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Preface

This volume contains a selection of 53 papers submitted to the 24th International
Conference on Domain Decomposition Methods, hosted by the University of
Bergen in cooperation with the Western Norway University of Applied Sciences
(HVL), and held in Spitsbergen at Svalbard, Norway, February 6–10, 2017.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conference on Domain
Decomposition Methods has been held in 15 countries in Asia, Europe, and North
America and, now for the first time, in North of 78◦ in the kingdom of the polar
bears. The conference is held at roughly 18-month intervals. A complete list of 25
meetings appears below.

Domain decomposition is often seen as a form of divide and conquer for
mathematical problems posed over a physical domain, reducing a large problem
into a collection of smaller problems, each of which is much easier to solve
computationally than the undecomposed problem, and most or all of which can
be solved independently and concurrently and then solving them iteratively in a
consistent way. Much of the theoretical interest in domain decomposition algorithms
lies in ensuring that the number of iterations required to converge is very small.
Domain decomposition algorithms can be tailored to the properties of the physical
system as reflected in the mathematical operators, to the number of processors
available, and even to specific architectural parameters, such as cache size and the
ratio of memory bandwidth to floating point processing rate, proving it to be an ideal
paradigm for large-scale simulation on advanced architecture computers.

The principal technical content of the conference has always been mathematical,
but the principal motivation has been to make efficient use of distributed memory
computers for complex applications arising in science and engineering. While
research in domain decomposition methods is presented at numerous venues, the
International Conference on Domain Decomposition Methods is the only regularly
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vi Preface

occurring international forum dedicated to interdisciplinary technical interactions
between theoreticians and practitioners working in the development, analysis,
software implementation, and application of domain decomposition methods.

As we approach the dawn of exascale computing, where we will command
1018 floating point operations per second, clearly efficient and mathematically
well-founded methods for the solution of large-scale systems become more and
more important as does their sound realization in the framework of modern HPC
architectures. In fact, the massive parallelism, which makes exascale computing
possible, requires the development of new solutions methods, which are capable
of efficiently exploiting this large number of cores as well as the connected
hierarchies for memory access. Ongoing developments such as parallelization in
time asynchronous iterative methods or nonlinear domain decomposition methods
show that this massive parallelism does not only demand for new solution and
discretization methods but also allows to foster the development of new approaches.

Here is a list of the 25 first conferences on domain decomposition:

1. Paris, France, January 7–9, 1987
2. Los Angeles, USA, January 14–16, 1988
3. Houston, USA, March 20–22, 1989
4. Moscow, USSR, May 21–25, 1990
5. Norfolk, USA, May 6–8, 1991
6. Como, Italy, June 15–19, 1992
7. University Park, Pennsylvania, USA, October 27–30, 1993
8. Beijing, China, May 16–19, 1995
9. Ullensvang, Norway, June 3–8, 1996

10. Boulder, USA, August 10–14, 1997
11. Greenwich, UK, July 20–24, 1998
12. Chiba, Japan, October 25–20, 1999
13. Lyon, France, October 9–12, 2000
14. Cocoyoc, Mexico, January 6–11, 2002
15. Berlin, Germany, July 21–25, 2003
16. New York, USA, January 12–15, 2005
17. St. Wolfgang-Strobl, Austria, July 3–7, 2006
18. Jerusalem, Israel, January 12–17, 2008
19. Zhangjiajie, China, August 17–22, 2009
20. San Diego, California, USA, February 7–11, 2011
21. Rennes, France, June 25–29, 2012
22. Lugano, Switzerland, September 16–20, 2013
23. Jeju Island, Korea, July 6–10, 2015
24. Spitsbergen, Svalbard, Norway, February 6–10, 2017
25. St. John’s, Newfoundland, Canada, July 23–27, 2018
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International Scientific Committee on Domain Decomposition
Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Xiao-Chuan Cai, University of Colorado Boulder, USA
• Martin Gander, University of Geneva, Switzerland
• Laurence Halpern, Paris 13 University, France
• David Keyes, King Abdullah University of Science and Technology (KAUST),

Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Axel Klawonn, Universität zu Köln, Germany
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, Johannes Kepler University Linz, Austria
• Alfio Quarteroni, École Polytechnique Fédérale de Lausanne (EPFL),

Switzerland
• Olof Widlund, Courant Institute of Mathematical Sciences, USA
• Jinchao Xu, Pennsylvania State University, USA
• Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 24th Conference

The 24th International Conference on Domain Decomposition Methods had 175
participants from 25 different countries. The conference contained 12 invited
presentation selected by the International Scientific Committee, fostering both
experienced and younger scientists, 19 minisymposia around specific topics, 3
contributed sessions, and a poster session. The present proceedings contain a
selection of 53 papers grouped into 3 separate groups: 8 plenary papers, 41
minisymposia papers, and 4 contributed papers.

Sponsoring Organizations

• Department of Informatics, University of Bergen
• Simula Research Laboratory
• Faculty of Engineering and Science, HVL
• SparebankenVest Bergen
• The Research Council of Norway
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Local Organizing/Program Committee Members

• Liv Rebecca Aae (Department of Informatics, University of Bergen)
• Petter E. Bjørstad (Department of Informatics, University of Bergen)
• Sushmita Gupta (Department of Informatics, University of Bergen)
• Talal Rahman (Faculty of Engineering and Science, HVL)

Plenary Presentations

• An additive Schwarz analysis of multiplicative Schwarz methods, Sue Brenner
(Louisiana State University, USA)

• On nonlinear adaptivity with heterogeneity, Jed Brown (University of Colorado
Boulder, USA)

• Overlapping methods for high-contrast multiscale problems, Juan Carlos Galvis-
Arrieta (Universidad Nacional de Colombia)

• Domain Decomposition for high frequency Helmholtz problems, Ivan Graham
(University of Bath, UK)

• PDE based mesh generation: domain decomposition approaches, Ron Haynes
(Memorial University of Newfoundland, Canada)

• Robust Preconditioners for Coupled Problems, Xiaozhe Hu (Tufts University,
USA)

• Modeling and discretization of thin inclusions for flow in deformable porous
media, Jan Nordbotten (University of Bergen, Norway)

• Domain decomposition based methods for multiphysics problems, Alfio Quar-
teroni (Ecole Polytechnique Fédérale de Lausanne, Switzerland)

• Recent advances on adaptive multilevel BDDC methods for div- and curl-
conforming spaces, Stefano Zampini (KAUST, Saudi Arabia)

• Communication avoiding iterative solvers and preconditioners, Laura Grigori
(Inria Paris and Laboratoire Jacques-Louis Lions, Université Pierre et Marie
Curie (UPMC), France)

• Impact of high abstraction/high performance finite element software in biomedi-
cal computing, Marie Rognes (Simula Research Laboratory, Norway)

• Scalable multilevel preconditioners for cardiac electro-mechanics, Simone Scac-
chi (University of Milan, Italy)
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They were helpful in all respect and allocated the city movie theater to our plenary
talks; thus all movies were cancelled for an entire week. We also would like to
acknowledge the efforts of our excursion partner, the Svalbard Adventure Group.
Unfortunately, our conference experienced the harsh reality of global warming, with
temperatures about 25◦C warmer than normal.
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Robust Block Preconditioners
for Biot’s Model

James H. Adler, Francisco J. Gaspar, Xiaozhe Hu, Carmen Rodrigo,
and Ludmil T. Zikatanov

1 Introduction

In this work, we study the quasi-static Biot’s model for soil consolidation. For
linearly elastic, homogeneous, and isotropic porous medium, saturated by an
incompressible Newtonian fluid, the consolidation is modeled by the following
system of partial differential equations (see [8]):

equilibrium equation: −div σ ′ + α∇ p = g, inΩ, (1)

constitutive equation: σ ′ = 2με(u)+ λ div(u)I, inΩ, (2)

compatibility condition: ε(u) = 1

2
(∇u + ∇ut ), inΩ, (3)

Darcy’s law: w = −K∇p, inΩ, (4)

continuity equation: −α div ∂tu − div w = f, inΩ, (5)

where λ and μ are the Lamé coefficients, α is the Biot-Willis constant (assumed
to be one without loss of generality), K is the hydraulic conductivity (ratio of the
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permeability of the porous medium to the viscosity of the fluid), I is the identity
tensor, u is the displacement vector, p is the pore pressure, σ ′ and ε are the effective
stress and strain tensors for the porous medium, and w is the percolation velocity of
the fluid relative to the soil. The right-hand-side term, g, is the density of applied
body forces and the source term f represents a forced fluid extraction or injection
process. Here, we consider a bounded open subset, Ω ⊂ R

d, d = 2, 3 with
regular boundary Γ . This system is often subject to the following set of boundary
conditions:

p = 0, for x ∈ Γ t , σ ′ n = 0, for x ∈ Γt ,
u = 0, for x ∈ Γ c, w · n = 0, for x ∈ Γc,

where n is the outward unit normal to the boundary, Γ = Γ t ∪ Γ c, with Γt and
Γc being open (with respect to Γ ) subsets of Γ with nonzero measure. These, or
similar conditions, along with appropriate initial conditions for the displacement
and pressure, complete the system.

Suitable discretizations yield a large-scale linear system of equations to solve at
each time step, which are typically ill-conditioned and difficult to solve in practice.
Thus, iterative solution techniques are usually considered. For the coupled porome-
chanics equations considered here, there are two typical approaches: fully-coupled
or monolithic methods and iterative coupling methods. Monolithic techniques
solve the resulting linear system simultaneously for all the involved unknowns. In
this context, efficient preconditioners are developed to accelerate the convergence
of Krylov subspace methods and special smoothers are designed in a multigrid
framework. Examples of this approach for poromechanics are found in [5, 7, 14–
16, 23, 25] and the references therein. Iterative coupling [20, 21], in contrast, is
a sequential approach in which either the fluid flow problem or the geomechanics
part is solved first, followed by the solution of the other system. This process is
repeated until a converged solution within a prescribed tolerance is achieved. The
main advantage of iterative coupling methods is that existing software for simulating
fluid flow and geomechanics can be reused. These type of schemes have been widely
studied [4, 6, 9, 28]. In particular, in [10] and [31] a re-interpretation of the four
commonly used sequential splitting methods as preconditioned-Richardson itera-
tions with block-triangular preconditioning is presented. Such analysis indicates
that a fully-implicit method outperforms the convergence rate of the sequential-
implicit methods. Following this idea a family of preconditioners to accelerate the
convergence of Krylov subspace methods was recently proposed for the three-field
formulation of the poromechanics problem [11].

In this work, we take the monolithic approach and develop efficient block
preconditioners for Krylov subspace methods for solving the linear systems of
equations arising from the discretization of the two-field formulation of Biot’s
model. These preconditioners take advantage of the block structure of the discrete
problem, decoupling different fields at the preconditioning stage. Our theoretical
results show their efficiency and robustness with respect to the physical and
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discretization parameters. Moreover, the techniques proposed here can also be used
for designing fast solvers for the three-field formulation of Biot’s model.

The paper is organized as follows. Section 2 introduces the stabilized finite-
element discretizations for the two-field formulation and the basics of block
preconditioners. The proposed block preconditioners are introduced in Sect. 3.
Finally, in Sect. 4, we present numerical experiments illustrating the effectiveness
and robustness of the proposed preconditioners and make concluding remarks in
Sect. 5.

2 Two-Field Formulation

First, we consider the two-field formulation of Biot’s model (1)–(5), where the
unknowns are the displacement u and the pressure p. By considering appropriate
Sobolev spaces and integration by parts, we obtain the following variational form:
find u(t) ∈ H 1

0(Ω) and p(t) ∈ H 1
0 (Ω), such that

a(u, v)− α(div v, p) = (g, v), ∀v ∈ H 1
0(Ω), (6)

−α(div ∂tu, q)− ap(p, q) = (f, q), ∀q ∈ H 1
0 (Ω), (7)

where

a(u, v) = 2μ
∫
Ω

ε(u) : ε(v)+ λ

∫
Ω

div u div v and ap(p, q) =
∫
Ω

K∇p · ∇q.

Here, we assume the above holds for fixed values of t in some time interval,
(0, tmax]. The system is then completed with suitable initial data u(0) and p(0).

2.1 Finite-Element Method

We consider two stable discretizations for the two-field formulation of Biot’s model
proposed in [29]: P1-P1 elements and the Mini element with stabilization. The fully
discretized scheme at time tn, n = 1, 2, . . . is as follows:

Find unh ∈ Vh ⊂ H 1
0(Ω) and pnh ∈ Qh ⊂ H 1

0 (Ω), such that,

a(unh, vh)− α(div vh, p
n
h) = (g(tn), vh), ∀vh ∈ V h, (8)

− α(div ∂̄tunh, qh)− ap(p
n
h, qh)− ηh2(∇ ∂̄tpnh,∇qh) = (f (tn), qh), ∀qh ∈ Qh,

(9)

where ∂̄tunh := (unh − un−1
h )/τ , ∂̄tpnh := (pnh − pn−1

h )/τ , and η represents the
stabilization parameter. Here, V h andQh come from the P1-P1 or Mini element. At
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each time step, the linear system has the following two-by-two block form:

A x = b, A =
(
Au αBT

αB −τAp − ηh2Lp

)
, x =

(
u

p

)
, and b =

(
f u

fp

)
, (10)

where a(u, v) → Au, −(div u, q) → B, ap(∇p,∇q) → Ap, and (∇p,∇q) → Lp
represent the discrete versions of the variational forms.

2.2 Block Preconditioners

Next, we introduce the general theory for designing block preconditioners of Krylov
subspace iterative methods [24, 27]. Let X be a real, separable Hilbert space
equipped with norm ‖ · ‖X and inner product (·, ·)X . Also let A : X �→ X′ be
a bounded and symmetric operator induced by a symmetric and bounded bilinear
form L (·, ·), i.e. 〈A x, y〉 = L (x, y). We assume the bilinear form is bounded and
satisfies an inf-sup condition:

|L (x, y)| ≤ β‖x‖X‖y‖X, ∀x, y ∈ X and inf
x∈X

sup
y∈X

L (x, y)

‖x‖X‖y‖X
≥ γ > 0.

(11)

2.2.1 Norm-Equivalent Preconditioner

Consider a symmetric positive definite (SPD) operator M : X′ �→ X as a
preconditioner for solving A x = b. We define an inner product (x, y)M−1 :=
〈M−1x, y〉 on X and the corresponding induced norm is ‖x‖2

M−1 := (x, x)M−1 .
It is easy to show that MA : X �→ X is symmetric with respect to (·, ·)M−1 .
Therefore, we can use M as a preconditioner for the MINRES algorithm and use
the following theorem for the convergence rate of preconditioned MINRES.

Theorem 1 [18] If xm is the m-th iteration of MINRES and x is the exact solution,
then,

‖rm‖M ≤ 2ρm‖r0‖M , (12)

where rk = A (x − xk) is the residual after the k-th iteration, ρ = κ(MA )−1
κ(MA )+1 , and

κ(MA ) denotes the condition number ofMA .

In [27], Mardal and Winther show that, if the well-posedness conditions, (11),
hold, and M satisfies

c1‖x‖2
X ≤ ‖x‖2

M−1 ≤ c2‖x‖2
X, (13)
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then, A and M are norm-equivalent and κ(MA ) ≤ c2β
c1γ

. This implies that ρ ≤
c2β−c1γ
c2β+c1γ

. Thus, if the original problem is well-posed and the constants c1 and c2 are
independent of the physical and discretization parameters, then the convergence rate
of preconditioned MINRES is uniform, hence M is a robust preconditioner.

2.2.2 FOV-Equivalent Preconditioner

In this section we consider the class of field-of-values-equivalent (FOV-equivalent)
preconditioners ML : X′ �→ X, for GMRES. We define the notion of FOV-
equivalence after the following classical theorem on the convergence rate of the
preconditioned GMRES method.

Theorem 2 [12, 13] If xm is the m-th iteration of the GMRES method precondi-
tioned with ML and x is the exact solution, then

‖MLA (x − xm)‖2
M−1 ≤

(
1 − Σ2

Υ 2

)m
‖MLA (x − x0)‖2

M−1, (14)

where, for any x ∈ X,

Σ ≤ (MLA x, x)M−1

(x, x)M−1
,

‖MLA x‖M−1

‖x‖M−1
≤ Υ. (15)

If the constants Σ and Υ are independent of the physical and discretization
parameters, then ML is a uniform left preconditioner for GMRES and is referred
to as an FOV-equivalent preconditioner. In [24], a block lower triangular precondi-
tioner has been shown to satisfy (15) based on the well-posedness conditions, (11),
for Stokes/Navier-Stokes equations. More recently, the same approach has been
generalized to Maxwell’s equations [2] and Magnetohydrodynamics [26].

Similar arguments also apply to right preconditioners for GMRES, MU : X′ �→
X, where the operators, MU and A , are FOV equivalent if, for any x′ ∈ X′,

Σ ≤ (AMUx′, x′)M
(x′, x′)M

,
‖AMUx′‖M

‖x ′‖M ≤ Υ. (16)

Again, if Σ and Υ are independent of the physical and discretization parameters,
MU is a uniform right preconditioner for GMRES. Such an approach leads to block
upper triangular preconditioners.
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3 Robust Preconditioners for Biot’s Model

In this section, following the framework proposed in [24, 27] and techniques
recently developed in [26], we design block diagonal and triangular preconditioners
based on the well-posedness of the discretized linear system at each time step. First,
we study the well-posedness of the linear system (10). The analysis here is similar
to the analysis in [29]. However, we make sure that the constants arising from the
analysis are independent of any physical and discretization parameters.

The choice of finite-element spaces give X = V h ×Qh, and the finite-element
pair satisfies the following inf-sup condition (see [30]),

sup
v∈V h

(div v, q)

‖v‖1
≥ γ 0

B‖q‖ − ξ0h‖∇q‖, ∀ q ∈ Qh. (17)

Here, γ 0
B > 0 and ξ0 ≥ 0 are constants that do not depend on the mesh size.

Moreover, if we use the Mini-element, ξ0 = 0.
For x = (u, p)T , we define the following norm,

‖x‖2
X := ‖u‖2

Au
+ τ‖p‖2

Ap
+ ηh2‖p‖2

Lp
+ α2

ζ 2
‖p‖2, (18)

where ‖u‖2
Au

:= a(u,u), ‖p‖2
Ap

:= ap(∇p,∇p), ‖p‖2
Lp

:= (∇p,∇p), ζ =√
λ+ 2μ

d
, and d = 2 or 3 is the dimension of the problem. With ζ defined as above,

it holds that ‖v‖Au ≤ √
dζ‖v‖1, and we can reformulate the inf-sup condition, (17),

as follows,

sup
v∈V h

(Bv, q)

‖v‖Au

≥ sup
v∈V h

(Bv, q)√
dζ‖v‖1

≥ γ 0
B√
dζ

‖q‖− ξ0

√
dζ
h‖∇q‖ =: γB

ζ
‖q‖− ξ

ζ
h‖∇q‖,

(19)

where γB := γ 0
B/

√
d and ξ = ξ0/

√
d.

Noting that for d = 2, 3, 2μ(ε(v), ε(v)) ≤ a(v, v) ≤ (2μ + dλ)(ε(v), ε(v)).
Thus, (div v, div v) ≤ d(ε(v), ε(v)) and,

ζ 2‖Bv‖2 = (λ+ 2μ

d
)‖ div v‖2 ≤ ‖v‖2

Au
=⇒ ‖Bv‖ ≤ 1

ζ
‖v‖Au . (20)

This allows us to show that linear system (10) is well-posed.

Theorem 3 For x = (u, p) and y = (v, q), let

L (x, y) = (Auu, v)+ α(Bv, p)+ α(Bu, q)− τ(K∇p,∇q)− ηh2(∇p,∇q). (21)
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Then, (11) holds and A defined in (10) is an isomorphism from X to X′ provided
that the stabilization parameter, η, satisfies η = δ α

2

ζ 2 with δ > 0. Moreover, the
constants γ and β are independent of the physical and discretization parameters.

Proof Based on the inf-sup condition (17) and (19), for any p, there exists w ∈ V h

such that (Bw, p) ≥
(
γB
ζ

‖p‖ − ξ
ζ
h‖∇p‖

)
‖w‖Au and ‖w‖Au = ‖p‖. For given

(u, p) ∈ V h ×Qh, we choose v = u + θw, θ = ϑ
γBα
ζ

and q = −p and then have,

L (x, y) = (Auu,u + θw)+ α(B(u + θw), p)− α(Bu, p)

+ τ (K∇p,∇p)+ ηh2(∇p,∇p)

≥ ‖u‖2
Au

− ϑ‖u‖Au

γBα

ζ
‖p‖ + ϑ

γ 2
Bα

2

ζ 2
‖p‖2 − ϑ

γBα
2

ζ 2
ξh‖∇p‖‖p‖

+ τ‖p‖2
Ap

+ δ

ξ2

α2

ζ 2 ξ
2h2‖∇p‖2

≥

⎛
⎜⎜⎜⎝

‖u‖Au
γBα
ζ

‖p‖
α
ζ
ξh‖∇p‖√
τ‖p‖Ap

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎝

1 −ϑ/2 0 0
−ϑ/2 ϑ −ϑ/2 0

0 −ϑ/2 δ/ξ2 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

‖u‖Au
γBα
ζ

‖p‖
α
ζ
ξh‖∇p‖√
τ‖p‖Ap

⎞
⎟⎟⎟⎠ .

If 0 < ϑ < min{2, 2δ
ξ2 }, the matrix in the middle is SPD and there exists γ0 such that

L (x, y) ≥ γ0

(
‖u‖2

Au
+ γ 2

Bα
2

ζ 2 ‖p‖2 + α2

ζ 2 ξ
2h2‖∇p‖2 + τ‖p‖2

Ap

)
≥ γ̃ ‖x‖2

X,

where γ̃ = γ0 min{γ 2
B, ξ

2/δ}. Also, it is straightforward to verify ‖(v, q)‖2
X ≤

γ̄ 2‖(u, p)‖2
X , and the boundedness of L by continuity of each term and the

Cauchy-Schwarz inequality. Therefore, L satisfies (11) with γ = γ̃ /γ̄ .

Remark 1 Note that the choice of ζ = √
λ+ 2μ/d is essential to the proof, but

is consistent with previous implementations [3, 29]. Additionally, choosing any
δ > 0 is sufficient to show the well-posedness of the stabilized discretization.
However, for eliminating non-physical oscillations of the pressure approximation
seen in practice [3], this is not sufficient, and δ should be sufficiently large. For
example, in 1D, δ = 1/4 is chosen.
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3.1 Block Diagonal Preconditioner

Now that we have shown (11) and that the system is well-posed, we find SPD
operators such that (13) is satisfied. One natural choice is the Reisz operator
corresponding to the inner product (·, ·)X , (Bf , x)X = 〈f , x〉, ∀f ∈ X′, x ∈ X.

For the two-field stabilized discretization and the norm ‖ ·‖X defined in (18), we get

BD =
(
Au 0

0 τAp + ηh2Lp + α2

ζ 2M

)−1

, (22)

where M is the mass matrix of the pressure block. Since BD satisfies the norm-
equivalent condition with c1 = c2 = 1, by Theorem 3, it holds that κ(BDA ) =
O(1).

In practice, applying the preconditioner BD involves the action of inverting
the diagonal blocks exactly, which is very expensive and infeasible. Therefore, we
replace the diagonal blocks by their spectrally equivalent SPD approximations,

MD =
(
Hu 0
0 Hp

)
,

where

c1,u(Huu,u) ≤ (A−1
u u,u) ≤ c2,u(Huu,u) (23)

c1,p(Hpp, p) ≤ ((τAp + ηh2Lp + α2

ζ 2M)
−1p,p) ≤ c2,p(Hpp, p). (24)

Again, MD and A are norm-equivalent and κ(MDA ) = O(1) by Theorem 3.

3.2 Block Triangular Preconditioners

Next, we consider block triangular preconditioners for the stabilized scheme,A . For
simplicity of the analysis, we modify A slightly by negating the second equation.

We consider two kinds of block triangular preconditioners,

BL =
(
Au 0

−αB τAp + ηh2Lp + α2

ζ 2M

)−1

and ML =
(
H−1

u 0
−αB H−1

p

)−1

, (25)

and block upper triangular preconditioners,

BU =
(
Au αBT

0 τAp + ηh2Lp + α2

ζ 2M

)−1

and MU =
(
H−1

u αBT

0 H−1
p

)−1

. (26)



Precondition for Biot’s Model 11

According to Theorem 2, we need to show that these block preconditioners
satisfy the FOV-equivalence, (15) and (16). We first consider the block lower
triangular preconditioner, BL.

Theorem 4 There exist constants Σ and Υ , independent of discretization or
physical parameters, such that, for any x = (u, p)T �= 0,

Σ ≤ (BLA x, x)(BD)−1

(x, x)(BD)−1
,

‖BLA x‖(BD)−1

‖x‖(BD)−1
≤ Υ,

provided that η = δ α
2

ζ 2 with δ > 0.

Proof By direct computation,

(BLA x, x)(BD)−1 = (u,u)Au + α(BT p,u)+ τ (p, p)Ap

+ ηh2(Lpp, p) + α2(BA−1
u BT p, p)

≥ Σ0

(
‖u‖2

Au
+ τ‖p‖2

Ap
+ ηh2‖p‖2

Lp
+ α2‖BT p‖2

A−1
u

)
.

Note that, due to the inf-sup condition (17),

‖BT p‖
A−1

u
= sup

v

(Bv, p)

‖v‖Au

≥ γB

ζ
‖p‖ − ξ

ζ
h‖∇p‖.

Therefore, since η = δ α
2

ζ 2 with δ > 0 and by choosing 1
1+δ/ξ2 < θ < 1,

(BLA x, x)(BD)
−1 ≥ Σ0

[
‖u‖2

Au
+ τ‖p‖2

Ap
+ ηh2‖p‖2

Lp

+α2
(
γB

ζ
‖p‖ − ξ

ζ
h‖∇p‖

)2
]

≥ Σ0

[
‖u‖2

Au
+ τ‖p‖2

Ap

+(1 − θ)
γ 2
Bα

2

ζ 2
‖p‖2 +

(
1 + δ

ξ2
− 1

θ

)
α2

ζ 2
ξ2h2‖∇p‖2

]

≥ Σ0Σ1

(
‖u‖2

Au
+ τ‖p‖2

Ap
+ α2

ζ 2 h
2‖p‖2

Lp
+ α2

ζ 2 ‖p‖2
)

=: Σ(x, x)(BD)−1,

where Σ1 := min{1, (1 − θ)γ 2
B,

(
1 + δ

ξ2 − 1
θ

)
ξ2

δ
}. This gives the lower bound.

The upper bound Υ can be obtained directly from the continuity of each term, the
Cauchy-Schwarz inequality, and the fact that ‖BT p‖

A−1
u

≤ 1
ζ
‖p‖ obtained by (20).
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Similarly, we can show that the other three block preconditioners are also FOV-
equivalent with A and, therefore, can be used as preconditioners for GMRES. Due
to the length constraint of this paper and the fact that the proofs are similar, we only
state the results here.

Theorem 5 If the conditions (23) and (24) hold and ‖I − HuAu‖Au ≤ ρ with
0 ≤ ρ < 1, and there exist constants Σ and Υ , independent of discretization and
physical parameters, such that, for any x = (u, p)T �= 0, it holds that

Σ ≤ (MLA x, x)(MD)−1

(x, x)(MD)−1
,

‖MLA x‖(MD)−1

‖x‖(MD)−1
≤ Υ,

provided that η = δ α
2

ζ 2 with δ > 0.

Theorem 6 There exist constants Σ and Υ , independent of discretization or
physical parameters, such that, for any 0 �= x′ ∈ X′, it holds that

Σ ≤ (ABUx′, x′)BD

(x′, x′)BD

,
‖ABUx′‖BD

‖x′‖BD

≤ Υ,

provided that η = δ α
2

ζ 2 with δ > 0.

Theorem 7 If the conditions (23) and (24) hold and ‖I − HuAu‖Au ≤ ρ with
0 ≤ ρ < 1, and there exist constants Σ and Υ , independent of discretization or
physical parameters, such that, for any 0 �= x′ ∈ X′, it holds that

Σ ≤ (AMUx′, x′)MD

(x′, x′)MD

,
‖AMUx′‖MD

‖x′‖MD

≤ Υ,

provided that η = δ α
2

ζ 2 with δ > 0.

Remark 2 The block upper preconditioner BU here is related to the well-known
fixed-stress split scheme [21]. In fact, without the stabilization term, i.e., η = 0, it is
exactly a re-cast of the fixed-stress split scheme [31]. Moreover, ζ 2 = λ+ 2μ/d =:
Kdr, where Kdr is the drained bulk modulus of the solid. This is exactly the choice
suggested in [22]. Here, we give a rigorous theoretical analysis when the fixed-
stress split scheme is used as a preconditioner. Our analysis is more general in the
sense that MU is an inexact version of the fixed-stress split scheme, and we have
generalized it to the finite-element discretization with stabilizations.
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4 Numerical Experiments

Finally, we provide some preliminary numerical results to demonstrate the robust-
ness of the proposed preconditioners. As a discretization, we use the stabilized
P1-P1 scheme described in [29] and implemented in the HAZMATH library [1].

We consider a 3D footing problem as in [17], on the domain, Ω = (−32, 32)×
(−32, 32)×(0, 64). This is shown in the left side of Fig. 1, and represents a block of
porous soil. A uniform load of intensity 0.1 N/m2 is applied in a square of size 32 ×
32 m2 at the middle of the top of the domain. The base of the domain is assumed to
be fixed while the rest of the domain is free to drain. For the material properties, the
Lame coefficients are computed in terms of the Young modulus, E, and the Poisson
ratio, ν: λ = Eν

(1−2ν)(1+ν) andμ = E
1+2ν . Since we want to study the robustness of the

preconditioners with respect to the physical parameters, we fix E = 3 × 104 N/m2

and let ν change in the experiments. The right side of Fig. 1 shows the results of the
simulation, demonstrating the deformation due to a uniform load.

We first study the performance of the preconditioners with respect to the mesh
size h and time step size τ . Therefore, we fix K = 10−6m2 and ν = 0.2. We
use flexible GMRES as the outer iteration with a relative residual stopping criteria
of 10−6. For MD , ML, and MU , the diagonal blocks are solved inexactly by
preconditioned GMRES with a tolerance of 10−2. The results are shown in Table 1.
We see that the block preconditioners are effective and robust with respect to the
discretization parameters h and τ .

Next, we investigate the robustness of the block preconditioners with respect to
the physical parameters K and ν. We fix the mesh size h = 1/16 and time step
size τ = 0.01. The results are shown in Table 2. From the iteration counts, we can
see that the proposed preconditioners are quite robust with respect to the physical
parameters.

Fig. 1 Computational domain and boundary conditions
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Table 1 Iteration counts for the block preconditioners (∗ means the direct method for solving
diagonal blocks is out of memory)

BD BL BU

h h h

τ 1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

0.1 7 7 8 * 5 5 6 * 4 4 4 *

0.01 7 7 8 * 5 5 6 * 4 4 5 *

0.001 7 7 8 * 5 5 6 * 5 5 6 *

0.0001 7 7 8 * 5 5 6 * 5 5 6 *

MD ML MU

h h h

τ 1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

0.1 8 8 9 9 6 6 8 8 6 6 8 8

0.01 8 8 9 9 6 6 8 8 6 6 8 8

0.001 8 8 9 9 6 6 8 8 6 6 8 8

0.0001 8 8 9 9 7 6 8 8 6 7 8 8

Table 2 Iteration counts when varying K or ν

ν = 0.2 and varying K

1 10−2 10−4 10−6 10−8 10−10

BD 4 7 8 8 8 8

BL 2 5 6 6 6 6

BU 3 4 5 5 5 5

MD 5 8 9 9 9 9

ML 5 7 8 8 8 8

MU 5 7 8 8 9 8

K = 10−6 and varying ν

0.1 0.2 0.4 0.45 0.49 0.499

BD 7 8 11 11 12 12

BL 5 6 8 8 8 9

BU 4 5 6 6 5 4

MD 8 9 12 13 14 13

ML 7 8 11 11 12 12

MU 7 8 7 8 17 11

5 Conclusions

We have shown that the stability of the discrete problem, using stabilized finite
elements, provides the means for designing robust preconditioners for the two-field
formulation of Biot’s consolidation model. Our analysis shows uniformly bounded
condition numbers and uniform convergence rates of the Krylov subspace methods



Precondition for Biot’s Model 15

for the preconditioned linear systems. More precisely, we prove that the convergence
is independent of mesh size, time step, and the physical parameters of the model.

Current work includes extending this to non-conforming (and conforming) three-
field formulations as in [19]. For discretizations that are stable independent of the
physical parameters, uniform block diagonal preconditioners can be designed using
the framework developed here. Block lower and upper triangular preconditioners for
GMRES can also be constructed in a similar fashion. In addition to their excellent
convergence properties, the triangular preconditioners naturally provide an (inexact)
fixed-stress split scheme for the three-field formulation.
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An Additive Schwarz Analysis
for Multiplicative Schwarz Methods:
General Case

Susanne C. Brenner

1 Introduction

Multiplicative and additive Schwarz methods are two main classes of iterative
methods since the times of Gauss and Jacobi. Traditionally the analyses of these
two classes of methods follow different paths. On one hand, the theory for additive
Schwarz methods [2, 6, 8, 9, 11–16], like the theory for the classical Jacobi method,
is relatively simple. On the other hand, the theory for multiplicative Schwarz
methods [1, 3, 4, 9–11, 13, 15–19], like the theory for the classical Gauss-Seidel
method, can be quite sophisticated.

An analysis of multiplicative Schwarz methods that is based on the additive
theory was carried out in [5]. It is restricted to the case where the subspace
corrections are based on symmetric positive definite (SPD) solvers. The goal of this
work is to extend the results in [5] to multiplicative Schwarz methods with general
subspace corrections. As a by-product we recover the main result in [17], namely a
formula for the norm of product operators.

The rest of the paper is organized as follows. First we review the Gauss-Seidel
method in Sect. 2. The analysis of this prototypical multiplicative Schwarz method
provides motivations and guidance for the theory in this paper and [5]. We introduce
a general framework of multiplicative Schwarz methods in Sect. 3 and recall the
fundamental lemma for additive Schwarz theory in Sect. 4. The key observation that
allows the extension of the formulas in Sect. 2 to general multiplicative Schwarz
methods is presented in Sect. 5. The main results of the paper are then derived in
Sect. 6. Finally, the connection of our theory to [17] is discussed in Sect. 7.
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2 The Gauss-Seidel Method

The additive Schwarz analysis for multiplicative Schwarz methods is motivated and
guided by looking at the analysis of the Gauss-Seidel method through the lens of
additive Schwarz theory.

Let A ∈ R
n×n be a SPD matrix and b ∈ R

n. The (forward) Gauss-Seidel method
for the system Ax = b is defined by the iteration step

xnew = xold + (L + D)−1(b − Axold), (1)

where L and D are the strictly lower triangular part and the diagonal part of A
respectively. The error propagation for (1) is described by

x − xnew = (
I − (L + D)−1A

)
(x − xold) = (I − BA)(x − xold), (2)

where I is the n× n identity matrix and B = (L + D)−1.
The norm of the iteration matrix I − BA in the matrix norm ‖ · ‖A induced by the

inner product (v,w)A = wtAv is given by the following standard formula:

‖I − BA‖2
A = ‖(I − BA)∗(I − BA)‖A = ‖(I − BtA)(I − BA)‖A, (3)

where (I − BA)∗ denotes the adjoint of I − BA with respect to (·, ·)A. It follows
from (3), the spectral theorem and the Rayleigh quotient formula that

‖I − BA‖2
A = λmax

(
I − (Bt + B − BtAB)A

)
= 1 − λmin

(
(Bt + B − BtAB)A

)
(4)

= 1 − min
v∈Rn

vtAv
vt (Bt + B − BtAB)−1v

.

A simple calculation yields

(Bt + B − BtAB)−1 = (I + D−1U)tD(I + D−1U), (5)

where U = Lt is the strictly upper triangular part of A. It is easy to see that (5) can
be rewritten as

(Bt + B − BtAB)−1 = A + (D−1U)tD(D−1U). (6)

Combining (4) and (5), we have a formula

‖I − BA‖2
A = 1 − min

v∈Rn
vtAv

vt (I + D−1U)tD(I + D−1U)v
(7)
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for the norm of the iteration matrix I − BA. Similarly the formula

‖I − BA‖2
A = 1 − min

v∈Rn
vtAv

vtAv + vt (D−1U)tD(D−1U)v

= 1 − 1

1 + max
v∈Rn,‖v‖A=1

vt (D−1U)tD(D−1U)v
(8)

follows from (4) and (6).
Since L + D is the lower triangular part of A, we can apply forward substitutions

to obtain

(L + D)−1A =
n∑
i=1

Xi ,

where Xi ∈ R
n×n is determined recursively by

Xi = Ti
(

I −
i−1∑
j=1

Xj

)
,

Ti = ei (etiAei )−1etiA, and e1, . . . , en are the canonical basis vectors in R
n.

It follows that

I − BA =
(

I −
n−1∑
i=1

Xi

)
− Xn =

(
I −

n−1∑
i=1

Xi

)
− Tn

(
I −

n−1∑
j=1

Xj

)

= (I − Tn)
(

I −
n−1∑
i=1

Xi

)
= (I − Tn) · · · (I − T1).

Hence (7) and (8) are also formulas for the norm of the product (I−Tn) · · · (I−T1).
Below we will derive similar formulas for general multiplicative Schwarz

methods. The key observation is that even though the explicit formula (5) does not
exist in the general case, we can find an expression for vt (Bt + B − BtAB)−1v
through the additive Schwarz theory.

3 Multiplicative Schwarz Methods

Let V be a finite dimensional vector space, a(·, ·) be a SPD bilinear form on V , and
α ∈ V ′, the dual space of V . We consider the following problem:

Find u ∈ V such that

a(u, v) = 〈α, v〉 ∀ v ∈ V, (9)
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where 〈·, ·〉 denotes the canonical bilinear form on V ′ × V .
We can rewrite (9) as

Au = α (10)

where A : V −→ V ′ is defined by

〈Aw, v〉 = a(w, v) ∀ v,w ∈ V. (11)

The operator A is SPD in the sense that

〈Aw, v〉 = 〈Av,w〉 ∀ v,w ∈ V and 〈Av, v〉 > 0 ∀ v ∈ V \ {0}.

We will denote by L∗ the adjoint of a linear operator L : V −→ V with respect
to a(·, ·), i.e,

a(Lv,w) = a(v,L∗w) ∀ v,w ∈ V,
and for a linear operatorM : W −→ V , the operatorMt : V ′ −→ W ′ is defined by

〈Mtβ,w〉 = 〈β,Mw〉 ∀β ∈ V,′ w ∈ W.

Let V1, V2, . . . , VJ be subspaces of V such that

V =
J∑
j=1

Vj , (12)

and let aj (·, ·) be a nonsingular bilinear form on Vj , i.e.,

Aj : Vj −→ V ′
j is invertible (13)

where

〈Ajvj ,wj 〉 = aj (vj ,wj ) ∀ vj ,wj ∈ Vj .

The operator Fj : V ′ −→ Vj for 1 ≤ j ≤ J are defined recursively by

aj (Fjβ, vj ) = 〈β, vj 〉 −
j−1∑
k=1

a(Fkβ, vj ) ∀ vj ∈ Vj , β ∈ V ′, (14)

and we define B : V ′ −→ V by

Bβ =
J∑
j=1

(Fjβ). (15)
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The multiplicative Schwarz algorithm is then given by the iteration

unew = uold + B(α − Auold), (16)

As in the case of the Gauss-Seidel method, we have two expressions for the error
propagation operator. The first obvious one is given by

u− unew = (I − BA)(u− uold), (17)

where I is the identity operator on V , and the second one, which is responsible for
the name of the algorithm, can be derived as follows.

Let Tj : V −→ Vj be defined by

aj (Tjv, vj ) = a(v, vj ) ∀ v ∈ V, vj ∈ Vj . (18)

Remark 1 Note that (18) implies that KerTj is the orthogonal complement of Vj
with respect to a(·, ·). Therefore KerT ∗

j = KerTj and the restrictions of Tj and T ∗
j

to Vj are isomorphisms. In particular we have TjV = Vj = T ∗
j V . It follows that the

pseudo-inverse T −1
j (resp., (T ∗

j )
−1) of Tj (resp., T ∗

j ) with respect to a(·, ·) maps V
onto Vj .

It follows from (14) and (18) that

Fjβ = Tj (A
−1β −

j−1∑
k=1

Fkβ) = Tjzj , (19)

where

zj = A−1β −
j−1∑
k=1

Fkβ =
(
A−1β −

j−2∑
k=1

Fkβ
)

− Fj−1β

= (I − Tj−1)zj−1 = (I − Tj−1) · · · (I − T1)A
−1β. (20)

Combining (15), (16), (19) and (20), with β = α − Auold, we find

u− unew = u− uold −
J∑
j=1

Tjzj

=
(
I −

J∑
j=1

Tj (I − Tj−1) · · · (I − T1)
)
(u− uold) (21)

= (I − TJ ) · · · (I − T1)(u− uold).
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We are interested in formulas for ‖I −BA‖a = ‖(I − TJ ) · · · (I − T1)‖a , where
‖ · ‖a is the operator norm induced by a(·, ·).

4 Additive Schwarz Theory

We need the following fundamental result from the additive Schwarz theory.

Lemma 1 Let Sj : Vj −→ V and Bj : Vj −→ V ′
j be linear operators for 1 ≤ j ≤

J , and let Bj be SPD. Then the operator B = ∑J
j=1 SjB

−1
j Stj : V ′ −→ V is SPD

if and only if V = ∑J
j=1 SjVj , in which case we have

〈B−1v, v〉 = min
v=∑J

j=1 Sj vj

vj∈Vj

J∑
j=1

〈Bjvj , vj 〉 ∀ v ∈ V. (22)

Proof B is clearly symmetric semi-definite, and we have for any β ∈ V ′,

〈β,Bβ〉 = 0 ⇔
J∑
j=1

〈Stj β, B−1
j Stj β〉 = 0,

which holds if and only if Stjβ = 0 for 1 ≤ j ≤ J , since B−1
j is also SPD. We

conclude that 〈β,Bβ〉 = 0 if and only if

J∑
j=1

〈β, Sj vj 〉 = 0 ∀ vj ∈ Vj , 1 ≤ j ≤ J.

Therefore 〈β,Bβ〉 = 0 implies β = 0 if and only if V = ∑J
j=1 SjVj .

The identity (22) comes from the observations that

〈B−1v,

J∑
j=1

Sjvj 〉 =
J∑
j=1

〈Bj (B−1
j StjB

−1v), vj 〉 =
J∑
j=1

〈Bjwj , vj 〉, (23)

where wj = B−1
j StjB

−1v ∈ Vj , and

J∑
j=1

Sjwj =
J∑
j=1

Sj (B
−1
j StjB

−1v) =
( J∑
j=1

SjB
−1
j Stj

)
B−1v = BB−1v = v. (24)
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Indeed it follows from (23) that

〈B−1v, v〉 =
J∑
j=1

〈Bjwj , vj 〉 if
J∑
j=1

Sj vj = v, (25)

and in particular, because of (24),

〈B−1v, v〉 =
J∑
j=1

〈Bjwj ,wj 〉. (26)

Subtracting (26) from (25) we find

0 =
J∑
j=1

〈Bjwj , vj −wj 〉 if
J∑
j=1

Sjvj = v. (27)

The orthogonality condition (27) implies

J∑
j=1

〈Bjvj , vj 〉=
J∑
j=1

〈Bjwj ,wj 〉+
J∑
j=1

〈Bj (vj−wj), vj−wj 〉 if
J∑
j=1

Sj vj=v,

and hence

J∑
j=1

〈Bjwj ,wj 〉 = min
v=∑

j=1 Sjvj

vj∈Vj

J∑
j=1

〈Bjvj , vj 〉,

which together with (26) implies (22).

5 A Fundamental Operator

We begin with the standard formula

‖I − BA‖2
a = ‖(I − BA)∗(I − BA)‖a, (28)

where (I − BA)∗ = I − BtA is the adjoint of I − BA with respect to the bilinear
form a(·, ·). We can write

(I − BA)∗(I − BA) = (I − BtA)(I − BA) = I − (Bt + B − BtAB)A. (29)
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As in the case of the Gauss-Seidel method, the operator Bt + B − BtAB will
play a fundamental role. The key to the additive analysis is to interpret this operator
as an additive Schwarz preconditioner. We begin with the following result.

Lemma 2 We have

〈β, (Bt + B − BtAB)β〉 =
J∑
j=1

[
2aj (yj , yj )− a(yj , yj )

]
∀β ∈ V ′, (30)

where yj = Fjβ.

Proof From (14) and (15), we have

〈β, (Bt + B − BtAB)β〉 = 2〈β,
J∑
j=1

yj 〉 − a(

J∑
�=1

y�,

J∑
j=1

yj )

= 2
J∑
j=1

(
aj (yj , yj )+

j−1∑
�=1

a(y�, yj )
)

− a(

J∑
�=1

y�,

J∑
j=1

yj ),

which implies (30) by the symmetry of a(·, ·).
We assume that

∃ ωj ∈ (0, 2) such that a(vj , vj ) ≤ ωjaj (vj , vj ) ∀ vj ∈ Vj . (31)

Let the operator Bj : Vj −→ V ′
j be defined by

〈Bjvj ,wj 〉 = aj (vj ,wj )+ aj (wj , vj )− a(vj ,wj ) ∀ vj ,wj ∈ Vj . (32)

Clearly Bj is symmetric and it is positive definite because of (31).

Remark 2 Since we are in a finite dimensional setting, condition (31) is equivalent
to Bj being SPD. It is also equivalent to

‖(I − Tj )v‖a ≤ ‖v‖a ∀ v ∈ V and ‖(I − Tj )vj‖a < ‖vj‖a ∀ vj ∈ Vj \ {0}.

Note that we can write, by (18),

〈Bjvj ,wj 〉 = a(T −1
j vj , wj )+ a(wj , (T

−1
j )∗vj )− a(vj ,wj )

= a((T ∗
j )

−1(T ∗
j + Tj − T ∗

j Tj )T
−1
j vj , wj ) = a(T̄jT

−1
j vj , T

−1
j wj )

(33)
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for all vj ,wj ∈ Vj , where

T̄j = T ∗
j + Tj − T ∗

j Tj . (34)

Remark 3 According to Remark 1, we have T̄jV ⊂ Vj . The relation (33) implies
that a(T̄jvj , vj ) = 〈Bjvj , vj 〉 > 0 for vj ∈ Vj \ {0}. Therefore the restriction of
T̄j to Vj is an isomorphism and it follows from Remark 1 that Ker T̄j = KerTj =
KerT ∗

j is the orthogonal complement of Vj with respect to a(·, ·). Consequently the

pseudo-inverse T̄ −1
j of T̄j with respect to a(·, ·) maps V onto Vj .

From Lemma 2 and (32) we have

〈β, (Bt + B − BtAB)β〉 =
J∑
j=1

〈BjFjβ, Fjβ〉 =
J∑
j=1

〈β, F tj BFjβ〉 ∀β ∈ V ′.

(35)

It then follows from polarization that

Bt + B − BtAB =
J∑
j=1

F tjBjFj =
J∑
j=1

(F tjBj )B
−1
j (BjFj ) =

J∑
j=1

SjB
−1
j Stj , (36)

where the operator Sj : Vj −→ V is given by Sj = F tjBj = (BjFj )
t .

Remark 4 The identity (36) shows that the operator B + Bt − BtAB is indeed
an additive Schwarz preconditioner. Note that (12) and (14) imply F1β = · · · =
FJβ = 0 if and only if β = 0, and hence Bt +B−BtAB is SPD by (35). Therefore
the formula (22) in Lemma 1 is valid.

An explicit formula for Sj is provided by the following lemma.

Lemma 3 We have

Sj = (I − T ∗
1 ) · · · (I − T ∗

j−1)T̄j T
−1
j . (37)

Proof Let vj ∈ Vj be arbitrary. It follows from (19), (20) and (33) that

〈Stj β, vj 〉 = 〈(BjFj )β, vj 〉 = a(T̄j T
−1
j Fj β, T

−1
j vj )

= a(zj , T̄j T
−1
j vj ) = 〈β, (I − T ∗

1 ) · · · (I − T ∗
j−1)T̄j T

−1
j vj 〉,

which implies (37).
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6 Formulas for ‖I − BA‖a

It follows from (28), (29), the spectral theorem and the Rayleigh quotient formula
that

‖I − BA‖2
a = 1 − min

v∈V
〈Av, v〉

〈(Bt + B − BtAB)−1v, v〉 ,

which together with (36) and Lemma 1 (cf. Remark 4) implies

‖I − BA‖2
a = 1 − min

v∈V
〈Av, v〉

min
v=∑J

j=1 Sjwj

wj∈Vj

J∑
j=1

〈Bjwj ,wj )
. (38)

Remark 5 Note that we can rewrite (7) as

‖I − BA‖2
A = 1 − min

v∈Rn
vtAv

min
v=(I+D−1U)−1w

wtDw
, (39)

and (38) is precisely the analog of (39).

Next we will replace the implicit decomposition for v that appears in (38) by an
explicit decomposition that will lead to an analog of (7). In the case of the Gauss-
Seidel method, it is equivalent to inverting the relation v = (I+D−1U)−1w in (39) to
express w as (I + D−1U)v. This motivates the following construction of the explicit
decomposition through an “upper triangular” system.

Given vj ∈ Vj for 1 ≤ j ≤ J , we want to find wj ∈ Vj for 1 ≤ j ≤ J such that

J∑
j=1

Sjwj =
J∑
j=1

vj . (40)

It is easy to check using (37) that the solution of (40) is given by

T̄j T
−1
j wj = vj + T ∗

j

J∑
k=j+1

vk for 1 ≤ j ≤ J. (41)

Combining (33), (38), (40) and (41), we have the following analog of (7):

‖I−BA‖2
a=1−min

v∈V
a(v, v)

min
v=∑J

j=1 vj

vj∈Vj

J∑
j=1

a
(
vj + T ∗

j

J∑
k=j+1

vk, T̄
−1
j

(
vj + T ∗

j

J∑
k=j+1

vk

)) .

(42)
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Remark 6 In the case where aj (·, ·) is SPD for 1 ≤ j ≤ J , the formula (42)
becomes

‖I − BA‖2
a

= 1 − min
v∈V

a(v, v)

min
v=∑J

j=1 vj

vj∈Vj

J∑
j=1

aj

(
vj + Tj

J∑
k=j+1

vk, (2I − Tj )
−1

(
vj + Tj

J∑
k=j+1

vk

)) .

(43)

The application of the formula (43) to domain decomposition and multigrid can be
found in [5].

To derive the analog of (8), we again seek guidance from the analysis in Sect. 2.
The transition from (7) to (8) involves the difference of I + D−1U and D−1U,
which is a diagonal matrix. Therefore we look for operators Qj : Vj −→ Vj for
1 ≤ j ≤ J such that

J∑
j=1

a
(
vj + T ∗

j

J∑
k=j+1

vk, T̄
−1
j

(
vj + T ∗

j

J∑
k=j+1

vk

))
− a(v, v)

=
J∑
j=1

a
(
vj +Qjvj + T ∗

j

J∑
k=j+1

vk, T̄
−1
j

(
vj +Qjvj + T ∗

j

J∑
k=j+1

vk

))
.

(44)

It is straightforward to check that (44) is equivalent to

a(Qjvj , T̄
−1
j Qjvj )+ 2a(vj + T ∗

j

J∑
k=j+1

vk, T̄
−1
j Qj vj )

= −a
(
vj + 2

J∑
k=j+1

vk, vj

)
,

which would follow from the relations

a(Qjvj + 2vj , T̄
−1
j Qj vj ) = −a(vj , vj ), (45)

a
(
T ∗
j

J∑
k=j+1

vk, T̄
−1
j Qjvj

)
= −a

( J∑
k=j+1

vk, vj

)
. (46)



28 S. C. Brenner

The relation (46) indicates that we should choose T̄ −1
j Qj = −T −1

j and therefore
Qj should be given by

Qj = −T̄j T −1
j = −(T ∗

j + Tj − T ∗
j Tj )T

−1
j = −(T ∗

j T
−1
j + I − T ∗

j ), (47)

and then (45) is also satisfied because

a(Qjvj + 2vj , T̄
−1
j Qj vj )

= −a((I − T ∗
j T

−1
j + T ∗

j )vj , T
−1
j vj

)

= −a(vj , T −1
j vj )+ a(T ∗

j T
−1
j vj , T

−1
j vj )− a(T ∗

j vj , T
−1
j vj )

= −a(vj , vj ).

In view of (47), we have

vj+Qjvj+T ∗
j

J∑
k=j+1

vk = −T ∗
j T

−1
j vj+T ∗

j

J∑
k=j

vk = T ∗
j

( J∑
k=j

vk−T −1
j vj

)
. (48)

Putting (42), (44) and (48) together we arrive at the following analog of (8):

‖I − BA‖2
a

= 1 − min
v∈V

a(v, v)

a(v, v)+ min
v=∑J

j=1 vj

vj∈Vj

a
(
T ∗
j

( J∑
k=j

vk − T −1
j vj

)
, T̄ −1
j T ∗

j

( J∑
k=j

vk − T −1
j vj

))

= 1 − 1

1 + max
v∈V

‖v‖a=1

min
v=∑J

j=1 vj

vj∈Vj

a
(
T ∗
j

( J∑
k=j

vk − T −1
j vj

)
, T̄ −1
j T ∗

j

( J∑
k=j

vk − T −1
j vj

)) .

(49)

7 Connection to the Xu-Zikatanov Theory

The theory in [17] was developed for the product operator (I − TJ ) · · · (I − T1) on
an inner product space

(
V, a(·, ·)), where Tj : V −→ Vj and Tj : Vj −→ Vj is an

isomorphism.
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A key assumption in [17] is

‖Tjv‖2
a ≤ ω a(Tjv, v) ∀ v ∈ V (50)

for some ω ∈ (0, 2).

Lemma 4 Under assumption (50), we have

Tjv = 0 ⇔ a(v, vj ) = 0 ∀ vj ∈ Vj .

Proof If a(vj , v) = 0 for all vj ∈ Vj , then Tjv = 0 by (50). Therefore, by
a dimension argument, the kernel of Tj is the orthogonal complement of Vj with
respect to a(·, ·).

In view of Lemma 4, we can define aj (·, ·) by

aj (Tjv, vj ) = a(v, vj ) ∀ v ∈ V, vj ∈ Vj .

Then aj (·, ·) is nonsingular since

aj (wj , vj ) = 0 ∀wj ∈ Vj ⇒ a(v, vj ) = 0 ∀ v ∈ V ⇒ vj = 0.

On one hand we have a(Tjv, Tj v) = ‖Tj v‖2
a , and on the other hand we have

a(Tjv, v) = a(v, Tjv) = aj (Tjv, Tj v). Hence (50) is equivalent to (31) since
Vj = TjV .

We conclude that the framework in [17] is identical to the framework in Sects. 3
and 5, and ‖(I − TJ ) · · · (I − T1)‖a is given by the formulas (42) and (49). In
particular, the formula (49) is identical to the identity (1.1) in [17]. We note that
another derivation of this identity can be found in [7].
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Scalable Cardiac Electro-Mechanical
Solvers and Reentry Dynamics

P. Colli Franzone, L. F. Pavarino, S. Scacchi, and Stefano Zampini

1 Introduction

In the last 20 years, computer modeling has become an effective tool to push forward
the understanding of the fundamental mechanisms underlying the origin of life-
threatening arrhythmias and contractile disorders in the human heart and to provide
theoretical support to cardiologists in developing more successful pharmacological
and surgical treatments for these pathologies.

The spread of the electrical impulse in the cardiac muscle and the subse-
quent contraction-relaxation process are quantitatively described by the cardiac
electro-mechanical coupling (EMC) model, which consists of the following four
components: the quasi-static finite elasticity model of the deforming cardiac tissue,
derived from a strain energy function which characterizes the anisotropic mechani-
cal properties of the myocardium; the active tension model, consisting of a system
of non-linear ordinary differential equations (ODEs), describing the intracellular
calcium dynamics and cross bridges binding; the electrical current flow model of
the cardiac tissue, called Bidomain model, which is a degenerate parabolic system
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of two non-linear partial differential equations of reaction-diffusion type, describing
the evolution in space and time of the intra- and extracellular electric potentials; the
membrane model of the cardiac myocyte, i.e. a stiff system of ODEs, describing the
flow of the ionic currents through the cellular membrane.

This complex non-linear model poses great theoretical and numerical challenges.
At the numerical level, the approximation and simulation of the cardiac EMC model
is a very demanding and expensive task, because of the very different space and
time scales associated with the electrical and mechanical models, as well as their
non-linear and multiphysics interactions, see e.g. [7, 16, 17, 21].

In this paper, we present the finite element solver that we have developed to sim-
ulate the cardiac electro-mechanical activity on parallel computational platforms.
The solver is based on a Multilevel Additive Schwarz preconditioner for the linear
system arising from the discretization of the Bidomain model and on a Newton-
Krylov-BDDC method for the non-linear system arising from the discretization
of finite elasticity. Three-dimensional numerical tests show the effectiveness and
scalability of the solver on Linux clusters, in both normal physiological and
pathological situations.

2 Cardiac Electro-Mechanical Models

(a) Mechanical model of cardiac tissue. The deformation of the cardiac tissue is
described by the equations of three-dimensional non-linear elasticity

Div(FS) = 0, X ∈ Ω̂, (1)

where X = (X1,X2,X3)
T are the material coordinates of the undeformed

cardiac domain Ω̂ (x = (x1, x2, x3)
T are the spatial coordinates of the deformed

cardiac domain Ω(t) at time t), and F(X, t) = ∂x
∂X is the deformation gradient.

The second Piola-Kirchoff stress tensor S = Spas + Svol + Sact is assumed
to be the sum of passive, volumetric and active components. The passive and
volumetric components are defined as

S
pas,vol
ij = 1

2

(
∂Wpas,vol

∂Eij
+ ∂Wpas,vol

∂Eji

)
i, j = 1, 2, 3, (2)

where E = 1
2 (C − I) and C = FT F are the Green-Lagrange and Cauchy

strain tensors, Wpas is an exponential strain energy function (derived from
[6]) modeling the myocardium as an orthotropic (or transversely isotropic)
hyperelastic material, and Wvol = K (J − 1)2 is a volume change penalization
term accounting for the nearly incompressibility of the myocardium, with K a
positive bulk modulus and J = det (F).
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(b) Mechanical model of active tension. The active component of the stress
tensor is given by Sact = Ta

âl⊗̂al
âTl C âl

, where âl is the fiber direction and Ta =
Ta

(
Cai, λ,

dλ
dt

)
is the fiber active tension, obtained by solving a biochemical

differential system depending on intracellular calcium concentrations, the

myofiber stretch λ =
√

âTl Ĉal and stretch-rate dλ
dt

(see [10]).
(c) Bioelectrical model of cardiac tissue: the Bidomain model. The evolution of

the cardiac extracellular and transmembrane potentials ue, v, gating variable w,
and ionic concentrations c, is given by the Bidomain model, see e.g. [2]. Its
parabolic-elliptic formulation on the deformed configurationΩ(t) reads:

⎧⎨
⎩
cm
∂v

∂t
− Div(Di∇(v + ue))+ iion(v,w, c, λ) = iapp

−Div(Di∇v)− Div((Di +De)∇ue) = 0.
(3)

In the Lagrangian framework, after the pull-back on the reference configuration
Ω̂ × (0, T ), the Bidomain system becomes

⎧⎪⎨
⎪⎩
cmJ

(
∂v̂

∂t
− F−T Grad v̂ · V

)
− Div(J F−1D̂iF−T Grad(̂v+ ûe))+ J iion(̂v, ŵ, ĉ, λ)= J îapp

− Div(J F−1D̂iF−T Grad v̂)− Div(J F−1(D̂i + D̂e)F−T Grad ûe)= 0,

(4)

where cm and iion are the membrane capacitance and ionic current per unit

volume, respectively, and V = ∂u
∂t

is the rate of deformation; see [3] for the

detailed derivation. These two partial differential equations (PDEs) are coupled
through the reaction term iion with the ODE system of the membrane model,
given in Ω(t)× (0, T ) by

∂w
∂t

− Rw(v,w) = 0,
∂c
∂t

− Rc(v,w, c) = 0. (5)

This system is completed by prescribing initial conditions, insulating boundary
conditions, and the applied current îapp. Since the extracellular potential ûe is
defined up to a time dependent constant in space, we fix it by imposing that
ûe has zero average on the cardiac domain; see [3] for further details. The
orthotropic conductivity tensors in the deformed configuration are given by

Di,e = σ
i,e
t I + (σ

i,e
l − σ

i,e
t )al ⊗ al + (σ i,en − σ

i,e
t )an ⊗ an,

where σ
i,e
l , σ

i,e
t , σ

i,e
n are the conductivity coefficients in the intra- and

extracellular media measured along and across the fiber direction al , at , an.
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(d) Ionic membrane model and stretch-activated channel current. The ionic
current in the Bidomain model (3) is iion = χIion, where χ is the membrane
surface to volume ratio and Iion(v,w, c, λ) = Imion(v,w, c) + Isac(v, c, λ) is
the sum of the ionic term Imion(v,w, c) given by the ten Tusscher model (TP06)
consisting of 17 ordinary differential equations, [18, 19], available from the
cellML depository (models.cellml.org/cellml), and a stretch-activated current
Isac. In this work, we adopt the model of Isac proposed in [12] as the sum of
non-selective and selective currents Isac = Ins + IKo. We will consider two
calibrations where the Isac equilibrium potential (denoted in the following by
Vsac, i.e. the value such that Isac(Vsac) = 0) is either Vsac = −60 mV or
Vsac = −19 mV. We recall that, for v > Vsac, the stretch-activated current Isac
is positive, thus it has a hyperpolarizing effect, while, for v < Vsac, Isac is
negative, resulting in a depolarizing effect. For further details, we refer to [4].

3 Numerical Methods

Space Discretization We discretize the cardiac domain with a hexahedral struc-
tured grid Thm for the mechanical model (1) and The for the electrical Bidomain
model (4), where The is a refinement of Thm . We then discretize all scalar and vector
fields of both mechanical and electrical models by isoparametricQ1 finite elements
in space.

Time Discretization The time discretization is performed by a semi-implicit
splitting method, where the electrical and mechanical time steps can be different.
At the n-th time step,

(a) given vn, wn, cn, solve the ODE system of the membrane model with a first-
order IMEX method to compute the new wn+1, cn+1.

(b) given the calcium concentration Can+1
i , which is included in the concentration

variables cn+1, solve the mechanical problems (1) and the active tension
differential system to compute the new deformed coordinates xn+1, providing
the new deformation gradient tensor Fn+1.

(c) given wn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), solve the Bidomain system
(4) with a first order IMEX method and compute the new electric potentials
vn+1, un+1

e with an operator splitting method, where the parabolic and elliptic
PDEs are decoupled; see [3] for further details.
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4 Parallel Solver

4.1 Computational Kernels

Due to the discretization strategies described above, the main computational kernels
of our solver at each time step are the following:

1. solve the non-linear system deriving from the discretization of the mechan-
ical problem (1) using an inexact Newton method. At each Newton step, a
nonsymmetric Jacobian system Kx = f is solved inexactly by the GMRES
iterative method preconditioned by a BDDC preconditioner, described in the next
section.

2. solve the two linear systems deriving from the discretization of the parabolic
and elliptic equations of the Bidomain model, by using the Conjugate Gradient
method preconditioned by the Block Jacobi and Multilevel Additive Schwarz
preconditioners, respectively, developed in [13].

4.2 Mechanical Solver

Schur Complement System To keep the notation simple, in the remainder of
this section and the next, we denote the reference domain by Ω instead of Ω̂ .
Let us consider a decomposition of Ω into N nonoverlapping subdomains Ωi

of diameter Hi (see e.g. [20, Ch. 4]) Ω = ⋃N
i=1 Ωi, and set H = maxHi .

As in classical iterative substructuring, we reduce the problem to the interface

Γ :=
(⋃N

i=1 ∂Ωi

)
\∂Ω by eliminating the interior degrees of freedom associated

to basis functions with support in the interior of each subdomain, hence obtaining
the Schur complement system

SΓ xΓ = gΓ , (6)

where SΓ = KΓΓ − KΓ IK
−1
II KIΓ and gΓ = fΓ − KΓ IK

−1
II fI are obtained

from the original discrete problem Kx = f by reordering the finite element basis
functions in interior (subscript I ) and interface (subscript Γ ) basis functions.

BDDC Preconditioner The Schur complement system (6) is solved iteratively by
the GMRES method using a BDDC preconditionerM−1

BDDC

M−1
BDDCSΓ xΓ = M−1

BDDCgΓ . (7)

Once the interface solution xΓ is computed, the internal values xI can be recovered
by solving local problems on each subdomain Ωi .
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BDDC preconditioners represent an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively due to a choice of
so-called primal continuity constraints across the interface of the subdomains. These
primal constraints can be point constraints and/or averages or moments over edges
or faces of the subdomains. BDDC preconditioners were introduced in [5] and first
analyzed in [11]. We remark that BDDC is closely related to FETI-DP algorithms,
see, e.g. [8, 9, 14], defined with the same set of primal constraints as BDDC, since
it is known that in such a case the BDDC and FETI-DP operators have the same
eigenvalues with the exception of zeros and ones. For the construction of BDDC
preconditioners applied to the non-linear elasticity system constituting the cardiac
electromechanical coupling problem, we refer to [15].

5 Numerical Results

In this section, we present the results of parallel numerical experiments performed
on the Linux cluster Marconi (http://www.hpc.cineca.it/hardware/marconi) of the
Cineca Consortium (www.cineca.it). Our code is built on top of the FORTRAN90
wrappers of the open source PETSc library [1]. In the mechanical solver, at
each Newton iteration, the non-symmetric Jacobian system is solved iteratively by
GMRES preconditioned by the BoomerAMG or the BDDC preconditioner, with
zero initial guess and stopping criterion a 10−8 reduction of the relative residual l2-
norm. The BDDC method is available as a preconditioner in PETSc and it has been
contributed to the library by S. Zampini, see [22, 23].

5.1 Test 1: Comparison of Solver Performance on Normal and
Pathological Dynamics

We consider an idealized left ventricle, represented by a truncated ellipsoid dis-
cretized by an electrical grid of 384 × 192 × 48 Q1 finite elements, yielding a total
amount of about 3.6×106 nodes, thus the degrees of freedom (dofs) of the parabolic
and elliptic Bidomain linear systems are 3.6 × 106. The mechanical mesh is eight
times coarser than the electrical one, i.e. 48 × 24 × 6 Q1 finite elements, with a
total amount of 8400 nodes, thus the dofs of the finite elasticy non-linear system are
25,200. The electrical time step is 0.05 ms, while the mechanical time step is 0.5 ms.
The simulations are run on 24 processors. The tissue is assumed to be axisymmetric.
The mechanical non-linear system is solved by the Newton-Krylov-AMG method.

We first compare the performance of the electro-mechanical solver in three
different situations:

• a normal physiological heartbeat (SIM1) without reentry;
• a ventricular tachycardia dynamics (SIM2), with Vsac = −19 mV;
• a ventricular fibrillation dynamics (SIM3), with Vsac = −60 mV.

http://www.hpc.cineca.it/hardware/marconi
www.cineca.it
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In SIM1, the external stimulus is applied at the endocardial apical region, the
interior bottom part of the truncated ellipsoid, and the total simulation run is 500 ms.
The activation wavefront propagates starting from the endocardial apical regions,
where the stimulus is delivered, towards the whole ventricle (not shown, but similar
to the propagation displayed in Fig. 6).

In SIM2 and SIM3, we apply first an S1 stimulus as in SIM1. 280 ms after the
S1 stimulus is delivered, we apply a premature S2 cross-gradient stimulation current
from the base to the apex and across the wall thickness, covering about a third of
ventricular volume, to induce a ventricular reentry consisting of a pair of counter-
rotating scroll waves. We run the simulation for 2000 ms after the S2 delivery. The
SAC parameterVsac is set to −19 mV and −60 mV is SIM2 and SIM3, respectively.

In SIM2, the two scroll waves generated by the S2 stimulus continue to rotate
without breaking, leading to a stable periodic ventricular tachycardia pattern, see
Fig. 1.

In SIM3 instead, after the first rotation, the two scroll waves break up into
several smaller scroll waves, generating irregular transmembrane potential distribu-
tions characterized by high electrical turbulence, often associated with ventricular
fibrillation, as shown in the snapshots of Fig. 1. Thus, the low SAC reversal potential
(Vsac = −60 mV) seems to induce deterioration of the stability of scroll waves,
promoting the onset of ventricular fibrillation.

Figures 2, 3 and 4 report the time evolution of the mathematical parameters of
the electro-mechanical solver (CG iterations, condition numbers, Newton iterations,

SIM2: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

SIM3: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

Fig. 1 Test 1: Snapshots of transmembrane potentials computed from SIM2 (ventricular tachy-
cardia) and SIM3 (ventricular fibrillation). The units in the colorbars are given in mV
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Fig. 2 S1 beat of physiological test SIM1 over 500 ms.: time plots at an epicardial point of the
indicated electrical (left) and mechanical (right) quantities

Fig. 3 Periodic test SIM2 with slope = 1.8, Vsac = −19 mV over 2000 ms.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities
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Fig. 4 Turbulent test SIM3 with slope = 1.8, Vsac = −60 mV over 2000 ms.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

GMRES iterations) and the CPU times needed to solve the parabolic, elliptic
and non-linear systems (TIME PARAB., TIME ELL., TIME SNES, respectively)
obtained from the SIM1, SIM2, SIM3, respectively. The results show that all the
components of the solver are quite robust with respect to the different simulation
dynamics considered, physiological and pathological. The condition number of the
elliptic solver increases slightly when the contraction is more pronounced, but it
always remains bounded between 10 and 15.

5.2 Test 2: Strong Scaling on a Normal Heartbeat

We then perform a strong scaling test on a whole heartbeat lasting 400 ms. The
three-dimensional cardiac domain considered is a truncated ellipsoid modeling
the left ventricle, discretized by an electrical mesh of 384 × 192 × 48 Q1 finite
elements, yielding the same Bidomain dofs as in the previous test, about 3.6 × 106.
The mechanical mesh size is now four times coarser than the electrical one in
each direction, thus the mechanical elements are 96 · 48 · 12, resulting in 183,456
displacement dofs. The number of subdomains (processors) increases from 32 to
256 whereas the number of degrees of freedom per subdomain is reduced as the
number of subdomains increases. The tissue is assumed to be orthotropic. The
mechanical non-linear system is solved by the Newton-Krylov-BDDC method.
We choose as BDDC primal constraints vertices (Π = V ) and vertices + edges
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Fig. 5 Strong scaling test on a whole heartbeat simulation. Time evolution of electrical and
mechanical solvers parameters

(Π = VE). To start the electrical excitation, the external stimulus is applied at the
endocardial apical region, in four points modeling an idealized Purkinje network.

The results reported in Table 1 (averages) and Fig. 5 (time evolution) show a good
scalability of both the electrical and mechanical components of the parallel solver,
with linear and non-linear iterations remaining about constant, while the CPU times
decrease when the number of processors increases. Finally, Fig. 6 reports selected
snapshots of transmembrane and extracellular potentials on the deforming domain
during the entire heartbeat.
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TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=5 ms t=50 ms t=100 ms t=150 ms

t=200 ms t=250 ms t=300 ms t=375 ms

EXTRACELLULAR POTENTIAL SNAPSHOTS
t=5 ms t=50 ms t=100 ms t=150 ms

t=200 ms t=250 ms t=300 ms t=375 ms

Fig. 6 Snapshots of transmembrane and extracellular potentials during a whole heartbeat. The
units in the colorbars are given in mV
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Table 1 Strong scaling test on a whole heartbeat simulation

Π = V Π = VE

Proc itpar timepar itell t imeell nit lit t imesnes nit lit t imesnes

32 3 2.24e−1 20 9.56e−1 4 39 12.90 4 38 13.23

64 3 1.24e−1 20 5.37e−1 4 48 5.03 4 47 5.36

128 3 7.71e−2 20 3.17e−1 4 48 3.67 4 47 3.50

256 3 3.78e−2 20 2.40e−1 4 45 2.55 4 44 2.88

itpar CG iteration to solve the parabolic linear system (average per time step). t imepar CPU time
to solve the parabolic linear system (average per time step). itell CG iteration to solve the elliptic
linear system (average per time step). t imeell CPU time to solve the elliptic linear system (average
per time step). nit Newton iteration to solve the mechanical system (average per time step). lit
GMRES iteration to solve the Jacobian system (average per Newton iteration). t imesnes CPU time
to solve the mechanical system (average per time step). All CPU times are given in seconds
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On Overlapping Domain Decomposition
Methods for High-Contrast Multiscale
Problems

Juan Galvis, Eric T. Chung, Yalchin Efendiev, and Wing Tat Leung

1 Summary

We review some important ideas in the design and analysis of robust overlapping
domain decomposition algorithms for high-contrast multiscale problems. In recent
years, there have been many contributions to the application of different domain
decomposition methodologies to solve high-contrast multiscale problems. We men-
tion two- and multi-levels methods, additive and additive average methods, iterative
substructuring and non-overlapping methods and many others. See [11]. Due to
page limitation, we focus only on two-levels overlapping methods developed by
some of the authors that use a coarse-grid for the construction of the second level.
We also propose a domain decomposition method with better performance in terms
of the number of iterations. The main novelty of our approaches is the construction
of coarse spaces, which are computed using spectral information of local bilinear
forms. We present several approaches to incorporate the spectral information into
the coarse problem in order to obtain minimal (locally constructed) coarse space
dimension. We show that using these coarse spaces, we can obtain a domain
decomposition preconditioner with the condition number independent of contrast
and small scales. To minimize further the number of iterations until convergence,
we use this minimal dimensional coarse spaces in a construction combining them
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with large overlap local problems that take advantage of the possibility of localizing
global fields orthogonal to the coarse space. We obtain a condition number close to
1 for the new method. We discuss possible drawbacks and further extensions.

2 High-Contrast Problems: Introduction

The methods and algorithms, discussed in the paper, can be applied to various PDEs,
even though we will focus on Darcy flow equations. Given D ⊂ R

2, f : D → R ,
and g : ∂D → R, find u : D → R such that

∂

∂xi

(
κij

∂u

∂xj

)
= f

with a suitable boundary condition, for instance u = 0 on ∂D. The coefficient
κij (x) = κ(x)δij represents the permeability of the porous media D. We focus on
two-levels overlapping domain decomposition and use local spectral information
in constructing “minimal” dimensional coarse spaces (MDCS) within this setting.
After some review on constructing MDCS and their use in overlapping domain
decomposition preconditioners, we present an approach, which uses MDCS to
minimize the condition number to a condition number closer to 1. This approach
requires a large overlap (when comparted to coarse-grid size) and, thus, is more
efficient for small size coarse grids. We present the numerical results and state
our main theoretical result. We assume that there exists κmin and κmax with 0 <

κmin ≤ κ(x) ≤ κmax for all x ∈ D. The coefficient κ has a multiscale structure
(significant local variations of κ occur acrossD at different scales). We also assume
that the coefficient κ is a high-contrast coefficient (the constrast is η = κmax/κmin).
We assume that η is large compared to the coarse-grid size.

It is well known that performance of numerical methods for high-contrast
multiscale problems depends on η and local variations of κ across D. For classical
finite element methods, the condition to obtain good approximation results is that
the finite element mesh has to be fine enough to resolve the variations of the
coefficient κ . Under these conditions, finite element approximation leads to the
solution of very large (sparse) ill-conditioned problems (with the condition number
scaling with h−2 and η). Therefore, the performance of solvers depends on η and
local variations of κ across D. This was observed in several works, e.g., [1, 8, 10].1

Let T h be a triangulation of the domainD, where h is the size of typical element.
We consider only the case of discretization by the classical finite element method
V = P1(T h) of piecewise (bi)linear functions. Other discretizations can also be
considered. The application of the finite element discretization leads to the solution
of a very large ill-conditioned system Ax = b, where A is roughly of size h−2

1Due to the page limitation, only a few references are cited throughout.
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and the condition number of A scales with η and h−2. In general, the main goal
is to obtain an efficient good approximation of solution u. The two main solution
strategies are:

1. Choose h sufficiently small and implement an iterative method. It is impor-
tant to implement a preconditioner M−1 to solve M−1Au = M−1b. Then, it
is important to have the condition number of M−1A to be small and bounded
independently of physical parameters, e.g., η and the multiscale structure of κ .

2. Solve a smaller dimensional linear system (T H with H > h) so that
computations of solutions can be done efficiently.2 This usually involves the
construction of a downscaling operator R0 (from the coarse-scale to fine-scale
v0 �→ v) and an upscaling operator (from fine-scale to coarse-scale, v �→ v0)
(or similar operators). Using these operators, the linear system Au = b becomes
a coarse linear system A0u0 = b0 so that R0u0 or functionals of it can be
computed. The main goal of this approach it to obtain a sub-grid capturing such
that ||u− R0u0|| is small.

The rest of the paper will focus on the design of overlapping domain decom-
position methods by constructing appropriate coarse spaces. First, we will review
existing results, which construct minimal dimensional coarse spaces, such that
the condition number of resulting preconditioner is independent of η. These
coarse spaces use local spectral problems to extract the information, which cannot
be localized. This information is related to high-conductivity channels, which
connect coarse-grid boundaries and it is important for the performance of domain
decomposition preconditioners and multiscale simulations. Next, using these and
oversampling ideas, we present a “hybrid” domain decomposition approach with
a condition number close to 1 by appropriately selecting the oversampling size
(i.e., overlapping size). We state our main result, discuss some limitations and show
a numerical example. We compare the results to some existing contrast-independent
preconditioners.

3 Classical Overlapping Methods: Brief Review

We start with a non-overlapping decomposition {Di}NSi=1 of the domain D and

obtain an overlapping decomposition {D′
i}NSi=1 by adding a layer of width δ around

each non-overlapping subdomain. Let Aj be the Dirichlet matrix corresponding
to the overlapping subdomain D′

j . The one level method solves M−1
1 A = M−1

1 b

with M−1
1 = ∑NS

j=1 Rj(Aj )
−1RTj and the operators RTj , j = 1, . . . , NS , being

the restriction to overlapping subdomain D′
j operator and with the Rj being the

2The coarse mesh does not necessarily resolve all the variations of κ .
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extension by zero (outside D′
j ) operator. We have the bound Cond(M−1

1 A) ≤
C (1 + 1/δH). For high-contrast multiscale problems, it is known that C � η.

Next, we introduce a coarse space, that is, a subspace V0 ⊂ V of small
dimension (when compared to the fine-grid finite element space V). We consider
A0 as the matrix form of the discretization of the equation related to subspace
V0. For simplicity of the presentation, let A0 be the Galerkin projection of A on
the subspace V0. That is A0 = R0AR

T
0 , where R0 is a downscaling operator that

converts coarse-space coordinates into fine-grid space coordinates. The two-levels
preconditioner uses the coarse space and it is defined by M−1

2 = R0A
−1
0 RT0 +∑NS

j=1Rj (Aj )
−1RTj = R0A

−1
0 RT0 + M−1

1 . It is known that Cond(M−1A) �
η (1 +H/δ) . The classical two-levels method is robust with respect to the number
of subdomains but it is not robust with respect to η. The condition number estimates
use a Poincaré inequality and small overlap trick; [13]. Without the small overlap
trick Cond(M−1A) � η(1 +H 2/δ2).

There were several works addressing the performance of classical domain
decomposition algorithms for high-contrast problems. Many of these works con-
sidered simplified multiscale structures,3 see e.g., [13] for some works by O.
Widlund and his collaborators. We also mention the works by Sarkis and his
collaborators, where they introduce the assumption of quasi-monotonicity [4].
Sarkis also introduced the idea of using “extra” or additional basis functions as well
as techniques that construct the coarse spaces using the overlapping decomposition
(and not related to a coarse mesh); [12]. Scheichl and Graham [10] and Hou and
Aarnes [1], started a systematic study of the performance of classical overlaping
domain decomposition methods for high-contrast problems. In their works, they
used coarse spaces constructed using a coarse grid and special basis functions from
the family of multiscale finite element methods. These authors designed two-levels
domain decomposition methods that were robust (with respect to η) for special
multiscale structures. None of the results available in the literature (before the
method in papers [8, 9] was introduced) were robust for a coefficient not-aligned
with the construction of the coarse space (i.e., not aligned either with the non-
overlapping decomposion or the coarse mesh if any), i.e., the condition number of
the resulting preconditioner is independent of η for general multiscale coefficients.

4 Stable Decomposition and Eigenvalue Problem: Review

A main tool in obtaining condition number bounds is the construction of a stable
decomposition of a global field. That is, if for all v ∈ V = P 1

0 (D,T h) there exists

a decomposition v = v0 + ∑NS
j=1 vj with v0 ∈ V0 and vj ∈ Vj = P 1

0 (D
′
j ,T h),

3These works usually assume some alignment between the coefficient heterogeneities and the
initial non-overlapping decomposition.



On Overlapping DDMs for High-Contrast Multiscale Problems 49

j = 1, . . . , N , and

∫
D

κ |∇v0|2 +
NS∑
j=1

∫
D′
j

κ |∇vj |2 ≤ C2
0

∫
D

κ |∇v|2

for C0 > 0. Then, cond(M−1
2 A) ≤ c(T h,T H)C2

0 . Existence of a suitable coarse
interpolation I0 : V → V0 = span{Φ} implies the stable decomposition above.
Usually such stable decomposition is constructed as follows.

For the coarse part of the stable decomposition, we introduce a partition of unity
{χi} subordinated to the coarse mesh (supp χi ⊂ ωi where ωi is the coarse-block
neighborhood of the coarse-node xi). We begin by restricting the global field v to ωi .
For each coarse node neighborhoodωi , we identify local field that will contribute to
the coarse space Iωi0 v so that the coarse space will be defined as V0 = Span{χiIωi0 v}.
In classical methods Iωi0 v is the average of v in ωi . Later we present some more

general examples for Iωi0 . We assemble a coarse field as v0 = I0v = ∑NS
i=1 χi(I

ωi
0 v).

Note that in each block v − v0 = ∑
xi∈K χi(v − I

ωi
0 v).

For the local parts of the stable decomposition, we introduce a partition of unity
{ξj } subordinated to the non-overlapping decomposition (supp ξj ⊂ D′

j ). The local
part of the stable decomposition is defined by vj = ξj (v − v0). For instance, to
bound the energy of vj , we have in each coarse-blockK ,

∫
K

κ |∇vj |2 �
∫
K

κ |∇ξj
⎛
⎝∑
xi∈K

χi(v − I
ωi
0 v)

⎞
⎠ |2

�
∑
i∈K

∫
K

κ(ξjχi)
2|∇(v − I

ωi
0 v)|2 +

∑
xi∈K

∫
K

κ |∇(ξjχi)|2|v − I
ωi
0 v|2.

Adding up overK , we obtain,

∫
D′
j

κ |∇vj |2 �
∑
xi∈D′

j

∫
D′
j

κ(ξjχi)
2|∇(v − I

ωi
0 v)|2

+
∑
xi∈ωj

∫
D′
j

κ |∇(ξjχi)|2|v − I
ωi
0 v|2

and we would like to bound the last term by C
∫
D′
j
κ |∇v|2.

For simplicity of our presentation, we consider the case when the coarse elements
coincide with the non-overlapping decomposition subdomains. That is,D′

j = ωj . In

this case, we can replace ξ by χ and replace ∇(χ2) by ∇χ so that we need to bound∑
xi∈ωj

∫
ωj
κ |∇χi |2|v − I

ωi
0 v|2. We refer to this design as coarse-grid based.



50 J. Galvis et al.

Remark 1 (General Case and Overlapping Decomposition Based Design) Similar
analysis holds in the case when there is no coarse-grid and the coarse space is
spanned by a partition of unity {ξj }. We can replace χ by ξ and ∇(ξ2) by ∇ξ .
In general these two partitions are not related (see Sect. 4.1).

We now review the three main arguments to complete the required bound: (1) A
Poincaré inequality. (2) L∞ estimates. (3) Eigenvalue problem.

1. A Poincaré inequality: Classical analysis uses a Poincaré inequality to obtain
the required bound above. That is, the inequality 1

H 2

∫
ω(v− v̄)2 ≤ C

∫
ω |∇v|2 to

obtain
∑

xi∈ωj
∫
ωj
κ |∇χi|2|v − I

ωi
0 v|2 � 1

H 2

∫
ωi
κ |v − I

ωi
0 v|2 � C

∫
ωi
κ |∇v|2.

In this case, Iωi0 v is the average of v on the subdomain. For the case of high-
contrast coefficients, C depends on η, in general. For quasi-monotone coefficient
it can be obtained that C is independent of the contrast [4]. We also mention
[8] for the case locally connected high-contrast region. In this case Iωi0 v is a
weighted average. From the argument given in [8], it was clear that when the
high-contrast regions break across the domain, defining only one average was
not enough to obtain contrast independent constant in the Poincaré inequality.

2. L∞ estimates: Another idea is to use an L∞ estimate of the form

∑
xi∈K

∫
ωi

κ |∇χi |2|v − I
ωi
0 v|2 �

∑
xi∈K

||κ |∇χi|2||∞
∫
ωi

|v − I
ωi
0 v|2.

The idea in [1, 10] was then to construct a partition of unity such that
||κ |∇χi|2||∞ is bounded independently of the contrast and then to use classical
Poincaré inequality estimates. Instead of minimizing the L∞, one can intuitively
try to minimize

∫
K κ |∇χi |2. This works well when the multiscale structure of the

coefficient is confined within the coarse blocks. For instance, for a coefficient and
coarse-grid as depicted in Fig. 1 (left picture), we have that a two-level domain
decomposition method can be proven to be robust with respect the value of the
coefficient inside the inclusions. In fact, the coarse space spanned by classical
multiscale basis functions with linear boundary conditions (−div(κ∇χi) = 0 in
K and linear on each edge of ∂K) is sufficient and the above proof works. Now
consider the coefficient in Fig. 1 (center picture). For such cases, the boundary
condition of the basis functions is important. In these cases, basis functions
can be constructed such that the above argument can be carried on. Here, we
can use multiscale basis functions with oscillatory boundary condition in its
construction.4

For the coefficient in Fig. 1, right figure, the argument above using L∞
cannot be carried out unless we can work with larger support basis functions (as
large as to include the high-contrast channels of the coefficient). If the support

4We can include constructions of boundary conditions using 1D solution of the problem along
the edges. Other choices include basis functions constructed using oversampling regions, energy
minimizing partition of unity (global), constructions using limited global information (global), etc.
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Fig. 1 Examples o multiscale coefficients with interior high-contrast inclusions (left), boundary
inclusions (center) and long channels(right)

of the coarse basis function does not include the high-contrast region, then
||κ |∇χi|2||∞ increases with the contrast leading to non-robust two-level domain
decomposition methods.

