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1 Introduction and Model Problem

Coarse spaces are needed to achieve scalability in domain decomposition methods,
see [16] and references therein. More recently, new coarse corrections were also
designed to improve convergence, for example in high contrast problems. Such
enriched coarse spaces were first proposed in [4, 5], where volume eigenfunctions
were combined with different types of partition of unity functions, and further
developed in [3]. A coarse space using the eigenfunctions of the Dirichlet-to-
Neumannmaps on the boundary of each subdomain has been proposed and analyzed
in [2, 13], and further development led to solving a generalized eigenvalue problem
in the overlap (GenEO), see [14, 15].

A new, different idea is to first define an optimal coarse space, which leads to
the best possible convergence and makes the method nilpotent [7]1 and then to
approximate it [8, 10–12]. Following this principle, we design here for the first time
an optimal coarse space for the additive Schwarz (AS) method with arbitrary sized
overlaps, and then define an optimized approximation using a specific function in
the overlap, combined with harmonic extensions of interface eigenfunctions. We

1Classical one level domain decomposition methods can even be nilpotent in certain situations, see
[1].
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Fig. 1 Continuous (left) and discrete (right) partition of Ω into two overlapping subdomains

compare our new coarse space to the GenEO coarse space [14, 15] and the local
spectral multiscale coarse space (also with reduced energy) in [4].

Determining an optimal coarse space and then approximating it is a very general
idea, see for example the SHEM coarse space [8, 12], but for simplicity we consider
here

Δu = f in Ω, u = 0 on ∂Ω, (1)

whereΩ := (0, 1)× (0, γ ) is decomposed into two overlapping subdomainsΩ1 :=
(0, β) × (0, γ ) and Ω2 := (α, 1) × (0, γ ), with overlap Ωo := Ω1 ∩ Ω2, and
interfaces Γ1 := {(x, y)|x = β, 0 < y < γ } and Γ2 := {(x, y)|x = α, 0 < y < γ },
which leads to the partition of the domain Ω̄ = ¯̃

Ω1 ∪ Ω̄o ∪ ¯̃
Ω2; see Fig. 1.

Discretizing (1) by the classical five-point finite difference scheme, we obtain
the linear system Au = f. Starting with an initial guess u0, the iterative two
level additive Schwarz method with multiplicative (hybrid) coarse grid correction
computes

un−1/2 = un−1 + (RT
1 A−1

1 R1 + RT
2 A−1

2 R2)(f − Aun−1),

un = un−1/2 + RT
c A−1

c Rc(f − Aun−1/2),
(2)

where Ri are rectangular restriction matrices corresponding to Ωi , Ai = RiART
i ,

i = 1, 2, and Rc is a restriction matrix to a coarse space, Ac = RcART
c .

2 Complete, Optimal and Optimized Coarse Spaces

Definition 1 (Complete Coarse Space) A complete coarse space for the additive
Schwarz method (2) is given by Rc such that (2) converges after one iteration for an
arbitrary initial guess u0, i.e. the method is nilpotent and becomes a direct solver.

To give an example of a complete coarse space, and being able to write discrete
problems using the same notation as continuous ones, we denote by Δh the
discretized Laplacian, and by Ωh, Ωih, Ω̃ih Ωoh, Γih the corresponding discretized
spaces, i = 1, 2. Let NΓi be the number of degrees of freedom (DOFs) on the
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interface Γih, i = 1, 2, and let φ
j
i,cs be defined for each DOF on Γih by harmonic

extension,

Δhφ
j
i,cs = 0 in Ω̃ih,

φ
j

i,cs = 1 at DOF j of Γ3−i,h, j = 1, . . . , NΓ3−i ,

φ
j
i,cs = 0 elsewhere in Ωh.

(3)

Denoting by No the number of DOFs in the overlap Ωoh, we define for each of
them the further basis function φ

j
o,cs = 1, extended by zero to the rest of Ωh, j =

1, . . . , No, and

V0,cs := span{{{φj
i,cs}

NΓ3−i

j=1 }2i=1 ∪ {φj
o,cs}No

j=1}. (4)

Theorem 1 A complete coarse space for the iterative two level additive Schwarz
algorithm (2) is given by Rc containing in its columns the vectors of V0,cs from (4).

