us decompose λh = λΠ
h + λ

�
h . We first eliminate λ

�
h from the first equation

of (11) to obtain

λ
�
h = −P(u0h + T λΠ

h + T̃ g), (16)
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hence

uh = (I − T P)u0h + T (I − PT )λΠ
h + (I − T P)T̃ g). (17)

Then using algebraic manipulations with (11) and (15) we find u0h ∈ P
0(TH) and

λΠ
h ∈ ΛΠ

h satisfy:

(μ̂Π
h , T λ̂Π

h )∂TH
+ (μ̂Π

h , û0h)∂TH
= −(μ̂Π

h ,
̂̃
T g)∂TH

for all μΠ
h ∈ ΛΠ

h

(λ̂Π
h , v̂0h)∂TH

− (Puh
0 , v

h
0 )∂TH

= −(ρĝ, v̂0h)TH
for all v0h ∈ P

0(TH ),

(18)

where the hat functions are non-local multiscale functions defined by

λ̂Π
h = (I − PT )λΠ

h , μ̂Π
h = (I − PT )μΠ

h , û0h = (I − T P)u0h,

v̂0h = (I − T P)v0h,
̂̃
T g = (I − T P)T̃ g and ĝ = (I − P T̃ )g.

We note that the idea of performing global static condensation goes back to the
Multiscale Variational Finite Element Method [5]. Recent variations of this method
called Localized Orthogonal DecompositionMethods were introduced and analyzed
in [8, 10] and references therein. Some theoretical progresses for high-contrast
were made in [5] for a class of coefficients and by using overlapping spectral
decomposition introduced in [2]. Here in this paper no condition on the coefficient
is imposed and the theoretical results are based on non-overlapping decomposition
techniques.

5.1 NLSD Method II

In the splitting (17), the non-local term T Pu0h adds theoretical difficulties and more
complexity on the implementation. We now introduce the Adaptive BDDC Spectral
Decomposition II such that Pu0h = 0. Indeed, first decompose Λh = ΛRT

h ⊕ Λ̃
f

h ,

where ΛRT
h (Λ̃f

h ) is the space of constant (average zero) functions on each face F

of TH . Further decompose Λ̃
f
h = Λ̃

f,Π
h ⊕ Λ̃

f,�
h by solving the same generalized

eigenvalue problem before however on Λ̃
f,F
h rather than on ΛF

h . Denote ΛΠ
h =

ΛRT
h ⊕ Λ̃

f,Π
h and Λ

�
h = Λ̃

f,�
h . Repeat the same algebraic steps as in Sect. 5 and use

that (μ�
h , v0h)∂TH

= 0. This method is analyzed in [7].
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6 LSD-Localized Spectral Decomposition Method II

We next show that the exponential decay of the multiscale basis functions is inde-
pendently of the coefficient contrast. Hence, instead of building global multiscale
basis functionswe actually build local basis functions. Lemma 1 implies exponential
decay of functions, such as PT μΠ

h and Pv0h when μΠ
h and v0h has local support, and

Lemma 2 shows T (P − Pj )v decreases exponentially.
For K ∈ TH , define T0(K) = ∅, T1(K) = {K}, and for j = 1, 2, . . . let

Tj+1(K) = {τ ∈ TH : τ ∩ τ j �= ∅ for some τj ∈ Tj (K)}.

Lemma 1 Let v ∈ H 1(TH) such that supp v ⊂ K , and μ
�
h = Pv. Then

|T μ
�
h |2

H 1
ρ (TH \Tj+1(K))

≤ e
− [(j+1)/2]

1+d2α∗ |T μ
�
h |2

H 1
ρ (TH )

.

We now localize Pv since it decays exponentially when v has local support. For
each fixed K , j , let Λ

�,K,j

h ⊂ Λ
�
h be the set of functions of Λ

�
h which vanish

on faces of elements in TH \Tj (K). We introduce the operator PK,j : H 1(TH) →
Λ

�,K,j

h such that, for v ∈ H 1(TH),

(μ
�
h , T PK,j v)∂TH

= (μ
�
h , v)∂TH

for all μ�
h ∈ Λ

�,K,j
h .

For v ∈ H 1(TH ) let vK be equal to v on K and zero otherwise. We define then
Pjv ∈ Λ

�
h by

Pjv =
∑

K∈TH

PK,j vK. (19)

Lemma 2 Let v ∈ H 1(TH) and P defined by (15) and Pj by (19). Then

|T (P − Pj )v|2
H 1

ρ (TH )
≤ cj2dd4α2∗e

− [(j−3)/2]
1+d2α∗ |v|2

H 1
ρ (TH )

.

We define the LSD methods by (18), (16) and (17) with Pj instead of P . Denote

the solution by u
j

h. The follow lemma shows the localization error.

Theorem 1 For the LSD II method, if j = c
(
4d2α∗ log(CP /H̃)

)
then

|uh − u
j
h|H 1

ρ (TH) ≤ cH̃‖g‖L2
ρ (Ω).
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