3. Eigenvalue problem. We can write
∑
xj∈ωi

∫
ωi

κ |∇χj |2|v − I
ωi
0 v|2

� 1

H 2

∫
ωi

κ |(v − I
ωi
0 v)|2 � C

∫
ωi

κ |∇v|2, where we need to justify the last

inequality with constant independent of the contrast. The idea is then to consider

the Rayleigh quotient, Q(v) :=
∫
ωi
κ |∇v|2∫

ωi
κ |v|2 with v ∈ P 1(ωi). This quotient is

related to an eigenvalue problem and we can define Iωi0 v to be the projection
on low modes of this quotient on ωi . The associated eigenproblem is given
by −div(k(x)∇ψ�) = λ�k(x)ψi in ωi with homogeneous Neumann boundary
condition for floating subdomains and a mixed homogeneous Neumann-Dirichlet
condition for subdomains that touch the boundary. It turns out that the low part
of the spectrum can be written as λ1 ≤ λ2 ≤ . . . ≤ λL < λL+1 ≤ . . .

where λ1, . . . , λL are small, asymptotically vanishing eigenvalues and λL can
be bounded below independently of the contrast. After identifying the local field
I
ωi
0 v, we then define the coarse space as V0 = Span{Ihχiψωij } = Span{Φi}.

Eigenvalue Problem with a Multiscale Partition of Unity Instead of the argu-
ment presented earlier, we can include the gradient of the partition of unity in the
bounds (somehow similar to the ideas of L∞ bounds). We then need the following

chain of inequalities,
∫
ωi

⎛
⎝ ∑
xj∈ωi

κ |∇χj |2
⎞
⎠

︸ ︷︷ ︸
:= H−2κ̃

|v − I
ωi
0 v|2 = 1

H 2

∫
ωi
κ̃|v − I

ωi
0 v)|2 �

∫
ωi
κ |∇v|2. Here we have to consider Rayleigh quotient Qms(v) :=

∫
ωi
κ|∇v|2∫

ωi
κ̃|v|2 ,

v ∈ P 1(ωi) and define Iωi0 v as projection on low modes. Additional modes
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“complement” the initial space spanned by the partition of unity used so that the
resulting coarse space leads to robust methods with minimal dimension coarse
spaces; [9].

If we consider the two-level method with the (multiscale) spectral coarse space
presented before, then

cond(M−1A) ≤ C(1 + (H/δ)2), (1)

where C is independent of the contrast if enough eigenfunctions in each node
neighborhood are selected for the construction of the coarse spaces. The constant
C and the resulting coarse-space dimension depend on the partition of unity (initial
coarse-grid representation) used.

4.1 Abstract Problem Eigenvalue Problems

We consider an abstract variational problem, where the global bilinear form is
obtained by assembling local bilinear forms. That is a(u, v) = ∑

K aK(RKu,RKv),
where aK(u, v) is a bilinear form acting on functions with supports being the
coarse block K . Define the subdomain bilinear form aωi (u, v) = ∑

K⊂ωi aK(u, v).
We consider the abstract problem

a(u, v) = F(v) for all v ∈ V.

We introduce {χj }, a partition of unity subordinated to coarse-mesh blocks and
{ξi} a partition of unity subordinated to overlapping decomposition (not necessarily
related in this subsection). We also define the “Mass” bilinear form (or energy of
cut-off)mωi and the Rayleigh quotient Qabs by

mωi (v, v) :=
∑
j∈ωi

a(ξiχjv, ξiχjv) and Qabs(v) := aωi (v, v)

mωi (v, v)
.

For the Darcy problem, we have mωi (v, v) = ∑
j∈ωi

∫
ωi
κ |∇(ξiχjv)|2 �∫

ωi
κ̃|v|2. The same analysis can be done by replacing the partition of unity

functions by partition of degree of freedom (PDoF). Let {χχχj } be PDoF subordianted
to coarse mesh neighborhood and {ξξξ i} be PDoF subordianted to overlapping
decomposition. We define the cut-off bilinear form and quotient,

mωi (v, v) :=
∑
j∈ωi

a(ξξξiχχχjv,ξξξ iχχχjv) and Qabs2(v) := aωi (v, v)

mωi (v, v)
.

The previous construction alows applying the same design recursively and therefore
to use the same ideas in a multilevel method. See [5, 6].
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Table 1 PCG iterations for
different values η

η MS Full 8 rand. 15 rand

106 209 35 37 37

109 346 38 44 38

Here H = 1/10 with h = 1/200. We
use the GMsFEM eigevalue problem
with Wi = Vi (full local fine-grid
space), column 2; Wi spanned by 8
random samples, column 4, and Wi

spanned by 15 samples, column 5

4.2 Generalized Multiscale Finite Element Method (GMsFEM)
Eigenvalue Problem

We can consider the Rayleigh quotients presented before only in a suitable subspace
that allows a good approximation of low modes. We call these subspace the snapshot
spaces. Denote by Wi the snapshot space corresponding to subdomain ωi , then we

consider the Rayleigh quotient, Qgm(v) := aωi (v, v)

mωi (v, v)
with v ∈ Wi. The snapshot

space can be obtained by dimension reduction techniques or similar computations.
See [2, 7]. For example, we can consider the following simple example. In each
subdomain ωi , i = 1, . . . , NS :

1. Generate forcing terms f1, f2, . . . , fM randomly (
∫
ωi
f� = 0);

2. Compute the local solutions −div(κ∇u�) = f� with homogeneous Neumann
boundary condition;

3. Generate Wi = span{u�} ∪ {1};
4. Consider Qgm with Wi in 3 and compute important modes.

In Table 1, we see the results of using the local eigenvalue problem versus using the
GMsFEM eigenvalue problem.

5 Constrained Coarse Spaces, Large Overlaps, and DD

In this section, we introduce a hybrid overlapping domain decomposition pre-
conditioner. We use the coarse spaces constructed in [3], which rely on minimal
dimensional coarse spaces as discussed above. First, we construct local auxiliary
basis functions. For each coarse-block K ∈ T H , we solve the eigenvalue problem

with Rayleigh quotient Qms(v) :=
∫
K κ|∇v|2∫
K κ̂|v|2

, where κ̂ = κ
∑

j |∇χj |2. We assume

λK1 ≤ λK2 ≤ . . . and define the local auxiliary spaces,

Vaux(K) = span{φKj |1 ≤ j ≤ LK } and Vaux = ⊕KVaux(K).
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Next, define a projection operator πK as the orthogonal projection on Vaux with
respect to the inner product

∫
K
κ̂uv and πD = ⊕KπK . Let K+ be obtained by

adding l layers of coarse elements to the coarse-blockK . The coarse-grid multiscale
basis ψKj,ms ∈ V (K+) = P 1

0 (K
+) solve

∫
K+
κ∇ψKj,ms∇v +

∫
K+̂
κπD(ψ

K
j,ms )πD(v) =

∫
K+

κ̂φKj πD(v), ∀v ∈ V (K+).

The coarse-grid multiscale space is defined as Vms = span{ψ(i)j,ms}. We remark that
this space is used as the global coarse solver in our preconditioner. More precisely,
we define the (coarse solution) operatorA−1

0,ms : H−1(̂κ,D) �→ Vms by,
∫
D

κ∇A−1
0,ms(u)∇v = u(v) for all v ∈ Vms

where H−1(̂κ,D) is the space of bounded linear functionals on the weighted
sobolev space, H 1(κ,D). In our preconditioner, we also need local solution
operators which are the operators A−1

i,ms : H−1(̂κ,D) �→ V (ω+
i ) defined by,

∫
ω+
i

κ∇A−1
i,ms(ui)∇v +

∫
ω+
i

κ̂π(A−1
i (ui))πD(v) = ui(χiv) for all v ∈ V (ω+

i ),

where ω+
i is obtained by enlarging ωi by k coarse-grid layers. Next, we can define

the preconditioner5 M by

M−1 = (I − A−1
0,msA)

(∑
i

A−1
i,ms

)
(I − AA−1

0,ms)+ A−1
0,ms.

Note that this is a hybrid preconditioner as defined in [13]. We remark that the
constructions of the global coarse space and local solution operators are motivated
by [3], where a new multiscale space is developed and analyzed, and it is shown to
have a good convergence property independent of the scales of the coefficient of the
PDE. In addition, the size of the local problem is dictated by an exponential decay
property.

Using some estimates in [3], we can establish the following condition number
estimate for cond(M−1A),

cond(M−1A) ≤ 1 + C(1 +Λ−1)
1
2E

1
2 max{κ̃ 1

2 }
1 − C(1 +Λ−1)

1
2E

1
2 max{κ̃ 1

2 }
(2)

5Here we avoid restriction and extension operators for simplicity of notation.
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whereE = 3(1+Λ−1)
(

1+(2(1+Λ− 1
2 ))−1

)1−k
,C is a constant that depends on the

fine and coarse grid only and Λ = minK λKLK+1. See [3] for the required estimates
of the coarse space. The analysis of the local solvers of the hybrid method above will
be presented elsewhere.6 We see that the condition number is close to 1 if sufficient
number of basis functions is selected (i.e., Λ is not close to zero).7 The overlap size
usually involves several coarse-grid block sizes and thus, the method is effective
when the coarse-grid sizes are small. We comment that taking the generous overlap
δ = kH/2 in (1), we get the boundC(1+4/k2) with C independent of the contrast.
The estimate (2), on the other hand, gives a bound close to 1 if the oversampling is
sufficiently large (e.g., the number of coarse-grid layers is related to log(η)), which
is due to the localization of global fields orthogonal to the coarse space.

Next, we present a numerical result and consider a problem with permeability
κ shown in Fig. 2. The fine-grid mesh size h and the coarse-grid mesh size are
considered as h = 1/200 and H = 1/20. In Table 2, we present the number of
iterations for using varying numbers of oversampling layers k, values of the contrast
η and κM−1A − 1, which is the condition number of the preconditioned matrix
minus one. We observe that when k = 3, the condition number κM−1A is almost
one, which confirms (2). In practice, one can choose smaller local problems with a
corresponding increase in the number of iterations. This balance can be determined
by practical needs.

20 40 60 80 100 120 140 160 180 200
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Fig. 2 Left: The coarse mesh used in the numerical experiments. We highlight a coarse neighbor-
hood and the results of adding three coarse-block layers to it. Right: The permeability κ used in
the experiments. The gray regions indicate high-permeability regions of order η while the white
regions indicates a low (order 1) permeability

6 We mention that the analysis does not use a stable decomposition so, in principle, a new family
of robust methods can be obtained.
7Having a robust condition number close to 1 is important, especially in applications where the
elliptic equation needs to be solved many times.
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Table 2 Condition number κM−1A and number of iterations until convergence for the PCG with
H = 1/20, h = 1/200 and tol = 1e − 10

# basis per ω k # iter κM−1A − 1 # basis per ω η # iter κM−1A − 1
3 3 3 5.33e−04 3 1e+3 3 5.68e−04

3 4 2 2.57e−05 3 1e+4 3 5.33e−04

3 5 2 1.25e−06 3 1e+5 3 6.74e−04

3 6 1 5.50e−08

Left: different number of oversampling layers k with η = 1e + 4. Right: different values of the
contrast η with k = 3

We would like to emphasize that the proposed method has advantages if the
coarse mesh size is not very coarse. In this case, the oversampled coarse regions
are still sufficiently small and the coarse-grid solves can be relatively expensive.
Consequently, one wants to minimize the number of coarse-grid solves in addition
to local solves. In general, the proposed approach can be used in a multi-level setup,
in particular, at the finest levels, while at the coarsest level, we can use original
spectral basis functions proposed in [8]. This is object of future research.

6 Conclusions

In this paper, we give an overview of domain decomposition preconditioners
for high-contrast multiscale problems. In particular, we review the design of
overlapping methods with an emphasis on the stable decomposition for the analysis
of the method. We emphasize the use of minimal dimensional coarse spaces in
order to construct optimal preconditioners with the condition number independent
of physical scales (contrast and spatial scales). We discuss various approaches in
this direction. Furthermore, using these spaces and oversampling ideas, we design
a new preconditioner with a significant reduction in the number of iterations until
convergence if oversampling regions are large enough (several coarse-grid blocks).
We note that when using only minimal dimensional coarse spaces in additive
Schwarz preconditioner with standard overlap size, we obtain around 19 iterations.
in the new method, our main goal is to reduce even further the number of iterations
due to large coarse problem sizes. We obtained around 3 iterations until convergence
for the new approach. A main point of the new methodology is that after removing
the channels we are able to localize the remaining multiscale information via
oversampling. Another interesting aspect of the new approach is that the bound
can be obtained by estimating directly operator norms and do not require a stable
decomposition.
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INTERNODES for Heterogeneous
Couplings

Paola Gervasio and Alfio Quarteroni

1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS)
method is an interpolation based approach to solve partial differential equations
on non-conforming discretizations [5, 9]. It is an alternative to projection-based
methods like mortar [1], or other interpolation-based method like GFEM/XFEM
[10]. Differently than in mortar methods, no cross-mass matrix involving basis
functions living on different grids of the interface are required by INTERNODES
to build the intergrid operators. Instead, two separate interface mass matrices
(separately on either interface) are used. The substantial difference between
GFEM/XFEM methods and INTERNODES consists in the fact that the former
ones use a partition of unity to enrich the finite element space, while the latter does
not add any shape function to those of the local finite element subspaces.

In this paper we apply the INTERNODES method to different problems such as
the Fluid Structure Interaction problem and the Stokes-Darcy coupled problem that
models the filtration of fluids in porous media. Our results highlight the flexibility
of the method as well as its optimal rate of convergence. Before addressing the two
specific problems above, we introduce an abstract formulation for heterogeneous
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problems. This will also be useful to state the definition of the interface matching
operators that will stand at the base of the INTERNODES method.

Let Ω ⊂ R
d , with d = 2, 3, be an open domain with Lipschitz boundary ∂Ω ,

Ω1 and Ω2 be two non-overlapping subdomains with Lipschitz boundary such that
Ω = Ω1 ∪Ω2, and Γ = ∂Ω1 ∩ ∂Ω2 be their common interface.

Given a function f defined in Ω , we look for u1 in Ω1 and u2 in Ω2 such that

Lk(uk) = f in Ωk, k = 1, 2, (1)
Φ2(u2) = Φ1(u1) on Γ (Dirichlet-like condition), (2)
Ψ1(u1)+ Ψ2(u2) = 0 on Γ (Neumann-like condition), (3)
boundary conditions on ∂Ω, (4)

where L1 and L2 are two differential operators (that may also coincide) while, for
k = 1, 2, Φk and Ψk are suitable boundary operators restricted to the interface
Γ , that depend upon the nature of the differential operators L1 and L2. More
specifically, Neumann conditions refer here to natural conditions that are enforced
weakly, whereas Dirichlet conditions identify those essential conditions that are
enforced directly in the solution subspaces, via the suitable choice of trial functions
(see, e.g., [13]). Typically for second order differential operators there is one
Dirichlet-like condition and one Neumann-like condition, however more general
situations are admissible.

Problem (1)–(4) provides an abstract setting for several kinds of differential
problems; here we present two instances of (1)–(4) which the INTERNODES
method is applied to.

2 Fluid Structure Interaction Problem

When modeling the coupling between fluids and solids, the viscous incompressible
Navier-Stokes equations are typically written in ALE (Arbitrarian Lagrangian
Eulerian) coordinates in the fluid domain, whereas an elasticity model (either linear
or nonlinear, depending on the type of structure) is solved in a reference frame; a
third field, the so-called geometry problem, allows to determine the displacement of
the fluid domain which defines, in turn, the ALE map, see, e.g., [4, 8, 15].

Let Ω̂s and Ω̂f be two non-overlapping reference configurations for the structure
and fluid domains, respectively, and Γ̂ = ∂Ω̂s∩∂Ω̂f be the fluid-structure reference
interface. We assume that the boundaries ∂Ω̂k, for k = s, f are Lipschitz continuous
and that (∂Ω̂k \ Γ̂ ) is the union of two nonoverlapping subsets ∂Ω̂N

k and ∂Ω̂D
k on

which Neumann and Dirichlet boundary conditions will be imposed, respectively.
Then, for any t ∈ (0, T ) let Ωs,t and Ωf,t be the computational structure and fluid
domains, respectively, such that Ωs,0 = Ω̂s , Ωf,0 = Ω̂f and Ωt = Ωs,t ∪ Ωf,t .
The current configurations Ωs,t and Ωf,t are defined as Ωk,t = {x = Dk,t (̂x) =
x̂ + d̂k (̂x, t), ∀̂x ∈ Ω̂k}, with k = s, f , where d̂s and d̂f are the displacements
induced by the dynamics (see Fig. 1).
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Fig. 1 At left: the ALE frame of reference. At right: the computational domains for the FSI
problem: the fluid domain Ωf,t and the structure domain Ωs,t . Γt = ∂Ωf,t ∩ ∂Ωs,t

We introduce the following entities:

– the outward unit normal vectors nk to ∂Ωk,t (current configuration) and n̂k to
∂Ω̂k (reference configuration),

– the Arbitrary-Lagrangian-Eulerian (ALE) velocity w = ∂d̂f
∂t

|̂x,
– the deformation gradient tensor for both structure (k = s) and fluid (k = f )

Fk = ∂x
∂ x̂ = I + ∂d̂k

∂ x̂ for any x̂ ∈ Ω̂k ,
– the fluid velocity uf and the fluid pressure pf , the dynamic viscosity of the fluid
μ, the fluid density ρf ,

– the Cauchy stress tensor for the fluid σ f = σ f (uf , pf ) = −pf I + μ(∇uf +
(∇uf )T ), and σ̂ f such that σ̂ f n̂f = det (Ff )F

−T
f σ f nf ◦ Df,t ,

– the Cauchy stress tensor σ s = σ s (̂ds ) and the first Piola-Kirchhoff tensor σ̂ s =
σ̂ s (̂ds ) = det (Fs )σ s (̂ds )F−T

s for the structure, the structure density ρs .

Then, for any t ∈ (0, T ) the structure and fluid displacements (̂ds and d̂f ) and
the fluid velocity and pressures (uf and pf ) are the solution of the FSI system:

structure problem (in reference configuration)

ρs
∂2d̂s
∂t2

− ∇ · σ̂ s = 0 in Ω̂s, (5)

fluid problem (in current configuration)

ρf
∂uf
∂t

∣∣∣̂
x
+ ρf ((uf − w) · ∇)uf − ∇ · σ f = 0, in Ωf,t , (6)

∇ · uf = 0 in Ωf,t , (7)

geometry problem (in reference configuration)
−!d̂f = 0 in Ω̂f , (8)

interface conditions (at interface in reference configuration)
σ̂ s n̂s + σ̂ f n̂f = 0 (dynamic) on Γ̂ , (9)

uf ◦ Df,t = ∂ d̂s
∂t

(kinematic) on Γ̂ , (10)

d̂f = d̂s (adherence) on Γ̂ , (11)
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completed with: the Dirichlet boundary conditions uf = gDf on Γ Df,t and d̂f = gDg
on Γ̂ 0

f ⊂ ∂Ω̂f , d̂s = gDs on Γ̂ Ds , the Neumann conditions σ f nf,t = gNf on Γ Nf,t ,

σ̂ s n̂s = gNs on Γ̂ Ns , and the initial conditions uf = u0 in Ωf,0, d̂s = d̂0,
∂d̂s
∂t

= d̂1
in Ωs,0.

System (5)–(11) can be recast in the form (1)–(4) by associating the structure
problem with L1(u1) (now representing nonlinear operators, the choices of u1
and u2 are obvious), the fluid problem and the geometric problem with L2(u2),
both the adherence and the kinematic interface conditions are interpreted as Φ-
like conditions (they involve the traces of the unknowns functions on Γ̂ ), whereas
the dynamic interface condition is interpreted as a Ψ -like condition (as it involves
normal stresses on Γ̂ ).

3 Fluids Filtration in Porous Media (Stokes-Darcy Coupling)

Flow processes in a free-fluid region adjacent to a porous medium occur in many
relevant applications. Under the (realistic) assumption that the Reynolds number in
the porous domain is small, the Navier-Stokes equations could be therein up-scaled
to a macroscopic level and replaced by the Darcy law.

Consider the case of a tangential flow of a fluid over a porous bed. This situation
is known in literature also as near parallel flows [12], i.e. flows for which the
pressure gradient is not normal to the interface and the Darcy velocity inside the
porous domain is much smaller than the velocity in the fluid domain. The most
widely used approach to couple the free fluid regime with the porous-medium one
consists of:

– the introduction of an artificial sharp interface Γ between the Stokes (or fluid)
domain Ωs and the Darcy (or porous) domain Ωd ;

– the imposition of the mass conservation, the balance of normal forces and the
Beavers-Joseph-Saffman (BJS) experimental law on Γ [6], see Fig. 2.

solid wall

medium
porous

Fig. 2 A typical setting of the Stokes-Darcy coupled problem for a fluid over a porous bed
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To write down the associated mathematical model, we introduce the following
entities:

– the outward unit normal vectors nk to ∂Ωk,
– the dynamic viscosity μ, the density ρ, the velocity us and the pressure ps of the

fluid in Ωs ,
– the Cauchy stress tensor for the fluid σ s = σ s(us , ps) = −psI + μ(∇us +
(∇us)T ),

– the Darcy velocity ud and the intrinsic average pressure pd in the porous domain,
the intrinsic permeability κ = κ(x) (for any x ∈ Ωd ) of the porous media,

– two given body forces fs and fd ,
– the normal unit vector nΓ to Γ directed from Ωs to Ωd (then nΓ = ns = −nd

on Γ ) and an orthonormal system of tangent vectors τ j , with j = 1, . . . , d − 1
on Γ .

The coupled problem that we consider reads:

Stokes problem (fluid domain)

−∇ · σ s = fs , ∇ · us = 0 in Ωs, (12)

Darcy problem (porous domain)

ud = − κ

μ
(∇pd − fd), ∇ · ud = 0 in Ωd, (13)

interface conditions (sharp interface)

us · ns + ud · nd = 0 (mass conservation) on Γ, (14)

(σ sns) · ns + pd = 0 (balance of normal forces) on Γ, (15)

(σ sns) · τ j + αμ√
τ j
T κτ j

us · τ j = 0, j = 1, . . . , d − 1, (BJS condition) on Γ, (16)

where α is a suitable parameter depending on the porous media. Indeed, the BJS
condition is not a coupling condition, as it only involves quantities from one side.

The system (12)–(16) is completed with suitable boundary conditions that read
(as usual,D stands for Dirichlet and N for Neumann): us = gDs on ∂ΩD

s , σsns = 0
on ∂ΩN

s , pd = 0 on ∂ΩD
d , ud · nd = gNd on ∂ΩN

d , where we assume that ∂ΩN
k and

∂ΩD
k are non-intersecting subsets of ∂Ωk \ Γ such that ∂ΩN

k ∪ ∂ΩD
k = ∂Ωk \ Γ .

The coupled system (12)–(16) can be recast in the form (1)–(4) by associating the
Stokes problem with L2(u2) and the Darcy problem with L1(u1). When considering
the weak (variational) formulation of the coupled problem (12)–(16), the interface
coupling conditions (14) and (15) can be treated in different ways depending on the
specific variational form used. In the form used in Sect. 6, the balance of normal
forces (15) plays the role of a Φ-like condition (2), while the mass conservation
condition (14) will be treated as a Ψ -like condition (3). In specific circumstances,
however, for instance when the interface Γ is parallel to one of the cartesian
coordinates, condition (14) can be easily enforced as a Dirichlet condition (thus
under the form (2)) on the space of trial functions and condition (15) as a Neumann
(natural) condition, e.g., like (3).
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4 Intergrid Operators for Non-conforming Discretization

We consider two a-priori independent families of triangulations T1,h1 in Ω1 and
T2,h2 in Ω2, respectively. The meshes in Ω1 and in Ω2 can be non-conforming
on Γ and characterized by different mesh-sizes h1 and h2. Moreover, different
polynomial degrees p1 and p2 can be used to define the finite element spaces. Inside
each subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and
quasi-uniform [14, Ch.3].

Then, for k = 1, 2, let Xk,hk = {v ∈ C0(Ωk) : v|T ∈ Ppk , ∀T ∈ Tk,hk }
be the usual Lagrangian finite element spaces associated with Tk,hh , while Yk,hk =
{λ = v|Γ , v ∈ Xk,hk } are the spaces of traces on Γ of functions in Xk,hk , whose
dimension is nk .

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively,
induced by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then Γ1 =
Γ2 = Γ , otherwise Γ1 and Γ2 may not coincide (see Fig. 3).

For k = 1, 2, let {x(Γk)1 , . . . , x(Γk)nk } ∈ Γ k be the nodes induced by the mesh Tk,hk .
We introduce two independent operators that exchange information between the

two independent grids on the interface Γ : Π12 : Y2,h2 → Y1,h1 and Π21 : Y1,h1 →
Y2,h2 .

If Γ1 = Γ2, Π12 and Π21 are the classical Lagrange interpolation operators
defined by the relations:

(Π12μ2,h2)(x
(Γ1)
i ) = μ2,h2(x

(Γ1)
i ), i = 1, . . . , n1, ∀μ2,h2 ∈ Y2,h2, (17)

(Π21μ1,h1)(x
(Γ2)
i ) = μ1,h1(x

(Γ2)
i ), i = 1, . . . , n2, ∀μ1,h1 ∈ Y1,h1 . (18)

If, instead, Γ1 and Γ2 are geometrically non-conforming, we define Π12 and
Π21 as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation
operators introduced in formula (3.1) of [3]. In both cases, the (rectangular) matrices
associated withΠ12 andΠ21 are, respectively,R12 ∈ R

n1×n2 and R21 ∈ R
n2×n1 and

they are defined by:

(R12)ij = (Π12μ
(2)
j )(x(Γ1)

i ) i = 1, . . . , n1, j = 1, . . . , n2,

(R21)ij = (Π21μ
(1)
j )(x(Γ2)

i ) i = 1, . . . , n2, j = 1, . . . , n1,
(19)

Fig. 3 Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2 , when d = 2
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where {μ(k)i } are the Lagrange basis functions of Yk,hk , for k = 1, 2 and i =
1, . . . , nk .

In the special conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the
interpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I

(the identity matrix of size n1 = n2). Finally, let MΓk such that

(MΓk )ij = (μ
(k)
j , μ

(k)
i )L2(Γk)

, k = 1, 2, (20)

be the interface mass matrices. To assemble both the interface mass matrices and
the interpolation matrices, for both the Lagrange and the RL-RBF approaches, the
only information that are needed are the coordinates of the interface nodes.

Let �, k ∈ {1, 2}. If μ(k) ∈ [Yk,hk ]d with d = 2, 3; by writing Π�kμ
(k)

we mean that the interpolation operator Π�k is applied to each component of
the vector-value function μ(k). Finally, MΓk = diag(MΓk , . . . ,MΓk ) and R�k =
diag(R�k, . . . , R�k) are block diagonal matrices with d blocks.

5 INTERNODES Applied to the FSI System

We define the functional spaces:

Vf,t = [H 1(Ωf,t )]d , Qf,t = L2(Ωf,t ), VD
f,t = {v ∈ Vf,t : v = 0 on ∂ΩD

f,t },
V0
f,t = {v ∈ Vf,t : v = 0 on ∂ΩD

f,t ∪ Γt }, Vs = [H 1(Ω̂s )]d ,
VD
s = {v ∈ Vs : v = 0 on ∂Ω̂D

s }, V0
s = {v ∈ Vs : v = 0 on ∂Ω̂D

s ∪ Γ̂ },
Vg = [H 1(Ω̂f )]d , VD

g = {v ∈ Vg : v = 0 on ∂Ω̂0
f }, Λ̂ = [H 1/2

00 (Γ̂ )]d ,
(21)

and the lifting operators Rs : Λ̂ → V̂
D

s s.t. (Rs λ̂)|Γ̂ = λ̂, Rf,t : Λ̂ → VD
f,t s.t.

(Rf,t λ̂)|Γt = λ̂ ◦ D−1
f,t .

Let us discretize the time derivatives by standard finite difference schemes (e.g.
a backward differentiation formula to approximate the first order derivative and
the Newmark method to approximate the second one). The weak semi-discrete
(continuous in space) counterpart of the FSI system (5)–(11) reads: for any time
level tn, with n ≥ 1, find unf ∈ Vf,tn , pnf ∈ Qf,tn , d̂

n

f ∈ Vg and d̂
n

s ∈ Vs satisfying

the Dirichlet boundary conditions unf = gDf (t
n) on Γ Df,tn and d̂

n

f = gDg (t
n) on

Γ̂ 0
f ⊂ ∂Ω̂f , d̂

n

s = gDs (t
n) on Γ̂ D

s and the initial conditions u0
f = u0 in Ωf,0,

d̂
0
s = d̂0, and ∂d̂s

∂t
|t=0 = d̂1 in Ωs,0, such that:

As (̂d
n

s , v̂s ) = F n
s (̂vs ) ∀̂vs ∈ V0

s , (22)

Af (unf , d̂
n

f ; vf )+ Bf (vf , pnf ) = F n
f (vf ) ∀vf ∈ V0

f,tn, (23)

Bf (unf , q) = 0 ∀q ∈ Qf,tn, (24)
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G (̂d
n

f , v̂g) = 0 ∀̂vg ∈ VD
g , (25)

As (̂d
n

s ,Rsμ̂)+ Af (unf , d̂
n

f ;Rf μ̂)+ Bf (Rf μ̂, pnf ) (26)
= F n

s (Rsμ̂)+ F n
f (Rf μ̂) ∀μ̂ ∈ Λ̂,

unf ◦ Df,tn = a3d̂
n

s + b̂
n−1
3 , d̂

n

f = d̂
n

s on Γ̂ , (27)

where

As (̂ds , v̂s) = ∫
Ω̂s
(ρsa1d̂s · v̂s + σ̂ s : ∇x̂̂vs) dΩ̂,

F n
s (̂vs) = ∫

∂Ω̂N
s

gns,N · v̂sdγ̂ + ∫
Ω̂s

bn−1
1 dΩ̂,

G (̂df , v̂g) = ∫
Ω̂f

∇x̂d̂f : ∇x̂̂vg dΩ,

Af (uf , d̂f ; vf ) = ∫
Ωf,t

ρf (a2uf + ((uf − w) · ∇)uf ) · vf dΩ

+ ∫
Ωf,t

μ(∇uf + (∇uf )T ) : ∇vf ) dΩ,

Bf (uf , qf ) = ∫
Ωf,t

(∇ · uf )q dΩ,

F n
f (vf ) = ∫

∂ΩN
f,t

gnf,N · vf dγ + ∫
Ωf,t

bn−1
2 · vf dΩ,

with a1, a2, a3 suitable real values and bn−1
1 ,bn−1

2 , and bn−1
3 (depending on the

solution at the previous time levels) suitable vector functions arising from the finite
difference discretization of the time derivatives.

Equation (26) is the weak counterpart of the dynamic interface condition (9).
We consider now independent finite element space discretizations (as described

in Sect. 4) in Ω̂f and Ω̂s (a suitable inf-sup stable couple of finite elements will
be considered in the fluid domain) that may induce two different discrete interfaces
Γ̂f = Tf,hf ∩ Γ̂ and Γ̂s = Ts,hs ∩ Γ̂ in the case that Γ̂ is curved as in Fig. 3,
right. Then we use the subindices hk , for k = s, f , to characterize the subspaces
of the functional spaces (21) as well as the discrete counterpart of each variable
appearing in the system (22)–(27). From now on, in d̂

n

s,hs
, unf,hf , d̂

n

f,hf
, and pnf,hf ,

the super-index n will be omitted for sake of notations.
In order to apply the INTERNODES method to the discrete counterpart of (22)–

(27), we define the scalar quantities:

rs,i = As (̂ds,hs ,Rsμ̂
(s)
i )− F n

s (Rsμ̂
(s)
i ), i = 1, . . . , d · ns,

rf,i = Af (uf,hf , d̂f,hf ;Rf μ̂
(f )
i )+ Bf (Rf μ̂

(f )
i , pf,hf )

−F n
f (Rf μ̂

(f )
i ), i = 1, . . . , d · nf

(28)

(where {μ̂(k)i }d ·nki=1 are the Lagrange basis functions of [Yk,hk ]d ) and

zk,j =
d ·nk∑
i=1

(M−1
Γ̂k
)jirk,i , k = s, f, j = 1, . . . , d · nk, (29)
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and the functions rk,hk =
d ·nk∑
j=1

zk,j μ̂
(k)
j ,which are the so called discrete residuals and

are the discrete counterpart of σ̂ kn̂k.
The INTERNODES method applied to system (9)–(11) at any tn reads:

As (̂ds,hs , v̂s,hs ) = F n
s (̂vs,hs ) ∀̂vs,hs ∈ V0

s,hs
, (30)

Af (uf,hf , d̂f,hf ; vf,hf )+ Bf (vf,hf , pf,hf ) = F n
f (vf,hf ) ∀vf,hf ∈ V0

f,hf ,t
n ,(31)

Bf (uf,hf , qf,hf ) = 0 ∀qf,hf ∈ Qf,hf ,t
n ,(32)

G (̂df,hf , v̂g,hg ) = 0 ∀̂vg,hg ∈ VD
g,hg

, (33)

rs,hs +Πsf rf,hf = 0 (dynamic) on Γ̂s , (34)

uf,hf ◦ Df,tn = Πfs(a3d̂s,hs + b̂
n−1
3 ) (kynematic) on Γ̂f , (35)

d̂f,hf = Πfs d̂s,hs (adherence) on Γ̂f . (36)

The conditions (34)–(36) are the INTERNODES counterpart of the interface
condition (9)–(11), obtained by applying the intergrid operators Π12 and Π21
defined in Sect. 4. More precisely, if we make the associations s ↔ 1 and f ↔ 2,
the operator Πfs(= Π21) is used to interpolate on Γ̂f each component of the

discrete traces d̂s,hs and (the discretization of) ∂d̂s,hs
∂t

|tn that are known on Γ̂s , while
Πsf (= Π12) is used to interpolate on Γ̂s each component of the discrete counterpart
of the normal stress σ̂ f n̂f that is known on Γ̂f .

By construction, rk,hk ∈ Yk = [Yk,hk ]d , for k = s, f , and then rf,hf has the
sufficient regularity to be interpolated.

Remark 1 The scalar values (28), typically computed as algebraic residuals at
the interface of the finite element system, are not the coefficients of the function
rk,hk w.r.t. the Lagrange expansion {μ̂(k)j }, rather the coefficients of rk,hk w.r.t. the

canonical basis {ψ̂(k)

i }d ·nki=1 of Y′
k,hk

. The latter is the dual to {μ̂(k)j }, that is it satisfies

the relations (ψ̂
(k)

i , μ̂
(k)
j )L2(Γ̂k)

= δij , for i, j = 1, d ·. . . , nk,with δij the Kronecker

delta. It can proved (see [2]) that ψ̂
(k)

i = ∑d ·nk
j=1(M

−1
Γk
)jiμ̂

(k)
j , i.e., the interface mass

matrix MΓk and its inverse play the role of transfer matrices from the Lagrange basis
to the dual one and viceversa, respectively.

Denoting by rf , rs , uf , ds , df , bn−1
3 , and df the arrays whose entries are

the Lagrangian degrees of freedom of rf,hf , rs,hs , uf,hf , d̂s,hs , d̂f,hf , and bn−1
3 ,

respectively, the algebraic form of the INTERNODES conditions (34)–(36) reads:

M−1
Γs

rs + RsfM−1
Γf

rf = 0, (37)

uf = Rf s(a3ds + bn−1
3 ), (38)

df = Rf sds . (39)

Notice that (37) can be equivalently written as rs + MΓsRsfM−1
Γf

rf = 0.
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The INTERNODES method has been successfully applied to the FSI system in
[4, 8].

6 INTERNODES Applied to the Stokes-Darcy System

We define the functional spaces:

Vs = [H 1(Ωs)]d , VD
s = {v ∈ Vs : v = 0 on ∂ΩD

s }, (40)
Vd = {v ∈ [L2(Ωd)]d : ∇ · v ∈ L2(Ωd)}, VNd = {v ∈ Vd : v · n = 0 on ∂ΩN

d },
Qs = L2(Ωs), Qd = L2(Ωd), Λ = H

1/2
00 (Γ ).

Then we consider the following weak form of the Stokes-Darcy coupled problem
(12)–(16) [11]: find us ∈ Vs , ps ∈ Qs , ud ∈ Vd , pd ∈ Qd , and λ ∈ Λwith us = gDs
on ∂ΩD

s , ud · nd = gNd on ∂ΩN
d such that:

2μ
∫
Ωs

D(us) : D(vs ) dΩ −
∫
Ωs

ps∇ · vs dΩ +
∫
Γ

λvs · ns dΓ (41)

+
d−1∑
j=1

∫
Γ

αj (us · τ j )(vs · τ j ) dΓ =
∫
Ωs

fs · vs dΩ ∀vs ∈ VD
s ,

∫
Ωs

qs∇ · us dΩ = 0 ∀qs ∈ Qs,

μ

∫
Ωd

(κ−1ud) · vd dΩ −
∫
Ωd

pd∇ · vd dΩ +
∫
Γ

λvd · nd dΓ (42)

=
∫
Ωd

fd · vd dΩ ∀vd ∈ VN
d ,∫

Ωd

qd∇ · ud dΩ = 0 ∀qd ∈ Qd,∫
Γ

us · nsη +
∫
Γ

ud · ndη = 0 ∀η ∈ Λ, (43)

whereD(v) = (∇v + (∇v)T )/2, while αj = αμ/
√

τTj κτ j .

The Lagrange multiplier λ ∈ Λ is in fact λ = pd = −(σsns) · ns on Γ.
We discretize both Stokes problem (12) and Darcy problem (13) by inf-sup stable

(or stabilized) couples of finite elements (see, e.g., [7]). Independent finite element
space discretizations (as described in Sect. 4) are considered in Ωs and Ωd that may
induce two different discrete interfaces Γs = Ts,hs ∩ Γ and Γd = Td,hd ∩ Γ in
the case that Γ is curved as in Fig. 3, right. Then we use the subindices hk , for
k = s, d , to characterize the subspaces of the functional spaces (40) as well as
the discrete counterpart of each variable appearing in the system (41)–(43). For
k = s, d , Λk,hk = Λ ∩ Yk,hk .
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In order to apply the INTERNODES method to the discrete counterpart of (41)–
(43), we define the scalar quantities:

rk,i =
∫
Γ

(uk,hk · nk)μ
(k)
i , i = 1, . . . , nk, k = s, d, (44)

(where {μ(k)i }nki=1 are the Lagrange basis functions of Yk,hk ) and

zk,j =
nk∑
i=1

(M−1
Γk
)jirk,i , j = 1, . . . , nk, k = s, d, (45)

and the discrete functions (belonging to Yk,hk )

wk,hk =
nk∑
j=1

zk,jμ
(k)
j . (46)

The INTERNODES form of problem (41)–(43) reads: find us,hs ∈ Vs,hs , ps,hs ∈
Qs,hs , ud,hd ∈ Vd,hd , pd,hd ∈ Qd,hd , λs,hs ∈ Λs,hs and λd,hd ∈ Λd,hd (satisfying
the given boundary conditions) such that:

2μ
∫
Ωs

D(us,hs ) : D(vs,hs ) dΩ −
∫
Ωs

ps,hs∇ · vs,hs dΩ +
∫
Γ

λs,hsvs,hs · ns dΓ (47)

+
d−1∑
j=1

∫
Γ

αj (us,hs · τ j )(vs,hs · τ j ) dΓ =
∫
Ωs

fs · vs,hs dΩ ∀vs,hs ∈ VD
s,hs
,

∫
Ωs

qs,hs∇ · us,hs dΩ = 0 ∀qs,hs ∈ Qs,hs ,

μ

∫
Ωd

(κ−1ud,hd ) · vd,hd dΩ −
∫
Ωd

pd,hd∇ · vd,hd dΩ (48)

+
∫
Γ

λd,hd vd,hd · nd dΓ =
∫
Ωd

fd · vd,hd dΩ ∀vd,hd ∈ VN
d,hd

,∫
Ωd

qd,hd∇ · ud,hd dΩ = 0 ∀qd,hd ∈ Qd,hd ,

Πdsws,hs + wd,hd = 0 on Γd, (49)

λs,hs = Πsdλd,hd on Γs . (50)

The conditions (49)–(50) are the INTERNODES counterpart of the interface
condition (14)–(15), obtained by applying the intergrid operators Π12 and Π21
defined in Sect. 4. More precisely, if we make the associations d ↔ 1 and s ↔ 2, the
operator Πsd(= Π21) is used to interpolate on Γs the discrete trace of pd,hd that is
known on Γd , while Πds(= Π12) is used to interpolate on Γd the weak counterpart
of us,hs · ns that is known on Γs .
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Denoting by ws , wd , ts , and td , the arrays whose entries are the Lagrangian
degrees of freedom ofws,hs , wd,hd , λs,hs , and λd,hd respectively, the algebraic form
of the INTERNODES conditions (49)–(50) reads:

RdsM
−1
Γs

ws +M−1
Γd

wd = 0, ts = Rsd td . (51)

We test the accuracy of INTERNODES by solving problem (12)–(16) with:
Ωs = (0, 1) × (1, 2), Ωd = (0, 1) × (0, 1), μ = 1, κ = 10−2, κ =
κI , boundary data and fs = fd are such that the exact solution is us =
κ[− sin(π2 x) cos(π2 y) − y + 1, cos(π2 x) sin(π2 y) − 1 + x], ps = 1 − x, ud =
κ[sin(π2 x) cos(π2 y) + y, cos(π2 x) sin(π2 y) − 1 + x], pd = 2

π
cos(π2 x) sin(π2 y) −

y(x−1).The approximation in each subdomain is performed with stabilized hp-fem
on quadrilaterals ([7]). The errors es = ‖us−us,hs‖H 1(Ωs)

+‖ps−ps,hs‖L2(Ωs)
and

ed = ‖ud−ud,hd‖L2(Ωd)
+‖pd−pd,hd‖H 1(Ωd)

are shown in Fig. 4, versus either the
mesh sizes hs , hd and the polynomial degrees ps and pd , they decay exponentially
w.r.t. the polynomial degrees (Fig. 4, at left) and with order q = ps = pd w.r.t. the
mesh sizes (Fig. 4, at center and at right).

In Fig. 5 we show the INTERNODES solution computed for the cross-flow
membrane filtration test case with non-flat interface Γ . The setting of the problem
is given in Sect. 5.3 of [7]. We have considered either a cubic spline interface (Fig. 5
at the left) and a piece-wise interface (Fig. 5 at the right). Quadrilaterals hp-fem are
used for the discretization in eitherΩs and Ωd . The solution at left is obtained with
hs = 3/8, hd = 1/2, and ps = pd = 4, that at right with hs = hd = 3/8, ps = 4
and pd = 3. RL-RBF interpolation is used to build the intergrid operators (17) when
Γ is curved, and Lagrange interpolation when Γ is piece-wise linear.

Numerical results show that INTERNODES keeps the optimal accuracy of the
local discretizations and that it is a versatile method to deal with non-conforming
interfaces.

Fig. 4 Errors es (red) and ed (blue) for the Stoked-Darcy problem (12)–(16) solved on non-
conforming meshes by the INTERNODES method
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Fig. 5 INTERNODES solution of the Stokes-Darcy coupling. The velocity field us is red in Ωs
and black in Ωd , the underground colored scalar field is the hydrodynamic pressure. Γ is curved
at left and piece-wise linear at right
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Domain Decomposition Approaches
for PDE Based Mesh Generation

Ronald D. Haynes

1 Introduction

Automatically adaptive and possibly dynamic meshes are often introduced to solve
partial differential equations (PDEs) whose solutions evolve on disparate space and
time scales. In this paper we will review a class of PDE based mesh generators
in 1D and 2D—a PDE is formulated and its solution provides the mesh used to
approximate the solution of the physical PDE of interest. The physical PDE and
mesh PDE are coupled and are solved in a simultaneous or decoupled manner. The
hope is that the cost of computing the mesh, by solving the mesh PDE, should not
substantially increase the total computational burden and ideally the mesh solution
strategy should fit within the overall solution framework.

Meshes which automatically react to the solution of the physical PDE fall
into (at least) two broad categories: hp-refinement and r-refinement—PDE based
mesh generation which evolves a fixed number of mesh points with a fixed
topology. The choice of mesh generator is often predicated on the class of problem
and experience of the practitioner. The PDE based mesh generators, motivated
by r-refinement, discussed here, can be designed to capture dynamical physics,
Lagrangian behaviour, symmetries, conservation laws or self-similarity features of
the physical solution, and achieve global mesh regularity.

In this overview paper, we review parallel solution strategies for the mesh
PDE and the coupled system using domain decomposition (DD) and survey
various known theoretical results. The analysis of the optimized Schwarz method
(OSM) uses several classical tools including Peaceman-Rachford iterations and
monotone convergence using the theory of M-functions. We present previews of
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two extensions of our previous work. We provide an analysis of OSM on two
subdomains using the theory of M-functions. We also introduce a coarse correction
for the mesh PDE to improve convergence of DD as the number of subdomains
increases.

In this paper we provide a brief review of PDE based mesh generation (Sect. 2),
an overview of, and theoretical convergence results for, Schwarz methods to solve
the mesh PDE (Sect. 3), a new strategy for the analysis of OSM and a new coarse
correction algorithm to solve the nonlinear mesh PDE (Sect. 4).

2 PDE Based Mesh Generation

We consider PDEs whose numerical solution can benefit from automatically
chosen non-uniform meshes. r-refinement adapts an initial grid by relocating a
fixed number of mesh nodes. The mesh is determined by solving a mesh PDE
simultaneously, or in an iterative fashion, with the physical PDE. Suppose the PDE
defined on the physical domain x ∈ Ωp = [0, 1] is difficult to solve in the physical
co-ordinate x. We compute a mesh transformation, x = x(ξ, t), so that solving
the problem on a uniform mesh ξi = i

N
, i = 0, 1, . . . , N , with moderate N , is

sufficient. In one dimension, such a mesh transformation can be constructed by the
equidistribution principle of de Boor [7]. Given some measure of the error in the
physical solution,M (called the mesh density function), we require

∫ xi(t)

xi−1(t)

M(t, x̃, u) dx̃ = 1

N

∫ 1

0
M(t, x̃, u) dx̃,

which says that the error in the solution is equally distributed across all intervals.
If we assume some approximation to the physical solution u is given, then in the

steady case a continuous form of the mesh transformation can be found by solving
the nonlinear boundary value problem (BVP)

∂

∂ξ

{
M(x(ξ))

∂

∂ξ
x(ξ)

}
= 0, subject to x(0) = 0 and x(1) = 1. (1)

The boundary conditions ensure mesh points at the boundaries of the
physical domain. This is equivalent to minimizing the functional I [x] =
1
2

∫ 1
0

(
M(x)dx

dξ

)2
dξ. Discretizing and solving gives the physical mesh locations

directly, however the Euler-Lagrange (EL) equations are nonlinear, and a system of
nonlinear algebraic equations must be solved upon discretization.

As an example, consider constructing an equidistributing grid for the function
u(x) = (eλx − 1)/(eλ − 1) for large λ. A uniform grid in the physical co-ordinate x
would require a large number of mesh points to resolve the boundary layer near
x = 1. Instead we solve the nonlinear BVP above on a uniform grid ξi = i

N
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Fig. 1 An example of an equidistributing grid for a boundary layer function

with M(x, u) ∼ √
1 + |uxx |2 and we obtain the grid locations corresponding to

the abscissa of the green circles in Fig. 1. The solution on a uniform grid (white
squares) is shown for comparison.

Alternatively, we can solve for the the inverse transformation, ξ(x), as the
solution of

d

dx

(
1

M(x)

dξ

dx

)
= 0, ξ(0) = 0, ξ(1) = 1,

or as the minimizer of the functional I [ξ ] = 1
2

∫ 1
0

1
M(x)

(
dξ
dx

)2
dx.

The EL equations are now linear, and discretizing on a uniform grid in x gives
a linear system for the now non-uniform points in the computational co-ordinate ξ .
We have to invert the transformation to find the required physical mesh locations. It
is easier to ensure well-posedness in higher dimensions (d ≥ 2) for this formulation.

In two dimensions, solution independent, but boundary fitted meshes, can be
found by generalizing the formulations above, but setting the mesh density to be the
identity function. The mesh transformation x = [x(ξ, η), y(ξ, η)] : Ωc → Ωp can
be found by minimizing

I [x, y] = 1

2

∫
Ωc

[(
∂x

∂ξ

)2

+
(
∂x

∂η

)2

+
(
∂y

∂ξ

)2

+
(
∂y

∂η

)2
]
dξdη.

The EL equations are

∂2x

∂ξ2 + ∂2x

∂η2 = 0,
∂2y

∂ξ2 + ∂2y

∂η2 = 0.
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Fig. 2 PDE generated physical grid lines on L-shaped domains

Solving the EL equations subject to boundary conditions, which ensure mesh points
on the boundary ofΩp, gives a boundary fitted co-ordinate system. Care is required,
however, as folded meshes may result if Ωp is concave (see the left of Fig. 2 where
Ωp is L-shaped andΩc = [0, 1]2).

If instead we solve for the inverse mesh transformation ξ = [ξ(x, y), η(x, y)] :
Ωp → Ωc by minimizing

I [ξ, η] = 1

2

∫
Ωp

[(
∂ξ

∂x

)2

+
(
∂ξ

∂y

)2

+
(
∂η

∂x

)2

+
(
∂η

∂y

)2
]
dxdy,

or solving the EL equations

∂2ξ

∂x2 + ∂2ξ

∂y2 = 0,
∂2η

∂x2 + ∂2η

∂y2 = 0,

subject to appropriate boundary conditions, we obtain the mesh on the right of Fig. 2.
This is the equipotential mesh generation method of Crowley [6]. The physical grid
lines are obtained as level curves ξ = C, η = K . This approach is more robust—
well-posed if the domain Ωc (which we get to choose) is convex, see [8]. But as
mentioned previously it is more complicated to get the physical mesh.

Solution dependent meshes in higher dimensions can be constructed by
specifying a scalar mesh density function M = M(u, x) > 0, character-
izing where additional mesh resolution is needed, and minimizing I [x] =
1
2

∫
Ωp

1
M

∑
i (∇ξi)T∇ξidx. The EL equations give the variable diffusion mesh

generator of Winslow [26], which requires the solution of the elliptic PDEs

−∇ ·
(

1
M

∇ξi
)

= 0, i = 1, 2, . . . , d. This gives an isotropic mesh generator.

Godunov and Prokopov [10], Thompson et al. [25] and Anderson [2], for example,
add terms to the mesh PDEs to better control the mesh distribution and quality.
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Fig. 3 A mesh generated using a Winslow generator on an L-shaped domain

As an example, in Fig. 3, we illustrate the mesh obtained by adapting a mesh for a
solution with a rapid transition at x = 3/4 and using an arc-length basedM .

If the physical solution has strong anisotropic behaviour, corresponding mesh
adaptation is desired. This can be achieved by using a matrix-valued diffusion
coefficient [5] and minimizing I [x] = 1

2

∫
Ωp

∑
i (∇ξi)TM−1(∇ξi)dx where M is a

spd matrix.
These approaches can be extended to the time dependent situation, where x =

x(ξ , t) or ξ = ξ(x, t); we obtain moving mesh PDEs as the modified gradient flow
equations for the adaptation functionals.

In addition to the variational approach to derive the mesh PDEs mentioned above,
there are other PDE based approaches including harmonic maps, Monge–Ampère,
and geometric conservation laws, see [15] for a recent extensive overview.

3 Domain Decomposition Approaches and Analysis
for Nonlinear Mesh Generation

We wish to design and analyze parallel approaches to solve the continuous (and
discrete forms) of the PDE mesh generators discussed above. Our research goal
is to systematically analyze DD based implementations to solve mesh PDEs and
coupled mesh-physical PDE systems.
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3.1 Mesh/Physical PDE Solution Strategies

There are several approaches to introduce parallelism, by domain decomposition,
while solving PDEs which require or benefit from a PDE based mesh generator.
As an example we consider generating a time dependent mesh for a moving interior
layer problem. In [14] we apply DD in the physical co-ordinates by partitioningΩp,
and use an adaptive, moving mesh solver in each physical domain. This is illustrated
in the left of Fig. 4 for two overlapping subdomains; the solver tracks a front which
develops and moves to the right. In each physical subdomain, the mesh points react
and follow the incoming front. In general, this approach needs hr-refinement to
predict the number of mesh points in each subdomain and could result in a severe
load balancing issue. Alternatively, one could fix the total number of mesh points
and apply DD in the fixed, typically uniform, computational co-ordinates, by parti-
tioning Ωc. This gives rise to time dependent or moving subdomains, as viewed in
the physical co-ordinate system, as shown in the right of Fig. 4 for a similar moving
front. The subdomains are shaded dark and light gray, with the overlap in between.

In Fig. 5 we illustrate a two dimensional mesh computed using a classical
Schwarz iteration applied in Ωc, on two overlapping subdomains (the overlap is
shown in green). DD is applied to the two dimensional nonlinear mesh generator of
[16]. Here the mesh is adapted to the physical solution given by

u = tanh(R(
1

16
− (x − 1

2
)2 − (y − 1

2
)2))

and

M = a2∇u · ∇uT
1 + b∇uT∇u + I,

where a = 0.2 and b = 0.

3.2 PDE Based Mesh Generation Using Schwarz Methods

Here we will focus on the analysis of DD methods for the mesh PDE applied in
the computational co-ordinates, assuming an approximation to the solution of the
physical PDE is given. To generate the physical mesh locations directly, we are
interested in the solution of the nonlinear BVP (1).

A general parallel Schwarz approach would partition ξ ∈ Ωc into two subdo-
mains Ω1 = (0, β) and Ω2 = (α, 1) with α ≤ β. Let xn1 and xn2 solve

d

dξ

(
M(xn1 )

dxn1

dξ

)
= 0 on Ω1

xn1 (0) = 0

B1(x
n
1 (β)) = B1(x

n−1
2 (β))

d

dξ

(
M(xn2 )

dxn2

dξ

)
= 0 on Ω2

B2(x
n
2 (α)) = B2(x

n−1
1 (α))

xn2 (1) = 1,

where B1,2 are transmission operators between the subdomains.
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Fig. 5 DD solution of
two-dimensional mesh
generator
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If 0 < m̌ ≤ M(x) ≤ m̂ < ∞, we show in [9] the overlapping (β > α)
parallel classical Schwarz iteration (B1,2 = I ) converges for any initial guess x0

1(α),

x0
2(β), with a contraction factor ρ := α

β
1−β
1−α < 1 which improves with the size

of the overlap. As expected α < β is needed for convergence. A multidomain
result is also given in [9] with a contraction rate that deteriorates as the number
of subdomains increases. This result motivates the need for a coarse correction (see
Sect. 4). Optimal Schwarz methods using non-local transmission conditions (TCs)
giving finite convergence have been proposed and analyzed in [9, 12]. This comes
at a cost as nonlocal TCs are expensive!

We can recover a local algorithm, an OSM, on two subdomains by approx-
imating the non-local TCs. We decompose ξ ∈ [0, 1] into two non-overlapping
subdomains Ω1 = [0, α] and Ω2 = [α, 1] and approximate the optimal TCs with
nonlinear Robin TCs. Using the notation above, we choose B1(·) = M(·)∂ξ (·) +
p(·) and B2(·) = M(·)∂ξ (·) − p(·), where p is a constant chosen to improve
the convergence rate. The OSM is equivalent to a nonlinear Peaceman–Rachford
interface iteration for the interface values

(pI − R2)x
n+1
2 (α) = (pI − R1)x

n
1 (α),

(pI + R1)x
n+1
1 (α) = (pI + R2)x

n
2 (α),

(2)

where the operators R1 and R2, given by R1(x) = 1
β

∫ x
0 M dx̃ and R2(x) =

1
1−β

∫ 1
x M dx̃, are strictly monotonic (increasing and decreasing respectively). This

type of iteration has been analyzed by Kellogg and Caspar [17] and Ortega and
Rheinboldt [18]. In [9] we show convergence for all p > 0 and the contraction rate
can be minimized by an appropriate choice of p.

An analysis of the classical Schwarz algorithm at the discrete level has been
provided in [13] in the steady and time dependent cases using a θ method to
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discretize in time. Using the notion of M-functions, which we will revisit in the
next section, we have shown convergence of nonlinear Jacobi and Gauss–Seidel
(and block versions) starting from super and sub solutions or from a uniform initial
guess.

A dramatically different parallel technique for PDE mesh generation has been
considered by Haynes and Bihlo in [3]. Motivated by the possible lower accuracy
requirements for mesh generation we have investigated stochastic domain decom-
position (SDD) methods, proposed by Acebrón et al. [1], Spigler [24], and Peirano
and Talay [19]. These methods use the Feynmac-Kac formula (and Monte-Carlo) to
approximate the linear mesh generator in 2D/3D along artificial interfaces. These
interface solutions then provide boundary conditions for the deterministic solves
in the subdomains. No iteration is required, and the method is fully parallel. The
method may be expensive in the relatively rare situation that the mesh is needed
with high-accuracy due to the slow convergence of the Monte Carlo evaluations.

4 Some Extensions

In this section, we provide previews of two extensions of the work described above.

4.1 Optimized Schwarz on Many Subdomains

Her we show an alternate approach to obtain a sufficient condition for convergence
of the OSM for the grid generation problem. This approach, which guarantees a
monotonic convergence result, is generalizable to an arbitrary number of subdo-
mains. Here we will give a flavour of the analysis on two subdomains. The general
result was studied by Sarker [22] and will be published elsewhere.

To demonstrate the difficulty of generalizing the OSM analysis to an arbitrary
number of subdomains, consider partitioningΩc into three non-overlapping subdo-
mains, [0, α1], [α1, α2] and [α2, 1]. The analysis of the parallel OSM to generate
equidistributing grids requires us to study the interface iteration

pyn1 + R1(x
n
1 , y

n
1 ) = pxn−1

2 + R2(x
n−1
2 , yn−1

2 ),

pxn2 − R2(x
n
2 , y

n
2 ) = pyn−1

1 − R1(x
n−1
1 , yn−1

1 ),

pyn2 + R2(x
n
2 , y

n
2 ) = pxn−1

3 + R3(x
n−1
3 , yn−1

3 ),

pxn3 − R3(x
n
3 , y

n
3 ) = pyn−1

2 − R2(x
n−1
2 , yn−1

2 ),

(3)

where xn1 = 0 and yn3 = 1,Ri(xi, yi) = 1
αi−αi−1

∫ yi
xi
M(σ) dσ, and we define α0 ≡ 0

and α3 ≡ 1.



82 R. D. Haynes

The Peaceman–Rachford analysis relies on the monotonicity of the operators
which define the subdomain solutions. The difficulty in the analysis of (3) lies
in the coupled system of equations which arise from the middle subdomain. This
coupled system involves the operator pI + H . The operator H = (−R2, R2)

T is
not monotonic and hence the two subdomain analysis can not be repeated, at least
not in a straightforward way.

We pursue an alternate tack to obtain a sufficient condition for convergence. It is
well known that for linear systems, Ax = b, Gauss–Seidel and Jacobi will converge
for any initial vector if A is symmetric positive definite, or if A is an M-matrix
(for example if aij ≤ 0, i �= j , aii > 0 and A is strictly diagonally dominant).
Analogous results for nonlinear systems, Fx = b, where

Fx ≡ (f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn))
T and

b = (b1, b2, . . . , bn)
T ,

were obtained by Schechter [23] who showed if F has a continuous, symmetric,
and uniformly positive definite (Frechet) derivative then nonlinear Gauss–Seidel
converges. The analogousM-matrix condition for convergence was extended to the
nonlinear case by Rheinboldt [21], with the introduction of M-functions. To be an
M-function requires F to have certain monotonicity, sign and diagonal dominance
properties. Rheinboldt gives the following sufficient condition to guarantee a
nonlinear map F is an M-function.

Theorem 1 Let D be a convex and open subset of Rn. Assume F : D ⊂ R
n → R

n

is off-diagonally non-increasing, and that for any x ∈ D, the functions qi : Si ⊂
R → R

n defined as

qi(τ ) =
n∑
j=1

fj (x + τei), i = 1, . . . , n, with Si = {τ : x + τei ∈ D },

are strictly increasing. Then F is anM-function.

If F is an M-function and if Fx = b has a solution then it is unique. Moreoever,
Ortega and Rheinboldt [18] show that if F is a continuous, surjective M-function
then for any initial vector the nonlinear Jacobi and Gauss–Seidel processes will
converge to the unique solution. Results for the convergence of block versions of
these iterations exist [20]. This result generalizes the classical result of Varga for
M-matrices. We note that the parallel OSM (3) is a nonlinear block Jacobi iteration.

As an application of this theory we reconsider the two subdomain iteration (2).
The technique generalizes to an arbitrary number of subdomains. The iteration (2)
is well-posed. Existence and uniqueness for a given right hand side is trivial since
the functions are uniformly monotone and tend to ±∞ as x1,2 → ±∞. The two
subdomain interface solution would solve the system F = (f1, f2)

T = 0 where
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f1(x, y) = R1(x)−R2(y)+px−py = 0 and f2(x, y) = −R2(y)+R1(x)+py−
px = 0. In [22] Sarker obtains the following result.

Theorem 2 The function F = (f1, f2)
T above is a surjective M-function if p >

max{1/α, 1/(1−α)}m̂. Hence, the iteration (2) will converge to the unique solution
of F = 0 for any initial vector. The convergence will be monotone if we start from a
super or sub solution.

Proof Clearly the function F is continuous. By direct calculation and the bounds
on M we have ∂f1

∂x
= 1

α
M(x) + p > 0 and ∂f2

∂y
= 1

1−αM(y) + p > 0, for all
p > 0. Hence f1 and f2 are strictly increasing. Therefore, F is strictly diagonally
increasing. Furthermore, ∂f1

∂y
= 1

1−αM(y) − p and ∂f2
∂x

= 1
α
M(x) − p. Hence, if

p > { m̂
α
, m̂

1−α } then F is off-diagonally decreasing. A super (sub) solution, a vector
(x̂, ŷ) satisfying F(x̂, ŷ) ≥ 0 (≤ 0), can easily be constructed [22]. Monotone
convergence from (x̂, ŷ) follows from Theorem 13.5.2 of [18].

To show that F is an M-function, we now consider the functions qi(t) =∑2
j=1 fj (X + tei) where ei ∈ R2 is the i-th standard basis vector, for i = 1, 2.

The functions q1(t) and q2(t) are given by q1(t) = f1(x + t, y) + f2(x + t, y) =
2R1(x+ t)−2R2(y) and q2(t) = f1(x, y+ t)+f2(x, y+ t) = 2R1(x)−2R2(y+ t).
Hence dq1

dt
= 2

α
M(t) > 0 and dq2

dt
= 2

1−αM(t) > 0 and we conclude that qi
is strictly increasing, for i = 1, 2. Hence F is an M-function from Theorem 1.
Surjectivity requires a super and sub solution for Fx = b for a general b, see [22].
The convergence from any initial vector then follows from Theorem 13.5.9 of [18].

In Fig. 6 we see monotonic convergence (consistent with theM-function theory)
if p is large enough and non-monotonic convergence for small p (consistent with
the Peaceman–Rachford theory).
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Fig. 6 Convergence history of the interface iteration for small and large p values
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Fig. 7 Schwarz convergence results on multidomains and multidomains with a coarse correction

4.2 A Coarse Correction

The convergence rate of Schwarz methods suffers as the number of subdomains
increases, see the left plot in Fig. 7. A coarse correction is able to improve the
situation dramatically by providing a global transfer of solution information. Here
we propose a coarse correction for the (nonlinear) PDE based mesh generation
problem by using a two-grid method with a full approximation scheme (FAS)
correction applied in the computational co-ordinates. This work was completed by
Grant in [11] and will be published in full elsewhere.

FAS [4] provides a solution strategy for nonlinear PDEs. FAS restricts an
approximation (and corresponding residual) of the PDE, obtained on a fine grid, to
a coarse grid. The error in the approximation is found by solving a coarse problem.
This error is then interpolated back to the fine grid and used to update the solution
approximation.

FAS may be combined with a DD approach in a very natural way. We perform
one classical Schwarz iteration to obtain approximate subdomain solutions on a fine
grid. FAS is then applied to update the subdomain solutions before proceeding with
the next Schwarz iteration. As shown in the right plot of Fig. 7, the effect is dramatic.
This promising result for the nonlinear PDE mesh generator suggests the possibility
of a two-grid FAS DD approach for the coupled mesh and physical PDEs.

5 Conclusions

PDE based mesh generators can be useful for problems which would benefit from
automatically adaptive spatial grids. It is possible to analyze DD approaches for
nonlinear mesh generators which directly give the physical mesh locations. We
can then incorporate DD, within the coupled physical PDE/mesh PDE solution
frameworks in a theoretically sound way.
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Modeling, Structure and Discretization
of Hierarchical Mixed-Dimensional
Partial Differential Equations

J. M. Nordbotten and W. M. Boon

1 Introduction

Partial differential equations (PDE) on manifolds are a standard approach to model
on high-aspect geometries. This is familiar in the setting of idealized laboratory
experiments, where 1D and 2D representations are used despite the fact that the
physical world is 3D. Similarly, it is common to consider lower-dimensional models
in applications ranging from geophysical applications. Some overview expositions
for various engineering problems can be found in [1–3].

Throughout this paper we will consider the ambient domain to be 3D, and our
concern is when models on 2D submanifolds are either coupled to the surrounding
domain, and/or intersect on 1D and 0D submanifolds. Such models are common in
porous media, where the submanifolds may represent either fractures (see e.g. [4])
or thin porous strata (see [1]), but also appear in materials [3]. In all these examples,
elliptic differential equations representing physical conservation laws are applicable
on all subdomains, and the domains of different dimensionality are coupled via
discrete jump conditions. These systems form what we will consider as mixed-
dimensional elliptic PDEs, and we will limit the exposition herein to this case.

In order to establish an understanding for the physical setting, we will in Sect.
2 present a short derivation of the governing equations for fractured porous media,
emphasizing the conservation structure and modeling assumptions. This derivation
will lead to familiar models from literature (see e.g. [4–7] and references therein).

We develop a unified treatment of mixed-dimensional differential operators on
submanifolds of various dimensionality, using the setting of exterior calculus, and
thus recast the physical problem in the sense of differential forms. We interpret the
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various subdomains as an imposed structure on the original domain, and provide
a decomposition of differential forms onto the mixed-dimensional structure. By
introducing a suitable inner product, we show that this mixed-dimensional space is a
Hilbert space. On this decomposition we define a semi-discrete exterior derivative,
which leads to a de Rham complex with the same co-homology structure as the
original domain. It is interesting to note that the differential operators we define
were independently considered by Licht who introduced the concept of discrete
distributional differential forms [8]. A co-differential operator can be defined via
the inner product, and it is possible to calculate an explicit expression for the co-
differential operator. This allows us to establish a Helmholtz decomposition on the
mixed-dimensional geometry. We also define the mixed-dimensional extensions of
the familiar Sobolev spaces.

Having surveyed the basic ingredients of a mixed-dimensional calculus, we
are in a position to discuss elliptic minimization problems. Indeed, the mixed
dimensional minimization problems are well-posed with unique solutions based on
standard arguments, and we also state the corresponding Euler equations (variational
equations). With further regularity assumptions, we also give the strong form of the
minimization problems, corresponding to conservation laws and constitutive laws
for mixed-dimensional problems.

This paper aims to provide a general overview and roadmap for the concepts
associated with hierarchical mixed-dimensional partial differential equations, more
complete and detailed analysis will necessarily due to space be considered in
subsequent publications.

2 Fractured Porous Media as a Mixed-Dimensional PDE

This section gives the physical rationale for mixed-dimensional PDE. As the section
is meant to be motivational, we will omit technical details whenever convenient. We
will return to these details in the following sections.

We consider the setting of a domain D ∈ R
n. In Sect. 3 and onwards we will

consider arbitrary n, however in this section we will for simplicity of exposition
consider only n = 3. We consider a fractured media, where we are given explicit
knowledge of the fractures, thus we consider the domains "di as given, where i ∈ I
is an index and d = d(i) represents the dimensionality of the domain. We denote by
i ∈ Id the subset of indexes in I for which d(i) = d. In particular, intact material lies
in domains of d = 3, while d = 2 represents fracture segments, and d = 1 represents
intersections, see Fig. 1. For each domain "di we assign an orientation based on
n − d outer normal vectors νij.

In order to specify the geometry completely, we consider the index sets Ŝi and
Ši as the d + 1 dimensional and d − 1 dimensional neighbors of a domain i.
Thus for d = 2, the set Ŝi contains the domain(s) "3

l which are on the positive
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Fig. 1 Example geometry of two intersecting fractures in 2D, and the logical representation of the
intersection after mapping to a local coordinate system

Fig. 2 Example of local geometry for derivation of mixed-dimensional conservation law

(and negative) side of "2
i . On the other hand, the set Ši contains the lines that

form (parts of) the boundary of "i. Additionally, the set of all lower-dimensional

neighbors is defined as Ši =
[
Ši ,ŠŠi

, . . .
]

We will define "d = ∑
i∈I d"di as

all subdomains of dimension d, while similarlty " = ∑n
d=0"

d is the full mixed-
dimensional stratification. Note that since the superscript indicating dimension is
redundant when the particular domain is given, we will (depending what offers more
clarity) use "i = "di interchangeably.

For steady-state flows in porous media, the fluid satisfies a conservation law,
which for intact rock and an n-dimensional fluid flux vector u takes the form

∇· u = φ on D (2.1)

We wish to express this conservation law with respect to our geometric structure.
To this end, let us first define the mixed-dimensional flux u, which is simply a d-
dimensional vector field on each"di . We write u = [

udi
]

when we want to talk about
specific components of u. We similarly define other mixed-dimensional variables,
such as the source-term f.

Now clearly, for d = n, we recover Eq. (2.1). Now consider d = n − 1, and a
fracture "1 of variable Lipschitz-continuous aperture (illustrated for d(1) = 1 in
Fig. 2).
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Here the dashed lines indicate a fracture boundary, the solid black line is the
lower-dimensional representation, and the solid gray line indicates the region of
integration, ω, of length � and width ε(x). Evaluating the conservation law over ω
leads to

∫
ω

∇· u da =
∫
∂ω

u· ν ds =
∫
ω

φ

where ν are the external normal vectors. Since our integration area is in the limiting
case of �→ 0 a quadrilateral, we split the last integral into parts where ν is constant,

∫
∂ω

u· ν ds = ν+·
∫
∂+ω

ul1 ds + ν−·
∫
∂−ω

ul2 ds +
∫
∂Rω

τ · u ds −
∫
∂Lω

τ · u ds

where [l1, l2] ∈ Ŝi is the domain on the “+” and “−” side of "1, respectively,
and denote the Left and Right side of the integration boundary by subindexes. The
notation τ is the tangential vector to"1. Clearly, letting the length � be infinitesimal,
the last two terms satisfy

lim
�→0

∫
∂ωR

τ · u ds − ∫
∂ωL

τ · u ds
�

= ∇"1 ·
∫ ∂+ω

∂−ω
τ · u ds = ∇"1 · (εu1)

where ∇"1 · is the in-plane divergence and

u1 ≡ 1

ε

∫ ∂+ω

∂−ω
τ · u ds (2.2)

Considering similarly the limits of � → 0 for the two first terms, we obtain for
the positive side

lim
�→0

ν+· �−1
∫
∂+ω

u
d(l1)
l1

ds =
(

1 +
∣∣∣∣ ddx∇"1 (∂+ω)

∣∣∣∣
2
)1/2

ν+· ud(l1)l1

Combining the above, we thus have

lim
�→0

�−1
∫
ω

∇· u da = λl1 + λl2 + ∇"1 · (εu1) = �λ�i + ∇"1 · (εu1) (2.3)

where λ is defined as

λl1 =
(

1 +
∣∣∣∣ ddx∇"1 (∂+ω)

∣∣∣∣
2
)1/2

ν+· ud(l1)l1
(2.4)
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and (using the analogous definition for λl2 )

�λ�i = −
∑

l∈Ŝi
λl (2.5)

Note that we have made no approximations in obtaining Eq. (2.3)—the left-
hand side is an exact expression of conservation. The model approximations appear
later when deriving suitable constitutive laws. Nevertheless, since the fractures have
a high aspect ratio by definition, the pre-factor in Eq. (2.4) is in practice often
approximated by identity, for which (2.4) simplifies to

λl ≈ ν±· ul (2.6)

The derivation above (including the definition in Eq. (2.3)), generalizes in the
same way to intersection lines and intersection points, thus we find that for all d < n
it holds that

�̂ελ�i + ∇"i · (εiui ) = φi (2.7)

Here the hat again denotes the next higher-dimensional domains, so that ε̂ = εl .
Since Ŝi = Ø for i ∈ In, Eq. (2.7) reduces to (2.1) for d = n, and thus it represents
the mixed-dimensional conservation law for all "di . In this more general setting, ε
denotes the cross-sectional width (2D), area (1D) and volume (0D) for successively
lower-dimensional intersections.

For porous materials, the conservation law (2.1) is typically closed by introducing
Darcy’s law as a modeling assumption, stated in terms of a potential p on the domain
D as

u = −K∇p (2.8)

The coefficient K is in general a tensor. Unlike for the conservation law, it is not
possible to derive an exact expression for the mixed-dimensional constitutive law,
but by making some (reasonable) assumptions on the structure of the solution, it
is usually accepted that Darcy’s law is inherited for each subdomain (see extended
discussion in [1], but also [9]), i.e.

ui = −Ki∇"ipi (2.9)

To close the model, it is also necessary to specify an additional constraint,
where the two most common choices are that either the potential is continuous (see
discussion in [10])

p̂+ = p̂− (2.10)
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or, more generally, that the pressure is discontinuous but related to the normal flux
above

λl = −2K̂i,±
pi − p̂±
(εi)

1
n−d

(2.11)

The model equations (2.7, 2.8, 2.9, 2.10, and 2.11) are typical of those used in
practical applications [11]. However, to the authors’ knowledge, our work is the first
time they are explicitly treated as a mixed-dimensional PDE (see also [12, 13]).

3 Exterior Calculus for Mixed-Dimensional Geometries

We retain the same geometry as in the previous section, but continue the exposition
in the language of exterior calculus (for introductions, see [14–16]). Throughout the
section, we will assume that all functions are sufficiently smooth for the derivatives
and traces to be meaningful. We also point out that similar structures to those
discussed in this section have been considered previously by Licht in a different
context [8].

First, we note that the components of the mixed-dimensional flux discussed in
Sect. 2 all correspond to d − 1 forms, udi ∈ $d−1

(
"di

)
, while the components of

pressure all correspond to d-forms, pdi ∈ $d
(
"di

)
. This motivates us to define the

following mixed-dimensional k-form

Lk (") =
∏

i∈I$
k−(n−d(i)) ("di

)
(3.1)

From here on, it is always assumed that Lk is defined over ", and the argument
is suppressed.

Moreover, we note that Eq. (2.6) is (up to a sign) the trace with respect to the
inclusion map of the submanifold, thus for a mixed-dimensional variable a∈Lk the
jump operator is naturally written as

(da)di = (−1)d+k
∑

j∈Ŝi
ε
(
"di , ∂i"

d+1
j

)
Tr"di

ad+1
j (3.2)

Here we have exchanged the bracket notation of Eq. (2.5), which is common in
applications, with a simpler notation, d, which more clearly emphasizes that this
is a (discrete) differential operator, in the normal direction(s) with respect to the

submanifold. We use the notation ε
(
"di , ∂i"

d+1
j

)
to indicate the relative orientation

(positive or negative) of the arguments.
We obtain a mixed-dimensional exterior derivative, which we denote d, by

combining the jump operator with the exterior derivative on the manifold, such that
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for a∈Lk

(da)di = dadi + (da)di (3.3)

This expression is meaningful, since both dadi , (da)
d
i ∈ $k−(n−d)+1

(
"di

)
,

and thus clearly da∈Lk+1. A straight-forward calculation shows that d(da)di =
−(dda)di , thus for all a

dda = 0 (3.4)

and it can furthermore be shown that if a = 0, and if D is contractible, then there
exists b∈Lk−1 such that a = db. Thus the mixed-dimensional exterior derivative
forms a de Rham complex,

0 → R
⊂→ L0 d→ L1 d→ . . .

d→ Ln → 0 (3.5)

which is exact (for the proof of this, and later assertions, please confer [13]).
Due to the jump terms in the differential operators, the natural inner product for

the mixed-dimensional geometry must take into account the traces on boundaries,
and thus takes the form for a, b∈Lk

(a, b) =
∑

i∈I

((
adi , b

d
i

)
+

∑
l∈Šd

i

(
Tr
"
d(l)
l

adi ,Tr
"
d(l)
l

bdi

))
(3.6)

Note that $k
(
"di

) = Ø whenever k �∈ [0, d], thus many of the terms in (3.6)
are void. It is easy to verify that Eq. (3.6) indeed defines an inner product, and thus
forms the norm on Lk

‖a‖ = (a, a)1/2 (3.7)

The codifferential d∗ : Lk → Lk−1 is defined as the dual of the exterior derivative
with respect to the inner product, such that for a∈Lk

(
d∗a, b

) = (a, db)+ (
Tr b,Tr∗a

)
∂D for all b∈Lk−1 (3.8)

It follows from the properties of inner product spaces that the codifferential
also forms an exact de Rham sequence. Thus, when D is contractible, we have
the following Helmholtz decomposition: For all a∈Lk , there exist ad ∈ Lk−1 and
ad∗ ∈ Lk+1 such that

a = dad + d∗ad∗ (3.9)
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In view of the uncertainty in the modeling community of the correct constitutive
laws for mixed-dimensional problems (as per the discussion of Eqs. (2.10) and
(2.11)), it is of great practical utility to be able to explicitly calculate the co-
differential, since this will have the structure of the constitutive law. Utilizing Eqs.
(3.6) and (3.8), we obtain

(
d∗b

)d
i

= d∗bdi on "di (3.10)

and

Tr∂l"di

(
d∗b

)d
i

= d∗Tr∂l"di
bdi

+
(

Tr∗
∂l"

d
i

bdi −
∑

j∈Šdi
(−1)d+kε

(
"d−1
j , ∂j"

d
i

)
bd−1
j

)
on ∂"di

(3.11)

We close this section by noting that the differential operators provide the basis
for extending Hilbert spaces to the mixed-dimensional setting. In particular, we are
interested in the first order differential spaces, and therefore the norms of HLk and
H ∗Lk by

‖a‖H = ‖a‖ + ‖da‖ and ‖a‖H ∗ = ‖a‖ + ∥∥d∗a
∥∥ (3.12)

from which we obtain the spaces

HLk :=
{
a∈Lk

∣∣∣ ‖a‖H < ∞
}

and H ∗Lk :=
{
a∈Lk

∣∣∣ ‖a‖H ∗ < ∞
}

(3.13)

We use the convention that a circle above the function space denotes homo-

geneous boundary conditions, i.e.
◦
HLk : {

a∈HLk
∣∣Tr∂D a = 0

}
and

◦
H ∗Lk :{

a∈H ∗Lk
∣∣Tr∗∂D a = 0

}
. The spaces HLk and H ∗Lk can be characterized in terms

of product spaces of functions defined on domains"di and its boundary components
∂j"

d
i , see e.g. [12, 13].

Then, the Poincaré inequality holds for contractible domains in the mixed-

dimensional setting for either a∈ ◦
HLk ∩H ∗Lk or a∈HLk ∩ ◦

H ∗Lk:

‖a‖ ≤ C"
(‖da‖ + ∥∥d∗a

∥∥) (3.14)
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4 Mixed-Dimensional Elliptic PDEs

Based on the extension of the exterior derivative and its dual to the mixed-
dimensional setting, we are now prepared to define the generalization of elliptic
PDEs. We start by considering the minimization problem equivalent to the Hodge
Laplacian for a∈Lk

a = arg inf
a∈ ◦
HLk∩H ∗Lk

JK
(
a′) (4.1)

where we define the functional by

JK
(
a′) = 1

2

(
Kd∗a′, d∗a′) + 1

2

(
K∗da′, da′) − (

f, a′) (4.2)

The material coefficients K are spatially variable mappings from $k−(n−d(i))(
"di

)
onto itself, defined independently for all terms in the inner product (3.6). In

particular, with reference to Sect. 2, K contains all instances of the proportionality
constants K appearing in (2.8), (2.9) and (2.11).

For Eq. (4.1) to be well-posed and have a unique solution, we need(
Kd∗a′, d∗a′) + (

K∗da′, da′) to be continuous and coercive, i.e. we need to impose
constraints on K and K∗. Indeed, by reverting to the definition of the inner product,
we define the ellipticity constant αK as the minimum eigenvalue of K, and similarly
for αK∗ . We require both these constants to be bounded above zero, such that

(
Kd∗a′, d∗a′) + (

K∗da′, da′) ≥ min (αK, αK∗) (1 + C")
2
∥∥a′∥∥2

The minimum of Eq. (4.1) must satisfy the Euler-Lagrange equations, thus

a∈ ◦
HLk ∩H ∗Lk satisfies

(
Kd∗a, d∗a′) + (

K∗da, da′) = (
f, a′) for all a′∈ ◦

HLk ∩H ∗Lk (4.3)

From the perspective of applications, and mirroring the distinctions between
conservation laws and constitutive laws discussed in Sect. 2, we will be interested in
the mixed formulation of Eq. (4.3) obtained by introducing the variable b = Kd∗a,
where b is the generalization of the various fluxes u. Then we may either consider a
constrained minimization problem derived from Eq. (4.1), or for the sake of brevity,
proceed directly to the Euler-Lagrange formulation: Find (a, b) ∈ HLk × HLk−1

which satisfy

(
K−1b, b′) − (

a, db′) = 0 for all b′ ∈ HLk−1 (4.4)
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(
db, a′) + (

K∗da, da′) = (
f, a′) for all a′∈HLk (4.5)

The saddle-point formulation is well-posed subject to Babuška-Aziz inf-sup
condition. Due to the presence of a Helmholtz decomposition, this follows by
standard arguments. From Eqs. (4.4) and (4.5) we deduce the strong form of the
Hodge Laplacian on mixed form, corresponding to the equations

b = Kd∗a and db + d∗ (K∗da
) = f (4.6)

Of the various formulations, Eqs. (4.4) and (4.5) are particularly appealing from
the perspective of practical computations, as they do not require the coderivative.

An important remark is that the relative simplicity of the well-posedness
analysis for the mixed-dimensional equations relies on the definition of the function
spaces and norms. In particular, due to the definition of HLk via the mixed-
dimensional differential d, the norm on the function space is inherently also
mixed-dimensional, and cannot simply be decomposed into, say norms on the
function spaces H$k−(n−d)

(
"di

)
. For this reason, analysis in terms of “local

norms” becomes significantly more involved [11, 17, 18].

5 Finite-Dimensional Spaces

In order to exploit the mixed-dimensional formulations from the preceding section,
and in particular Eqs. (4.4) and (4.5) we wish to consider finite-dimensional
subspaces of HLk . These spaces should be constructed to inherit the de Rham
structure of Eq. (3.5), and with bounded projection operators. A natural approach is
to consider the polynomial finite element spaces as a starting point [15].

From the finite element exterior calculus (FEEC—[15]), we know that on the
highest-dimensional domains"di , we may choose any of the finite element de Rham
sequences, and in particular, we may consider the standard spaces from applications
for a simplicial tessellation T

n
i = T

(
"ni

)

Pr$
k
(
T
n
i

)
and P

−
r $

k
(
T
n
i

)
(5.1)

These correspond to the full and reduced polynomial spaces of order r, respec-
tively, in the sense of [15]. In order to build a finite element de Rham sequence,
we recall that (while still commuting with bounded projection operators) the full
polynomial spaces reduce order

Pr$
k
(
T
n
) d→ Pr−1$

k+1 (
T
n
)

(5.2)
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while the reduced spaces preserve order

P
−
r $

k
(
T
n
) d→ P

−
r $

k+1 (
T
n
)

(5.3)

Thus, any of these combinations of spaces are acceptable for "ni , and consider

therefore the choice as given, and denoted by$k,nh and $k+1,n
h .

For d < n, we must consider not only the continuous differential operator d, but
also the discrete jump operator d. It is therefore clear that for i.e. d = n− 1, we must
consider the traces of the finite element spaces of higher dimensions. In particular,
we require for all pairs of dimensions 0 ≤ e < d ≤ n,

Tr"ei $
k
h

(
T
d
)

⊆ $
k+(n−e)
h

(
T
e
)

(5.4)

In contrast to the continuous differential order, the discrete differential operator
preserves order for both the full and reduced spaces, since [15]:

Tr"e Pr$k
(
T
d
)

= Pr$
k+(n−e) (

T
e
)

and Tr"e P−
r $

k
(
T
d
)

= P
−
r $

k+(n−e) (
T
e
)

(5.5)

We now define the polynomial subspaces Pmr Lk ∈ HLk as

(
P
m
r Lk

)d
i

= P
pdi

rdi
$k−(n−d)

(
T
d
i

)
(5.6)

where the multi-indexes r and m have values rdi ∈ P and mdi ∈ [,−], respectively.
When the multi-indexes are chosen to satisfy both (5.2 and 5.3) as well as (5.4), we
obtain the discrete de Rham complex

0 → R ↪→ P
m
r L0 d→ P

m
r L1 d→ . . .

d→ P
m
r Ln → 0 (5.7)

Due to the existence of stable projections for all finite element spaces in P
m
r Lk ,

the discrete de Rham sequence can be shown to be exact, thus Eqs. (4.4) and (4.5)
have stable approximations.

The discrete spaces for H ∗Lk must satisfy similar properties. Equations (5.2
and 5.3) hold in the dual sense, i.e. we write P

∗
r$

k
(
T
d
i

) = P
∗
r$

k
(
T
d
i

) = &(
Pr$

d−k (
T
d
i

)
, and d∗

P
∗
r$

k
(
T
d
i

) ⊂ P
−∗
r $k−1

(
T
d
i

) ⊂ P
∗
r−1$

k−1
(
T
d
i

)
.

Furthermore, the coderivative d∗ imposes the inverted condition $k+(n−e)h (Te) ⊆
Tr∗
"n−1
i

$kh

(
T
d
)

on boundaries.
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6 Implications in Terms of Classical Calculus

We take a moment to untangle the notation from Sects. 3, 4, and 5 in order to extract
insight into modeling and discretization for the original physical problem.

Our initial task is to express simplest form of the mixed-dimensional Hodge
Laplacian in terms of conventional notation. We limit the discussion to the case
where k = n, the function spaces H ∗Ln and HLn−1 correspond to H1 scalars and
H(div) vectors on each dimension d ≥ 1. For d = 0, only the scalars are defined.
Furthermore, the term da∈Ln+1 = Ø, and thus we arrive from (4.6) to the simpler
problem

b = Kd∗a and db = f (6.1)

In this case, the exterior derivative is the negative divergence plus jumps for each
domain, while the codifferential is the gradient parallel to each domain, and the
difference from boundaries perpendicular. As such, we arrive exactly at the model
equations of Sect. 2, with the second choice of modeling assumption (2.11).

Turning our attention to the finite element spaces, the lowest order spaces for
discretizing (4.4 and 4.5) are the reduced spaces obtained by choosing rdi = 1 and
mdi = −, from which we obtain piecewise constants for a on all domains, while we
obtain for b the Nedelec first kind (div)—Raviart-Thomas—continuous Lagrange
elements for domains with dimensions d = 3, 2, 1, respectively—all of the lowest
order [12] (this method will be referred to as “Mixed Reduced” in the next section).
Interestingly, if we choose Nedelec 2nd kind (div) elements of lowest order for
d = 3, Eqs. (5.2) and (5.5) implies that we should increase the order in the lower-
dimensional domains, obtaining dG elements of order n− d for pressure, with BDM
(2nd order)—continuous Lagrange (3rd order) for fluxes in domains with d = 2, 1.
This is a new method resulting from the analysis herein. We refer to this method as
“Mixed Full”.