Proof The proof is technical, see [9], but the property is illustrated in Sect. 4.

The dimension of this complete coarse space depends on the number of DOFs in the
overlap for AS which was designed to be symmetric [6], but it can be reduced.2

Definition 2 (Optimal Coarse Space) An optimal coarse space for (2) is a com-
plete coarse space such that its associated Rc has the smallest number of columns
possible.

For an optimal coarse space, we define the restriction matrix in the overlap, Ro :=
[0 IΩoh 0], where IΩo is the identity matrix whose dimension equals the number
of unknowns in Ωoh, and the associated local solver in the overlap, Ao := RoART

o .
We then construct just one specific basis function φo in the overlap Ωoh for (2),
based on the initial guess u0 by solving

Aoφo = Ro(f − Au0),

and then extending φo with zero to the rest of Ωh. We also need the basis functions
φ

j
i,opt, j = 1, . . . , NΓ3−i , i = 1, 2, based on harmonic extensions,

Δhφ
j
i,opt = 0 in Ω̃ih, Δhφ

j
i,opt = 0 in Ωoh,

φ
j

i,opt = 1 at DOF j of Γ3−i,h, φ
j

i,opt = 1 at DOF j of Γ3−i,h,

φ
j
i,opt = 0 elsewhere in Ωh, φ

j
i,opt = 0 elsewhere in Ωh,

2This problem does not arise with overlap of one or two mesh sizes [12], or RAS [8].
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and define

V0,opt := span{{{φj

i,opt}
NΓ3−i

j=1 }2i=1 ∪ {φo}}. (5)

Theorem 2 An optimal coarse space for the iterative two level additive Schwarz
algorithm (2) is given by Rc containing in its columns the vectors of V0,opt from (5).

Proof The proof is given in [9], but the property is again illustrated in Sect. 4.

At the continuous level, even the optimal coarse space would still be infinite
dimensional, and we thus introduce now an approximation of the optimal coarse
space based on SHEM (Spectral Harmonically Enriched Multiscale coarse space
[8]) using an interface eigenvalue problem:

Definition 3 (Interface Eigenvalue Problem) Denoting by Dyy an approximation
of the second derivative along the interface Γi , the interface eigenvalue problem is

−Dyyψ i = λψ i on Γih, (6)

with zero Dirichlet boundary conditions ψ i (0) = ψ i (γ ) = 0, i = 1, 2.

In our example, the eigenvectors of the interface eigenvalue problem (6) are ψ
j

i =
sin((jπ/γ )ym), ym = mh. We can thus construct basis functions φ

j
i,app by the

harmonic extensions of the sine functions for i = 1, 2,

Δhφ
j
i,app = 0 in Ω̃ih, Δhφ

j
i,app = 0 in Ωoh,

φ
j
i,app = ψ

j

3−i on Γ3−i,h, φ
j
i,app = ψ

j

3−i on Γ3−i,h

φ
j

i,app = 0 elsewhere in Ωh, φ
j

i,app = 0 elsewhere in Ωh,

(7)

j = 1, . . . , �, where � is the number of the eigenvectors of the interface eigenvalue
problem (6) selected; see Fig. 2 for an illustration. We then define an optimized
approximation of the optimal coarse space

V0,cs−l = span{{{φj

i,app}�j=1}2i=1 ∪ {φo}}. (8)

1
0.8

0.60.4
0.2

010.80.60.40.20

0.8

0
0.1

0.9

0.2
0.3
0.4
0.5
0.6
0.7

1

1
0.80.6

0.40.2
010.80.60.40.20

-0.8
-0.6
-0.4
-0.2

0.6

0
0.2

1
0.8

0.4

1
0.8

0.60.4
0.2

010.80.60.40.20

0.2

0.6
0.8
1

0
-0.2
-0.4
-0.6
-0.8

0.4

1
0.8

0.60.4
0.2010.80.60.40.2

0

-0.2

0

-0.4

0.2

0.4

0.6

0.8

Fig. 2 First three basis functions used to approximate the optimal coarse space based on the
interface eigenfunctions, and the single mode in the overlap for a random initial guess on the
right
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Theorem 3 The iterative two level additive Schwarz algorithm (2)with Rc contain-
ing in its columns the vectors of V0,cs−l in (8) satisfies the error estimate

‖un − u‖∞,2 ≤
(
cosh( (�+1)π

γ
(α + β − 1)) − cosh( (�+1)π

γ
(β − α − 1))

cosh( (�+1)π
γ

(α + β − 1)) − cosh( (�+1)π
γ

(β − α + 1))

)n/2

‖u0 − u‖∞,2,

and there is no other coarse space of this dimension that leads to faster convergence.