The mixed finite element discretization has the advantage of a strong conserva-
tion principle, and may be hybridized to obtain a cheaper numerical scheme (see
[12] for a direct approach in this context, but also [5, 6] for direct constructions in
the finite volume setting). Alternatively, we consider discretizing the Euler-variation
of the unconstrained minimization problem, Eq. (4.3). The natural finite element
spaces are P

m,∗
r Ln, with rdi = 1 and m does come into play, corresponding to

1st-order continuous Lagrange elements in all dimensions. From an engineering
perspective, a similar formulation has been described in [19], we refer to this method
as “Primal” in the next section.
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7 Computational Example

In order to illustrate the concepts discussed in the preceding sections, we will
continue to consider k = n, and thus fractured porous media as a computational
example, using the three numerical methods obtained using the lowest-order
elements of the families described in the previous section.

The example consists of the unit square with two fractures crossing through
the domain, intersecting at a right angle, as illustrated in Fig. 3. We impose unit
permeability in the surroundings, set the normal and tangential permeability of
the fractures to 100 and assume the apertures of both fractures as ε = 10−3.
The boundary conditions are chosen as zero pressure at the bottom and no-flux
conditions on the sides. Moreover, a boundary pressure of one is imposed on the
fracture crossing the top boundary. All computations were performed with the use
of FEniCS [20].

The results show that all three methods are stable and convergent (Table 1).
The relative errors and L2-convergence rates after four consecutive refinements
(identified by the characteristic grid size h) are given in the following table. Here,
we compare the results to a fine-scale solution, obtained after a fifth refinement. In
this example, all grids are matching.

Each method captures the intersection pressure well, with second order conver-
gence over all. In the surroundings, the pressure convergence with second order for
the primal formulation and first order for both mixed formulations, as expected. The
Mixed Full method has higher-order elements in the fracture, and this is reflected in
higher convergence rates for both pressure and flux.

Fig. 3 (Left) Domain of computation and associated boundary conditions. The pressure boundary
condition is only imposed on the fracture pressure. (Right) Example of calculated solution
(pressure)
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Balancing Domain Decomposition
by Constraints Algorithms
for Curl-Conforming Spaces of Arbitrary
Order

Stefano Zampini, Panayot Vassilevski, Veselin Dobrev, and Tzanio Kolev

1 Introduction

We construct Balancing Domain Decomposition by Constraints (BDDC) methods
[6] for the linear systems arising from three-dimensional, arbitrary order finite
element discretizations of the H(curl) bilinear form

∫
Ω

α ∇ × u · ∇ × v + β u · v dx, α ≥ 0, β > 0. (1)

The proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-
logarithmic in the polynomial order of the finite element discretization space, which
is confirmed by the numerical results in Sect. 3. Our results will be equally valid
for the Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP) method
[10], due to the well known duality between BDDC and FETI-DP [23].

The bilinear form (1) originates from implicit time-stepping schemes of the
quasi-static approximation of the Maxwell’s equations in the time domain [30].
The coefficient α is the reciprocal of the magnetic permeability, assumed constant,
whereas β is proportional to the conductivity of the medium; positive definite
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anisotropic tensor conductivities can be handled as well. We only present results
for essential boundary conditions, but the generalization of the algorithms to natural
boundary conditions is straightforward. Magnetostatic problems with β = 0 are not
covered in the present work, and they can be the subject of future research. The same
bilinear form appears in block preconditioning techniques for the frequency domain
case [11], mixed form of Brinkman (Darcy-Stokes) [38], and in incompressible
magneto-hydrodynamics [22].

The operator ∇× is the curl operator, defined, e.g., in [3]; the vector fields belong
to H(curl), the Sobolev space of square-integrable vector fields having a square-
integrable curl. The space H(curl) is often discretized using Nédélec elements
[25]; those of lowest order use polynomials with continuous tangential components
along the edges of the elements. While most existing finite element codes for
electromagnetics use lowest order elements, those of higher order have shown to
require fewer degrees of freedom (dofs) for a fixed accuracy [11, 31].

The design of solvers for edge-element approximations of (1) poses significant
difficulties, since the kernel of the curl operator is non-trivial. An even greater
challenge for domain decomposition solvers consists in finding logarithmically
stable decompositions in three dimensions, due to the strong coupling that exists
between the dofs located on the subdomain edges and those lying on the subdomain
faces. Among non-overlapping methods, it is worth citing the wirebasket algorithms
[7, 15, 17], Neumann-Neumann [32], and one-level FETI [28, 35]. Overlapping
Schwarz methods have also been studied [4, 33].

The edge-element approximation of (1) has also received a lot of attention by the
multigrid community; Algebraic Multigrid (AMG) methods have been proposed in
[2, 29], and [16]. For geometric multigrid, see [12]. Robust and efficient multigrid
solvers can be obtained combining AMG and auxiliary space techniques, that
require some extra information on the mesh connectivity and on the dofs [13, 14, 20].

In this work, we follow the approach proposed by Toselli for three-dimensional
FETI-DP with the lowest order Nédélec elements [34], where a stable decomposi-
tion is obtained by using a change of basis for the dofs located on the subdomain
edges. The same approach has been pursued recently by Dohrmann and Widlund
[9], who were able to improve Toselli’s results, and obtain sharp and quasi-
optimal condition number bounds (in the lowest order case) by using the deluxe
variant of BDDC [8]. This is critical for obtaining iteration counts and condition
number estimates independent of the jumps of α and β aligned with the subdomain
interface. Finally, it has to be noted that BDDC deluxe algorithms for high-order
Nédélec elements in two dimensions, and for the lowest order Nédélec elements in
three dimensions have been already presented by the first author in [40, 41].

In Sect. 2, we complement the results in [9, 34] by proposing an algorithm
for the change of basis that does not make any assumption on the mesh, the
associated discretization space, and the domain decomposition. Inspired by the
success of the auxiliary space technique [14], we construct the change of basis
by using the so-called discrete gradient, a linear operator that maps gradients of
scalar functions to their representation in the curl-conforming discretization space.
Numerical experiments, provided in Sect. 3, confirm that the robustness of our
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approach is not confined to the more standard Nédélec elements, but it also extends
to the case of elements with curved boundaries, and to upscaled H(curl) spaces
constructed by preserving the de Rham sequence on agglomerations of fine scale
elements. Due to page restrictions, we refer the interested reader to [21] for a
thorough description of these kind of elements.

2 Design of the Algorithm

2.1 Domain Decomposition and Discrete Spaces

We follow the framework of iterative substructuring [36, Chapters 4-6], and we
decompose the domain Ω into N non-overlapping open Lipschitz subdomainsΩi ,

Ω =
N⋃
i=1

Ωi, Γ :=
⋃
i �=j

∂Ωj ∩ ∂Ωi,

with Γ the interface between the subdomains. We further assume that Ω and each
Ωi are simply connected (does not contain any holes). We denote by Vh(Ω) and
Sh(Ω) the curl- and H 1-conforming finite element spaces of polynomial order
p, respectively, together with their subdomain counterparts V(i)

h := Vh(Ωi) and

S
(i)
h := Sh(Ωi). We denote by W the global finite element space in which we

seek the solution of problems coming from the bilinear form (1), and by W(i) the
corresponding subdomain spaces. We note that Vh coincides with W when using
Nédélec elements; however, our algorithm covers also the case Vh ⊂ W, as it is
the case of upscaled finite elements that preserve the de Rham sequence [21], or of
three-level extensions of the BDDC algorithm for (1) (see Sect. 2.4).

The success of the algorithm depends on the analysis of the interface, that leads
to the detection of equivalence classes such as the subdomain faces, i.e. sets of
connected dofs shared by the same two subdomains, and the subdomain edges,
i.e. sets of connected dofs shared by 3 or more subdomains. We assume that a
subdivision of Γ in face and edge disjoint subsets has been found; moreover, we
assume that each subdomain edge has exactly two endpoints, and none of the edge
endpoints lie in the interior of another subdomain edge. As noted in [9, Section 5],
this guarantees that the change of basis (defined in the next section) leads to a new
well-posed problem.

2.2 BDDC Method

The recipe for the construction of a BDDC preconditioner consists in the design of
a partially continuous interface space W̃Γ , the direct sum of a continuous primal
space WΠ and a discontinuous dual space WΔ, and in the choice of an averaging
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operator ED for the partially continuous dofs, which drives the analysis and the
design of robust primal spaces [23].

Following Toselli [34], we characterize the primal space WΠ by using two primal
constraints per subdomain edge E as given by

s0,E(w) := 1
|E|

∫
E w · tE ds, w ∈ Vh, (2)

s1,E(w) := 1
|E|

∫
E
sw · tE ds, w ∈ Vh, (3)

where tE|e := te, with te the vector oriented in the direction of a fine mesh edge e
belonging to E. For implementation details of the primal space, see Remark 3.

2.3 Change of Basis

As in [9, 34], we consider a change of basis for the dofs of Vh that are located on
each subdomain edge E, and we split a finite element function w into a constant
component ΦE and gradient components ∇φjE associated with the nodal dofs of
Sh lying in the interior of the edge, i.e.

w|E = s0,E(w)ΦE +
nE−1∑
j=1

wjE(w)∇φjE + wEc,

with nE the number of Vh dofs on E, and wEc the finite element function (if any)
identified by the dofs of W that lie on E and are not in Vh.

The change of basis in BDDC methods is performed by projection as T T AT ,
where the columns of T represents the new basis in terms of the old dofs [19], and
A results from the discretization of the bilinear form (1). The structure of T for
three-dimensional curl-conforming spaces is as follows [9, 34, 40, 41]

T =

⎡
⎢⎢⎢⎢⎢⎣

IC 0 0 . . . 0
0 IF TFE1 . . . TFEn
0 0 TE1E1 0 0

0 0 0
. . . 0

0 0 0 0 TEnEn

⎤
⎥⎥⎥⎥⎥⎦
,

where IC and IF are identity matrices of appropriate sizes. Here, F denotes the set
of dofs of Vh that belong to the subdomain faces, and C denotes all the remaining
dofs of W that do not belong to F or to any of the subdomain edge dofs of Vh.
Differently from a conventional change of basis in BDDC, the one used for curl-
conforming spaces is not local to the subdomain edges, as it also involves, through
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the sparse off-diagonal blocks TFEi , the dofs of F that are located on the fine mesh
edges sharing a mesh vertex with any of the Ei .

In our code, we use T T AT as iteration matrix; however, in order to preserve a
one-to-one correspondence between old and new subdomain dofs, we construct the
preconditioner using the subdomain matrices Ã(i) := R(i)T T R(i)T A(i)R(i)T R(i)T ,
where A(i) is the discretization matrix on W(i), and R(i) is the usual restriction
operator from W to W(i). Note that T T AT = ∑N

i=1(T
T R(i)T )A(i)(R(i)T ) �=∑N

i=1 R
(i)T Ã(i)R(i).

The functions ΦE and ∇φjE are explicitly constructed in [9, 34]; however,
the procedures used therein possess strong limitations, as they need to access
the underlying mesh and to understand how the edge dofs are related with the
orientation of the fine mesh edges; moreover, they are limited to the lowest order
Nédélec space only. In this work, we propose a construction of the change of
basis by using the information contained in the discrete gradient operator G, the
matrix representation of the mapping φ ∈ Sh → ∇φ ∈ Vh, that is also used by
the auxiliary space method, see [14] and [20, Section 4]. We note that, when using
Nédélec elements, there are p dofs associated to each fine mesh edge, and that the
number of nonzeros per row ofG is p+ 1, with p the polynomial order of the finite
element space used for Sh. For upscaled elements, the number pe of dofs of Vh

associated to each fine mesh edge e may vary from one fine mesh edge to another,
but the number of nonzeros of the corresponding rows of G is always pe + 1.

For each subdomain edge E, we construct the corresponding column block of T
as follows. We first extract the matrix G

EE̊
, where E̊ is the set of dofs of Sh that is

associated with those basis functions being nonzero on the nodes in the interior of
E; note thatG

EE̊
has full-column rank, and that nE = n

E̊
+1. We then compute the

representation of the subdomain edge constant function ΦE in Vh as the eigenvector
corresponding to the nonzero eigenvalue of the orthogonal complement of G

EE̊
,

i.e. I − G
EE̊
(GT

EE̊
G
EE̊
)−1GT

EE̊
. The dofs defining ∇φjE are simply given by the

columns of G that correspond to E̊. The change of basis block relative to E is

[
TFE

TEE

]
:=

[
0 G

EcE̊

ΦE G
EE̊

]
,

with E ∪ Ec the set of row indices corresponding to the nonzero values in the E̊
columns.

Remark 1 The construction of our change of basis just needs sub-matrix extraction
operations and the computation of the orthogonal complement of G

EE̊
, which can

be obtained by doing a singular value decomposition of the same matrix, of size
nE × n

E̊
: note that nE is usually very small, on the order of ten, and we can thus

efficiently use algorithms for dense matrix storages. After having changed the basis,
the sparsity pattern of the local matrices is not spoiled, and optimal nested dissection
orderings for the direct solves of the subdomain problems can be found.
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Remark 2 For the lowest order Nédélec elements, G has two nonzeros per row;
the values are +1 or −1 depending on the orientation of the element edge. When
hexahedral meshes and box subdomains are considered, our change of basis is the
same as that proposed by Toselli [34].

Remark 3 The constraint given in Eq. (2) is obtained by selecting the dofs corre-
sponding to each ΦE as primal; arithmetic averages for the remaining dofs on the
subdomain edges are used to impose the constraint (3), see also [9, Section 2.2].

Remark 4 Our algorithm does not require the user to input the mesh connectivity.
From G, we can infer the dofs connectivity which will lead to a well-posed change
of basis, since the sparsity pattern of the matrices GTG and GGT carry the
information of a vertex-to-vertex, and an edge-to-edge mesh connectivity graph,
respectively.

2.4 Three-Level Extension of the Algorithm

Three-level extensions of the algorithm [37] are crucial for large scale simulations,
as the solution of the coarse problem in BDDC (as with all two-level methods) can
become a bottleneck when many subdomains are considered, see [39, Section 3.6]
and the references therein for additional details. The minimal coarse space presented
in Sect. 2.2 can be naturally split in two disjoint subsets; the one arising from the
constraints given in Eq. (2) resembles a lowest-order Nédélec space defined on
the coarse element (i.e., the subdomain). The rest of the coarse dofs are instead
generated by gradients of scalar functions, and a scalable coarse space can be thus
obtained by considering arithmetic averages defined on the coarse subdomain edges.

We thus propose an approximate coarse discrete gradient to obtain a stable
decomposition of the coarse dofs generated by Eq. (2), obtained by projecting the
fine discrete gradientG on the ΦE functions. The resulting coarse discrete gradient
will have two nonzero entries per row, with entries given by GTE∂EΦE , with ∂E
the indices of the basis functions of Sh associated with the two endpoints of E. We
then construct the primal space of the coarse problem as outlined in the previous
sections. Numerical results confirm that such an approach provides an optimal
coarse space for the second level of the BDDC operator, and leads to scalable three-
level algorithms in terms of number of iterations. We note that multilevel extensions,
with an arbitrary number of levels, can be obtained by recursion arguments.

3 Numerical Results

Here we present numerical experiments that confirm the robustness of our algo-
rithm; we test the quasi-optimality, the dependence on the polynomial order of
the curl-conforming spaces, and the proposed three-levels extension. In addition,
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we test the case of elements with curved boundaries. We also provide results for
adaptive enrichment (see [39] and the references therein) of the minimal coarse
space given by Eqs. (2) and (3) in the presence of heterogeneous coefficients. As
quality metrics, we consider the experimental condition number (denoted by κ) and
the number of conjugate gradient iterations needed to reduce by eight orders of
magnitude the initial residual norm, starting from zero initial guess and randomly
distributed right-hand side. Unless otherwise stated, the primal space consists of two
dofs per subdomain edge as described in Sect. 2.2, α = β = 1, and Ω = [0, 1]3.

All the numerical results have been obtained using the discretization packages
MFEM [24] (for Nédélec elements and high-order geometries) and ParElag
[27] (for upscaled finite elements) developed at Lawrence Livermore National
Laboratory, and by using the BDDC implementation developed by the first author
in the PETSc library [1, 39]. Irregular decompositions of tetrahedral (TET) or
hexahedral (HEX) meshes obtained from the graph partitioner ParMETIS [18] are
always considered; deluxe scaling is always used to accommodate for spurious
eigenvalues of the preconditioned operator arising from possibly jagged subdomain
interfaces [5].

In Fig. 1 we report the results of a quasi-optimality test, performed by considering
successive uniform refinements of a mesh decomposed in 40 subdomains, and
by using Nédélec elements of order p = 1 (lowest-order) and p = 2. The
domain decomposition is kept fixed, in order to fix the value of the maximum
subdomain diameter H . The results show a (1 + logH/h)2 dependence in all the
cases considered.

We then fix the mesh and the domain decomposition (i.e.H/h), and we increase
the polynomial order of the discretization spaces. Figure 2 contains results for the
Nédélec elements, going from p = 1 to p = 6; we note that we obtained the
same results when considering statically condensed spaces (relevant when p > 1
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Fig. 1 Quasi-optimality test. κ (left) and number of iterations (right) for successive uniform
refinements for Nédélec elements on hexahedra (HEX) and tetrahedra (TET); polynomial orders
p = 1 and p = 2
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Fig. 2 Polynomial order test. κ and number of iterations as a function of the polynomial order for
Nédélec elements on hexahedra (HEX) and tetrahedra (TET)
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Fig. 3 Polynomial order test. κ and number of iterations as a function of the polynomial order
for Nédélec elements (NED), and upscaled curl-conforming elements. UP1 one level of element
aggregation with structured coarsening, UP2 two levels

for the HEX and p > 2 for the TET case, data not shown). In the same spirit, Fig. 3
contains the results for upscaled curl-conforming elements, obtained by considering
two successive levels of structured aggregation (UP1 and UP2 respectively), and
with polynomial orders ranging from p = 1 to p = 4; results for Nédélec elements
(NED) on the same mesh are given for comparison. In both cases, Nédélec or
upscaled elements, our algorithm shows to be robust with the higher degree of the
polynomial space, and it leads to a poly-logarithmic convergence rate. The results of
this test, together with those related with the quasi-optimality, suggest a condition
number bound of the type (1 + log(p2H/h))2 for the preconditioned operator.

Further numerical evidence for the robustness of our approach is given by the
results shown in Table 1, where condition numbers and number of iterations are
reported by testing against third-order geometries, in combination with Nédélec ele-
ments of order p = 1, 2. The meshes used to run the tests have been obtained from
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Table 1 High-order
geometry test

TET, p = 1, TET, p = 2

dofs 27K 144K

κ 11.8 23.7

it 26 37

HEX, p = 1, TET, p = 2

dofs 12K 92K

κ 5.7 8.4

It 21 26

Size of linear systems (dofs),
condition number, (κ) and
number of iterations (it) for
Nédélec elements of degree 1
and 2 with the meshes shown
in Fig. 4

two levels of uniform refinements of those shown in Fig. 4, and they are available
with the MFEM source code as escher-p3.mesh and fichera-q3.mesh.
The number of subdomains considered is 40.

We next consider the case of heterogeneous coefficients; we fix α = 1,
and vary the distribution of β as pictured in Fig. 5. For this test, we adaptively
enrich the minimal coarse space by means of the adaptive selection of constraints
algorithm described in [39, 41]; results have been obtained using either tetrahedral or
hexahedral meshes, 40 subdomains, and with Nédélec elements of order p = 1 and
p = 2. The number of dofs in the tetrahedral case is approximately 200 thousand
(K) for p = 1, and 1.2 million (M) for p = 2; in the hexahedral case, the number
of dofs are 330K and 3.5M, respectively. Results are reported in Table 2, together
with the adaptive threshold used (λ), and the ratio between the number of generated
coarse dofs and the number of interface dofs (C/Γ ).

Without adaptive coarse spaces, the algorithm performs poorly (as expected)
since the jumps in β are not aligned with the (irregular) subdomain boundaries; on
the other hand, the number of iterations and the condition numbers are consistently
(and constantly) reduced when considering adaptive coarse spaces associated with
smaller and smaller tolerances λ. The ratio of coarse-to-fine dofs remain bounded
for all the tolerance values considered; interestingly, the coarsening procedure is
more effective for p = 2 than for p = 1, as also observed experimentally with
Raviart-Thomas vector fields [26, 42].

We close this section by reporting the results of a weak scalability test. Since
we consider unstructured domain decompositions, we obtain subdomain problems
of approximately the same size by using uniform refinements of an hexahedral
mesh; at each level of refinement, we multiply by eight the number of subdomains
used. As a consequence, we cannot guarantee that the shape of the subdomains
remains the same. The total number of dofs in the test ranges from 186K to 94M
with Nédélec elements of degree p = 1, and from 1.5M to 742M for p = 2.
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Fig. 4 Third-order meshes
used for the results in Table 1

In Fig. 6, we compare the results using a standard two-level BDDC algorithm (2L)
and a three-level approach (3L), where the coarse subdomains have been obtained
by aggregating 32 fine subdomains using ParMETIS; the condition number of the
coarse BDDC preconditioned operator is also provided (κc, left panel, dashed lines).
The number of iterations are scalable up to 16,384 subdomains in both cases;
condition numbers and number of iterations are slightly larger for the 3L case, but
the algorithm preserves the convergence properties of the 2L case.
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Fig. 5 Heterogeneous β
distribution used for testing
adaptive coarse spaces

Table 2 Adaptive coarse spaces

TET, p = 1 TET, p = 2

λ − 10 5 2.5 λ − 10 5 2.5

κ 150.2 7.5 4.6 2.2 κ 413.3 5.9 4.3 2.3

it 54 15 12 8 it 113 15 12 9

C/Γ 0.01 0.05 0.06 0.09 C/Γ 0.01 0.02 0.02 0.04

HEX, p = 1 HEX, p = 2

λ − 10 5 2.5 λ − 10 5 2.5

κ 203.4 5.8 3.2 2.0 κ 330.8 5.1 3.4 2.0

it 62 13 10 7 it 97 14 11 8

C/Γ 0.02 0.05 0.06 0.09 C/Γ 0.01 0.01 0.02 0.04

Condition number (κ), number of iterations (it) and coarse-to-fine ratio (C/Γ ) for different
eigenvalue thresholds λ

4 Conclusions

We have constructed BDDC methods for arbitrary order, finite element discretiza-
tions of the H(curl) model problem. Numerical results have shown that the
proposed algorithm leads to a poly-logarithmic condition number bound, with a
mild dependence on the polynomial order of the approximation space, of the type
(1+ log(p2H/h))2. The robustness of our approach has been confirmed for various
cases, including high-order geometries, upscaled curl-conforming finite elements,
and heterogeneous distributions of the coefficients. A scalable, three-level extension
of the method has also been proposed; large scale parallel experiments using up to
16,384 subdomains and almost a billion of dofs have been provided to validate the
algorithm.
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Fig. 6 Weak scalability test. κ and number of iterations as a function of the number of subdomains
for two-level (2L) and three-level BDDC (3L). Coarse condition number (κc) is also shown
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Restricted Additive Schwarz Method
for Some Inequalities Perturbed
by a Lipschitz Operator

Lori Badea

1 Introduction

The first restricted additive Schwarz methods have been introduced for algebraic
linear systems in [4, 5] and [8]. In [9] and [11] the restricted variant of the
multiplicative Schwarz method is also analyzed. Numerical experiments have
proven that these restricted methods, besides the fact that they sometimes converge
faster and also preserve the good properties of the usual additive methods, they
reduce the communication time when they are implemented on distributed memory
computers. In [7], it is explained this fact by showing that even if the restricted
method is defined at the matrix level, it can be interpreted as an iteration at the
continuous level of the given problem. Restricted additive Schwarz methods for
complementarity problems have been introduced in [13–15] and [12].

In the above papers, the methods are approached by a matricial point of view.
In this paper, we introduce and analyze a restricted additive method for inequalities
perturbed by a Lipschitz operator in the functional framework of the PDEs. Such an
approach is not new in the case of the additive and multiplicative Schwarz methods,
including the multilevel and multigrid methods for inequalities (see [1, 3] and [2],
for instance).

In the next section, as in [2], we give an existence and uniqueness result
concerning the solution of the inequalities that we are dealing with. Also, we
introduce the method as a subspace correction algorithm, prove the convergence
and estimate the error in a general framework of a finite dimensional Hilbert
space. In Sect. 3, by introducing the finite element spaces, we conclude that both
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the convergence condition and convergence rate are independent of the mesh
parameters, the number of subdomains and of the parameters of the domain
decomposition, but the convergence condition is a little more restrictive than the
existence and uniqueness condition of the solution.

In a forthcoming paper, by considering the perturbing operator of a particular
form, we introduce and analyze some restricted additive Schwarz-Richardson
methods for inequalities which do not arise from the minimization of a functional.
Also, we shall compare the convergence of these restricted additive methods with
the convergence of the corresponding additive methods.

2 Convergence Result in a Hilbert Space

Let V be finite dimensional real Hilbert space with the basis ϕj , j = 1, . . . , d , and
let cd and Cd be two constants such that, for any v = ∑d

j=1 vjϕj ∈ V , we have

cd
∑d

j=1 ||vjϕj ||2 ≤ ||v||2 ≤ Cd
∑d

j=1 ||vjϕj ||2 (1)

Also, let V1, . . . , Vm be some closed subspaces of V and K ⊂ V be a non empty
closed convex set. We consider a Gâteaux differentiable functional F : V → R and
assume that there exist two real numbers α, β > 0 for which

α||v − u||2 ≤ 〈F ′(v) − F ′(u), v − u〉 and ||F ′(v)− F ′(u)||V ′ ≤ β||v − u|| (2)

for any u, v ∈ V . Above, we have denoted by F ′ the Gâteaux derivative of F .
Following the way in [10], we can prove that for any u, v ∈ V , we have

〈F ′(u), v − u〉 + α

2
||v− u||2 ≤ F(v)−F(u) ≤ 〈F ′(u), v− u〉 + β

2
||v− u||2 (3)

Also, we consider an operator T : V → V ′ with the property that there exists γ > 0
such that

||T (v)− T (u)||V ′ ≤ γ ||v − u|| for any u, v ∈ V. (4)

By using the above functional F : V → R, we also introduce the functional
F : V → R defined as F(v) = ∑d

j=1 F(vjϕj ). Evidently, the derivative F ′ of

F at u = ∑d
j=1 ujϕj in the direction v = ∑d

j=1 vjϕj is written as 〈F ′(u), v〉 =∑d
j=1〈F ′(ujϕj ), vj ϕj 〉 and, in view of (3), we have

〈F ′(u), v − u〉 + α
2

∑d
j=1 ||(vj − uj )ϕj ||2 ≤ F(v)− F(u)

≤ 〈F ′(u), v − u〉 + β
2

∑d
j=1 ||(vj − uj )ϕj ||2

(5)
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for any u = ∑d
j=1 ujϕj , v = ∑d

j=1 vjϕj ∈ V . Evidently, from the convexity of F
we get thatF is also a convex functional. Finally, we assume that ifK is not bounded
then the functional F is coercive in the sense that F(v)/||v|| → ∞ as ||v|| →
∞, v ∈ V .

Now, we define an operation ∗ : V × V → V by

u ∗ v = ∑d
j=1 uj vjϕj for any u = ∑d

j=1 ujϕj and v = ∑d
j=1 vjϕj ∈ V (6)

We fix some functions θi = ∑d
j=1 θijϕj ∈ Vi , i = 1, . . . ,m, and assume that they

have the property

0 ≤ θij ≤ 1 and
∑m

i=1 θij = 1 for any j = 1, . . . ,m (7)

i.e., in some sense, they supply a unity decomposition associated with the subspaces
V1, . . . , Vm. Also, we assume that the convex set K has the property

Property 1 If v,w ∈ K and θ = ∑d
j=1 θjϕj ∈ V with 0 ≤ θj ≤ 1, j = 1, . . . , d ,

then θ ∗ v + (1̄ − θ) ∗ w ∈ K .

Above and in what follows in this section,
∑d
j=1 ϕj is denoted by 1̄. Using (6), we

have 1̄ ∗ v = v for any v ∈ V . Finally, we consider the problem

u ∈ K : 〈F ′(u), v − u〉 − 〈T (u), v − u〉 ≥ 0, for any v ∈ K. (8)

which is a variational inequality perturbed by the operator T . Concerning the
existence and the uniqueness of the solution of this problem we have the following
result (see [2], for the proof of a similar result).

Proposition 1 If γ
α
Cd < 1, then problem (8) has a unique solution.

Since the functional F is convex and differentiable, problem (8) is equivalent with
the minimization problem

u ∈ K : F(u)− 〈T (u), u〉 ≤ F(v)− 〈T (u), v〉, for any v ∈ K. (9)

We write the restricted additive algorithm for the solution of problem (8) as

Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K . At iteration n + 1,
having un ∈ K , n ≥ 0, we solve the inequalities: find wn+1

i ∈ Vi, un + wn+1
i ∈ K

such that

〈F ′(un + wn+1
i ), vi −wn+1

i 〉 − 〈T (un), vi −wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, un + vi ∈ K, (10)

for i = 1, . . . ,m, and then we update un+1 = un + ∑m
i=1 θi ∗ wn+1

i .

Now we prove

Theorem 1 Let u be the solution of problem (8), and un, n ≥ 1, be its approxima-
tions obtained from Algorithm 1. If γ

α
Cd ≤ ϑmax, where ϑmax is defined in (27), then
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Algorithm 1 is convergent for any initial guess u0 ∈ K and the error estimates

F(un)− 〈T (u), un〉 − F(u)+ 〈T (u), u〉
≤

(
C̃

C̃+1

)n [
F(u0)− 〈T (u), u0〉 − F(u)+ 〈T (u), u〉] (11)

and

∑d
j=1 ||(unj − uj )ϕj ||2 ≤ 2

α

(
C̃

C̃+1

)n [
F(u0)− 〈T (u), u0〉

−F(u)+ 〈T (u), u〉]
(12)

hold for any n ≥ 1, where constant C̃ is given in (28).

Proof Using (5), (7) and (10), we get

F(un+1)− F(u)+ 〈T (u), u− un+1〉 + α
2

∑d
j=1 ||(un+1

j − uj )ϕj ||2
≤ 〈F ′(un+1), un+1 − u〉 + 〈T (u), u− un+1〉
≤ ∑m

i=1〈F ′(un + wn+1
i )− F ′(un+1), θi ∗ (u− un)+ (1̄ − θi) ∗wn+1

i −wn+1
i 〉

−∑m
i=1〈T (un), θi ∗ (u− un)+ (1̄ − θi) ∗wn+1

i −wn+1
i 〉 + 〈T (u), u− un+1〉

Above, we have used the fact that θi ∗(u−un)+(1̄−θi)∗wn+1
i ∈ Vi and, in view of

Property 1, un+θi∗(u−un)+(1̄−θi)∗wn+1
i = (1̄−θi)∗(un+wn+1

i )+θi∗u ∈ K and
therefore, we can replace vi by θi ∗(u−un)+(1̄−θi)∗wn+1

i in (10). Consequently,
we have

F(un+1)− F(u)− 〈T (u), un+1 − u〉 + α
2

∑d
j=1 ||(un+1

j − uj )ϕj ||2
≤ ∑m

i=1〈F ′(un +wn+1
i )− F ′(un+1), θi ∗ (u− un − wn+1

i )〉
+∑m

i=1〈T (u)− T (un), θi ∗ (u− un −wn+1
i )〉

(13)

In view of (2) and (7), we have
∑m

i=1〈F ′(un + wn+1
i )− F ′(un+1), θi ∗ (u− un −wn+1

i )〉
≤ β

∑m
i=1

∑d
j=1 θij ||((1 − θij )w

n+1
ij − ∑m

k=1, k �=i θkjw
n+1
kj )ϕj ||

·||(uj − un+1
j − (1 − θij )w

n+1
ij + ∑m

k=1, k �=i θkjw
n+1
kj )ϕj ||

≤ β
∑m

i=1
∑d

j=1 θij

(
(1 − θij )||wn+1

ij ϕj || + ∑m
k=1, k �=i θkj ||wn+1

kj ϕj ||
)

·
(
||(uj − un+1

j )ϕj || + (1 − θij )||wn+1
ij ϕj || + ∑m

k=1, k �=i θkj ||wn+1
kj ϕj ||

)

≤ β
∑m

i=1
∑d

j=1 θij

[
(1 + 1

2ε1
)
(
(1 − θij )||wn+1

ij ϕj ||
+∑m

k=1, k �=i θkj ||wn+1
kj ϕj ||

)2 + ε1
2 ||(uj − un+1

j )ϕj ||2
]

≤ 2β(1 + 1
2ε1
)

·∑m
i=1

∑d
j=1 θij (1 − θij )

(
(1 − θij )||wn+1

ij ϕj ||2 + ∑m
k=1, k �=i θkj ||wn+1

kj ϕj ||2
)

+β ε1
2

∑d
j=1 ||(uj − un+1

j )ϕj ||2 = 2β(1 + 1
2ε1
)
∑m

i=1
∑d
j=1 θij (1 − θij )

·(1 − 2θij )||wn+1
ij ϕj ||2 + 2β(1 + 1

2ε1
)
∑m
i=1

∑d
j=1 θij (1 − θij )

·∑m
k=1 θkj ||wn+1

kj ϕj ||2 + β ε1
2

∑d
j=1 ||(uj − un+1

j )ϕj ||2
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or
∑m

i=1〈F ′(un +wn+1
i )− 4β(1

+ 1
2ε1
)
∑m

i=1
∑d
j=1 θij ||wn+1

ij ϕj ||2 + β ε1
2

∑d
j=1 ||(uj − un+1

j )ϕj ||2 (14)

for any ε1 > 0. Also, from (4) and (1), we get

∑m
i=1〈T (u)− T (un), θi ∗ (u− un −wn+1

i )〉 = 〈T (u)− T (un), u− un

−∑m
i=1 θi ∗ wn+1

i 〉 = 〈T (u)− T (un), u− un+1)〉 ≤ γ ||u− un|| ||u− un+1||
≤ γ

(
||u− un+1|| + ||∑d

j=1
∑m

i=1 θijw
n+1
ij ϕj ||

)
||u− un+1||

≤ γCd

(
(1 + ε2

2 )
∑d
j=1 ||(uj − un+1

j )ϕj ||2 + 1
2ε2

∑d
j=1 ||∑m

i=1 θijw
n+1
ij ϕj ||2

)

i.e., using (7), we have

∑m
i=1〈T (u)− T (un), θi ∗ (u− un −wn+1

i )〉 ≤ γCd
(
(1 + ε2

2 )

·∑d
j=1 ||(uj − un+1

j )ϕj ||2 + 1
2ε2

∑d
j=1

∑m
i=1 θij ||wn+1

ij ϕj ||2
) (15)

for any ε2 > 0. From (13)–(15), we get

F(un+1)− F(u)− 〈T (u), un+1 − u〉 + (
α
2 − β ε1

2 − γCd(1 + ε2
2 )

)
·∑d

j=1 ||(un+1
j − uj )ϕj ||2 ≤

[
4β(1 + 1

2ε1
)+ γCd

1
2ε2

]
·∑m

i=1
∑d

j=1 θij ||wn+1
ij ϕj ||2

(16)

for any ε1, ε2 > 0.
Now, by taking vi = (1̄ − θi) ∗ wn+1

i in (10), for i = 1, . . . ,m, we get

∑d
j=1 θij

[
〈F ′((unj +wn+1

ij )ϕj ),−wn+1
ij ϕj 〉 − 〈T (un),−wn+1

ij ϕj 〉
]

≥ 0 (17)

In view of (7), the convexity of F , (2) and the above equation, we have

F(un+1)− F(un) ≤ ∑d
j=1

∑m
i=1 θij [F((unj +wn+1

ij )ϕj )− F(unjϕj )]
≤ ∑d

j=1
∑m

i=1 θij

[
−α

2 ||wn+1
ij ||2 − 〈F ′((unj +wn+1

ij )ϕj ),−wn+1
ij ϕj 〉

]

= ∑d
j=1

∑m
i=1 θij

[
−α

2 ||wn+1
ij ϕj ||2 − 〈T (un),−wn+1

ij ϕj 〉
−〈F ′((unj +wn+1

ij )ϕj ),−wn+1
ij ϕj 〉 + 〈T (un),−wn+1

ij ϕj 〉
]

≤ ∑d
j=1

∑m
i=1 θij

[
−α

2 ||wn+1
ij ϕj ||2 − 〈T (un),−wn+1

ij ϕj 〉
]

Consequently, we have

α
2

∑m
i=1

∑d
j=1 θij ||wn+1

ij ϕj ||2 ≤ F(un)− F(un+1)

+〈T (u), un+1 − un〉 + 〈T (un)− T (u), un+1 − un〉 (18)
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With a proof similar to that of (15), we get

〈T (un)− T (u), un+1 − un〉 ≤ γCd

[
ε3
2

∑d
j=1 ||(un+1

j − uj )ϕj ||2
+(1 + 1

2ε3
)
∑m

i=1
∑d

j=1 θij ||wn+1
ij ϕj ||2

] (19)

for any ε3 > 0.
Consequently, from (18) and (19), we get
[
α
2 − γCd(1 + 1

2ε3
)
]∑m

i=1
∑d
j=1 θij ||wn+1

ij ϕj ||2 ≤ F(un)− F(un+1)

+〈T (u), un+1 − un〉 + γCd
ε3
2

∑d
j=1 ||(un+1

j − uj )ϕj ||2
(20)

for any ε3 > 0. Let us write

C1 = α
2 − γCd(1 + 1

2ε3
) (21)

For values of γ , α and ε3 such that C1 > 0, from (16) and (20), we have

F(un+1)− F(u)− 〈T (u), un+1 − u〉 + C2
∑d
j=1 ||(un+1

j − uj )ϕj ||2
≤ C̃

[
F(un)− F(un+1)+ 〈T (u), un+1 − un〉] (22)

where

C̃ = 1
C1

(
4β(1 + 1

2ε1
)+ γCd

1
2ε2

)
(23)

and

C2 = α
2 − β ε1

2 − γCd(1 + ε2
2 )− γCd

ε3
2 C̃ (24)

In view of (22), assuming that C2 ≥ 0, we easily get (11). Estimation (12) follows
from (11) and (3) and (8). Indeed, we have

F(un)− F(u)− 〈T (u), un − u〉 = ∑d
j=1 F(u

n
jϕj )− ∑d

j=1 F(ujϕj )

−〈T (u), un − u〉 ≥ ∑d
j=1〈F ′(ujϕj ), (unj − uj )ϕj 〉

+α
2

∑d
j=1 ||(unj − uj )ϕj ||2 − 〈T (u), un − u〉 = 〈F ′(u), un − u〉

−〈T (u), un − u〉 + α
2

∑d
j=1 ||(unj − uj )ϕj ||2 ≥ α

2

∑d
j=1 ||(unj − uj )ϕj ||2

(25)

Using (23), (24) and (21), condition C2 ≥ 0 can be written as C2 = A − 4Bβ −
β
2 (ε1 + 4 B

ε1
) − γCd

2 (ε2 + B
ε2
) ≥ 0 with A = α

2 − γCd and B = γCd
ε3
2

A−γCd 1
2ε3

The

maximum value of C2 is obtained for

ε1 = 2 γCd
A

ε2 = ε3 = γCd
A

(26)
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Consequently, for these values, we should have

C2max = α3

A2

[
1
2 (

1
2 − γCd

α
)( 1

2 − 2 γCd
α
)− 2β

α
γCd
α
( 1

2 + γCd
α
)
]

≥ 0, or

Cd
γ
α

≤ 1√
16 β

2

α2 +40 β
α
+1+4 β

α
+3

= ϑmax (27)

By a simple calculus, we see that if (27) holds, then conditionC1 > 0 is satisfied for
the value of ε3 in (26). Finally, by replacing ε1, ε2 and ε3 in (23) with their values
in (26), we get

C̃ = 1 + 2β

α

6 γCd
α

+ 1
γCd
α

(
1 − 2 γCd

α

) ≥ 1 + 2β

α

6ϑmax + 1

ϑmax (1 − 2ϑmax)
(28)

It should be noted that the convergence condition and the convergence rate are
independent of the numberm of subspaces.

3 Restricted Additive Schwarz Method in a Finite Element
Space

Let Ω be an open bounded domain in RN , N = 1, 2 or 3, and we consider a
simplicial regular mesh partition Th. We assume that domain Ω is decomposed
in m subdomains, Ω = ⋃m

i=1 Ωi , and that Th supplies a mesh partition for each
subdomain Ωi , i = 1, . . . ,m. We associate to the mesh partition Th the piecewise
linear finite element space Vh ⊂ H 1

0 (Ω) and to the domain decomposition the
subspaces V ih ⊂ H 1

0 (Ωi). We assume that the convex setKh ⊂ Vh has the following

Property 2 If v,w ∈ Kh, and if θ ∈ Vh, 0 ≤ θ ≤ 1, then Lh(θv+ (1 − θ)w) ∈ Kh.

Above and also in the following, we denote by Lh the P1-Lagrangian interpolation
operator which uses the function values at the nodes of the mesh Th. It is easy to see
that the convex sets of two-obstacle type have Property 2.

Now, we estimate Cd in (1). Given a triangle τ ∈ Th, let Jτ = {1 ≤ j ≤ d : τ ⊂
supp ϕj }. Then, for a v = ∑d

j=1 vjϕj ∈ Vh, and using the norm ofH 1(Ω)we have

||v||2 = ∑
τ ||v||2τ = ∑

τ

(∑
j∈Jτ vj ϕj ,

∑
j∈Jτ vj ϕj

)
τ

≤∑
τ |Jτ |∑j∈Jτ ||vjϕj ||2τ ≤ ∑

τ |Jτ |∑d
j=1 ||vjϕj ||2τ ≤ Cd

∑d
j=1

∑
τ ||vjϕj ||2τ

= Cd
∑d

j=1 ||vjϕj ||2

where we have denoted Cd = maxτ∈Th |Jτ |. Since Th are simplicial meshes, then
maxτ |Jτ | is independent of the mesh parameters when h → 0. Therefore, we can
consider that Cd is independent of the domain or mesh parameters.
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Finally, it is evident that ∗ in (6) can be written as u ∗ v = Lh(uv) for any
u, v ∈ Vh. Moreover, if {θ1, . . . , θm} ⊂ Vh is a unity partition associated with
the domain decomposition, then (7) holds for any v ∈ Vh. Besides that, in view of
Property 2 of the convex setKh, this convex set also has Property 1. In the matricial
description of the method, some restriction operators, R0

1, . . . , R
0
m, are used instead

of our unity partition {θ1, . . . , θm}. If we associate to a v = ∑d
j=1 vjϕj ∈ Vh

the vector (v1, . . . , vd) then θi ∗ v is associated with R0
i (v1, . . . , vd). In general,

these restriction operators supply a minimum overlap i.e., with our notations, the
components θij of the functions θi = ∑m

j=0 θij ϕj satisfy either θij = 1 or θij = 0.
A PDEs definition of the method using a unity partition associated to the domain
decomposition and which is very close to that introduced by us is given in [6].

From (27), (28) and the above comments we can conclude that the convergence
condition and convergence rate of Algorithm 1 are independent of the mesh
parameters and of both the number of subdomains and the parameters of the domain
decomposition, but the convergence condition is more restrictive than the existence
and uniqueness condition of the solution given in Proposition 1.
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Does SHEM for Additive Schwarz Work
Better than Predicted by Its Condition
Number Estimate?

Petter E. Bjørstad, Martin J. Gander, Atle Loneland, and Talal Rahman

1 Introduction and Model Problem

The SHEM (Spectral Harmonically Enriched Multiscale) coarse space is a new
coarse space for arbitrary overlapping or non-overlapping domain decomposition
methods. In contrast to recent new coarse spaces like GenEO [13] or the one in
[12] that improve certain Rayleigh quotients in the convergence analysis of the
underlying domain decomposition method, SHEM is based on understanding the
stationary iterates of the domain decomposition method itself (see [9] for details),
and can thus be constructed and used also for domain decomposition methods which
do not (yet) have such a convergence analysis, like for example Restricted Additive
Schwarz (RAS) [4], or optimized Schwarz [6]. SHEM is based on the approximation
of an optimal coarse space which was discovered in [3], and further studied in
[4, 6, 7], see [9] for a general introduction, and also [5] for the specific case of
Additive Schwarz (AS). SHEM can use spectral information, as its name indicates,
but can also be constructed avoiding eigenvalue problems, for examples, see [8]. If
a convergence analysis for the domain decomposition method is available, SHEM
can improve the corresponding convergence estimate, see [8] for a condition number
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estimate when SHEM is used with AS. We are interested here to test numerically if
in this case

1. the hypothesis of small overlap (one or two mesh sizes) in the proof in [5] is
necessary for the condition number estimate to hold in practice;

2. the quadratic growth in the factor H/h in the condition number estimate from
[5] is really present when the method is used numerically.

We consider as our model problem the following variational formulation of a second
order elliptic boundary value problem with Dirichlet boundary conditions: find u ∈
H 1

0 (Ω) such that

a(u, v) =
∫
Ω

α(x)∇u · ∇v dx =
∫
Ω

f v dx ∀v ∈ H 1
0 (Ω), (1)

where Ω is a bounded convex domain in R
2, f ∈ L2(Ω) and α ∈ L∞(Ω) such

that α ≥ α0 for some positive constant α0. Discretizing this problem using P1 finite
elements from the finite element space Vh with associated mesh Th(Ω) leads to the
linear system

Au = f. (2)

Let Ω be partitioned into non-overlapping open, connected Lipschitz polytopes
{Ωi : i = 1, . . . , N} such that Ω = ⋃N

i=1 Ωi , where each Ωi is assumed to
consist of elements from Th(Ω). We assume that this partitioning is shape-regular.
By extending each subdomain Ωi with a distance δ in each direction, we create a
further decomposition of Ω into overlapping subdomains {Ω ′

i}Ni=1. As usual, we
assume that each point x ∈ Ω is contained in at most N0 subdomains (finite
covering). The layer of elements inΩi touching the boundary ∂Ωi is denoted byΩh

i

and we assume that the triangles corresponding to this layer are shape regular with
minimum diameter hi := min

K∈Th(Ωh
i )

hK , where hK is the diameter of the triangleK .

The interfaces between two subdomains,Ωi andΩj , are defined as Γ ij := Ωi∩Ωj .
The sets of vertices of elements in Th(Ω) (nodal points) belonging to Ω , Ωi , ∂Ω ,
∂Ωi and Γij are denoted by Ωh, Ωih, ∂Ωh, ∂Ωih and Γijh. With each interface we
define the space of finite element functions restricted to Γij and zero on ∂Γij as
V 0
h (Γij ).

We define the restriction of the bilinear form a(·, ·) to an interface Γij shared by
two subdomains as

aΓij (u, v) := (
α|Γij (x)Dτu,Dτv

)
L2(Γij )

,

where α|Γij (x) := lim
y∈Ωi→x

α(y) and Dτ denotes the tangent derivative with respect

to Γij . In order to obtain continuous basis functions across subdomain interfaces,
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we define a second bilinear form on each interface Γij ,

āΓij (u, v) := (
αij (x)Dτu,Dτ v

)
L2(Γij )

,

where αij is taken as the maximum of α|Γij and α|Γji .
Given a partition of unity {χi}Ni=1 subordinate to the overlapping decomposition

defined above and corresponding restriction matricesRi , as well as a suitable coarse
space V0 with restriction operator R0, the two-level additive Schwarz method may
be defined for i = 0, . . . N as

M−1
AS,2 =

N∑
i=0

RTi A
−1
i Ri where Ai := RiAR

T
i . (3)

Classically, coarse spaces for Additive Schwarz methods consist of finite elements
on a coarser triangulation TH of Ω . This type of choice for the coarse space,
however, is not robust with respect to large variations in the coefficient α.

2 The SHEM Coarse Space

SHEM is based on enriching a particular underlying coarse space, which in the
case of high contrast problems is the multiscale finite element coarse space, see
[1, 10]. We use the variant that generates the multiscale elements by solving lower
dimensional problems along the edges, and then extending the result harmonically
into the interior of the element. In the case of Laplace’s equation on a rectangular
domain decomposition, this underlying coarse space would just be Q1 finite
elements on the subdomains, see [7]. Note that SHEM is also interesting in this case,
since it systematically improves the overall convergence of the underlying domain
decomposition method in an optimized way, see [5]. We choose here for SHEM
a harmonic enrichment based on solutions of local eigenvalue problems along the
interfaces between subdomains1:

Definition 1 (Generalized Interface Eigenvalue Problem) For each interfaceΓij ,
we define the generalized eigenvalue problem: find ψ and λ, such that

āΓij (ψ, v) := λbΓij (ψ, v) ∀v ∈ V 0
h (Γij ), (4)

where bΓij (ψ, v) := h−1
i

∑
k∈Γijh

βkψkvk and βk = ∑
K∈Th(Ω)
k∈dof(K)

αK .

1Any other Sturm Liuville problem could be used as well to get a different variant of SHEM, for
example more expensive Schur complements corresponding to the Dirichlet to Neumann maps
[11], or one could construct even cheaper interface basis functions without eigenvalue problem,
see [8].
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We will test the following two types of SHEM coarse spaces:

• SHEMm, wherem is an integer: here we choose the m eigenfunctions associated
with the smallestm eigenvalues of (4), and extend each of them harmonically into
the two subdomains Ωi and Ωj adjacent to the interface Γij with zero Dirichlet
boundary conditions on the remaining part of the subdomain boundaries. These
functions are then added to the underlying multiscale coarse space to form
SHEMm.

• SHEMτ , where τ is a given tolerance: here we choose adaptively on each
interface Γij to include all eigenfunctions associates with eigenvalues smaller
than τ , extend them harmonically like above and add them to the underlying
multiscale coarse space to form SHEMτ .

Theorem 1 (Condition Number Estimate [8]) If the overlap is one or two mesh
sizes, then the condition number of the two level Schwarz operator (3) with the
SHEMm coarse space can be bounded by

κ(M−1
AS,2A) � C2

0 (N0 + 1), (5)

where C2
0 $

(
1 + 1

λm+1

)
and λm+1 := min

i
min

Γij⊂∂Ωi
λ
ij
mij+1.

The restriction on the overlap size is necessary in the proof based on the abstract
Schwarz framework. The convergence estimate in Theorem 1 also indicates a
quadratic dependence of the condition number on the mesh ratio H/h, even for
the case without enrichment, because the inverse of the smallest eigenvalues of (4)
have a quadratic dependence on the ratio H/h. In the case of Laplace’s equation
and without enrichment, such that our coarse space is just the normal Q1 coarse
space, standard domain decomposition theory says that the condition number of
additive Schwarz should depend linearly on the mesh ratio H/h. We investigate
now numerically if these restrictions are really also properties of SHEMm, or just
artefacts in the analysis.

3 Numerical Investigation of the SHEM Coarse Space

We solve problem (1) with f = 1 on a unit square domain Ω = (0, 1)2, and the
coefficient α(x) represents various (possibly discontinuous) distributions. We use
AS with SHEMm as a preconditioner for the conjugate gradient method, and stop
the iteration when the l2 norm of the residual is reduced by a factor of 10−6. If not
stated otherwise, the coefficient α(x) is equal to 1 for all the numerical examples,
except in the areas marked with red where the value of α(x) is equal to α̂. All
the experiments were carried out using Matlab 9.0 on a serial workstation. For the
interface eigenvalue problems, we have in our implementation exploited the fact that
we are able to extract exactly the 1D stiffness and mass matrix corresponding to the
bilinear forms in Definition 1 algebraically from the global problem.
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Fig. 1 Distribution of α for a geometry with h = 1
128 ,H = 16h. The regions marked with red are

where α has a large value α̂

Table 1 Top half: overlap δ = 2h. Bottom half: overlap δ = 8h

MS SHEM1 SHEM2 SHEM3 SHEM4 SHEMτ=6e−3

dim. 49 161 273 385 497

α̂ #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) dim.

100 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0) 21 (1.29e1) 49

102 122 (3.74e2) 70 (1.17e2) 47 (6.70e1) 19 (6.77e0) 16 (5.66e0) 25 (1.10e1) 233

104 367 (3.64e4) 248 (1.10e4) 187 (6.22e3) 19 (6.78e0) 17 (5.73e0) 25 (1.09e1) 233

106 610 (3.64e6) 423 (1.10e6) 290 (6.22e5) 19 (6.78e0) 17 (5.73e0) 25 (1.09e1) 233

100 16 (5.57e0) 15 (4.88e0) 15 (4.82e0) 15 (4.94e0) 15 (4.95e0) 16 (5.47e0) 49

102 47 (4.08e1) 28 (1.53e1) 19 (5.58e0) 18 (5.02e0) 18 (4.99e0) 21 (6.26e0) 233

104 145 (3.48e3) 55 (1.08e3) 20 (6.03e0) 18 (5.06e0) 18 (4.99e0) 21 (6.55e0) 233

106 241 (3.48e5) 78 (1.08e5) 20 (6.03e0) 18 (5.06e0) 18 (4.99e0) 21 (6.56e0) 233

Iteration count and condition number estimate for the channel distribution in Fig. 1 for the classical
multiscale coarse space, SHEMm, m = 1, 2, 3, 4 and SHEMτ=6e−3 for h = 1

128 , H = 16h. Here
‘dim’ denotes the dimension of the coarse space

3.1 Is Small Overlap Necessary for SHEM?

We start by studying the dependence on the overlap for the contrast function
α(x) shown in Fig. 1. For the case of overlap δ = 2h and δ = 8h, we show
the iteration counts and condition number estimates in Table 1 for the classical
multiscale coarse space (MS), SHEMm and the adaptive variant SHEMτ=6e−3. We
see that even though the theory only addressed small overlap, SHEMm works very
well also with larger overlap, and overlap improves the performance like usual.
We even see that independence of the contrast arrives for the large overlap already
with two enrichment functions instead of three. This is because the middle of the
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Fig. 2 Distribution of α for a geometry with h = 1
128 ,H = 16h. The regions marked with red are

where α has a large value α̂

three channels crossing the interfaces in Fig. 1 is shorter, and for the large overlap
case included in the overlap, and thus not a convergence problem any more for
the underlying AS; there are therefore only two channels left the coarse space
has to treat, see [9] presented at this conference. In the current adaptive variant
SHEMτ=6e−3 it is not clear how to take into account the overlap, and thus the same
number of enrichment functions was chosen. Larger overlap can however also be
taken into account by a different construction of SHEM for AS, see [5].

We next perform the same test also on the irregular high contrast structure shown
in Fig. 2. The corresponding results in Table 2 show that also in this case SHEM
works very well with larger overlap, and that difficulties can be either remedied by
increasing the overlap, or enriching the coarse space: SHEM with one enrichment
function is enough to get robust convergence with large overlap, but with small
overlap, SHEM needs 2–3 enrichment functions.

3.2 What Is the Condition Number Growth in H/h?

We now test numerically the dependence on the mesh ratio H/h for the case where
α = 1 and for the high contrast cases given in Figs. 1 and 2 with α̂ = 104. The
iteration counts and condition number estimates are given in Table 3 for decreasing
h while the subdomain diameter is kept fixed at H = 1/8. We clearly see that the
convergence rate is linearly dependent on the mesh ratio H/h, for both the constant
coefficient case and the high contrast cases. This confirms that the restrictions in
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Table 2 Top half: overlap δ = 2h. Bottom half: overlap δ = 8h

MS SHEM1 SHEM2 SHEM3 SHEM4 SHEMτ=6e−3

dim. 49 161 273 385 497

α̂ #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) dim.

100 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0) 21 (1.29e1) 49

102 72 (1.09e2) 53 (6.49e1) 27 (1.52e1) 22 (9.47e0) 20 (6.45e0) 36 (2.14e1) 165

104 288 (9.43e3) 98 (5.46e3) 29 (1.60e1) 23 (9.60e0) 21 (6.54e0) 38 (2.44e1) 169

106 524 (9.41e6) 156 (5.49e5) 32 (1.60e1) 24 (9.59e0) 22 (6.28e0) 39 (2.44e1) 169

100 16 (5.57e0) 15 (4,88e0) 15 (4.82e0) 15 (4.94e0) 15 (4.95e0) 16 (5.47e0) 49

102 29 (1.31e1) 22 (7.75e0) 19 (5.54e0) 18 (5.10e0) 18 (5.05e0) 22 (7.89e0) 165

104 72 (7.56e2) 28 (1.36e1) 20 (5.68e0) 19 (5.12e0) 19 (5.07e0) 25 (9.97e0) 169

106 121 (7.50e4) 32 (1.43e2) 21 (5.41e0) 20 (5.05e0) 20 (5.02e0) 26 (1.01e1) 169

Iteration count and condition number estimate for the distribution in Fig. 2 for the classical
multiscale coarse space, SHEMm, m = 1, 2, 3, 4 and SHEMτ=6e−3 for h = 1

128 , H = 16h.
Here ‘dim’ denotes the dimension of the coarse space

Table 3 Top: α = 1. Middle: Distribution of α from Fig. 1 with α̂ = 104. Bottom: Distribution
of α from Fig. 2 with α̂ = 104

MS SHEM1 SHEM2 SHEM3 SHEM4
H
h

#it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ)

8 18 (7.67e0) 14 (5.36e0) 14 (5.02e1) 14 (5.07e0) 13 (5.12e0)

16 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0)

32 29 (2.37e1) 20 (1.22e1) 18 (8.97e5) 15 (7.52e0) 14 (6.55e0)

64 41 (4.52e1) 26 (2.23e1) 22 (1.56e1) 19 (1.32e1) 18 (1.03e1)

128 58 (8.85e1) 36 (4.25e1) 30 (2.88e1) 25 (2.23e1) 23 (1.82e1)

256 80 (1.75e2) 50 (8.83e1) 41 (5.57e1) 34 (4.24e1) 31 (3.42e1)

16 367 (3.64e4) 248 (1.10e4) 187 (6.78e3) 19 (6.78e0) 17 (5.73e0)

32 525 (7.47e4) 326 (2.32e4) 252 (1.32e4) 22 (9.33e0) 19 (7.74e0)

64 740 (1.51e5) 458 (4.76e4) 329 (2.72e4) 28 (1.70e1) 22 (1.25e1)

128 1062 (3.05e5) 665 (9.62e4) 457 (5.52e4) 38 (3.15e1) 29 (2.25e1)

256 1522 (6.12e5)a 980 (1.94e5)a 679 (1.11e5)a 52 (6.06e1) 41 (4.28e1)

16 288 (9.43e3) 98 (5.46e3) 29 (1.60e1) 23 (9.60e0) 21 (6.54e0)

32 443 (1.97e4) 129 (1.14e4) 38 (2.75e1) 28 (1.53e0) 23 (8.00e0)

64 612 (4.03e4) 170 (2.31e4) 51 (5.07e1) 36 (2.73e1) 29 (1.27e1)

128 856 (8.17e4) 232 (4.65e4) 70 (9.82e1) 48 (5.20e1) 38 (2.26e1)

256 1207 (1.64e5) 315 (9.33e4) 98 (1.94e2) 66 (1.02e2) 52 (4.30e1)

Iteration count and condition number estimate for the classical multiscale coarse space and
SHEMm, m = 1, 2, 3, 4, solving Problem 1 for decreasing h, H = 1

8 and overlap δ = 2h
a Stagnation
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the analysis in [5] are not a property of SHEM itself, but rather restrictions of the
analysis. We also see that for very high contrast, SHEM can even fix stagnation
when using the appropriate amount of enrichment.

4 Conclusions

The numerical experiments we presented indicate that the first convergence estimate
for SHEM in Theorem 1 might not need the technical assumption of small overlap,
and also that the convergence bound with the square dependence on the mesh
ratio H/h is too pessimistic. Another important observation is that the dimension
of the coarse space is not larger than the dimension of the largest subdomain in
our experiments, and thus the coarse space solve remains less expensive than the
subdomain solves. Based on this numerical investigation, we are currently carefully
studying the technical estimates in the proof of Theorem 1 to see under which
conditions on the high contrast parameter α the overlap restriction and the quadratic
dependence on the mesh ratio in the condition number estimate can be removed. We
are also working on the extension to three dimensional problems, see [2], and on a
parallel implementation.
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Two-Level Preconditioners
for the Helmholtz Equation

Marcella Bonazzoli, Victorita Dolean, Ivan G. Graham, Euan A. Spence,
and Pierre-Henri Tournier

1 Introduction

Solving the Helmholtz equation −Δu − k2u = f is a challenging task because
of its indefinite nature and its highly oscillatory solution when the wavenumber
k is high. Although there have been different attempts to solve it efficiently, we
believe that there is no established and robust preconditioner, whose behavior
is independent of k, for general decompositions into subdomains. In [1] a two-
level preconditioner was introduced, where the coarse correction involves local
eigenproblems of Dirichlet-to-Neumann (DtN) maps. This method proved to be
very robust with respect to heterogeneous coefficients compared to the reference
preconditioner based on plane waves, and its construction is completely automatic
without the need for parameter tuning. Another method was developed in [2, 3],
where two-level domain decomposition approximations of the Helmholtz equation
with absorption −Δu− (k2 + iε)u = f were used as preconditioners for the pure
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Helmholtz equation without absorption; there the coarse correction is based on a
coarse mesh with diameter constrained by k. Our purpose is to compare numerically
the performance of the latter with the two-level method based on DtN maps, both in
two and three dimensions.

2 Definition of the Problem

Consider the interior Helmholtz problem of the following form: let Ω ⊂ R
d , d =

2, 3, be a polyhedral, bounded domain; find u : Ω → C such that

−Δu− (k2 + iε)u = f in Ω, (1a)

∂u

∂n
− iηu = 0 on Γ = ∂Ω. (1b)

The wavenumber k is given by k(x) = ω/c(x), where ω is the angular frequency
and c is the speed of propagation that might depend on x ∈ Ω ; we take η = sign(ε)k
if ε �= 0, η = k if ε = 0, as Robin boundary condition parameter. We are interested
in solving the problem in the case ε = 0, using ε as a parameter when building the
preconditioner. The variational formulation of Problem (1) is: find u ∈ V = H 1(Ω)

such that aε(u, v) = F(v), ∀v ∈ V, where aε(., .) : V × V → C and F : V → C

are defined by

aε(u, v) =
∫
Ω

(
∇u · ∇v − (k2 + iε)uv

)
−

∫
Γ

iηuv, F (v) =
∫
Ω

f v.

Note that if ε �= 0 and η = sign(ε)k, aε is coercive (see §2 in [3]). We consider
a discretization of the variational problem using piecewise linear finite elements on
a uniform simplicial mesh Th of Ω . Denoting by Vh ⊂ V the corresponding finite
element space and by {φk}nk=1 its basis functions, n := dim(Vh), the discretized
problem reads: find uh ∈ Vh such that aε(uh, vh) = F(vh), ∀vh ∈ Vh, that is, in
matrix form,

Aεu = f, (2)

where the coefficients of the matrix Aε ∈ C
n×n and the right-hand side f ∈ C

n

are given by (Aε)k,l = a(φl, φk) and (f)k = F(φk). The matrix Aε is complex,
symmetric (but not Hermitian), and indefinite if ε = 0.
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3 Two-Level Domain Decomposition Preconditioners

In the following we will define the domain decomposition preconditioners for
the linear system A0u = f resulting from the discretization of the Helmholtz
problem without absorption (ε = 0). These are two-level Optimized Restricted
Additive Schwarz (ORAS) algorithms, where “optimized” refers to the use of Robin
boundary conditions at the interface between subdomains. In the terminology of [3],
the prefix O is replaced with Imp, which stands for impedance (i.e. Robin) boundary
conditions.

First of all, consider a decomposition of the domain Ω into a set of overlapping
subdomains {Ωj }Nsub

j=1 , with each subdomain consisting of a union of elements of

the mesh Th. Let Vh(Ωj ) = {
v|Ωj : v ∈ Vh

}
, 1 ≤ j ≤ Nsub, denote the space of

functions in Vh restricted to the subdomainΩj . Let nj be the dimension of Vh(Ωj ),
1 ≤ j ≤ Nsub. For 1 ≤ j ≤ Nsub, we define a restriction operator Rj : Vh →
Vh(Ωj ) by injection, i.e. for u ∈ Vh we set

(
Rj u

)
(xi ) = u(xi ) for all xi ∈ Ωj .

We denote by Rj the corresponding Boolean matrix in R
nj×n that maps coefficient

vectors of functions in Vh to coefficient vectors of functions in Vh(Ωj ). Let Dj ∈
R
nj×nj be a diagonal matrix corresponding to a partition of unity in the sense that∑Nsub
i=1 R̃

T
i Ri = I, where R̃j := DjRj . Then the one-level ORAS preconditioner

(which is also the one-level ImpRAS of [3]) reads

M−1
1,ε :=

Nsub∑
j=1

R̃Tj A
−1
j,εRj . (3)

We define the matrices Aj,ε in (3) to be the matrices stemming from the discretiza-
tion of the following local Robin problems with absorption

−Δuj − (k2 + iε)uj = f in Ωj,

∂uj

∂nj
− iηuj = 0 on ∂Ωj .

In order to achieve weak dependence on the wavenumber k and number of
subdomains, we add a coarse component to (3). The two-level preconditioner can
be written in a generic way as follows

M−1
2,ε = QM−1

1,εP + ZE−1Z∗, (4)

where ∗ denotes the conjugate transpose, M−1
1,ε is the one-level preconditioner (3),

Z is a rectangular matrix with full column rank,E = Z∗AεZ is the so-called coarse
grid matrix, Ξ = ZE−1Z∗ is the so-called coarse grid correction matrix. If P =
Q = I this is an additive two-level preconditioner (which would be called two-level
ImpRAS in [3]). If P = I − AεΞ and Q = I − ΞAε , this is a hybrid two-level
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preconditioner (ImpHRAS in [3]), also called the Balancing Neumann Neumann
(BNN) preconditioner. Preconditioner (4) is characterized by the choice ofZ, whose
columns span the coarse space (CS). We will consider the following two cases:

The Grid Coarse Space The most natural coarse space would be one based
on a coarser mesh, we subsequently call it “grid coarse space”. Let us consider
THcoarse a simplicial mesh of Ω with mesh diameter Hcoarse and VHcoarse ⊂ V the
corresponding finite element space. Let I0 : VHcoarse → Vh be the nodal interpolation
operator and defineZ as the corresponding matrix. Then in this caseE = Z∗AεZ is
really the stiffness matrix of the problem (with absorption) discretized on the coarse
mesh. Related preconditioners without absorption are used in [4].

The DtN Coarse Space This coarse space (see [1]) is based on local Dirichlet-to-
Neumann (DtN) eigenproblems on the subdomain interfaces. For a subdomain Ωi ,
first of all consider a(i) : H 1(Ωi)×H 1(Ωi) → R

a(i)(v,w) =
∫
Ωi

(
∇v · ∇w − (k2 + iε)vw

)
−

∫
∂Ωi∩∂Ω

iηuv.

Let (A(i))kl = a(i) (φk, φl), and let I and Γi be the sets of indices corresponding,
resp., to the interior and boundary dofs on Ωi , with nI and nΓi their cardinalities.
With the usual block notation, the subscripts I and Γi for the matrices A and A(i)

denote the entries of these matrices associated with the respective dofs. Let MΓi =(∫
Γi
φkφl

)
k,l∈Γi

be the mass matrix on the interface Γi = ∂Ωi \ ∂Ω of subdomain

Ωi . We need to solve the following eigenproblem: find (u, λ) ∈ C
nΓi × C, s.t.

(A
(i)
ΓiΓi

− AΓiIA
−1
II AIΓi )u = λMΓiu. (5)

Now, the matrix Z of the DtN coarse space is a rectangular, block-diagonal matrix
with blocks Wi , associated with the subdomain Ωi , 1 ≤ i ≤ Nsub, given by
Algorithm 1. Ifmi is the number of eigenvectors selected by the automatic criterion
in Line 2 of Algorithm 1, the block Wi has dimensions ni × mi , and the matrix Z
has dimensions n× ∑Nsub

j=1 mi . Due to the overlap in the decomposition, the blocks
may share some rows inside the matrix Z.

Algorithm 1 Construction of the blockWi of the DtN CS matrix Z

1: Solve the discrete DtN eigenproblem (5) on subdomain Ωi for the eigenpairs (λj , gji ).

2: Choose the mi eigenvectors gji ∈ C
nΓi such that %(λj ) < k, 1 ≤ j ≤ mi .

3: for j = 1 to mi do
4: Compute the discrete Helmholtz extension uji ∈ C

ni to Ωi of gji as uji =
[−A−1

II AIΓi g
j

i , gji ]T .
5: end for
6: Define the matrix Wi ∈ C

ni×mi as Wi = (
Diu1

i , . . . , Diu
mi
i

)
.



Two-Level Preconditioners for the Helmholtz Equation 143

4 Numerical Experiments

We solve (2) with ε = 0 on the unit square/cube, with a uniform simplicial mesh
of diameter h ∼ k−3/2, which is believed to remove the pollution effect. The right-
hand side is given by f = − exp(−100((x − 0.5)2 + (y − 0.5)2)) for d = 2, f =
− exp(−400((x − 0.5)2 + (y − 0.5)2 + (z− 0.5)2)) for d = 3.

We use GMRES with right preconditioning (with a tolerance τ = 10−6), starting
with a random initial guess, which ensures, unlike a zero initial guess, that all
frequencies are present in the error; the stopping criterion is based on the relative
residual. We consider a regular decomposition into subdomains (squares/cubes), the
overlap for each subdomain is of size O(2h) in all directions and the two-level
preconditioner (4) is used in the hybrid way. All the computations are done in the
open source language FreeFem++ (http://www.freefem.org/ff++/). The 3d code is
parallelized and run on the TGCC Curie supercomputer. We assign each subdomain
to one processor. So in our experiments the number of processors increases if the
number of subdomains increases. To apply the preconditioner, the local problems
in each subdomain (with matrices Aj,ε in (3)) and the coarse space problem (with
matrix E in (4)) are solved with a direct solver.

As in [2, 3], in the experiments we take the subdomain diameter Hsub and the
coarse mesh diameter Hcoarse constrained by k: Hsub ∼ k−α and Hcoarse ∼ k−α′

,
for some choices of 0 < α, α′ <= 1 detailed in the following; if not differently
specified, we take α = α′, which is the setting of all numerical experiments in
[3]. Note that Hcoarse does not appear as a parameter in the DtN coarse space.
We denote by nCS the size of the coarse space. For the grid coarse space nCS =
(1/Hcoarse + 1)d , the number of dofs for the nodal linear finite elements in the
unit square/cube. For the DtN coarse space nCS = ∑Nsub

j=1 mi , the total number of
computed eigenvectors for all the subdomains. While we solve the pure Helmholtz
problem without absorption, both the one-level preconditioner (3) and the two-level
preconditioner (4) are built from problems which can have non zero absorption given
by εprec = kβ . In the experiments we put β = 1 or β = 2.

In the following tables we compare the one-level preconditioner, the two-level
preconditioners with the grid coarse space and with the DtN coarse space in terms
of number of iterations of GMRES and size of the coarse space (nCS), for different
values of the wavenumber k and of the parameters α, β. We also report the number
of subdomains Nsub, which is controlled by k and α as mentioned above. Since
h ∼ k−3/2, the dimension n of the linear system matrix is of order k3d/2; for 3d
experiments we report n explicitly. Tables 1 and 2 concern the 2d problem, Table 3
the 3d problem.

In Table 1, we let the DtN coarse space size be determined by the automatic
choice criterion in Line 2 of Algorithm 1 (studied in [1]) and the grid coarse space
size byHcoarse ∼ k−α . We see that the DtN coarse space is much larger than the grid
coarse space and gives fewer iterations. The preconditioners with absorption εprec =
k2 perform much worse than those with absorption εprec = k independently of nCS.
For εprec = k, when α = 1 the number of iterations grows as k0.9, respectively

http://www.freefem.org/ff++/
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Table 1 (d = 2) Number of iterations (and coarse space size nCS) for the one-level preconditioner
and the two-level preconditioners with the grid coarse space/DtN coarse space, with Hsub =
Hcoarse ∼ k−α , εprec = kβ

k Nsub 1-Level Grid CS nCS DtN CS nCS

β = 1

α = 0.6

10 9 22 19 16 11 39

20 36 48 46 49 26 204

40 81 78 98 100 37 531

60 121 109 114 144 43 1037

80 169 139 138 196 93 1588

α = 0.8

10 36 35 19 49 10 122

20 100 71 35 121 13 394

40 361 158 88 400 22 1440

60 676 230 187 729 39 2700

80 1089 304 331 1156 68 4352

α = 1

10 100 65 26 121 11 324

20 400 122 26 441 14 1120

40 1600 286 33 1681 20 4640

60 3600 445 45 3721 29 10,560

80 6400 >500 62 6561 44 18,880

1-Level Grid CS nCS DtN CS nCS

β = 2

α = 0.6

28 27 16 23 40

67 56 49 40 220

121 114 100 72 578

169 165 144 109 920

223 216 196 126 1824

α = 0.8

39 27 49 28 86

83 51 121 41 362

182 95 400 71 1370

268 150 729 103 2698

355 214 1156 138 4350

α = 1

57 30 121 23 324

130 49 441 42 1120

296 80 1681 72 4640

455 112 3721 101 10,560

>500 149 6561 134 18,880

k1.1, for the grid coarse space, respectively DtN coarse space (excluding the first
two values for k small where the asymptotic behaviour is not reached yet) while
the one-level preconditioner performs poorly (for k = 80 it needs more than 500
iterations to converge). When α < 1, i.e. for coarser coarse meshes, the growth with
k is higher, and for α = 0.6 the two-level preconditioner is not much better than the
one-level preconditioner because the coarse grid problem is too coarse; for α = 0.8
with the DtN coarse space the growth with k degrades less than with the grid coarse
space.

We have seen in Table 1 that the DtN coarse space gives fewer iterations than
the grid coarse space, but their sizes differed significantly. Therefore, in Table 2
we compare the two methods forcing nCS to be similar. On the left, we force the
DtN coarse space to have a smaller size, similar to the one of the grid coarse space,
by taking just mi = 2 eigenvectors for each subdomain. On the right, we do the
opposite, we force the grid coarse space to have the size of the DtN coarse space
obtained in Table 1, by prescribing a smaller coarse mesh diameter Hcoarse, while
keeping the same number of subdomains as in Table 1 with Hsub ∼ k−α . We can
observe that for smaller coarse space sizes (left) the grid coarse space gives fewer
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Table 2 (d = 2) Number of iterations (and coarse space size nCS) for the two-level precondition-
ers with the grid coarse space/DtN coarse space forcing similar nCS, with Hsub ∼ k−α , εprec = k

k Nsub Grid CS nCS DtN CS nCS

nCS forced by grid CS

α = 0.6

10 9 19 16 18 18

20 36 46 49 44 72

40 81 98 100 85 162

60 121 114 144 109 242

80 169 138 196 140 338

α = 0.8

10 36 19 49 26 72

20 100 35 121 61 200

40 361 88 400 139 722

60 676 187 729 191 1352

80 1089 331 1156 250 2178

α = 1

10 100 26 121 52 200

20 400 26 441 43 800

40 1600 33 1681 157 3200

60 3600 45 3721 338 7200

80 6400 62 6561 >500 12,800

Grid CS nCS DtN CS nCS

nCS forced by DtN CS

α = 0.6

17 36 11 39

24 196 26 204

50 529 37 531

104 841 43 1037

173 1521 93 1588

α = 0.8

15 121 10 122

20 361 13 394

35 1369 22 1440

52 2601 39 2700

78 4225 68 4352

α = 1

17 324 11 324

23 1089 14 1120

22 4624 20 4640

26 10,404 29 10,560

30 18,769 44 18,880

iterations than the DtN coarse space, while for larger coarse space sizes (right) the
result is reversed.

We have seen that the coarse mesh obtained with Hcoarse ∼ k−α′
, α′ = α can

be too coarse if α = 0.6. At the same time, for α = 1 the number of subdomains
gets quite large since Hsub ∼ k−α, especially in 3d; this is not desirable because
in our parallel implementation we assign each subdomain to one processor, so
communication among them would prevail and each processor would not be fully
exploited since the subdomains would become very small. Therefore, to improve
convergence with the grid coarse space while maintaining a reasonable number
of subdomains, we consider separate Hcoarse and Hsub, taking α′ �= α. For load
balancing (meant as local problems having the same size as the grid coarse space
problem), in 3d we choose α′ = 3/2 − α. The DtN coarse space is still built
by keeping the eigenvectors verifying the automatic choice criterion; note that in
3d the number of selected eigenvectors is larger than in 2d , but we only keep a
maximum of 20 eigenvectors in each subdomain. In Table 3 we report the results of
this experiment. As expected, for the grid coarse space the best iteration counts are
obtained for α = 0.5 because then α′ = 1 gives the coarse mesh with the smallest
diameter among the experimented ones: the number of iterations grows slowly, with
O(k0.61) ∼= O(n0.13). With higher α the iteration counts get worse quickly, and
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Table 3 (d = 3) Number of iterations (and coarse space size nCS) for the one-level preconditioner
and the two-level preconditioners with the grid coarse space/DtN coarse space, with Hsub ∼ k−α ,
Hcoarse ∼ k−α′

, εprec = k

k n Nsub 1-Level Grid CS nCS DtN CS nCS

α = 0.5, α′ = 1

10 39,304 27 25 12 1331 14 316

20 704,969 64 39 17 9261 31 1240

30 500,0211 125 55 21 29,791 54 2482

40 16,194,277 216 74 29 68,921 80 4318

α = 0.6, α′ = 0.9

10 39,304 27 25 15 512 14 316

20 912,673 216 61 24 3375 41 2946

30 4,826,809 343 73 34 10,648 65 6226

40 16,194,277 729 98 48 21,952 108 13,653

α = 0.7, α′ = 0.8

10 46,656 125 34 19 343 11 896

20 912,673 512 73 35 1331 18 4567

30 5,929,741 1000 103 57 4096 65 12,756

40 17,779,581 2197 139 89 8000 116 30,603

α = 0.8, α′ = 0.7

10 50,653 216 39 23 216 19 1354

20 1,030,301 1000 46 86 729 23 7323

30 5,929,741 3375 137 116 1331 21 26,645

40 28,372,625 6859 189 200 2744 27 54,418

α = 0.8 is not usable. For the DtN coarse space, the larger coarse space size is
obtained by taking α bigger (recall that α′ is not a parameter in the DtN case): for
α = 0.8 the number of iterations grows slowly, with O(k0.2) ∼= O(n0.04), but this
value may be optimistic, there is a decrease in iteration number between k = 20
and 30. We believe that for the other values of α, where the iteration counts are not
much better or worse than with the one-level preconditioner, we did not compute
enough eigenvectors in each subdomain to build the DtN coarse space.

5 Conclusion

We tested numerically two different coarse space definitions for two-level domain
decomposition preconditioners for the pure Helmholtz equation (discretized with
piecewise linear finite elements), both in 2d and 3d , reaching more than 15 million
degrees of freedom in the resulting linear systems. The preconditioners built with
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absorption εprec = k2 appear to perform much worse than those with absorption
εprec = k. We have seen that in most cases for smaller coarse space sizes the grid
coarse space gives fewer iterations than the DtN coarse space, while for larger coarse
space sizes the grid coarse space gives generally more iterations than the DtN coarse
space. The best iteration counts for the grid coarse space are obtained by separating
the coarse mesh diameter Hcoarse ∼ k−α′

from the subdomain diameter Hsub ∼
k−α , taking α′ > α. Both for the grid coarse space and the DtN coarse space, for
appropriate choices of the method parameters we have obtained iteration counts
which grow quite slowly with the wavenumber k. Further experiments to compare
the two coarse spaces should be carried out in the heterogenous case.
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A Two-Level Domain-Decomposition
Preconditioner for the Time-Harmonic
Maxwell’s Equations

Marcella Bonazzoli, Victorita Dolean, Ivan G. Graham, Euan A. Spence,
and Pierre-Henri Tournier

1 Introduction

The construction of fast iterative solvers for the indefinite time-harmonic Maxwell’s
system at mid- to high-frequency is a problem of great current interest. Some of the
difficulties that arise are similar to those encountered in the case of the mid- to high-
frequency Helmholtz equation. Here we investigate how domain-decomposition
(DD) solvers recently proposed for the Helmholtz equation work in the Maxwell
case.

The idea of preconditioning discretisations of the Helmholtz equation with
discretisations of the corresponding problem with absorption was introduced in
[2]. In [4], a two-level domain-decomposition method was proposed that uses
absorption, along with a wavenumber dependent coarse space correction. Note that,
in this method, the choice of absorption is motivated by the analysis in both [4] and
the earlier work [3].
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Our aim is to extend these ideas to the time-harmonic Maxwell’s equations, both
from the theoretical and numerical points of view. These results will appear in full
in the forthcoming paper [1].

Our theory will apply to the boundary value problem (BVP)

{∇ × (∇ × E)− (k2 + iκ)E = J in Ω
E × n = 0 on Γ := ∂Ω

(1)

where Ω is a bounded Lipschitz polyhedron in R
3 with boundary Γ and outward-

pointing unit normal vector n, k is the wave number, and J is the source term. The
PDE in (1) is obtained from Maxwell’s equations by assuming that the electric field
E is of the form E(x, t) = %(E(x)e−iωt ), where ω > 0 is the angular frequency.
The boundary condition in (1) is called Perfect Electric Conductor (PEC) boundary
condition. The parameter κ dictates the absorption/damping in the problem; in the
case of a conductive medium, κ = kσZ, where σ is the electrical conductivity of
the medium and Z the impedance. If σ = 0, the solution is not unique for all k > 0
but a sufficient condition for existence of a solution is ∇ · J = 0.

We will also give numerical experiments for the BVP (1) where the PEC
boundary condition is replaced by an impedance boundary condition, i.e. the BVP

{∇ × (∇ × E)− (k2 + iκ)E = J in Ω
(∇ × E)× n − i k n × (E × n) = 0 on Γ := ∂Ω

(2)

In contrast to the PEC problem, the solution of the impedance problem is unique for
every k > 0. There is large interest in solving (1) and (2) both when κ = 0 and when
κ �= 0. We will consider both these cases, in each case constructing preconditioners
by using larger values of κ . Indeed, a higher level of absorption makes the problems
involved in the preconditioner definition more “elliptic” (in a sense more precisely
explained in [1]), thus easier to solve. Note that the absorption cannot increase too
much, otherwise the problem in the preconditioner is “too far away” from the initial
problem.

2 Variational Formulation and Discretisation

Let H0(curl;Ω) := {v ∈ L2(Ω),∇ × v ∈ L2(Ω), v × n = 0}. We introduce the
k-weighted inner product on H0(curl;Ω):

(v,w)curl,k = (∇ × v,∇ × w)L2(Ω) + k2(v,w)L2(Ω).

The standard variational formulation of (1) is: Given J ∈ L2(Ω), κ ∈ R and k > 0,
find E ∈ H0(curl;Ω) such that

aκ(E, v) = F(v) for all v ∈ H0(curl;Ω), (3)
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where

aκ(E, v) :=
∫
Ω

∇ × E · ∇ × v − (k2 + iκ)
∫
Ω

E · v (4)

and F(v) := ∫
Ω

J · v. When κ > 0, it is well-known that the sesquilinear form is
coercive (see, e.g., [1] and the references therein) and so existence and uniqueness
follow from the Lax–Milgram theorem.

Nédélec edge elements are particularly suited for the approximation of electro-
magnetic fields. They provide a conformal discretisation of H(curl,Ω), since their
tangential component across faces shared by adjacent tetrahedra of a simplicial
mesh T h is continuous. We therefore define our approximation space Vh ⊂
H0(curl;Ω) as the lowest-order edge finite element space on the mesh T h with
functions whose tangential trace is zero on Γ . More precisely, over each tetrahedron
τ , we write the discretised field as Eh = ∑

e∈τ cewe, a linear combination with
coefficients ce of the basis functions we associated with the edges e of τ , and the
coefficients ce will be the unknowns of the resulting linear system. The Galerkin
method applied to the variational problem (3) is

find Eh ∈ Vh such that aκ(Eh, vh) = F(vh) for all vh ∈ Vh. (5)

The Galerkin matrix Aκ is defined by (Aκ)ij := aκ(wei ,wej ) and the Galerkin
method is then equivalent to solving the linear system AκU = F, where Fi :=
F(wei ) and Uj := cej .

3 Domain Decomposition

To define appropriate subspaces of Vh, we start with a collection of open subsets
{Ω̃� : � = 1, . . . , N} of Rd of maximum diameter Hsub that form an overlapping
cover of Ω , and we set Ω� = Ω̃� ∩ Ω . Each Ω� is assumed to be non-empty
and is assumed to consist of a union of elements of the mesh Th. Then, for each
� = 1, . . . , N , we set

V� := Vh ∩H0(curl,Ω�),

whereH0(curl,Ω�) is considered as a subset ofH0(curl;Ω) by extending functions
in H0(curl,Ω�) by zero, thus the tangential traces of elements of V� vanish on the
internal boundary ∂Ω�\Γ (as well as on ∂Ω� ∩ Γ ). Thus a solve of the Maxwell
problem (3) in the space V� involves a PEC boundary condition on ∂Ω� (including
any external parts of ∂Ω�). When κ �= 0, such solves are always well-defined by
uniqueness of the solution of the BVP (1).

Let Ih be the set of interior edges of elements of the triangulation; this set can
be identified with the degrees of freedom of Vh. Similarly, let Ih(Ω�) be the set
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of edges of elements contained in (the interior of) Ω� (corresponding to degrees of
freedom on those edges). We then have that Ih = ∪N�=1Ih(Ω�). For e ∈ Ih(Ω�)

and e′ ∈ Ih, we define the restriction matrices (R�)e,e′ := δe,e′ . We will assume that
we have matrices (D�)N�=1 satisfying

N∑
�=1

RT� D�R� = I ; (6)

such matrices (D�)N�=1 are called a partition of unity.
For two-level methods we need to define a coarse space. Let {T H } be a sequence

of shape-regular, tetrahedral meshes on Ω , with mesh diameter H . We assume that
each element of T H consists of the union of a set of fine grid elements. Let IH be
an index set for the coarse mesh edges. The coarse basis functions {wHe } are taken
to be Nédélec edge elements on T H with zero tangential traces on Γ . From these
functions we define the coarse space V0 := span{wHep : p ∈ IH }, and we define the
“restriction matrix”

(R0)pj := ψej (w
H
ep
)=

∫
ej

wH
ep

· t, j ∈ Ih, p ∈ IH , (7)

where ψe are the degrees of freedom on the fine mesh.
With the restriction matrices (R�)N�=0 defined above, we define

Aκ,� := R�AκR
T
� , � = 0, . . . , N

For � = 1, . . . , N , the matrix Aκ,� is then just the minor of Aκ corresponding to
rows and columns taken from Ih(Ω�). That is Aκ,� corresponds to the Maxwell
problem onΩ� with homogeneous PEC boundary condition on ∂Ω�\Γ . The matrix
Aκ,0 is the Galerkin matrix for the problem (1) discretised in V0. In a similar way
as for the global problem it can be proven that matrices Aκ,�, � = 0, . . . , N , are
invertible for all mesh sizes h and all choices of κ �= 0.

In this paper we consider two-level preconditioners, i.e. those involving both
local and coarse solves, except if ‘1-level’ is specified in the numerical experiments.
The classical two-level Additive Schwarz (AS) and Restricted Additive Schwarz
(RAS) preconditioners for Aκ are defined by

M−1
κ,AS :=

N∑
�=0

RT� A
−1
κ,�R� M−1

κ,RAS :=
N∑
�=0

RT� D�A
−1
κ,�R�. (8)

In the numerical experiments we will also consider two other preconditioners:
(i) M−1

κ,ImpRAS, which is similar to M−1
κ,RAS, but the solves with Aκ,� are replaced

by solves with matrices corresponding to the Maxwell problem on Ω� with
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homogeneous impedance boundary condition on ∂Ω�\Γ , and (ii) the hybrid version
of RAS

M−1
κ,HRAS := (I −ΞAκ)

( N∑
�=1

RT� D�A
−1
κ,�R�

)
(I − AκΞ)+Ξ, Ξ = RT0 A

−1
κ,0R0.

(9)

In a similar manner we can define M−1
κ,HAS, M−1

κ,ImpHRAS, the hybrid versions of AS
and ImpRAS.

4 Theoretical Results

The following result is the Maxwell-analogue of the Helmholtz-result in [5,
Theorem 5.6] and appears in [1]. We state a version of this result for κ ∼ k2,
but note that [1] contains a more general result that, in particular, allows for smaller
values of the absorption κ .

Theorem 1 (GMRES Convergence for Left Preconditioning with κ ∼ k2)
Assume that Ω is a convex polyhedron. Let Ck be the matrix representing the
(·, ·)curl,k inner product on the finite element space Vh in the sense that if vh,wh ∈
Vh with coefficient vectors V,W then

(vh,wh)curl,k = 〈V,W〉Ck . (10)

Consider the weighted GMRES method where the residual is minimised in the norm
induced by Ck . Let rm denote themth residual of GMRES applied to the system Aκ ,
left preconditioned withM−1

κ,AS. Then

‖rm‖Ck
‖r0‖Ck

�
(

1 −
(

1 +
(
H

δ

)2)−2)m/2
, (11)

provided the following condition holds:

max {kHsub, kH } ≤ C1

(
1 +

(
H

δ

)2)−1

. (12)

where Hsub and H are the typical diameters of a subdomain and of the coarse grid,
δ denotes the size of the overlap, and C1 is a constant independent of all parameters.

As a particular example we see that, provided κ ∼ k2, H ∼ Hsub ∼ k−1

and δ ∼ H (“generous overlap”), then GMRES will converge with a number
of iterations independent of all parameters. This property is illustrated in the
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numerical experiments in the next section. A result analogous to Theorem 1 for
right-preconditioning appears in [1].

5 Numerical Results

In this section we will perform several numerical experiments in a cube domain with
PEC boundary conditions (Experiments 1–2) or impedance boundary conditions
(Experiments 3–4). The right-hand side is given by J = [f, f, f ], where f =
− exp(−400((x − 0.5)2 + (y − 0.5)2 + (z− 0.5)2)).

We solve the linear system with GMRES with right preconditioning, starting
with a random initial guess, which ensures, unlike a zero initial guess, that all
frequencies are present in the error; the stopping criterion, with a tolerance of 10−6,
is based on the relative residual. The maximum number of iterations allowed is
200. We consider a regular decomposition into subdomains (cubes), the overlap
for each subdomain is of size O(2h) (except in Experiment 1, where we take
generous overlap) in all directions. All the computations are done in FreeFem++,
an open source domain specific language (DSL) specialised for solving BVPs with
variational methods (http://www.freefem.org/ff++/). The code is parallelised and
run on the TGCC Curie supercomputer and the CINES Occigen supercomputer.
We assign each subdomain to one processor. Thus in our experiments the number
of processors increases if the number of subdomains increases. To apply the
preconditioner, the local problems in each subdomain and the coarse space problem
are solved with a direct solver (MUMPS on one processor). In all the experiments
the fine mesh diameter is h ∼ k−3/2, which is believed to remove the pollution
effect.

In our experiments we will often choose Hsub ∼ H and our preconditioners are
thus determined by choices of H and κ , which we denote by Hprec and κprec. The
absorption parameter of the problem to be solved is denoted κprob. The coarse grid
problem is of size ∼ H−2

prec and there are ∼ H−2
prec local problems of size (Hprec/h)

2

(case Hsub ∼ H ). In the tables of results, n denotes the size of the system being
solved, nCS the size of the coarse space, the figures in the tables denote the GMRES
iterations corresponding to a given method (e.g. #AS is the number of iterations for
the AS preconditioner), whereas Time denotes the total time (in seconds) including
both setup and GMRES solve times. For some of the experiments we compute (by
linear least squares) the approximate value of γ so that the entries of this column
grow with kγ . We also compute ξ so that the entries of the column grow with nξ

(here ξ = γ · 2/9, because n ∼ (h3/2)3 = k9/2).

Experiment 1 The purpose of this experiment is to test the theoretical result
which says that even with AS (i.e. when solving PEC local problems), provided
H ∼ Hsub ∼ k−1, δ ∼ H (generous overlap), κprob = κprec = k2, the number of
GMRES iterations should be bounded as k increases. In Table 1 we compare three
two-level preconditioners: additive Schwarz, restricted additive Schwarz, and the
hybrid version of restricted additive Schwarz. Note that in theory we would expect

http://www.freefem.org/ff++/
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Table 1 δ ∼ H (generous
overlap), H ∼ Hsub ∼ k−1,
κprob = κprec = k2

k n Nsub nCS #AS #RAS #HRAS

10 4.6 ×105 1000 7.9×103 53 26 12

15 1.5 ×106 3375 2.6×104 59 28 12

20 1.2 ×107 8000 6.0×104 76 29 17

Table 2 δ ∼ 2h, H ∼ Hsub ∼ k−0.8, κprob = κprec = k2

k n Nsub nCS #RAS (#HRAS) #ImpRAS (#ImpHRAS) Time ImpHRAS

10 3.4 × 105 216 1.9×103 34 (23) 27 (20) 11.0

20 7.1 × 106 1000 7.9×103 43 (31) 35 (28) 42.6

30 4.1 × 107 3375 2.6×104 47 (34) 39 (32) 100.9

40 1.3 × 108 6859 5.1×104 49 (36) 42 (35) 264.5

γ 4.5 2.23

AS to be eventually robust, although its inferiority compared to the other methods
is to be expected [4].

Experiment 2 In this experiment (Table 2) we set κprob = κprec = k2 and
H ∼ Hsub ∼ k−0.8 and the overlap is O(2h) in all directions. As we are not in
the case Hprec ∼ k−1 and we do not have generous overlap, we do not expect a
bounded number of iterations here. Nevertheless, the method still performs well.
Not surprisingly, the best method is ImpHRAS, as better transmission conditions at
the interfaces between subdomains are used in the preconditioner. It is important to
note that the time is growing very much slower than the dimension of the problem
being solved.

Experiment 3 In this case we take κprob = k. Moreover, we take impedance
boundary conditions on ∂Ω . We take H ∼ Hsub ∼ k−α, κprec = kβ , and we use
ImpHRAS as a preconditioner.

In Table 3 on the bottom we see that the dimension of the coarse space is

nCS = (k−0.8)−3 = k2.4 = O(n0.5).

This is reflected in the γ and ξ figures in the nCS column. For this method the
reduction factor nCS/n is substantial (about 3.9 × 10−4 when k = 40). The
computation time grows only slightly faster than the dimension of the coarse space,
showing (a) weak scaling and (b) MUMPS is still performing close to optimally for
Maxwell systems of size 5 × 104. Iteration numbers are growing with about n0.3 at
worst. Note that the iteration numbers may be improved by separating the coarse
grid size from the subdomain size, making the coarse grid finer and the subdomains
bigger.

Experiment 4 Here we solve the pure Maxwell problem without absorption,
i.e. κprob = 0, with impedance boundary conditions on ∂Ω . In the preconditioner
we take κprec = k. Results are given in Table 4, where Hsub ∼ k−α , H ∼ k−α′

.
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Table 3 κprob = k, δ ∼ 2h, H ∼ Hsub ∼ k−α , κprec = kβ ; Top: β = 2, α = 0.6, 0.8; Bottom:
α = 0.8, β = 1, 2

α = 0.6 α = 0.8

k n Nsub nCS #2-level n Nsub nCS #2-level

10 2.6 × 105 27 2.8×102 31 3.4 × 105 216 1.8 × 103 29

20 6.3 × 106 216 1.9 × 103 87 7.1 × 106 1000 7.9 × 103 60

30 3.3 × 107 343 2.9 × 103 148 4.1 × 107 3375 2.5 × 104 90

40 1.1 × 108 729 5.9 × 103 200 1.3 × 108 6859 5.1 × 104 154

β = 1 β = 2

k n Nsub nCS #2-level(Time) #2-level(Time)

10 3.4 × 105 216 1.8 × 103 29 (12.9) 37 (13.1)

20 7.1 × 106 1000 7.9 × 103 60 (63.7) 70 (69.8)

30 4.1 × 107 3375 2.5 × 104 90 (200.4) 101 (221.2)

40 1.3 × 108 6859 5.1 × 104 154 (771.7) 137 (707.6)

γ 4.5 2.4 1.2 (2.9) 0.94 (2.8)

ξ 1.0 0.5 0.3 (0.6) 0.2 (0.6)

Table 4 κprob = 0, κprec = k, δ ∼ 2h, Hsub ∼ k−α , H ∼ k−α′

k n Nsub #2-level nCS Time #1-level Time

α = 0.6, α′ = 0.9

10 2.6 × 105 27 20 2.9 × 103 16.2 37 13.7

15 1.5 × 106 125 26 1.0 × 104 25.5 70 26.1

20 5.2 × 106 216 29 2.1 × 104 52.0 94 60.6

25 1.4 × 107 216 33 4.4 × 104 145.5 105 191.2

30 3.3 × 107 343 38 6.9 × 104 380.4 132 673.5

α = 0.7, α′ = 0.8

10 3.1 × 105 125 28 1.9 × 103 8.2 58 7.7

15 1.5 × 106 216 39 4.2 × 103 19.0 82 20.1

20 6.3 × 106 512 58 7.9 × 103 42.4 123 49.7

25 1.4 × 107 729 60 1.7 × 104 80.6 148 94.1

30 3.5 × 107 1000 80 2.6 × 104 251.9 179 328.0

α = 0.8, α′ = 0.8

10 3.4 × 105 216 31 1.9 × 103 12.6 67 11.7

20 7.1 × 106 1000 70 7.9 × 103 76.9 147 58.3

30 4.1 × 107 3375 109 2.6 × 104 238.0 >200 –

40 1.3 × 108 6859 193 5.1 × 104 948.9 >200 –

These methods are close to being load balanced in the sense that the coarse grid and
subdomain problem size are very similar when α + α′ = 3/2.

Out of the methods tested, the 2-level method (ImpHRAS) with (α, α′) =
(0.6, 0.9) gives the best iteration count, but is more expensive. The method (α, α′) =
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(0.7, 0.8) is faster but its iteration count grows more quickly, so its advantage will
diminish as k increases further. For (α, α′) = (0.6, 0.9) the coarse grid size grows
with O(n0.64) while the time grows with O(n0.65). For (α, α′) = (0.7, 0.8) the
rates are O(n0.54) and O(n0.69). The subdomain problems are solved on individual
processors so the number of processors used grows as k increases. In the current
implementation a sequential direct solver on one processor is used to factorize the
coarse problem matrix, which is clearly a limiting factor for the scalability of the
algorithm. The timings could be significantly improved by using a distributed direct
solver, or by adding a further level of domain decomposition for the coarse problem
solve.
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A Coarse Space to Remove
the Logarithmic Dependency
in Neumann–Neumann Methods

Faycal Chaouqui, Martin J. Gander, and Kévin Santugini-Repiquet

1 Introduction

Domain Decomposition Methods are the most widely used methods for solving
large linear systems that arise from the discretization of partial differential equa-
tions. The one level versions of these method are in general not scalable,1 since
communication is just between neighboring subdomains, as it was pointed out
already in [15], and one must add an additional coarse correction in order to share
global information between subdomains. Examples of early such coarse corrections
are proposed in [5, 6] for the additive Schwarz method, and in [7, 12, 12–14] for
Neumann–Neumann and FETI methods, for a comprehensive treatement, see [16].

We are interested here in Neumann–Neumann methods, for which the one level
condition number κ1 and the two-level condition number κ2 with a piecewise
constant coarse space satisfy the estimates

κ1 ≤ C

H 2

(
1 + log2(

H

h
)

)
, κ2 ≤ C

(
1 + log2(

H

h
)

)
, (1)

1Notable exceptions are the time dependent wave equation with finite speed of propagation [9],
and the Laplace equation in certain molecular simulations with specific geometry [2, 3].
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Fig. 1 Left: Strip decomposition. Right: Decomposition with a cross point

where H is the typical size of a subdomain, h is the mesh size, and the constant
C is independent of h and H , see [4, 12, 13]. These condition number estimates
guarantee robust convergence when Neumann–Neumann is used as a preconditioner
for a Krylov method, up to the logarithmic term.

We are interested here in understanding precisely where this logarithmic term
is coming from, and how it can be removed using an appropriately chosen coarse
space. To this end, we study the Neumann–Neumann method directly as an iterative
method, not as a preconditioner, and consider the Laplace equation and two
specific decompositions: a strip decomposition into a one dimensional sequence of
subdomains, and a decomposition including cross points, see Fig. 1.

For the strip decomposition, we will show that in the case of Dirichlet boundary
conditions, the one level iterative Neumann–Neumann algorithm is convergent and
can be weakly scalable, even without coarse grid, for a specific setting, and there
are no polylogarithmic terms in the convergence estimate. In the case of Neumann
boundary conditions, a coarse space of constant functions is needed to make the
Neumann–Neumann method weakly scalable, and again there are no polylogarith-
mic terms in the convergence estimate. For a decomposition with cross points, we
show that the iterative Neumann–Neumann algorithm does not converge, due to
logarithmically growing modes at the cross point, and following ideas in [8, 10, 11],
we enrich the coarse space with the corresponding modes to obtain a convergent
iterative Neumann–Neumann algorithm without polylogarithmic growth.

2 Neumann–Neumann Algorithm for a Strip Decomposition

We start by studying the convergence and weak scalability of the Neumann–
Neumann algorithm for the Laplace equation,

−Δu = f, in Ω,

u(a, ·) = 0, u(b, ·) = 0,

u(·, 0) = 0, u(·, L) = 0,

(2)
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on the rectangular domain Ω := (a, b)× (0, L) decomposed into strips, as shown
in Fig. 1 on the left, where aj = a+ jH for j = 0, . . . , N , andΩj := (aj−1, aj )×
(0, L) for j = 1, . . . , N . Given an initial guess g0

j at the interfaces, where we define
gn0 = gnN = 0 for convenience, the Neumann–Neumann algorithm computes for
iteration index n = 0, 1, . . . first solutions of the Dirichlet problems

−Δunj = fj in Ωj,

unj (aj−1, ·) = gnj−1, u
n
j (aj , ·) = gnj ,

(3)

with outer boundary conditions unj (·, 0) = unj (·, L) = 0, followed by solving
Neumann problems on interior domainsΩj , j = 2, 3, . . . , N − 1, given by

−Δψnj = 0 in Ωj,

∂xψ
n
j (aj−1, ·) = (∂xu

n
j (aj−1, ·)− ∂xu

n
j−1(aj−1, ·))/2,

∂xψ
n
j (aj , ·) = (∂xu

n
j (aj , ·)− ∂xu

n
j+1(aj , ·))/2,

(4)

and on the left and right most subdomains the Neumann problems are

−Δψn1 = 0 in Ω1,

ψn1 (a, ·) = 0, ∂xψ
n
1 (a1, ·) = (∂xu

n
1(a1, ·)− ∂xu

n
2(a1, ·)/2,

−ΔψnN = 0 in ΩN,

ψnN(b, ·) = 0, ∂xψ
n
N(aN−1, ·) = (∂xu

n
N(aN−1, ·)− ∂xu

n
N−1(aN−1, ·))/2,

all with outer boundary conditions ψnj (·, 0) = 0 and ψnj (·, L) = 0, j = 1, . . . , N .
The new interface traces are then obtained by the updating formula

gn+1
j := gnj − (ψnj (aj , ·)+ ψnj+1(aj , ·))/2, j = 1, . . . , N − 1. (5)

To study the convergence of this iterative Neumann–Neumann method, it suffices by
linearity to apply the algorithm to Eq. (2) with f = 0, and to study the convergence
of the approximate solution un to the zero solution. Since the subdomains are
rectangles, the iterates can be expanded in a sine series,

unj (x, y) =
∞∑
m=1

û nj (x,m) sin(kmy), ψnj (x, y) =
∞∑
m=1

ψ̂nj (x,m) sin(kmy), (6)

where km := mπ
L

, which allows us to study the convergence based on the Fourier
coefficients.
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Lemma 1 Let ûn(m) = [̂
un1 (a1,m), û

n
2 (a2,m), . . . , û

n
N−1(aN−1,m)

]T ∈ R
N−1,

then for2 N ≥ 3 we have û n(m) = T (m,H )̂un−1
(m), where T (m,H) ∈

R
(N−1)×(N−1) is given by

T (m,H) = − 1

4 sinh2(kmH)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
cosh(kmH)

−1 0 · · · · · · 0

0 2 0 −1
. . .

...

−1 0 2 0 −1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 2 0 −1

...
. . . −1 0 2 0

0 · · · · · · 0 −1 1
cosh(kmH)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof For each m ≥ 1 and j = 2, . . . , N − 1, unj (x,m) and ψnj (x,m) satisfy

k2
mû

n
j − ∂xxû

n
j = 0, k2

mψ̂
n
j − ∂yyψ̂

n
j = 0,

ûnj (aj−1, m) = ĝnj−1(m), ψ̂nj (aj−1, m) = (∂xu
n
j (aj−1, m)− ∂xu

n
j−1(aj−1, m))/2,

ûnj (aj ,m) = ĝnj (m), ψ̂nj (aj ,m) = (∂xu
n
j (aj ,m)− ∂xu

n
j+1(aj ,m))/2.

The solution of the Dirichlet problems on interior subdomains are thus

ûnj (x,m) = ĝnj (m)
sinh (km(x − aj−1))

sinh (kmH)
+ ĝnj−1(m)

sinh (km(aj − x))

sinh (kmH)
, j = 2, . . . , N − 1,

and on the subdomains on the left and right we get

ûn1(x,m) = ĝn1 (m)
sinh (km(x − a0))

sinh (kmH)
, ûnN (x,m) = ĝnN−1(m)

sinh (km(aN − x))

sinh (kmH)
.

Similarly for the Neumann problems on the interior subdomains, we obtain

ψ̂nj (x, m) =
(

2 ĝnj (m)
cosh (kmH)

sinh (kmH)
−

ĝn
j−1(m)

sinh (kmH)
−

ĝn
j+1(m)

sinh (kmH)

)
cosh (km(x − aj−1))

2 sinh (kmH)

+
(

2 ĝnj−1(m)
cosh (kmH)

sinh (kmH)
−

ĝn
j−2(m)

sinh (kmH)
−

ĝn
j
(m)

sinh (kmH)

)
cosh (km(aj − x))

2 sinh (kmH)
,

2For N = 2 the structure of T (m,H) is not the same since there are no inner subdomains.
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and for the first and last subdomains we find

ψ̂n1 (x,m) =
(

2 ĝn1 (m)
cosh (kmH)

sinh (kmH)
− ĝn2 (m)

sinh (kmH)

)
sinh (km(x − a0))

2 cosh (kmH)
,

ψ̂nN (x,m) =
(

2 ĝnN−1(m)
cosh (kmH)

sinh (kmH)
− ĝnN−2(m)

sinh (kmH)

)
sinh (km(aN − x))

2 cosh (kmH)
.

Using now (5) and the fact that ûnj (aj ,m) = ĝnj (m) for each m ≥ 1, we get the
stated recurrence relation.

Lemma 2 IfH/L > ln(1+√
2)/π then for anym ≥ 1 we have ‖T (m,H)‖∞ < 1.

Proof It is straightforward to see that ‖T (m,H)‖∞ ≤ 1
sinh2 (kmH)

for each m and

since m �→ 1
sinh2 (kmH)

is strictly decreasing for m ≥ 1, we have that 1
sinh2 (kmH)

<

1
sinh2 (k1H)

which is strictly smaller than 1 ifH/L > ln(1+√
2)/π , which concludes

the proof.

Theorem 1 For N ≥ 3 Neumann–Neumann satisfy the L2 error bound

⎛
⎝N−1∑
j=1

‖unj (aj , ·)‖2
2

⎞
⎠

1/2

≤ 1

sinh2n (k1H)

⎛
⎝N−1∑
j=1

‖u0
j (aj , ·)‖2

2

⎞
⎠

1/2

.

Proof Since forN ≥ 3 we have that ‖T (m,H)‖2 ≤ √‖T (m,H)‖∞‖T (m,H)‖1 ≤
1

sinh2 (k1H)
, and using the Parseval identity ‖unj (aj , ·)‖2

2 = L
2

∑∞
m=1 û

n
i (aj ,m)

2, we

get the result stated.

Theorem 1 shows that under a minimal assumption, the one level Neumann–
Neumann algorithm for the strip decomposition is weakly scalable, provided H
remains fixed, i.e. more and more subdomains of the same size are added, see also
[2, 3] for the corresponding Schwarz scaling. If the original Laplace problem (2)
has however Neumann conditions at x = 0 and x = L, then the interior subdomains
become floating in the Neumann–Neumann algorithm, and a minimal coarse space
consisting of piecewise constant functions is required in order to remove the kernel,
and this is sufficient to make the algorithm weakly scalable as in previous case with
an L2 bound as in Theorem 1, see [1].

3 Neumann–Neumann Algorithm with Cross Points

We now study the convergence properties of the iterative Neumann–Neumann
algorithm for decompositions with cross points, like the one shown in Fig. 1 on the
right. Since in this case the algorithm might be undefined at the continuous level due



164 F. Chaouqui et al.

0

1

2

3

4

1 1.5 2 2.5 310 -3

10 -3

10 -2

10 -2

10 -1

10 -1

10 0

Fig. 2 Left: dependence of
√|λk(B)|, k = 1, . . . , 3 on the mesh size h in semi-log scale. Right:

dependence of the semi-log scale slope of |λk(B)|, k = 1, . . . , 3 on k, with α := 10
3

to possible discontinuity at the cross point, we study numerically the convergence
of the fixed point iteration

un+1 = Bun + f, (7)

where B ∈ R
d×d and f ∈ R

d are obtained by discretizing the Neumann–Neumann
algorithm using five-points stencil central finite differences. We first show in Fig. 2
on the left the three largest (double) eigenvalues in modulus of B when the mesh
is refined. We clearly see logarithmic growth, and the iterative Neumann–Neumann
method will diverge as soon as the mesh size h is small enough, in our example h =
0.12. Hence, in contrast to the classical alternating and parallel Schwarz methods,
the Neumann–Neumann method can then not be used as an iterative solver. We note
however also that the logarithmic growth of the first dominant eigenvalue is faster
than the second and the third one. On the right in Fig. 2, we show how the growth
rate (the slope) of these diverging modes depends on the eigenvalue index k. We
see that the growth decays very rapidly, like 1/kα with α = 10/3, so when h goes
to zero, there are onlyO(k) divergent modes (those with corresponding eigenvalues
greater than 1 in the absolute value), where 1/kα log2(h) � 1, i.e. k ∼ (log2(h))1/α.

We next show in Fig. 3 the two corresponding dominant eigenmodes of B for a
mesh size h = 0.01. Since their eigenvalues are double eigenvalues, we chose from
the two dimensional subspace of eigenfunctions the one vanishing at the interface
aligned with the x axis; the other eigenmode has the same shape, just rotated by
90◦. We see that the cross point causes the iterative Neumann–Neumann method to
generate eigenmodes with a singular behavior at the cross point, and these modes
lead to divergence of the iterative Neumann–Neumann method.

To avoid such logarithmic growth, and obtain an convergent iterative Neumann–
Neumann method, one can remove the few divergent modes using an enriched
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Fig. 3 Left: dominant eigenfunction of B. Right: second eigenfunction of B

coarse space. Let F be a subspace of Rd and F⊥ its orthogonal complement with
standard inner product. Then we can use the reordering

B =
[F F⊥

F B̃ C

F⊥ G B̂

]
, u =

[
F ũ
F⊥ û

]
, f =

[
F f̃
F⊥ f̂

]
, (8)

and the iterative Neumann–Neumann algorithm (7) becomes

[
ũn+1
ûn+1

]
=

[
B̃ C

G B̂

] [
ũn
ûn

]
+

[
f̃
f̂

]
. (9)

To correct the problem of the divergent modes, we propose to use the iteration

ûn+1 = B̂ûn + f̂ +Gũn, (10a)

(I − B̃)̃un+1 = Cûn+1 + f̃, (10b)

where (10b) is solved exactly.

Theorem 2 If F consists of all eigenfunctions of B with respective eigenvalues
greater than 1 in absolute value, then iteration (10) converges for any u0 ∈ R

d .

Proof From (10), we obtain

ûn+1 = (B̂ +G(I − B̃)−1C)̂un + f̂ +G(I − B̃)−1̃f,

ũn+1 = (I − B̃)−1(Cûn+1 + f̃),

and hence the method is convergent iff ρ(B̂+G(I − B̃)−1C) < 1. Since F consists
of the divergent eigenmodes of B we have that G is zero and the condition for
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Fig. 4 Left: error of iteration (10) for different dimension of F . Right: same, but using orthogonal
iteration to approximate F

convergence becomes ρ(B̂) < 1, which is satisfied since B̂ does not contain the
divergent eigenmodes of B.

We show in Fig. 4 on the left the error of iteration (10) with a random initial guess
u0 as a function of the iteration number n for different choices of the dimension
of F , using the same mesh size h = 0.01 in a semi-log scale. We see that with
dim(F ) = 2, the iterations start already to converge while without correction the
iteration diverges. Increasing the dimension of F improves convergence further.
Using just orthogonal iterations to approximate F gives already satisfactory results,
as shown on the right in Fig. 4.

4 Conclusion

We showed that the logarithmic growth in the condition number estimate of the
Neumann–Neumann method comes from modes which are generated at cross
points in the decomposition. Without cross points, the iterative Neumann–Neumann
method is convergent and can be made scalable just using a constant per subdomain
in the coarse space. With cross points, one can add the logarithmically divergent
modes to the coarse space to obtain a convergent iterative Neumann–Neumann
method, without logarithmic term in the convergence estimate. We also showed that
orthogonal iteration permits already to include such modes numerically, and we are
currently trying to determine these coarse functions analytically.
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A Crank-Nicholson Domain
Decomposition Method for Optimal
Control Problem of Parabolic Partial
Differential Equation

Jixin Chen and Danping Yang

1 Introduction

In [3], Dawson and Dupont presented non-overlapping domain decomposition
schemes to solve parabolic equation by some explicit flux exchange on inner
boundaries and implicit conservative Galerkin procedures in each sub-domain.
Here, explicit flux prediction are simple to compute for the unit outward normal
vector (see definition in Sect. 2). A time step limitation, which is less severe than
that of a fully explicit method, is induced to maintain stability because of the explicit
prediction. Recently, an improved strategy was considered in [5] to avoid the loss of

H− 1
2 factor for space variable in the work of Dawson and Dupont. We would like

to mention that another two calculation methods on inner boundaries were studied
by Ma and Sun (see [4] and sequent research papers) based on the integral mean
value or extrapolation. In previous work [6], we have shown that explicit/implicit
domain decomposition method in [5] could be applied to optimal control problems
governed by partial differential equations. The main goal of this paper is to develop
the corresponding results for second order procedures based on the analysis and
schemes designed to solve single PDE in [1].
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2 Model Problem and Optimality Condition

We consider the following distributed convex optimal control problem

min
u∈K

{ ∫ T

0

(‖y − yd‖2
L2(Ω)

+ ‖u‖2
L2(Ω)

)
dt

}
(1)

subject to

⎧⎨
⎩
∂ty −Δy = f + u, in Ω, 0 < t ≤ T ;
y = 0, on ∂Ω, 0 < t ≤ T ;
y = y0, in Ω, t = 0,

(2)

where u ∈ K is the control and K is a convex admissible set for control, y is the
state variable, yd is the observation, y0 is the initial function. Fix V = H 1

0 (Ω) and
U = L2(Ω). In the following, we will write state space W = {y ∈ L2(0, T ;V );
yt ∈ L2(0, T ; H−1(Ω))} and the control space U = L2(0, T ;U). In addition, K
is a closed convex set in U and K = L2(0, T ;K) is a closed convex set in the
space U .

2.1 Optimality Condition and Discretization

We use standard notation for Sobolev spaces. Define A(u, v) : V × V → R to be a
bilinear form satisfying

A(u, v) = (∇u,∇v) ∀ u, v ∈ V. (3)

Then the optimal control problem can be transformed into optimality condition in
the following lemma:

Theorem 1 A pair (y, u) in W × K is the solution of (1)–(2) if and only if there
is a co-state p ∈ W such that the triplet (y, p, u) in W × W × K satisfies the
following optimality conditions:

{
(∂ty,w)+ A(y,w) = (f + u,w), ∀ w ∈ V ;
y|t=0 = y0;

(4)

{ − (∂tp, q)+ A(q, p) = (y − yd, q), ∀ q ∈ V ;
p|t=T = 0; (5)

∫ T

0
(u+ p, v − u) ≥ 0, ∀ v ∈ K . (6)
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Here only the case K = {u ≥ 0} are considered. Therefore, the third inequality in
the optimality conditions is equivalent to

(u+ p, v − u) ≥ 0, ∀ v ∈ K, 0 ≤ t ≤ T . (7)

In general, for time-dependent optimal control problems, optimality condition,
which is a large scale of nonlinear coupled system with respect to time and spacial
variables, contains forward and backward PDEs with the variational inequality
under consideration. It is very difficult and challenging to solve directly this non-
linear system. Domain decomposition method, which could save huge time in
calculation by solving the question at the same time, is especially suitable for this
kind of complicated problem. To use domain decomposition method, we divide Ω
into many non-overlapping sub-domains {Ωi}Ii=1 such that Ω̄ = ⋃I

i=1 Ω̄i . Set

Γi = ∂Ωi\∂Ω and Γ = ⋃I
i=1 Γi , which is the set of inner boundaries of sub-

domains. We recall some definitions which are necessary for deriving the discrete
form of (4)–(6). Introduce

φ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x − 2)/12, 1 ≤ x ≤ 2,
−5x/4 + 7/6, 0 ≤ x ≤ 1,
5x/4 + 7/6, −1 ≤ x ≤ 0,
−(x + 2)/12, −2 ≤ x ≤ −1,
0. |x| > 2.

For some H > 0, define

φ(τ) = H−1ϕ
( τ
H

)
, τ ∈ R

1.

where H is the width of the local averaging interval, which plays an important role
for stability of explicit/implicit scheme. Following Dawson-Dupont’s idea, we do
not use the exact normal derivative along inner boundaries. A proper approximation
is (see [3, 5]):

B(ψ)(x) = −
∫ 2H

−2H
φ′(τ )ψ(x + τnΓ )dτ, x ∈ Γi ∩ Γj , 1 ≤ i < j ≤ I. (8)

From definitions above, we note that function v has a well-defined jump

[v](x) = v(x+)− v(x−), ∀ x on Γ (9)

where

v(x±) � lim
t→0± v(x + tvΓ ) (10)
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Make a time partition: 0 = t0 < t1 < · · · < tN = T and set Δtn = tn − tn−1 and
Δt = max

1≤n≤N Δt
n. For simplicity, we may take Δtn = Δt for n = 1, 2, . . . , N . For

a given function g(x, t), let gn = g(x, tn) and

∂̄t g
n = gn − gn−1

Δt
, ḡn−

1
2 = gn + gn−1

2
,

ĝn−
1
2 = 2ḡn−

3
2 − ḡn−

5
2 , g̃n+

1
2 = 2ḡn+

3
2 − ḡn+

5
2 .

For i = 1, 2, . . . , I , denote Mh
i ⊂ V be the corresponding continuous piecewise

linear finite element space associated with conforming triangulation T h
i . LetMh be

the subspace of V such thatwh ∈ Mh if and only ifwh|Ωi ∈ Mh
i for each 1 ≤ i ≤ I .

Similarly, we can define piecewise constant finite element space UhU ⊂ U for
control variable u. Let KhU = K

⋂
UhU . Then the discrete form that we want to

solve is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y 0 = y0; Y 1 = y0 +Δt(f 0 +Δy0 + U 0); Y 2 = y0 + 2Δt(f 0 +Δy0 + U 0);
(∂̄tY

n, V )+ A(Yn−
1
2 , V )− (B(Ŷ n−

1
2 ), [V ])Γ − (B(V ), [Ŷ n− 1

2 ])Γ
= (f̄ n−

1
2 + Ūn− 1

2 , V ), ∀ V ∈ Mh, n = 3, 4, . . . , N;
(11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PN = 0; PN−1 = Δt(YN − yNd ); PN−2 = 2Δt(YN − yNd );
− (∂̄tP

n−2, V )+ A(V, P̄ n−
5
2 )− (B(P̃ n−

5
2 ), [V ])Γ − (B(V ), [P̃ n− 5

2 ])Γ
= (Ȳ n−

5
2 − ȳ

n− 5
2

d , V ), ∀ V ∈ Mh, n = N,N − 1, . . . , 3;

(12)

(Ūn−
1
2 + P̄ n−

5
2 , Z̄n−

1
2 − Ūn−

1
2 ) ≥ 0, ∀ Z ∈ KhU , n = 3, 4, . . . , N; (13)

U0 = max{0,−P 0}, U1 = max{0,−P 1}, U2 = max{0,−P 2}. (14)

We see that the original optimal control problem (4)–(6), which is normally large
in size, is now decomposed into a set of subproblems with much smaller sizes. In
fact, discrete solution of (11)–(14) does not always exist. One could use contraction
mapping principle to ensure the existence and uniqueness of system. Taking the
limitation of the length into consideration, we will give a rigorous analysis on this
and convergence of the following iterative algorithm in a forthcoming paper [2]. In
addition, a priori estimates will also be included.
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2.2 Parallel Iterative Algorithm

We note that discrete system (11)–(14) is still a nonlinear system of a forward
system for the state variable and a backward system for the co-state variable, which
are coupled by the control variable. We introduce outer iterations to decouple the
system. Thus, the proposed algorithm could be performed in parallel once domain
decomposition is used. Then, fully parallel iterative algorithm is formulated as
follows:

Parallel Domain Decomposition Iterative Algorithm (PDDIA)
Step 1. Given initial approximation {Un0 }Nn=1 ⊂ UhU and Y 0 ∈ Mh. Take the

ε > 0 as a tolerance and set k := 0.
Step 2. Update {Ynk+1}Nn=0 ⊂ Mh in parallel on each Ωi for 1 ≤ i ≤ I :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y 0
k+1 = Y 0; Y 1

k+1 = Y0 +Δt(f 0 +ΔY 0 + U0
k ); Y 2

k+1 = Y0 + 2Δt(f 0 +ΔY 0 + U0
k );

(∂̄tY
n
k+1, V )+ A(Y

n− 1
2

k+1 , V )− (B(Ŷ
n− 1

2
k+1 ), [V ])Γ − (B(V ), [Ŷ n−

1
2

k+1 ])Γ

= (f̄ n−
1
2 + Ū

n− 1
2

k , V ), ∀ V ∈ Mh, n = 3, 4, . . . ,N;
(15)

Step 3. Update {Pnk+1}Nn=0 ⊂ Mh in parallel on each Ωi for 1 ≤ i ≤ I :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PNk+1 = 0; PN−1
k+1 = Δt(YN − yNd ); PN−2

k+1 = 2Δt(YN − yNd );

− (∂̄tP
n−2
k+1 , V )+ A(V, P̄

n− 5
2

k+1 )− (B(P̃
n− 5

2
k+1 ), [V ])Γ − (B(V ), [P̃ n−

5
2

k+1 ])Γ
= (Ȳ

n− 5
2

k+1 − ȳ
n− 5

2
d , V ), ∀ V ∈ Mh, n = N,N − 1, . . . , 3;

(16)

Step 4. Update {Ūn−
1
2

hU ,k+1}Nn=1 ⊂ UhU such that

⎧⎪⎪⎨
⎪⎪⎩
Ū
n− 1

2

k+ 1
2

= (1 − ρ)Ū
n− 1

2
k − ρP̄

n− 5
2

k+1 ,

Ū
n− 1

2
k+1 = QhU Ū

n− 1
2

k+ 1
2
.

n = 3, 4, . . . , N; (17)

where ρ is a constant with 0 < ρ < 1 and QhU is the projection from UhU to KhU .
Define U0

k+1, U1
k+1 and U2

k+1 such that

U0
k+1 = max{0,−P 0

k+1}, U1
k+1 = max{0,−P 1

k+1}, U2
k+1 = max{0,−P 2

k+1},
(18)
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Step 5. Compute the iterative error:

eps =
N∑
n=0

(‖Ūn− 1
2

k − Ūn−
1
2

k+1 ‖L2(Ω)+‖Ȳ n−
1
2

k − Ȳ n−
1
2

k+1 ‖L2(Ω)+‖P̄ n−
1
2

k − P̄ n−
1
2

k+1 ‖L2(Ω)

If eps ≤ ε, then stop the iteration and output

Un = Unk+1, Y
n = Ynk+1, P

n = Pnk+1, n = 0, 1, 2, . . . , N. (19)

Else set k := k + 1 and return step 2 to restart new iteration.
Compared to first order scheme proposed in [6], the computation on Γ requires

explicitly the value of three-level solutions, while only little computational cost will
be added. We also remark that the algorithm PDDIA is fully parallel.

3 Numerical Experiments

In this section, we test the performance and convergence of the proposed PDDIA
with respect to the exact solutions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y = sin(2πx) sin(2πy)t,
p = sin(2πx) sin(2πy)(T − t),

u = max(−p, 0),

yd = y + ∂p

∂t
+Δp,

f = −u+ ∂y

∂t
−Δy.

Let T = 0.5. Domain Ω = [0, 2] × [0, 1] is partitioned into two uniform non-
overlapping areas with the inner-domain boundary Γ = {1} × [0, 1]. The mesh
in the x-axis and y-axis varies uniformly from 1/36, 1/49, 1/64 to 1/81 in each
sub-domain, respectively.

For domain decomposition, we set Δt = 0.1h and H 2 = rh to balance error
accuracy, where parameter r is a constant. The algorithm stops after that error of
adjacent iterative step defined in step 5 of the algorithm is less than 10−6.

In all of the numerical tests, the state variable y and co-state variable p are
approximated by using piecewise linear functions while control solution u are
treated with piecewise constant functions. Compared to the scheme proposed in
[6], the number presented in Tables 1, 2 and 3 are the sum of average value of two
neighbouring layer, which is a good approximation for exact solution evaluating at
the middle of two adjacent time layer. We present numerical simulations in Table 1
for r = 1. The L2-norm error of the numerical solutions are listed in Table 2 for
r = 4. We present the corresponding results when r = 9 in Table 3.
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Table 1 L2(0, T ;L2(Ω))-norm error for PDDIA (r = 1)

Grids y − Y Order u− U Order p − P Order

36 × 36 1.625 × 10−3 7.324 × 10−3 1.597 × 10−3

49 × 49 8.770 × 10−4 2.00 5.382 × 10−3 0.99 8.473 × 10−4 2.06

64 × 64 5.294 × 10−4 1.89 4.153 × 10−3 0.97 5.020 × 10−4 1.96

81 × 81 3.376 × 10−4 1.91 3.283 × 10−3 1.00 3.129 × 10−4 2.01

Table 2 L2(0, T ;L2(Ω))-norm error for PDDIA (r = 4)

Grids y − Y Order u−U Order p − P Order

36 × 36 4.835 × 10−3 8.069 × 10−3 4.856 × 10−3

49 × 49 2.525 × 10−3 2.11 5.654 × 10−3 1.15 2.523 × 10−3 2.12

64 × 64 1.389 × 10−3 2.24 4.258 × 10−3 1.06 1.379 × 10−3 2.26

81 × 81 8.077 × 10−4 2.30 3.325 × 10−3 1.05 7.952 × 10−4 2.34

Table 3 L2(0, T ;L2(Ω))-norm error for PDDIA (r = 9)

Grids y − Y Order u−U Order p − P Order

36 × 36 1.939 × 10−2 1.588 × 10−2 1.964 × 10−2

49 × 49 1.173 × 10−2 1.63 1.006 × 10−2 1.48 1.186 × 10−2 1.63

64 × 64 7.137 × 10−3 1.86 6.623 × 10−3 1.57 7.202 × 10−3 1.87

81 × 81 4.429 × 10−3 2.03 4.678 × 10−3 1.47 4.453 × 10−3 2.04

Inferred from the tables, we can see that the error of the state variable y and co-
state variable p are the second order accuracy with respect to the time and space
sizes, whereas the error of the control variable u is only first order to the spatial
variable because of the modeling space.

In addition, we could get a brief relationship about theΔt-H constraint. Because
one can take more larger H than h for keeping the optimal order accuracy for the
spatial variable, the constraintΔt = O(H 2) is less severe than that for fully explicit
algorithms.

4 Conclusion

In this paper, an efficient domain decomposition algorithm for an optimal control
problem governed by a linear parabolic partial differential equation has been
proposed. The algorithm can solve coupled optimality condition accurately and
efficiently based on the non-overlapping domain decomposition scheme given
in [1]. The efficient calculation strategy on the inner boundaries and the outer
iterations enable excellent extensibility and usability in parallel. Because of the
implicit/explicit strategy, it is necessary to preserve stability from the explicit
prediction, but less severe than that for fully explicit algorithms. Further, second
order convergence in time allow us to use larger time step in calculations.
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Partition of Unity Methods for
Heterogeneous Domain Decomposition

Gabriele Ciaramella and Martin J. Gander

1 Heterogeneous Problems and Partition of Unity
Decomposition

We are interested in solving linear PDEs of the form

L (u) = f in Ω, u = g̃ on ∂Ω, (1)

where Ω is a bounded domain in R
d with d = 1, 2, L is a linear (elliptic)

differential operator, f and g̃ are the data, and u is the solution to (1). The weak
form of (1) with a Hilbert space (V , 〈·, ·〉) of functions v : Ω → R is

a(u, v) = �(v) ∀v ∈ V0, with u = g̃ on ∂Ω, (2)

where V0 := {v ∈ V : v = 0 on ∂Ω}, a : V × V → R is the bilinear form
corresponding to the operator L , and � : V → R is the linear functional induced
by f . We assume that (2) has a unique solution u ∈ {v ∈ V : v = g̃ on ∂Ω}, and
that u is “heterogeneous”, behaving very differently in different parts ofΩ . Typical
examples are advection-diffusion problems, where there are advection dominated
and diffusion dominated regions (subdomains), and the boundaries in between are
not clearly defined, see [8, 11] and references therein. Apart from the χ-method
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[1, 6], there are no methods to determine such subdomain decompositions, and our
goal is to present and study a new such method. We thus introduce (see [10, 18])

Definition 1 (Membership Function) Let Ω ⊂ R
d be a set. A membership

function ϕ is a map ϕ : Ω → [0, 1], and its support S ⊂ Ω is S :=
{x ∈ Ω : ϕ(x) �= 0}.
Given two membership functions ϕ1, ϕ2 : Ω → [0, 1] that form a partition of unity
on Ω , ϕ1(x) + ϕ2(x) = 1 for all x ∈ Ω , their supports provide then a domain
decomposition Ω = suppϕ1 ∪ suppϕ2. We introduce the approximation udd :=
ϕ1u1 + ϕ1u2 ≈ u, where u1 and u2 represent two different possible behaviors of u,
and we assume that udd = g̃ on ∂Ω . We proceed as follows to define the spaces that
udd , u1 and u2 are to be sought in: first, we introduce two approximate problems,

L1(u1) = f1 in Ω,B1(u1, g̃) = g, and L2(u2) = f2 in Ω,B2(u2, g̃) = 0.
(3)

Here Lj are approximation operators of L , fj are approximations of f , and Bj

are operators to define the boundary conditions of (3), see Sect. 3 for concrete
examples. The function g represents a control and belongs to an appropriate Hilbert
space W . Notice that g is different from the actual boundary data g̃: the latter
is defined on ∂Ω , while we will define the former only on a subset of ∂Ω . We
assume1 that (3) (left) is uniquely solvable in V for any g ∈ W and (3) (right) has
a unique solution u2 ∈ V . To reformulate (3) (left), we introduce two operators
A : V → V ∗ and Bg̃ : W → V ∗, such that (3) (left) becomes Au1 = Bg̃g + f1.
Notice that Bg̃ represents the boundary conditions of (3) (left) and takes into
account also g̃. This problem is formally solved by u1 = A−1Bg̃g + A−1f1,
where A−1 is well defined if (3) (left) is well posed. Now, we define the spaces
V1 := {v ∈ V : v = A−1(Bg̃q + f1), q ∈ W }, and V2 := {u2}. Here V1
represents the space of all possible solutions to the first problem in (3) generated by
all the possible (control) functions in W , while V2 is a singleton containing only the
unique solution u2 to (3) (right). Finally, we use the definition of a “partition of unity
method” space (PUM-space [2, 13]) VPUM := ϕ1V1 + ϕ2V2 ⊂ V , where ϕ1, ϕ2 are
membership functions. VPUM , V1 and V2 are the spaces that the approximations
udd , u1 and u2 have to be sought in. In particular, for the approximation udd the
functions ϕ1, ϕ2 and g have to be computed. These are defined as solutions to
optimal control problems, as described in Sect. 2. Here we need to remark that
our approach could be computationally expensive. However, it is motivated by
applications in astrophysics governed by hyperbolic equations like the Boltzmann
equation. In many cases, like for supernova explosion, physical phenomena are
modeled using two different (limiting) regimes. However, this would require an
a-priori knowledge of the transition regime; see, e.g. [3, 8, 10] and references

1This specific approximation is motivated by asymptotic expansion techniques providing in general
two problems, one that is uniquely determined and a second one that is determined up to some
constants for asymptotic matching [15].



Partition of Unity Methods for Heterogeneous Domain Decomposition 179

therein. This is exactly the role of the partition of unity functions obtained by our
computational framework. In practice, one could use our computationally expensive
approach to obtain the partition of unity functions for one representative case and
then reuse them (as approximations) in a domain decomposition fashion to compute
approximate solutions of other cases of interest.

2 Optimal Control Approaches

To compute ϕ1, ϕ2 and g, we embed the PUM formulation into an optimal control
framework. We begin by inserting udd into (2) and obtain the bounded linear
functional r : V → R defined by r(v) := a(ϕ1u1 + ϕ2u2, v) − �(v), where v ∈ V .
In the case that v = ϕ1w and v = ϕ2w with w ∈ V , we get the functionals

rj (w) := r(ϕjw) = a(ϕ1u1 + ϕ2u2, ϕjw)− �(ϕjw) ∀w ∈ V, for j = 1, 2.

Since w ∈ V �→ rj (w), j = 1, 2, are bounded linear functionals, they are elements
in V ∗, and by the Riesz representation theorem [7], there exist R1 and R2 in V such
that

〈Rj , v〉 = a(ϕ1u1 + ϕ2u2, ϕj v)− �(ϕjv) ∀v ∈ V0, j = 1, 2, (4)

where we used V0, since udd is exact on ∂Ω and thus R1 and R2 must vanish there.
Now, we define ϕ := ϕ1 with ϕ2 = 1 − ϕ, and recall that ‖rj‖V ∗ = ‖Rj‖V .
Minimizing the norms of the residuals ‖Rj‖V leads to the optimal control problem

min
R1,R2,u1,g,ϕ

J (R1, R2, g, ϕ) := 1

2
‖R1‖2

V + 1

2
‖R2‖2

V + α

2
‖ϕ‖2

V + β

2
‖g‖2

W

s.t. 〈R1, v〉 = a(ϕu1 + (1 − ϕ)u2, ϕv) − �(ϕv) ∀v ∈ V0,

〈R2, v〉 = a(ϕu1 + (1 − ϕ)u2, (1 − ϕ)v)− �((1 − ϕ)v) ∀v ∈ V0,

Au1 = Bg̃g + f1, g ∈ W, u2 ∈ V2, ϕ ∈ V, 0 ≤ ϕ ≤ 1 a.e. in Ω,
(5)

where α, β > 0 are two regularization parameters used to tune the cost of ϕ and g,
and f1 is the same approximation to f introduced in (3).

Solving (5) by an iterative procedure [4, 17] requires at each iteration to solve the
two equations (4) for R1 and R2, and (3) for u1. A less expensive optimal control
problem is obtained by summing (4) for j = 1, 2, and we obtain with R := R1 +R2

〈R, v〉 = a(ϕu1 + (1 − ϕ)u2, v)− �(v) ∀v ∈ V0, (6)

which is a Petrov-Galerkin type equation that we could have obtained directly
applying a Petrov-Galerkin method to (2) using VPUM and V as trial and test spaces.
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Using (6), we get the less expensive optimal control problem

min
R,u1,g,ϕ

J (R, g, ϕ) := 1

2
‖R‖2

V + α

2
‖ϕ‖2

V + β

2
‖g‖2

W

s.t. 〈R, v〉 = a(ϕu1 + (1 − ϕ)u2, v)− �(v) ∀v ∈ V0,

Au1 = Bg̃g + f1, g ∈ W, u2 ∈ V2, ϕ ∈ V, 0 ≤ ϕ ≤ 1 a.e. in Ω.

(7)

3 Optimal Control for Elliptic Boundary-Layer Problems

As main test cases we consider elliptic problems of the form

L (u) := −μΔu+ a · ∇u+ c u = f in Ω, u = g̃ on ∂Ω, (8)

where Ω is a bounded domain in R
d , for d = 1, 2, g̃ ∈ C(∂Ω), f is sufficiently

smooth, and the components of a are assumed to be strictly-positive. The assump-
tion on a is restrictive, but it simplifies the presentation below and can be relaxed.
The corresponding weak problem is to find a u ∈ {

v ∈ H 1(Ω) | v = g̃ on ∂Ω
}

such
that

a(u, v) :=
∫
Ω

μ∇u · ∇v + a · ∇u v + c u v dx =
∫
Ω

f v dx =: �(v) ∀v ∈ H 1
0 (Ω).

We also assume thatΩ is such that the boundary ∂Ω can be decomposed into ∂Ω =
∂Ω1∪∂Ω2, where the intersection ∂Ω1∩∂Ω2 has a non-zero measure, as illustrated
in Fig. 1. To obtain udd = ϕu1 + (1 − ϕ)u2 ≈ u, we define Γ := ∂Ω \ ∂Ω1 and
introduce the operatorL1 := −μΔ+c. Then, as in (3), for any choice of the control
g ∈ H 1

0 (Γ ) the corresponding approximate problem for u1 is

∫
Ω

μ∇u1 · ∇v+c u1 v dx = 0 ∀v ∈ H 1
0 (Ω),

u1 ∈
{
w ∈ H 1(Ω) |w = g̃ on ∂Ω1, w = g̃ + g on Γ, τ(w) ∈ C(∂Ω)

}
,

(9)

Fig. 1 Example of a boundary decomposition ∂Ω = ∂Ω1 ∪ ∂Ω2
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where τ is the trace operator on ∂Ω . Notice that we have chosen f1 = 0. As before,
we introduce the operator A : H 1(Ω) → H−1(Ω) defined as 〈Au, v〉H−1,H 1 :=∫
Ω μ∇u · ∇v + c u v dx for all v ∈ H 1

0 (Ω), and the operator Bg̃ : H 1
0 (Γ ) →

H−1(Ω) such that v �→ (Bg̃g)(v) is a bounded linear functional in H−1(Ω). The
operator Bg̃ represents the Dirichlet boundary conditions of (9). Au1 = Bg̃g is then
equivalent to (9). The corresponding set V1 is given by

V1 = {v ∈ H 1(Ω) : Av = Bg̃q for any q ∈ H 1
0 (Γ )}.

Now, consider the operator L2 := a · ∇ + c and f2 = f . The problem for u2 is then

L2(u2) = a · ∇u2 + c u2 = f in Ω, u2 = g̃ on ∂Ω2, (10)

which we assume uniquely solvable in H 1(Ω) ∩ C(Ω). Notice that (10) is a pure
advection problem and the subset ∂Ω2 is given as the set of points where the
characteristic curves enter the domain Ω . This is the main assumption we make
on ∂Ω2 for the problem (10) to be well posed. The set V2 contains only the
solution to (10), i.e. V2 = {u2}. The approximation udd ≈ u is then obtained as
udd = ϕ1u1+ϕ2u2, where the membership functions ϕ1 = ϕ, ϕ2 = 1−ϕ ∈ H 1(Ω)

form a partition of unity, and ϕ is such that

ϕ(x) ∈

⎧⎪⎪⎨
⎪⎪⎩

{1} if x ∈ ∂Ω \ ∂Ω2,

[0, 1] if x ∈ ∂Ω1 ∩ ∂Ω2,

{0} if x ∈ Γ,
(11)

with τ (ϕ) ∈ C(∂Ω). Notice that this definition of ϕ makes udd exact on the
boundary ∂Ω , τ (udd) = τ (ϕ1u1 + ϕ2u2) = g̃.

In what follows, we study the control problem (7) ((5) would have a similar
structure) to optimize ϕ and g for computing the approximation udd to the solution
to (8). In particular, we first show well-posedness, and then we derive the first-
order optimality system. We consider directly a two-dimensional problem (d =
2), since the analysis of the one-dimensional version is simpler and relies on the
same arguments. To define our optimal control problem, as in (7), we consider the
cost functional J (R, g, ϕ) := 1

2‖R‖2
H 1(Ω)

+ α
2 ‖ϕ‖2

H 1(Ω)
+ β

2 ‖g‖2
H 1(Γ )

. Now, we
introduce the control-to-state maps g �→ u1(g) and (g, ϕ) �→ R(u1(g), ϕ), where
u1(g) and R(u1(g), ϕ) solve (9) and

〈R, v〉H 1 (Ω) =
∫
Ω

μ∇udd · ∇v + a · ∇udd v + c udd v − f v dx ∀v ∈ H 1
0 (Ω).

(12)

Notice that the left-hand side of (12), that is 〈R, v〉H 1(Ω) = ∫
Ω

∇R · ∇v + Rv dx,
is of a similar form to the left-hand side in (9). These maps are well defined
according to the lemmas below and allow us to define the reduced cost functional
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J̃ (g, ϕ) := J (R(u1(g), ϕ), g, ϕ) and the optimal control problem

min
g,ϕ

J̃ (g, ϕ) s.t. 0 ≤ ϕ(x) ≤ 1 in Ω and (11) holds. (13)

For well-posedness of this optimization problem, we need four Lemmas:

Lemma 1 Let z ∈ H 1(∂Ω) with Ω ⊂ R
2 convex and ∂Ω Lipschitz. Then the

problem

∫
Ω

μ∇u1 · ∇v + c u1 v dx = 0 ∀v ∈ H 1
0 (Ω) (14)

with u1 = z on ∂Ω is uniquely solvable by u1 ∈ H 1(Ω)∩C(Ω), and there exists a
positive constant c such that ‖u1‖H 1(Ω) ≤ c‖z‖H 1(∂Ω).

Proof To show that there exists a unique u1 ∈ C(Ω), we define w as the harmonic
extension of z in Ω . Recalling the embedding H 1 ↪→ C for one-dimensional
domains, we have that z ∈ C(∂Ω). Therefore, since Ω is a Lipschitz domain,
w ∈ C2(Ω)∩C(Ω); see, e.g., [12]. Now, consider the problem −μΔv+cv = −cw
in Ω with v = 0 on ∂Ω . Since Ω is convex, Theorems 3.2.1.2-3 in [14] ensure that
this problem is uniquely solved by v ∈ H 2(Ω) ∩ H 1

0 (Ω). Since Ω ⊂ R
2, the

Sobolev embedding H 2(Ω) ↪→ C(Ω) [7] ensures that v ∈ C(Ω). Noticing that
the function w + v solves (14), u1 ∈ C(Ω) and is unique by the linearity of (14).
Next, we show that u1 ∈ H 1(Ω) with ‖u1‖H 1(Ω) ≤ c‖z‖H 1(∂Ω). Consider the trace
operator τ : H 1(Ω) → H 1/2(∂Ω). SinceΩ is a Lipschitz domain, by [16, Theorem
3.37, p. 102] this operator has a bounded right-inverse τ−1 : H 1/2(∂Ω) → H 1(Ω).
Now, we define w := τ−1z and note that w ∈ H 1(Ω). So, if we decompose u1
as u1 = w + ṽ, then ṽ must solve in a weak sense the problem −μΔṽ + cṽ =
−(−μΔw + cw) in Ω with ṽ = 0 on ∂Ω . By the Lax-Milgram theorem we have
that the unique solution is ṽ ∈ H 1

0 (Ω) and there exists a constant C such that
‖̃v‖H 1(Ω) ≤ C‖w‖H 1(Ω). Therefore, u1 ∈ H 1(Ω) and using the decomposition
u1 = w + ṽ we get ‖u1‖H 1(Ω) ≤ (1 + C)‖w‖H 1(Ω) = (1 + C)‖τ−1z‖H 1(Ω) ≤
K‖z‖H 1(∂Ω), for some positive constantK , where we used the boundedness of τ−1

[16].

Lemma 2 Let ϕ ∈ H 1(Ω) such that 0 ≤ ϕ(x) ≤ 1 a.e. inΩ . Then for any function
v ∈ H 1(Ω) ∩ C(Ω) it holds that ϕv ∈ H 1(Ω).

Proof An application of Theorem 1 in [9, p. 247] shows that ∇(vϕ) = v∇ϕ+ϕ∇v.
Then a simple estimate of the norm ‖∇(vϕ)‖L2(Ω) allows us to obtain the result.

Lemma 3 Let {zn}n be a sequence that converges weakly in H 1(∂Ω) to a weak
limit ẑ ∈ H 1(∂Ω), i.e. zn ⇀ ẑ in H 1(∂Ω). Define the sequence {u1,n}n by
u1,n := u1(zn), where u1(zn) solves (14) with u1 = zn on ∂Ω . Then there exists a
subsequence u1,nj that converges weakly in H 1(Ω) and strongly in L2(Ω) to the
limit û1 = u1( ẑ ) ∈ H 1(Ω), i.e., u1,nj ⇀ û1 in H 1(Ω) and u1,nj → û1 in L2(Ω).
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Proof Since the sequence {zn}n converges weakly in H 1(∂Ω), it is bounded in the
norm ‖ · ‖H 1(∂Ω). By Lemma 1, we have that ‖u1,n‖H 1(Ω) ≤ c‖zn‖H 1(∂Ω) ≤ K ,
for some positive constant K , and the sequence u1,n is bounded in H 1(Ω). Since
H 1(Ω) is reflexive, there exists a weakly convergent subsequence u1,nj ⇀ û1 in
H 1(Ω). Now, from (14), we have that for any v ∈ H 1

0 (Ω)

∫
Ω

μ∇u1,nj · ∇v + c u1,nj v dx →
∫
Ω

μ∇û1 · ∇v + c û1 v dx.

Moreover, the weak convergence znj ⇀ ẑ and the continuity of the trace operator
τ : H 1(Ω) → H 1/2(∂Ω) [16, Theorem 3.37] implies that znj = τ (u1,nj ) ⇀

τ (̂u1) = ẑ, weakly in H 1/2(∂Ω). Therefore, û1 = u1( ẑ ). We conclude by recalling
the Sobolev compact embeddingH 1(Ω) � L2(Ω); see, e.g., [7].

Lemma 4 Let {u1,n}n be the sequence defined in Lemma 3 such that u1,nj ⇀ û1

(weakly) in H 1(Ω). Consider a sequence {ϕn}n in H 1(Ω) such that 0 ≤ ϕn(x) ≤ 1
and ϕn ⇀ ϕ̂ (weakly) in H 1(Ω) with 0 ≤ ϕ̂(x) ≤ 1. Then there exist two
subsequences {ϕnj }j and {u1,nj }j such that ϕnj → ϕ̂ and u1,nj → û1 (strongly) in

L2(Ω), and for any v ∈ H 1
0 (Ω)

∫
Ω

∇(ϕnj u1,nj ) · ∇v + ϕnj u1,nj vdx →
∫
Ω

∇( ϕ̂ û 1) · ∇v + ϕ̂ û 1vdx.

Proof The existence of the subsequences {ϕnj }j and {u1,nj }j such that ϕnj → ϕ̂

and u1,nj → û1 (strongly) in L2(Ω) follows from the fact that ϕn ⇀ ϕ̂ (weakly
in H 1(Ω)), Lemma 3, and the Sobolev (compact) embedding H 1(Ω) � L2(Ω)

[7]. Now, recalling Lemma 1 and according to the proof of Lemma 2 it holds
that ∇(u1,nj ϕnj ) = u1,nj∇ϕnj + ϕnj∇u1,nj . Therefore, to treat the products of
sequences û1.nj∇ϕ̂nj , ϕnj∇u1,nj , and ϕnj u1,nj , we use [7, Theorem 5.12-4] to
obtain for any v ∈ H 1

0 (Ω) that

∫
Ω

∇(ϕnj u1,nj )∇v+ϕnj u1,nj vdx=
∫
Ω

u1,nj ∇ϕnj ∇v+ϕnj ∇u1,nj ∇v+ϕnj u1,nj vdx

→
∫
Ω

û1∇ϕ̂∇v+ϕ̂∇û1∇v+û1 ϕ̂vdx=
∫
Ω

∇(ϕ̂ û1)·∇v+ ϕ̂ û1v+û1 ϕ̂vdx.

We are now ready to prove that (13) is well posed.

Theorem 1 Let α, β > 0, then there exists a solution to problem (13).

Proof Consider a minimizing sequence {(Rn, ϕn, u1,n, gn)}n, where gn is extended
by zero on ∂Ω . Since J is coercive in ϕ and g we have the bounds ‖ϕn‖H 1(Ω) ≤ c

and ‖gn‖H 1(∂Ω) ≤ c′, for two positive constants c, c′; see, e.g., [17]. The reflexivity
of H 1(Ω) and H 1(∂Ω) ensures the existence of weakly convergent subsequences:
ϕnj ⇀ ϕ̂ inH 1(Ω) and gnj ⇀ ĝ inH 1(∂Ω). By the Sobolev (compact) embedding
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H 1(Ω) � L2(Ω) [7], the sequence {ϕnj }j converges strongly in L2(Ω) to ϕ̂. Since
the set {v ∈ L2(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω} is (weakly) closed in L2(Ω) [17],
we have 0 ≤ ϕ̂(x) ≤ 1. Consider now the sequence {u1,n}n and the corresponding
subsequence u1,nj = u1(gnj ). By Lemma 3, we have that u1,nj ⇀ û1 = u1(ĝ)

weakly in H 1(Ω) and u1,nj → û1 = u1(ĝ) strongly in L2(Ω). Consider the
sequence {Rn}n. Since Rn satisfies

〈Rn, v〉H 1(Ω) =
∫
Ω

μ∇udd,n ·∇v+a ·∇udd,n v+c udd,n v−f v dx ∀v ∈ H 1
0 (Ω),

where udd,n = ϕnu1,n + (1 − ϕn)u2, from the Lax-Milgram theorem we have
that ‖Rn‖H 1(Ω) ≤ K(‖u1,n‖H 1(Ω), ‖ϕn‖H 1(Ω)), where the constant K depends on
‖u1,n‖H 1(Ω) and ‖ϕn‖H 1(Ω), which are bounded. Therefore,Rn is bounded as well,
and by Lemma 4, one can show that Rnj ⇀ R̂ = R(̂u1, ϕ̂) weakly in H 1(Ω). Now,
the weak-lower semi-continuity of J implies the claim [5, 17].

To obtain the first-order optimality system, we rely on the Lagrange multiplier
approach and work in the reduced space of solutions of constraint and adjoint
equations; see, e.g., [4, 17]. We first recall the control-to-state maps g �→ u1(g)

and (g, ϕ) �→ R(u1(g), ϕ) and the reduced cost functional J̃ (g, ϕ). Then we notice
that its derivatives, for δg ∈ H 1

0 (Γ ) and δϕ ∈ H 1
0 (Ω), are

DgJ̃ (g,ϕ)(δg)=〈βg+Rg,δg〉H 1 (Γ ), Dϕ J̃ (w,ϕ)(δϕ)=〈αϕ+Rϕ,δϕ〉H 1 (Ω).

(15)
Here Rg is the solution of the problem

〈Rg, δg〉H 1
0 (Γ )

= 〈Bg̃δg, λ〉H−1,H 1, (16)

where 〈·, ·〉H−1,H 1 : H−1(Ω)×H 1
0 (Ω) → R denotes the duality pairing, and Rϕ is

the Riesz representative of the linear functional

δϕ �→
∫
Ω

μ∇[
(u1 − u2)δϕ

] · ∇R dx + a · ∇[
(u1 − u2)δϕ

]
R+ c (u1 − u2)δϕ R dx.

In (16), λ ∈ H 1
0 (Ω) is a Lagrange multiplier that solves the adjoint equation

∫
Ω

∇λ · ∇v + c λ v dx =
∫
Ω

μ∇(vϕ) · ∇R + a · ∇(vϕ)R + c v ϕ R dx, (17)

for all v ∈ H 1
0 (Ω). Therefore, the first-order optimality system is given by (9),

(12), (17) and (16) together with the conditions [5, 17]

DgJ̃ (g, ϕ)(δg) = 0,
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for all δg ∈ H 1
0 (Γ ), and for any arbitrary θ > 0

ϕ = PVad

(
ϕ − θ

(
αϕ + Rϕ

))
,

where PVad is the projection onto Vad := {v ∈ H 1(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω}.

4 Numerical Experiments

We present now numerical experiments for the one-dimensional elliptic problem

−μ∂xxu− ∂xu = 1 in (0, 1), with u(0) = 0, u(1) = 0, (18)

for given μ = 0.01, computing udd = ϕ1u1 + ϕ2u2, with

−μ∂xxu1 = 0 in (0, 1),

u1(0) = 0, u1(1) = g,
and

−∂xu2 = 1 in [0, 1),

u2(1) = 0.

We solve both the PUM and Petrov-Galerkin optimality systems discretized by
linear finite-elements with a projected-LBFGS method with stopping tolerance
5×10−5 on the (relative) residual norm. The regularization parameters are α = β =
10−7. In Fig. 2 (left) we see that the ϕ and 1 − ϕ obtained by the two approaches
are very similar, and catch well the boundary layer on the left. The small bumps in
the right part (close to x = 1) are due numerical effects and we checked that they
disappear for smaller tolerances. In Fig. 2 (middle) the exact solution is compared
with the two approximations udd , and we see good agreement. In Fig. 2 (right), we
show the decay of the cost functional with respect to the number of iterations, and
we see that the Petrov-Galerkin approach converges a bit faster.
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Fig. 2 Comparison of the Petrov and PUM approaches: Left: partition of unity functions ϕ and
1 − ϕ. Middle: exact solution and approximations. Right: Decay of the cost functional
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Integral Equation Based Optimized
Schwarz Method for Electromagnetics

Xavier Claeys, Bertrand Thierry, and Francis Collino

1 Introduction

The optimized Schwarz method (OSM) is recognized as one of the most efficient
domain decomposition strategies without overlap for the solution to wave propa-
gation problems in harmonic regime. For the Helmholtz equation, this approach
originated from the seminal work of Després [4, 5], and led to the development
of an abundant literature offering more elaborated but more efficient transmission
conditions, see [1, 6–8] and references therein. Most contributions focus on trans-
mission conditions based on local operators.

In [2, 9, 10], the authors introduced non-local transmission conditions that can
improve the convergence rate of OSM. In [9, Chap. 8] the performance of this
strategy was shown to remain robust up to GHz frequency range. Such an approach
was proposed only for the Helmholtz equation, and has still not been adapted to
electromagnetics.
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In the present contribution we investigate such an approach for Maxwell’s
equations in a simple spherical geometry that allows explicit calculus by means
of separation of variables. We study an Optimized Schwarz Method (OSM) where
the transmission conditions are based on impedance type traces. The novelty lies in
our impedance operator that we choose to be non-local. More precisely, it is chosen
as a variant of the so-called Electric Field integral operator (see [11, §5.5]) where
the wave number is purely imaginary. We show that the iterative solver associated
to our strategy converges at an exponential rate.

2 Maxwell’s Equations in Harmonic Regime

As a model problem we consider an electromagnetic transmission problem stem-
ming from Maxwell’s equations in harmonic regime where the whole space R

3 is
partitioned in two sub-domains R3 = Ω+ ∪Ω− with Ω− being the unit open ball
centered at 0, and Ω+ = R

3 \ Ω−. Denote by nσ the vector field normal to Γ
directed toward the exterior of Ωσ , σ = ±. With a constant wave number κ > 0,
this is written

curl(E±)− ıκH± = 0, curl(H±)+ ıκE± = 0 in Ω±,
lim
ρ→∞

∫
∂Bρ

|H+ × x̂ − E+|2dσρ = 0,

γ+
T (E) = + γ−

T (E)+ gT , with γ±
T (E) := n± × (E±|Γ × n±),

γ+
R (H ) = −γ−

R (H )+ gR , with γ±
R (H ) := n± × H±|Γ ,

(1)

with Bρ := {x ∈ R
3, |x| < ρ} and x̂ := x/|x|. In this problem, gT,gR are

given source terms assumed to be supported on Γ only. Considering some invertible
impedance operator Z that we shall define in Sect. 4, the transmission conditions
in (1) can be reformulated as

γ+
T (E)+ Zγ+

R (H ) = γ−
T (E)− Zγ−

R (H )+ gT + ZgR,

γ−
T (E)+ Zγ−

R (H ) = γ+
T (E)− Zγ+

R (H )− gT + ZgR.
(2)

For any tangential vector field v and σ = ± define the magnetic-to-electric operator
Tσ (v) := γ σT (U) where (U,V) is the unique solution to curl(U)− ıκV = 0 in Ωσ ,
curl(V)+ ıκU = 0 in Ωσ and γ σR (V) = v (and Silver-Müller’s radiation condition
if σ = +). Taking uσ = γ σT (E) + Zγ σR (H ), σ = ± as unknowns of our iterative
procedure, Problem (1) is then equivalent to

u−σ = Aσ (uσ )+ f σ , σ = ±,
with Aσ := (Tσ − Z)(Tσ + Z)−1,

(3)
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and f ± := (Z(gR)±gT). An optimized Schwarz strategy to solve Problem (1) now
consists in a fixed point iterative method applied to (3), using the approximation
u± = γ±

T (E)+ Zγ±
R (H ) = limn→∞ u

(n)
± where u

(n)
± follows the recurrence

[
u
(n+1)
+

u
(n+1)
−

]
=

[
1 − r rA+
rA− 1 − r

]
·
[

u
(n)
+

u
(n)
−

]
+

[
rf +
rf −

]
. (4)

In this iterative method, r > 0 is a relaxation parameter whose effective value shall
be discussed in the sequel.

3 Separation of Variables on the Sphere

To study the convergence of (4), we rely on the spherical symmetry of our
model problem, and decompose the fields by means of vector spherical harmonics.
According to e.g. [11, Thm. 2.4.8], any tangential vector field u ∈ L2

T(Γ ) := {v :
Γ → C,

∫
Γ

|v|2dσ < +∞, x · v(x) = 0 on Γ } can be decomposed as

u(x) =
+∞∑
n=0

∑
|m|≤n

uD
n,m XD

n,m(x)+ uC
n,m XC

n,m(x),

with XD
n,m := 1√

n(n+1)
∇Γ Ym

n , XC
n,m := x̂ × XD

n,m,

where x̂ := x/|x| and ∇Γ is the surface gradient. Denoting (θ, φ) ∈ [0, π]×[0, 2π]
the spherical coordinates on Γ , spherical harmonics are defined by

Ym
n (θ, φ) :=

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)! P|m|

n (cos θ)eımφ,

where P|m|
n (t) are the associated Legendre functions, see e.g. [3, §2.3]. The tangent

fields XD
n,m,XC

n,m, 0 ≤ |m| ≤ n yield an orthonormal Hilbert basis of L2
T(Γ ).

The operators T± are diagonalized by the functions XD
n,m,XC

n,m. Indeed we have
T±(X&

n,m) = t&n,±X&
n,m for & = D, C where, according to Formula (53) in [13],

tD
n,− = 1/tCn,− = +ıJ′

n(κ)/Jn(κ),

tD
n,+ = 1/tCn,+ = −ıH′

n(κ)/Hn(κ).

(5)

Here Jn(x) := √
πx/2 Jn+1/2(x) with Jn(x) denoting the Bessel function of the

first kind of order n, and Hn(x) := √
πx/2 H(1)

n+1/2(x) with H(1)
n (x) denoting the
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Hankel function of the first kind of order n. The following result follows from [11,
Thm.5.3.5].

Proposition 1 We have %e{∫Γ u T−(u)dσ } = 0 and %e{∫Γ uT+(u)dσ } > 0 for
all u ∈ L2

T(div, Γ ) \ {0} where L2
T(div, Γ ) := {v ∈ L2

T(Γ ), divΓ (v) ∈ L2(Γ ) }.
This result is related to energy balance in Ω±. With %e{∫

Γ
u T−(u)dσ } = 0, the

energy coming in Ω− equals the outgoing energy. On the other hand, in Ω+, there
is energy radiated toward infinity as %e{∫

Γ
uT+(u)dσ } > 0. A direct consequence

in terms of separation of variables is

%e{t&n,+} > %e{t&n,−} = 0 for & = D, C, ∀n ≥ 0. (6)

That %e{t&n,−} = 0 can also be seen directly from expression (5) since the Jn(z) are
proportional to Bessel functions hence real valued. Assuming that the impedance is
chosen so that Z(X&n,m) = z&n X&

n,m for & = D, C and n ≥ 0 where zn,& ∈ C, we have

A±(X&n,m) = a&n,± X&
n,m with a&n,σ = t&n,σ − z&n

t&n,σ + z&n
. (7)

The exponential convergence of the optimized Schwarz method is guaranteed
provided that the spectral radius 0OSM of the iteration operator in (4) is strictly
smaller than 1,

0OSM = sup
n≥0

0n < 1, with 0n := max
σ=±,&=D,C

|1 − r ± r

√
a&n,+a&n,−|. (8)

First observe that, for any r ∈ (0, 1), we have |1 − r+ rλ| < 1 as soon as λ �= 1 and
|λ| ≤ 1. Since |(z− 1)/(z+ 1)| ≤ 1 if and only if %e{z} ≥ 0, a necessary condition
of convergence is that 0n < 1 for each n which boils down to %e{t&n,σ /z&n} ≥ 0 for
each n, σ, &. According to (6), the later condition holds provided that z&n ∈ (0,+∞).

4 Non-local Impedance Operator

Now let us discuss our construction of the impedance operator Z . Compared to
existing literature on optimized Schwarz strategies in the context of electromag-
netics, the peculiarity of the present contribution lies in our choice of Z that is
non-local. We choose

Z(u) := α

∫
Γ

Gα(x − y)u(y)dσ(y)− 1

α
∇Γ

∫
Γ

Gα(x − y)divΓ u(y)dσ(y) (9)

where the kernel Gα(x) := exp(−α|x|)/(2π |x|) satisfies −!Gα + α2Gα = 2δ0 in
R

3, and α > 0 is a parameter whose value shall be discussed later. The operator
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given by (9) is a classical object of potential theory that can be understood as a
dissipative version of the so-called Electric Field Integral operator (EFIE). Defined
in this manner, the operator Z is diagonalized by the X&

n. According to Formula (54)
in [13] we have

zD
n = 2J′

n(ıα)H
′
n(ıα) and zC

n = 2Jn(ıα)Hn(ıα). (10)

According to Rayleigh’s formulas, see [12, Chap. 10], we have Jn(ıx) = (ıx)n+1

(x−1∂x)
n(sinh(x)/x) and Hn(ıx) = −(ıx)n+1(x−1∂x)

n(exp(−x)/x). It is clear
from (10) that zD

n , z
C
n > 0 for all n ≥ 0.

Satisfying 0n < 1 for each n is necessary but not sufficient for (8) to be fulfilled.
We must also verify that lim supn→∞ 0n < 1. Let us study the asymptotic behaviour
of 0n for n → ∞. First, observe that (5) and (10) provide explicit expressions for
z&n and t&n,σ where & = D, C and σ = ±. According to [3, §2.4], we have Jn(x) ∼
xn+1n!2n/(2n + 1)! and Hn(x) ∼ −ıx−n(2n)!/(n!2n) for n → +∞, and these
asymptotics hold for both x ∈ R and x ∈ ıR. Plugging this inside (5) and (10)
yields, for n → +∞,

zD
n ∼
n→∞

n

α
, zC

n ∼
n→∞

α

n
and tD

n,± ∼
n→∞

ın

κ
.

We also deduce the asymptotics of tCn,± = 1/tD
n,±. From this we obtain tD

n,±/zD
n ∼

ıα/κ and tCn,±/zC
n ∼ −ıκ/α. With (7) we conclude that

lim
n→∞ aD

n,± = +φ(α/κ) and lim
n→∞ aC

n,± = −φ(α/κ) where φ(γ ) := ıγ − 1

ıγ + 1
.

Now we have limn→∞ 0n = max | 1−r±rφ(α/κ) |. A natural idea for choosing the
parameters r and α consists in minimizing this quantity. The minimum is obtained
for α = κ and r = 1/2 and we have in this case (note that this limit does not depend
on κ)

lim
n→∞ 0n = 1/

√
2 for α = κ, r = 1/2. (11)

The control of 0n when n goes to infinity is crucial to obtain geometrical conver-
gence. It cannot be obtained when the impedance operator is a combination of local
operators (with Padé approximants of the true impedance for instance). The use of
non-local and positive impedance operator is the price to pay to achieve geometrical
convergence.
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Fig. 1 Iteration eigenvalues with κ = 10 for r = 1 (left) and r = 1/2 (right)

Fig. 2 Iteration eigenvalues with κ = 100 for r = 1 (left) and r = 1/2 (right)

5 Numerical Illustration

Below we illustrate our analysis with effective numerical calculation1 of the
eigenvalues of the iteration operator of (4), taking systematically α = κ . In Fig. 1
below, we plot these eigenvalues for κ = 10. We see that the whole spectrum is
contained in the unit disc. The values ±ı clearly appear as the accumulation points
of the spectrum with no relaxation (r = 1).

For eigenvalues associated to the relaxation parameter r = 1/2, we see that
the accumulation points are located at (1/2,±1/2) whose modulus is 1/

√
2, which

agrees with (11). Next, in Fig. 2 we show the same plots at higher frequency κ =
100. Once again, the whole spectrum is contained in the unit disc.

Finally in Fig. 3 we plot the values 0n versus the modal index n for κ =
1,030,100. For low modal indices, it oscillates with growing amplitude until it
reaches a pick located around n ∼ κ . Then 0n smoothly decays to 1/

√
2. This

scenario does not change as κ grows.

1Matlab scripts are available at: http://gitlab.lpma.math.upmc.fr/IEOSM/Matlab.

http://gitlab.lpma.math.upmc.fr/IEOSM/Matlab
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Fig. 3 Values of 0n versus n with r = 0.5 for κ = 1,030,100

Although limn→∞ 0n remains independent of κ , the spectral radius supn≥0 0n
(reached around n = κ) does depend on κ , and we see in Fig. 3 that this maximum
grows closer to 1 as κ → ∞. This suggests us that the values α = κ and r = 1

2 may
not be the optimal choice.

6 Conclusion

We have shown the convergence of the domain decomposition algorithm based on a
dissipative EFIE transmission condition. How to choose the parameter α in a more
optimal way should be further investigated. Moreover, it would be worth examining
variants of the transmission operator (9). Augmenting it with additional local terms
based on Padé approximants, in the manner of [6], seems promising.

Besides, in a finite element context, the use of a non-local operator is expensive
in terms of both CPU time and memory storage. Various approaches could be
considered for overcoming this problem. A possible solution may consist in
truncating the Green kernel so as to (quasi)-localize the operator. The choice of
the truncation and how it impacts the iteration operator should then be further
investigated.

Other extensions of the present work are possible. For non-spherical interfaces,
using the approach developed in [2], a convergent strategy would be obtained by
choosing the impedance operator according to (9). This remark also holds in the
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case of multiple sub-domains, as long as there is no junction point at interfaces.
Our strategy can also be adapted to the case of piecewise constant material
characteristics. For this case also, the theory in [2] suggests that our method is
convergent although, this time, a choice of impedance operator that varies according
to the sub-domains may be more optimal. Finally the case of fully heterogeneous
media seems to be still a widely open question.

Acknowledgment This work received support from the ANR research Grant ANR-15-CE23-
0017-01.
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Analysis of the Shifted Helmholtz
Expansion Preconditioner
for the Helmholtz Equation

Pierre-Henri Cocquet and Martin J. Gander

1 Introduction

Solving discretized Helmholtz problems by iterative methods is challenging [8],
mainly because of the lack of coercivity of the continuous operator and the highly
oscillatory nature of the solutions. Krylov subspaces methods like GMRES are
the methods of choice because of their robustness, but they require a good pre-
conditioner to be effective. Among many proposed preconditioners like Incomplete
LU, Analytic ILU or domain decomposition based preconditioners [1], the shifted
Helmholtz preconditioner has received a lot of attention over the last decade,
because of its simplicity and its relevance to heterogeneous media, see [2, 3, 7, 9]
and references therein.

We focus here on the recent idea of a generalization, the expansion precondi-
tioner [4, 5], which is based on the fact that the inverse of the discrete Helmholtz
operator can be written as a superposition of inverses of discrete shifted Helmholtz
operators only. This is achieved with the matrix-valued function f (β) := (−Δh −
(1 + iβ)k2)−1, where Δh corresponds to a finite difference discretization of the
Laplace operator, using a Taylor expansion to evaluate the function at β = 0,

f (0) =
∑
j≥0

f (j)(β)

n! (−β)j =
∑
j≥0

(−iβk2)jf (β)−(j+1). (1)
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The expansion preconditioner is then defined as the truncation of the Taylor series,
and converges to the exact inverse of the discrete Helmholtz operator if the Taylor
series actually converges. The authors in [4, 5] also propose to compute each inverse
of the shifted Helmholtz operator in the expansion preconditioner (1) approximately
using multigrid, which can converge with a number of iterations independent of the
wavenumber for large enough shifts, see e.g. [2, 3]. The rate of convergence of the
expansion preconditioner toward A−1

0 = f (0) is computed in [4] to be O(βn),
but this result is obtained without bounds on the higher derivatives of f which can
deteriorate the performance of the proposed preconditioner.

The goal of this paper is to give theoretical and numerical insight for the perfor-
mance of the expansion preconditioner, and to extend its definition to finite element
discretizations. We first build the expansion preconditioner using the generalized
resolvent formula and study its performance. We next show, as proved in [9] for
the shifted Helmholtz operator, that a shift of the order of at most the wavenumber
ensures wavenumber independant convergence of GMRES preconditioned with the
expansion preconditioner. We then illustrate our results with numerical experiments,
which indicate that even a larger shift might be tolerable.

2 General Analysis of the Expansion Preconditioner

LetΩ be a convex polygon of Rd , with d = 1, 2, 3. The shifted Helmholtz equation
with impedance boundary conditions is

{−Δu(x)− (k2 + iε)u(x) = f (x), x ∈ Ω,
∂nu− iηu = 0, on ∂Ω,

(2)

where n is the unit outward normal on ∂Ω , ε > 0 is the so-called shift, and η > 0
is the impedance parameter. The Helmholtz equation with approximate radiation
condition is obtained from (2) by setting ε = 0 and η = k. The variational form
of (2) is

⎧⎨
⎩

Find u ∈ H 1(Ω) such that for all v ∈ H 1(Ω) :
aε(u, v) :=

∫
Ω

∇u · ∇v − (k2 + iε)uvdx − iη
∫
∂Ω

uvdσ =
∫
Ω

f vdx.
(3)

Let Vh be the finite element space obtained with piecewise linear polynomials,

Vh = {
v ∈ C (Ω) | v|T ∈ P1 for all T ∈ Th

} = Span(φ1, · · · , φN),
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where
{
φj

}N
j=1 is the finite element nodal basis associated to the triangulation Th.

The discrete problem is then

⎧⎨
⎩

Find uh ∈ Vh such that :
aε(uh, vh) =

∫
Ω

f vhdx, ∀vh ∈ Vh.
(4)

This is equivalent to the linear systemAεwh = bh where uh = Fhwh is the Galerkin
solution and

Fh : x = (x1, · · · , xN) ∈ C
N �→

N∑
j=1

xjφj ∈ Vh.

Denoting by K the stiffness, M the mass and N the boundary mass matrix, we get

Aε = K − (k2 + iε)M − iηN.

We denote by A0 the discrete Helmholtz operator obtained with ε = 0 and η = k.
The matrix A0 is invertible because of the impedance boundary condition in (2).
We now give a generalized resolvent formula which can be obtain by a direct
computation.

Lemma 1 Let A,B ∈ C
n×n with B invertible, and let p, z ∈ C be two complex

numbers in the resolvent set of AB−1. Let R(z) := (A− zB)−1 be the generalized
resolvent of A. Then the relation R(p)− R(z) = (z− p)R(z)BR(p) holds.

Using the Neumann series, Lemma 1 allows us to rewrite the inverse of the discrete
Helmholtz operator as a superposition of discrete shifted Helmholtz operators:

Theorem 1 The inverse of the discrete Helmholtz operator is given by

A−1
0 =

⎛
⎝∑
j≥0

(−iε)j
(
A−1
ε M

)j
⎞
⎠A−1

ε ,

and the series converges in the norm ‖x‖M = √〈Mx, x〉 = ‖Fhx‖L2(Ω).

Proof Lemma 1 applied with A = A0, B = M , p = 0 and z = iε yields

A−1
0 = (Id + iεA−1

ε M)−1A−1
ε .

Note that A−1
ε M = (M−1Aε)

−1. Let w ∈ C
N such that Aεw = Mb for some

b ∈ C
N . From the definition of the mass matrix M and the operator Fh and Aε , we

get

aε(Fhw, Fhw) = 〈Mb,w〉 = (
Fhb, Fhw

)
L2(Ω)

.
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Then using the Cauchy-Schwarz inequality and the lower bound

|aε(Fhw, Fhw)| > |I aε(Fhw, Fhw)| = ε ‖Fhw‖2
L2(Ω)

+ η ‖Fhw‖2
L2(∂Ω)

,

we obtain that ‖w‖M < ‖b‖M ε−1, and thus
∥∥εA−1

ε M
∥∥
M
< 1. Finally, (Id +

iεA−1
ε M)−1 can be expanded as a Neumann series, which completes the proof.

Remark 2 The mass matrix is symmetric and positive definite so it admits a square
root M1/2. For any B ∈ C

N×N , the matrix norm induced by ‖·‖M is then defined
by ‖B‖M = ∥∥M1/2BM−1/2

∥∥
2. This yields

∥∥∥εA−1
ε M

∥∥∥
M

= ε

∥∥∥M1/2A−1
ε M1/2

∥∥∥
2

= ε

∥∥∥A−1
ε M

∥∥∥
2
< 1,

and thus the series in Theorem 1 converges also in the 2-norm.

Following [4], the expansion preconditioner of order n ∈ N
+ is defined as a

truncation of the Neumann series given in Theorem 1,

EX(n) =
⎛
⎝n−1∑
j=0

(−iε)j
(
A−1
ε M

)j+1

⎞
⎠M−1 =

⎛
⎝n−1∑
j=0

(−iε)j
(
A−1
ε M

)j
⎞
⎠A−1

ε .