Proof The proof can be obtained by a direct calculation using separation of
variables for the residual after one additive Schwarz iteration, and will be given
in [9].

3 Comparison to Two Other Coarse Spaces

We now compare our optimized coarse space to the GenEO coarse space from [14,
15], and the local spectral multiscale coarse space with reduced energy from [4].
The GenEO coarse space was designed for high contrast problems and is based on
generalized eigenproblems “in the overlap”: in our example it solves in Ωi , i = 1, 2,

Âip
j
i = λ

j
i XiÂ

o
i Xip

j
i (9)

for eigenvectors pj
i ∈ R

#dof(Ωi) assoicated with small eigenvalues λ
j
i ∈ R

⋃{+∞}.
In (9), Xj is a diagonal matrix indicating the partition of unity used to combine
subdomain solutions, and Âi , Âo

i are Neumann matrices for each subdomain.
Selecting the � eigenfunctions corresponding to the smallest eigenvalues then leads
to the GenEO coarse space

V0,GenEO = span{RT
i Xip

j
i , j = 1, . . . , �, i = 1, 2}.

To understand how GenEO is related to our optimized coarse space, we first rewrite
the eigenvalue problem (9) at the continuous level for λi �= 0 and λi �= 4,

Δp̂i(x, y) = 0 in ˆ̃
Ωi, Δpio(x, y) = 0 in Ωo,

p̂i = pio on Γ̂3−i, pio = 4

4 − λi

p̂i on Γ3−i ,

(10)

with boundary conditions p̂i = 0 on ∂Ω ∩ ¯̃̂
Ωi , pio = 0 on (∂Ω ∩ ¯̃̂

Ωo)\Γi and

∂npio = 0 on Γi , and then define pi := p̂i in
ˆ̃

Ωi , pi := pio in Ωo, and pi := 0 in
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the rest of Ω , i = 1, 2. Here, Γ ′
i are within one mesh size from the corresponding

boundary Γi , i = 1, 2, see Fig. 3 on the left. Solving (10) with separation of
variables for Ω1, we find for our model problem

p
j
1 (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4

4 − λ
j
1

sinh( jπ
γ x)

sinh( jπ
γ α′)

cosh( jπ
γ (β − α′))

cosh( jπ
γ (β − α))

sin( jπ
γ y), (x, y) ∈ (0, α) × (0, γ ),

4

4 − λ
j
1

cosh( jπ
γ (β − x))

cosh( jπ
γ (β − α))

sin( jπ
γ y), (x, y) ∈ (α, β) × (0, γ ),

λ
j
1 = 4 − 4

sinh( jπ
γ α)

sinh( jπ
γ α′)

cosh( jπ
γ (β − α′))

cosh( jπ
γ (β − α))

.

We show in Fig. 4 the three types of GenEO eigenfunctions. The eigenfunctions
corresponding to the smallest eigenvalues are like the ones in our optimized coarse
space within the subdomains, but in the overlap they differ. Since GenEO uses an
eigenvalue problem in the entire subdomain volume, it also contains many more
eigenfunctions (which one avoids to compute in GenEO), like the overlap ones for
λ = 4 corresponding to φ

j
o,cs in our complete coarse space, plus the ones for λ = ∞

which do not contain relevant information for the coarse space.