(5)

The preconditioned Helmholtz problem is thus given by

EX(n)A0wl = EX(n)bl . (6)

From Elman’s estimate (see e.g. Theorem 1.8 in [9]), the rate of convergence of
GMRES used for solving any Aw = b can be estimated by an upper bound of
‖Id − A‖2. Denoting by rm the GMRES residual and assuming that ‖Id − A‖2 ≤
σ < 1, this reads

‖rm‖2

‖r0‖2
≤

(
2
√
σ

(1 + σ)2

)m
. (7)

We now compute this term for the expansion preconditioner.

Theorem 3 For any shift ε > 0, impedance parameter η > 0, meshsize h and
n ∈ N

+, the expansion preconditioner satisfies the bounds

N (Id − EX(1)A0) ≤ εN
(
A−1
ε M

)
,

∀n ≥ 1, N (Id − EX(n)A0) ≤ 1 + εN
(
A−1
ε M

)
1 − εN

(
A−1
ε M

) (εN (
A−1
ε M

)
)n,

whereN (B) denotes any matrix norm or ρ(B).
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Proof The first item follows from Id − EX(1)A0 = Id − A−1
ε A0 = iεA−1

ε M . For
the second one, we compute

Id − EX(n)A0 = (A−1
0 − EX(n))A0 =

⎛
⎝∑
j≥n

(−iε)j (A−1
ε M)j

⎞
⎠A−1

ε A0. (8)

Note that A−1
ε A0 = Id + iεA−1

ε M and thus A−1
ε A0 and A−1

ε M commute. Now,
using that ερ(A−1

ε M) ≤ ε
∥∥A−1

ε M
∥∥

2 < 1, we can use Gelfand’s formula to get the
convergence of the Neumann series with respect to any matrix norm. Taking norms
in (8) and summing the geometric series then gives

N (Id − EX(n)A0) ≤ N
(
Id + iεA−1

ε M
)
(εN

(
A−1
ε M

)
)n

∑
j≥0

(εN
(
A−1
ε M

)
)j

≤ 1 + εN
(
A−1
ε M

)
1 − εN

(
A−1
ε M

) (εN (
A−1
ε M

)
)n.

Remark 4 The construction of the expansion preconditioner as well as Theorem 3
hold without any changes for high order finite element discretizations.

The upper bound from Theorem 3 involves only εN
(
A−1
ε M

)
. If this quantity

Is bounded away from 1, the expansion preconditioner can reduce the number of
GMRES iterations when using a large enough n, i.e. enough terms in the expansion.

3 Wavenumber-Independent Convergence of GMRES

As it was proved for the shifted Helmholtz preconditioner in [9], we now show that
taking ε � k is sufficient in the expansion preconditioner to ensure wavenumber-
independant convergence of GMRES. We do this for two types of meshes: for
k3h2 ≤ C0, for which one should have no pollution error according to [6], and
the even higher resolution h ∼ k−2.

Theorem 5 Assume that one of the following assumptions holds:

(A1) η ∼ k and k3h2 ≤ C0 with C0 small enough.
(A2) η � k, k ≥ k0 for a given k0 > 0 and kh

√|k2 − ε| ≤ C0 with C0 small
enough.

Then there exists a constant C2 > 0 depending only on Ω such that for any ε > 0
with εC2 < k, we have

∀ n ≥ 1, N (Id − EX(n)A0) ≤
(
C2ε

k

)n
k + C2ε

k − C2ε
,
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whereN (.) = ρ(.) if (A1) holds, andN (.) = ‖.‖2 if (A2) holds.

Proof Assume that (A1) holds. Let λ ∈ C be an eigenvalue of M−1Aε =
(A−1

ε M)−1 and v ∈ C
N be the associated eigenvector. Then we have

M−1Aεv =
(
M−1(K − iηN)− (k2 + iε)Id

)
v = λv.

Therefore, the spectrum of M−1Aε is given by

σ(M−1Aε) =
{
λj + iε | λj ∈ σ(M−1A0)

}
,

from which we infer that

ερ(A−1
ε M) = max

λj∈σ(M−1A0)

ε

|λj + iε| . (9)

Let b ∈ C
N be fixed and vh ∈ C

N be the solution to A0vh = Mb. Note that
ϕh = Fhvh ∈ Vh corresponds to the FEM discretization of the solution to (2) with
f = Fhb. Since f ∈ L2(Ω) and Ω is assumed to be convex, the solution to the
Helmholtz equation (2) belongs to H 2(Ω). Since (A1) holds, one can apply [6,
Corollary 4.4 p. 12] to get

‖∇ϕh‖L2(Ω) + k ‖ϕh‖L2(Ω) � ‖f ‖L2(Ω) . (10)

Then (10) shows that

‖Fhvh‖L2(Ω) �
1

k
‖Fhb‖L2(Ω) .

Using [9, Eq. (4.2) p. 24], we have ‖Fh‖CN→Vh ∼ hd/2, which gives

‖vh‖2 =
∥∥∥A−1

0 Mb
∥∥∥

2
� ‖b‖

k
.

The above estimate holds for any b ∈ C
N and thus

∥∥∥A−1
0 M

∥∥∥
2
� 1

k
. (11)

The upper bound (11) proves that, for any μ ∈ σ(A−1
0 M), |μ| � k−1. Since any

λ ∈ σ(M−1A0) can be written as λ = 1/μ, one gets k � |λ|. We finally infer that
there exists C2 > 0 depending only on Ω such that

ρ(A−1
ε M) ≤ C2

k
. (12)



Expansion Preconditioner for the Helmholtz Equation 201

Assuming now that (A2) holds allows us to apply [9, Lemma 3.5 p. 595] that
gives the quasi-optimality of the bilinear form aε on Vh with respect to the weighted
norm ‖u‖2

1,k = ‖∇u‖2
L2(Ω)

+ k2 ‖u‖2
L2(Ω)

. Using this, the authors proved in [9,
Lemma 4.1 p. 598] that there exists a constant C2 depending only on Ω such that

∥∥∥A−1
ε M

∥∥∥
2

≤ C2

k
. (13)

Using now (12) and (13) together with the bound proved in Theorem 3 concludes
the proof.

4 Numerical Experiments

We discretize the Helmholtz equation on the unit square with classical Robin
radiation boundary conditions, η = k, using P1 finite elements and the resolution
hk3/2 = 1. In Table 1, we show the iteration numbers that GMRES preconditioned
with the expansion preconditioner needed to reach a relative residual reduction of
1e− 6 for the right hand side f = 1. We see that for all expansion preconditioners,
n = 1, 2, 3, iteration numbers are constant for the shift ε = k, and for larger n
even a little better. For larger shifts, the expansion preconditioner with n = 1,
which is identical to the shifted Helmholtz preconditioner, has growing iteration
numbers, as shown in [9]. For the shift ε = k3/2, the expansion preconditioners
with n = 2, 3 still seem to have constant iteration numbers, which is remarkable,
and still increasing n lowers the iteration numbers a bit. When the shift is however
ε = k2, iteration numbers now also grow rapidly for the expansion preconditioner
with n = 2, 3, at a linear rate in the wave number k, which was also observed in
[9] for the shifted Helmholtz preconditioner with Robin boundary conditions.1 The
numerical ranges for the preconditioned operators of Table 1 are shown in Fig. 1.
We can see that the expansion preconditioner is robust for the shifts ε = k and
ε = k3/2 in the range k ∈ {5, 10, 20} tested, since the corresponding numerical
range does not approach zero. It thus seems to deteriorate only for larger shifts than
the shifted Helmholtz preconditioner, but is also substantially more costly, since one
has to invert the shifted Helmholtz operator n times.

Table 1 GMRES iteration
numbers for Helmholtz with
the expansion preconditioner

n = 1 n = 2 n = 3

ε k k3/2 k2 k k3/2 k2 k k3/2 k2

k = 5 5 6 8 5 6 9 5 7 9

k = 10 6 8 13 5 8 12 5 7 13

k = 20 6 11 24 5 8 21 4 7 20

1Quadratic growth was even observed in the wave guide configuration.
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Fig. 1 Numerical range for shifts ε = k, k3/2, k2 (from left to right). Top row: shifted
Helmholtz which is identical to the expansion preconditioner with n = 1. Middle row: expansion
preconditioner n = 2. Bottom row: expansion preconditioner n = 3

5 Conclusions

We presented a convergence analysis of the expansion preconditioner for discretized
Helmholtz problems. We showed that like for the shifted Helmholtz preconditioner,
which coincides with the expansion preconditioner for n = 1, wave number
independent convergence of GMRES can be guaranteed for shift ε � k. For larger
shifts, we tested the expansion preconditioner numerically and found that in the
range of wave numbers tested, the expansion preconditioner seems still to be robust
for shifts ε = k3/2, which is quite remarkable. Unfortunately for shifts of O(k2),
which is required for the effective solution of the shifted problems by multigrid
[2, 3], the expansion preconditioner is also not robust any more, like the shifted
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Helmholtz preconditioner. The effort for pushing this approach to larger shifts is
thus still ongoing, see also the important recent work in domain decomposition [11]
presented as a plenary lecture in the present conference [10].
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A Finite Difference Method
with Optimized Dispersion Correction
for the Helmholtz Equation

Pierre-Henri Cocquet, Martin J. Gander, and Xueshuang Xiang

1 Introduction

We propose a new finite difference method (FDM) with optimized dispersion
correction for the Helmholtz equation

Lku := −Δu− k2u = f, inΩ ⊂ R
2, (1)

where Δ is the Laplacian, k is the wave number, and we assume boundary
conditions such that the problem is well posed. The Helmholtz equation has
important applications in many fields of science and engineering, e.g., acoustic and
electromagnetic waves, and obtaining more accurate numerical discretizations has
attracted significant research interest, see [1, 2, 8, 9, 12] and the references therein.

It is well known that all grid based numerical methods, e.g. finite element or
finite difference methods, suffer from the so called pollution effect, which can
not be eliminated [1], and the wave number of the numerical solution is different
from that of the exact solution, leading to numerical dispersion [6, 7]. To keep
the pollution effect and numerical dispersion under control, classical discretizations
require a very fine mesh, which leads to very large discrete systems, especially
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when the frequency increases. To reduce the numerical dispersion of the standard
5-point finite difference scheme, a rotated 9-point FDM was proposed in [8] which
minimizes the numerical dispersion, see also [3, 4, 10, 13] for more recent such
approaches. Minimizing numerical dispersion is also important for effective coarse
grid corrections in domain decomposition and for constructing efficient multigrid
solvers: in 1D it is even possible to obtain perfect multigrid efficiency using
dispersion correction [5], see also [11] for an approximation in higher dimensions.

We develop here a new dispersion minimizing FDM for the Helmholtz equa-
tion (1) using as a new idea a modified wave number. Compared with the finite
difference scheme of [8] which minimizes already the numerical dispersion, our
new scheme using the same stencil, but a modified wave number, has substantially
less dispersion error and thus much more accurate phase speed. Our examples also
indicate that for plane wave solutions, our new FDM is sixth-order accurate.

2 Dispersion Correction for Standard FDM

We first recall the definition of the dispersion relation and some notation. Given
an operator P , e.g. the continuous operator Lk in (1) or any finite difference
approximation for Lk , its symbol is

σP (ξ) := e−iξ ·x(Peiξ ·x). (2)

The dispersion relation of the operator P is then defined to be the set

{ξ ∈ R
2|σP (ξ) = 0}, (3)

where ξ = (ξ1, ξ2) denotes the wave vector. A direct computation using (2) gives for
the continuous operator Lk in (1) the dispersion relation set {ξ ∈ R

2|ξ2
1 + ξ2

2 = k2}.
For ξ such that σP (ξ) = 0, the number ν = k

‖ξ‖ is called the (normalized) phase
speed associated with a plane wave with angle θ given by tanθ = ξ2/ξ1. For the
operatorLk in (1), the phase speed is equal to 1 for any angle. For any discretization
scheme, we will consider the phase speed as a function of a dimensionless quantity,
the number of points per wavelengthG = 2π

kh
, or its inverse 1/G.

For any discretization Lhk of Lk , numerical dispersion can be defined as the
difference between the dispersion relation of Lk and Lhk . The numerical dispersion
can also be evaluated by the difference of phase speed of Lhk and 1 for different
angles. A key idea for dispersion correction is to use a different numerical wave
number k̂ in the discretized operator Lh

k̂
to minimize the numerical dispersion [5].

Take for example the 1D Helmholtz equation

−∂
2u

∂x2
− k2u = f, (4)
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where the dispersion relation is {ξ | |ξ | = k}. The standard 3-point FDM of (4) is

(L
h,f d3
k u)i = h−2(2ui − ui−1 − ui+1)− k2ui. (5)

Using (2), the dispersion relation of Lh,f d3
k is {ξ ∈ R | 2h−2(1 − cos(ξh)) = k2},

which is quite different from {ξ | |ξ | = k}. In order to make (5) have the same
dispersion as (4), it was proposed in [5] to use a different wave number in (5),
denoted by k̂. Choosing k̂ = |

√
2h−2(1 − cos(kh))| implies

{ξ ∈ R | 2h−2(1 − cos(ξh)) = k̂2} = {ξ | |ξ | = k},

and hence there is no numerical dispersion!
We investigate now if a similar approach can be used for the 2D Helmholtz

equation (1), whose standard 5-point FDM is given by

(L
h,f d5
k u)i,j = h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1)− k2ui,j , (6)

Using (2), its dispersion relation of Lh,f d5
k can readily be computed to be

{ξ ∈ R
2|h−2(4 − 2 cos(hξ1)− 2 cos(hξ2)) = k2}. (7)

We show in Fig. 1 (left) the phase speed vf d5 we computed using (7) for the angles
0◦, 15◦, 30◦ and 45◦ when k = 10. We can clearly see that the numerical dispersion
increases as we decrease the number of points per wavelength G. Using the
dispersion correction idea from the 1D Helmholtz equation, we can do dispersion
correction as well, but only for a specific direction. Given an angle θ , for wave
number k and mesh size h, we choose the numerical wave number to be

k̂(θ, k, h) = |
√
h−2(4 − 2 cos(kh cos(θ))− 2 cos(kh sin(θ)))|. (8)
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Fig. 1 Phase speed curves for 5-point FDM. Left: no dispersion correction. Right: dispersion
correction for θ = 20◦
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Fig. 2 Dispersion relation of operator L, fd5 and fd5-dc with dispersion correction for angle 15◦
and G = 4 (left) and G = 2.5 (right)

The 5-point FDM with dispersion correction is then given by

(L
h,f d5

k̂
u)i,j = h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1)− k̂2ui,j , (9)

and its dispersion relation is

{ξ ∈ R
2|h−2(4 − 2 cos(hξ1)− 2 cos(hξ2)) = k̂2}. (10)

By the definition of k̂ in (8), one can see that the dispersion correction is used
to ensure that the phase speed vf d5−dc = 1 for the specific angle θ , i.e. there
is no dispersion error in that direction. However, for other angles, we still have
numerical dispersion, as shown in Fig. 1 (right), where we did dispersion correction
for θ = 15◦, and then computed the phase speed vf d5−dc for the angles 0◦, 15◦, 30◦
and 45◦ when k = 10. In Fig. 2, we show the dispersion relation of L, Lh,f d5

k

and Lh,f d5
k̂

, where k̂ is again the dispersion correction with θ = 15◦. We see that
the discrete corrected dispersion relation is much closer to that of the continuous
operator Lk than the uncorrected one. However, numerical dispersion still exists, it
is not possible to make the phase speed vf d5−dc = 1 for all angles using a modified
wave number alone.

3 An Optimized 9-Point FDM with Dispersion Correction

To improve dispersion errors, a parametrized 9-point FDM was introduced in [8],
where −Δ is discretized by a tensor product of a 1D mass matrix with stencil
[(1 − a)/2, a, (1 − a)/2]T and the standard second order difference with stencil
[−h−2, 2h−2,−h−2]T , and the mass term −k2 is discretized by the symmetric 9-
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point stencil

⎡
⎣(1 − b − c)/4 c/4 (1 − b − c)/4

c/4 b c/4
(1 − b − c)/4 c/4 (1 − b − c)/4

⎤
⎦ .

This leads with α = [a, b, c] and our numerical wave number k̂ to the new 9-point
FDM

(L
h,α

k̂
u)i,j = ( 4a

h2 − k̂2b)ui,j + ( 1−2a
h2 − k̂2c

4 )(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

−( 1−a
h2 + k̂2 1−b−c

4 )(ui−1,j−1 + ui+1,j−1 + ui−1,j+1 + ui+1,j+1).

(11)

Computing its dispersion relation {ξ ∈ R
2|(e−iξ ·x)i,j (Lh,α

k̂
eiξ ·x)i,j = 0} gives

(4ah−2 − k̂2b)+ 2( 1−2a
h2 − k̂2c

4 )(cos(hξ1)+ cos(hξ2))

−2( 1−a
h2 + k̂2 1−b−c

4 )(cos(h(ξ1 + ξ2))+ cos(h(ξ1 − ξ2))) = 0.
(12)

For a vector ξ that satisfies the dispersion relation (12), we define

ηα
k̂

:= ‖ξ‖, (13)

which is a function that depends on θ . Then the phase speed of the operator Lh,α
k̂

is

vα
k̂

= k
ηα
k̂

. For the phase speed vα
k̂

to be close to 1, we need that ηα
k̂

is close to k. We

thus would need to solve the L2 minimization problem1

min
α,k̂

∫ 2π

0
(ηα
k̂
(θ)− k)2dθ. (14)

Because we can not explicitly compute (13) from the transcendental relation (12),
we propose a different minimization approach based on the reasonable

Assumption 3.1 Given a mesh size h, there exist setsK andP such that

• ∀ k̂ ∈ K , ∀α ∈ P , the set of the dispersion relation (12) is not empty;
• Given α ∈ P , the mapping of K to {ηα

k̂
| k̂ ∈ K } is injective.

Let F h,α : p(θ) → q(θ) be the operator which computes for given p(θ), θ ∈
[0, 2π] the solution q(θ) of

(e−i[p(θ) cos(θ),p(θ) sin(θ)]T ·x)i,j (Lh,αq ei[p(θ) cos(θ),p(θ) sin(θ)]T ·x)i,j = 0. (15)

1We could also use different norms leading to different optimized dispersion corrections.
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Since k̂2 appears only linearly in the 9-point FDM (11), F h,α is easy
to compute numerically. In addition, by the definition of ηα

k̂
in (13) and

Assumption 3.1, we have F h,α(ηα
k̂
) = k̂. Thus, instead of solving (14), we

solve min
α∈P,k̂∈K

∫ 2π
0 (F h,α(ηα

k̂
(θ)) − F h,α(k))2dθ, which, combined with

F h,α(ηα
k̂
) = k̂, yields

min
α∈P,k̂∈K

∫ 2π

0
(k̂ − F h,α(k))2dθ, (16)

where k can be interpreted as a constant function in θ . Using that k̂ does not depend
on θ , the objective function in (16) becomes by a direct calculation

∫ 2π

0
(k̂ − F h,α(k))2dθ = 2π

(
k̂ − 1

2π

∫ 2π

0
F h,α(k)dθ

)2

+
∫ 2π

0
F h,α(k)2dθ − 1

2π

(∫ 2π

0
F h,α(k)dθ

)2

.

For any fixed α, we can then take k̂ = 1
2π

∫ 2π
0 F h,α(k)dθ to make the objective

function reach its minimum, since the other terms do not depend on k̂, and thus the
minimization problem (16) is after a short calculation equivalent to minimizing the
variance,

minα∈P
∫ 2π

0
(

1

2π

∫ 2π

0
F h,α(k)dθ − F h,α(k))2dθ. (17)

This leads to the following algorithm to compute optimized α∗ and k̂∗:

Algorithm 1 (Optimized Parameters α∗ and k̂∗ for Dispersion Correction)

1◦ Input wave number k and mesh size h;
2◦ Construct operatorF h,α in (15);
3◦ Solve minimization problem (17) to obtain α∗;
4◦ Compute k̂∗ = 1

2π

∫ 2π
0 F h,α∗

(k)dθ ;

5◦ Output α∗ and k̂∗.

4 Numerical Examples

We use a Riemann sum, discretizing θ in Algorithm 1 from 0 to 2π with step size
π/100, and solve (17) using Nelder Mead with initial guess α0 = [1, 1, 0], which
corresponds to the standard 5-point FDM. We denote our new 9-point FDM with
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dispersion correction by fd9-dc, and compare it to the FDM of Jo, Shin and Suh in
[8] denoted by fd9-jss. The parameters for fd9-jss do not depend on h and k and are
given by α = [0.7731, 0.6248, 0.3752].

We first compare in Fig. 3 the dispersion relation of fd9-jss and fd9-dc when
k = 10. Algorithm 1 gives as optimized parameters for G = 4 the values
α∗ = [0.8027, 1.0532, 0.0002], k̂∗ = 8.7725, and for G = 2.5 the values
α∗ = [0.7662, 1.0553, 0.0003], k̂∗ = 7.2186. We see on the left that both schemes
seem very good for G = 4, compared to the five point schemes in Fig. 2, but on
the right for G = 2.5 the dispersion relation of fd9-dc is much better, still looking
perfect for only 2.5 points per wavelength!

Figure 4 shows the phase speed curves vα
∗
k̂∗ for fd9-jss and fd9-dc for the angles

0◦, 15◦, 30◦ and 45◦ when k = 10 as a function of 1/G. We can clearly see that the
phase speed of fd9-dc is much closer to 1 than for fd9-jss (note the different scales).
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Fig. 3 Dispersion relation of L, fd9-jss and fd9-dc when G = 4 (left) and G = 2.5 (right)
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Fig. 4 Phase speed curves for fd9-jss (left) and fd9-dc (right) when k = 10
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We next investigate the accuracy in h. We consider the Helmholtz equation
on Ω = (−1, 1) × (−1, 1) with the exact plane wave solution uθe (x) =
ei(k cos(θ)x1+k sin(θ)x2) and Dirichlet boundary conditions. The corresponding numer-
ical solutions of fd9-jss and fd9-dc are ufd9−jss,θ

h and ufd9−dc,θ
h , and the interpolated

exact solution uθe on the mesh with size h by uθi,h. We then measure the relative error
of fd9-jss and fd9-dc by

errfd9−jss(h, θ) = ‖ufd9−jss,θ
h − uθi,h‖

‖uθi,h‖
, errfd9−dc(h, θ) = ‖ufd9−dc,θ

h − uθi,h‖
‖uθi,h‖

.

In Fig. 5, we show how the θ averaged errors

errfd9−jss(h) = 1

2π

∫ 2π

0
errfd9−jss(h, θ)dθ, errfd9−dc(h) = 1

2π

∫ 2π

0
errfd9−dc(h, θ)dθ,

behave when h becomes small, for k = 5, 10. We can clearly see that fd9-dc is 6-th
order accurate, while fd9-jss is just second order accurate. We show in Table 1 the
condition number of the corresponding linear systems for the different schemes for
different mesh sizes when k = 10. We can clearly see that our new method (fd9-dc)
also reduces the condition number compared to the original FDM (fd5) or the FDM
proposed by Jo, Shin and Suh (fd9-jss).
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Fig. 5 Averaged relative errors of fd9-jss and fd9-dc for different mesh size h when k = 5 (left)
and k = 10 (right)

Table 1 Condition number
comparison for the linear
systems obtained with the
different schemes for varying
mesh size when k = 10

h fd5 fd9-jss fd9-dc

0.05 1.30E5 5.41E3 5.35E3

0.1 5.57E2 1.70E3 1.36E3

0.2 1.28E16 4.37E2 3.77E2
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Optimized Schwarz Methods for Elliptic
Optimal Control Problems

Bérangère Delourme, Laurence Halpern, and Binh Thanh Nguyen

1 Introduction

Let Ω be a bounded open set of R
2, z ∈ L2(Ω), and ν > 0. We consider the

following elliptic control problem described in [1] (see also [9, Chapter 2])

min
u∈L2(Ω)

∫
Ω

|y(u)− z|2dx + ν

∫
Ω

|u|2dx, (1)

where, for a given function f ∈ L2(Ω), y(u) is the uniqueH 1
0 (Ω) solution to

−Δy = f + u in Ω, y = 0 on ∂Ω. (2)

It is well known that the optimal control u (solution to (1)) is related to the adjoint
state p by u = −p

ν
, and (y, p) ∈ H 1

0 (Ω)
2 is solution of the coupled problem

−Δy = f − p

ν
−Δp = y − z (3)

Introducing the new unknown w = y + i√
ν
p (see [1]), Problem (3) is equivalent to

the complex Helmholtz problem: find w ∈ H 1
0 (Ω) such that

−Δw − i√
ν
w = g in Ω g = f − i√

ν
z. (4)
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In [2], Benamou and Després proposed a Robin’s non-overlapping domain decom-
position algorithm. Let us describe this algorithm (written here also for overlapping
subdomains like in the original Schwarz algorithm). We consider the case where
Ω = R

2 is split into two subdomainsΩ1 =]−∞, L2 [×R andΩ2 =]− L
2 ,+∞[×R.

Here,L is a non-negative parameter that corresponds to the width of the overlapping
zone between Ω1 and Ω2. We denote by nj the outward unit normal vector to Ωj ,
∂nj the normal derivative on the boundary of Ωj . Letting λ0 ∈ H 1/2(∂Ω1) and
� ∈ C, we construct iteratively the sequences (wn1 )n∈N, (wn2 )n∈N as follows: for any
n ∈ N \ {0}, find wn1 ∈ H 1(Ω1) and wn2 ∈ H 1(Ω2) such that

{
−Δwn1 − i√

ν
wn1 = g in Ω1,

∂n1w
n
1 + �wn1 = λn−1 on ∂Ω1,

{
−Δwn2 − i√

ν
wn2 = g in Ω2,

∂n2w
n
2 + �wn2 = ∂n2w

n
1 + �wn1 on ∂Ω2,

(5)

λn = ∂n1w
n
2 + �wn2

∣∣∣
∂Ω1

.

It is easily seen [1, Theorem 1] that the problems definingwn1 andwn2 are well-posed
if � belongs to the angular sector A defined by

A = {z ∈ C such that Im(z) < 0, Im(z)+ Re(z) > 0} . (6)

Moreover, it is proved in [1, Theorem 2] (see also [2]), in the non-overlapping case,
that the algorithm (5) converges, namely the sequence wn1 (resp. wn2 ) tends to w
(solution to (4)) in H 1(Ω1) (resp. w in H 1(Ω2)).

The objective of the present work is to find a parameter � ∈ A that optimizes
the rate of convergence of this algorithm. In the case of strongly elliptic real
equation, this problem has been solved in [6] for Robin and Ventcel transmission
conditions. In the former case, explicit values of the coefficients were given,
whereas in the Ventcel case, only asymptotic formulas in terms of the mesh size
are available. Extension to real Helmholtz equations were given in [7, 8]. Following
these approaches, we consider the errors en1 = wn1 − w and en2 = wn2 − w and we
denote by ên1 and ên2 their Fourier transform with respect to y, with Fourier variable
k. It is easily seen that ên1 and ên2 follow a geometrical progression: more specifically,
there exists two complex constants a1 and a2 such that

ênj = aj δ(�, k)
2n e−ω(k)|x|, δ(�, k) = e−ω(k)L ω(k)− �

ω(k)+ �
, ω(k) =

√
k2 − i√

ν
,

In the previous formulas, the complex number
√
z corresponds to the square root of

z belonging to A. As a result, it suffices to minimize the modulus of δ (the square
root of the convergence factor) in order to accelerate the convergence of the domain
decomposition algorithm (5). As explained in [6, Section 4], we are interested in
optimizing δ over a bounded interval [kmin, kmax] (i.e. k ∈ [kmin, kmax]). In practice,
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the interval depends on the geometry of the domain and the mesh size (kmax = π
h

where h denotes the characteristic length of the mesh). It leads us to investigate the
following homographic best approximation problem (see [6, Section 4.2], [3] for
the name in a time-dependent context): find δ∗ ∈ R such that

δ∗ = inf
�∈C sup

k∈[kmin,kmax]
|δ(ω(k), �)| (7)

2 General Results of Well-Posedness

The existence and uniqueness of an optimal parameter �∗ are direct consequences
of the general results of [3, 4]:

Theorem 1 For L sufficiently small, there exists a unique �∗ ∈ A such that

δ∗ = inf
�∈C sup

k∈[kmin,kmax]
|δ(ω(k), �)| = max

k∈[kmin,kmax] |δ(ω(k), �
∗)|. (8)

Moreover, there exists at least two distinct real numbers (k1, k2) ∈ [kmin, kmax]2

such that

max
k∈[kmin,kmax]

|δ(ω(k), �∗)| = |δ(ω(k1), �
∗)| = |δ(ω(k2), �

∗)|. (9)

Proof (Sketch of the Proof of Theorem 1) By contradiction, one can verify that if
there exists �∗ ∈ C satisfying (8), then �∗ ∈ A (see e.g. [3, Lemma 4.5] for a similar
proof). Then, the existence of �∗ [3, Theorem 2.2 and Theorem 2.8] results from a
compactness argument (k belongs to the compact set [kmin, kmax]). Finally, in the
non-overlapping case (L = 0), the uniqueness is proved in [3, Theorem 2.6]. For
L �= 0 and sufficiently small, the uniqueness proof results from an adaptation of [4,
Theorem 8]. In both cases, the uniqueness is a consequence of convexity properties
and the equi-oscillation property (9) [3, Theorem 2.5 and Theorem 2.11].

3 Characterization of the Optimal Parameter
in the Non-overlapping Case

Theorem 2 The best parameter �∗ defined by (8) is given by

�∗ = √
ωminωmax, δ∗ =

∣∣∣∣
√
ωmin − √

ωmax√
ωmin + √

ωmax

∣∣∣∣ (10)
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where ωmin = ω(kmin) and ωmax = ω(kmax). Moreover, if kmax = π
h
, δ∗ and �∗

admit the following asymptotic expansion

δ∗ = 1 − 2 h1/2 Re(
√
ωmin)√
π

+ o(h1/2), �∗ = h−1/2 (√
π

√
ωmin + o(1)

)
.

(11)

We remark that Formula (10) is the same as in the real positive case (see [6,
Theorem 4.4]). The reminder of this section is dedicated to the proof of Theorem 2.
First, we remark that in the non-overlapping case (and as in the real case), the equi-
oscillation property (9) holds for exactly two points that are nothing but kmin and
kmax (the proof of this result may be done using either a geometrical argument or a
direct investigation of the derivative of |δ(k, �)|2 with respect to k, see [5]):

Lemma 1 Let �∗ be defined by (8). Then,

max
k∈[kmin,kmax]

|δ(ω, �∗)| = |δ(ωmin, �
∗)| = |δ(ωmax, �

∗)|, (12)

and, for any k ∈]kmin, kmax[, |δ(ω(k), �∗)| < |δ(ωmin, �
∗)|.

The previous lemma motivates us to consider the curve of equioscillationΠ defined
by

Π =
{
� = reiθ ∈ A such that |δ(ωmin, �)| = |δ(ωmax, �)|

}
, (13)

so that the optimization problem (8) can then be rewritten as follows: find �∗ ∈ Π

such that

δ∗ = min
�∈Π |δ(ωmin, �)| = min

�∈Π |δ(ωmax, �)|. (14)

Note that, unlike in the real case, the set Π is not reduced to the singleton {p =√
ωminωmax}. Nevertheless,

√
ωminωmax still belongs to Π . To continue the proof,

it is useful to introduce the perpendicular bisector Δ of the segment [ωmin, ωmax],
i.e. Δ = {z = x + iy ∈ C s.t. y = ax + b} where a = −Re(ωmax−ωmin)

Im(ωmax−ωmin)
and b =

|ωmax|2−|ωmin|2
2Im(ωmax−ωmin)

. For any � ∈ C, we also consider the signed distance between � and

Δ, namely the function d(�) = aRe(�)−Im(�)+b√
1+a2

. Using the intercept theorem, it is

easily seen that the best parameter �∗ corresponds to the point of Π for which the
distance between Π and Δ is minimal:

Lemma 2 The function η : Π → R, defined by η(�) = |δ(�, ωmin)| = |δ(�, ωmax)|
is a strictly increasing function of the signed distance d: for any (�1, �2) ∈ Π2 such
that d(�1) < d(�2), η(�1) < η(�2).
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In other words it suffices to study the variations of the distance function d over Π
in order to characterize the best parameter �. By a standard investigation of d we
prove the following lemma:

Lemma 3 The function d reaches its minimum over Π for �∗ = √
ωminωmax.

The proof of Theorem 2 is completed by a standard asymptotic expansion of δ∗ for
kmax large.

4 Asymptotics of the Optimal Parameter in the Overlapping
Case

In the overlapping case (L > 0), we are not able to obtain an explicit characteriza-
tion of the best parameter �∗. Nevertheless, we are able to compute its asymptotic
behaviour for h small when the overlapping parameter L = h and kmax = π

h
,

Theorem 3 Assume that L = h and kmax = π
h
.

– For h sufficiently small, there exists k∗ ∈]kmin, kmax[ such that

max
k∈[kmin,kmax] |δ(ω, �

∗)| = |δ(ωmin, �
∗)| = |δ(ω(k∗), �∗)|, (15)

and, for any k ∈]kmin, k
∗[∪]k∗, kmax], |δ(ω(k), �∗)| < |δ(ωmin, �

∗)|.

– The optimal parameter �∗ and the corresponding convergence factor δ∗ admit
the following asymptotic expansion:

�∗ = h−1/3 ((cx − icy)+ o(1)
)

and δ∗ = 1 − crh
1/3 + o(h1/3), (16)

where, introducing rmin = Re(ωmin) and imin = Im(ωmin),

cx =
⎛
⎝ rmin +

√
r2

min + i2min

2
√

2

⎞
⎠

2/3

, cy = − imin

2
√

2cx
, and cr = 2

√
2cx. (17)

Proof The proof of Theorem 3 is divided into two main parts. We first construct a
formal asymptotic expansion of �∗ that we justify a posteriori. To start with, we
make an ‘ansatz’ on the asymptotic behaviour of the optimal parameter �∗. We
assume that

�∗ ∼ ch−α with α ∈]0, 1[ and c = cx − icy (cx > 0, cy > 0).
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Then, computing explicitly the derivative of |δ(�, k)|2, we prove that, in this
asymptotic regime, the equi-oscillation property (9) holds for exactly two points
k1 = kmin and k2 = k∗, where k∗ admits the following asymptotic:

k∗ = 21/4(cx)
1/4h(−α−1)/4 + o(h(−α−1)/4), and

|δ(ω(k∗), �∗)|2 ∼ 1 − 4(2cx)1/2h
1−α

2 |δ(ωmin, �
∗)|2 ∼ 1 − 4hα

(cxrmin − cyimin)

|c|2

Identifying the previous two expansions leads to

α = 1

3
and

√
2cx(c2

x + c2
y)− (cxrmin − cyimin) = 0. (18)

Thus, in order to minimize the convergence factor (in this asymptotic regime), it
suffices to find the couple (cx, cy) satisfying (18) (right) and such that cx is maximal.
A direct analysis of equation (18) leads to (17).

It remains to justify the obtained formal asymptotic. For h ∈ (0, 1) and ε > 0
sufficiently small, let

Lh =
{
� ∈ C, s. t. h1/3(�x, �y) ∈ [cx − ε , cx + ε] × [−cy − ε,−cy + ε]

}
,

where cx and cy are defined by (17). Then, for h sufficiently small (in order to be
able to define k∗), let Γh = {� ∈ Lh, |δ(ωmin, �)| = |δ(ω(k∗, �)|} . Because Γh is
closed and non empty, there exists �h∗ such that

|δ(ωmin, �
h∗)| = inf

�∈Γh
|δ(ωmin, �)|. (19)

It is not difficult to prove that �h∗ admits the asymptotic expansion (16). The end the
proof of Theorem 3 consists in showing that �h∗ = �∗. This is done by proving the
following lemma:

Lemma 4 �h∗ is a strict local minimum for � �→ ‖R(ω(k), �)‖L∞(kmin,kmax).

Indeed, Corollary 2.16 in [3] guarantees that any strict local minimum of the
function � �→ ‖R(ω(k), �)‖L∞(kmin,kmax) is the global minimum. Consequently
�h∗ = �∗ and the proof is complete. The proof of Lemma (4) is an adaptation of
the proof of [3, Theorem 4.2].

5 Numerical Illustration

LetΩ =]0, π[2, ν = 1 and f = z = 0 (hence g = 0), so that the exact solution is 0.
The discretization is done using a standard second order finite difference scheme.
We choose a similar discretization in the x and y directions (hx = hy = h) and
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we set kmin = 1 and kmax = π
h

. In the non-overlapping case, we split the domain
Ω into two domains Ω1 and Ω2 of equal size: Ω1 =]0, π/2[×]0, π[ and Ω2 =
]π/2, π[×]0, π[. In the overlapping case, we take Ω1 =]0, π/2[×]0, π[ and Ω2 =
]π/2−h, π[×]0, π[ (i.e.L = h). The domain decomposition algorithm is initialized
with a uniform (over ]0, 1[) random data λ0

1. In the next experiments, we evaluate
the numerical (or observed) convergence rate δnum(�,N) defined by

δnum(�,N) =
(
eN

eN−1

)1/2

, en =
√

‖unh,1‖2 + ‖unh,2‖2 (20)

On Fig. 1, we evaluate δnum(�,N) for different values of � taking N = 60 and
h = π/80. The red cross corresponds to theoretical optimal parameter �∗: in
the non-overlapping case, �∗ = √

ωminωmax while in the overlapping case, �∗
is numerically computed. Although the theoretical analysis is done for a two
dimensional unbounded domain, we remark that the theoretical optimal parameter
�∗ and the observed optimal parameter are relatively closed. Moreover, for L =
0, the convergence factor slowly varies with respect to the imaginary part of �
(cf. [5]). Then, Fig. 2a presents the evolution of the error en with respect to the
number n of iterations of the domain decomposition algorithm for two different
values of �: � = �∗ and � = �∗num, where �∗num denotes the numerical optimized
coefficient obtained by optimizing δnum(�,N). Finally, Fig. 2b shows the evolution
of 1 − δnum(�,N) with respect to the discretization parameter h. The introduction
of the overlap perceptibly improves the observed convergence rate (although the
asymptotic regime is not entirely reached in this case).
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Fig. 1 Contour plot of δnum(�,N) for h = π/80, N = 60. (a) L = 0. (b) L = h
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Fig. 2 Error and convergence factor in the overlapping and non-overlapping cases. (a) Error w.r.t
the num. of iter. (b) δnum(�,N) w.r.t h
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Auxiliary Space Preconditioners for a DG
Discretization of H(curl;�)-Elliptic
Problem on Hexahedral Meshes

Blanca Ayuso de Dios, Ralf Hiptmair, and Cecilia Pagliantini

1 Introduction

Let Ω ⊂ R
3 be a simply connected bounded domain with Lipschitz boundary and

let f ∈ L2(Ω)3. We consider the following H(curl;Ω)-elliptic problem

{∇ × (ν∇ × u)+ βu = f in Ω,

u × n = 0 on ∂Ω,
(1)

where ν = ν(x) ≥ ν0 > 0 and β = β(x) ≥ β0 > 0 are assumed to be
in L∞(Ω) but possibly discontinuous, and represent properties of the medium or
material: ν is typically the inverse of the magnetic permeability and β is proportional
to the ratio of electrical conductivity and the time step. Problem (1) arises in
the modelling of magnetic diffusion and also after implicit time discretization of
resistive magneto-hydrodynamics (MHD). In connection with the MHD application
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the use of hexahedral meshes is typically preferred over to family partitions made
of simplices [9].

Finite element discretizations using edge elements of the first family [6] are
probably the most satisfactory methods to approximate (1) from a theoretical point
of view. Only recently, a new compatible element (corresponding to an edge element
of the second family) has been introduced in [1]. Discontinuous Galerkin (DG)
methods offer an attractive alternative to conforming FE edge elements [5] and allow
for great flexibility in incorporating the discontinuities of the medium. For both
methods, the condition number of the resulting linear systems degrades with mesh
refinement and the size of the variations of the coefficients. Hence, designing a pre-
conditioner able to cope with the combined effect of the mesh width and of highly
varying coefficients turns out to be essential. For constant coefficients, efficient
solvers for FE edge discretizations have been successfully developed using domain
decomposition (DD) and the Auxiliary Space (AS) method [4]. For discontinuous
coefficients, a non-overlapping BDDC algorithm has been proposed and analyzed in
[3], improving previous results in the DD literature, see e.g. [10]. Recently, in [2],
we have developed a family of AS preconditioners for DG discretizations of (1),
providing the analysis for simplicial meshes and in the case of cubical meshes
when edge elements of the first kind are used as local spaces. In this paper, we
report on the construction of the AS preconditioners focusing on the case of cubical
meshes, discussing also their performance in the case of jumping coefficients.
The proposed preconditioners rely on H(curl;Ω)-conforming auxiliary spaces (as
auxiliary space) and hence is presumed the availability of a (direct) solver for
standard H(curl;Ω)-conforming Galerkin discretizations.

2 SIPG Discretization on Hexahedral Meshes

Let Th be a family of shape-regular partitions ofΩ into cubes T . For each T ∈ Th,
let hT = diam(T ) and set h = maxT ∈Th hT . We assume that Th is conforming
and resolves the piece-wise constant coefficients β and ν (i.e., νT , βT ∈ P

0(T )

for all T ∈ Th).We denote by Fh the set of all faces of the partition; F o
h and

F ∂
h refer respectively, to the collection of all interior and boundary faces. Similarly,

Eh = E oh ∪ E ∂h denote the set of all edges of the skeleton of Th; with E oh and E ∂h
referring to interior and boundary edges, respectively. We define the sets:

T (e) := {T ∈ Th : e ⊂ ∂T } ; E (T ) := {e ∈ Eh : e ⊂ ∂T } ;
F (T ) := {f ∈ Fh : f ⊂ ∂T } ; F (e) := {f ∈ Fh : e ⊂ ∂f } .

We introduce the (family of) DG finite element spaces

VDG
h = {v ∈ L2(Ω)3 : v ∈ M (T ), T ∈ Th} , M (T ) ⊆ Qk(T )

3
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where the local space M (T ) of vector-valued polynomials can be of three types:

1. Nédélec elements of first family on cubical meshes [6]

M (T ) = N I (T ) := Qk−1,k,k(T )× Qk,k−1,k(T )× Qk,k,k−1(T ), k ≥ 1,

where Q�,m,n(T ) is the space of polynomials of degree at most �,m, n in each
vector variable.

2. Compatible elements (of second kind) [1]:

M (T ) = Sk(T ) := (Pk(T ))
3+ span {[ yz(w2(x, z)− w3(x, y)) , zx(w3(x, y) − w1(y, z)),

xy(w1(y, z)− w2(x, z)) ] + ∇s(x, y, z)} ,

where each wi ∈ Pk and s ∈ Pk(T ) has superlinear degree (ordinary degree
ignoring variables which appear linearly) at most k + 1, with k ≥ 1.

3. Full polynomials: We set the local space M (T ) = (Qk(T ))
3, and k ≥ 1.

For each choice of the resulting VDG
h space, the corresponding H0(curl,Ω)-

conforming finite element spaces are defined as:

Vc
h := VDG

h ∩ H0(curl,Ω) = {v ∈ H0(curl,Ω) : v ∈ M (T ), T ∈ Th}. (2)

For a piecewise smooth vector-valued function v, we denote by v± the traces of v

taken from within T ±. The tangential jump, indicated by [[ · ]]τ , is defined by

[[ v ]]τ := n+ × v+ + n− × v− on f ∈ F o
h , [[ v ]]τ := n × v on f ∈ F ∂

h

where n+ and n− denote the unit normal vectors on f = ∂T + ∩ ∂T − pointing
outwards from T + and T −, respectively. We will also use the notation

(θu, v)Th =
∑
T ∈Th

∫
T

θT uvdx, 〈u, v〉Fh
=

∑
f∈Fh

∫
f

uvds ∀ u, v ∈ VDG
h

where θ ∈ P
0(Th) will be either θ = ν or θ = β.

The SIPG-DG Method We consider a symmetric Interior Penalty method (SIPG)
introduced recently in [2] for approximating (1) robustly (w.r.t the discontinuous
coefficients). The method reads:

Find uh ∈ VDG
h such that aDG(uh, v) = (f , v)Th ∀ v ∈ VDGh , (3)
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with aDG(·, ·) defined by

aDG(u, v) := (ν∇ × u,∇ × v)Th + (βu, v)Th − 〈{{ν∇ × u}}γ , [[ v ]]τ 〉Fh

− 〈[[ u ]]τ , {{ν∇ × v}}γ 〉Fh
+

∑
T ∈Th

αT (ν)
∑

e∈E (T )

∑
f∈F (e)

(sf [[ u ]]τ , [[ v ]]τ )0,f .

(4)

In (4), the weighted average {{·}}γ is defined as the plain trace for a boundary face,
whereas for ∂T + ∩ ∂T − = f ∈ F o

h , is given by

{{u}}γ := γ+
f u+ + γ−

f u− with γ±
f = ν∓

ν+ + ν− , ν± := ν|T± .

The penalization is defined by sf := ch−1
f on all f ∈ Fh with some c > 0 and the

mesh function hf = min {hT +, hT −} on f ∈ F o
h and hf = hT on f = ∂T ∩ ∂Ω .

The coefficient function (αT (ν))T ∈Th ∈ P0(Th) is defined by

αT (ν) := maxf∈F (T ) {{ν}}∗,f with {{ν}}∗,f :=
⎧⎨
⎩

max
T∈T (e)
e⊂∂f

νT f ∈ F o
h ,

νT f ∈ F ∂
h .

Notice that αT (ν) picks the maximum conductivity coefficient over a patch of
elements surrounding T . In Fig. 1 a 2D sketch of such patch is given.

We stress that the weighted average {{·}}γ together with {{·}}∗,f and the definition
of αT (ν) ensure robustness (with respect to the coefficients) of both the approxi-
mation (3) in the energy norm (see [2, Proposition 2.1], and [9, Proposition 5.1.1])
and the preconditioners, see Theorem 1 and [2, 9] for details in the analysis. Observe
that when the variational formulation (3) is restricted to Vc

h in (2), the corresponding
H0(curl,Ω)-conforming discretization of (1) is obtained. In fact,

aW (u, v) := (ν∇ × u,∇ × v)Ω + (βu, v)Ω = aDG(u, v) ∀ u, v ∈ Vc
h. (5)

We denote by A : VDGh −→ (VDG
h )′ the discrete operator (A u,w) = aDG(u,w)

and by A the matrix representation of A with respect to a localized “nodal” basis

Fig. 1 2D sketch of the patch
involved in definition of
αT (ν)

T

e
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of VDG
h (using any of the choices for M (T )). It can be verified that the spectral

condition number κ(A) is proportional to

h−2 maxT αT (ν)

minT νT
+ maxT βT

minT βT
.

3 Auxiliary Space Preconditioning

The Auxiliary Space Method (ASM) was introduced in [8, 11] as an expansion of
the Fictitious Space Method [7] providing a neat methodology for developing and
analysing preconditioners. To describe the preconditioners we propose, based on the
AS methodology, we first review the basic ingredients behind the Fictitious Space
Method:

1. the fictitious space: a real finite dimensional Hilbert space V , endowed with an
inner product ā(·, ·), induced operator A : V → V

′
and norm ‖·‖A .

2. A continuous, linear and surjective transfer operatorΠ : V → VDG
h .

By virtue of [7], an optimal preconditioner for A would result in an optimal
preconditioner for A . The distinguishing feature of ASM is the particular choice
of V as a product space, including the original space as one of the components.
Here, we set V = VDG

h × W , endowed with the inner product

a(v, v) = s(v0, v0)+ aW (w,w), ∀ v = (v0,w), v0 ∈ VDG
h , w ∈ W , (6)

where W is the (truly) so-called auxiliary space and aW (·, ·) is the auxiliary bilinear
form. We will always take as W an H0(curl,Ω)-conforming space Vc

h. In (6), s(·, ·)
is the bilinear form associated with a relaxation operator S on VDG

h . Denoting
by AW the operator associated with aW (·, ·), the auxiliary space preconditioner

operator is B = S −1 + ΠW ◦ A −1
W

◦ Π∗
W

where the linear transfer operator

ΠW : W → VDG
h is the standard inclusion and its adjoint Π∗

W
: VDG

h → W is

defined by aW (Π∗
W

v,w) = aDG(v,ΠW w), v ∈ VDG
h , w ∈ W . If S ∈ R

N×N

with N := dimVDG
h and AW ∈ R

NW×NW , NW := dimW , then the preconditioner
in algebraic form reads

B = S
−1 + PA

−1
W P

T, (7)

where P ∈ R
N×NW is the matrix representation of the transfer operatorΠW .
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We now specify the precise components for the two preconditioners we
propose:

1. Natural Preconditioner: We set W = Vc
h = VDG

h ∩H0(curl,Ω) for any choice
of the local space M (T ) and aW (·, ·) is as in (5). Hence, AW : Vc

h → ( Vc
h)

′ is
self-adjoint and positive definite. As relaxation operator S it is sufficient to use
a simple Jacobi or block Jacobi smoother.

2. Coarser or Economical Preconditioner: When the local space is either
M (T ) = Sk(T ) or M (T ) = (Qk(T ))

3 in the construction of the VDG
h -space,

we consider a second possibility for the AS preconditioner. We take W as

W := W c
h = {w ∈ H0(curl,Ω) : w|T ∈ N I (T ), T ∈ Th} ⊂ Vc

h ⊂ VDG
h .

As to the relaxation operator, we demonstrate numerically that a non-overlapping
Schwarz smoother is not able to resolve the components in the kernel of curl(W )

and as a consequence an overlapping smoother is necessary. We will show numer-
ically that in the case M (T ) = (Qk(T ))

3, the resulting AS preconditioner is not
effective, independently of the choice of the smoother and the amount of domain
overlaps involved in its construction. We suspect that this is connected to the fact
that the DG method using M (T ) = (Qk(T ))

3 is not spectrally correct, while W c
h is.

Next result provides the convergence of the Natural Preconditioner.

Theorem 1 Let B be the auxiliary space preconditioner in (7), with W = Vch and
simple Jacobi smoother on VDGh . Let Δh and Δ′

h denote the set of elements in the
curl-dominated regime and reaction-dominated region, respectively:

Δh := {T ∈ Th : h2
T βT < αT (ν)} , Δ′

h := {T ∈ Th : h2
T βT ≥ αT (ν)} .

Then, the spectral condition number of the resulting preconditioned system satisfies

κ(BA) � max{1,Θ(ν, β)} ,

with Θ(ν, β) := min

{
max
T ∈Th

h2
T βT

νT
, max
T ,T ′∈Th
∂T∩∂T ′ �=∅

βT

βT ′
, max
T ∈Δh,T ′∈Δ′

h

∂T∩∂T ′ �=∅

αT (ν)

αT ′(ν)

}
.

The proof can be found in [2, 9] as well as the analysis of the Coarser AS
Preconditioner on simplicial meshes. The analysis of a Coarser AS Preconditioner
on hexahedral meshes is still an open problem.

4 Numerical Results

In the following numerical simulations we will restrict to the two dimensional
problem (1) on a square. We set the constant entering in the penalty parameter sf
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in (4) to c = 10. The tolerance for the CG and PCG is set to 10−7. In the tables
we always report the number of iterations required for convergence. We refer to the
AS preconditioners by VDG

h − W , or more precisely by the local spaces M (T ) in
the construction of each VDG

h and W . Since the experiments are in 2D we use the
rotated Nédélec elements of the first family N I (T ) = RT 0; the rotated version
of the space S1 := RT 0 +{curl(x2y), curl(xy2), curl(x2), curl(y2)}, and the 2D
full polynomials space Q1(T )

2. For the Natural AS Preconditioner a simple Jacobi
smoother is always used. For the Coarser or Economical AS Preconditioner we will
specify the smoother used at each time.

Test Cases with Continuous Coefficients We consider first the constant coeffi-
cient case β = ν = 1. As shown in Table 1, the natural AS preconditioner is indeed
optimal in all the cases, as predicted by Theorem 1. In contrast, the coarser AS
preconditioner performs optimally for S1 −RT 0 only if an overlapping smoother
is included. However, the coarser AS preconditioner Q1 − RT 0 is not efficacious
regardless the smoother involved in the construction.

To get some insight on the failure of the coarser AS preconditioner for Q1, we
explore the spectral approximation of the considered DG methods to (1) on Ω =
[0, π]2 with ν = 1 and β = 0. The exact eigenvalues are given by n2 + m2 for
n and m positive integers. In Fig. 2 is given the lower part of the spectrum using a
DG discretization based on the three possible choices of local spaces M (T ). As it
can be observed in Fig. 2, the DG discretization based on the full polynomial space
(Q1)

2, is not spectrally correct. Therefore, a preconditioner built on an auxiliary

Table 1 Number of iterations for test case with constant coefficients

2Th 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

RT 0 unpreconditioned 128 204 376 753 1504

(Q1)
2 unpreconditioned 410 815 1454 2796 4554

S1 unpreconditioned 543 1083 2031 4056 7316

RT 0-RT 0 Jacobi 9 9 9 9 9

Q1-Q1 Jacobi 22 21 20 19 19

Q1-RT 0: Jacobi
∣∣ overlapping 259

∣∣ 61 471
∣∣ 113 844

∣∣ 202 1622
∣∣ 337 2936

∣∣ 618

S1-RT 0: Jacobi
∣∣ overlapping 88

∣∣ 18 72
∣∣ 19 49

∣∣ 20 34
∣∣ 20 36

∣∣ 19
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Fig. 2 Lower part of the spectrum for different DG discretizations: rotated Nédélec elements of
the first family RT 0 (left), rotated S1 (center), and the full polynomial space (Q1)

2 (right)
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space where the H0(curl,Ω)-conforming discretization is spectrally correct (e.g.
Nédélec elements of the first family) is not effective.

Test Case with Discontinuous Coefficients We consider now the more chal-
lenging case of β and ν both discontinuous following a checkerboard distribution
according to the partition Ω1 := [0, 0.5]2 ∪ [0.5, 1]2 ⊂ Ω = [0, 1]2. We define

ν(x) =
{

102 if x ∈ Ω1 ,

1 otherwise ,
and β(x) =

{
10−3 if x ∈ Ω1 ,

10 otherwise .

In Table 2 we report the iteration counts of the different preconditioners and in
Fig. 3 are given graphically the estimated condition numbers of the preconditioned
systems. As it can be observed in Fig. 3 and Table 2, the natural AS preconditioner
performs optimally in the presence of discontinuous coefficients, as predicted by

Table 2 Number of iterations for test case with discontinuous coefficients

2Th 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

RT 0-RT 0 Jacobi 11 10 10 10 10

Q1-Q1 Jacobi 23 22 21 21 20

S1-RT 0: overlapping 24 24 24 25 24

Q1-RT 0: overlapping 69 129 248 425 −
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Fig. 3 Test case with discontinuous coefficients. Condition number vs. number of elements:
S1 DG discretization with ASM based on rotated RT 0 elements with overlapping additive
Schwarz smoother (black); DG discretization with rotated RT 0 discontinuous elements and
rotated RT 0 as auxiliary space with pointwise Jacobi smoother (blue); discontinuous bilinear
Lagrangian elements with H(curl,Ω)-conforming full polynomial auxiliary space and Jacobi
smoother (orange)
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Theorem 1. The coarser AS preconditionerS1-RT 0 is also efficacious in this case,
when using an overlapping relaxation. As regards the (Q1)

2 DG discretization, the
coarser AS preconditioner is totally ineffective.
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Is Minimising the Convergence Rate
a Good Choice for Efficient Optimized
Schwarz Preconditioning
in Heterogeneous Coupling?
The Stokes-Darcy Case

Marco Discacciati and Luca Gerardo-Giorda

1 Problem Settings

The Stokes-Darcy problem, a classical model for the filtration of an incompressible
fluid in a porous media [3], is a good example of a multi-physics problem where two
different boundary value problems are coupled into a global heterogeneous one.

The problem is defined on a bounded domain Ω ⊂ R
D (D = 2, 3) formed by

two non overlapping subregions: the fluid domain Ωf and the porous medium Ωp

separated by an interface Γ . If the fluid is incompressible with constant viscosity
and density, and low Reynolds’ number, it can be described by the Stokes equations
in Ωf and by Darcy’s law in Ωp. The physics of the problem naturally drives the
decomposition of the domain and, at the same time, imposes interface conditions
across Γ to describe filtration phenomena. The coupled problem reads as follows:
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Find the fluid velocity uf and pressure pf , and the pressure pp such that

−∇ · σ (uf , pf ) = ff in Ωf Stokes equations
∇ · uf = 0 inΩf

−∇ · (ηp∇pp) = gp in Ωp Darcy’s equation

−(ηp∇pp) · n = uf · n on Γ continuity of the normal velocity
−n · σ (uf , pf ) · n = pp on Γ continuity of the normal stresses

−τ · σ (uf , pf ) · n = ξ uf · τ on Γ BJS condition on the tangential stresses
(1)

where σ (uf , pf ) = μf (∇uf +(∇uf )T −pf I is the Cauchy stress tensor, while ff
and gp are given external forces. The Beaver-Joseph-Saffman (BJS, [1]) condition
does not play any role in the coupling of the local problems. Thus, coupling on Γ
can be obtained by linear combination of the first two conditions:

−n · σ (uf , pf ) · n − αf uf · n = pp + αf (ηp ∇pp) · n

pp − αp (ηp ∇pp) · n = −n · σ (uf , pf ) · n + αp uf · n
(2)

Using the interface conditions (2) a Robin-Robin method can be formulated. Such
method requires solving iteratively the Stokes problem in Ωf with boundary
condition (2)1 on Γ and Darcy’s equation in Ωp with boundary condition (2)2 on
Γ . More details can be found in [2].

2 Optimization of the Robin Parameters αp and αf

Classical approaches in the Optimized Schwarz literature derive, through Fourier
analysis, the convergence rate ρ(αf , αp, k) of the iterative algorithm as a function
of the parameters αf , αp and of the frequency k, and they aim at optimizing αf and
αp by minimization of ρ(αf , αp, k) over all the relevant frequencies of the problem.
This amounts to solve the min-max problem

min
αf ,αp∈R+ max

k∈[kmin,kmax ]
ρ(αf , αp, k), (3)

where kmin and kmax are the minimal frequency relevant to the problem and the
maximal frequency supported by the numerical grid (of the order of π/h).

However, when the OSM is used as a preconditioner for a Krylov method
to solve the interface problem, such a choice does not necessarily guarantee the
fastest convergence. Minimising the effective convergence rate (ρeff (αf , αp) =
maxk ρ(αf , αp, k)) does not make the convergence rate automatically small for all
frequencies, and the Krylov type solver can then suffer from slow convergence. Such
an issue can be particularly relevant in the presence of heterogeneous coupling. In
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the rest of the section, we first introduce the exact interface conditions, then present
three different approaches to optimize the interface parameters. The first one is
based on a classical equioscillation principle, the second one exploits the peculiar
characteristics of the Stokes/Darcy problem, while the third one aims to globally
minimize the convergence rate for all frequencies.

2.1 Convergence Rate and Exact Interface Conditions

The convergence rate of the Robin-Robin algorithm does not depend on the iteration
and, for positive parameters αp, αf > 0, is given by [2]

ρ(αf , αp, k) =
∣∣∣∣2μf k − αp

2μf k + αf

∣∣∣∣ ·
∣∣∣∣1 − αf ηp k

1 + αp ηp k

∣∣∣∣ . (4)

(As shown in [2], by symmetry we can restrict to the case k > 0.)
The optimal parameters force the reduction factor ρ(αf , αp, k) to be identically

equal to zero for all k, so that convergence is attained in a number of iterations equal
to the number of subdomains. They can be easily derived from (4) as

αexactp (k) = 2μf k αexactf (k) = 1

ηp k
. (5)

Their direct use is unfortunately not viable: both depend on the frequency k, and
their back transforms in the physical space are either introducing an imaginary
coefficient which multiplies a first order tangential derivative (αexactp (k)) or result
in a nonlocal operator (αexactf (k)). The use of approximations based on low-order
Taylor expansions of the optimal values (5) (around k = kmin for αp and k = kmax
for αf ) would not help either, as they would suffer from the same drawbacks (see
[2]).

2.2 The Equioscillation Approach

The convergence rate (4) is continuous, has two positive roots, k1 = (αf ηp)
−1 and

k2 = αp/(2μf ), and a maximum between k1 and k2, given by (setting δ = 2μf ηp)

k∗ =
2δ(αp − αf )+

√
4δ2(αp − αf )2 + 4δ(2μs + αf αpηp)2

2δ(2μs + αf αpηp)
. (6)
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The natural approach to solve the min-max problem (3) would resort to an
equioscillation principle, where one seeks for αeqf and αeqp such that

ρ(α
eq

f , α
eq
p , kmin) = ρ(α

eq

f , α
eq
p , k∗) = ρ(α

eq

f , α
eq
p , kmax). (7)

This approach ensures that all other frequencies exhibit a smaller convergence rate.

Proposition 1 The solution to problem (7) is given by the two pairs of optimal
coefficients (αeqf,i, α

eq
p,i ), i = 1, 2:

α
eq
f,i = 1

2

(
Xi +

√
X2
i + 4Yi

)
, α

eq
p,i = 1

2

(
−Xi +

√
X2
i + 4Yi

)
, i = 1, 2,

(8)

with Yi ∈ R
+ and Xi ∈ R defined as follows:

Yi = 2μf
ηp

⎛
⎝b
a

− 1 + (−1)i+1

√(
b

a
− 1

)2

− 1

⎞
⎠ i = 1, 2, (9)

Xi = 1 − δkminkmax

ηp(kmin + kmax)

(
ηp

2μf
Yi + 1

)
i = 1, 2, (10)

where a > 0 and b > 0 are the positive quantities

a = 1 + δk2
max

(kmin + kmax)2

(
kmin(k∗ + kmax)+ k∗(kmax − k∗)

+δkminkmax(k∗(kmin + k∗)+ kmax(k∗ − kmin))
)
,

(11)

b = (1 + δk2
max)(1 + δk2∗), (12)

and k∗ > 0 becomes

k∗ = δkminkmax − 1 +
√
(δkminkmax − 1)2 + δ(kmin + kmax)2

δ(kmin + kmax)
. (13)

Proof We consider the first condition of equioscillation in (7): ρ(αf , αp, kmin) =
ρ(αf , αp, kmax). With the help of some algebra, we obtain

αp − αf = (δkminkmax − 1)(ηpαf αp + 2μf )(δ(kmin + kmax))
−1 . (14)

Substituting (14) into (6) we obtain the expression (13) for k∗ which is now
independent of αf and αp. It can be easily verified that the obtained value of k∗
satisfies kmin < k∗ < kmax so that we can proceed imposing the second condition
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of equioscillation in (7): ρ(αf , αp, kmax) = ρ(αf , αp, k∗), that is:

−δ(k2∗ + k2
max)(αf − αp)

2 + 2ηpk∗kmax(αf αp)2

+ηp(k∗ + kmax)(1 − δk∗kmax)(αf − αp)αf αp

+2μf (k∗ + kmax)(1 − δk∗kmax)(αf − αp)

−2(1 + δ2k2∗k2
max + δ(kmax − k∗)2)αf αp + 8μ2

f k∗kmax = 0.

(15)

We introduce now the change of variables: X = αf − αp and Y = αf αp . We
substitute the expression of X from (14) into (15) to get

Y 2
(
a
ηp

2μf

)
+ 2Y (a − b)+ a

2μf
ηp

= 0 (16)

where a and b are as in (11) and (12), respectively. Since kmin < k∗ < kmax , a > 0
and we can rewrite (16) as

Y 2 ηp

2μf
− 2Y

(
b

a
− 1

)
+ 2μf

ηp
= 0 (17)

whose roots are (9). By a simple algebraic manipulation, it can be verified that
b − 2a > 0 which also implies that b − a > 0, so that the discriminant of (17) is
positive and both its roots are positive as well: Yi > 0, i = 1, 2. Finally, (10) follows
from (14) and (8) is obtained reversing the change of variables. *,

2.3 Exploiting the Problem Characteristics

From (5), we observe that the product of the optimal values αexactf (k) and αexactp (k)

is constant and equals 2μf /ηp. We exploit such peculiarity of the problem (not
occurring in homogeneous decomposition, see e.g. [5]), and restrict our search for
optimized parameters to the curve

αf αp = 2μf /ηp. (18)

Notice that such curve is the subset of the (αf , αp) upper-quadrant where the zeros
k1 and k2 of the convergence rate ρ coincide.

Proposition 2 ([2]) The solution of the min-max problem

min
αf αp= 2μf

ηp

max
k∈[kmin,kmax ]

ρ(αf , αp, k)
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is given by the pair

α∗
f = 1 − 2μf ηp kminkmax

ηp(kmin + kmax)
+

√(
1 − 2μf ηp kminkmax
ηp(kmin + kmax)

)2

+ 2μf
ηp

α∗
p = −1 − 2μf ηp kminkmax

ηp(kmin + kmax)
+

√(
1 − 2μf ηp kminkmax
ηp(kmin + kmax)

)2

+ 2μf
ηp

(19)

Moreover, ρ(α∗
f , α

∗
p, k) < 1 for all k ∈ [kmin, kmax].

2.4 Minimisation of the Mean Convergence Rate

The reduction factor along (18) is given by

ρ(αf , k) = 2μf
ηp

(
ηpαf k − 1

2μf k + αf

)2

. (20)

To further exploit the characteristics of the problem, we consider the set

Af = {αf > 0 : ρ(αf , k) ≤ 1 ∀k ∈ [kmin, kmax]}.

Notice that the convergence of the Robin-Robin method in the iterative form would
be ensured only if the inequality in the definition of Af is strict. From [2] we know
that the convergence rate can equal 1 in at most one frequency, either in kmin or in
kmax . When using the OSM as a preconditioner for a Krylov method, the latter can
handle isolated problems in the spectrum (see, e.g., [4, 6, 7]).

In order to improve the overall convergence for a Krylov method, we minimize,
on the set Af , the expected value of ρ(αf , k) in the interval [kmin, kmax]:

E(αf ) := E[ρ(αf , k)] = 1

kmax − kmin

∫ kmax

kmin

ρ(αf , k) dk.

Owing to (20), E(αf ) can be explicitly computed: it is positive in αf = 0, and
has a minimum in the point α̂f after which it is always increasing (see [2]). As a
consequence, the minimum α

opt

f of E(αf ) is attained in α̂f if the latter belongs to
Af , or in one extremum of Af otherwise, namely:

α
opt

f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
αf ∈Af

αf if α̂f < min
αf ∈Af

αf

α̂f if α̂f ∈ Af

max
αf ∈Af

αf if α̂f > max
αf ∈Af

αf .

(21)
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3 Numerical Results

We compare here the three approaches (8), (19) and (21) considering a test with
analytic solution: uf = (

√
μf ηp, αBJ x), pf = 2μf (x + y − 1)+ (3ηp)−1, pp =

(−αBJ x(y − 1) + y3/3 − y2 + y)/ηp + 2μf x. We set Ωf = (0, 1) × (1, 2),
Ωp = (0, 1) × (0, 1) and interface Γ = (0, 1) × {1}. The computational grids
are uniform, structured, made of triangles with h = 2−(s+2), s ≥ 0; P2-P1 finite
elements are used for Stokes and P2 elements for Darcy’s law; ηp is constant, αBJ =
1, kmin = π , kmax = π/h. The interface system associated to the OSM [2] is solved
by GMRES with tolerance 1e−9. In Table 1 we report the parameters obtained
for various coefficients μf and ηp. Figure 1 shows the convergence rates versus
k for the three possible choices of αf and αp and two pairs of values (μf , ηp).
The number of iterations for αf and αp at fixed h is computed for two pairs of
values (μf , ηp) and is shown in Fig. 2. The parameters devised in (8) feature both
the smallest convergence rate and the worst preconditioning performance in terms
of iteration counts. Notice also that αoptf in (21), minimizing the mean convergence
rate, always ensures the best performance in terms of iteration counts. Figure 3

Table 1 Parameters obtained in (8), (19) and (21) for different values of μf , ηp and h = 2−5

μf ηp α
eq

f α
eq
p α∗

f α∗
p α

opt

f α
opt
p

1 1 0.27 36.93 0.16 12.33 0.036 56.04

1 1e−2 23.00 68.59 9.91 20.17 5.44 36.75

1 1e−4 852.50 157.10 258.19 77.46 217.34 92.01

1e−1 1 0.26 4.19 0.15 1.35 0.03 5.48

1e−1 1e−2 15.71 12.01 4.84 4.13 3.37 5.93

1e−1 1e−4 613.00 17.02 201.61 9.92 195.90 10.21

Fig. 1 Convergence rates as a function of k for the parameters (8) (solid line), (19) (dashed line),
and (21) (dotted line). Left: μf = 1, ηp = 1e−2. Right: μf = 1e−1, ηp = 1e−2. h = 2−5
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Fig. 2 Number of iterations for h = 2−5 and parameters αf and αp as in (8) (squares), (19)
(circle) and (21) (diamond). Left: μf = 1, ηp = 1e−2; right: μf = 1e−1, ηp = 1e−2

Fig. 3 Number of iterations versus h. Solid lines refer to (8), dashed lines to (19) and dotted
lines (21). Squares refer to ηp = 1, circles ηp = 1e−2, diamonds ηp = 1e−4. Left: μf = 1;
right: μf = 1e−1. All values obtained for ηp = 1 and μf = 1 coincide (left plot), while for
ηp = 1 and μf = 1e−1 they coincide only when computed using (8) and (19) (right plot)

displays the number of iterations versus h for different combinations of μf and ηp :
α
opt

f consistently exhibits the best convergence properties, in particular when the
ratio μf /ηp increases.

4 Conclusions

Using the Stokes/Darcy coupling as a testbed for heterogeneous problems, we show
that minimizing the convergence rate of the corresponding iterative algorithm leads
to poor convergence when an Optimized Schwarz Method is used as preconditioner
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for a Krylov method applied to the interface equation. On the other hand, taking
advantage of the problem characteristics and minimizing the mean of the conver-
gence rate provides effective preconditioning.

Acknowledgements The second author was partly supported by the Basque government through
the BERC 2014–2017, the Spanish Ministry of Economics and Competitiveness MINECO
through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and the Plan Estatal
de Investigación. Desarollo e Innovación Orientada a los Retos de la Sociedad under Grant
BELEMET (MTM2015-69992-R).

References

1. G. Beavers, D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30,
197–207 (1967)

2. M. Discacciati, L. Gerardo-Giorda, Optimized Schwarz methods for the Stokes-Darcy coupling.
IMA J. Numer. Anal. (2018, to appear). https://doi.org/10.1093/imanum/drx054

3. M. Discacciati, A. Quarteroni, Navier-Stokes/Darcy coupling: modeling, analysis, and numeri-
cal approximation. Rev. Mat. Complut. 22, 315–426 (2009)

4. V. Dolean, M.J. Gander, L. Gerardo-Giorda, Optimized Schwarz methods for Maxwell’s
equations. SIAM J. Sci. Comput. 31, 2193–2213 (2009)

5. M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
6. M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the

Helmholtz equation. SIAM J. Sci. Comput. 21, 38–60 (2002)
7. L. Gerardo-Giorda, M. Perego, Optimized Schwarz methods for the Bidomain system in

electrocardiology. M2AN 75, 583–608 (2013)

https://doi.org/10.1093/imanum/drx054


Preconditioned Space-Time Boundary
Element Methods for the
One-Dimensional Heat Equation

Stefan Dohr and Olaf Steinbach

1 Introduction

Space-time discretization methods, see, e.g., [8], became very popular in recent
years, due to their ability to drive adaptivity in space and time simultaneously, and
to use parallel iterative solution strategies for time-dependent problems. But the
solution of the global linear system requires the use of some efficient preconditioner.

In this note we describe a space-time boundary element discretization of the heat
equation and an efficient and robust preconditioning strategy which is based on the
use of boundary integral operators of opposite orders, but which requires a suitable
stability condition for the boundary element spaces used for the discretization. We
demonstrate the method for the simple spatially one-dimensional case. However, the
presented results, particularly the stability analysis of the boundary element spaces,
can be used to extend the method to the two- and three-dimensional problem [2].

Let Ω = (a, b) ⊂ R, Γ := ∂Ω = {a, b} and T > 0. As a model problem we
consider the Dirichlet boundary value problem for the heat equation,

α∂tu−!xu = 0 in Q := Ω × (0, T ), u = g on Σ := Γ × (0, T ), u = u0 in Ω
(1)

with the heat capacity constant α > 0, the given initial datum u0, and the boundary
datum g. The solution of (1) can be expressed by using the representation formula
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for the heat equation [1], i.e. for (x, t) ∈ Q we have

u(x, t) =
∫
Ω

U&(x − y, t)u0(y)dy + 1

α

∫
Σ

U&(x − y, t − s)
∂

∂ny
u(y, s)dsyds

− 1

α

∫
Σ

∂

∂ny
U&(x − y, t − s)g(y, s)dsyds,

(2)

where U& denotes the fundamental solution of the heat equation given by

U&(x − y, t − s) =

⎧⎪⎨
⎪⎩

(
α

4π(t − s)

)1/2

exp

(−α|x − y|2
4(t − s)

)
, s < t,

0 , else.

Hence it suffices to determine the yet unknown Cauchy datum ∂nu|Σ to compute the
solution of (1). It is well known [5] that for u0 ∈ L2(Ω) and g ∈ H 1/2,1/4(Σ) the
problem (1) has a unique solution u ∈ H 1,1/2(Q, α∂t − !x) with the anisotropic
Sobolev space

H 1,1/2(Q, α∂t −!x) :=
{
u ∈ H 1,1/2(Q) : (α∂t −!x)u ∈ L2(Q)

}
.

In the one-dimensional case the spatial component of the space-time boundary Σ
collapses to the points {a, b} and therefore we can identify the anisotropic Sobolev
spaces Hr,s(Σ) with Hs(Σ). The unknown density w := ∂nu|Σ ∈ H−1/4(Σ)

can be found by applying the interior Dirichlet trace operator γ int
0 : H 1,1/2(Q) →

H 1/4(Σ) to the representation formula (2),

g(x, t) = (M0u0)(x, t)+ (Vw)(x, t)+ ((
1

2
I −K)g)(x, t) for (x, t) ∈ Σ.

The initial potential M0 : L2(Ω) → H 1/4(Σ), the single layer boundary integral
operator V : H−1/4(Σ) → H 1/4(Σ), and the double layer boundary integral
operator 1

2I − K : H 1/4(Σ) → H 1/4(Σ) are obtained by composition of the
potentials in (2) with the Dirichlet trace operator γ int

0 , see, e.g., [1, 6]. In fact, we
have to solve the variational formulation to find w ∈ H−1/4(Σ) such that

〈Vw, τ 〉Σ = 〈(1

2
I +K)g, τ 〉Σ − 〈M0u0, τ 〉Σ for all τ ∈ H−1/4(Σ), (3)

where 〈·, ·〉Σ denotes the duality pairing onH 1/4(Σ)×H−1/4(Σ). The single layer
boundary integral operator V is bounded and elliptic, i.e. there exists a constant
cV1 > 0 such that

〈Vw,w〉Σ ≥ cV1 ‖w‖2
H−1/4(Σ)

for all w ∈ H−1/4(Σ).
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Thus, the variational formulation (3) is uniquely solvable. When applying the
Neumann trace operator γ int

1 : H 1,1/2(Q, α∂t − Δx) → H−1/4(Σ) to the
representation formula (2) we obtain the second boundary integral equation

w(x, t) = (M1u0)(x, t)+ ((
1

2
I +K ′)w)(x, t)+ (Dg)(x, t) for (x, t) ∈ Σ

with the hypersingular boundary integral operator D : H 1/4(Σ) → H−1/4(Σ),
and with the adjoint double layer boundary integral operator K ′ : H−1/4(Σ) →
H−1/4(Σ). Moreover,M1 : L2(Ω) → H−1/4(Σ).

2 Boundary Element Methods

For the Galerkin boundary element discretization of the variational formulation
(3) we consider a family {ΣN }N∈N of arbitrary decompositions of the space-time
boundaryΣ into boundary elements σl , i.e. we have

ΣN =
N⋃
�=1

σ� .

In the one-dimensional case the boundary elements σ� are line segments in temporal
direction with fixed spatial coordinate x� ∈ {a, b} as shown in Fig. 1. Let (x�, t�1)

and (x�, t�2) be the nodes of the boundary element σ�. The local mesh size is then
given as h� := |t�2 − t�1 | while h := max�=1,...,N h� is the global mesh size.
For the approximation of the unknown Cauchy datum w = γ int

1 u ∈ H−1/4(Σ) we

consider the space S0
h(Σ) := span

{
ϕ0
�

}N
�=1 of piecewise constant basis functions

ϕ0
� , which is defined with respect to the decomposition ΣN . The Galerkin-Bubnov

variational formulation of (3) is to find wh ∈ S0
h(Σ) such that

〈Vwh, τh〉Σ = 〈(1

2
I +K)g, τh〉Σ − 〈M0u0, τh〉Σ for all τh ∈ S0

h(Σ) . (4)

Fig. 1 Sample BE mesh. We
consider an arbitrary
decomposition of the
space-time boundary Σ . Note
that there is no time-stepping
scheme involved

× (0,T )

x

t
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This is equivalent to the system of linear equations Vhw = f where

Vh[�, k] = 〈V ϕ0
k , ϕ

0
� 〉Σ, f[�] = 〈(1

2
I+K)g, ϕ0

� 〉Σ−〈M0u0, ϕ
0
� 〉Σ, k, � = 1, . . . , N.

Due to the ellipticity of the single layer operator V the matrix Vh is positive definite
and therefore the variational formulation (4) is uniquely solvable as well. Moreover,
when assuming w ∈ Hs(Σ) for some s ∈ [0, 1], there holds the error estimate

‖w −wh‖H−1/4(Σ) ≤ ch1/4+s|w|Hs(Σ) .

Using standard arguments we also conclude the error estimate

‖w −wh‖L2(Σ) ≤ chs |w|Hs(Σ)

which implies linear convergence of the L2(Σ)-error of the Galerkin approximation
wh if w ∈ H 1(Σ) is satisfied.

3 Preconditioning Strategies

Since the boundary element discretization is done with respect to the whole space-
time boundary Σ we need to have an efficient iterative solution technique. In
fact, the linear system Vhw = f with the positive definite but nonsymmetric
matrix Vh can be solved by using a preconditioned GMRES method. Here we
will apply a preconditioning technique based on boundary integral operators of
opposite order [10], also known as operator or Calderon preconditioning [3]. Since
the single layer integral operator V : H−1/4(Σ) → H 1/4(Σ) and the hypersingular
integral operator D : H 1/4(Σ) → H−1/4(Σ) are both elliptic, the operator
DV : H−1/4(Σ) → H−1/4(Σ) behaves like the identity. Hence we can use
the Galerkin discretization of D as a preconditioner for Vh. But for the Galerkin
discretizationDh of the hypersingular integral operatorD : H 1/4(Σ) → H−1/4(Σ)

we need to use a conforming ansatz space Yh = span {ψi}Ni=1 ⊂ H 1/4(Σ) while the
discretization of the single layer integral operator V is done with respect to S0

h(Σ).
Since the boundary element space S0

h(Σ) of piecewise constant basis functions
ϕ0
k also satisfies S0

h(Σ) ⊂ H 1/4(Σ) we can choose Yh = S0
h(Σ). The inverse

hypersingular operator D−1 is spectrally equivalent to the single layer operator V ,
therefore the approximation of the preconditioning operator corresponds to a mixed
approximation scheme, and hence we need to assume a discrete stability condition
to be satisfied.
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Theorem 1 ([3, 10]) Assume the discrete stability condition

sup
0 �=vh∈Yh

〈τh, vh〉L2(Σ)

‖vh‖H 1/4(Σ)

≥ cM1 ‖τh‖H−1/4(Σ) for all τh ∈ S0
h(Σ). (5)

Then there exists a constant cκ > 1 such that

κ
(
M−1
h DhM

−-
h Vh

)
≤ cκ

where, for k, � = 1, . . . , N ,

Vh[�, k] = 〈V ϕ0
k , ϕ

0
� 〉Σ , Dh[�, k] = 〈Dψk,ψ�〉Σ , Mh[�, k] = 〈ϕ0

k , ψ�〉L2(Σ) .

Thus we can use C−1
V = M−1

h DhM
−-
h as a preconditioner for Vh. Since Mh

is sparse and spectrally equivalent to a diagonal matrix, the inverse M−1
h can be

computed efficiently. It remains to define, for given S0
h(Σ), a suitable boundary

element space Yh such that the stability condition (5) is satisfied. In what follows
we will discuss a possible choice.

If we choose Yh = S0
h(Σ) for the discretization of the hypersingular operator

D, then Mh becomes diagonal and is therefore easily invertible. In order to prove
the stability condition (5) we need to establish the H 1/4(Σ)-stability of the L2(Σ)-
projectionQ0

h : L2(Σ) → S0
h(Σ) ⊂ L2(Σ) which is defined as

〈Q0
hv, τh〉L2(Σ) = 〈v, τh〉L2(Σ) for all τh ∈ S0

h(Σ).

Following [7], and when assuming local quasi-uniformity of the boundary element
mesh ΣN we are able to establish the stability of Q0

h : H 1/4(Σ) → H 1/4(Σ),
see [2] for a more detailed discussion: For � = 1, . . . , N we define I (�) to be the
index set of the boundary element σ� and all its adjacent elements. We assume the
boundary element mesh ΣN to be locally quasi-uniform, i.e. there exists a constant
cL ≥ 1 such that

1

cL
≤ h�

hk
≤ cL for all k ∈ I (�) and � = 1, . . . , N.

In this case the operator Q0
h : H 1/4(Σ) → H 1/4(Σ) is bounded, i.e. there exists a

constant c0
S > 0 such that

∥∥∥Q0
hv

∥∥∥
H 1/4(Σ)

≤ c0
S ‖v‖H 1/4(Σ) for all v ∈ H 1/4(Σ). (6)

By using the stability estimate (6) we can conclude

1

c0
S

‖τh‖H−1/4(Σ) ≤ sup
0 �=vh∈S0

h(Σ)

〈τh, vh〉L2(Σ)

‖vh‖H 1/4(Σ)

for all τh ∈ S0
h(Σ).
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Hence the stability condition (5) holds and we can use C−1
V = M−1

h DhM
−-
h as a

preconditioner for Vh.

4 Numerical Results

For the numerical experiments we choose Ω = (0, 1), T = 1, and we consider
the model problem (1) with homogeneous Dirichlet conditions g = 0, and some
given initial datum u0 satisfying the compatibility conditions u0(0) = u0(1) = 0.
The Galerkin boundary element discretization of the variational formulation (3) is
done by piecewise constant basis functions. The resulting system of linear equations
Vhw = f is solved by using the GMRES method. As a preconditioner we use the
discretization C−1

V = M−1
h DhM

−-
h of the hypersingular operatorD with piecewise

constant basis functions.

4.1 Uniform Refinement

The first example corresponds to the initial datum u0(x) = sin 2πx and a globally
uniform boundary element mesh of mesh size h = 2−L. Table 1 shows the L2(Σ)-
error ‖w −wh‖L2(Σ) and the estimated order of convergence (eoc), which is linear
as expected. Moreover, the condition numbers of the stiffness matrix Vh and of the
preconditioned matrix C−1

V Vh as well as the number of iterations to reach a relative
accuracy of 10−8 are given which confirm the theoretical estimates.

Table 1 Error, condition and iteration numbers in the case of uniform refinement

L N ‖w −wh‖L2(Σ)
eoc κ(Vh) It. κ(C−1

V Vh) It.

0 2 2.249 – 1.001 1 1.002 1

1 4 1.311 0.778 2.808 2 1.279 2

2 8 0.658 0.996 4.905 4 1.422 4

3 16 0.324 1.021 7.548 8 1.486 8

4 32 0.160 1.017 11.140 16 1.541 14

5 64 0.079 1.010 16.724 31 1.563 13

6 128 0.040 1.006 13.470 41 1.590 13

7 256 0.020 1.003 22.053 50 1.615 12

8 512 0.010 1.001 32.043 59 1.636 12

9 1024 0.005 1.001 60.957 70 1.777 11

10 2048 0.002 1.000 88.488 82 1.762 11

11 4096 0.001 1.000 125.957 96 1.765 10
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Table 2 Error, condition and iteration numbers in the case of adaptive refinement

L N ‖w −wh‖L2(Σ)
κ(Vh) It. κ(C̃−1

V Vh) It. κ(C−1
V Vh) It.

0 2 1.886 1.00 2 1.001 2 1.002 2

1 3 1.637 3.97 3 2.553 3 1.16 3

2 5 1.272 12.23 5 4.055 4 1.166 4

3 7 0.914 34.21 7 3.611 6 1.156 6

4 9 0.615 92.08 9 3.164 8 1.149 8

5 11 0.401 118.59 11 2.945 10 1.224 10

6 13 0.267 338.26 13 2.803 12 1.21 12

7 20 0.166 621.77 20 3.524 18 1.197 13

8 31 0.101 1608.08 31 4.457 27 1.252 12

9 47 0.063 2344.90 47 5.779 32 1.574 11

10 74 0.039 6141.47 74 8.348 37 1.692 11

11 114 0.024 8409.92 114 10.950 42 1.561 10

12 177 0.015 23,007.60 173 14.324 47 1.716 10

13 278 0.010 27,528.30 200 21.094 53 1.677 10

4.2 Adaptive Refinement

For the second example we consider the initial datum u0(x) = 5e−10x sin πx
which motivates the use of a locally quasi-uniform boundary element mesh resulting
from some adaptive refinement strategy. The numerical results as given in Table 2
again confirm the theoretical findings, in particular the robustness of the proposed
preconditioning strategy in the case of an adaptive refinement which is not the case
when using none or only diagonal preconditioning C̃V = diagVh.

5 Conclusions and Outlook

In this note we have described a space-time boundary element discretization of the
spatially one-dimensional heat equation and an efficient and robust preconditioning
strategy which is based on the use of boundary integral operators of opposite orders,
but which requires a suitable stability condition for the boundary element spaces
used for the discretization. In the particular case of the spatially one-dimensional
heat equation we can use the space S0

h(Σ) of piecewise constant basis functions
to discretize both the single layer and the hypersingular boundary integral operator
V and D, respectively. This is due to the inclusion S0

h(Σ) ⊂ H 1/4(Σ) where the
latter is the Dirichlet trace space of the anisotropic Sobolev spaceH 1,1/2(Q). In the
case of a spatially two- or three-dimensional domainΩ a conformal approximation
of the Dirichlet trace space H 1/2,1/4(Σ) and therefore the discretization of the
hypersingular integral operator D requires the use of continuous basis functions.
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Fig. 2 Sample dual mesh.
The piecewise linear and
continuous functions ϕ1

i are
used for the discretization of
D. The piecewise constant
basis functions ϕ̃0

i are used
for the discretization of V
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Hence, to ensure the stability condition (5) we may use the space S1
h(Σ) of

piecewise linear and continuous basis functions for the discretization of V and
D, respectively, see [7, Theorem 3.2], and when assuming some appropriate mesh
conditions locally [7, Section 4]. However, due to the approximation properties of
S1
h(Σ) such an approach is restricted to spatial domains Ω with smooth boundary

where the unknown flux is continuous.
When using the discontinuous boundary element space S0

h(Σ) for the approxima-
tion of the unknown flux we need to choose an appropriate boundary element space
Yh to ensure the stability condition (5). A possible approach is the use of a dual mesh
using piecewise constant basis functions for the approximation of V , and piecewise
linear and continuous basis functions for the approximation of D, see Fig. 2 for
the situation in 1D. For a more detailed analysis of the proposed preconditioning
strategy and suitable choices of stable boundary element spaces we refer to [2].

An efficient solution of local Dirichlet boundary value problems is an important
tool when considering domain decomposition methods for the heat equation, see
e.g. [9] in the case of the Laplace equation. Moreover, the preconditioning strategy
of using operators of opposite order can also be used when considering related
Schur complement systems on the skeleton, as they also appear in tearing and
interconnecting domain decomposition methods, see, e.g., [4]. This also covers the
coupling of space-time finite and boundary element methods. Related results on the
stability and error analysis as well as on efficient solution strategies for space-time
domain decomposition methods will be published elsewhere.
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On High-Order Approximation and
Stability with Conservative Properties

Juan Galvis, Eduardo Abreu, Ciro Díaz, and Marcus Sarkis

1 Summary

In this paper, we explore a method for the construction of locally conservative flux
fields. The flux values are obtained through the use of a Ritz formulation in which
we augment the resulting linear system of the continuous Galerkin (CG) formulation
in a higher-order approximation space. These methodologies have been successfully
applied to multi-phase flow models with heterogeneous permeability coefficients
that have high-variation and discontinuities. The increase in accuracy associated
with the high order approximation of the pressure solutions is inherited by the flux
fields and saturation solutions. Our formulation allows us to use the saddle point
problems analysis to study approximation and stability properties as well as iterative
methods design for the resulting linear system. In particular, here we show that
the low-order finite element problem preconditions well the high-order conservative
discrete system. We present numerical evidence to support our findings.
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2 Problem and Conservative Formulation

Consider the equation,

− div(Λ(x)∇p) = q in Ω ⊂ %2, (1)

p = 0 on ∂Ω, (2)

whereΩ is a two-dimensional domain andΛ is a (smooth enough) positive definite
symmetric matrix function. See [6] for the case of Λ being a multiscale coefficient
with high-contrast. Our main interest is to obtain approximate solutions of the
second order problem above1 with: (1) high-order approximation (e.g., multiple
basis per node), (2) local mass conservation properties and (3) stable-fast solver.

Our motivations come from the fact that in some applications it is imperative
to have some conservative properties represented as conservations of total flux in
control volumes. For instance, if qh represents the approximation to the flux (in our
case qh = −Λ∇ph where ph is the approximation of the pressure), it is required
that

∫
∂V

qh · n =
∫
V

q for each control volume V.

For Dirichlet boundary condition, V is a control volume that does not cross ∂Ω
from a set of control volumes of interest, and here and after n is the normal vector
pointing out the control volume. We say that a discrete method is conservative if the
total flux restriction such as the one written above holds.

We note that FV methods that use higher degree piecewise polynomials have
been introduced in the literature; see [3–5]. We consider a Ritz formulation and
construct a solution procedure that combines a continuous Galerkin-type formu-
lation that concurrently satisfies mass conservation restrictions. We impose finite
volume restrictions by using a scalar Lagrange multiplier for each restriction; see
[1, 6].

The variational formulation of problem (1) is to find p ∈ H 1
0 (Ω) such that

a(p, v) = F(v) for all v ∈ H 1
0 (Ω), (3)

where the bilinear form a is defined by

a(p, v) =
∫
Ω

Λ(x)∇p(x)∇v(x)dx, (4)

1The use of second order formulation makes sense especially for cases where some form of high
regularity holds. Usually in these cases the equality in the second order formulation is an equality
in L2 so that, in principle, there is no need to write the system of first order equations and weaken
the equality by introducing less regular spaces for the pressure as it is done in mixed formulation
with L2 pressure.



On High-Order Approximation and Stability with Conservative Properties 255

the functional F is defined by F(v) = ∫
Ω q(x)v(x)dx. The Problem (1) is equiva-

lent to the minimization problem:

p = arg min
v∈H 1

0 (Ω)

J (v) where J (v) = 1

2
a(v, v) − F(v). (5)

Let the triangulation τh = {Rk}Nhk=1 made of elements that are triangles or squares,

whereNh is the number of elements. We also introduce the dual mesh τ ∗
h = {Vk}N

∗
h

k=1
where the elements are called control volumes. In this paper we assume that each
Vk is a subdomain of Ω with polygonal boundary. Let us introduce the space H :=
{v ∈ H 1

0 (Ω) : Λ∇v ∈ H(div,Ω)}. If q ∈ L2 we have that (1) is equivalent to: Find
p ∈ H 1

0 such that

p = arg min
v∈W

J (v), (6)

where W =
{
v ∈ H :

∫
∂T

−Λ∇v · n =
∫
T

q for all T ∈ τ ∗
h

}
.

Problem (6) above can be view as Lagrange multipliers min-max optimization
problem. See [2] and references therein. Let us denoteMh = R

N∗
h .

The Lagrange multiplier formulation of problem (6) can be written as: Find p ∈
H and λ ∈ Mh that solves

(p, λ) = arg max
μ∈RN∗

h

min
v∈H,J (v)− (a(v, μ)− F(μ)). (7)

Here, the total flux bilinear form a : H × Mh → R is defined by

a(v, μ) =
Nh∑
k=1

μk

∫
∂Vk

Λ∇v · n for all v ∈ H and μ ∈ Mh. (8)

The functional F : Mh → R is defined by F(μ) = ∑Nh
i=1 μk

∫
Vk
q, for all μ ∈

Mh. The first order conditions of the min-max problem above give the following
saddle point problem: Find p ∈ H 1

0 (Ω) and λ = 0 ∈ Mh that solves:

a(p, v)+ a(v, λ) = F(v) for all v ∈ H,
a(p,μ) = F(μ) for all μ ∈ Mh.

(9)
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3 Discretization and Error

Let us consider Ph = Q
r (τh) ∩ H 1

0 (Ω). We also interpret Mh as Q
0(τ ∗

h ), that is,
the space of piecewise constant functions on the dual mesh τ ∗

h . See for instance [6]
where we consider GMsFEM spaces instead of piecewise polynomials.

The discrete version of (9) is to find ph ∈ Ph and λ ∈ Mh such that

a(ph, vh)+ a(vh, λh) = F(vh) for all vh ∈ Ph (10)

a(ph,μh) = F(μh) for all μh ∈ Mh. (11)

The equivalent matrix form is,

[
A A

T

A O

][
uh

λh

]
=

[
f

f

]
(12)

where A is the finite element stiffness matrix corresponding to finite element space
Ph = span

{
ϕj

}
,

A = [
ai,j

]
where aij =

∫
Ω

Λ∇ϕi · ∇ϕj . (13)

The restriction or finite volume matrix A is given by,

A = [
ak,j

]
where akj =

∫
∂Vk

Λ∇ϕj · n. (14)

Moreover, f = [fi ] with fi = ∫
Ω q ϕi and f = [f k]N

∗
h

k=1 with f k = ∫
Vk
q.

Note that matrixA is related to classical (low order) finite volume matrix. Matrix
A is a rectangular matrix with more columns than rows. Several previous works on
conservative high-order approximation of second order elliptic problem have been
designed by “adding” rows using several constructions. See [1] for details.

We consider a particular case of a regular mesh made of squares. Our analysis
is valid for high order finite element on regular meshes made of triangles since a

similar analysis holds in this case. Define Γ ∗ = ⋃N∗
h

k=1 that is, Γ ∗ is the interior
interface generated by the dual triangulation. For μ ∈ Mh define [μ] on Γ ∗ as
the jump across element interfaces such that [μ]|∂Vk∩∂Vk′ = μk − μk′ . Note that

a(v, μ) = ∑N∗
h

k=1 μk
∫
∂Vk

∇v · n = ∫
Γ ∗ ∇v · n [μ] .

In our analysis we use the energy norm in the space that approximates the
pressure and a discrete norm in the space of Lagrange multipliers. Denote ‖v‖2

a =∫
Ω Λ∇v · ∇v for all v ∈ H 1

0 (Ω). Let us recall the definition of space H := {v ∈
H 1

0 (Ω) : Λ∇v ∈ H(div,Ω)}, and additional set Ph+ = Span{Ph,H }. We define the
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norm (that is motivated by the analysis)

‖v‖2
Ph+

= |v|2
H 1(Ω)

+ h2
N∗
h∑

�=1

‖Δv‖2
L2(R�)

for all v ∈ Ph+. (15)

Note that if v ∈ Q
r , then ‖v‖2

Ph+
� |v|2

H 1(Ω)
using an inverse inequality. Also define

the discrete norm for the spaces of Lagrange multipliers as

‖μ‖2
Mh = 1

h

∫
Γ ∗

[μ]2. (16)

It is possible to verify that ([1])

1. Augmented norm: ‖v‖a ≤ ‖v‖Ph+ for all v ∈ Ph+.

2. Continuity: |ā| ∈ R such that |ā(v, μh)| ≤ |ā|‖v‖Ph+‖μh‖Mh for all v ∈ Ph+ and

μh ∈ Mh.

3. Inf-Sup: infμh∈Mh supv∈Ph+
a(v, μh)

‖v‖a ‖μh‖Mh

≥ α > 0.

We also have established optimal approximation in energy norm (‖p − ph‖a �
h|p|H 2(Ω)) and using a duality argument it is possible to write the optimal L2

approximation ‖p − (ph + λh)‖0 � h2|p|H 2(Ω); see [1] for details.

4 The Case of Highly Anisotropic Media

One issue with some cases of conservative methods is the lack of coerciveness under
the presence of high-anisotropic coefficients. We can think our formulation as a
stabilization for these cases (in the sense that we increase the space of the solution
while keeping fixed the space for the Lagrange multipliers). Preliminary numerical
studies suggest that our formulation is more robust (with respect to anisotropy) than
the classical finite volume formulations.

A nice feature of our formulation is that the symmetric saddle point (12) is
suitable for constructing robust preconditioners; see [2] for variety of solvers and
iteration that can be used. Here we present a simple stationary iteration. Consider
the iteration

Auk+1 = f − A
T
λk

λk+1 = λk + ωB−1(Auk+1 − f ).
(17)

Here ω is a relaxation parameter and B a preconditioner to be defined. This
iteration corresponds to a preconditioned Richardson iteration applied to the Schur
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complement problem (to solve for the Lagrange multiplier lambda equation). We
have, by combining the two equations above,

λk+1 = λk + ωB−1 (g − Sλk)

where g = AA−1f − f and S is the Schur complement S = AA−1A
T

. Note that
the size of S is the number of interior vertices if the control volumes are constructed
by joining the centers of the elements of the primal mesh. In the case of isotropic
coefficients and square elements, we can take B = Mh defined in (16); see [2]. In
order to take into account the anisotropy, below in the numerical tests we consider
B defined by

B = [bij ] where bij =
∫
D

Λ∇ϕi∇ϕj with ϕi, ϕj ∈ Q
1 ∩H 1

0 (Ω).

5 Numerical Experiments

We consider the Dirichlet problem (1). Let Ω = (0, 1) × (0, 1). We consider a
regular mesh made of 4L squares. The dual mesh is constructed by joining the
centers of the elements of the primal mesh. We perform a series of numerical
experiments to compare properties of FEM solutions with the solution of our high
order FV formulation (to which we refer from now on as FV solution). We select
the exact solution p(x, y) = sin(πx) sin(πy)(−x + 3y) and f = −Δu.

On Table 1 we compare our Q1 FV method with the classical Q1 finite element
method. We compute L2 and H 1 errors. We observe optimal convergence of both
strategies however the FV is conservative. On Table 2 we consider Q2 elements and
optimal higher convergence rates are confirmed.

We now move to symmetric anisotropic coefficientsΛ. We now show in Tables 3,
4, and 5 the smallest and the largest eigenvalues of λmax(B

−1S)/λmin(B
−1S) for

different values of Λ, h = 2L and for Q
1,Q2 and Q

3 elements. The Λ has
eigenvalues 1 and η and associate eigenvector η = (cos(Θ), sin(Θ))t . From these

Table 1 Table of FEM and FV L2 and H 1 errors using Q
1 elements

L FEM, L2 Error FV. L2 Error FEM, H 1 Error FV. H 1 Error

1 1.5538 × 10−1 1.5103 × 10−1 1.1297 × 100 1.1338 × 100

2 3.6342 × 10−2 3.1881 × 10−2 5.3226 × 10−1 5.3416 × 10−1

3 8.9720 × 10−3 7.5276 × 10−3 2.6374 × 10−1 2.6403 × 10−1

4 2.2548 × 10−3 1.9348 × 10−3 1.3163 × 10−1 1.3172 × 10−1

5 5.5513 × 10−4 4.6095 × 10−4 6.5833 × 10−2 6.5840 × 10−2

6 1.3875 × 10−4 1.1513 × 10−4 3.2948 × 10−2 3.2924 × 10−2

7 3.4685 × 10−5 2.8776 × 10−5 1.6418 × 10−2 1.6489 × 10−2
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Table 2 Table of FEM and FV L2 and H 1 errors using Q
2 elements

L FEML2 Error FV. L2 Error FEMH 1 Error FV .H 1 Error

1 1.4061 × 10−2 2.4548 × 10−2 1.9302 × 10−1 2.2436 × 10−1

2 2.1217 × 10−3 4.9023 × 10−3 5.4862 × 10−2 7.2895 × 10−2

3 2.6860 × 10−4 6.4789 × 10−4 1.4072 × 10−2 1.8847 × 10−2

4 3.3875 × 10−5 8.1756 × 10−5 3.5418 × 10−3 4.7552 × 10−3

5 4.2437 × 10−6 1.0242 × 10−5 8.3539 × 10−4 1.2667 × 10−3

6 5.3075 × 10−7 1.2810 × 10−6 2.2016 × 10−4 2.9616 × 10−4

7 6.6353 × 10−8 1.6015 × 10−7 5.5043 × 10−5 7.4046 × 10−5

Table 3 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1(left), Θ = π
6 (center), Θ = π

4

(right) and P h = Q
1

η

L 1 10 100 1000 1 10 100 1000 1 10 100 1000

2 1.76
1.05

1.76
1.05

1.76
1.05

1.76
1.05

1.76
1.05

1.76
1.05

1.81
1.05

1.81
1.05

1.76
1.05

1.80
1.05

1.82
1.05

1.83
1.05

3 2.09
1.01

2.09
1.01

2.09
1.01

2.09
1.01

2.09
1.01

2.11
1.01

2.12
1.01

2.12
1.01

2.09
1.01

2.11
1.01

2.13
1.01

2.14
1.01

4 2.20
1.00

2.20
1.00

2.20
1.00

2.20
1.00

2.20
1.00

2.21
1.00

2.22
1.00

2.22
1.00

2.20
1.00

2.21
1.00

2.22
1.00

2.22
1.00

5 2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.23
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

6 2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

The Λ has eigenvalues 1 and η and the eigenvector associated to η is (cos(Θ), sin(Θ))t

Table 4 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1 (left), Θ = π
6 (center), Θ = π

4

(right) and Ph = Q
2

η

L 1 10 100 1000 1 10 100 1000 1 10 100 1000

2 1.79
1.05

1.80
1.05

1.81
1.06

1.81
1.06

1.79
1.05

2.13
1.09

2.47
1.11

2.53
1.11

1.79
1.05

2.32
1.10

2.98
1.12

3.12
1.12

3 2.10
1.01

2.10
1.01

2.11
1.01

2.11
1.01

2.10
1.01

2.50
1.02

2.99
1.03

3.18
1.03

2.10
1.01

2.77
1.02

4.03
1.03

4,43
1.03

4 2.21
1.00

2.21
1.00

2.21
1.00

2.21
1.00

2.21
1.00

2.61
1.01

3.27
1.01

3.92
1.01

2.21
1.00

2.91
1.01

4.40
1.01

5.24
1.01

5 2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.24
1.00

2.64
1.00

3.43
1.00

4.90
1.00

2.24
1.00

2.95
1.00

4.52
1.00

6.43
1.00

6 2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.25
1.00

2.65
1.00

3.48
1.00

5.86
1.00

2.25
1.00

2.95
1.00

4.57
1.00

7.60
1.00

The Λ has eigenvalues 1 and η and the eigenvector associated to η is (cos(Θ), sin(Θ))t

results we see that the smallest eigenvalue is very stable, therefore, the discrete inf-
sup is satisfied. This is a strong result since finite volume discretizations sometimes
lack in coerciveness for highly anisotropic media. The proposed preconditioner
performs well however has a mildly dependence with respect to the different con-
figuration of anisotropy direction and anisotropy ratio. This is somehow expected
since the continuity given in (15) is with respect to the Vh-norm rather than a-
norm, and further studies are on the way to eliminate this dependence. Recall
that the application of the preconditioner requires the solution of a low-order (Q1)
classical symmetric finite element problem. In practice, these solve can be replaced
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Table 5 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1 (left), Θ = π
6 (center), Θ = π

4

(right) and Ph = Q
3

η

L 1 10 100 1000 1 10 100 1000 1 10 100 1000

2 4.52
2.43

4.54
2.43

4.57
2.43

4.58
2.43

4.52
2.29

4.72
2.29

6.92
2.29

7.21
2.29

4.52
2.44

4.80
2.28

5.01
2.24

5.05
2.23

3 5.32
2.29

5.35
2.29

5.40
2.29

5.41
2.29

5.33
2.29

5.47
1.95

6.92
1.89

7.21
1.90

5.32
2.29

5.67
1.92

7.37
1.86

7.68
1.64

4 5.59
2.26

5.62
2.26

5.68
2.26

5.69
2.26

5.60
2.26

5.89
1.81

10.8
1.74

12.2
1.74

5.59
2.26

6.48
1.78

12.2
1.72

13.7
1.72

5 5.67
2.25

6.70
2.25

5.75
2.25

5.77
2.25

5.67
2.25

6.19
1.75

16.9
1.68

22.2
1.67

5.67
2.25

7.09
1.73

20.2
1.67

26.3
1.66

6 5.69
2.25

5.72
2.25

5.77
2.25

5.79
2.25

5.68
2.25

5.68
1.72

24.7
1.65

41.4
1.65

5.68
2.25

7.46
1.70

30.8
1.65

50.7
1.64

by a robust method for low-order finite element method and inexact Uzawa or
Conjugated Gradient. Recall also that we obtain conservative solutions.

6 Conclusions

In this paper we use a Ritz formulation with constraints to obtain locally conser-
vative fluxes in the approximation of the Darcy equation. With this formulation
we obtain solution that have high-order approximation and still yield locally
conservative fluxes with no post-processing. We show that the resulting linear
system can be solve using a stationary iteration where the application of the
preconditioner uses an approximation of a low-order finite element problem. We
present numerical evidence to support our findings.
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A Nonlinear ParaExp Algorithm

Martin J. Gander, Stefan Güttel, and Madalina Petcu

1 Derivation of the Nonlinear ParaExp Algorithm

Time parallelization has a long history, see [1] and references therein. The parallel
speedup obtained is in general not as good as with space parallelization, especially
for hyperbolic problems. A notable exception are waveform relaxation-type meth-
ods [4, 7], which in the hyperbolic case are related to the more recent tent-pitching
approach [8], and the ParaExp algorithm [2, 9] based on Krylov methods, which
is however restricted to linear problems. For an application in a nonlinear context,
see [10], and for a different approach using Krylov information, see [5]. Here we
propose and analyze a variant of the ParaExp algorithm for the nonlinear initial
value problem

u′(t) = Au(t)+ B
(
u(t)

) + g(t), t ∈ [0, T ], u(0) = u0, (1.1)
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with A ∈ C
m×m, B : C

m → C
m a nonlinear operator, g : [0, T ] → C

m a
source function, and u : [0, T ] → C

m the sought solution. Throughout this note we
assume that all stated initial value problems have unique solutions. For the ParaExp
algorithm, the time interval [0, T ] is partitioned intoN subintervals [Tn−1, Tn] with
n = 1, . . . , N , and a direct application of this algorithm to the nonlinear problem
(1.1) gives

Step 1 Solve for n ≥ 1 in parallel the nonlinear problems with zero initial data

v′
n(t) = Avn(t)+ B

(
vn(t)

) + g(t), t ∈ [Tn−1, Tn],
vn(Tn−1) = 0.

Step 2 Solve for n ≥ 1 in parallel the linear non-homogeneous problems

w′
n(t) = Awn(t), t ∈ [Tn−1, T ],

wn(Tn−1) = vn−1(Tn−1), v0(T0) = u0.

ParaExp then forms the linear combination u(t) = vn(t) + ∑n
j=1 wj (t), t ∈

[Tn−1, Tn), which still satisfies the initial condition, but not equation (1.1) since
u′(t) = Au(t) + B

(
vn(t)

) + g(t), t ∈ [Tn−1, Tn], except when B is not present.
One can however naturally separate the solution into u(t) = v(t) + w(t), with w
solving the linear problem w′(t) = Aw(t), w(t) = u0, and v solving the nonlinear
remaining part v′(t) = Av(t) + B

(
v(t) + w(t)

) + g(t), v(0) = 0. To apply
this splitting on multiple time intervals [Tn−1, Tn] we need to iterate. Using the
initialization v0

n(Tn) = 0 for n = 1, . . . , N (or some other approximation), we
perform for k = 1, 2, . . .

Step 1 Solve for n ≥ 1 in parallel the linear problems

(
wk
n

)′
(t) = Awkn(t), t ∈ [Tn−1, T ],

wk
n(Tn−1) = vk−1

n−1(Tn−1), wk
1(T0) = u0.

(1.2)

Step 2 Solve for n ≥ 1 in parallel the nonlinear problems

(
vkn

)′
(t) = Avkn(t)+ B

(
vkn(t)+

n∑
j=1

wk
j (t)

) + g(t), t ∈ [Tn−1, Tn],

vkn(Tn−1) = 0.

(1.3)

The new approximate solution is then defined by uk(t) = vkn(t) + ∑n
j=1 wk

j (t),
t ∈ [Tn−1, Tn), which now satisfies equation (1.1) on each time interval [Tn−1, Tn),
and uk(0) = u0. The solution of the linear part (1.2) can still be computed
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efficiently as in the ParaExp algorithm using Krylov techniques, but (1.3) requires
the computation of

∑n
j=1 wk

j on [Tn−1, Tn], and thus would need the Krylov

approximation of wk
j on the entire interval [Tn−1, Tn]. To avoid this, we rewrite

the algorithm in terms of ukn instead of vkn, where ukn approximates u: starting with
u0
n(Tn) = w0

j (Tn) = 0 for all j and n, the nonlinear ParaExp algorithm performs
for k = 1, 2, . . .

Step 1 Solve for n ≥ 1 in parallel the linear problems

(
wk
n

)′
(t) = Awkn(t), t ∈ [Tn−1, T ],

wk
n(Tn−1) = uk−1

n−1(Tn−1)−
n−1∑
j=1

wk−1
j (Tn−1), wk

1(T0) = u0.
(1.4)

Step 2 Solve for n ≥ 1 in parallel the nonlinear problems

(
ukn

)′
(t) = Aukn(t)+ B

(
ukn(t)

) + g(t), t ∈ [Tn−1, Tn],

ukn(Tn−1) =
n∑
j=1

wk
j (Tn−1),

(1.5)

and form the new approximate solution as

uk(t) = ukn(t), t ∈ [Tn−1, Tn). (1.6)

Remark 1 To avoid the computation of ukn as the solution of a nonlinear problem,
one could linearize (1.5) by using in the nonlinear term B(uk−1

n ) instead of B(ukn),
where u0

n = 0 or some other approximation of the solution. However, in what
follows we focus on the fully nonlinear version, since then uk is the solution of
the nonlinear problem (1.1) on each time interval.

2 Analysis of the Nonlinear ParaExp Algorithm

We first show that the nonlinear ParaExp algorithm introduced in the previous
section converges in a finite number of steps.

Theorem 1 The approximate solution uk obtained at iteration k and defined by
(1.6) coincides with the exact solution u on the time interval [T0, Tk).

Proof Since wk
1(T0) = u0 for all k = 1, 2, . . . , wk

1 = wk−1
1 on the time interval

[T0, T ] for all k = 2, 3, . . . . Next, for k = 1 we have u1(t) = u1
1(t) on [T0, T1], and

since u1
1(T0) = w1

1(T0) = u0 we get by the uniqueness of the solution of (1.5) that
u1

1 coincides with the exact solution u on the time interval [T0, T1].
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We now prove by induction that for all k = 2, 3 . . . we have

ukn = u on [Tn−1, Tn], ∀n ≤ k, wk
n = wk−1

n on [Tn−1, T ], ∀ n ≤ k − 1.
(2.1)

For k = 2, we only need to prove property (2.1) for u2, since for w2
1 it is ensured by

the fact that wk
1 = wk−1

1 for all k ≥ 2. The initial condition for u2
2 is

u2
2(T1) = w2

1(T1)+ w2
2(T1) = w2

1(T1)+ u1
1(T1)− w1

1(T1) = u1
1(T1) = u(T1),

where we used the fact that w2
1 = w1

1 and that u1
1 is the exact solution on the

time interval [T0, T1]. Since u2
2 satisfies the same equation as u on the time interval

[T1, T2] and u2
2(T1) = u(T1), u2

2 must coincide with u on [T1, T2]. But we also know
that u2

1(T0) = w2
1(T0) = u0 and that u2

1 satisfies (1.5), which implies u2
1 = u on

[T0, T1], and hence u2 coincides with the exact solution of (1.1) on the time interval
[T0, T2).

We now suppose that (2.1) holds for all iterations up to an arbitrarily fixed index k
and we prove (2.1) for k + 1. To first check that wk+1

n = wk
n on [Tn−1, T ] for all

n = 2, 3, . . . , k, we compute

wk+1
n (Tn−1) = ukn−1(Tn−1)−

n−1∑
j=1

wk
j (Tn−1) = u(Tn−1)−

n−1∑
j=1

wk−1
j (Tn−1)

= uk−1
n−1(Tn−1)−

n−1∑
j=1

wk−1
j (Tn−1) = wk

n(Tn−1),

where we have used the recurrence hypothesis (2.1). Since wk+1
n and wk

n satisfy the
same equation and have the same initial condition, the result follows. We next prove
that uk+1

n = u on [Tn−1, Tn] for all n ≤ k+ 1. Since we already know that uk+1
n and

u satisfy the same equation on the time interval [Tn−1, Tn], we only need to check
that the initial condition satisfied by uk+1

n ,

uk+1
n (Tn−1) =

n∑
j=1

wk+1
j (Tn−1) =

n−1∑
j=1

wk+1
j (Tn−1)+ ukn−1(Tn−1)−

n−1∑
j=1

wk
j (Tn−1)

= ukn−1(Tn−1),

where we used the first result we just proved for wk+1
n and that wk+1

1 = wk
1 for all k.

Now, using the recurrence hypothesis (2.1), we know that ukn−1 coincides with the
exact solution of (1.1) on [Tn−2, Tn−1], which implies that uk+1

n (Tn−1) = u(Tn−1).
*,
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We now show that the nonlinear ParaExp algorithm can be interpreted in the
context of the Parareal algorithm if written as a multiple shooting method (see [3,
6]). We will need the following result.

Lemma 1 Let (ukn)k,n be the sequence defined by the nonlinear ParaExp algorithm
(1.4)–(1.6). Defining ũ0

n(Tn) = 0 and C0
n(Tn) = 0 for all n ≥ 0, let

(
Ck
n

)
k,n

for all
k ≥ 1 and n ≥ 1 be the solutions of the linear problems

(
Ck
n

)′
(t) = ACk

n(t), t ∈ [Tn−1, Tn],
Ck
n(Tn−1) = Ck

n−1(Tn−1)+ ũk−1
n−1(Tn−1)− Ck−1

n−1(Tn−1), Ck
1(T0) = u0,

and let
(̃
ukn

)
k,n

be the solutions of the nonlinear problems

(̃
ukn

)′
(t) = Aũkn(t)+ B

(̃
ukn(t)

) + g(t), t ∈ [Tn−1, Tn],
ũkn(Tn−1) = Ck

n(Tn−1).

Then ukn = ũkn on [Tn−1, Tn] for all n ≥ 0 and k ≥ 1.

Proof At step k = 1 and for all n ≥ 1, C1
n is the solution of the linear problem

(C1
n)

′(t) = AC1
n(t), t ∈ [Tn−1, Tn],

C1
n(Tn−1) = C1

n−1(Tn−1), C1
1(T0) = u0.

Hence C1
n is the restriction of the solution of u′ = Au, u(0) = u0 on [T0, T ] to the

time interval [Tn−1, Tn]. Taking into account the definition (1.4) of w1
n, we notice

that w1
n = 0 for n > 1 and w1

1 is the solution of the linear problem u′ = Au,
u(0) = u0 on [T0, T ]. Thus, C1

n(t) = ∑n
j=1 w1

j (t) on [Tn−1, Tn], and ũ1
n satisfies

for n ≥ 1

(̃
u1
n

)′
(t) = Aũ1

n(t)+ B
(̃
u1
n(t)

) + g(t), t ∈ [Tn−1, Tn],

u1
n(Tn−1) = C1

n(Tn−1) =
n∑
j=1

w1
j (Tn−1).

Comparing this with (1.5) and using the uniqueness of the solution for the nonlinear
problem, we deduce that u1

n(t) = ũ1
n(t) on [Tn−1, Tn] for all n ≥ 1.

Assuming now that for all n ≥ 1 and a given k we have Ck
n(t) = ∑n

j=1 wk
j (t),

ukn(t) = ũkn(t) on [Tn−1, Tn],we need to show that this also holds for k + 1. To
do so, we prove by recurrence with respect to n that Ck+1

n (t) = ∑n
j=1 wk+1

j (t) on

[Tn−1, Tn]. For n = 1, we have that Ck+1
1 (T0) = u0 = wk+1

1 (T0) and, since Ck+1
1

and wk+1
1 satisfy the same equation and the same initial condition, we conclude that

Ck+1
1 = wk+1

1 on [T0, T1]. Next, we suppose that Ck+1
n (t) = ∑n

j=1 wk+1
j (t) on



266 M. J. Gander et al.

[Tn−1, Tn] and prove that Ck+1
n+1(t) = ∑n+1

j=1 wk+1
j (t) on [Tn, Tn+1]. By checking the

initial condition of Ck+1
n+1 at Tn and using the recurrence hypothesis, we find

Ck+1
n+1(Tn) = Ck+1

n (Tn)+ukn(Tn)−
n∑
j=1

wk
j (Tn) = Ck+1

n (Tn)+wk+1
n+1(Tn) =

n+1∑
j=1

wk+1
j (Tn).

Since Ck+1
n+1 and

∑n+1
j=1 wk+1

j solve the same linear problem on [Tn, Tn+1] and satisfy

the same initial condition at Tn, we obtain Ck+1
n+1 = ∑n+1

j=1 wk+1
j on [Tn, Tn+1].

Further, for n ≥ 1 we have

(̃
uk+1
n

)′
(t) = Aũk+1

n (t)+ B
(̃
uk+1
n (t)

) + g(t), t ∈ [Tn−1, Tn],

ũk+1
n (Tn−1) = Ck+1

n (Tn−1) =
n∑
j=1

wk+1
j (Tn−1).

Thus, ũk+1
n and uk+1

n solve the same equation with identical initial condition on
[Tn−1, Tn] and hence ũk+1

n = uk+1
n on [Tn−1, Tn]. *,

The following theorem is essentially a reformulation of Lemma 1 in the usual
notation of the parareal algorithm in terms of a coarse and a fine integrator [11].

Theorem 2 Let the coarse propagatorG(Tn, Tn−1,U) solve the linear problem

u′(t) = Au(t) on [Tn−1, Tn], u(Tn−1) = U,

and let the fine propagator F(Tn, Tn−1,U) solve the nonlinear problem

u′(t) = Au(t)+ B
(
u(t)

) + g(t) on [Tn−1, Tn], u(Tn−1) = U.

Then the solution uk computed by the nonlinear ParaExp algorithm (1.4)–(1.6)
coincides at each time point Tn with the solution Uk

n computed by the parareal
algorithm

Uk
n = F(Tn, Tn−1,Uk−1

n−1)+G(Tn, Tn−1,Uk
n−1)−G(Tn, Tn−1,Uk−1

n−1). (2.2)

Proof Using the definition of uk in (1.6) and the notation of Lemma 1, we have

uk(Tn) = ukn+1(Tn) = Ck
n+1(Tn) = Ck

n(Tn)+ uk−1
n (Tn)− Ck−1

n (Tn)

= G
(
Tn, Tn−1,Ck

n(Tn−1)
) −G

(
Tn, Tn−1,Ck−1

n (Tn−1)
) + ũk−1

n (Tn)

= G
(
Tn, Tn−1,Ck

n(Tn−1)
) −G

(
Tn, Tn−1,Ck−1

n (Tn−1)
) + F

(
Tn, Tn−1,Ck−1

n (Tn−1)
)
.

Thus uk(Tn) = Uk
n with Ukn = Ck

n+1(Tn). *,
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Theorem 2 shows that the nonlinear ParaExp algorithm is mathematically equivalent
to the parareal algorithm (2.2) where the coarse integrator G is an exponential
integrator for w′ = Aw. There is however an important computational difference:
due to the linearity of G we can write

G(Tn, Tn−1,Uk+1
n−1)

= G
(
Tn, Tn−1, F (Tn−1, Tn−2,Ukn−2)−G(Tn−1, Tn−2,Ukn−2)+G(Tn−1, Tn−2,Uk+1

n−2)
)

= G
(
Tn, Tn−1, F (Tn−1, Tn−2,Ukn−2)−G(Tn−1, Tn−2,Ukn−2)

) +G(Tn, Tn−2,Uk+1
n−2),

which corresponds to the coarse propagation of a jump over [Tn−1, Tn] plus the
coarse propagation of Uk+1

n−2 over a longer time interval [Tn−2, Tn]. Repeating a

similar calculation for G(Tn, Tn−2,Uk+1
n−2), we derive

G(Tn, Tn−2,Uk+1
n−2) = G

(
Tn, Tn−2, F (Tn−2, Tn−3,Uk

n−3)−G(Tn−2, Tn−3,Uk
n−3)

)

+G(Tn, Tn−3,Uk+1
n−3),

which again corresponds to the coarse propagation of a jump (over two intervals)
plus a coarse propagation of Uk+1

n−3 (over three intervals). This recursion can be

repeated, and it will terminate as Uk+1
n−n = U0 is known, leading to an alternative,

more compact formulation of the nonlinear ParaExp algorithm:

initialize U0
n = G(Tn, T0,U0) for n = 0, 1, . . . , N,

Uk+1
n = G(Tn, T0,U0)+

n∑
j=1

G
(
Tn, Tj , F (Tj , Tj−1,Uk

j−1)−G(Tj , Tj−1,Uk
j−1)

)
.

Here the coarse integrator is applied in parallel, which is different from parareal.
The price to pay is that the coarse integrations now span multiple overlapping time
intervals [Tj , Tn]. As in the original ParaExp algorithm, these linear homogeneous
problems can be solved very efficiently using Krylov methods.

3 Numerical Illustration

We now investigate the nonlinear ParaExp algorithm numerically. We solve the
nonlinear wave equation utt = uxx + αu2 on the time-space domain [0, 4] ×
[−1, 1] with homogeneous Dirichlet boundary conditions and u(0, x) = e−100x2

,
u′(0, x) = 0, where the parameter α ≥ 0 controls the nonlinear character of the
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problem. The problem is discretized in space using finite differences with m = 200
equispaced interior grid points on [−1, 1]. This gives rise to the ODE

[
u
v

]′
=

[
O I

L O

] [
u
v

]
+

[
0
αu2

]
,

where L = tridiag(1,−2, 1)/h2, h = 2/(m + 1), and the operation u2 has to
be understood component-wise. We partition the time interval [0, 4] into n = 20
slices of equal length and use as fine integrator MATLAB’s ode15s routine with a
relative error tolerance of 10−6. For the linear coarse integration we use MATLAB’s
expm.

Table 1 lists, for varying α ∈ {0, 2, 4, 6, 8.2}, the number of iterations required
by our nonlinear ParaExp algorithm to achieve an error of order ≈ 1e − 6 over all
time slices. Figure 1 shows, again for varying α, the reference solutions u(t, x) on
the left, and on the right the error of the ParaExp solution at each time point tj after
k = 1, 2, . . . iterations. Here a number of k = 0 iterations corresponds to the error
of the ParaExp initialization with the coarse integrator.

The parameter α = 0 gives rise to a linear problem. Note that for this case the
error of the initialization is of order ≈ 10−6, and not of order machine precision as
one would expect from the exponential integration using expm. This is because our
reference solution has been computed via ode15s and is of lower accuracy.

For increasing values of α the nonlinear character of the wave equation becomes
more pronounced and typically more ParaExp iterations are required. It depends on
the efficiency of the coarse propagator (in this case expm) if any speed-up would be
obtained in a parallel implementation. For large-scale problems the use of (rational)
Krylov techniques as in [2] is recommended. The nonlinear ParaExp method
becomes inefficient for highly nonlinear problems, with 14 iterations required for
α = 8.2. This is expected and we note that for α ≈ 9 the solution u(t, x) even
appears to have a singularity in the time-space domain of interest.

Table 1 Number of iterations required by the nonlinear ParaExp algorithm to solve a nonlinear
wave equation to fixed accuracy uniformly over a time interval

Parameter α 0 2 4 6 8.2

# iterations 1 5 7 7 14

The parameter α controls the nonlinearity of the problem



A Nonlinear ParaExp Algorithm 269

time

sp
ac

e
exact solution, alpha = 0

 

 

0 1 2 3 4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

time point

re
la

tiv
e 

L2
 e

rr
or

convergence, alpha = 0

 

 

iter 0 iter 1 iter 2 iter 3 iter 4 ...

time

sp
ac

e

exact solution, alpha = 2

 

 

0 1 2 3 4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

time point

re
la

tiv
e 

L2
 e

rr
or

convergence, alpha = 2

 

 

iter 0 iter 1 iter 2 iter 3 iter 4 ...

time

sp
ac

e

exact solution, alpha = 4

 

 

0 1 2 3 4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

time point

re
la

tiv
e 

L2
 e

rr
or

convergence, alpha = 4

 

 

iter 0 iter 1 iter 2 iter 3 iter 4 ...

time

sp
ac

e

exact solution, alpha = 6

 

 

0 1 2 3 4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

time point

re
la

tiv
e 

L2
 e

rr
or

convergence, alpha = 6

 

 

iter 0 iter 1 iter 2 iter 3 iter 4 ...

time

sp
ac

e

exact solution, alpha = 8.2

 

 

0 1 2 3 4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

time point

re
la

tiv
e 

L2
 e

rr
or

convergence, alpha = 8.2

 

 

iter 0 iter 1 iter 2 iter 3 iter 4 ...

Fig. 1 Exact solutions (left) and convergence (right) of the nonlinear ParaExp algorithm applied
to a nonlinear wave equation with varying parameter α ∈ {0, 2, 4, 6, 8.2} (top to bottom)
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On Optimal Coarse Spaces for Domain
Decomposition and Their Approximation

Martin J. Gander, Laurence Halpern, and Kévin Santugini-Repiquet

1 Definition of the Optimal Coarse Space

We consider a general second order elliptic model problem

L u = f in Ω, (1)

with some given boundary conditions that make the problem well posed. We decom-
pose the domain Ω first into non-overlapping subdomains Ω̃j , j = 1, 2, . . . , J ,
and to consider also overlapping domain decomposition methods, we construct
overlapping subdomains Ωj from Ω̃j by simply enlarging them a bit. All domain
decomposition methods provide at iteration n solutions unj on the subdomains Ω̃j ,
j = 1, 2, . . . , J (or on Ωj in the case of overlapping methods, but then we
just restrict those to the non-overlapping decomposition Ω̃j to obtain an overall
approximate solution on which we base our coarse space construction). We want to
study here properties of the correction that needs to be added to these subdomain
solutions in order to obtain the solution u of (1). This would be the best possible
correction a coarse space can provide, independently of the domain decomposition
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method used, and it allows us to define an optimal coarse space, which we then
approximate.

Since the unj are subdomain solutions, they satisfy Eq. (1) on their corresponding
subdomain,

L unj = f in Ω̃j . (2)

Defining the error

enj (x) := u(x)− unj (x), x ∈ Ω̃j ,

we see that the error satisfies the homogeneous problem in each subdomain,

L enj = 0 in Ω̃j . (3)

At the interface between the non-overlapping subdomains Ω̃j the error is in general
not continuous, and also the normal derivative of the error is not continuous, since
the subdomain solutions unj in general do not have this property.1 The best coarse
space, which we call optimal coarse space, must thus contain piecewise harmonic
functions on Ω̃j to be able to represent the error.

2 Computing the Optimal Coarse Correction

Having identified the optimal coarse space, we need to explain a general method
to determine the optimal coarse correction in it. While two different approaches
for specific cases can be found in [9, 10], we present now a completely general
approach: let us denote the interface between subdomain Ω̃j and Ω̃i by Γji , and
let the jumps in the Dirichlet and Neumann traces between subdomain solutions be
denoted by

gnji(x) := unj (x)− uni (x), hnji(x) := ∂nj u
n
j (x)+ ∂ni u

n
i (x), x ∈ Γji, (4)

where ∂nj denotes the outer normal derivative of subdomain Ω̃j . Then the error
satisfies the transmission problem

L enj = 0 in Ω̃j ,

enj (x)− eni (x) = gnji(x) on Γji,

∂nj e
n
j (x)+ ∂ni e

n
i (x) = hnji(x) on Γji.

(5)

1For certain methods, continuity of the normal derivative is however assured, like in the FETI
methods, or continuity of the Dirichlet traces, like in the Neumann-Neumann method or the
alternating Schwarz method. This can be used to reduce the size of the optimal coarse space.
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Its solution lies in the optimal coarse space, and when added to the iterates unj , we
obtain the solution: the domain decomposition method has become a direct solver,
it is nilpotent, independently of the domain decomposition method and the problem
we solve: no better coarse correction is possible!

We now give a weak formulation of the transmission problem (5). To simplify
the exposition, we use the case of the Laplacian, L := −Δ. We multiply the
partial differential equation from (5) in each subdomain Ω̃j by a test function vj
and integrate by parts to obtain

∫
Ω̃j

∇enj · ∇vj dx −
∑
i

∫
Γji

∂enj

∂nj
vj ds = 0. (6)

If we denote by ẽn and ṽ the functions defined on all ofΩ by the piecewise definition
ẽn|Ω̃j := enj and ṽ|Ω̃j := vj , then we can combine (6) over all subdomains Ω̃j to
obtain

∫
Ω

∇ ẽn · ∇ṽ dx −
∑
j>i

∫
Γji

(
∂enj

∂nj
vj + ∂eni

∂ni
vi

)
ds = 0. (7)

If we impose now continuity on the test functions vj , i.e. ṽ to be continuous, then
(7) becomes

∫
Ω

∇ ẽn · ∇ṽ dx −
∑
j>i

∫
Γji

(
∂enj

∂nj
+ ∂eni

∂ni

)
ṽ ds = 0, (8)

and we can use the data of the problem to remove the normal derivatives,

∫
Ω

∇ ẽn · ∇ṽ dx −
∑
j>i

∫
Γji

hnji ṽ ds = 0. (9)

It is therefore natural to choose a continuous test function ṽ to obtain a variational
formulation of the transmission problem (5), a function in the space

V := {v : v|Ω̃j =: vj ∈ H1(Ω̃j ), vj = vi on Γji}. (10)

Now the jump in the Dirichlet traces of the errors would in general be imposed on
the trial function space,

Un := {u : u|Ω̃j =: uj ∈ H1(Ω̃j ), uj − ui = gnji on Γji}, (11)
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so the complete variational formulation for (5) is:

find ẽn ∈ Un, such that
∫
Ω

∇ ẽn · ∇ṽ dx −
∑
j>i

∫
Γji

hnji ṽ ds = 0 ∀ṽ ∈ V. (12)

To discretize the variational formulation (12), we have to choose approximations
of the spaces V and Un, and both spaces contain interior Dirichlet conditions. In a
finite element setting, it is natural to enforce the homogeneous Dirichlet conditions
in Vh strongly if the mesh is matching at the interfaces, i.e. we just impose the nodal
values to be the same for Vh.

While at the continuous level, the optimal coarse correction lies in an infinite
dimensional space except for 1d problems, see [6, 9], at the discrete level this space
becomes finite dimensional. It is in principle then possible to use the optimal coarse
space at the discrete level and to obtain a nilpotent method, i.e. a method which
converges after the coarse correction, see for example [7, 8, 10, 11], and also [1] for
conditions under which classical subdomain iterations can become nilpotent. It is
however not very practical to use these high dimensional optimal coarse spaces, and
we are thus interested in approximations.

3 Approximations of the Optimal Coarse Space

We have seen that the optimal coarse space contains functions which satisfy
the homogeneous equation in each non-overlapping subdomain Ω̃j , i.e. they are
harmonic in Ω̃j . To obtain an approximation of the optimal coarse space, it is
therefore sufficient to define an approximation for the functions on the interfaces
Γji , which are then extended harmonically inside Ω̃j . A natural way to approximate
the functions on the interfaces is to use a Sturm-Liuville eigenvalue problem, and
then to select eigenfunctions which correspond to modes on which the subdomain
iteration of the domain decomposition methods used is not effective. This can be
done either for the entire subdomain, for example choosing eigenfunctions of the
Dirichlet to Neumann operator of the subdomain, see [2], or any other eigenvalue
problem along the entire boundary of the subdomain Ω̃j , or piecewise on each
interface Γji , in which case also basis functions relating cross points need be added
[8, 11], see also the ACMS coarse space [12] and references therein. This can be
done solving for example lower dimensional counterparts of the original problem
along the interface Γji with boundary conditions one at one end, and zero at the
other, creating something like hat functions around the crosspoint. Doing this for
example for a rectangular domain decomposed into rectangular subdomains for
Laplace’s equation, this would just generate Q1 functions on each subdomain. It is
important however to not force these function to be continuous across subdomains,
since they have to solve approximately the transmission problem (5) whose solution
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is not continuous, except for specific methods.2 So the resulting coarse basis
function is not a hat function with one degree of freedom, but it is a discontinuous
hat function with e.g. four degrees of freedom if four subdomains meet at that cross
point.

Different approaches not based on approximating an optimal coarse space, but
also using eigenfunctions in the coarse space to improve specific inequalities in the
convergence analysis of domain decomposition methods are GenEO [14], whose
functions are also harmonic in the interior of subdomains, and [3, 4], where volume
eigenfunctions are used which are thus not harmonic within subdomains. For a good
overview, see [13].

4 Concrete Example: The Parallel Schwarz Method

We consider the high contrast diffusion problem ∇·(a(x, y)∇u) = f inΩ = (0, 1)2

with two subdomains Ω1 = (0, 1+δ
2 ) × (0, 1) and Ω2 = ( 1−δ

2 , 1) × (0, 1). The
classical parallel Schwarz method is converging most slowly for low frequencies
along the interface x = 1

2 , i.e. error components represented in the Laplacian case
by sin(kπy), k = 1, 2, . . . ,K for some small integerK , see for example [5]. These
are precisely the eigenfunctions of the eigenvalue problem one obtains when using
separation of variables, which in our high contrast case is

∂y(aΓ ∂yφk) = λkaΓ φk, (13)

where aΓ denotes the trace of the high contrast parameter along the interface, in
our simple example aΓ (y) := a( 1

2 , y), and λk ∈ R denotes the eigenvalues and
φk : (0, 1) �→ R the associated eigenfunctions, k = 1, 2, . . .. So already in the case
of Laplace’s equation, it would be good to enrich a classicalQ1 coarse space aligned
with the decomposition with harmonically extended eigenfunctionsφk := sin(kπy),
k = 1, 2, . . . ,K into the subdomains. We now illustrate why this is even more
important in the case of high contrast channels, the a(x, y) of which are shown in
Fig. 1. We show in Fig. 2 the performance of a classical parallel Schwarz method
with two subdomains for increasing overlap sizes. We see that for the case of the
long channels, increasing the overlap improves the performance of the classical
Schwarz methods as for the Laplacian,3 and nothing special happens between
overlap 41h and overlap 43h. This is however completely different for the shortened
channel case, independently if they are closed or not, were increasing the overlap
does not help at all, until suddenly changing from overlap 41h and overlap 43h,
the method becomes fast. This can be easily understood by the maximum principle,
and is illustrated in Fig. 3 which shows the errors in the subdomains. We clearly see

2See footnote 1.
3The same happens if inclusions are only contained within the subdomains, outside the overlap.
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Fig. 1 An example with long channels, shortened channels, and closed shortened channels
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Fig. 2 Convergence behavior of a classical parallel Schwarz method for long high contrast
channels (left), and shortened high contrast channels (right)

that due to the fast diffusion the error propagates rapidly from the interface into the
subdomains, and the maximum principle indicates slow convergence, as long as the
overlap does not contain the shortened channels. As soon as the overlap contains the
shortened channels, convergence becomes rapid. This is very different for the long
channels, as illustrated in Fig. 4. Here the channels touch the outer boundary of the
domain, and the maximum principle indicates rapid convergence.

The case of shortened channels is precisely the situation where the convergence
mechanism of the underlying domain decomposition method has problems, and if
one can not afford a large enough overlap, a well chosen coarse space can help.
It suffices to add harmonically extended low frequency modes of the cheap, lower
dimensional interface eigenvalues problem to the coarse space, leading to the so
called Spectrally Harmonically Enriched Multiscale coarse space (SHEM), see
[8, 11]. Figure 5 shows that the eigenfunctions of the cheap interface eigenvalue
problem are almost identical to the eigenfunctions obtained from the expensive DtN
eigenvalue problem on the shortened channels from [2, 12], and still very similar to
the ones of the DtN eigenvalue problem on the shortened closed channels, except
for the first one, where the DtN eigenvalue problem for the shortened channel case
sees the connection leading to a lowest mode like for one wider channel. We show
in Fig. 6 on the left the eigenvalues of the cheap interface eigenvalue problem,
compared to the eigenvalues of the expensive DtN-operator on the shortened
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Fig. 3 Error for the first four iterations in the shortened channel case: top overlap 41h, and bottom
overlap 43h. We see that slightly more overlap suddenly leads to much more rapid convergence
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Fig. 4 Error for the first four iterations in the long channel case: top overlap 41h, and bottom
overlap 43h. We see that slightly more overlap leads only to slightly more rapid converge
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Fig. 6 Left: staircase behavior of the eigenvalues. Right: convergence with optimized coarse space
on shortened channels
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Fig. 7 Shortened closed channels problem. Left: coarse space based on the cheap interface
eigenvalue problem. Right: coarse space based on the expensive DtN eigenvalue problem which
sees the exact structure inside the subdomain, i.e. the shortened closed channels. Note that the
performance is essentially the same: in both cases one needs 5 or more enrichment functions to get
good convergence

channels and the shortened closed channels. They all indicate via the smallest
eigenvalues that there are five channels, and five coarse functions are needed for
good convergence, see Fig. 6 on the right. The DtN-eigenvalue problem for the
shortened closed channels also indicates that there is only one eigenvalue going to
zero when the contrast becomes large. To obtain good convergence, it is however
also in the closed shortened channel case necessary to include five enrichment
functions in the coarse space, see Fig. 7. It thus suffices as in SHEM to use the
inexpensive interface eigenvalue problem to construct an effective approximation of
the optimal coarse space, see [8] for simulations in the more general case of many
subdomains and contrast functions.
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5 Conclusions

We introduced the concept of optimal coarse spaces for general elliptic problems
and domain decomposition methods with and without overlap, i.e. coarse spaces
which lead to convergence in one iteration. We then gave a variational formulation
for the associated coarse problem that needs to be solved in each iteration. We
also explained how to approximate this coarse problem, by employing coarse space
components for which the underlying domain decomposition method exhibits slow
convergence, and illustrated this approach with a high contrast problem containing
channels. The main advantage of our construction is that it is not based on a
convergence analysis, but on the domain decomposition iteration itself, and can thus
also be applied to methods where general convergence analyses are not yet available,
like for example RAS [8, 10] and optimized Schwarz methods [9].
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Analysis of Overlap in Waveform
Relaxation Methods for RC Circuits

Martin J. Gander, Pratik M. Kumbhar, and Albert E. Ruehli

1 Introduction

Classical Waveform Relaxation (WR) was introduced in 1981 for circuit solver
applications [5]. In WR, large systems of differential equations modeling electric
circuits are partitioned into small subcircuits, which are then solved separately, and
an iteration is used to get better and better approximations to the overall solution of
the underlying large circuit. For classical WR, smart partitioning is very important to
enhance the convergence rate, while optimized WR uses more effective transmission
conditions to enhance the convergence rate, and thus permits also partitioning at less
suitable locations in the circuit without negatively affecting the convergence rate.
We study here for the first time the influence of overlapping subcircuits in classical
and optimized WR methods applied to RC circuits.

2 The RC Circuit Equations

Circuit equations are obtained from a given circuit using Modified Nodal Analysis
(MNA), a major invention that led for circuits to a similar assembly procedure like
the finite element method [4]. The MNA circuit equations for the RC circuit of
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length N shown in Fig. 1 are

v̇ =

⎡
⎢⎢⎢⎢⎢⎣

b1 c1

a1 b2 c2
. . .

. . .
. . .

aN−2 bN−1 cN−1

aN−1 bN

⎤
⎥⎥⎥⎥⎥⎦

v + f, (1)

where the entries in the tridiagonal matrix are given by

⎧⎨
⎩
ai = 1

RiCi+1
,

ci = 1
RiCi

,
i = 1, 2, .., N − 1, bi =

⎧⎪⎪⎨
⎪⎪⎩

−( 1
Rs

+ 1
R1
) 1
C1
, i = 1,

−( 1
Ri−1

+ 1
Ri
) 1
Ci
, i = 2, 3, . . . , N − 1,

− 1
RN−1CN

, i = N.

The resistances Ri and capacitances Ci are strictly positive constants. The source
term on the right-hand side is given by f(t)=(Is(t)/C1, 0, . . . 0)T for some current
function Is(t), and we need to specify initial voltage values v(0) = (v0

1, v
0
2 , .., v

0
N)

T

at time t = 0 to solve this system.

3 The Classical WR Algorithm

To define the classical WR algorithm, we partition the circuit in Fig. 1 with
the voltages v to be determined into two sub-circuits with unknown voltages u
and w. For convenience in the analysis that will follow, we assume N to be
even, and we renumber the nodes: instead of using the numbering from 1 to
N , we use the numbering from −N

2 + 1 to N
2 , see Fig. 2. We thus have v :=

Is Rs

v1

C1

v2
R1

C2

R2
v3

C3

RN−1

CN

vN

Fig. 1 Finite RC circuit of length N
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v1 v2 v3 vN/2v0v−1
v− N

2 +1

u3u2u1u0u−1
u− N

2 +1

w0 w1 w2 w3 wN/2

Fig. 2 Decomposition into two sub-circuits with two nodes overlap

(v−N
2 +1, . . . , v−1, v0, v1, . . . .vN/2)

T , which is still of length N , and

u := (u−N
2 +1, . . . , un−2, un−1, un)

T , uj = vj for j = −N
2

+ 1, . . . , n,

w := (w1, w2, . . . , wN
2
)T , wj = vj for j = 1, . . . ,

N

2
,

which are of length N
2 +n and N

2 , since we added n nodes to subcircuit u to have an
overlap of n nodes. The classical WR algorithm applied to the two sub-systems is

u̇k+1 =

⎡
⎢⎢⎢⎢⎣

b−N
2 +1 c−N

2 +1

. . .
. . .

. . .

an−2 bn−1 cn−1

an−1 bn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u−N
2 +1
...

un−1

un

⎤
⎥⎥⎥⎥⎦

k+1

+

⎡
⎢⎢⎢⎣

0
...

0
cn u

k+1
n+1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

f−N
2 +1
...

fn−1

fn

⎤
⎥⎥⎥⎥⎦ ,

ẇk+1 =

⎡
⎢⎢⎢⎢⎣

b1 c1

a1 b2 c2
. . .

. . .
. . .

a N
2 −1 bN2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w1

w2
...

wN
2

⎤
⎥⎥⎥⎥⎦

k+1

+

⎡
⎢⎢⎢⎣

a0w
k+1
0

0
...

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

f1

f2
...

fN
2

⎤
⎥⎥⎥⎥⎦ ,

(2)

where uk+1
n+1 andwk+1

0 are determined in classical WR by the transmission conditions

uk+1
n+1 = wkn+1 and wk+1

0 = uk0. (3)

Note that in these transmission conditions, we exchange voltages at the interfaces.
The two subsystems are given the initial voltages u(0) = (v0

−N
2 +1

, . . . ., v0
n−1, v

0
n)
T

and w(0) = (v0
1, v

0
2 , .., v

0
N
2
)T , and the initial waveforms u0

0,w0
n+1 are needed to start

the WR algorithm.
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To simplify our analysis of the convergence factor, we assume that all resistors
and capacitors are the same, R := Ri and C := Ci for all i ∈ Z, which implies

b := bi and a := ai = ci for all i ∈ Z, (4)

and for our RC circuit b = −2a. To further simplify the analysis, we also assume
that the circuit is of infinite length, N → ∞, and by linearity it suffices to
analyze the homogeneous problem corresponding to the error equations, and to
study convergence to the zero solution. Taking a Laplace transform in time with
Laplace parameter s ∈ C of the WR algorithm (2), we get in the homogeneous case
when N → ∞

s ûk+1 =
⎡
⎢⎣
. . .

. . .
. . .

a b a

a b

⎤
⎥⎦
⎡
⎢⎣

...

ûn−1

ûn

⎤
⎥⎦
k+1

+
⎡
⎢⎣

...

0
a ŵkn+1

⎤
⎥⎦ ,

s ŵk+1 =
⎡
⎢⎣
b a

a b a

. . .
. . .

. . .

⎤
⎥⎦
⎡
⎢⎣
ŵ1

ŵ2
...

⎤
⎥⎦
k+1

+
⎡
⎢⎣
a ûk0

0
...

⎤
⎥⎦ .

(5)

Lemma 1 Let a > 0, b < 0, i = √−1, and s := σ + iω, with σ > 0 . If

−b ≥ 2a, then the roots λ1,2 := s−b±
√
(b−s)2−4a2

2a of the characteristic equation

aûk+1
j−1 + (b− s)ûk+1

j + aûk+1
j+1 = 0 of the subsystems in (5) satisfy |λ2| < 1 < |λ1|.

Proof Since a > 0, b < 0 and −b ≥ 2a, we can write b = −(2 + ε)a for some
ε ≥ 0. Let p + iq := √

(b − s)2 − 4a2, for p, q ∈ R, with p > 0. We then obtain
with σ > 0 that

|λ1| = | s − b + √
(b − s)2 − 4a2

2a
| = |σ + i · ω + (2 + ε)a

2a
+ 1

2a
(p + i · q)|

= |(1 + εa + σ + p

2a
+ i

2a
(ω + q)| > 1.

Now by Vieta’s formulas, λ1λ2 = 1, which implies |λ2| < 1 and thus completes the
proof.

Theorem 1 (Convergence Factor for Classical WR with Overlap) The conver-
gence factor of the classical WR algorithm (5) with n nodes overlap is

ρcla(s, a, b) =
( 1

λ2
1

)n+1
. (6)
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Proof The iterate uk+1 for the first subsystem satisfies the recurrence relation

a ûk+1
j−1 + (b − s) ûk+1

j + a ûk+1
j+1 = 0 for j = . . . , n− 2, n− 1, n, (7)

whose solution is ûk+1
j = Ak+1λ

j
1 +Bk+1λ

j
2 for j = . . . , n− 2, n− 1, n. Since the

solution uk+1
j must remain bounded for all j , we must have Bk+1 = 0. Substituting

j = n into (7), we can determine Ak+1 and obtain the general solution

ûk+1
j =

(
− a

aλ−1
1 + (b − s)

)
·
( 1

λn1

)
·λj1 ·ŵkn+1 for j = . . . , n−2, n−1, n. (8)

Similarly, we obtain for the second subsystem

ŵk+1
j =

( −a
(b − s)+ aλ2

)
· λj−1

2 · ûk0 for j = 1, 2, . . . . (9)

Combining (8) and (9) and using Vieta’s formulas λ1 + λ2 = s−b
a

and λ1λ2 = 1
then gives

ûk+1
j =

( −a
aλ−1

1 +(b−s)
)

·
( −a
(b−s)+aλ2

)
·
(
λn2
λn1

)
· λj1ûk−1

0

=
(

1
λ2

1

)n+1
ûk−1
j =: ρcla(s, a, b)ûk−1

j ,

and similarly we find also for the second subsystem ŵk+1
j = ρcla(s, a, b)ŵ

k−1
j ,

which concludes the proof.

We see that the convergence factor ρcla(s, a, b) is the same for all nodes in both
subsystems, and since |λ1| > 1, classical WR always converges, and convergence
becomes faster when increasing the number of nodes the subsystems overlap. In the
case |b| = 2a however, |ρcla(s, a, b)| → 1 when s → 0, which indicates slow
convergence for this case.

Remark 1 Theorem 1 implies û2k
j = (ρcla(s, a, b))

kû0
j and ŵ2k

j = (ρcla(s, a, b))
k

ŵ0
j . Using the Parseval-Plancherel identity, one can then obtain in the time domain

‖u2k
j (t)‖σ ≤

(
sup
ω∈R

ρcla(s, a, b)
)k‖u0

j (t)‖σ , ‖w2k
j (t)‖σ ≤

(
sup
ω∈R

ρcla(s, a, b)
)k‖w0

j (t)‖σ ,

where ‖x(t)‖σ := ‖e−σ tx(t)‖L2 . For σ = 0, we thus obtain convergence in L2.
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4 The Optimized WR Algorithm

New transmission conditions were proposed in [1, 3] for WR, namely

(uk+1
n+1 − uk+1

n )+ αuk+1
n+1 = (wkn+1 −wkn)+ αwkn+1,

(wk+1
1 −wk+1

0 )+ βwk+1
0 = (uk1 − uk0)+ βuk0,

(10)

where α and β are weighting factors that can be optimized to obtain more rapid
convergence, leading to optimized waveform relaxation algorithms (OWR). If we
divide the first equation in (10) by α and the second by β, we see that α and
β represent resistances, and the new transmission conditions thus exchange both
voltages and currents at the interfaces, see also the more recent reference [6]. Note
also that the classical transmission conditions (3) become a special case when taking
very large values of α and β.

Theorem 2 (Convergence Factor for OWR with Overlap) The convergence
factor of the OWR algorithm with n nodes overlap is

ρopt (s, a, b, α, β) =
( 1

λ2
1

)n ·
( α + 1 − λ1

λ1(1 + α)− 1

)
.
( λ1 + β − 1

1 + (β − 1)λ1

)
. (11)

Proof The transmission conditions (10) can we rewritten as

uk+1
n+1 = uk+1

n

1 + α
+wkn+1 − wkn

1 + α
, wk+1

0 = −wk+1
1

β − 1
+ uk0 + uk1

β − 1
.

Proceeding with these values as in the proof of Theorem 1 then leads to (11).

We see that OWR contains an extra term in its convergence factor, compared to
classical WR, and with a good choice of α and β this term can be made smaller than
one and thus leads to better convergence. To obtain the best possible convergence,
we need to solve the min-max problem

min
α,β

(
max
s

|ρopt(s, a, b, α, β)|
)
. (12)

To simplify this min-max problem in the complex plane, the following Lemma is
useful:

Lemma 2 Let b < 0, a > 0, −b ≥ 2a, α > 0 and β < 0. Then the convergence
factor ρopt (s, a, b, α, β) is an analytic function in the right half of the complex
plane.

Proof We need to show that the denominator of ρopt (s, a, b, α, β) does not have any
zeros in the right half of the complex plane. We show this by contradiction. Assume
there is a zero. Then λ1 = 0 or (1 + α)λ1 − 1 = 0 or 1 + (β − 1)λ1 = 0. The
first case is not possible since under the given assumptions |λ1| > 1. Considering
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the second case we have λ1 = 1
1+α . Since α > 0, |λ1| = | 1

1+α | < 1 which is a
contradiction. Similarly, the third case can not hold since β < 0, which concludes
the proof.

Since ρopt (s, a, b, α, β) is analytic in the right half of the complex plane, i.e for
s = σ + iω, σ ≥ 0, by the maximum principle for analytic functions, its maximum
in modulus is attained on the boundary. Let s = r · eiθ , where r ∈ [0,∞)and
θ ∈ [−π/2, π/2]. From the definition of λ1 given in Lemma 1, we observe that

limr→∞ λ1 = ∞ and hence limr→∞ ρopt (s, a, b, α, β) = limr→∞
( −1
(α+1)(β−1)

)
·(

1
λ2

1

)n = 0. Thus the maximum lies on the boundary when θ = ±π/2 and r < ∞,

i.e. when σ = 0. For σ = 0, one can show that |ρopt (ω, a, b, α, β)| is symmetric
in ω, and hence it is sufficient to optimize the convergence factor for ω ≥ 0. To
simplify the min-max problem further, we use the fact that in our RC circuit, both
sub-systems have very similar electrical properties. Since we assumed furthermore
that all circuit elements have the same value, it makes sense to choose β = −α,
which can be interpreted as having the same current flow between the subsystems,
just into opposite directions. Therefore, the min-max problem (12) simplifies to

min
α

(
max
ω≥0

|ρopt(ω, a, b, α)|
)
, ρopt (ω, a, b, α) =

( α + 1 − λ1

λ1(1 + α)− 1

)2
.
( 1

λ2
1

)n
.

(13)

Theorem 3 (Asymptotically Optimized α) For an RC circuit of infinite length
with b = −(2 + ε) a, where ε → 0, the optimized parameter α∗ for n nodes
overlap is

α∗ =
( ε
n

)1/3
. (14)

Proof This result can be proved using asymptotic analysis: one can show that the
solution to the min-max problem (13) is given by equioscillation when ε → 0, i.e
α∗ satisfies |ρopt(ω̄, a, b, α∗)| = |ρopt (0, a, b, α∗)| and ∂

∂ω
ρopt (ω̄, a, b, α

∗) = 0
for some interior maximum point ω̄ > 0. The details are however too long and
technical for this short paper, and will appear in [2].

5 Numerical Results

We simulate an RC circuit of length N = 80 with R = 0.5 k", C = 0.63 μF,
a = 1

RC
and b = −(2+ε)a. We apply Backward Euler withΔt = 0.1, and simulate

directly the error equations, starting with a random initial guess. In Fig. 3a, we show
for ε = 10−4 the influence of overlap on the convergence of classical and optimized
WR (e.g. WR2 means WR with overlap 2) for a long time interval (0, T ), T = 1000.
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Fig. 3 Convergence for (a) long time T = 1000, and (b) short time T = 2
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Fig. 4 (a) Effect of overlap. (b) Comparison of the optimized α

We see that OWR converges much faster than classical WR, see also Fig. 4a for a
theoretical comparison of the convergence factors. For a short time interval, T = 2,
classical WR is already very fast, see Fig. 3b. We determined the optimal choice of
α for these experiments solving the min-max problem (13) numerically. Next, we
compare this min-max approach with the asymptotic optimization for b = −(2 +
ε)a from Theorem 3, and also with running the algorithm for many choices of α
numerically. Figure 4b shows that all three give similar results. Finally, we show in
Fig. 5a, b a comparison of the convergence factors for the differently optimized α
for two choices of ε.
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Fig. 5 Convergence factor for optimized α by different methods for (a) ε = 10−1, and (b)
ε = 10−5

6 Conclusion

We studied here for the first time the influence of overlap on the convergence
of classical and optimized waveform relaxation algorithms for RC circuits. We
defined an optimization problem which permits to obtain a theoretically optimized
parameter leading to the fastest possible convergence of the optimized variant.
Our analysis shows that overlap enhances the performance of both algorithm
variants, which we also illustrated by numerical experiments. While the optimized
variant converges much faster when used on long time intervals compared to the
classical one, for short time intervals the optimization is less important. We finally
compared numerically three different approaches to obtain the optimized parameter
in the transmission conditions, and observed that the three methods give similar
parameters.
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Convergence of Substructuring Methods
for Elliptic Optimal Control Problems

Martin J. Gander, Felix Kwok, and Bankim C. Mandal

1 Introduction

We are interested in an Optimal Control Problem (OCP) where the constraint is
given by an elliptic partial differential equation (PDE):

−∇ · (κ(x)∇y(x)) = u(x) x ∈ Ω,
y(x) = 0 x ∈ ∂Ω. (1)

The goal is to choose a control variable u from an admissible set Uad to minimize
the discrepancy between the solution and the desired state ŷ(x), i.e. to minimize the
objective functional

J (y, u) = 1

2

∫
Ω

|y(x)− ŷ(x)|2dx + λ

2

∫
Ω

|u(x)|2dx. (2)

We formulate and analyze substructuring algorithms for the model elliptic OCP (1)–
(2), which originates from the optimal stationary heating example with controlled
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heat source, on a bounded domainΩ ⊂ R
d . In our setting, y denotes the temperature

at a particular point, κ(x) is the thermal conductivity of Ω , and λ > 0 is a
regularization parameter. We assume u, ŷ ∈ L2(Ω) to ensure a solution of the
problem. For simplicity, we consider Uad = L2(Ω) as the set of all feasible
controls. Then from the first-order optimality conditions (cf. [8]), we obtain the
adjoint equation corresponding to the problem (1)–(2)

−∇ · (κ(x)∇p(x)) = y(x)− ŷ(x) x ∈ Ω,
p(x) = 0 x ∈ ∂Ω, (3)

together with the optimality condition

p(x)+ λu(x) = 0. (4)

We apply Domain Decomposition (DD) methods, more specifically substructuring
methods to solve the state and corresponding adjoint equations. For similar appli-
cations of substructuring methods to solve linear-quadratic elliptic OCPs, see [6].
Although our techniques can be extended to multiple subdomains, we only consider
a decomposition into two non-overlapping subdomains for the sake of simplicity
and compact presentation. For further details on DD methods applied to OCPs, see
[1, 2]. We analyze the convergence of Dirichlet-Neumann (DN) [3] and Neumann-
Neumann (NN) [4] DD methods for the underlying elliptic PDEs (1)–(3). For more
details on DN and NN methods, see [7]. By linearity it suffices to consider the
homogeneous problems, ŷ(x) = 0, and to analyze convergence to zero, since the
corresponding error equations coincide with these homogeneous equations.

2 Dirichlet-Neumann Algorithm

We first apply the Dirichlet-Neumann algorithm to solve the PDEs (1) and (3),
coupled through the condition (4). Suppose the domain Ω is decomposed into two
non-overlapping subdomains, Ω1 and Ω2. We denote by yi, ui, pi the restriction
of y, u, p to Ωi , and by ni the unit outward normal for Ωi on the interface
Γ := ∂Ω1 ∩ ∂Ω2. Then given two initial guesses h0

y(x) and h0
p(x) along the

interface Γ , we write the DN algorithm for both state and adjoint equations (we do
not write explicitly the homogeneous boundary conditions on the outer boundaries
satisfied by the iterates): for k = 1, 2, . . . compute

−∇ · (κ(x)∇yk1
) = uk1 in Ω1,

yk1 = hk−1
y on Γ,

−∇ · (κ(x)∇pk1
) = yk1 in Ω1,

pk1 = hk−1
p on Γ,

(5)

−∇ · (κ(x)∇yk2
) = uk2 in Ω2,

∂n2y
k
2 = −∂n1y

k
1 on Γ,

−∇ · (κ(x)∇pk2
) = yk2 in Ω2,

∂n2p
k
2 = −∂n1p

k
1 on Γ,

(6)
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together with the update conditions:

hky(x) = θyy
k
2 |Γ + (1 − θy)h

k−1
y (x), hkp(x) = θpp

k
2 |Γ + (1 − θp)h

k−1
p (x), (7)

where θy, θp are two relaxation parameters, one for the state variable and another
for the adjoint variable. Note that the adjoint problem in (5) can be derived from the
first order stationarity conditions for the modified objective function

J1(y, u) = 1

2

∫
Ω1

|y − ŷ|2 dx + λ

2

∫
Ω1

|u|2 dx −
∫
Γ

κ
∂y

∂n
· hk−1

p dS(x).

The adjoint system for (6) can be interpreted similarly.
We analyze the convergence of the DN algorithm (5)-(6)-(7) for the 1d case with

Ω1 = (0, α),Ω2 = (α, 1) and κ(x) = 1. By the condition (4), we write uki =
−pki /λ for i = 1, 2. We denote by D(m) := dm

dxm
. Eliminating pk1, p

k
2 from (5)–(6),

we obtain

D(4)yk1 + 1
λ
yk1 = 0,

yk1(α) = hk−1
y ,

D(2)yk1(α) = hk−1
p

λ
,

D(4)yk2 + 1
λ
yk2 = 0,

D(1)yk2 (α) = D(1)yk1 (α),

D(3)yk2 (α) = D(3)yk1 (α),

(8)

with the homogenous boundary conditions yk1(0) = 0, D(2)yk1(0) = 0, yk2 (1) = 0,
and D(2)yk2 (1) = 0 at the outer boundaries. Since λ > 0, we set μ4 := 1/λ. To
simplify notation later, we set

γ1 = cosh
(
μα√

2

)
, γ2 = cosh

(
μ(1−α)√

2

)
, σ1 = sinh

(
μα√

2

)
, σ2 = sinh

(
μ(1−α)√

2

)
,

η1 = cos
(
μα√

2

)
, η2 = cos

(
μ(1−α)√

2

)
, ρ1 = sin

(
μα√

2

)
, ρ2 = sin

(
μ(1−α)√

2

)
.

Then the general solution of (8) becomes

yk1(x) = A sinh

(
μx√

2

)
cos

(
μx√

2

)
+ B cosh

(
μx√

2

)
sin

(
μx√

2

)
, (9)

where A = hk−1
y σ1η1−μ2hk−1

p γ1ρ1

σ 2
1 +ρ2

1
, B = hk−1

y γ1ρ1+μ2hk−1
p σ1η1

σ 2
1 +ρ2

1
, and

yk2(x)=C sinh
(
μ(1−x)√

2

)
cos

(
μ(1−x)√

2

)
+ E cosh

(
μ(1−x)√

2

)
sin

(
μ(1−x)√

2

)
, (10)



294 M. J. Gander et al.

with

C = −Aσ1σ2ρ1ρ2 + γ1γ2η1η2

η2
2 + σ 2

2

+ B
γ1η1σ2ρ2 − σ1ρ1γ2η2

η2
2 + σ 2

2

,

E = −Aγ1η1σ2ρ2 − σ1ρ1γ2η2

η2
2 + σ 2

2

− B
σ1σ2ρ1ρ2 + γ1γ2η1η2

η2
2 + σ 2

2

.

Using (9) and (10), the update conditions (7) are simplified to

hky = (
1 − θy

)
hk−1
y + θy

(
hk−1
y v − μ2hk−1

p w
)
,

hkp = (
1 − θp

)
hk−1
p + θp

(
hk−1
y

μ2 w + hk−1
p v

)
,

(11)

with the two functions

v(α,μ) = −ρ1ρ2η1η2 + σ1σ2γ1γ2(
σ 2

1 + ρ2
1

) (
η2

2 + σ 2
2

) , w(α,μ) = γ1σ1ρ2η2 − ρ1η1γ2σ2(
σ 2

1 + ρ2
1

) (
η2

2 + σ 2
2

) , (12)

and we obtain the following convergence results.

Theorem 1 (Convergence in the Symmetric Case) For symmetric subdomains,
α = 1/2 in (5)-(6)-(7), the DN algorithm for the coupled PDEs converges linearly
for 0 < θy, θp < 1, θy �= 1/2, θp �= 1/2. For θy = 1/2 = θp, it converges in two
iterations. Convergence is independent of the value of λ.

Proof For α = 1/2, v(α,μ) = −1, w(α,μ) = 0. The expressions (11) become

hky = (
1 − 2θy

)
hk−1
y = (

1 − 2θy
)k
h0
y, h

k
p = (

1 − 2θp
)
hk−1
p = (

1 − 2θp
)k
h0
p.

Therefore the convergence is linear for 0 < θy, θp < 1, θy �= 1/2, θp �= 1/2. If
θy = 1/2 = θp, we have h1

y = 0 = h1
p, and hence the desired converged solution is

achieved after one more iteration.

We now focus on the more interesting asymmetric subdomain case (α �= 1/2).

Theorem 2 (Convergence in the Asymmetric Case) Suppose α �= 1/2. Then the
DN algorithm (5)-(6)-(7) for the coupled PDEs converges in at most three iterations
if and only if (θy, θp) equals either

(
Λ+,Λ−)

or
(
Λ−,Λ+)

, where

Λ± := 1

(1 − v)
± |w|
(1 − v)

√
(1 − v)2 +w2

. (13)
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Proof For α �= 1/2, we set h̄kp := μhkp, h̄
k
y := hky

μ
. We rewrite the updating terms

(11) in the matrix form

(
h̄ky
h̄kp

)
=

[(
1 − θy 0

0 1 − θp

)
+

(
θyv(α,μ) −θyw(α,μ)
θpw(α,μ) θpv(α,μ)

)](
h̄k−1
y

h̄k−1
p

)
.

Note that the matrix of the system on the right side (which we call S) is never zero
for any particular set of values θy, θp. So we do not get two-step convergence for
α �= 1/2, unlike in Theorem 1. We claim that there is some positive integer n, for
which Sn = 0. This results in

(
h̄ny
h̄np

)
= Sn

(
h̄0
y

h̄0
p

)
=

(
0
0

)
,

so that the DN algorithm converges in n+ 1 iterations. The spectral radius of S is

Υ
(
θy, θp, α, μ

) := max

{∣∣∣∣1 − 1

2

(
θy + θp

)
(1 − v)± 1

2

√(
θy − θp

)2
(1 − v)2 − 4θyθpw2

∣∣∣∣
}
.

For each α ∈ (0, 1) and μ > 0, we solve the system

1 − 1

2

(
θy + θp

)
(1 − v) = 0,

(
θy − θp

)2
(1 − v)2 − 4θyθpw2 = 0 (14)

simultaneously for θy, θp to obtain
(
Λ+,Λ−)

, as in Eq. (13). Υ being symmetric
with respect to θy, θp,

(
Λ−,Λ+)

is also a solution of the system (14). Therefore
Υ

(
Λ±,Λ∓, α, μ

) = 0, resulting in S2 = 0 and hence three step convergence to
the exact solution. For any other values of (θy, θp), the spectral radius of S is non-
zero, so the algorithm cannot converge to the exact solution in a finite number of
iterations.

Remark 1 Since v(α,μ) ≤ 0 (which can be seen from (12) by noting that γi ≥
|ηi | , σi ≥ |ρi | for all α,μ), Eq. (13) implies that Λ− ∈ (0, 1) and Λ+ ∈ (0, 2).
Note that unlike the symmetric case α = 1/2, it is possible to have convergence
for θy > 1; for α = 0.99 and μ = √

8, convergence in three steps occurs for
(θy, θp) = (1.000685490, 0.9621364448).

Remark 2 For a symmetric decomposition of a rectangular domain in 2D into two
equal subdomains, it can be shown that Λ± = 0.5 still gives two-step convergence
in the DN method. For an asymmetric decomposition, however, the optimal values
may be different, see the last example in Sect. 4.
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3 Neumann-Neumann Algorithm

To write the NN algorithm for both state and adjoint equations (1)–(3), we again
divide Ω into two non-overlapping subdomains, Ω1 and Ω2. We use the same
notations as in Sect. 2. Given two initial guesses g0

y(x) and g0
p(x) along the interface

Γ , the NN algorithm is (again we do not write explicitly the homogeneous boundary
conditions on the outer boundaries satisfied by the iterates): for k = 1, 2, . . .
compute the approximations

−∇ · (κ(x)∇yki
) = uki in Ωi,

yki = gk−1
y on Γ,

(15)

followed by the correction step,

−∇ · (κ(x)∇ψki
) = 0 in Ωi,

∂niψ
k
i = ∂n1y

k
1 + ∂n2y

k
2 on Γ,

(16)

and similarly for the adjoint equation, we compute

−∇ · (κ(x)∇pki
) = yki in Ωi,

pki = gk−1
p on Γ,

(17)

followed by the correction step,

−∇ · (κ(x)∇ϕki
) = 0 in Ωi,

∂ni ϕ
k
i = ∂n1p

k
1 + ∂n2p

k
2 on Γ.

(18)

The update conditions for gky and gkp are

gky(x) = gk−1
y (x)− θy

(
ψk1 |Γ + ψk2 |Γ

)
,

gkp(x) = gk−1
p (x)− θp

(
ϕk1 |Γ + ϕk2 |Γ

)
. (19)

We again analyze the convergence for the NN algorithm (15)–(19) for Ω1 =
(0, α),Ω2 = (α, 1) and κ(x) = 1. By (4), we have uki = −pki /λ for i = 1, 2.
Eliminating pk1, p

k
2 from (15)–(17), we obtain

D(4)yk1 + 1
λ
yk1 = 0,

yk1 (α) = gk−1
y ,

D(2)yk1 (α) = gk−1
p

λ
,

D(4)yk2 + 1
λ
yk2 = 0,

yk2 (α) = gk−1
y ,

D(2)yk2 (α) = gk−1
p

λ
,

(20)



DN and NN Methods for OCP 297

with the homogenous boundary conditions yk1(0) = 0, D(2)yk1(0) = 0, yk2 (1) = 0,
and D(2)yk2 (1) = 0 at the outer boundaries. With μ4 := 1/λ, the solutions of (20)
become

yk1(x) = E1 sinh
(
μx√

2

)
cos

(
μx√

2

)
+ E2 cosh

(
μx√

2

)
sin

(
μx√

2

)
,

yk2(x) = F1 sinh
(
μ(1−x)√

2

)
cos

(
μ(1−x)√

2

)
+ F2 cosh

(
μ(1−x)√

2

)
sin

(
μ(1−x)√

2

)
,

where

E1 = gk−1
y σ1η1 − μ2gk−1

p γ1ρ1

σ 2
1 + ρ2

1

, E2 = gk−1
y γ1ρ1 + μ2gk−1

p σ1η1

σ 2
1 + ρ2

1

,

F1 = gk−1
y σ2η2 − μ2gk−1

p γ2ρ2

σ 2
2 + ρ2

2

, F2 = gk−1
y γ2ρ2 + μ2gk−1

p σ2η2

σ 2
2 + ρ2

2

.

Finally solving ψki , ϕ
k
i in (16)–(18) and replacing them in (19) we get the updating

terms

gky = gk−1
y − θy(g

k−1
y z1 + μ2gk−1

p z2),

gkp = gk−1
p − θp(g

k−1
p z1 − 1

μ2 g
k−1
y z2),

(21)

with the functions z1(α,μ) = μ√
2

(
σ1γ1+ρ1η1

σ 2
1 +ρ2

1
+ σ2γ2+ρ2η2

σ 2
2 +ρ2

2

)
, and z2(α,μ) =

μ√
2

(
σ1γ1−ρ1η1

σ 2
1 +ρ2

1
+ σ2γ2−ρ2η2

σ 2
2 +ρ2

2

)
.

Theorem 3 (Convergence of the NN Algorithm) The NN algorithm for the
coupled PDEs (15)–(19) converges in at most three iterations if (θy, θp) is any of
the pairs

(
Θ+,Θ−)

,
(
Θ−,Θ+)

, where Θ± := 1
z1

± |z2|
z1

√
z2

1+z2
2

.

Proof Setting ḡkp := μgkp, ḡ
k
y := gky

μ
, we rewrite the updating terms (21) as:

(
ḡky
ḡkp

)
=

(
1 − θyz1 −θyz2

θpz2 1 − θpz1

)(
ḡk−1
y

ḡk−1
p

)
.

The matrix on the right side (we call P ) is never zero for any set of values θy, θp.
But like in the DN method, if we have Pn = 0, for some n, then we get

(
ḡny
ḡnp

)
= Pn

(
ḡ0
y

ḡ0
p

)
=

(
0
0

)
,
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resulting in convergence in n + 1 iterations. The spectral radius of P is:

Φ
(
θy, θp, α,μ

) := max

{∣∣∣∣1 − 1
2

(
θy + θp

)
z1 ± 1

2

√(
θy − θp

)2
z2

1 − 4θyθpz2
2

∣∣∣∣
}

.

We solve the system 1 − 1
2

(
θy + θp

)
z1 = 0,

(
θy − θp

)2
z2

1 − 4θyθpz2
2 = 0

simultaneously for each α ∈ (0, 1) and μ > 0 to obtain a solution
(
Θ+,Θ−)

as in
the Theorem. Due to the symmetric nature of Φ with respect to θy, θp,

(
Θ−,Θ+)

is another solution pair of the system of equations. Thus Φ
(
Θ±,Θ∓, α, μ

) = 0,
resulting in P 2 = 0 and therefore three step convergence to the exact solution.

4 Numerical Examples

We perform numerical experiments to verify the convergence rate of the DN and
NN algorithms for the model problem (1)–(2) with λ = 1/2, ŷ(x) = 0. In the
top two plots of Fig. 1, we observe two-step convergence of the DN method for
α = 1/2 on the left, and three-step convergence for α = 0.6 for the optimal choice
of (Λ+,Λ−) = (0.62, 0.57) on the right. The two bottom plots of Fig. 1 show the
convergence behavior of the DN algorithm for different choices of θy and θp. On the
left panel, we get θy = θp = 1/2 to be the best parameters for the symmetric case,
whereas on the right (Λ+,Λ−) yields the fastest convergence for α = 0.6. For the
NN experiment, we plot on the left panel of Fig. 2 the first three iterates of the state
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Fig. 1 Convergence of the iterative solution of the DN method: in two iterations for the symmetric
case on the top left, and in three iterations for α = 0.6 on the top right; error curves for various
values of θy , θp for α = 1/2 on the bottom left, and for α = 0.6 on the bottom right
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Fig. 2 Convergence of NN: convergence of the iterative solutions with optimal parameters in three
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Fig. 3 Convergence in 2d: convergence of DN method in 2d on the left, and NN method in 2d on
the right. Λ±,Θ± correspond to 1d optimal parameters

variable for the optimal choice of (Θ+,Θ−) = (0.30, 0.16), and on the right the
convergence curves for various values of the parameters θy, θp. In Fig. 3, we show
convergence of the DN and NN methods for the 2D problem:

−Δy(x) = u(x) x ∈ Ω = (0, 1)2,
y(x) = 0 x ∈ ∂Ω,

with an interface Γ = {0.6}× (0, 1) and λ = 1/2. Note that the optimal parameters
are different from the 1d case when the decomposition is non-symmetric, as the
choice of (0.5, 0.5) appears to perform better than (Λ+,Λ−) in the DN example.
A full analysis of the 2D case will be the subject of a future paper. We are also
working on the analysis of the case of multiple subdomains, where it is not clear if
one can choose relaxation parameters to obtain finite termination of the algorithm;
see [5] for the uncontrolled case.
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Complete, Optimal and Optimized
Coarse Spaces for Additive Schwarz

Martin J. Gander and Bo Song

1 Introduction and Model Problem

Coarse spaces are needed to achieve scalability in domain decomposition methods,
see [16] and references therein. More recently, new coarse corrections were also
designed to improve convergence, for example in high contrast problems. Such
enriched coarse spaces were first proposed in [4, 5], where volume eigenfunctions
were combined with different types of partition of unity functions, and further
developed in [3]. A coarse space using the eigenfunctions of the Dirichlet-to-
Neumann maps on the boundary of each subdomain has been proposed and analyzed
in [2, 13], and further development led to solving a generalized eigenvalue problem
in the overlap (GenEO), see [14, 15].