Fig. 3 Left: partition of the domain for the GenEO coarse space. Right: partition of the domain
for the local multiscale coarse space with reduced energy
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Fig. 4 First three basis functions on Ω1 of the eigenvalue problem from GenEO for the smallest
λ, followed by 3 of the randomly looking modes for λ = 4 and 2 of the modes for λ = ∞
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We next compare our optimized coarse space with the local spectral multiscale
coarse space (also with reduced energy) in [4]. The domain Ω is still decomposed
into two overlapping subdomains Ω1 and Ω2, with six coarse blocks Ki , i =
1, . . . , 6, see Fig. 3 on the right. Let qj

i denote the j th eigenvector of the volume
eigenvalue problem in subdomain Ωih, i = 1, 2,

Δhqi = λiqi in Ωih,

∂nqi = 0 on Γih,

qi = 0 on ∂Ωih\Γih.

(11)

With the partition of unity χi , i = 1, 2, the local spectral multiscale coarse space of
[4] using � functions is defined by

V0,mul = span{RT
i χiq

j
i , 1 ≤ j ≤ �, i = 1, 2}. (12)

The local spectral multiscale coarse space with reduced energy of [4] is defined by

Ṽ0,mul = span{RT
i q̃

j
i , 1 ≤ j ≤ �, i = 1, 2},

where for each block Kh ∈ Ωih, i = 1, 2, 1 ≤ j ≤ �, one still needs to solve
Δhq̃

j

i = 0 in Kh, q̃
j

i = χiq
j

i on ∂Kh. Solving (11) using separation of variables,
we find in Ω1

qjk

1 (x, y) = sin(
kπ − π/2

α
x) sin(

jπ

γ
y), λ

jk

1 = (
kπ − π/2

α
)2 + (

jπ

γ
)2.

We show in Fig. 5 the first few of those modes. Note that these modes are different
from the modes in our optimized coarse space and GenEO, and again one needs to
solve volume eigenvalue problems to construct the coarse spaces V0,mul and Ṽ0,mul,
which now also contain many redundant modes.
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Fig. 5 Top: First four basis functions of the local spectral multiscale coarse space V0,mul. Bottom:
corresponding modes for the reduced energy case
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Table 1 Iteration number comparison in the two subdomain case for different mesh parameters h

h AS CS CS-opt SHEM(3) GenEO(3) GalvisI(3) GalvisII(3)

Iterative 1
16 na 1 1 6 na na na
1
32 na 1 1 11 na na na
1
64 na 1 1 20 na na na
1

128 na 1 1 38 na na na

PCG 1
16 9 1 1 4 8 8 7
1
32 11 1 1 6 9 9 9
1
64 14 1 1 9 11 12 11
1

128 17 1 1 12 14 14 14

Table 2 Iteration number comparison for many subdomains

Subdomains AS CS CS-opt SHEM GenEO GalvisI GalvisII

Iterative 2 × 2 na 1 1 8 na na na

4 × 4 na 1 1 8 na na na

8 × 8 na 1 1 8 na na na

PCG 2 × 2 15 1 1 5 13 12 10

4 × 4 25 1 1 5 13 14 10

8 × 8 42 1 1 5 13 14 10

4 Numerical Experiments

We solve (1) with f = −3 on Ω = (0, 1) × (0, 1) discretized by centered finite
differences and using an overlap of 4h, h being the mesh parameter. We start
with a random initial guess, and stop the iteration when the error in the iterative
method or the residual in PCG reaches the tolerance 1e − 8. In Table 1 we show
the dependence of the number of iterations on h for the complete coarse space
(CS), the optimal coarse space (CS-opt), our optimized coarse space SHEM(�), and
GenEO(�), GalvisI(�) and GalvisII(�) (reduced energy), using � = 3 enrichment
functions for each subdomain. We see that CS and CS-opt are direct solvers,
and only SHEM(�) leads to a convergent stationary iteration; and SHEM(�) also
performs best with PCG.

In Table 2, we show the iteration numbers for 2×2, 4×4, and 8×8 subdomains
using h = 1/32, 1/64, 1/128, i.e. keeping H/h fixed. We choose again � = 3 for
SHEM, and approximately the same total number of coarse functions for the other
coarse spaces. We see again that CS and CS-opt are direct solvers, and only SHEM
leads to a convergent stationary method. When used with PCG, the methods are all
scalable, but SHEM needs only half the number of iterations compared to the other
methods.
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