A new, different idea is to first define an optimal coarse space, which leads to
the best possible convergence and makes the method nilpotent [7]1 and then to
approximate it [8, 10–12]. Following this principle, we design here for the first time
an optimal coarse space for the additive Schwarz (AS) method with arbitrary sized
overlaps, and then define an optimized approximation using a specific function in
the overlap, combined with harmonic extensions of interface eigenfunctions. We

1Classical one level domain decomposition methods can even be nilpotent in certain situations, see
[1].
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Fig. 1 Continuous (left) and discrete (right) partition of Ω into two overlapping subdomains

compare our new coarse space to the GenEO coarse space [14, 15] and the local
spectral multiscale coarse space (also with reduced energy) in [4].

Determining an optimal coarse space and then approximating it is a very general
idea, see for example the SHEM coarse space [8, 12], but for simplicity we consider
here

Δu = f in Ω, u = 0 on ∂Ω, (1)

whereΩ := (0, 1)× (0, γ ) is decomposed into two overlapping subdomainsΩ1 :=
(0, β) × (0, γ ) and Ω2 := (α, 1) × (0, γ ), with overlap Ωo := Ω1 ∩ Ω2, and
interfaces Γ1 := {(x, y)|x = β, 0 < y < γ } and Γ2 := {(x, y)|x = α, 0 < y < γ },
which leads to the partition of the domain Ω̄ = ¯̃

Ω1 ∪ Ω̄o ∪ ¯̃
Ω2; see Fig. 1.

Discretizing (1) by the classical five-point finite difference scheme, we obtain
the linear system Au = f. Starting with an initial guess u0, the iterative two
level additive Schwarz method with multiplicative (hybrid) coarse grid correction
computes

un−1/2 = un−1 + (RT1 A
−1
1 R1 + RT2 A

−1
2 R2)(f − Aun−1),

un = un−1/2 + RTc A
−1
c Rc(f − Aun−1/2),

(2)

where Ri are rectangular restriction matrices corresponding to Ωi , Ai = RiAR
T
i ,

i = 1, 2, and Rc is a restriction matrix to a coarse space, Ac = RcAR
T
c .

2 Complete, Optimal and Optimized Coarse Spaces

Definition 1 (Complete Coarse Space) A complete coarse space for the additive
Schwarz method (2) is given by Rc such that (2) converges after one iteration for an
arbitrary initial guess u0, i.e. the method is nilpotent and becomes a direct solver.

To give an example of a complete coarse space, and being able to write discrete
problems using the same notation as continuous ones, we denote by Δh the
discretized Laplacian, and by Ωh, Ωih, Ω̃ih Ωoh, Γih the corresponding discretized
spaces, i = 1, 2. Let NΓi be the number of degrees of freedom (DOFs) on the
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interface Γih, i = 1, 2, and let φ
j
i,cs be defined for each DOF on Γih by harmonic

extension,

Δhφ
j
i,cs = 0 in Ω̃ih,

φ
j

i,cs = 1 at DOF j of Γ3−i,h, j = 1, . . . , NΓ3−i ,

φ
j
i,cs = 0 elsewhere in Ωh.

(3)

Denoting by No the number of DOFs in the overlap Ωoh, we define for each of
them the further basis function φ

j
o,cs = 1, extended by zero to the rest of Ωh, j =

1, . . . , No, and

V0,cs := span{{{φji,cs}
NΓ3−i
j=1 }2

i=1 ∪ {φjo,cs}Noj=1}. (4)

Theorem 1 A complete coarse space for the iterative two level additive Schwarz
algorithm (2) is given by Rc containing in its columns the vectors of V0,cs from (4).

Proof The proof is technical, see [9], but the property is illustrated in Sect. 4.

The dimension of this complete coarse space depends on the number of DOFs in the
overlap for AS which was designed to be symmetric [6], but it can be reduced.2

Definition 2 (Optimal Coarse Space) An optimal coarse space for (2) is a com-
plete coarse space such that its associated Rc has the smallest number of columns
possible.

For an optimal coarse space, we define the restriction matrix in the overlap, Ro :=
[0 IΩoh 0], where IΩo is the identity matrix whose dimension equals the number
of unknowns in Ωoh, and the associated local solver in the overlap, Ao := RoAR

T
o .

We then construct just one specific basis function φo in the overlap Ωoh for (2),
based on the initial guess u0 by solving

Aoφo = Ro(f − Au0),

and then extending φo with zero to the rest of Ωh. We also need the basis functions
φ
j
i,opt, j = 1, . . . , NΓ3−i , i = 1, 2, based on harmonic extensions,

Δhφ
j
i,opt = 0 in Ω̃ih, Δhφ

j
i,opt = 0 in Ωoh,

φ
j

i,opt = 1 at DOF j of Γ3−i,h, φ
j

i,opt = 1 at DOF j of Γ3−i,h,

φ
j
i,opt = 0 elsewhere in Ωh, φ

j
i,opt = 0 elsewhere in Ωh,

2This problem does not arise with overlap of one or two mesh sizes [12], or RAS [8].
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and define

V0,opt := span{{{φji,opt}
NΓ3−i
j=1 }2

i=1 ∪ {φo}}. (5)

Theorem 2 An optimal coarse space for the iterative two level additive Schwarz
algorithm (2) is given by Rc containing in its columns the vectors of V0,opt from (5).

Proof The proof is given in [9], but the property is again illustrated in Sect. 4.

At the continuous level, even the optimal coarse space would still be infinite
dimensional, and we thus introduce now an approximation of the optimal coarse
space based on SHEM (Spectral Harmonically Enriched Multiscale coarse space
[8]) using an interface eigenvalue problem:

Definition 3 (Interface Eigenvalue Problem) Denoting byDyy an approximation
of the second derivative along the interface Γi , the interface eigenvalue problem is

−Dyyψ i = λψ i on Γih, (6)

with zero Dirichlet boundary conditions ψ i (0) = ψ i (γ ) = 0, i = 1, 2.

In our example, the eigenvectors of the interface eigenvalue problem (6) are ψ
j

i =
sin((jπ/γ )ym), ym = mh. We can thus construct basis functions φ

j
i,app by the

harmonic extensions of the sine functions for i = 1, 2,

Δhφ
j
i,app = 0 in Ω̃ih, Δhφ

j
i,app = 0 in Ωoh,

φ
j
i,app = ψ

j

3−i on Γ3−i,h, φ
j
i,app = ψ

j

3−i on Γ3−i,h

φ
j

i,app = 0 elsewhere in Ωh, φ
j

i,app = 0 elsewhere in Ωh,

(7)

j = 1, . . . , �, where � is the number of the eigenvectors of the interface eigenvalue
problem (6) selected; see Fig. 2 for an illustration. We then define an optimized
approximation of the optimal coarse space

V0,cs−l = span{{{φji,app}�j=1}2
i=1 ∪ {φo}}. (8)
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interface eigenfunctions, and the single mode in the overlap for a random initial guess on the
right
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Theorem 3 The iterative two level additive Schwarz algorithm (2) withRc contain-
ing in its columns the vectors of V0,cs−l in (8) satisfies the error estimate

‖un − u‖∞,2 ≤
(

cosh( (�+1)π
γ

(α + β − 1))− cosh( (�+1)π
γ

(β − α − 1))

cosh( (�+1)π
γ

(α + β − 1))− cosh( (�+1)π
γ

(β − α + 1))

)n/2

‖u0 − u‖∞,2,

and there is no other coarse space of this dimension that leads to faster convergence.

Proof The proof can be obtained by a direct calculation using separation of
variables for the residual after one additive Schwarz iteration, and will be given
in [9].

3 Comparison to Two Other Coarse Spaces

We now compare our optimized coarse space to the GenEO coarse space from [14,
15], and the local spectral multiscale coarse space with reduced energy from [4].
The GenEO coarse space was designed for high contrast problems and is based on
generalized eigenproblems “in the overlap”: in our example it solves inΩi , i = 1, 2,

Âip
j
i = λ

j
i XiÂ

o
i Xip

j
i (9)

for eigenvectors pji ∈ R
#dof(Ωi) assoicated with small eigenvalues λji ∈ R

⋃{+∞}.
In (9), Xj is a diagonal matrix indicating the partition of unity used to combine
subdomain solutions, and Âi , Âoi are Neumann matrices for each subdomain.
Selecting the � eigenfunctions corresponding to the smallest eigenvalues then leads
to the GenEO coarse space

V0,GenEO = span{RTi Xipji , j = 1, . . . , �, i = 1, 2}.

To understand how GenEO is related to our optimized coarse space, we first rewrite
the eigenvalue problem (9) at the continuous level for λi �= 0 and λi �= 4,

Δp̂i(x, y) = 0 in ˆ̃
Ωi, Δpio(x, y) = 0 in Ωo,

p̂i = pio on Γ̂3−i, pio = 4

4 − λi
p̂i on Γ3−i ,

(10)

with boundary conditions p̂i = 0 on ∂Ω ∩ ¯̃̂
Ωi , pio = 0 on (∂Ω ∩ ¯̃̂

Ωo)\Γi and

∂npio = 0 on Γi , and then define pi := p̂i in ˆ̃
Ωi , pi := pio in Ωo, and pi := 0 in
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the rest of Ω , i = 1, 2. Here, Γ ′
i are within one mesh size from the corresponding

boundary Γi , i = 1, 2, see Fig. 3 on the left. Solving (10) with separation of
variables for Ω1, we find for our model problem

p
j
1 (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4

4 − λ
j
1

sinh( jπγ x)

sinh( jπγ α
′)

cosh( jπγ (β − α′))
cosh( jπγ (β − α))

sin( jπγ y), (x, y) ∈ (0, α)× (0, γ ),

4

4 − λ
j
1

cosh( jπγ (β − x))

cosh( jπγ (β − α))
sin( jπγ y), (x, y) ∈ (α, β)× (0, γ ),

λ
j
1 = 4 − 4

sinh( jπγ α)

sinh( jπγ α
′)

cosh( jπγ (β − α′))
cosh( jπγ (β − α))

.

We show in Fig. 4 the three types of GenEO eigenfunctions. The eigenfunctions
corresponding to the smallest eigenvalues are like the ones in our optimized coarse
space within the subdomains, but in the overlap they differ. Since GenEO uses an
eigenvalue problem in the entire subdomain volume, it also contains many more
eigenfunctions (which one avoids to compute in GenEO), like the overlap ones for
λ = 4 corresponding to φ

j
o,cs in our complete coarse space, plus the ones for λ = ∞

which do not contain relevant information for the coarse space.

Fig. 3 Left: partition of the domain for the GenEO coarse space. Right: partition of the domain
for the local multiscale coarse space with reduced energy
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We next compare our optimized coarse space with the local spectral multiscale
coarse space (also with reduced energy) in [4]. The domain Ω is still decomposed
into two overlapping subdomains Ω1 and Ω2, with six coarse blocks Ki , i =
1, . . . , 6, see Fig. 3 on the right. Let qji denote the j th eigenvector of the volume
eigenvalue problem in subdomainΩih, i = 1, 2,

Δhqi = λiqi in Ωih,

∂nqi = 0 on Γih,

qi = 0 on ∂Ωih\Γih.
(11)

With the partition of unity χi , i = 1, 2, the local spectral multiscale coarse space of
[4] using � functions is defined by

V0,mul = span{RTi χiqji , 1 ≤ j ≤ �, i = 1, 2}. (12)

The local spectral multiscale coarse space with reduced energy of [4] is defined by

Ṽ0,mul = span{RTi q̃ji , 1 ≤ j ≤ �, i = 1, 2},
where for each block Kh ∈ Ωih, i = 1, 2, 1 ≤ j ≤ �, one still needs to solve
Δhq̃ji = 0 in Kh, q̃ji = χiq

j

i on ∂Kh. Solving (11) using separation of variables,
we find in Ω1

qjk1 (x, y) = sin(
kπ − π/2

α
x) sin(

jπ

γ
y), λ

jk

1 = (
kπ − π/2

α
)2 + (

jπ

γ
)2.

We show in Fig. 5 the first few of those modes. Note that these modes are different
from the modes in our optimized coarse space and GenEO, and again one needs to
solve volume eigenvalue problems to construct the coarse spaces V0,mul and Ṽ0,mul,
which now also contain many redundant modes.
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Table 1 Iteration number comparison in the two subdomain case for different mesh parameters h

h AS CS CS-opt SHEM(3) GenEO(3) GalvisI(3) GalvisII(3)

Iterative 1
16 na 1 1 6 na na na
1
32 na 1 1 11 na na na
1
64 na 1 1 20 na na na

1
128 na 1 1 38 na na na

PCG 1
16 9 1 1 4 8 8 7
1
32 11 1 1 6 9 9 9
1
64 14 1 1 9 11 12 11

1
128 17 1 1 12 14 14 14

Table 2 Iteration number comparison for many subdomains

Subdomains AS CS CS-opt SHEM GenEO GalvisI GalvisII

Iterative 2 × 2 na 1 1 8 na na na

4 × 4 na 1 1 8 na na na

8 × 8 na 1 1 8 na na na

PCG 2 × 2 15 1 1 5 13 12 10

4 × 4 25 1 1 5 13 14 10

8 × 8 42 1 1 5 13 14 10

4 Numerical Experiments

We solve (1) with f = −3 on Ω = (0, 1) × (0, 1) discretized by centered finite
differences and using an overlap of 4h, h being the mesh parameter. We start
with a random initial guess, and stop the iteration when the error in the iterative
method or the residual in PCG reaches the tolerance 1e − 8. In Table 1 we show
the dependence of the number of iterations on h for the complete coarse space
(CS), the optimal coarse space (CS-opt), our optimized coarse space SHEM(�), and
GenEO(�), GalvisI(�) and GalvisII(�) (reduced energy), using � = 3 enrichment
functions for each subdomain. We see that CS and CS-opt are direct solvers,
and only SHEM(�) leads to a convergent stationary iteration; and SHEM(�) also
performs best with PCG.

In Table 2, we show the iteration numbers for 2 ×2, 4 ×4, and 8 ×8 subdomains
using h = 1/32, 1/64, 1/128, i.e. keeping H/h fixed. We choose again � = 3 for
SHEM, and approximately the same total number of coarse functions for the other
coarse spaces. We see again that CS and CS-opt are direct solvers, and only SHEM
leads to a convergent stationary method. When used with PCG, the methods are all
scalable, but SHEM needs only half the number of iterations compared to the other
methods.
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Heterogeneous Optimized Schwarz
Methods for Coupling Helmholtz
and Laplace Equations

Martin J. Gander and Tommaso Vanzan

1 Introduction

Optimized Schwarz methods have increasingly drawn attention over the last two
decades because of their improvements in terms of robustness and computational
cost compared to the classical Schwarz method. Their optimized transmission
conditions have been obtained through analytical or numerical procedures in many
different situations, involving mostly the same partial differential equation on each
subdomain, see [3, 6, 8] and references therein. When dealing with heterogeneous
problems, a domain decomposition approach which allows one to exploit different
solvers adapted to the different physical problems is important. Due to their
favorable convergence properties in the absence of overlap, and their capability to
take physical properties at the interfaces into account, optimized Schwarz methods
are a natural framework for such heterogeneous domain decomposition methods,
where the spatial decomposition is simply provided by the multi-physics of the
problem.

We introduce and analyze here heterogeneous optimized Schwarz methods with
zeroth order optimized transmission conditions for the coupling between the hard to
solve Helmholtz equation [5] and the Laplace equation. It is a simplified instance of
the coupling of parabolic and hyperbolic operators, which might arise in Maxwell
equations. The Helmholtz equation is used in the time harmonic regime of a wave

M. J. Gander (�) · T. Vanzan (�)
Section de mathématiques, Université de Genève, Genève, Switzerland
e-mail: martin.gander@unige.ch; tommaso.vanzan@unige.ch

© Springer International Publishing AG, part of Springer Nature 2018
P. E. Bjørstad et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXIV, Lecture Notes in Computational Science
and Engineering 125, https://doi.org/10.1007/978-3-319-93873-8_29

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93873-8_29&domain=pdf
mailto:martin.gander@unige.ch
mailto:tommaso.vanzan@unige.ch
https://doi.org/10.1007/978-3-319-93873-8_29


312 M. J. Gander and T. Vanzan

equation and the Laplace operator represents the parabolic part. We consider a
bounded domain Ω ⊂ R

2, with sufficiently regular boundary, divided into two
subdomainsΩ1 andΩ2 such thatΩ = Ω1 ∪Ω2, Γ = Ω1 ∩Ω2, andΣj = ∂Ωj \Γ .
Our model problem is

(−Δ− qω2)u = f in Ω,

∂u

∂n
+ iωu = 0 on Σ1, (1)

u = 0 on Σ2,

where ω > 0 is the Helmholtz frequency, and q ∈ L∞(Ω) satisfies q = 1 in Ω1
and q = 0 in Ω2. Since the well-posedness of the problem is not straightforward
due to the indefinite nature of the Helmholtz part, we first analyze it in more detail
adapting arguments presented by Després in [2].

Lemma 1 The norm ||u||2 = ∫
Ω |∇u|2 + ω

∫
Σ1

|u|2 is equivalent to the canonical

norm on H 1(Ω) if |Σ1| > 0.

Proof We first observe that H 1(Ω) is the direct sum of V̄ = {
v ∈ H 1(Ω) :∫

Ω
v = 0

}
and Ṽ = {v ∈ H 1(Ω): v is constant in Ω}, H 1(Ω) = Ṽ ⊕ V̄ . Then, on

the one hand, it easy to see that for all v ∈ Ṽ , there exist a constant C =
√
ω|Σ1|
|Ω|

such that

C||v||H 1(Ω) ≤ ||v|| ≤ C||v||H 1(Ω). (2)

On the other hand, for every v ∈ V̄ , we first use the Poincaré inequality to get

||v||2
H 1(Ω)

≤ (1 + C)

∫
Ω

|∇v|2 ≤ (1 + C)

(∫
Ω

|∇v|2 + ω

∫
Σ1

|v|2
)

= (1 + C)||v||2.
(3)

Exploiting the continuity of the trace operator, we obtain

||v||2 =
∫
Ω

|∇v|2 + ω

∫
Σ1

|v|2 (4)

≤
∫
Ω

|∇v|2 + ω

∫
∂Ω

|v|2 ≤ max(1, C∂Ωω)(
∫
Ω

|∇v|2 +
∫
Ω

|v|2).

Having proved that the two norms are equivalent on the subspaces V̄ and Ṽ with
Ṽ ⊕ V̄ = H 1(Ω), the two norms are also equivalent on H 1(Ω).

Let us define V := {v ∈ H 1(Ω) : v = 0 on Σ2}, with || · ||V = || · ||H 1(Ω), and
consider problem (1) in the variational form

Find u ∈ V : a(u, v)− b(u, v) =V−1 〈f, v〉V ∀v ∈ V, (5)
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where a(u, v) = ∫
Ω ∇u∇v̄+ iω

∫
Σ1
uv̄, b(u, v) = ω2

∫
Ω2
uv̄ and f ∈ V−1. To use

Fredholm theory, we now show that the bilinear form b is a compact perturbation
of a.

Lemma 2 Let B be an operator from V to V such that

a(Bu, v) = b(u, v) ∀v ∈ V, (6)

thenB is a continuous compact operator.

Proof We first prove continuity, i.e. ∃C > 0 : ∀u ∈ V, ||Bu||V ≤ C||u||V .
From the definition of B, and applying Lax-Milgram to (6), we have ||Bu||V ≤
1
α
||b(u)||V−1 , where b(u) : V → R is the functional defined by V−1 <

b(u), v >V := b(u, v). Then we have ∀v ∈ V

|V−1 < b(u), v >V | := |b(u, v)| = ω2|
∫
Ω2

uv̄| ≤ ω2||u||L2(Ω2)
||v||L2(Ω2)

≤ ω2||u||L2(Ω2)
||v||V .

We thus conclude that ||b(u)||V−1 ≤ ω2||u||L2(Ω2)
, and hence have the bound

||Bu||V ≤ 1

α
ω2||u||V .

To prove compactness, let un be a bounded sequence in V , i.e. ∃C > 0 :
∀n, ||un||V < C. From weak compactness of V it follows that there exists a
subsequence unj such that unj ⇀ u for some u. Hence unj converge strongly to
u in L2 (Ω). Considering a(Bunj −Bu,Bunj −Bu) = b(unj − u,Bunj −Bu)
we have letting n → ∞ and using the Cauchy-Schwarz inequality

∣∣∣∣
∫
Ω

|∇(Bunj − Bu)|2 + iω

∫
Σ1

|Bunj − Bu|2
∣∣∣∣ (7)

≤ ω2||unj − u||L2(Ω2)
||Bunj − Bu||L2(Ω2)

.

We observe that Bunj ⇀ Bu in V because unj ⇀ u in V and B is a continuous
operator [1]. Hence, both unj and Bunj converge strongly in L2(Ω). In particular
we have that a(Bunj −Bu,Bunj −Bu) → 0 which implies ||Bunj −Bu|| → 0.
With Lemma 1, we have that Bunj → Bu in V and thus B is a compact operator.

Since B is a compact operator, thanks to Fredholm alternative, existence of the
solution of problem (5) follows from uniqueness. We need two further Lemmas to
prove uniqueness. We denote with γju and Sju the trace of u and the trace of the
normal derivative on the j -th interface and we introduce the space E(Ω,Δ) :=
{u ∈ H 1(Ω) : −Δu ∈ L2(Ω)}.
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Lemma 3 (Grisvard, Theorem 1.5.3.11, p. 61, [9]) Let Ω be an open bounded
subset of R2 whose boundary is a curvilinear polygon of class C1,1 with interfaces
Σj, j = 1, .., N . The mappings u → γju and u → Sju have a unique continuous

extension fromE(Ω,Δ) to respectivelyH
1
2 (Σj ) andH− 1

2 (Σj ). Moreover for every

u ∈ E(Ω,Δ) and v ∈ H 1(Ω) with γjv ∈ H 1
2 (Σj ) ∀j , the Green’s formula holds:

(−Δu, v) = (∇u,∇v) −
N∑
j=1

〈Sju, γj v〉. (8)

Lemma 4 (Després, Corollary 2.1, p. 22, [2]) Let Ω be an open bounded arc-
connected subset of R2 and assume that Γ is a nonempty open subset of ∂Ω of
class C2 and q ∈ L∞(Ω). If u ∈ H 2(Ω) satisfies

(−Δ− qω2)u = 0 onΩ, u|Γ = ∂nu|Γ = 0, (9)

then u=0 in Ω .

Theorem 1 Under the hypotheses of Lemmas 3 and 4, u ≡ 0 is the only solution of
the boundary value problem (1) with f = 0.

Proof Choosing v ∈ D(Ω), the space of C∞(Ω) functions with compact support,
in the weak formulation of Eq. (1) we obtain −Δu−qω2u = 0. Hence, since u ∈ V ,
Δu ∈ L2(Ω) and u ∈ E(Ω,Δ). Exploiting Green’s formula and choosing v = u

we get

∫
Ω

|∇u|2 − ω2
∫
Ω1

|u|2 + iω

∫
Σ1

|u|2 = 0. (10)

Considering the imaginary part we have
∫
Σ1

|u|2 = 0, which implies u = 0 on Σ1.
We now have homogeneous Dirichlet data on the whole domain ∂Ω = Σ1 ∪ Σ2.
Regularity results for Dirichlet problems in smooth domains state that u ∈ H 2(Ω).
Exploiting again the Green’s formula and −Δu− qω2u = 0 in Ω , we obtain

H
− 1

2 (Σ1)
〈∂u
∂n
, v〉

H
1
2 (Σ1)

+ iw

∫
Σ1

uv = 0. (11)

Since u = 0 on Σ1, we can conclude that ∂nu = 0 on Σ1 and by the unique
continuation principle in Lemma 4, the result follows.
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2 Heterogeneous Optimized Schwarz Methods

In order to make analytical calculations, we simplify the analysis and set Ω = R
2,

with Ω1 being the left half plane and Ω2 the right half plane. The heterogeneous
optimized Schwarz method is given by

(−ω2 −Δ)u1 = f in Ω1, (∂x + S1)(u
n
1)(0, ·) = (∂x + S1)(u

n−1
2 )(0, ·),

−Δu2 = f in Ω2, (∂x + S2)(u
n
2)(0, ·) = (∂x + S2)(u

n−1
1 )(0, ·), (12)

where the Sj , j = 1, 2 are linear operators along the interface in the y direction. The
system is closed by the Sommerfeld radiation condition limx→−∞

√|x| x|x|(∂xun1 −
iωun1) = 0 and by the boundedness condition limx→+∞ un2 = 0. The goal is to find
which operators lead to the fastest convergence. We define the errors ej := u− uj ,
and taking the Fourier transform of the error equations in the y direction, we obtain

(−ω2 − ∂xx + k2)(ên1) = 0 k ∈ R, x < 0,
(∂x + σ1(k))(ê

n
1)(0, k) = (∂x + σ1(k))(ê

n−1
2 )(0, k), k ∈ R,

(−∂xx + k2)(ên2) = 0 k ∈ R, x > 0,
(∂x + σ2(k))(ê

n
2)(0, k) = (∂x + σ2(k))(ê

n−1
1 )(0, k), k ∈ R,

(13)

where σj (k) are the Fourier symbols of the operators Sj . Solving the equations in
(13) and imposing the radiation/boundedness conditions, we get

ên1 = ên1(0, k)e
λ(k)x, ên2 = ên2(0, k)e

−|k|x,

where λ(k) := i
√
ω2 − k2 if k < ω and λ(k) := √

k2 − ω2 if k ≥ ω. Applying the
transmission conditions, it follows that

ên1 = ρ(k)ên−2
1 , ên2 = ρ(k)ên−2

2 ,

where

ρ(k) = −|k| + σ1(k)

λ(k)+ σ1(k)

λ(k)+ σ2(k)

−|k| + σ2(k)
.

Next, to approximate the optimal choice for σ1(k) and σ2(k) which would require
non local operators, we set σ1 = −σ2 = p(1 + i). This choice is motivated by
[4] where the single and double sided optimizations were studied and compared for
the time harmonic Maxwell equations. Since both σj and λ(k) contain complex
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numbers, we have to study the modulus of the convergence factor,

|ρ(k, p)|2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

((k − p)2 + p2)

((k + p)2 + p2)

((
√
k2 − ω2 − p)2 + p2)

((
√
k2 − ω2 + p)2 + p2)

k ≥ ω,

((k − p)2 + p2)

((k + p)2 + p2)

((
√
ω2 − k2 − p)2 + p2)

((
√
ω2 − k2 + p)2 + p2)

k < ω.

(14)

Since we are interested in minimizing the convergence factor over all relevant
numerically represented frequencies, we study now the minimax problem

min
p≥0

max
k∈[kmin,kmax]

|ρ(k, p)|2, (15)

where kmin is the minimum frequency and kmax is the maximum frequency
supported by the numerical grid.

Theorem 2 Assuming that kmax > 2ω, the solution of the minimax problem (15) is

given by p∗ = ω√
2
if |ρ(kmax, p

∗ = ω√
2
)|2 ≤ (

√
2−1)2+1

(
√

2+1)2+1
, and otherwise it is given

by the unique p∗ such that |ρ(k = ω,p∗)|2 = |ρ(kmax, p
∗)|2.

Proof We consider p > 0, because for p = 0 the convergence factor is equal to 1,
and for p < 0 it is greater than one, while for values of p > 0, the convergence
factor is always less than 1. We introduce a change of variables which will be useful
in the computations, namely x = √

k2 − ω2 if k ≥ ω and x = √
ω2 − k2 for k < ω.

Problem (15) then becomes

min
p>0

max

⎛
⎝ max

[0,
√
ω2−k2

min]
G(x, p), max

[0,
√
k2

max−ω2]
F(x, p)

⎞
⎠ , (16)

where

G(x, p) = ((x − p)2 + p2)

((x + p)2 + p2)

((
√
ω2 − x2 − p)2 + p2)

((
√
ω2 − x2 + p)2 + p2)

,

F (x, p) = ((x − p)2 + p2)

((x + p)2 + p2)

((
√
x2 + ω2 − p)2 + p2)

((
√
x2 + ω2 + p)2 + p2)

.

First, we observe that ∂G
∂x |x=0 = ∂F

∂x |x=0 = − (2((ω−p)2+p2))

(p((ω+p)2+p2))
< 0 for all p > 0

and G(0, p) = F(0, p). Indeed, x = 0 (k = ω) is a cusp for ρ2(k, p) and hence
it is a local maximum which needs to be minimized. The minimum of G(0, p)
with respect to the variable p is given by p̄ = ω√

2
and G(x = 0, p = ω√

2
) =

(
√

2−1)2+1
(
√

2+1)2+1
≈ 0.176. We thus have found a lower bound for the value of the minimax
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problem. Next, we study how G(x, p) behaves in the rest of the interval, and start
by restricting our attention to the case p ≥ p̄. Computing the partial derivative with
respect to x of G(x, p), we find that it has a unique zero x1 given by the root of the
non linear equation

x(4p4 + x4)(2p2 + x2 − ω2) = ((ω2 − x2)2 + 4p2)(2p2 − x2)
√
ω2 − x2. (17)

To proof uniqueness, it is enough to notice that the LHS is zero for x = 0 and
strictly increasing on x, if p ≥ p̄, while the RHS is greater than zero for x = 0 and
strictly decreasing in x. ThereforeG(x, p) decreases until x < x1 and then increases

monotonically. If x1 >

√
ω2 − k2

min then the max[0,
√
ω2−k2

min]
G(x, p) = G(0, p),

otherwise if x1 ≤
√
ω2 − k2

min it is sufficient to notice that G(
√
ω2 − k2

min, p) <

G(ω, p) = G(0, p), to conclude that it holds again max[0,
√
ω2−k2

min]
G(x, p) =

G(0, p). Next we focus on the second interval, considering the function F(x, p).
The zeros of the derivative ∂F

∂x
are given by the zeros of the equation

x(4p2 + x4)(22 + x2 − 2p2) = (2p2 − x2)((ω2 + x2)2 + 4p2)
√
ω2 + x2.

Repeating an argument similar to the one above, we find that again there is a unique
zero x2, in this case ∀p > 0, which again might or might not belong to the interval
[0,√k2

max − ω2]. If x2 is outside the interval or F(
√
k2

max − ω2, p̄) ≤ F(0, p̄),
then we can conclude that the optimal value p∗ is given by p∗ = p̄, i.e. the
value which minimizes the convergence factor for the frequency k = ω. Otherwise
the local maxima are located at x = 0 and x = √

k2
max − ω2. We compute the

partial derivative w.r.t the variable p, which satisfies ∂F
∂p

|
x=√

k2
max−ω2 < 0 for

p ∈ I = [0,
√
k2

max−ω2

2 ], and under the non restrictive hypothesis kmax > 2ω, we
have that p̄ ∈ I. Analyzing the sign of the derivative shows that it is not useful to
look for p∗ in [0, ω√

2
], since both local maxima would increase. This justifies why

we studied G only for p ≥ p̄. Since ∂F
∂p

|x=0 > 0 for p > ω√
2

and because

F(

√
k2

max − ω2,

√
k2

max − ω2

2
) =

(
(
√

2 − 1)2 + 1

(
√

2 + 1)2 + 1

)2

(18)

< F(0,
ω√

2
) < F(0,

√
k2

max − ω2

2
),

we conclude that there exists a unique value p∗ such that F(0, p∗) =
F(

√
k2

max − ω2, p∗), which concludes the proof.
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Remark 1 It is interesting to note that this problem is different from the ones already
studied in the literature, because the convergence factor is immediately bounded
from below: it is not possible to get a better convergence factor than ρ2(k, p) =
(
√

2−1)2+1
(
√

2+1)2+1
. We also did not have to exclude the resonance frequency k = ω by

introducingω− andω+, as in the Helmholtz case [7]; the optimized Schwarz method
can benefit from the heterogeneity, leading to |ρ(k = ω,p)|2 < 1.

We now present two asymptotic results. First we want to study how our algorithm
behaves when we take finer and finer meshes. Let h → 0, h being the mesh size,
and suppose that the maximum frequency supported by the numerical grid scales
like kmax = π/h → ∞.

Theorem 3 When the physical parameters ω and kmin are fixed, kmax = π
h
and

h → 0, then the solution of problem (15) is given by

p∗ =
√
ωπ

2
· h−1/2 + o(h−1/2), |ρ(k, p∗)|2 = 1 − 4

√
ω√
π
h

1
2 + o(h1/2). (19)

Proof For kmax → ∞, ρ(kmax, p) → 1, and hence the solution of the minimax
problem is given by equioscillation. Inserting the ansatz p ≈ Cph

−α into |ρ(k =
ω,p)|2 = |ρ(k = kmax, p)|2 and comparing the leading order terms then gives the
result.

The second result is typical of the Helmholtz equation. As ω increases, in order to
control the so called pollution effect, we need to decrease significantly h in order
to have a good approximation of the solution. Generally, the scaling relation used is
h = Ch

ωγ
, with γ > 1. Common values are γ = 3

2 , or γ = 2.

Theorem 4 If kmin is fixed, kmax = π
h
, ω goes to infinity and h = Ch

ωγ
, with γ > 1,

then the solution of problem (15) is given by

p∗ =
√
π

2
√
Ch

· ω 1+γ
2 + o(ω

1+γ
2 ), |ρ(k, p∗)|2 = 1 − 4

√
Ch√
π
ω

1−γ
2 + o(ω

1−γ
2 ).

Proof A direct calculation shows that |ρ(k = kmax,
ω√

2
)|2 → 1 for ω → ∞,

and thus again the solution is given by equioscillation. Expanding equation |ρ(k =
ω,p)|2 = |ρ(k = kmax, p)|2, with the ansatz p = Cpω

α then leads to the desired
result.

3 Numerical Experiments

We implemented our heterogeneous optimized Schwarz method on a square domain
Ω := (−1, 1)× (−1, 1), withΩ1 := (−1, 0)× (−1, 1) andΩ2 := (0, 1)× (−1, 1).
We used second order centered finite differences for the interior points and first
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Fig. 1 Parameters ω2 = 50, h = 0.05. Left: Modulus of u(x, y). Right: Parameter p vs number
of iterations. The optimal p given by equioscillation is indicated by a star

Table 1 The two tables show the behaviour of the heterogeneous optimized Schwarz method

under mesh refinement and when ω increases with hω
3
2 held constant

h Optimal p∗ maxk |ρ2(p∗, k)| Iterations ω Optimal p∗ maxk |ρ2(p∗, k)| Iterations
1
50 16.52 0.4225 53 (810) 10π 34.8451 0.2119 31 (839)

1
100 23.53 0.55043 73 (1614) 20π 84.7084 0.2622 38 (2954)

1
200 33.37 0.6543 104 (3284) 40π 205.0570 0.3167 46 (8096)

1
400 47.27 0.7403 148 (6554) 60π 342.6739 0.3506 48 (>10,000)

order approximations for the boundary terms. In Fig. 1 on the left, we show the
modulus of the solution of problem (1) for ω2 = 50 and f = 1. On the right
in Fig. 1, we show a comparison between the optimal numerical value p and the
theoretical estimation provided by Theorem 2. We see that our simplified analysis
on unbounded domains is able to give quite a good approximation of the optimal
parameter in the bounded domain context. Finally, we show in Table 1 the behavior
of the algorithm when the mesh size h decreases and for large values of ω, with

hω
3
2 = const. In brackets, we show the number of iterations required for a non-

optimized case, i.e. using p = 1. We clearly see that the optimization leads to
a much better algorithm, which deteriorates much more slowly when the mesh is
refined, and ω increases.

4 Conclusions

We presented and analysed a heterogeneous optimized Schwarz method for the
coupling of Helmholtz and Laplace equations. We proved the well-posedness of the
coupled problem, and then introduced optimized Robin transmission conditions,
giving asymptotic formulas for the optimized parameters and associated conver-
gence factor. Our results indicate that a much weaker dependence on the mesh
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parameter can be achieved with optimized transmission conditions, and we are
currently working on further improvement by studying second order optimized
transmission conditions.

Acknowledgements The authors are grateful to L. Halpern for very useful remarks concerning
the well posedness analysis.
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Restrictions on the Use of Sweeping Type
Preconditioners for Helmholtz Problems

Martin J. Gander and Hui Zhang

1 Introduction

Helmholtz problems, and time harmonic problems in general like Maxwell’s
equations, are notoriously difficult to solve numerically. The first problem is that
they require very fine discretizations to avoid the so called pollution effect [1], and
then the discretized systems are so large that one needs to solve them iteratively,
and none of the classical iterative methods are suitable for this task [10]. Over
the past decade, several new ideas arrived for the iterative solution of Helmholtz
problems, among them the shifted Laplace preconditioner [9]. Unfortunately in this
preconditioner, one has to choose the shift small enough (at most O(k) where k
is the wave number) for the preconditioner to be close to the underlying operator
to give provable wave number independent convergence [19], and large enough (at
leastO(k2)) for the preconditioner to be easily invertible by multigrid independently
of the wave number [5, 6]. In practice, a compromise has to be chosen, which can
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lead to a growth of up to O(k2) in the iteration numbers of preconditioned GMRES
in the multigrid case [6]; for a rigorous analysis in the case of classical domain
decomposition, see [20]. The best current preconditioners are based on domain
decomposition methods using special transmission conditions, and have their roots
in optimized Schwarz methods [17, 18] and the AILU preconditioner [12, 13].
These algorithms use transmission conditions adapted to the underlying Helmholtz
nature of the problem, and this idea is so important that it has been rediscovered
independently several times over the last few years, see the sweeping preconditioner
[7, 8], the source transfer method, the methods based on single layer potentials
[3, 4], and most recently the method of polarized traces [23, 24]. All these methods
use the same underlying mathematical algorithm, which at the continuous level is
the class of optimal Schwarz methods [11], and at the discrete level the block-LU
factorization, and one can prove formally that they are all basically equivalent,
see the review monograph [16]. The methods use a one way decomposition of
the domain into a sequence of subdomains, and between subdomains they use as
transmission condition an approximation of the Dirichlet to Neumann operator. An
important technique advocated by these more recently proposed algorithms is the
use of perfectly matched layers (PML) in the transmission conditions; for an earlier
use of PML transmission conditions in a domain decomposition setting, see [21, 22],
and [2] for high order Padé transmission conditions, with [14, 15] for their relation to
PML transmission conditions. While one might think intuitively that the absorption
at the interfaces is the most important property, and with PML one can reach as
much absorption as one wants, the truly important property for the algorithm is
not absorption, but approximation of the Dirichlet to Neumann operator, which is
well known from optimized Schwarz theory [11]. For a constant wave number,
these two coincide, and it was therefore possible to prove for the above methods
that they can be made into arbitrarily good solvers by improving the PML, but
this holds only for constant wave number. We show here that like all the other
iterative Helmholtz solvers so far, the performance of these methods deteriorates
as soon as the approximation of the Dirichlet to Neumann operator is not perfect
any more in the case of wave propagation. To do so, we use a common algorithm
formulation at the discrete level from [16], and provide the algorithm without any of
the technicalities related to the various inventions, so that anybody can implement
and check the method for themselves.

2 Common Formulation of Sweeping, Source Transfer,
Single Layer, Polarized Traces and Optimal/Optimized
Schwarz Algorithms

To illustrate the limitations of these methods, it suffices to take the Helmholtz
equation in a layered medium,

(Δ+ k(x)2)u = f, in Ω := (0, 1)2, (1)
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with suitable boundary conditions for well posedness, such that after discretization
by a standard five point finite difference method, the piecewise constant wave speeds
are aligned with the block tridiagonal matrix structure

Au :=

⎡
⎢⎢⎢⎢⎢⎣

D1 L

L D2 L

.. .
. . .

. . .

L DJ−1 L

L DJ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1

u2
...

uJ−1

uJ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f1

f2
...

fJ−1

fJ

⎤
⎥⎥⎥⎥⎥⎦

=: f. (2)

The block LU factorization of the coefficient matrix in (2) is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

T1

L T2
. . .

. . .

L TJ−1

L TJ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I T −1
1 L

I T −1
2 L

.. .
. . .

I T −1
J−1L

I

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3)

where the Tj are the Schur complements that satisfy the recurrence relation

T1 = D1, Tj = Dj − LT −1
j−1L for j ≥ 2, (4)

as one can verify by a direct calculation. The underlying system (2) can then be
solved by a forward block substitution, followed by a backward block substitution,
which corresponds to the sweeping over the domain back and forth, the source
transfer from layer to layer, or the alternating solution over subdomains in the
optimized Schwarz setting, see [16]. In the constant wave number case, the dense
blocks Tj can be implemented using PML to arbitrary precision,1 and then all
these sweeping type methods can be made arbitrarily close to being direct solvers,
which explains their excellent performance in the constant wave number case. In
the variable wave number case however, the best a PML can do is to be perfectly
absorbing for the neighboring medium, assuming it to be constant up to infinity.
To get such a perfect absorption for our model problem directly algebraically,
without PML techniques, we consider for each wave number block Di the constant
coefficient problem

Aiui :=

⎡
⎢⎢⎢⎢⎢⎣

Di L

L Di L

. . .
. . .

. . .

L Di L

L Di

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ui1
ui2
...

uiJ−1
uJ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f1

f2
...

fJ−1

fJ

⎤
⎥⎥⎥⎥⎥⎦

=: f, (5)

1Provided the domain has indeed an open end or such a high order PML on the side where the
sweeping begins.
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with factorization

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

T i1
L T i2

. . .
. . .

L T iJ−1
L T iJ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I (T i1 )
−1L

I (T i2 )
−1L

.. .
. . .

I (T iJ−1)
−1L

I

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(6)

where T ij are the Schur complements that satisfy now the recurrence relation

T i1 = Di, T ij = Di − L(T ij−1)
−1L for j ≥ 2. (7)

Then the approximate factorization using this best possible approximation a PML
technique could provide2 is

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

T̃1

L T̃2
. . .

. . .

L T̃J−1

L T̃J

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I T̃ −1
1 L

I T̃ −1
2 L

.. .
. . .

I T̃ −1
J−1L

I

⎤
⎥⎥⎥⎥⎥⎥⎦
, (8)

where T̃j are the Schur complements using the exact Schur complements of the
neighboring constant wave number case, namely

T̃1 = D1, T̃j = Dj − L(T
j−1
j−1 )

−1L for j ≥ 2. (9)

Note that this best possible information a PML could provide is not necessarily
a good approximation to the Dirichlet to Neumann operator which is represented
by the exact blocks Tj , and thus contains information about all the reflections that
will be created by all the layers outside the present subdomain. We will test now
how much variation in the wave number this approximation can tolerate before
the sweeping type algorithms lose their effectiveness, and how this depends on the
source term and the boundary conditions of the underlying problem.

2It is the exact Schur complement, including all boundary information, the only approximation is
the constant wave number.
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3 Numerical Study

We discretize the Helmholtz equation (1) using n = 64 interior mesh points, so that
the mesh size is h = 1/(n+ 1), and we use p = 4, 8, 16 layers. For the case of four
layers, we use the wave numbers

k = [20 20 20 20] + α[0 20 10 − 10], (10)

where α is a contrast parameter, and for larger p we just repeat this structure. The
resolution we chose guarantees at least ten points per wavelength resolution for this
experiment. We start with the case of a wave guide in the x direction, where we
used Robin radiation conditions on the left and right, and homogeneous Dirichlet
conditions on top and bottom. We show in Fig. 1 the solution3 we obtain for α = 1
with a point source at x = 2h, y = 1−h

2 for the case of four and sixteen layers in the
top row, and below for the constant source f = 1.

We now test the approximate factorization (8) both as an iterative solver and as
a preconditioner for GMRES for varying contrast parameter α and right hand sides.

0.5
x00

0.5
y

1.5

1

0.5

0

-0.5

-1
1

0.5
x00

0.5
y

0

-5

15

10

5

1

10-5

0.5
x00

0.5
y

0.01

0.015

0.005

0

-0.005

-0.01
1

0.5
x00

0.5
y

0

-0.01

-0.005

0.01

0.005

1

10 -4

1 1

1 1

Fig. 1 Top: Solutions computed with a point source. Bottom: Solutions computed with f = 1.
Left: 4 layers. Right: 16 layers

3The boundary points are not plotted, so one cannot see the homogeneous Dirichlet condition.
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We do this both for n = 64 interior meshpoints and the contrast profile (10), and on
a refined mesh with twice the number of interior meshpoints, n = 128, but also a
profile with twice the size for the wave number, i.e.

k = [40 40 40 40] + α[0 40 20 − 20], (11)

so that we still have at least ten points per wavelength resolution. We show in
Table 1 the number of iterations the methods took, where we stopped the iterative
version of the algorithm at the relative error tolerance 1e−6, and GMRES when
the residual was reduced by 1e−6, and we started with a zero initial guess. The
three columns within each ‘Iterative’ or ‘GMRES’ column correspond to the point
source f , constant f = 1 throughout the domain, and also a random f . The top
part is for the smaller wave number experiment (10), and the bottom part is for the
larger wave number experiment (11). We first see that for α = 0, i.e. in the constant
wave number case, the factorization is exact, both the iterative version and GMRES
converge in one iteration step, and the contraction factor ρ (the spectral radius) of
the iterative version equals numerically zero. As soon as we have however a non-
constant wave number, already for α = 0.001, the factorization is not exact any
more. Nevertheless the methods still converge well, up to α = 0.01 in the smaller
wave number case in the top half of the table, i.e. a 1% variation in the wave number
k. Here the contraction factor is ρ = 0.2460 for p = 4 subdomains, and grows
when the number of subdomains p is increasing. For larger contrast, the iterative
version of the algorithm cannot be used any more, ρ > 1, and GMRES deteriorates
now rapidly, for example if the contrast is at a factor of two, i.e. α = 1, GMRES
iteration numbers double when the number of subdomains doubles, the sweeping
type methods are not robust any more.4 In the higher wave number case in the
bottom part of the table, the methods start having problems already at α = 0.005,
variations of the wave speed of half a percent, and they deteriorate even more rapidly
for higher contrast. We can also see comparing the last two lines of the top and
bottom half of the table that doubling the wave number leads to twice the iteration
numbers with GMRES as soon as the contrast is large enough, and GMRES failed to
converge in less than hundred iterations at the bottom right. We also measured that
in certain cases, the relative residual reduction of 1e−6 for GMRES does not lead
to a relative error of the same size. This is notably the case for α = 1 in the smaller
wave number case when p = 8 with point or random source (relative error 1.83e−4

4There are also two interesting apparent anomalies: in the smaller wavenumber case, for p = 4
and α = 0.05 (and also one in the larger wave number case), the spectral radius is bigger than one,
but for the source term f = 1 we observe convergence. We iterated in this case however further,
and then the iterations also start to diverge, it is only that the divergent modes are not stimulated at
the beginning by the source term f = 1 and zero initial guess, a typical phenomenon known from
power iterations, which explains in the table the general observation that the problem with f = 1
is easier to solve than with the other sources, also for GMRES. For the same p = 4 and α = 0.1,
we then get surprisingly a spectral radius again smaller than 1, which is a lucky configuration and
not observed for more subdomains or different α.
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and 1.26e−4 only), and in the larger wave number case when p = 16 with point
or random source, (relative error 0.27317 and 0.52128 only!). So the corresponding
GMRES iteration numbers (67 and 83) would need to be substantially higher to
reach the same level of accuracy of 1e−6 as for the other results in the table: we
measured 129 instead of 67 to reach 1.8607e−6 and 139 instead of 83 to reach
2.9641e−6 respectively.

We next perform the same set of experiments, but now using Robin boundary
conditions all around the domain, see Table 2. We see that the outer Robin boundary
conditions are better than the wave guide setting for the sweeping type algorithms,
they work now in the iterative version up to about a 10% variation of the wave
number in this specific experiment. As soon as however there is a variation as large
as a factor of two, the method is not an effective solver any more, the iterative
version diverges because ρ > 1, and GMRES iteration numbers deteriorate when
the number of subdomains increases, like in the previous case: we still observe a
doubling of the GMRES iteration count when the number of subdomains doubles,
and also when the wave number is multiplied by 2. With Robin conditions all
around, there is less loss of accuracy compared to the residual tolerance than in
the wave guide case: only in the high wave number case for α = 1 and p = 16,
the relative error reached 1.6463e−05 for the point source and 1.2333e−05 for the
random source instead of the 1e−6 asked for in the relative residual, all other results
had the required level also in the relative error.

Finally, we use a complex stretching PML instead of the outer Robin boundary
condition. For example, we extend the right boundary from 1 to 1 + L and perform
in the extended region in (1) the transform ∂x → s∂x , s = 1

1−iC(x−1)2/(L3k(1,y))
,

i = √−1, and similarly on the other boundaries. We increase L and C to get
more absorption in the PMLs, and check how this affects the results for α = 1
in Tables 1 and 2, see Table 3. The iterative version diverges in most cases except
when p = 4 for the PML-all-around problem. Absorption helps GMRES marginally
for the waveguide problem but remarkably for the PML-all-around problem. Note
that, however, the iteration count still doubles along with the number of subdomains
and when doubling the wave number for many subdomains. We also tested the
case of a fixed wave number profile, namely the one in Table 3 at the bottom
right with 16 layers: for p = 4 we obtain for GMRES the iteration numbers
16 20 21 , and for p = 8 59 69 70 . This indicates that also for a fixed difficulty,
i.e. fixed number of layers, iteration numbers grow when subdomain numbers are
increasing. We observe however also when comparing with p = 16 at the bottom
right of Table 3 the interesting phenomenon that once layers are all aligned with
subdomains, the problem becomes apparently a bit easier. We are currently studying
this phenomenon theoretically. Note that if too many PMLs are used, the 2-norm of
the residuals may be dominated by the residuals in the PMLs, and one should use a
more reliable metric for the stopping criterion.
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4 Conclusion

We presented the simplest common form of the fundamental algorithm underlying
the new type Helmholtz (and Maxwell) solvers based on sweeping. These solvers
are among the best currently available solvers for such type of problems, and they
can be made robust in the wave number by increasing the accuracy of the PML,
provided the wave number is constant. If the wave number is not constant however,
the PML is not the right approximation of the Dirichlet to Neumann operator
or the Schur complement any more, which is the essential ingredient for these
algorithms to be effective. We showed by a simple set of numerical experiments
which is easy to reproduce that in a layered medium with contrast of only 1%,
these algorithms already perform substantially less well if the layers are not aligned
with the sweeping direction, and when the contrast is as large as a factor of two,
the methods do not work any more as stationary iterations, and preconditioned
GMRES iteration numbers start to grow drastically: they increase linearly in the
number of subdomains and the wave number in our experiments. One must therefore
investigate an approximation different from PML for the Dirichlet to Neumann
operator in the case of non-constant wave numbers.
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Convergence of Asynchronous Optimized
Schwarz Methods in the Plane

José C. Garay, Frédéric Magoulès, and Daniel B. Szyld

1 Introduction

Optimized Schwarz Methods are Domain Decomposition methods in which the
boundary conditions on the artificial interfaces are of Robin type, i.e., containing
one or more parameters that can be optimized [1, 3, 4].

In our context, Asynchronous Schwarz methods are those where each subdomain
solve is performed with whatever new information (to be used for the boundary
conditions) has arrived from the neighboring subdomains since the last update,
but without necessarily waiting for new information to arrive. For more details on
asynchronous methods, see, e.g. [2] and references therein. See also Sect. 1.2 below.

In this paper we add more details to the convergence proof given in [5] of
Asynchronous Optimized Schwarz (AOS) where it is used to solve Poisson’s
equation in R

2. The results presented here complement those of [5].

1.1 Preliminaries

The aim is to provide a complete proof of the convergence of AOS for

Δu− ηu = f in R
2, (1)
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with vanishing value of u at infinity, and η > 0. The space R
2 is divided into p

overlapping infinite vertical strips. This means we have p − 1 vertical lines, say
at coordinates x = �1, . . . �p−1; and we assume for simplicity that we have the
same overlap 2L between subdomains. We also assume, without loss of generality,
that except for the subdomains at infinity, that each strip has the same width, i.e.,
�s − �s−1 = W for s = 2, . . . , p − 1, so that �s = �1 + (s − 1)W . It follows then,
that the overlap satisfies 2L < W , and usually L / W . Thus, we have Ω(1) =
] − ∞; �1 + L] × R, Ω(s) = [�s−1 − L; �s + L] × R, s = 2, . . . , p − 1, and
Ω(p) = [�p−1 −L; +∞[×R. In this context, the normal vector is in the x direction
(with the appropriate sign).

Let f (s) and uns denote the restriction of f and un, the approximation to the
solution at the iteration n, to Ω(s), s = 1, . . . , p, respectively. Thus, uns ∈ V (s),
a space of functions defined on Ω(s). We consider transmission conditions (on
the artificial interfaces) composed of local operators. The local problems and the
synchronous iteration process is described by the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Δ− η)un+1
1 = f (1) on Ω(1),

∂un+1
1
∂x

+Λun+1
1 = ∂un2

∂x
+Λun2 for x = �1 + L,

For s = 2, . . . , p − 1,

− ∂un+1
s

∂x
+Λun+1

s = − ∂uns−1
∂x

+Λuns−1 for x = �s−1 − L,

(Δ− η)un+1
s = f (s) on Ω(s),

∂un+1
s

∂x
+Λun+1

s = ∂uns+1
∂x

+Λuns+1 for x = �s + L,

− ∂un+1
p

∂x
+Λun+1

p = − ∂unp−1
∂x

+Λunp−1 for x = �p−1 − L,

(Δ− η)un+1
p = f (p) on Ω(p),

(2)

whereΛ is a local approximation to the Poincaré-Steklov operator using differential
operators (e.g., Λ = α and for artificial boundary conditions of OO0 family of

artificial conditions, with α constant, andΛ = α+ β ∂2

∂τ 2 for the OO2 family, where
∂2

∂τ 2 is the tangential second derivative with respect to the boundary and β a constant;
α and β are parameters whose values are chosen to optimize convergence properties
and thus minimize convergence bounds).

Using linearity we obtain that the error of the synchronous iterative procedure is
the solution of (2) with f = 0. The Fourier transform in the y direction of the error
of the local problem s at iteration n then can be written as (see [5])

ûsn(x, k) = Ans (k)e
−θ(k)|x−(ls−1−L)| + Bns (k)e

−θ(k)|x−(ls+L)| (3)

where θ(k) = √
η + k. Let c(n)T = ((c1(n), c2(n), . . . , cp−1(n), cp(n)) =

(Bn1 , A
n
2, B

n
2 , . . . , A

n
p−1, B

n
p−1, A

n
p), where c1 = Bn1 and cp = Anp are scalars, and

cs = (Ans , B
n
s ) are ordered pairs for s = 2, . . . , p − 1. Plugging the expression (3)
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into (2) (with f = 0), we can write the iteration from u(n) to u(n+ 1) in terms of
the coefficients c(n) and c(n+ 1) obtaining an (2p − 1)× (2p − 1) matrix T̂ such
that c(n + 1) = T̂ c(n); see [5] for more details. In that reference, it is shown that
the operator T̂ is contracting in max norm, and in this paper we continue the proof
starting precisely from this result.1

1.2 Mathematical Model of Asynchronous Iterative Methods

Let X(1), . . . , X(p) be given sets and X be their Cartesian product, i.e., X = X(1)

× · · · × X(p). Thus x ∈ X implies x = (
x(1), . . . , x(p)

)
with x(s) ∈ X(s) for

s ∈ {1, . . . , p}. Let T (s) : X → X(s) where s ∈ {1, . . . , p}, and let T : X → X

be a vector-valued map (iteration map) given by T = (T (1), . . . , T (p)) with a fixed
point x∗, i.e., x∗ = T (x∗). Let {tn}n∈N be the sequence of time stamps at which at
least one processor updates its associated component. Let {σ(n)}n∈N be a sequence
with σ(n) ⊂ {1, . . . , p} ∀n ∈ N. The set σ(n) consists of labels (numbers) of the
processors that update their associated component at the nth time stamp. Define for
s, q ∈ {1, . . . , p}, {τ sq (n)}n∈N a sequence of integers, representing the time-stamp
index of the update of the data coming from processor q and available in processor
s at the beginning of the computation of x(s)(n) which ends at the nth time stamp.
Let x(0) = (

x(1)(0), . . . , x(p)(0)
)

be the initial approximation (of the fixed point
x∗). Then, the new computed value updated by processor s at the nth time stamp is

x(s)(n) =
{
T (s)

(
x(1)(τ s1 (n)), . . . , x

(p)(τ sp(n))
)
, s ∈ σ(n)

x(s)(n− 1), s /∈ σ(n)·

It is assumed that the three following conditions (necessary for convergence) are
satisfied

∀s, q ∈ {1, . . . , p} ,∀n ∈ N
∗, τ (s)q (n) < n, (4)

∀s ∈ {1, . . . , p} , card
{
n ∈ N

∗|s ∈ σ(n)} = +∞, (5)

∀s, q ∈ {1, . . . , p} , lim
n→+∞ τ (s)q (n) = +∞. (6)

Condition (4) indicates that data used at the time tn must have been produced before
time tn, i.e., time does not flow backward. Condition (5) means that no process will
ever stop updating its components. Condition (6) corresponds to the fact that new

1In [5] it is indicated that given T̂ is contracting, then T n → 0, where T maps u(n) to u(n + 1),
but this implication may not always hold. This is why we need to complete the proof in a different
manner. We do so by showing explicitly that (8) holds.
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data will always be provided to the process. In other words, no process will have a
piece of data that is never updated.

2 Convergence Proof for the Asynchronous Case

We now present the convergence proof of the asynchronous implementation of
Optimized Schwarz with transmission conditions composed of local operators (as
described in Sect. 1.1) when applied to (1). Note that the local problem of AOS
is obtained by replacing, in (2), n + 1 by tnew and n by the corresponding update
times of the values of u received from the neighboring subdomains and available
at the beginning of the computation of the new update. Let us define a time stamp
as the instant of time at which at least one processor finishes its computation and
produces a new update. Let tm be the mth time stamp and utms be the error of the
local problem s at time t = tm. Note then that the asynchronous method converges
if for any monotonically increasing sequence of time stamps {tm}m∈N we have

lim
m→∞ utms = 0 (7)

Thus, in order to prove convergence of the asynchronous iterations, we just need
to prove that (7) holds for any monotonically increasing sequence of time stamps
{tm}m∈N, which is what we prove next.

Theorem 1 Let us define a time stamp tm as the instant of time at which at least
one processor finishes its computation and produces a new update. Let utms (x, y)
be the error of the local problem s (of the asynchronous version of (2)), s ∈
{1, . . . , p}, and ûtms (x, k) be its corresponding Fourier transform in the y direction.
Let S = {ls−1 − L : s = 2, . . . , p} ∪ {ls + L : s = 1, . . . , p − 1} (i.e., S is the
set of the x−coordinates of each of the artificial boundaries of each of the local
problems. Then, if û0

s (x, k) is uniformly bounded in k ∈ N and x ∈ S, we have,
∀s ∈ {1, . . . , p}, limm→∞ u

tm
s (x, y) = 0 inΩ(s) for any (monotonically increasing)

sequence of time stamps {tm}m∈N.

Outline of the Proof Note first that all the derivatives of utms exist and are
continuous. Then, if utms converges to zero uniformly in [l − ε, l + ε]×R asm → ∞
and the first and derivatives of other orders of utms contained in Λ are continuous, it

can be shown that limm→∞
(
∂u

tm
s

∂x
+Λu

tm
s

)
(x, y) = 0 uniformly in {l} × R.

We want to prove that for any sequence of time stamps {tm}m∈N and for
every s ∈ {1, . . . , p} we have limm→∞ |utms (x, y)| = 0 in Ω(s). Note that,
to prove this statement, by the argument given in the previous paragraph, with
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Sε = ∪z∈S[z − ε, z + ε], we just need to prove that for every s ∈ {1, . . . , p} it
holds limm→∞ |utms (x, y)| = 0 uniformly in Sε ∩ [�s−1, �s] × R, since this implies
that the values of the boundary conditions of each local problem will converge to
zero, and consequently so will do the solution of each local problem in its interior
domain.

Observe that, if limm→∞ |ûtms (x, k)| = 0 and

lim
m→∞

∫ ∞

−∞
|ûtms (x, k)|dk =

∫ ∞

−∞
lim
m→∞ |ûtms (x, k)|dk, (8)

we have

lim
m→∞ |utms (x, y)| = lim

m→∞

∣∣∣∣ 1

(2π)2

∫ ∞

−∞
ûtms (x, k)e

iykdk

∣∣∣∣

≤ 1

(2π)2
lim
m→∞

∫ ∞

−∞
|ûtms (x, k)|dk = 1

(2π)2

∫ ∞

−∞
lim
m→∞ |ûtms (x, k)|dk = 0.

Thus, in order to prove that limm→∞ |utms (x, y)| = 0 in Ω(s), it suffices to prove
that, for every s ∈ {1, . . . , p}, the following three statements hold:

1. limm→∞ |Atms (k)| = 0 and limm→∞ |Btms (k)| = 0.
2. limm→∞ |ûtms (x, y)| = 0 for ∀x ∈ Sε ∩ [�s−1, �s ] and y ∈ R.
3. For all x ∈ Sε ∩ [�s−1, �s] and y ∈ R, (8) holds.

Item 3. means, in other words, that if |ûtms (x, .)| goes to zero as m goes to infinity,
so will do its integral over k ∈ R, and, in turn, the inverse Fourier transform of
û
tm
s (x, .).

Proof of the Theorem We first prove that ||c(0)||∞ < ∞. For ease of notation, for
each subdomain s, let the left artificial boundary condition be ps(k) and the right
artificial boundary condition qs(k). Thus, it follows from the expression (3) that, at
x = ls−1 − L,

û0
s (ls−1 − L, k) = A0

s (k)+ B0
s (k)e

θ(k)(ls−1−ls−2L) = A0
s (k)+ B0

s (k)e
−θ(k)(W+2L) = ps(k) (9)

and at x = ls + L

û0
s (ls+L, k) = A0

s (k)e
−θ(k)(ls−ls−1+2L)+B0

s (k) = A0
s (k)e

−θ(k)(W+2L)+B0
s (k) = qs(k).

(10)

From (10) we have B0
s (k) = qs(k) − A0

s (k)e
−θ(k)(W+2L). Then, plugging this

expression of B0
s (k) into (9) gives

A0
s (k)+

[
qs(k) − A0

s (k)e
−θ(k)(W+2L)

]
e−θ(k)(W+2L) = ps(k),

A0
s (k)

[
1 − e−2θ(k)(W+2L)

]
= ps(k)− qs(k)e

−θ(k)(W+2L),
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A0
s (k) = ps(k)− qs(k)e

−θ(k)(W+2L)

1 − e−2θ(k)(W+2L)
,

|A0
s (k)| = |ps(k)− qs(k)e

−θ(k)(W+2L)|
|1 − e−2θ(k)(W+2L)| ≤ |ps(k)| + |qs(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

.

By a similar process we obtain

|B0
s (k)| ≤ |qs(k)| + |ps(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

.

Let p∗(k) and q∗(k) be such that

max
s∈{1,...,p}

{
max

{
|ps(k)| + |qs(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

,
|qs(k)| + |ps(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

}}

= |p∗(k)| + |q∗(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

.

Then, we have that

||c(0)||∞ ≤ |p∗(k)| + |q∗(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

.

By hypothesis, û0
s is uniformly bounded in k ∈ N and x ∈ S. Thus, there exists

a number M > 0 such that û0(x, k) ≤ M for any k ∈ R and x ∈ S. Then,
we have that |ps(k)|, |qs(k)| ≤ M for any k ∈ R and s ∈ {1, . . . p}. Then,
necessarily,|p∗(k)|, |q∗(k)| ≤ M , and consequently ||c(0)||∞ < ∞.

Let {tm} be a monotonically increasing sequence of time stamps. As mentioned
previously, in [5] it is proven that ||T̂ (k)c(k)||∞ ≤ ρ||c(k)||∞, with ρ < 1. This
implies that after one application of a local operator to an arbitrary vector cold(k)

we have

|Anew
s |, |Bnew

s | ≤ ||T̂ s(k)cold(k)||∞ ≤ ρ||cold(k)||∞
and after all processes have updated their values at least once, say at time stamp
t∗, we have at least |At∗s |, |Bt∗s | ≤ ρ||c0(k)||∞. This implies, in turn, that given a
monotonically increasing sequence {tm}m∈N, at time tm we have

|Atms |, |Btms | ≤ ρφs(m)||c0(k)||∞,
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where, for each s ∈ {1, . . . , p}, φs : N → N such that φs(m) → ∞ as m → ∞.
Then,

lim
m→∞ |Atms (k)| ≤ lim

m→∞ρφs(m)||c0(k)||∞ = ||c0(k)||∞ lim
m→∞ρφs(m) = ||c0(k)||∞0 = 0.

Similarly, limm→∞ |Btms (k)| = 0, and therefore

lim
m→∞ |ûtms (x, k)| = lim

m→∞
∣∣∣Atms (k)e−θ(k)|x−(ls−1−L)| + Btms (k)e

−θ(k)|x−(ls+L)|
∣∣∣

≤ lim
m→∞

(∣∣Atms (k)
∣∣ e−θ(k)|x−(ls−1−L)| + ∣∣Btms (k)

∣∣ e−θ(k)|x−(ls+L)|)

=
(

lim
m→∞

∣∣Atms (k)
∣∣) e−θ(k)|x−(ls−1−L)| +

(
lim
m→∞

∣∣Btms (k)
∣∣) e−θ(k)|x−(ls+L)|

= 0.

To complete the proof, we need to show that (8) holds for x ∈ Sε ∩ [�s−1, �s ]
and y ∈ R. We show now that, for all m ∈ N, |ûtms (x, .)| is bounded by an L1(R)

function. To that end, we have that,

|ûtms (x, k)| = |Atms (k)e−θ(k)|x−(ls−1−L)| + Btms (k)e
−θ(k)|x−(ls+L)|| (11)

≤ |Atms (k)|e−θ(k)|x−(ls−1−L)| + |Btms (k)|e−θ(k)|x−(ls+L)|

≤ ρφs (m)||c(0)||∞(k)
(
e−θ(k)|x−(ls−1−L)| + e−θ(k)|x−(ls+L)|

)

≤ ρφs (m)
|p∗(k)| + |q∗(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

(
e−θ(k)|x−(ls−1−L)| + e−θ(k)|x−(ls+L)|

)
.

Let

g(x, k) = |p∗(k)| + |q∗(k)|e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

(
e−θ(k)|x−(ls−1−L)| + e−θ(k)|x−(ls+L)|

)
.

(12)

Thus, we have |ûtms (x, k)| ≤ g(x, k) for any m ∈ N. We show next that g(x, .) ∈
L1(R). Since |p∗(k)|, |q∗(k)| ≤ M , we have

g(x, k) ≤ M
1 + e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

(
e−θ(k)|x−(ls−1−L)| + e−θ(k)|x−(ls+L)|

)
(13)
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Thus,

∫ ∞

−∞
|g(x, k)|dk ≤

∫ ∞

−∞
M

1 + e−θ(k)(W+2L)

1 − e−2
√
η(W+2L)

(
e−θ(k)|x−(ls−1−L)| + e−θ(k)|x−(ls+L)|

)
dk

= M

1 − e−2
√
η(W+2L)

∫ ∞

−∞

(
e−θ(k)|x−(ls−1−L)| + e−θ(k)|x−(ls+L)|

+e−θ(k)[W+2L+|x−(ls−1−L)|] + e−θ(k)[W+2L+|x−(ls+L)|]
)
dk

≤ M

1 − e−2
√
η(W+2L)

(
2

|x − (ls−1 − L)| + 2

|x − (ls + L)|

+ 2

W + 2L+ |x − (ls−1 − L)| + 2

W + 2L+ |x − (ls + L)|
)
. (14)

Note that for x ∈ Sε∩[�s−1, �s] we have |x−(ls−1−L)|, |x−(ls−1+L)| ≥ 2L−ε.
Then, plugging these inequalities in (14), we obtain

∫ ∞

−∞
|g(x, k)|dk ≤ 4M(W + 6L− 2ε)

(1 − e−2
√
η(W+2L))(2L− ε)(W + 4L− ε)

, (15)

i.e., g(x, .) ∈ L1(R). Consequently, for any x ∈ Sε ∩ [�s−1, �s ] there exists a
g(x, .) ∈ L1(R) such that |ûtms (x, k)| ≤ g(x, k) for all m ∈ N, and by the Lebesgue
Dominated Convergence Theorem we have then that (8) holds.

The above argument was for s = 2, . . . , p − 1. Using the same argument but
with Atm1 = 0 and −∞ instead of ls−1 −L, we can see that (8) holds for s = 1; and,
using the same argument but with Btmp = 0 and ∞ instead of ls +L, it can be shown
that (8) holds for s = p.

Thus, from (11), (12), (15) we have ∀x ∈ Sε ∩ [�s−1, �s] and y ∈ R that

|utms (x, y)| ≤ 1

(2π)2

∫ ∞

−∞
|ûtms (x, k)|dk ≤ ρφs (m)

π2

M(W + 6L− 2ε)

(1 − e−2
√
η(W+2L))(2L− ε)(W + 4L− ε)

.

Consequently, utms → 0 uniformly in Sε ∩ [�s−1, �s ] × R as m → ∞. Then, as
explained in the outline of the proof, the values of the boundary conditions of each
local problem go to zero as m goes to infinity, and therefore ∀s ∈ {1, . . . , p} we
have utms → 0 in Ω(s) as m → ∞. Given that the sequence of time stamps was
arbitrary, the theorem is proven. *,
Remark 1 Note that the condition that û0

s (x, k) is uniformly bounded in k ∈ N and
x ∈ S can be weakened to the condition that p∗ and q∗ be such that g(x, .) ∈ L1(R).

Remark 2 Note that, for synchronous and asynchronous iterations, for a given tm,
the value of φs(tm) is, in general, different for each s, but they have a common lower
bound, i.e., φs(tm) ≥ nmin, where nmin = mins∈{1,...,p}{ns} and ns is the local update
number of process s. Also, for any s, the value of φs(tm) can be much larger than
ns . For the synchronous case all the local update numbers are equal to the global
iteration number, therefore, nmin is just the (global) iteration number.
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3 Conclusion

In [5], it was shown that the operator T̂ mapping the coefficients of the Fourier
transform of the error at one iteration to those at the next iteration is contracting
in max norm. In this paper, we use this result to complete a proof that, for the
operator Δ − η, the asynchronous optimized Schwarz method converges for any
initial approximation u0 that gives an initial error with Fourier Transform (along the
y direction) uniformly bounded on each of the artificial interfaces.
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INTERNODES for Elliptic Problems

Paola Gervasio and Alfio Quarteroni

1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS)
method is an interpolation based approach to solve partial differential equations
by means of non-overlapping domain decomposition methods featuring non-
conforming discretizations at the interfaces [3, 4]. The non-conformity at a given
interface is induced by independent discretizations (as, e.g., h-fem or hp-fem) on
two adjacent subdomains.

For second order elliptic problems, the well known mortar method uses a single
L2-projection operator per interface to match the non-conforming local solutions.
INTERNODES instead employs two interpolation operators: the first one is used to
enforce the continuity of the traces, the second one to enforce the conservation of
fluxes across the interface.

In this paper we sketch the formulation of INTERNODES when it is applied
to second-order elliptic problems on two-domains decompositions. Then we apply
it to two test problems: the Kellogg’s problem with piece-wise constant diffusion
coefficients, and a problem featuring an infinitely differentiable solution. In both
cases, the numerical results show that INTERNODES attains optimal rate of
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convergence (i.e., that of the best approximation error in each subdomain), as
predicted by the theoretical estimate proved in [4].

Let Ω ⊂ R
d , with d = 2, 3, be an open domain with Lipschitz boundary ∂Ω ,

Ω1 and Ω2 be two non-overlapping subdomains with Lipschitz boundary such that
Ω = Ω1 ∪Ω2, and Γ = ∂Ω1 ∩ ∂Ω2 be their common interface.

Given α ∈ L∞(Ω), b ∈ W 1,∞(Ω), γ ∈ L∞(Ω), and f ∈ H−1(Ω), we look for
u1 in Ω1 and u2 in Ω2 such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · (αk∇uk)+ b · ∇uk + γ uk = f in Ωk, k = 1, 2

u2 = u1 on Γ

α1
∂u1
∂n1

+ α2
∂u2
∂n2

= 0 on Γ

boundary conditions on ∂Ω,

(1)

where nk is the outward unit normal vector to ∂Ωk and αk = α|Ωk . The transmission
condition (1)2 expresses the continuity of the solution across Γ , while (1)3 enforces
the conservation of normal fluxes across the interface, see [7].

2 Intergrid Operators for Non-conforming Discretization

We consider two a-priori independent families of triangulations: T1,h1 in Ω1 and
T2,h2 in Ω2, respectively. The meshes in Ω1 and in Ω2 can be non-conforming
on Γ and characterized by different mesh-sizes h1 and h2. Moreover, different
polynomial degrees p1 and p2 can be used to define the finite element spaces. Inside
each subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and
quasi-uniform [6, Ch. 3].

For k = 1, 2, let Xk,hk = {v ∈ C0(Ωk) : v|T ∈ Ppk , ∀T ∈ Tk,hk } be
the usual Lagrangian finite element spaces associated with Tk,hh , while Yk,hk =
{λ = v|Γ , v ∈ Xk,hk } are the spaces of traces on Γ of functions in Xk,hk , whose
dimension is nk .

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively,
induced by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then Γ1 =
Γ2 = Γ , otherwise Γ1 and Γ2 can be different (see Fig. 1).

Fig. 1 Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2
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For k = 1, 2, let {x(Γk)1 , . . . , x(Γk)nk } ∈ Γ k be the nodes induced by the mesh Tk,hk .
We introduce two independent operators that exchange information between the

two independent grids on the interface Γ : Π12 : Y2,h2 → Y1,h1 and Π21 : Y1,h1 →
Y2,h2 .

If Γ1 = Γ2, Π12 and Π21 are the classical Lagrange interpolation operators
defined by the relations:

(Π12μ2,h2)(x
(Γ1)
i ) = μ2,h2(x

(Γ1)
i ), i = 1, . . . , n1, ∀μ2,h2 ∈ Y2,h2, (2)

(Π21μ1,h1)(x
(Γ2)
i ) = μ1,h1(x

(Γ2)
i ), i = 1, . . . , n2, ∀μ1,h1 ∈ Y1,h1 . (3)

If, instead, Γ1 and Γ2 are geometrical non-conforming, we define Π12 and Π21
as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation operators
introduced in formula (3.1) of [2]. More precisely, for i = 1, . . . , nk let φ̃(k)i (x) =
φ(‖x−x(Γk)i ‖, r) = max{0, (1−‖x−x(Γk)i ‖/r)4}(1+4‖x−x(Γk)i ‖/r) be the locally

supportedC2 Wendland radial basis function [8] centered at x(Γk)i with radius r > 0.

For any continuous function f on Ω , for i = 1, . . . , nk let (γ (k)f )i ∈ R be the
solutions of the system

nk∑
i=1

(γ
(k)
f )i φ̃

(k)
i (x(Γk)j ) = f (x(Γk)j ), j = 1, . . . , nk

and set

(Π
(k)
RBF f )(x) =

nk∑
i=1

(γ
(k)
f )i φ̃

(k)
i (x).

Then, after setting g(x) ≡ 1, for any μ2,h2 ∈ Y2,h2 and μ1,h1 ∈ Y1,h1 , the RL-RBF
interpolation operators are defined by

(Π12μ2,h2)(x) = (Π
(2)
RBFμ2,h2)(x)

(Π
(2)
RBF g)(x)

, (Π21μ1,h1)(x) = (Π
(1)
RBFμ1,h1)(x)

(Π
(1)
RBF g)(x)

.

In both cases, the (rectangular) matrices associated with Π12 and Π21 are,
respectively, R12 ∈ R

n1×n2 and R21 ∈ R
n2×n1 and they are defined by

(R12)ij = (Π12μ
(2)
j )(x(Γ1)

i ) i = 1, . . . , n1, j = 1, . . . , n2,

(R21)ij = (Π21μ
(1)
j )(x(Γ2)

i ) i = 1, . . . , n2, j = 1, . . . , n1,
(4)

where {μ(k)i } are the Lagrange basis functions of Yk,hk , for k = 1, 2 and i =
1, . . . , nk .
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Obviously, in the conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the
interpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I

(the identity matrix of size n1 = n2). Finally, let

(MΓk )ij = (μ
(k)
j , μ

(k)
i )L2(Γk)

, k = 1, 2, (5)

the interface mass matrices. We notice that only information associated with the
interface nodes (more precisely, the nodes coordinates) are needed to assemble both
the interface mass matrices and the interpolation matrices for both the Lagrange and
the RL-RBF interpolation approaches.

3 Mathematical Foundation of INTERNODES for Elliptic
Problems

Let us consider the transmission problem (1) and, for simplicity, we complete it with
homogeneous Dirichlet boundary conditions on ∂Ω . For k = 1, 2 we introduce the
local spaces Vk = {v ∈ H 1(Ωk) | v = 0 on ∂Ω ∩ ∂Ωk}, V 0

k = {v ∈ Vk | v =
0 on Γ }, the bilinear forms ak : Vk × Vk → R: ak(u, v) =

∫
Ωk

(αk∇u · ∇v + (b ·
∇u)v + γ uv)dΩ , and the finite dimensional spaces Vk,hk = Xk,hk ∩ Vk , V 0

k,hk
=

Xk,hk ∩ V 0
k , and Λk,hk = {λ = v|Γ , v ∈ Vk,hk }. Let Rk : Λk,hk → Vk,hk , s.t.

(Rkηk,hk )|Γ = ηk,hk , ∀ηk,hk ∈ Λk,hk be any linear and continuous discrete lifting
from Γk toΩk (as, e.g., the finite element interpolant that is zero at all finite element
nodes not lying on Γk). Finally, we denote by Ik the set of indices i ∈ {1, . . . , nk}
of the nodes x(Γk)i of Γk .

In order to apply the INTERNODES method to problem (1), for any vk,hk ∈ Vk,hk
and for k = 1, 2 we define the scalar quantities

(r
(k)
v )i = ak(vk,hk ,Rkμ

(k)
i )− (f,Rkμ

(k)
i )L2(Ωk)

, i ∈ Ik,

(z(k)v )j =
∑
i∈Ik

(M−1
Γk
)ji(r

(k)
v )i, j ∈ Ik, (6)

and the functions

(rv)k,hk =
∑
j∈Ik

(z(k)v )jμ
(k)
j , (7)

belonging to Λk,hk . (The subscript v highlights the dependence of r on v.)

Remark 1 When non-homogeneous Dirichlet boundary conditions are assigned on
∂Ω , we can recover the homogeneous case by a lifting of the Dirichlet data, so that
only the right hand side has to be modified (see, e.g., [6]).
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The weak form of INTERNODES applied to (1) reads: find u1,h1 ∈ V1,h1 and
u2,h2 ∈ V2,h2 such that

⎧⎪⎨
⎪⎩
ak(uk,hk , vk,hk ) = (f, vk,hk )L2(Ωk)

∀vk,hk ∈ V 0
k,hk

, k = 1, 2

u2,h2 = Π21u1,h1 on Γ2,

(ru)1,h1 +Π12(ru)2,h2 = 0 on Γ1.

(8)

For k = 1, 2, (ru)k,hk ∈ Yk,hk are the so-called residuals at the interface Γk .
In fact they are the discrete fluxes across the interface, i.e., they represent the
approximations of αk∂uk/∂nk on Γk .

Remark 2 The values (r(k)u )i are not the coefficients of (ru)k,hk w.r.t. the Lagrange

basis {μ(k)i } (on which we can apply the interpolation). Rather, they are the

coefficients of (ru)k,hk w.r.t. the dual basis {ψ(k)i }nki=1 of Y ′
k,hk

defined by the relations

(ψ
(k)
i , μ

(k)
j )L2(Γk)

= δij , for i, j = 1, . . . , nk (δij is the Kronecker delta), precisely,

(ru)k,hk =
∑
i∈Ik

(ru)
(k)
i ψ

(k)
i .

Yk,hk and Y ′
k,hk

are identical linear spaces and it can be proved that ψ(k)i =∑
j∈Ik

(M−1
Γk
)jiμ

(k)
j for any i ∈ Ik , therefore (7) follows. The interface mass matrix

MΓk and its inverse play the role of transfer matrices from the Lagrange basis to the
dual one and vice versa, respectively.

Denoting by zk and rk the arrays whose entries are the values (z(k)u )j and (r(k)u )i ,
respectively, it follows that zk = M−1

Γk
rk.

Then, the algebraic form of the interface condition (8)3 reads

M−1
Γ1

r1 + R12M
−1
Γ2

r2 = 0,

or, equivalently, r1 +MΓ1R12M
−1
Γ2

r2 = 0.
For k = 1, 2 let uk denote the array of the Lagrange coefficients of uk,hk at the

nodes of Tk,hk and λk the array of the Lagrange coefficients of uk,hk at the nodes of
Tk,hk ∩Γk . Denoting by Ak the finite element stiffness matrices associated with the
discretization of (8)1, the algebraic form of (8) reads:

⎧⎪⎨
⎪⎩
Akuk = fk, k = 1, 2,

λ2 = R21λ1,

r1 +MΓ1R12M
−1
Γ2

r2 = 0,

(9)

with uk |Γk = λk .
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Under the assumption that problem (1) is well posed (see, e.g., [4, 6]) the follow-
ing convergence theorem, assessing the optimal error bound for the INTERNODES
method, is proved in [4].

Theorem 1 Assuming that u ∈ Hs(Ω), with s > 3/2, λ = u|Γ ∈ Hσ(Γ ), with
σ > 1, (αk∂u2/∂n2) ∈ Hν(Γ ), with ν > 0, if pk ≥ 1 is the finite element
polynomial degree in Ωk , k = 1, 2, and Lagrange interpolation is used to define
Π12 andΠ21, there exist

1
2 ≤ q < 1 and 3

2 ≤ z < 2 s.t.

‖u− uh‖∗ � h
�1−1
1 ‖u‖Hs(Ω1) + h

�2−1
2 ‖u‖Hs(Ω2)

+
(
h
01−1/2
1 + h

02−1/2
2 + h

01−1/2
1

(
h2

h1

)q)
‖λ‖Hσ (Γ )

+
(
h
ζ1+1/2
1 + h

ζ2+1/2
2 + h

ζ1+1/2
1

(
h1

h2

)z)
‖r2‖Hν(Γ ),

with �k = min(s, pk + 1), 0k = min(σ, pk + 1), ζk = min(ν, pk + 1), and being
‖v‖∗ = {‖v‖2

H 1(Ω1)
+ ‖v‖2

H 1(Ω2)
}1/2 the broken norm onΩ .

Remark 3 Π21 is used to match the traces, whileΠ12 is used to match the residuals,
i.e. the fluxes.

Using instead only one intergrid interpolation operator would not guarantee an
accurate non-conforming method; for example using only Π21 yields to the so-
called point wise matching discussed, e.g., in [1]. At the algebraic level the latter
approach uses only the matrix R21 and its transpose RT21, whereas INTERNODES
uses both R21 and R12.

Remark 4 (On the Conservation of Fluxes) The conservation of fluxes across the
interface at the discrete level is enforced by the interface condition (8)3. As this
property depends on the interpolation operator Π12, that in turns depends on the
choice of the local subspaces, the flux jump vanishes, as h1 and h2 go to zero, with
the same order of the broken norm of the error.

Remark 5 The INTERNODES method can be generalized to decompositions with
more than two subdomains, possibly featuring internal cross-points (i.e., points
shared almost among three subdomains). We refer to [4, Sect. 6] for a detailed
description of the algorithm. What follows is a sketch of the generalization of
INTERNODES when Ω ⊂ R

2. Let Ωk and Ω� be two generic subdomains such
that Γk� = ∂Ωk ∩ ∂Ω� is neither empty nor reduced to a vertex, while γ (i)k and γ (j)�

denote the edges of ∂Ωk and ∂Ω�, respectively, such that Γk� = γ
(i)
k ∩ γ (j)� .

Two typical situations can occur: the end-points of γ (i)k coincide with those of

γ
(j)
� (as in Fig. 2), or not (as in Fig. 3). In the first case, each interface Γk� is handled

as in the case of only two subdomains and we build couples of intergrid matrices
R�k and Rk� from γ

(i)
k to γ (j)� and vice versa, as done in Sect. 2. In the second

case, let us suppose that the measure of γ (i)k is larger than that of γ (j)� . Here all the
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Fig. 2 At left, the decomposition ofΩ into four subdomains. In the middle, the nonconforming P1
meshes for k = 10. At right, the Kellogg’s solution with γ = 0.4 and α1 = 9.472135954999585
computed by INTERNODES and P1
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Fig. 3 At left, a partition of the computational domain into 10 subdomains; in each subdomain
the quad hp-fem mesh is plotted, different colours refer to different subdomains. At right, the
corresponding INTERNODES solution

basis functions living on γ (i)k whose support has non-empty intersection with γ (j)�

must be taken into account when building the interpolation matrices R�k and Rk�
and the interface mass matrices M�k and Mk�. Alternatively, one can build both the
interface mass matrices and the interpolation matrices on the larger interface γ (i)k by
assembling the contributions arising from all the shorter edges of the subdomains
adjacent to Ωk on the other side of γ (i)k .

Remark 6 Robin conditions could be used instead of Neumann ones. The for-
mulation of INTERNODES would not change, provided the interface conditions
are imposed weakly (as natural conditions). As a matter of fact, natural interface
conditions are automatically accounted for when evaluating the discrete residuals of
the differential problem as done in (6).
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4 Numerical Results: The Kellogg’s Test Case

We test INTERNODES on a very challenging problem whose solution features low
regularity. The so-called Kellogg’s function (see, e.g., [5]) is an exact weak solution
of the elliptic problem

{−∇ · (α∇u) = 0 in Ω = (−1, 1)2

Dirichlet boundary conditions on ∂Ω,
(10)

with piece-wise constant coefficient α: α = α1 > 0 in the first and the third
quadrants, and α = 1 in the second and in the fourth ones. It can be written in
terms of the polar coordinates r and θ as u(r, θ) = rγ μ(θ), where γ ∈ (0, 2) is
a given parameter, while μ(θ) is a 2π−periodic continuous function (more regular
only when γ = 1). The case γ = 1 is trivial since the solution is a plane. The
positive value α1 depends on γ and on two other real parameters σ and ρ. The set
{α1, γ , σ, ρ} must satisfy a nonlinear system (see formula (5.1) of [5]). In particular
we fixed ρ = π/4.

When γ �= 1, u ∈ H 1+γ−ε(Ω), for any ε > 0; the solution features low
regularity at the origin and its normal derivatives to the axis are discontinuous.

We solve problem (10) by applying INTERNODES to the 4-subdomains decom-
position induced by the discontinuity of α and by using either P1 or Q2 finite
elements in each subdomain (see the P1 mesh in Fig. 2). The meshes at the interfaces
are non-conforming as shown in Fig. 2, more precisely given k ∈ N, the subdomains
mesh-sizes are: h1 = 1/(k − 1), h2 = 1/(k − 2), h3 = 1/(k + 5) and h4 = 1/k.

By refining the meshes (we cycle on k = 20, 40, 80, 160), we measure the
convergence order of INTERNODES on the Kellogg’s solution for different values
of the parameter γ . The results are shown in Table 1 and the convergence estimate
provided by Theorem 1 for two subdomains is here confirmed, although this test
case involves four subdomains instead of two.

We highlight that, although INTERNODES is based on interpolation operators
rather than projections (as in the mortar methods), the best approximation error of
the finite element discretization is preserved and not downgraded.

Table 1 Convergence orders of INTERNODES for the Kellogg’s test solution

γ s σ ν min{�− 1, ρ − 1/2, ζ + 1/2} P1 order Q2 order

0.4 1.4 − ε 0.9 − ε 0.4 − ε 0.4 − ε 0.363 0.429

0.6 1.6 − ε 1.1 − ε 0.6 − ε 0.6 − ε 0.574 0.651

1.4 2.4 − ε 1.9 − ε 1.4 − ε 1 for P1, 1.4 − ε for Q2 0.955 1.394

1.8 2.8 − ε 2.3 − ε 1.8 − ε 1 for P1, 1.8 − ε for Q2 0.949 1.615

The case γ = 0.4 is not covered by the convergence Theorem 1 since s < 3/2 and σ < 1.
min{� − 1, ρ − 1/2, ζ + 1/2} is the expected convergence order provided by Theorem 1, the
measured convergence orders are shown in the last two columns
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5 Numerical Results: Infinite Differentiable Solution

Let us consider the problem (1) with α = 1, b = [1, 1], γ = 1 on Ω = (0, 2)2.
The boundary data and the function f are such that the exact solution is u(x, y) =
sin(3π exp(3(x − 2)/2)) cos(3π exp(3(y − 2)/2)).

A decomposition of Ω = (0, 2)2 in 10 subdomains as in Fig. 3 is considered,
and independent triangulations in each Ωk are designed so that on each interface
both polynomial non-conformity and geometric non-conformity may occur. Either
P1 and quadrilateral hp-fem (Qp) are used to approximate the numerical solution.
A non-conforming grid, obtained with Qp discretizations in each subdomain, is
shown in Fig. 3, left. In order to guarantee full non-conformity on each interface,
we have set on two adjacent domains the polynomial degree equal to either p = 3
or p = 4 and the local mesh size equal to either h = 1/4 or h = 1/3. In Fig. 3,
right, the corresponding numerical solution computed by INTERNODES is shown.

In order to measure the errors in broken norm, we take the same polynomial
degree p in each subdomain and we consider only geometric non-conformity as in
Fig. 3, left, but with a variable number k (or k − 1) of elements (more precisely,
k = 4 in Fig. 3, left). The reference parameter is the mesh size h = 1/k of the left-
bottom subdomain. In Fig. 4, the errors in broken norm are reported, w.r.t. to both h
and p.

The error behaviour versus h (see Fig. 4 left) agrees with the theoretical estimate
of Theorem 1, for which we expect ‖u− uh‖∗ ≤ c(u)hp (in this case p = 1, 2, 4),
as u is infinitely differentiable.

The convergence rate vs p shown in Fig. 4, right, is more than algebraic, as
typical in hp-fem.
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Fig. 4 At left, the broken norm error w.r.t. the mesh-size h of the bottom-left subdomain, p is
fixed. At right, the broken norm error w.r.t. p, here the meshes sizes are fixed: that of the left-
bottom subdomain is h = 1/4



352 P. Gervasio and A. Quarteroni

References

1. C. Bernardi, Y. Maday, A.T. Patera, A new nonconforming approach to domain decomposition:
the mortar element method, in Nonlinear Partial Differential Equations and Their Applications.
Collège de France Seminar, Vol. XI (Paris, 1989–1991). Pitman Research Notes in Mathematics
Series, vol. 299 (Longman Scientific and Technical, Harlow, 1994), pp. 13–51

2. S. Deparis, D. Forti, A. Quarteroni, A rescaled localized radial basis function interpolation on
non-Cartesian and nonconforming grids. SIAM J. Sci. Comput. 36(6), A2745–A2762 (2014)

3. S. Deparis, D. Forti, P. Gervasio, A. Quarteroni, INTERNODES: an accurate interpolation-based
method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming
interfaces. Comput. Fluids 141, 22–41 (2016)

4. P. Gervasio, A. Quarteroni, Analysis of the INTERNODES method for non-conforming
discretizations of elliptic equations. Comput. Methods Appl. Mech. Eng. 334, 138–166 (2018).
https://doi.org/10.1016/j.cma.2018.02.004

5. P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive FEM.
SIAM J. Numer. Anal. 38(2), 466–488 (2000)

6. A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations (Springer,
Heidelberg, 1994)

7. A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations
(Oxford University Press, Oxford, 1999)

8. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

https://doi.org/10.1016/j.cma.2018.02.004


A Nonlinear Elimination Preconditioned
Newton Method with Applications
in Arterial Wall Simulation

Shihua Gong and Xiao-Chuan Cai

1 Introduction

Some biological soft tissues, such as the arterial wall, are quasi-incompressible and
are reinforced by collagen fibers, which induce the anisotropy in the mechanical
response. Polyconvex hyperelastic models [2, 3], which are based on polycon-
vex energy-stored functions, provide a unified framework to describe the quasi-
incompressibility, the anisotropy and the nonlinearly elastic behavior of arterial
walls in the regime allowing large deformations. By using finite element dis-
cretizations [4] for these models and Newton-type nonlinear solvers, numerical
simulation of arterial walls becomes a promising approach in clinical diagnosis and
treatment assistance. However, the design of robust nonlinear and linear solvers is a
challenging problem due to the sophisticated mechanical properties of arterial walls.

In [5], the authors consider several material models for arterial walls in order
to study the mechanical response and the influence on the nonlinear iteration
as well as on the finite element tearing and interconnecting-dual primal (FETI-
DP) iterative linear solver. The stagnation of Newton’s method is observed for
some parameter sets. In order to cope with the quasi-incompressible condition, an
augmented Lagrange approach is proposed in [6]. The penalty parameter for the
incompressibility can be chosen much smaller and therefore the resulting linear
systems have better properties. Both nonlinear solvers mentioned above are based
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on pseudo time stepping, which often requires a large number of global nonlinear
iterations especially for the case of large deformation.

To accelerate the convergence of the nonlinear iteration, we consider a nonlin-
early preconditioned Newton method based on nonlinear elimination to calculate the
solution directly without pseudo time integration. The nonlinear elimination method
is first proposed and analyzed in [12] and then developed in [7, 11] for the problems
with high local nonlinearity. For our cases of hyperelasticity, we numerically
observe that the variables with stronger nonlinearity are not fixed, but change
as the propagation of the elastic wave. Thus, we adaptively detect the variables
and equations with stronger nonlinearity by the residuals. After eliminating these
equations, the approximate solution is more accurate in some key locations of the
elastic wave and therefore the global Newton’s method converges better.

2 Modeling and Discretization

In this section, we discuss a hyperelastic model for arterial walls and its finite
element discretization. First, we introduce some basic notations in continuum
mechanics. The body of interest in the reference configuration is denoted by Ω̂ ∈
R

3, parameterized in x̂, and the current configuration by Ω ∈ R
3, parametrized

by x. The deformation map φ : Ω̂ �→ Ω is a differential isomorphism between
the reference and current configuration. The deformation gradient F is defined by
F(x̂) = ∇φ(x̂) with the Jacobian J (x̂) = detF(x̂) > 0. The right Cauchy-Green
tensor is defined as C = FT F.

The hyperelastic materials postulate the existence of a so-called store-energy
function ψ , defined per unit reference volume. According to the axiom of material
frame-indifference [8], the energy functional depends on the Cauchy-Green tensor,
i.e., ψ = ψ(C). The first and second Piola-Kirchhoff stress tensor can be derived as
P = FS, S = 2∂Cψ(C).And then the Cauchy stress is given by σ = J−1FSFT .
The balance of the momentum is governed by the following partial differential
equation

divP = −f,

plus appropriate boundary condition. Here f is the body force vector.
We focus on the polyconvex energy functional proposed in [3],

ψA = ψisochoric + ψvolumetric + ψti

:= c1

(
I1

I
1/3
3

− 3

)
+ ε1

(
I
ε2
3 + 1

I
ε2
3

− 2

)
+

2∑
i=1

α1

〈
I1J

(i)
4 − J

(i)
5 − 2

〉α2
,

(1)
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which models the quasi-incompressible and fibre-enforcing arterial wall. Here, 〈b〉
denotes the Macaulay brackets defined by 〈b〉 = (|b| + b)/2, with b ∈ R. And
I1, I2, I3 are the principal invariants of C; i.e. I1 := trC, I2 := tr[cof C], I3 :=
detC, where cof C = (detC)C−T . The additional mixed invariants J (i)4 , J

(i)
5

characterize the anisotropic behavior of arterial wall and are defined as J (i)4 :=
tr[CM(i)], J

(i)
5 := tr[C2M(i)], for i = 1 : 2, where M(i) := a(i) ⊗ a(i), i =

1, 2 are the structural tensors with a(i), i = 1, 2 denoting the direction fields of the
embedded collagen fibers.

The polyconvexity condition in the sense of [2] is the essential condition to
ensure the existence of energy minimizers. There are three parts in ψA:

• ψisochoric is the isochoric part of the isotropic energy. Similar to the Neo-
Hookean material, c1 is stress-type coefficient with upper and lower bounds.

• ψvolumetric is the penalty function to account for the quasi-incompressibility. The
coefficients ε1, ε2 would be very large for the incompressible material.

• ψti is the transversely isotropic part. The anisotropy comes from the exponential
stiffening of the fibers when increasing loads are applied. Relative large coeffi-
cients α1, α2 indicate large anisotropy.

According to [4], the lowest-order Lagrange finite element with linear shape
functions is not sufficient to provide a good approximation for the arterial wall
stresses, whereas for the Lagrange finite elements or F-bar formulations with
quadratic shape functions, suitable results are obtained. Instead of concerning about
the stress, we focus on the nonlinear solvers for the resulting system. Thus, for
simplicity, we use the P1 Lagrange finite element to approximate the displacement.

3 Inexact Newton Method with Nonlinear Preconditioning

With a slight abuse of notation, we denote the nonlinear system after the discretiza-
tion as described above

F(u∗) = 0

where F : Rn �→ Rn. Inexact Newton (IN) algorithms [9, 10] are commonly used
for solving such system and can briefly be described here. Suppose u(k) is the current
approximate solution, a new approximate solution u(k+1) can be computed through

u(k+1) = u(k) + λ(k)p(k),

where the inexact Newton direction p(k) satisfies

‖F(u(k))+ F ′(u(k))p(k)‖ ≤ ηk‖F(u(k))‖.
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Here ηk ∈ [0, 1) is a scalar that determines how accurately the Jacobian system
needs to be solved, and λ(k) is another scalar that determines how far one should go
in the selected direction.

3.1 Nonlinear Elimination

It is reported in [5, 6], the incompressibility and large anisotropy have a negative
effect on the convergence of both Newton’s iteration and the Jacobian solver. To
accelerate Newton’s convergence, we introduce a nonlinear elimination precondi-
tioner [7, 11, 12], which balances the nonlinearity of the global problem by solving
the subproblems defined in the subdomains or subspaces. Let S = {1, · · · , n} be an
index set; i.e., one integer for each unknown ui and residual Fi . We choose a subset
Sb ⊂ S of the indices corresponding to the “bad” degrees of freedom (d.o.f.), of
which the nonlinearity is dominant. The corresponding subspace is denoted by

Vb = {v | v = (v1, · · · , vn)T ∈ Rn, vk = 0, ifk �∈ Sb}.

The corresponding restriction operator is denoted byRb ∈ Rn×n, whose kth column
is either zero if k �∈ Sb or the kth column of the identity matrix In×n. Thus the
subspace and the corresponding restriction for the “good” d.o.f. are denoted by Vg
and Rg = In×n − Rb.

Given an approximate solution u and a sub index set Sb, the nonlinear elimination
algorithm finds the correction by approximately solving ub ∈ Vb,

Fb(ub) := RbF(ub + u) = 0. (2)

The new approximate solution is then updated as w = ub + u. It is easy to see that
the Jacobian of the sub nonlinear problem (2) is Jb(ub) = RbJ (ub + u)RTb . Here

J = F ′ =
(
∂Fi
∂uj

)
n×n is the Jacobian of F .

Suppose we are at the iteration k and u(k) is the current approximation, the
inexact Newton algorithm with nonlinear elimination is described as below

Algorithm 1. (IN-NE)

Step 1. Compute the next approximate solution u(k+1) by solving the following
nonlinear system

F(u) = 0

with one step of IN iteration using u(k) as the initial guess. If the global
convergent condition is satisfied, stop. Otherwise, go to Step 2.
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Step 2. (Nonlinearity checking)

2.1 If ‖F(u(k+1))‖ < 01‖F(u(k))‖, go to Step 1.
2.2 Finding “bad” d.o.f. by

Sb := {j ∈ S ∣∣ |Fj (u(k+1))| > 02‖F(u(k+1))‖∞}.

And extend Sb to Sδb by adding the neighbor d.o.f..
2.3 If #(Sδb) < 03n, go to Step 3. Otherwise, go to Step 1.

Here 01, 02, 03 ∈ (0, 1) and δ ∈ Z+ are pre-chosen constants.
Step 3. Compute the correction uδb ∈ Vb by solving the sub nonlinear system

approximately

Fδb (u
δ
b) := RδbF (u

δ
b + u(k+1)) = 0,

with an initial guess uδb = 0 and a relative tolerance tol = max(γa, γr‖Rδb
F (u(k+1))‖). If ‖F(uδb + u(k+1))‖ < ‖F(u(k+1))‖, accept the correction and
update u(k+1) ← uδb + u(k+1). Go to Step 1.

There are three tolerance parameters in the nonlinear checking step: 01 is the
tolerance for the reduction of the residual norm, 02 is the tolerance to pick up the bad
d.o.f. and 03 is the tolerance to limit the size of the subproblem. In Step 3, we only
accept the correction by nonlinear elimination if the residual norm decreases. But
in practice, if the norm of the corrected residual does not decrease for 3 successive
steps, we choose to accept the correction without checking the residual.

Different to the nonlinear elimination method proposed in [12], where the authors
fix for all steps the set of equations to eliminate, we construct adaptively the
index set Sb by the residual F(u(k+1)). Actually, the residual can be viewed as a
measurement of the Hessian of F by the Taylor expansion,

F(u(k+1)) = F(u(k))+ F ′(u(k))p(k) + 〈F ′′(u(k) + θp(k))p(k), p(k)〉
≈ 〈F ′′(u(k) + θp(k))p(k), p(k)〉,

since the Jacobian system is solved approximately. From this perspective, eliminat-
ing the equations with large residual is a way to control the higher order terms of
F such that it can be linearly approximated much better during the global Newton
iteration. However, the nonlinear elimination just on the equations with indices in
Sb could lead to thrashing (i.e., the norm of the residual ‖F‖ could become larger
due to the boundary effect). To ease this phenomenon, we extend the index set Sb to
Sδb by adding the neighbor d.o.f, of which the distances to Sb are smaller than δ.



358 S. Gong and X.-C. Cai

4 Numerical Results

We implement the discretization for hyperelasticity and the nonlinear solvers
described in the previous sections by using FEniCS [13] and PETSc [1], respec-
tively. Based on the parameter sets of the modelψA in Table 1, we propose three test
examples to investigate the performance of nonlinear elimination for the materials
with large deformation, quasi-incompressibility and high anisotropy. In all of the
tests, the backtracking line search strategy is used to determine the maximum
amount to move along the search direction computed by a direct solver.

Example 1 This example simulates the deformations of a cylindrical rod by
different pulls. We fix one end of the rod and then pull it down from the other end.
The material parameters are given in Set L of Table 1. It is an isotropic model since
α1 = 0.0. The deformations by three different pulls L1 = 1.e1 Pa, L2 = 1.e2 Pa
and L3 = 1.e3 Pa are plotted in Fig. 1b. The convergence history of the Newton
iteration with nonlinear elimination (IN-NE) is shown in Fig. 1a. We compare the
results with those obtained by using a standard inexact Newton (IN) method. The
blue lines are for the IN-NE algorithm while the red lines for the IN method. As
indicated by Fig. 1a, the nonlinear elimination method accelerates the convergence
of the Newton iteration even for the case of large deformation.

Example 2 This example studies the performance of nonlinear elimination for the
cases of different compressibility. The parameters are given in the sets C1, C2 and
C3 of Table 1. For consistency with linear elasticity, C1 = μ

2 , ε1 = κ
2 , where μ, κ

are the shear and bulk modulus. The Poisson ratio can be computed by ν = 3κ−2μ
2(3κ+μ) ;

see Table 2. We use the same setting of the geometry and the boundary conditions
with that of the previous example. Figure 2 shows the superiority of the nonlinear
elimination in the quasi-incompressible case.

Example 3 We consider an artificial arterial segment with a plaque and fibre-
enforcing layers. The problem setting, including the geometry and boundary condi-

Table 1 Model parameter sets [5, 6] of ψA

Set Layer c1 ε1 ε2(–) α1 α2 Purpose

L – 1.e3 1.e3 1.0 0.0 0.0 Deformations by different pulls

C1 – 1.e3 1.e3 1.0 0.0 0.0 Different penalties for compressibility

C2 – 1.e3 1.e4 1.0 0.0 0.0

C3 – 1.e3 1.e5 1.0 0.0 0.0

A1 Adv. 7.5 100.0 20.0 1.5e10 20.0 Anisotropic arterial walls

Med. 17.5 100.0 50.0 5.0e5 7.0

A2 Adv. 6.6 23.9 10 1503.0 6.3

Med. 17.5 499.8 2.4 30001.9 5.1

A3 Adv. 7.8 70.0 8.5 1503.0 6.3

Med. 9.2 360.0 9.0 30001.9 5.1
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Fig. 1 Numerical results of Example 1. (a) Convergence history of IN and IN-NE. (b) Deforma-
tions by different pulls

Table 2 Poisson’s ratio of
materials C1, C2 and C3

Set Poisson’s ratio

C1 0.125

C2 0.452

C3 0.495
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Fig. 2 Convergence histories for Example 2
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Fig. 3 Numerical result of Example 3. (a) Convergence histories of IN and IN-NE. (b) von Mises
stress

tions, originates from [5]. More precisely, a pressure of up to 24 kPa (<180 mmHg)
is applied to the interior of the arterial segment, of which the von Mises stress is
shown in Fig. 3b. The parameter sets A1 and A2 of Table 1 are adjusted in [5] to
fit the experiment data, and A3 in [6] with slight modification. The convergence
histories of IN and IN-NE are shown in Fig. 3b. Similar to the previous examples,
the nonlinear elimination increases the residual at the first few steps of Newton’s
iteration, but then the iteration converges faster.

5 Conclusions

The main contribution of this paper was to investigate the performance of a nonlin-
ear elimination preconditioner with applications in computational hyperelasticity.
A robust strategy of nonlinearity checking was adapted to capture the subregions
with stronger nonlinearity, which coincide with the propagation of the elastic wave.
Moreover, we found that the extension for the eliminating index set by adding the
neighbor d.o.f. is an effective trick to ease the thrashing phenomenon of nonlinear
elimination. As future work, we will use more feasible linear solvers for the Jacobian
system and consider other arterial wall problems with patient-specific geometry.
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Parallel-in-Time for Parabolic Optimal
Control Problems Using PFASST

Sebastian Götschel and Michael L. Minion

1 Introduction

Gradient-based methods for parabolic optimal control problems are computationally
expensive due to the need to solve both a forward state equation and a backward-
in-time adjoint equation to compute gradient information in each iteration of the
optimization procedure. One potential way to reduce the overall computational time
is to employ parallel-in-time (PinT) methods for solving state and adjoint equations.
Attempts to construct PinT methods for the solution of differential equations date
back more than 50 years and have gained increasing interest in the last 15 years [8].
More recently, the application of space-time parallel methods to the solution of
optimization problems governed by PDEs has become an active research area,
with approaches including multiple shooting (e.g. [11] and the references therein),
Schwarz methods [1, 9], the application of parareal preconditioners [14, 18], and
space-time parallel multigrid methods [10].

Here we apply the PFASST method [7] (“Parallel Full Approximation Scheme
in Space and Time”) to both the state and adjoint equation to provide a fully
time-parallel gradient- or nonlinear conjugate gradient method. This approach is
somewhat related to the time-parallel gradient type method presented in [5]. There
the time interval of interest is subdivided into time steps, which are solved in
parallel using quantities from the previous optimization iteration as input. This leads
to jumps in the solutions of state and adjoint equation such that these equations
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are not satisfied during optimization. While convergence is demonstrated in [5] if
sufficiently small step sizes for updating the control are used, it is unclear how to
automatically select such a step size. In our approach, the usual line search criteria,
e.g. the (strong) Wolfe conditions, can be used to guarantee convergence.

2 Background

2.1 SDC, MLSDC, and PFASST

A distinguishing factor of the PFASST algorithm compared to other PinT methods is
that, in each iteration, the solution on a given time step is improved using a deferred
correction approach rather than being computed in full using a given ODE method.
The correction sweeps are based on spectral deferred corrections (SDC) [6] and are
applied on a hierarchy of space-time representations of the problem as in multi-level
SDC (MLSDC) methods [17]. PFASST exposes parallelism in the time direction
because MLSDC iterations are pipelined so that SDC sweeps are done concurrently
on all but the coarsest level.

One advantage of SDC methods is the flexibility in choosing the type of
substepping for the correction sweep. In the numerical example, we will use both
a semi-implicit or IMEX approach [15] (wherein one component of the solution is
treated explicitly and one implicitly) and a multi-implicit (MISDC) approach [2]
(wherein one component of the solution is treated explicitly and two components
are treated implicitly but uncoupled). The motivation for using IMEX and MISDC
variants are to replace the solution of coupled nonlinear systems in the time stepping
by simpler linear equations (see Sect. 4.1 for further discussion).

Finally, PFASST is an iterative method, and the typical way in which the
solution is initialized on each parallel time slice is by serial time stepping on the
coarsest level. In optimal control problems, an alternative is to use the solution
from the previous optimization iteration as the initial guess for the next state
and adjoint equation solve. As the optimization procedure converges, the initial
solutions improve in quality, and hence the number of PFASST iterations needed
for convergence should decrease. We demonstrate this savings in Sect. 4.

2.2 Optimal Control of Parabolic PDEs

We consider optimal control problems

min
y∈Y,u∈U J (y, u) subject to c(y, u) = 0, (1)
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with c : Y × U → Z& a semi-linear parabolic PDE on Banach spaces Y,Z and
Hilbert spaceU over a spatial domainΩ ⊂ R

d . We assume that there exists a unique
solution y = y(u) ∈ Y of the state equation c(y, u) = 0 for each control u ∈ U . To
avoid a full, typically 4D, discretization of this problem, methods working on the
reduced functional

min
u∈U j (u) := J (y(u), u) (2)

are often employed. Under standard assumptions, the reduced gradient is given by

j ′(u) = Ju(y(u), u)+ cu(y(u), u)
&p(u),

where p solves the adjoint equation

Jy(y(u), u)+ cy(y(u), u)
&p(u) = 0, (3)

which is backward in time, see, e.g., [13] for details. Due to the occurrence of
−Jy(y(u), u) as a source term, and—in the nonlinear case—the dependence of
cy(y(u), u) on the state solution y(u), the adjoint gradient computation consists
of three steps:

1. solve c(y, u) = 0 for y ∈ Y and store the solution trajectory,
2. solve cy(y, u)&p = −Jy(y, u) for p ∈ Z,
3. set j ′(u) = Ju(y, u)+ cu(y, u)

&p.

In order to facilitate fully parallel algorithms to solve the optimal control prob-
lem (1), state and adjoint equations need to be solved using PinT methods.

3 PFASST for Optimal Control

Minimizing the objective function (2) is done via gradient- or nonlinear conjugate
gradient (ncg) methods

uk+1 = uk + αkdk

dk+1 = −j ′(uk+1)+ βkdk,

where d0 = −j ′(u0), αk denotes the step size, required to satisfy the (strong)
Wolfe conditions [16], and the choice of βk defines the type of method (βk = 0 for
the gradient method; various possibilities for βk leading to different ncg methods,
see [4] for a brief overview and the method used in the experiments). For the
numerical solution we apply a method of lines approach, discretizing first in space,
then in time.
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Parallelization in time for these methods requires three ingredients: time-parallel
computation of inner products, step size selection, and the solution of state and
adjoint equations. The first two ingredients are straightforward: on each time
interval, local scalar products are computed, and then communicated to all other
processors, summing them up. These scalar products are used to compute βk, as well
as to check sufficient decrease and curvature conditions during step size selection.
For the time-parallel solution of state and adjoint equations we propose two different
strategies using PFASST. In the first approach, the state and adjoint problems are
solved separately using PFASST for both. The state solution at each time step and
quadrature node is stored for subsequent use in the solution of the adjoint equation.
Alternatively, PFASST could be used to solve the state and adjoint equation at the
same time. Each SDC sweep of the state equation would be followed by a backward
sweep of the adjoint equation on the same nodes, leading to more complicated
communication patterns. In the numerical example, we focus on the first approach.
Details and results for the second approach will be reported elsewhere.

4 Numerical Example

Here we consider the following optimal control problem [3, 12] governed by a semi-
linear reaction-diffusion equation on Ω = (0, 20):

min
y,u

1

2

∫ T

0

∫
Ω

(y − yd)
2 dx dt + λ

2

∫ T

0

∫
Ω

u2 dx dt,

where T = 5, and y(x, t) is subject to

yt − yxx + y(
1

3
y2 − 1) = u(x, t) in Ω × (0, T )

y(x, 0) = y0(x) in Ω,

(4)

with homogeneous Neumann boundary conditions. The initial condition and desired
state are

y0(x) =
{

1.2
√

3, x ∈ [9, 11]
0, elsewhere

and yd(x, t) =
{
ynat(x, t), t ∈ [0, 2.5]
ynat(x, 2.5), t ∈ (2.5, T ],

where ynat denotes the solution to the PDE (4) for u ≡ 0. For λ = 0, an exact
optimal control is known:

uexact =
{

0, t ≤ 2.5
1
3y

3
nat(x, 2.5)− ynat(x, 2.5)− ∂2

∂x2 ynat(x, 2.5), t > 2.5.
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4.1 IMEX and MISDC Formulations

As mentioned in Sect. 2.1, there is great flexibility in how the substepping procedure
in SDC is constructed since it need only be a first-order approximation. For our
numerical example, two strategies are investigated, IMEX SDC and multi-implicit
SDC. In both cases, the diffusion term in (4) is treated implicitly to avoid the severe
time-step restriction inherent in explicit temporal methods. In the IMEX strategy,
only the diffusion term is treated implicitly, while in the MISDC method, both
diffusion and reaction are treated implicitly, but the implicit solutions are done
independently as in operator splitting methods. In addition, we employ a lagging of
nonlinear terms in MISDC iteration to turn the nonlinear solve into a linear problem.

Methods that employ operator splitting are desirable when the reduced cost
of split implicit solvers compared to coupled solvers is significant. The overall
accuracy of PFASST (assuming convergence of SDC iterations) does not depend on
the form of the substepping, rather on the choice of number and type of integration
nodes. Hence, the main concern in terms of efficiency is the computational cost of
each SDC iteration and the number of iterations required for convergence.

The IMEX and MISDC approach are explained by examining a single substep
of an SDC sweep. Letting k denote the SDC iteration, m the substep index, and D2

the discretization of the second derivative term, then the correction equation for a
single fully implicit, backward-Euler type discretization of the substep for (4) will
take the form

y
[k+1]
m+1 = y[k+1]

m +Δtm(D
2y

[k+1]
m+1 − y

[k+1]
m+1 (

1

3
(y

[k+1]
m+1 )

2 − 1))+ S
[k]
j , (5)

where the term S
[k]
j contains terms that either depend on the previous iteration [k]

or values at iteration [k + 1] already computed at substep j < m + 1, including
the control terms arising from the discretization of u(x, t). Note that the implicit
equation couples nonlinear reaction and diffusion terms and hence would require a
global nonlinear solver in each substep. For problems in which the reaction terms
are non-stiff and can be treated explicitly, the reaction terms at node m + 1 do not
appear in the implicit equation, giving the form

y
[k+1]
m+1 = y[k+1]

m +Δtm(D
2y

[k+1]
m+1 − y[k+1]

m (
1

3
(y[k+1]
m )2 − 1))+ S

[k]
j . (6)

Each substep now requires only the solution of a linear implicit equation, and hence
is computationally cheaper than a fully implicit approach, assuming that the explicit
treatment of the reaction term does not impose an additional time step restriction.

When the reaction term is stiff, and hence it is advantageous to treat it implicitly,
a standard MISDC approach applies an operator splitting between diffusion and
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reaction in the correction equation. For example,

y∗ = y[k+1]
m +ΔtmD

2y∗ + S
∗,[k]
j , (7)

y
[k+1]
m+1 = y[k+1]

m +Δtm(D
2y∗ − y

[k+1]
m+1 (

1

3
(y

[k+1]
m+1 )

2 − 1))+ S
[k]
j . (8)

For the numerical methods here, the MISDC approach is further modified, so that
the nonlinear solve for reaction in (8) is made linear by lagging terms in [k]:

y
[k+1]
m+1 = y[k+1]

m +Δtm(D
2y∗ − y

[k+1]
m+1 (

1

3
(y∗)2 − 1))+ S

[k]
j . (9)

This form creates an implicit solve with roughly the same cost as treating reaction
explicitly but is more stable. In all the numerical examples presented here, a DIRK
type approach [19] is used so that the generic form of S[k]

j contains both the usual
SDC terms from iteration [k] and a linear combination of previously computed right-
hand-side terms from SDC iteration [k + 1].

4.2 Results

In this section we show the results using IMEX and MISDC approaches to solve the
state and adjoint equation. In both cases, a method of lines is employed by using
a spectral discretization in space with spatial derivatives computed with the fast
Fourier transform. The PFASST iterations are stopped when the relative or absolute
residual falls below 10−11. For solving the optimization problem we set λ = 10−6

and use the ncg method from [4], with initial control u0 = 0.5uexact. As described
in [3], the ncg method converges quite slowly for this particular problem; it was
stopped after at most 200 iterations.

IMEX Since the reaction terms in our example are not highly stiff, an IMEX
approach can be used for the state and adjoint equations. PFASST is employed using
three levels (32/64/128 spatial points and 3/5/9 LobattoIIIA nodes in time) with 20
parallel time intervals. Note the temporal method is formally 16th order. Running on
20 processors in parallel, the final objective function value after 200 ncg iterations
is 2.4 × 10−3, and the computed control has a relative L2-error of 0.15 compared
to uexact. In contrast, the sequential version stops with a slightly worse objective
function value of 3.2 × 10−3, and a relative L2-error of 0.15 in the computed
control. A plot of the computed control, the error in the computed control, and the
corresponding computed optimal state can be found in Fig. 1. By parallel execution,
the overall runtime was reduced by a factor 3.8, yielding a parallel efficiency of 19%.

MISDC For testing MISDC we used 20 parallel time intervals with two PFASST
levels consisting of 64/128 spatial points and 5/9 LobattoIIIA nodes. After 200 ncg
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Fig. 1 Computed optimal control with λ = 10−6 (left), difference to exact control uexact (middle)
and optimal state (right) using IMEX

iterations, the sequential version reached an objective function value of 3.8 × 10−3

and a relative L2-error of 0.15 in the computed control. Running in parallel reduced
the computation time by a rather small factor 2, but lead to improved results
(objective: 1.8×10−3, control: relative L2-error 0.14). Initializing the state solution
at the collocation nodes in optimization iteration k with their values from iteration
k−1 (“warm start”) reduced the required sweeps by 48% while reaching an objective
function value of 1.5 × 10−3 and relative L2-error in the control of 0.13. The
reduction in sweeps translates to a significant reduction of overall computation time
by 45%. This is in contrast to the IMEX experiment, where for a reduction in sweeps
by 39% the gain in overall speed was a mere 7%. Lagged linearization as in (9)
increases the total number of PFASST sweeps for a state equation solve from 570
(on average 28.5 per time step) to 642 (avg. 32.1/time step). Using smaller time
steps (40 parallel intervals), the average number of iterations is 28.3 in both cases.

For this example, it is unreasonable to attempt to compare the IMEX and MISDC
approaches in terms of overall efficiency since MISDC is designed for problems
where both diffusion and reaction components are stiff. The pertinent point here
is that employing the MISDC procedure with a lagged linearization of reaction
terms does not appear to increase the number of PFASST iterations needed for
convergence substantially, thus offering the possibility of greatly reducing the cost
of implicit substepping compared to fully implicit methods.

5 Discussion

An approach using PFASST for the time-parallel solution of PDE-constrained
optimization problems has been presented, and non-trivial parallel speedup and
efficiency have been obtained. It is important to note that the parallel efficiency
of PFASST is improved when solutions on the coarsest level are much cheaper than
on finer levels, and spatial coarsening has a larger effect in multiple dimensions
compared to the one-dimensional example used here. In addition, applying PFASST
simultaneously to state and adjoint equations with proper handling of communi-
cation offers further improved parallel speedup. The flexibility of SDC/PFASST
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has been used to reduce the cost of implicit solutions in the substepping and
also to re-use information from previous optimization iterations. Future research
will, for example, deal with adaptive control of the accuracy for inexact gradient
computations, and different strategies for storing or recomputing state solutions for
the adjoint solve.
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An Adaptive GDSW Coarse Space
for Two-Level Overlapping Schwarz
Methods in Two Dimensions

Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rheinbach

1 Introduction

We consider the second order elliptic problem in two dimensions

−∇ · (A(x)∇u(x)) = f (x) in Ω ⊂ R
2,

u = 0 on ∂Ω,
(1)

where the scalar coefficient function A(x) > 0 is highly heterogeneous, possibly
with high jumps. We propose a coarse space for two-level overlapping Schwarz
methods with a condition number bound independent of the coefficient. Our
approach extends the GDSW (Generalized Dryja, Smith, Widlund) method [7, 8]
since it always contains the classic GDSW coarse space. Originally, the method
was inspired by the ACMS (Approximate Component Mode Synthesis) special
finite element method [14, 17], which uses enrichment by local eigenfunctions. The
ACMS space was first considered as a coarse space for domain decomposition (DD)
in [15].

In two dimensions, our new coarse space consists of simple nodal finite
element functions and of energy minimizing extensions of solutions of generalized
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eigenvalue problems on the edges. See [16] for the description of the three-
dimensional case and the proof of the condition number bound. A related method
is the SHEM (Spectral Harmonically Enriched Multiscale) coarse space, introduced
in [12], however, our eigenvalue problems do not use mass matrices; see (5). In
our new coarse space and in the one based on the ACMS discretization method,
the construction of the generalized eigenvalue problems is computationally slightly
more expensive than in the SHEM coarse space [12]. However, the dimension of
the coarse space can be reduced significantly in certain cases. Earlier coarse spaces
for overlapping Schwarz methods, which also use mass matrices, are, e.g., [9–11].
These eigenvalue problems are used to replace local Poincaré inequalities.

To the best of our knowledge the use of local eigenvalue problems has been
introduced to DD in [2, 3]. Successful adaptive FETI-DP and BDDC methods were
given in [18] followed, e.g., by [19]. Local eigenvalue problems have also been
used in the algebraic multigrid (AMG) community [4, 6]. The ACMS discretization
method is related to other multiscale discretization methods. Notable contributions
in DD for multiscale problems are [1, 5, 13].

The variational problem corresponding to (1) reads: find u ∈ H 1
0 (Ω), such that

aΩ (u, v) = L(v) ∀v ∈ H 1
0 (Ω) (2)

and aΩ (u, v) := ∫
Ω
(∇u(x))T A(x)∇v(x) dx , L (v) := ∫

Ω
f (x)v(x) dx, where

f ∈ L2(Ω). We define the semi-norm corresponding to the bilinear form aΩ (·, ·)
as |u|a,Ω2 := aΩ (u, u). Let Ku = f be the discretization of problem (2) by
piecewise linear or bilinear finite elements on a family of triangulations (τh)h.

1.1 The Standard GDSW Preconditioner

The GDSW preconditioner [7, 8] is a two-level additive overlapping Schwarz
preconditioner with exact solvers; cf. [20]. It can therefore be written in the form

M−1
GDSW = ΦK−1

0 ΦT +
N∑
i=1

RTi K̃
−1
i Ri, (3)

where K0 = ΦTKΦ and K̃i = RTi KRi . The matrices Ri are the restriction
operators to the overlapping subdomains Ω̃i , i = 1, . . . , N . The columns of Φ
are the coarse basis functions. These use discrete harmonic extensions of interface
functions into the interior of the nonoverlapping subdomains. On the interface,
the values are defined as the restrictions of the nullspace of the operator to the
edges and vertices of the nonoverlapping domain decomposition. The condition
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number estimate for the GDSW Schwarz operator, in case of a constant coefficient
function A, is

κ
(
M−1

GDSWK
)

≤ C (1 +H/δ) (1 + log (H/h))2 ; (4)

cf. [7, 8]. If A is not constant, the constant C also depends the contrast of A.

2 Adaptive GDSW in 2D

The adaptive GDSW coarse space is a generalization of the standard GDSW
coarse space since the latter is automatically included in the former. To deal with
coefficient jumps, additional coarse constraints are added constructed from solving
local generalized eigenvalue problems. Let the interface Γ be partitioned into edges
E and vertices V , i.e., Γ = (∪e∈E e) ∪ (∪v∈V v) . For each edge e, we define the
sets Ωe and Ω̂e as depicted in Fig. 1 (left) and the following extension operator:

we : V h0 (e) → V h0 (Ωe) , v �→ we(v) :=
{
v in all interior nodes of e,
0 on all other nodes in Ωe,

where V h0 (e) := {
v|e : v ∈ V, v = 0 on ∂e

}
. Then, we consider on each edge e ∈

E the generalized eigenvalue problem: find τ∗,e ∈ V h0 (e) such that

a
Ω̂e

(
H
ê→Ω̂e

(τ∗,e),Hê→Ω̂e
(θ)

)
= λ∗,e aΩe

(
we(τ∗,e), we(θ)

) ∀θ ∈ V h0 (e) .
(5)

Here, H
ê→Ω̂e

is the discrete harmonic extension from the interior edge ê into

Ω̂e with respect to a
Ω̂e
(·, ·). Let the corresponding eigenvalues be sorted non-

descendingly, i.e., λ1,e ≤ λ2,e ≤ . . . ≤ λm,e (eigenmodes accordingly) where
m = dim

(
V h0 (e)

)
. We select all eigenmodes τ∗,e where the eigenvalues are below

tolE , i.e., λ∗,e ≤ tolE . Then we extend the selected eigenfunctions by zero to Γ \e,
denoted by τ̃∗,e, and subsequently compute the discrete harmonic extension into the

Fig. 1 (Left) Graphical representation of Ωe = Ωi ∪ Ωj and Ω̂e. The set Ω̂e is obtained by
removing from Ωe all elements which are adjacent to the coarse nodes. From this, we also obtain
the interior edge ê := e ∩ Ω̂e. (Right) Graphical representation of the slab Ω̂l

e corresponding to
the edge e
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interior of the subdomains, i.e., v∗,e := HΓ→Ω(τ̃∗,e). Note that for every edge e, the
left hand side of the eigenvalue problem (5) is singular. Therefore, since tolE ≥ 0,
eigenmodes which span the nullspace are always selected and added to the coarse
space. As a consequence, the standard GDSW coarse space is always included.
Additionally, we use the nodal coarse basis functions from the GDSW coarse space,
which span the space VV . The result is the AGDSW (Adaptive GDSW) coarse
space:

V
tolE
AGDSW = VV ⊕ (⊕e∈E span

{
vk,e : λk,e ≤ tolE

})

Remark 1 For tolE ≥ 0, we obtain VGDSW = V 0
AGDSW ⊆ V

tolE
AGDSW .

Remark 2 The right hand side of the eigenvalue problem (5) can be extracted from
the fully assembled global stiffness matrix K .

Remark 3 The condition number of the AGDSW Schwarz operator is bounded by

κ
(
M−1

AGDSWK
)

≤ C (1 + 1/tolE ) ; (6)

see [16]. The constant C is independent of H , h, and the contrast of A.

The threshold tolE used for the selection of the eigenfunctions also controls the
condition number (6). In practice, the best choice for tolE exactly separates the
eigenvalues corresponding to coefficient jumps from the rest of the spectrum.

2.1 Variants of Adaptive GDSW

Here, we will briefly discuss some possible variants of the AGDSW method.

Mass Matrix As in other adaptive coarse spaces where a spectral estimate is used
to replace a Poincaré type inequality, cf., e.g., [9, 11, 12, 15], we can use a (scaled)
mass matrix on the right hand side of the eigenvalue problems. The scaled mass
matrix corresponding to an edge e ⊂ (Ω̄i ∩ Ω̄j ) arises from the discretization of the
scaled L2-inner product

be (u, v) := 1

h2 (A · we(u),we(v))L2(Ωe)
. (7)

Therefore, we obtain for each edge the modified generalized eigenvalue problem:
find τ∗,e ∈ V h0 (e) such that

a
Ω̂e

(
H
ê→Ω̂e

(τ∗,e),Hê→Ω̂e
(θ)

)
= λ∗,ebe

(
τ∗,e, θ

) ∀θ ∈ V h0 (e) . (8)

The condition number bound (6) can also be proven for this variant; see [16].
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Slabs Solving the eigenvalue problems can be expensive; they are, however, local
and only defined on the interface; moreover, an approximation of the eigenvalues
is sufficient; the dimension of the coarse space is relatively small since connected
components within subdomains are detected by using Schur complements. We now
also introduce a slab variant that allows us to control the computational cost of
constructing the generalized eigenvalue problems. Therefore, the set Ω̂e can be
replaced by a slab of width l elements around the edge e in (5); cf. Fig. 1 (right)
for the graphical representation of a slab corresponding to the edge e. We denote
the slab by Ω̂l

e. This idea, to use slabs in the eigenvalue problems, has already been
introduced in [15] for related multiscale coarse spaces based on the ACMS space
and is also common in FETI-DP and BDDC domain decomposition methods with
adaptive coarse spaces.

The modified generalized eigenvalue problem reads: find τ∗,e ∈ V h0 (e) such that

a
Ω̂l
e

(
H
ê→Ω̂l

e
(τ∗,e),Hê→Ω̂l

e
(θ)

)
= λ∗,eaΩe

(
we(τ∗,e), we(θ)

) ∀θ ∈ V h0 (e) .
(9)

The slab variant is computationally cheaper and the bound can be proven
analogously to the standard version with no modifications. However, the coarse
space dimension can increase due to the use of this variant (if Ω̂l

e ⊂ Ω̂e).

3 Numerical Results

We present numerical results for model problem (1) for f ≡ 1 and various
coefficient functions, comparing the different AGDSW approaches with the
standard GDSW as well as the SHEM coarse space, recently introduced by Gander,
Loneland, and Rahman in [12]. Finally, we show results using slabs of varying
widths.

In all figures, the light and dark blue colors correspond to the minimum (Amin =
1.0) and maximum coefficient (Amax = 106 or Amax = 108), respectively. We use
piecewise bilinear finite elements, and solve the discrete linear system using the
conjugate gradient method with a relative stopping criterion ||r(k)||2/||r(0)||2 ≤
10−8, where r(0) and r(k) are the initial and the kth unpreconditioned residual,
respectively. By VGDSW, we denote the standard GDSW space and by V tolAGDSW the
new adaptive GDSW coarse space. The variant which uses a scaled mass matrix in
the right hand side of the eigenvalue problem, cf. Sect. 2.1 is denoted by V tolAGDSW−M,
the variant using a slab of width w = lh is denoted by V tolAGDSW−E(l), and the SHEM

coarse space by V tolSHEM; cf. [12].
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Table 1 Results for the coefficient functions in Fig. 2: tolerance for the selection of the
eigenfunctions, iterations counts, condition numbers, and resulting coarse space dimension for
different coarse space variants; 1/H = 4, H/h = 30 (left), H/h = 40 (right), and δ = 2h;
maximum coefficient Amax = 106 (left) and Amax = 108 (right)

Coeff. function A from Fig. 2 (left) Coeff. function A from Fig. 2 (right)

V0 tolE it. κ dimV0 tolE it. κ dimV0

VGDSW 264 1.04 × 106 33 45 26.18 33

VAGDSW 10−1 29 7.15 93 10−1 34 10.06 81

10−2 29 7.15 93 10−2 44 26.20 57

VAGDSW−M 10−1 29 7.15 93 10−1 44 26.20 57

10−2 29 7.15 93 10−2 44 26.20 57

VSHEM 10−3 20 4.33 69 10−3 23 5.03 213

10−6 20 4.33 69 10−6 23 5.03 213
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Fig. 2 Discontinuous coefficient functions A with different types of channels and inclusions
intersecting the interface. Maximum coefficient (dark blue color): Amax = 106 (left), Amax = 108

(right); 1/H = 4; H/h = 30 (left); H/h = 40 (right); δ = 2h

In Table 1, we compare the different coarse spaces for the two coefficient
functions illustrated in Fig. 2. For the coefficient function from Fig. 2 (left), the
GDSW coarse space is not sufficient for fast convergence; see Table 1 (left). This is
due to multiple disconnected, high coefficient channels and inclusions intersecting
the interface. However, the GDSW coarse space is sufficient for the coefficient
function from Fig. 2 (right); see Table 1 (right). Here, only one connected high
coefficient component exists per edge, all other high coefficient components are
entirely contained in the overlap. Let us remark that a reduction of the overlap to
one element, i.e., δ = 1h, and using only the standard GDSW coarse space leads
to 207 iterations and a condition number of 8.97 × 107. In Table 1, all adaptive
methods achieve low condition numbers and converge in few iterations for both
coefficient functions. For the coefficient function from Fig. 2 (left), both adaptive
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Fig. 3 (Left) Sample random coefficient function with a density of approximately 40% high
coefficients Amax = 106 (dark blue color). 1/H = 4; H/h = 40; δ = 1h. (Right) Detailed
view of a coefficient function with Amax = 108 (dark blue color) and 1/H = 20, H/h = 40,
δ = 1h

GDSW coarse spaces have higher coarse space dimensions compared to the SHEM
coarse spaces. This can be explained as follows: first, the entire GDSW coarse space
is always included in the AGDSW coarse space and second, all high coefficient
components intersecting the interface are disconnected. For the coefficient function
from Fig. 2 (right), many channels of high coefficients intersecting the interface
are connected. Here, the coarse space V 10−6

SHEM has a dimension of 213, where both
AGDSW approaches have a lower coarse space dimension of 57 using a tolerance
of 10−2.

In Fig. 3 (left), we have a randomly generated coefficient function, constructed as
follows: uniformly distributed numbers are randomly generated in the interval [0, 1].
A value above 0.6 corresponds to a high coefficient Amax = 106 in a finite element.
Otherwise the coefficient is set to Amin = 1.0. The coefficient of an element
touching the global domain boundary is always set to Amin. Averaged results for
100 random coefficient functions are listed in Table 2 (left). These results show that
all adaptive coarse spaces (AGDSW and SHEM) yield low condition numbers and
numbers of iterations. On average, compared to the SHEM coarse space the adaptive
GDSW approaches have lower coarse space dimensions. For example, V 10−6

SHEM and

V 10−2

AGDSW converge in approximately the same number of iterations, i.e., 80.1 and

78.9, respectively. However,V 10−6

SHEM has a coarse space dimension of 189.2, whereas

the dimension of V 10−2

AGDSW is 127.7. This corresponds to a reduction by 33%.
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Fig. 4 Coefficient function
with many connected
channels intersecting the
interface. Maximum
coefficient Amax = 106 (dark
blue); 1/H = 2; H/h = 42;
δ = 2h
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Table 3 Results for the
coefficient function in Fig. 4:
slab width, iterations counts,
condition numbers, and
resulting coarse space
dimension for different coarse
space variants

Coeff. function A from Fig. 4

V0 Slab width (lh) it. κ dimV0

VGDSW – 55 761,497.6 5

VAGDSW−E(l) 1h 26 10.8 23

2h 26 10.8 23

4h 26 10.8 19

10h 30 15.0 11

13h 32 19.9 7

42h 31 19.9 7

VSHEM – 24 8.3 21

A tolerance for the selection of the eigenfunctions of 10−3 was
used for VAGDSW−E(l) and VSHEM; 1/H = 2, H/h = 42, and
δ = 2h; maximum coefficient Amax = 106

We also consider a foam-like coefficient function, as depicted in Fig. 3 (right).
The results in Table 2 (right) show that a robust preconditioner, with additional
coarse constraints, is needed as VGDSW requires over 3000 iterations to converge.
The adaptive GDSW variants and VSHEM need few iterations to converge. However,

V 10−4

SHEM requires a much larger coarse space, of dimension 4324, compared to

V 5·10−2

AGDSW, dimension 2257, while requiring approximately the same number of
iterations to converge. This corresponds to a reduction by 48%.

We now investigate the use of different slab widths in the variant VAGDSW−E(l);
cf. Sect. 2.1. We are able to reduce the computational cost by using small slabs.
However, this may enlarge the coarse space. This can be observed clearly for the
coefficient function in Fig. 4. Increasing the slab width decreases the resulting
coarse space dimension forVAGDSW−E(l); also cf. Table 3. In this particular example,
a slab width of 13 is sufficient to achieve the same result as with the maximum slab
width of 42 since the slab then contains only two high coefficient components per
edge.
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Improving the Parallel Performance
of Overlapping Schwarz Methods
by Using a Smaller Energy Minimizing
Coarse Space

Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Olof B. Widlund

1 Introduction

The GDSW preconditioner (Generalized Dryja, Smith, Widlund; see also [8]) is
a two-level additive overlapping Schwarz preconditioner with exact local solvers
(cf. [16]) using a coarse space constructed from energy-minimizing functions. It
can be written in the form

M−1
GDSW = ΦK−1

0 ΦT +
N∑
i=1

RTi K̃
−1
i Ri, (1)

where K0 = ΦTKΦ is the coarse space matrix and the K̃i = RiKR
T
i represent

the overlapping local problems; cf. [7]. The matrix Φ is the essential ingredient
of the GDSW preconditioner. It is composed of coarse space functions which are
discrete harmonic extensions from the interface into the interior degrees of freedom
of nonoverlapping subdomains. The values on the interface are restrictions of the
elements of the nullspace of the operator to the edges, vertices, and faces of the
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decomposition. Therefore, for a scalar elliptic problem, the coarse basis functions
form a partition of unity on all subdomains which do not touch the Dirichlet
boundary.

For Ω ⊂ R
2 being decomposed into John subdomains, the condition number of

the GDSW preconditioner is bounded by

κ
(
M−1

GDSWA
)

≤ C

(
1 + H

δ

)(
1 + log

(
H

h

))2

, (2)

cf. [6, 7]. Here,H is the size of a subdomain, h the size of a finite element, and δ is
the overlap.

GDSW-type preconditioners have successfully been developed for almost incom-
pressible elasticity, e.g., [3] and problems in H(curl) [2]. An efficient parallel
implementation of the GDSW preconditioner based on Trilinos [13] was recently
introduced by the authors in [10]. Although the preconditioner can use geometric
information, a focus in [10] was to make use of the Trilinos infrastructure to
construct the preconditioner algebraically from the assembled sparse stiffness
matrix.

A coarse space for overlapping Schwarz methods in two dimensions related to
but smaller than the standard GDSW coarse space has been considered in [4].
Following [5], in this paper, we consider two reduced versions of the GDSW coarse
space in three dimensions denoted by Option 1 and Option 2.2 in [5]. These spaces
are also smaller than the standard GDSW coarse space. In the following, we will
denote this reduced GDSW coarse space as RGDSW. Our reduced coarse spaces
have a relation to discretization methods such as Multiscale Finite Element Methods
(MsFEM), which also use harmonic extensions; see, e.g., [14, 17].

2 A Reduced GDSW Coarse Space

We have implemented Option 1 of the RGDSW coarse space in our parallel
preconditioner [10] since, among the proposed options in [5], it is the most
algebraic. As in the standard version, we introduce coarse basis functions that form
a partition of unity on the interface of the domain decomposition. Again, we extend
the values on the interface as discrete harmonic functions into the interior of the
nonoverlapping subdomains.

Let Sn be the index set of all subdomains which share the node n. A node ni is
called an ancestor of nj if Snj ⊂ Sni . If no other node is an ancestor of a node
nj , it is called a coarse node. Using this definition, we can construct for each coarse
node ni a coarse basis function ϕi such that

∑
ni coarse node

ϕi = 1
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on all subdomains which do not touch the Dirichlet boundary. A coarse basis
function ϕi is constructed as follows:

ϕi(n) =
{

1|Cn| if ni ∈ Cn,

0 otherwise,

with Cn being the set of all ancestors of the interface node n; cf. Fig. 1 (top). On
the Dirichlet boundary, we set all coarse basis functions to zero.

Another option to define a reduced coarse space, using basis function based
on an inverse distance weighting approach, has been introduced in [5, eq. (5)]. In
particular, according to [5, eq. (5)], the values of the coarse basis function on the

Fig. 1 Plot of the coarse basis function corresponding to the center node for the reduced GDSW
coarse spaces, denoted Option 1 (top) and Option 2.2 (bottom) in [5]. Here, we assume the
structured decomposition of a cube into 4 × 4 × 4 cubic subdomains
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interface are chosen as

ϕi(n) =
{

1/di(n)
1/d1(n)+1/d2(n)+1/d3(n)+1/d4(n)

if ni ∈ Cn, i ∈ {1, 2, 3, 4}
0 otherwise

(3)

for components with four coarse nodes. Here, di(n), i = 1, . . . , 4 is the distance
to the coarse node ni . For components with any number of coarse nodes, we set

ϕi(n) =

⎧⎪⎨
⎪⎩

1/di(n)∑
nj ∈Cn

1/dj (n)
if ni ∈ Cn,

0 otherwise

(4)

on the interface; cf. Fig. 1 (bottom). This construction is denoted as Option 2.2
in [5]. As we will observe in Sect. 4, this choice leads to a better convergence,
however, it relies on additional geometric information to allow for the computation
of the distance between interface nodes and the relevant coarse nodes. Therefore, it
can be regarded as less algebraic compared to Option 1.

The advantage of these two reduced GDSW coarse problems over the classical
GDSW coarse problem is their smaller size; cf. Fig. 2. Indeed, in 3D, for structured
decompositions, they are smaller by more than 85%; cf. Table 1. This can be
a significant advantage when striving for better parallel scalability on larger
supercomputers.

For the reduced coarse spaces, for scalar elliptic problems in 3D as well as
elasticity, the condition number of the preconditioned operator satisfies

κ(M−1
RGDSWA) ≤ C

(
1 + H

δ

)(
1 + log

(
H

h

))α
, (5)

where α is given in Table 2; cf. [5].

Fig. 2 We compare for a Laplace model problem in three dimensions: dimension of the coarse
spaces (left) and corresponding numbers of iterations for the standard and the reduced GDSW
coarse space (right); we use H/h = 30 and two layers of overlap. Computations run on the
JUQUEEN supercomputer
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Table 1 Dimension of the coarse spaces and the reduction due to the use of the reduced coarse
spaces in percent

Dimension of the coarse space

# subdomains Standard GDSW RGDSW (Option 1&2.2) Reduction

23 19 1 94.74%

43 279 27 90.32%

83 2863 343 88.02%

163 25,695 3375 86.87%

243 89,999 12,167 86.48%

323 217,279 29,791 86.29%

403 429,039 59,319 86.17%

803 3,507,679 493,039 85.94%

1003 6,880,599 970,299 85.90%

10003 7.0 × 109 1.0 × 109 85.73%

10,0003 7.0 × 1012 1.0 × 1012 85.72%

We use one subdomain for each processor core

Table 2 Values of α in the condition number bound (5)

Scalar elliptic Compressible linear elasticity

Face paths Edge paths Face paths

Option 1 α = 1 α = 2 α = 1

Option 2.2 α = 0 α = 1 α = 0

For the definition of quasi-monotone paths, see [5]

3 Implementation

Our parallel implementation of the GDSW preconditioner and its more recent
version with a reduced coarse space size (here denoted by RGDSW) is based on
the implementation described in [9–12]. We use Trilinos version 12.0; cf. [13]. In
our experiments presented here, for simplicity, we use a structured decomposition
of our cubic computational domain into cubic subdomains. The overlapping
subdomain problems and the coarse problem are solved using Mumps 4.10.0
(cf. [1]) in sequential mode. On the JUQUEEN BG/Q supercomputer, we use the
IBM XL compilers 12.1 and the ESSL 5.1 when compiling Trilinos and the GDSW
preconditioner. On the magnitUDE supercomputer at Universität Duisburg-Essen,
we use the Intel compiler and the Intel MKL 2017.1.132.

4 Numerical Results

Based on the infrastructure given by our parallel implementation [10], we compare
the reduced coarse space (denoted by RGDSW) to the standard coarse space
(denoted by GDSW) for a scalar elliptic problem in 3D. Our numerical results are
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Fig. 3 Detailed times for the computations of a Laplace model problem in three dimensions using
the standard GDSW coarse space and the reduced GDSW coarse space; we use H/h = 30 and
two layers of overlap. Computations run on the JUQUEEN supercomputer

Fig. 4 Numbers of iterations versus log(H/h) for the reduced GDSW coarse space and 1/H = 4.
Computations run on the magnitUDE supercomputer

consistent with the bound (5); see Figs. 3 and 4. Our numerical results in Figs. 2
and 3 show that the smaller dimension of the new coarse spaces Option 1 and
Option 2.2 proposed in [5] indeed help to increase the parallel efficiency of the
method significantly; see also Tables 3 and 4. By “Total Time”, we denote the total
time to solution including the assembly of the problem. The “Setup Time” includes
the assembly of the problem and the setup of the preconditioner. This includes
the factorization of the subdomain matrices. Finally, “Solver Time” only denotes
the time spent in the GMRES iteration. The number of Krylov iterations for the
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new methods increases but only slightly in comparison with the standard GDSW
preconditioner (cf. Fig. 2, right), as also demonstrated in [5]; the increase is too
small to be reflected in the computation times. Indeed, as shown in Fig. 3, the total
time to solution is always smaller for the new coarse spaces.
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Inexact Dual-Primal Isogeometric
Tearing and Interconnecting Methods

Christoph Hofer, Ulrich Langer, and Stefan Takacs

1 Introduction

Isogeometric Analysis (IgA), cf. [2, 8], is a variant of the Galerkin method where
both the geometry of the computational domain and the solution of the partial
differential equation (PDE) are represented by B-splines or Non Uniform Rational
B-splines (NURBS). One of the strengths of IgA consists in its capability of
creating high-order smooth function spaces, while keeping the number of degrees
of freedom relatively small. Originally, IgA was formulated by means of one
global geometry mapping, which restricts the method to simple domains being
topologically equivalent to the unit square or the unit cube. More complicated
domains are represented as a non-overlapping composition of such simple domains,
called patches. In such a multi-patch setting, each of the patches has its own
geometry mapping, and all of the patches are discretized separately.

We are interested in fast solvers for linear systems arising from the discretization
of elliptic PDEs in such a multi-patch setting. The local discretization on each patch
has typically tensor-product structure.
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We use a non-overlapping domain decomposition (DD) method to couple the
problem across the patches, namely the dual-primal IsogEometric Tearing and
Interconnecting (IETI-DP) method, a variant of the FETI-DP method, see [11]. In
general, the geometry mapping does not exhibit more than C0-continuity across
the interfaces. Thus, we only aim to guarantee C0-continuity of the solution across
the interfaces. Moreover, also for a decomposition of the patches into smaller
subpatches, e.g., for parallelization, the choice of C0 continuity is reasonable if the
number of inner dofs stays large enough, cf. [5]. The IETI method is closely related
to the BDDC method, see [1, 3, 14] and references therein.

So far, the local problems have been solved using sparse direct solvers. Since
we want to choose the given patches also as subdomains of the DD-method, the
local problems become large if the discretization is refined. In this case, inexact
solvers for the local subproblems, as introduced in [9], could be superior to direct
solvers. The aim of this work is to investigate such approaches in combination with
the p-robust multigrid solvers, which were proposed by Hofreither and Takacs [7],
as inexact solvers.

In the present paper, we consider the Poisson problem on a bounded Lipschitz
domain Ω ⊂ R

d, with d ∈ {2, 3}, as model problem: For given f ∈ L2(Ω), find
u ∈ V0 := H 1

0 (Ω) such that

a(u, v) := (∇u,∇v)L2(Ω) = (f, v)L2(Ω) =: 〈F, v〉 ∀v ∈ V0. (1)

2 Isogeometric Analysis and IETI-DP

On the unit interval, for any spline degree p and number of basis functions M , we
define the basis (N̂i,p)Mi=1 of univariate B-splines of maximum smoothness Cp−1

via Cox-de Boor’s algorithm. A basis for the parameter domain Ω̂ := (0, 1)d , is
realized by the tensor product of such basis functions, again denoted by N̂i,p , where
i = (i1, . . . , id) ∈ I := {1, . . . ,M1} × . . . × {1, . . . ,Md } and p = (p1, . . . , pd)

are multi-indices.
In standard (single-patch) IgA, the physical domain Ω is given as the image of

the parameter domain under the geometry mapping G : Ω̂ → R
d , defined by

G(ξ) := ∑
i∈I PiN̂i,p(ξ), with the control points Pi ∈ R

d , i ∈ I.
In a multi-patch setting, the domain Ω (multipatch domain) is composed of

non-overlapping patches Ω(k), k = 1, . . . , N , such that Ω := ⋃N
k=1 Ω

(k)
. Each

patch Ω(k) := G(k)(Ω̂) is represented by its own geometry mapping. We call
Γ := ⋃

k>l ∂Ω
(k) ∩ ∂Ω(l) the interface, and denote its restriction to one of the

patches Ω(k) by Γ (k) := Γ ∩ ∂Ω(k). Throughout the paper, the superscript (k)
denotes the restriction of the underlying symbol to Ω(k).

We use B-splines not only for defining the geometry, but also for representing the
approximate solution of (1). Once the basis functions are defined on the parameter
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domain Ω̂ , we define the bases on the patchesΩ(k) via the pull-back principle, and
obtain the basis functionsNi,p := N̂i,p ◦ G−1.

The main idea of IETI-DP is to decouple the patches by tearing the interface
unknowns which introduces additional degrees of freedom (dofs). We denote the
resulting space by Vh. Then, continuity is again enforced using Lagrange multipliers
λ. Hence, the local subproblems on each patch are essentially pure Neumann
problems (at least for interior patches). Due to the presence of a kernel, a straight-
forward Schur complement formulation is not possible. In order to overcome this
problem, certain continuity conditions are enforced by incorporating them into the
space Vh (strongly enforced continuity conditions), which yields the smaller space
Ṽh. There, we formulate the following problem. Find (u, λ) ∈ Ṽh ×Λ such that

[
K̃ B̃T

B̃ 0

] [
u

λ

]
=

[
f̃

0

]
, (2)

where K̃ is the stiffness matrix, B̃ the jump operator, and f̃ the right-hand side.
Here and in what follows, we do not distinguish between the IgA functions and
their vector representation with respect to the chosen basis.

Now, we split Vh into interior dofs and interface dofs, which yields an interface
space W . By splitting Ṽh analogously, we obtain the space W̃ . Based on this
splitting, we formulate the problem using the Schur complement of the stiffness
matrix K in Vh with respect to the interface dofs: S := KBB − KBIK

−1
II KIB ,

where the subindices B and I denote the boundary and interior dofs, respectively.
The restriction of S to W̃ is denoted by S̃, which yields the following saddle-point
formulation: Find (w, λ) ∈ W̃ ×Λ such that

[
S̃ B̃T

B̃ 0

] [
w

λ

]
=

[
g̃

0

]
, (3)

where g̃ := Ĩ T (fB − KBIK
−1
II fI ) and Ĩ : W̃ → W is the canonical embedding.

We denote the subspace of W̃ satisfying the strongly enforced continuity conditions
homogeneously by WΔ and the S-orthogonal complement by WΠ . In the literature,
our choice of WΠ is often called energy minimizing primal subspace. Finally, we
can define the Schur complement F of the saddle-point problem (3), and obtain the
problem: Find λ ∈ Λ such that

Fλ := (B̃S̃−1B̃T )λ = B̃S̃−1g̃ := d. (4)

Equation (4) is solved by means of the conjugate gradient (CG) method using
the scaled Dirichlet preconditionerM−1

sD := BDSB
T
D , where BD is a scaled version

of the jump operator B on Vh. Note that we can approximate S̃−1 because S̃ can be
represented (by reordering of the dofs) as a block diagonal matrix of matrices S(k)ΔΔ
for each patch and the matrix SΠΠ . For a summary of the algorithm and a more
detailed explanation, we refer, e.g., to [6, 14] and references therein.
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3 Incorporating Multigrid in IETI-DP

We investigate different possibilities to incorporate a multigrid solver into the IETI-
DP algorithm. The application of the IETI-DP algorithm requires the solution of
local Neumann and Dirichlet problems.

3.1 Local Dirichlet Problems

We have to solve linear systems with the system matrix K(k)
II in the application of

S in the preconditioner and when calculating the right hand side g̃. These linear
systems are Dirichlet problems (up to boundary conditions). The right hand side g̃
has to be computed very accurately, i.e., at least up to discretization error. However,
for the preconditioner, a few MG V-cycles are usually enough, since we only have
to ensure the spectral equivalence of the inexact scaled Dirichlet preconditioner to
the exact one, cf. [10] and references therein.

3.2 Local Neumann Problems

Local Neumann problems appear in the construction of the S-orthogonal basis for
WΠ and in the application of SΔΔ. In order to construct the nodal and S-orthogonal
basis {φ(k)j }j of W(k)

Π , we have to solve

[
S(k) C(k)

T

C(k) 0

][
φ
(k)
j

μ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)Π }, (5)

where e
(k)
j ∈ R

n
(k)
Π is the j -th unit vector, and the matrix C(k) realizes the n(k)Π

strongly enforced continuity conditions contributing to the patch Ω(k). Instead of
solving (5) directly, we solve

[
K(k) C(k)

T

C(k) 0

][
φ
(k)

j

μ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)Π }, (6)

and obtain the desired basis functions by φj = φj |Γ (k) . Note that {φ(k)j }j is
a K-orthogonal basis. The system is solved with the Schöberl-Zulehner (SZ)
preconditioner, see [13].

The SZ preconditioner for (6) requires preconditioners K̂(k) and Ĥ (k)

for the upper left block K(k) and its inexact Schur complement H(k) :=
C(k)(K̂(k))

−1
C(k)

T
, respectively. The preconditioner K(k) is realized by a few
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MG V-cycles. It is required that K̂(k) > K(k), which implies that K̂(k) has to be
positive definite. In order to handle also the case where K(k) is singular, we need
to set up MG based on a regularized matrix K(k)

M := K(k) + αM̂(k), where α is
chosen to be 10−2 and M̂(k) is the mass matrix on the parameter domain. Note that
we can exploit the tensor product structure to efficiently assemble the mass matrix
M̂(k). Secondly, the SZ preconditioner requires that Ĥ (k) < H(k). Since in our case
the number of rows of C(k) is given by n(k)Π , a small number that does not change
during refinement, we calculate the inexact Schur complement exactly. This can be

performed by applying (K̂(k))
−1

to n(k)Π vectors. Finally, by a suitable scaling, e.g.,
Ĥ (k) := 0.99H(k), we obtain the desired matrix inequality.

The second type of Neumann problem appears in the application of F . We look
for a solution of the system S

(k)
ΔΔw

(k)
Δ = f

(k)
Δ , which can be written as

[
S(k) C(k)

T

C(k) 0

][
w
(k)
Δ

μ(k)

]
=

[
f (k)

0

]
. (7)

Certainly, one can use the same method as above. However, we can utilize the
fact that we search for a minimizer of 1

2 (S
(k)w(k), w(k)) − (w(k), f (k)) in the

subspace given by C(k)w(k) = 0. This solution can be computed by first solving the
unconstrained problem, and then projecting the minimizer into the subspace using a
energy-minimizing projection. The projection is trivial because the decomposition
of W̃ into WΠ and WΔ is S-orthogonal.

Note that the CG algorithm, when applied to a positive semidefinite matrix, stays
in the factor space with respect to the kernel and computes one of the minimizers.
The solution of the constrained minimization problem is, as outlined above, obtained
by applying the projection. As long as the number of CG iterations is not too large,
numerical instabilities are not observed when applying CG to a positive semidefinite
problem.

The S-orthogonal basis has to be computed very accurately in order to maintain
the orthogonality. Since the equation S(k)ΔΔw

(k)
Δ = f

(k)
Δ appears in the system matrix

F , its solution also requires an accuracy of at least the discretization error.

3.3 Variants of Inexact Formulations

From the discussion above, we deduce four (reasonable) versions:

(D-D) The classical IETI-DP method, using sparse direct solvers everywhere.

(D-MG) We use MG in the scaled preconditioner for the solution of the local
Dirichlet problems and the transformation of the right-hand side, see Sect. 3.1. As
already mentioned, the required accuracy for computing g̃ has to be of the order of
discretization error, whereas a few V-cycles are enough for the preconditioner.
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(MG-MG) We use MG for all patch-local problems, i.e., the local Dirichlet and
Neumann problems. This implies that also the calculation of the basis for WΔ

is performed by means of MG, which turns out to be very costly. Moreover, for
each application of F , we have to solve a local Neumann problem in WΔ with the
accuracy in the order of the discretization error.

(MG-MG-S) To overcome the efficiency problem of the requirement of solving a
linear system with MG very accurately, we use the saddle point formulation instead
of F . On the one hand, at each iteration step, we only have to apply a given matrix
instead of solving a linear system. On the other hand, we now have to deal with
a saddle point problem. Moreover, the iteration is not only applied to the interface
dofs, but also to the dofs in the whole domain.

We will always assume that the considered multipatch domain has only a
moderate number of patches, such that the coarse problem can still be handled by a
direct solver. For extensions to inexact version for the coarse problem, we refer to
[9].

For the first three methods, we use the CG method to solve Fλ = d as outer
iteration. For (MG-MG-S), we have to deal with the saddle point problem (2),
which we solve using the Bramble-Pasciak CG (BPCG) method, cf. [4]. The

building blocks for this method are a preconditioner ˆ̃K for K̃ and F̂ for the Schur

complement F . The construction of ˆ̃K follows the same steps as in the previous
section, but we only apply a few MG V-cycles. Concerning F̂ , a good choice is the
scaled Dirichlet preconditionerM−1

sD , cf. [9].

4 Numerical Experiments

We solve the model problem (1) on a two and a three dimensional computational
domain. In the two dimensional case, we use the quarter annulus divided into 32 =
8 × 4 patches, as illustrated in Fig. 1(left). The three dimensional domain is the
twisted quarter annulus, decomposed into 128 = 4 × 4 × 8 patches as presented
in Fig. 1(right). We use B-splines of maximal smoothness inside a patch and C0-
coupling across the patch interfaces.

We have chosen the continuity of the vertex values and the edge averages for
the two dimensional example, and the continuity of the edge averages for the three
dimensional example as strongly enforced continuity conditions.

For the examples with polynomial degree p = 2, we use a standard MG method
based on a hierarchy of nested grids keeping p fixed and use a standard Gauss
Seidel (GS) smoother. For the examples with higher polynomial degree (p = 4
or 7), we have used p = 1 on all grid levels but the finest grid. This does not
yield nested spaces. Thus, we cannot use the canonical embedding and restriction.
Instead, we use L2-projections to realize them. On the finest grid, we use a MG
smoother suitable for high-order IgA, namely a variant of the subspace-corrected
mass smoother proposed and analyzed in [7]. For this smoother, it was shown that a
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Fig. 1 Quarter annulus in 2d (left), twisted quarter annulus in 3d (right)

resulting MG method is robust with respect to both the grid size and the polynomial
degree. However, for p = 1 or 2, standard approaches are more efficient. Thus,
we again use this smoother only for the finest level, while for all other grid levels
we use standard GS smoothers. To archive better results, we have modified the
subspace-corrected mass smoother by incorporating a rank-one approximation of
the geometry transformation.

For the outer CG or BPCG iteration, we use a zero initial guess, and the reduction
of the initial residual by the factor 10−6 as stopping criterion. The local problems
related to the calculation of the S-orthogonal basis are solved up to a tolerance
of 10−12. In case of the (MG-MG) version, the local Neumann problems (7) in
WΔ are solved up to a relative error of 10−10. The number of MG cycles in the
preconditioner is fixed. For the local Dirichlet problems in the scaled Dirichlet
preconditioner, we use 2 V-cycles. The local Neumann problems, which appear
in the preconditioner of the (MG-MG-S) version, are approximately solved by 3
V-cycles. In the following, we report on the number of CG iterations to solve (4)
and BPCG iterations for (2) and the total time in seconds, which includes the
assembling, the IETI-DP setup and solving phase. For the weak scalability tests
in Tables 1 and 2, we observe in all cases a polylogarithmic growth of the outer
iterations and a quasi-optimal behavior of the computation time.
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Table 1 Numerical results for the quarter annulus in 2d

D-D MG-D MG-MG MG-MG-S

Dofs. It. Time It. Time It. Time It. Time

p = 2

134,421 9 10 9 8 9 13 14 14

530,965 10 45 10 37 10 54 15 90

2,110,485 11 224 11 172 11 272 16 568

8,415,253 11 1005 11 762 11 1181 15 3394

33,607,701 OoM OoM 13 5070 OoM

p = 7

45,753 10 26 10 27 10 57 14 54

155,961 11 108 11 110 11 225 15 211

572,985 12 498 12 495 12 1048 17 1013

2,193,465 13 2384 13 2265 14 4427 18 4344

8,580,153 OoM OoM 15 18,484 20 19,958

Table 2 Numerical results for the twisted quarter annulus in 3d

D-D MG-D MG-MG MG-MG-S

Dofs. It. Time It. Time It. Time It. Time

p = 2

14,079 11 3 11 3 11 8 25 7

86,975 12 19 12 19 12 59 26 59

606,015 14 213 14 197 14 484 30 616

4,513,343 OoM 16 2764 16 5244 35 11,657

p = 4

40,095 13 30 13 33 13 112 23 104

160,863 15 234 15 254 15 659 28 633

849,375 16 2237 17 2356 17 5403 32 5298

5,390,559 OoM OoM 19 45,243 37 52,831

The algorithm is realized with the open source C++ library G+Smo1 We utilize
the PARDISO 5.0.0 Solver, cf. [12], for performing the LU factorizations. To allow
a better comparison of the different variants, we only perform serial computations.2

In Table 1, we summarize the results for the two dimensional domain for p = 2
and 7. The size of the coarse space WΠ is 73. We observe that replacing the direct
solver in the preconditioner with two MG V-cycles does not change the number
of outer iterations. Moreover, going from the Schur complement to the saddle

1G+Smo (Geometry plus Simulation modules) v0.8.1, http://gs.jku.at/gismo.
2Our code is compiled with the gcc 4.8.3 compiler with optimization flag -O3. The results are
obtain on the RADON1 cluster at Linz. We use a single core of a node, equipped with 2x Xeon
E5-2630v3 “Haswell” CPU (8 Cores, 2.4 GHz, 20 MB Cache) and 128 GB RAM.

http://gs.jku.at/gismo
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point formulation and using BPCG there, leads only to a minor increase in the
number of outer iterations. In all cases, the logarithmic dependence of the condition
number on h is preserved. The advantage of the formulation using only MG,
especially (MG-MG), is its smaller memory footprint, therefore, the possibility of
solving larger systems. However, the setting with the best performance is (MG-D).
Concluding, for small polynomial degrees and using the GS smoother, (MG-MG)
gives reasonable trade off between performance and memory usage and for larger
polynomial degrees, this setting can be still recommended if memory consumption
is an issue.

In the case p = 2, for the inner iterations, we have observed that the CG needed
on average 8 iterations to compute g̃, the calculation of the S-orthogonal basis
needed on average 14 iterations, and the solution of (7) required on average 10
iterations. For the second case, p = 7, we needed 9 iterations to compute g̃, 13
iterations for the calculation of the S-orthogonal basis and 10 iterations for the
solutions of (7). Here and in what follows, we have taken the average over the
patches, the individual levels and the individual steps of the outer iteration. We
mention that the number of inner iterations was only varying slightly.

In Table 2, we summarize the results for the three dimensional domain and for
p = 2 and 4. The size of the coarse space WΠ is 240. We observe that replacing
the direct solver in the preconditioner with two MG V-cycles does not change the
number of outer iterations. We further observe that the results are similar to the
one of the two dimensional case. However, the number of iterations almost doubled
when using BPCG for (MG-MG-S). In all cases, the logarithmic dependence of the
condition number on h is preserved. The advantage of the formulation using only
MG, especially (MG-MG), is its smaller memory footprint, therefore the possibility
of solving larger systems. The best performance is obtained sometimes by (D-D)
and sometimes by (MG-D), where both approaches are comparable in all cases.

Concerning the inner iterations, for p = 2, we need on average 15 CG iterations
to compute g̃, 22 CG iterations to build up each S-orthogonal basis function, and
18 CG iterations to solve (7). In the case of p = 4, we needed on average only 10
iterations to compute g̃, 14 iterations for the construction of the S-orthogonal basis
functions, and 11 iterations for solving (7).

The last test deals with the weak scalability of the method, where we only
investigate the two dimensional setting for p = 7. We fix the ratioH/h and increase
the number of patches. We expect constant number of iterations and a linear increase
of the computation time. In Table 3, beside the Dofs, we report the size of the coarse
space nΠ and the number of patches N . For each method, we provide the number
of iterations and the computation time in seconds. We observe that the number of
iterations and computation time behave as expected.
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Table 3 Weak scalability of the methods with respect to the number of patches

p = 7 D-D MG-D MG-MG MG-MG-S

nΠ N Dofs It. Time It. Time It. Time It. Time

73 32 45,753 10 27 10 27 10 62 20 60

337 128 183,921 11 111 11 108 11 268 15 234

1441 512 737,505 11 446 11 438 11 1111 13 943

5953 2048 2,953,665 10 1777 10 1729 10 4468 12 3821

24,193 8192 11,821,953 OoM OoM 10 19,691 11 15,392
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Coupling Parareal and
Dirichlet-Neumann/Neumann-Neumann
Waveform Relaxation Methods
for the Heat Equation

Yao-Lin Jiang and Bo Song

1 Introduction

We introduce two new space-time Waveform Relaxation (WR) methods based on
the parareal algorithms and Dirichlet-Neumann waveform relaxation (DNWR) and
Neumann-Neumann waveform relaxation (NNWR). The WR method was first
introduced by Lelaramee, Ruehli and Sangiovanni-Vincentelli [15], which has
been applied to analyze for many different kinds of problems, such as differential
algebraic equations [11], fractional differential equations [13], reaction diffusion
equations [17]; for further details, see [12]. Domain decomposition methods
for time-dependent partial differential equations (PDEs) can also lead to WR
methods, i.e. Schwarz waveform relaxation (SWR) algorithm [3, 10], optimized
Schwarz waveform relaxation (OSWR) algorithm [2, 5], and Dirichlet-Neumann
and Neumann-Neumann waveform relaxation methods [8, 9, 22].

The parareal algorithm is a time-parallel method that was proposed by Lions,
Maday, and Turinici in the context of virtual control to solve evolution problems
in parallel [16]. In this algorithm, initial value problems are solved on subintervals
in time, and through iterations the initial values on each subinterval are corrected to
converge to the correct values of the overall solution [1, 4, 7]. The parareal algorithm
has also been combined with waveform relaxation methods [18].
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Parallel algorithms based on the decomposition of both time and space domain
have been also studied [19, 21]. However, there was no parallel mechanism in
the time direction. In [20], it was the first time that the combination of Schwarz
waveform relaxation and parareal for PDEs had been introduced. Further, in [6],
a new parallel algorithm where there is no order between the Schwarz waveform
relaxation algorithm and the parareal algorithm was introduce.

In this paper, we propose the parareal Dirichlet-Neumann waveform relax-
ation (PA-DNWR) and the parareal Neumann-Neumann waveform relaxation (PA-
NNWR) methods for the time-dependent problem. For ease of presentation for the
new algorithms, we derive our results for two subdomains in one spatial dimension.

We consider the following initial-value problem of heat equation on bounded
Ω ⊂ R

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
−Δu = f (x, t), x ∈ Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T .

(1)

2 Parareal Dirichlet-Neumann/Neumann-Neumann
Waveform Relaxation Algorithms

We define the new algorithms for the model problem (1) on the space-time domain
Ω × (0, T ) = (−a, b) × (0, T ). We assume that Ω is decomposed into two
nonoverlapping subdomains, i.e. Ω1 = (−a, 0) and Ω2 = (0, b), and the time
interval (0, T ) is decomposed intoN equal time subintervals (Tn, Tn+1) withΔT =
Tn+1 − Tn = T/N , n = 0, 1, . . . , N − 1. We then can define the non-overlapping
space-time subdomainΩi,n = Ωi × (Tn, Tn+1), i = 1, 2, n = 0, 1, . . . , N − 1; see
Fig. 1.

In order to introduce the parareal Dirichlet-Neumann waveform relaxation algo-
rithm for the model problem (1), we first introduce several propagators. We define
two propagator F1,n(U(x), ω(t)) and G1,n(U(x), ω(t)) to solve the following

Fig. 1 Space time
decomposition on which the
proposed algorithms are
based
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Dirichlet problem in Ω1,n

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u1,n

∂t
= ∂2u1,n

∂x2 + f (x, t), (x, t) ∈ Ω1,n,

u1,n(−a, t) = g(−a, t), t ∈ (Tn, Tn+1),

u1,n(0, t) = ω(t), t ∈ (Tn, Tn+1),

u1,n(x, Tn) = U(x), x ∈ Ω1,

(2)

using an accurate approximation and a rough approximation, where U(x) and
ω(t) are given data. Furthermore, two propagators F2,n(U(x), ω(x, t)) and
G2,n(U(x), ω(x, t)) are defined to solve the following Neumann problem in Ω2,n

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u2,n

∂t
= ∂2u2,n

∂x2 + f (x, t), (x, t) ∈ Ω2,n,

∂xu2,n(0, t) = ∂xω(0, t), t ∈ (Tn, Tn+1),

u2,n(b, t) = g(b, t), t ∈ (Tn, Tn+1),

u2,n(x, Tn) = U(x), x ∈ Ω2,

(3)

using an accurate approximation and a rough approximation. Therefore the parareal
Dirichlet-Neumann waveform relaxation algorithm for the model problem (1)
consists of the following steps: Given an initial guess ω0

n(t) along the interface
Γ = {x = 0} × (Tn, Tn+1), and an initial guess U0

i,n(x, t), and for k = 0, 1, 2, . . .,
Step I: use the more accurate evolution operator from (2) and (3) to calculate

uk+1
1,n (x, t) := F1,n(U

k
1,n(x), ω

k
n(t)),

uk+1
2,n (x, t) := F2,n(U

k
2,n(x), u

k+1
1,n (x, t));

Step II: update interface information

ωk+1
n (t) = θuk+1

2,n (0, t)+ (1 − θ)ωkn(t);

Step III: update new initial conditions using a parareal step both in space and time
for n = 0, 1, . . . , N − 1 by

Uk+1
1,n+1 = uk+1

1,n (·, Tn+1)+G1,n(U
k+1
1,n (x),ω

k+1
n (t))−G1,n(U

k
1,n(x), ω

k
n(t)),

Uk+1
2,n+1 = uk+1

2,n (·, Tn+1)+G2,n(U
k+1
2,n (x),U

k+1
1,n+1(x, t))−G2,n(U

k
2,n(x),U

k
1,n+1(x, t)).

(4)

Next we will introduce the parareal Neumann-Neumann waveform relaxation
algorithm. Similar, we first introduce two propagators FDi,n(U(x), h(t)) and
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GDi,n(U(x), h(t)) to solve the following Dirichlet problem in Ωi,n

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ui,n

∂t
= ∂2ui,n

∂x2 + f (x, t), (x, t) ∈ Ωi,n,

ui,n(x, t) = g(x, t), x ∈ ∂Ω ∩Ωi, t ∈ (Tn, Tn+1),

ui,n(0, t) = h(t), t ∈ (Tn, Tn+1),

ui,n(x, Tn) = U(x), x ∈ Ωi,

(5)

and two propagatorsFNi,n(u1,n(x, t), u2,n(x, t)) and GNi,n(u1,n(x, t), u2,n(x, t)),
i = 1, 2 to solve the following Neumann problem in Ωi,n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ψi,n

∂t
= ∂2Ψi,n

∂x2 , (x, t) ∈ Ωi,n,

Ψi,n(x, t) = 0, x ∈ ∂Ω ∩Ωi, t ∈ (Tn, Tn+1),

∂niΨi,n(0, t) =
∑
j

∂nj uj,n(0, t), x ∈ Γ, t ∈ (Tn, Tn+1),

Ψi,n(x, Tn) = 0, x ∈ Ωi,

(6)

using an accurate approximation and a rough approximation.
Therefore the parareal Neumann-Neumann waveform relaxation algorithm for

the model problem (1) consists of the following steps: Given an initial guess h0
n(t)

along the interface Γ = {x = 0} × (Tn, Tn+1), and an initial guess U0
i,n(x, t), and

for k = 0, 1, 2, . . ., Step I: use the more accurate evolution operator from (5) to
calculate the Dirichlet problem

uk+1
i,n (x, t) := FDi,n(U

k
i,n(x), h

k
n(t)), i = 1, 2;

Step II: use the more accurate evolution operator from (6) to calculate the Neumann
problem

Ψ k+1
i,n (x, t) := FNi,n(u

k+1
1,n (x, t), u

k+1
2,n (x, t))), i = 1, 2;

Step III: update interface information

hk+1
n (t) = hkn(t)− θ(Ψ k+1

1,n (0, t)+ Ψ k+1
2,n (0, t));

Step IV: update the new initial conditions using a parareal step both in space and
time for n = 0, 1, . . . , N − 1 by

Uk+1
1,n+1 = uk+1

1,n (·, Tn+1)+GD1,n(U
k+1
1,n (x), h

k+1
n (t))−GD1,n(U

k
1,n(x), h

k
n(t)),

Uk+1
2,n+1 = uk+1

2,n (·, Tn+1)+GD2,n(U
k+1
2,n (x), h

k+1
n (t))−GD2,n(U

k
2,n(x), h

k
n(t)).

(7)
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Different from regular DNWR/NNWR and using parareal to solve the subprob-
lems, our new methods are in parallel both in space and time, and there is no order
between DNWR/NNWR and parareal. Meanwhile, we don’t need to using parareal
to achieve the convergence for each subproblem for each DNWR/NNWR iteration.

Theorem 1 (Convergence for Parareal DNWR) Assuming that the F -
propagator is an exact solver and G-propagator is chosen as backward Euler
method, if a = b, then θ = 1/2 is the optimal parameter and fixed T > 0, and the
parareal DNWR algorithm is convergent in finite steps; if a �= b, for θ = 1/2 and
fixed T > 0, the parareal DNWR algorithm is convergent.

Theorem 2 (Convergence for Parareal NNWR) Assuming that the F -
propagator is an exact solver and G-propagator is chosen as backward Euler
method, if a = b, then θ = 1/4 is the optimal parameter and fixed T > 0, and the
parareal DNWR algorithm is convergent in finite steps; if a �= b, for θ = 1/4 and
fixed T > 0, the parareal DNWR algorithm is convergent

Proof The first parts of both theorems can be directly obtained by the convergence
results of parareal in [4], and DNWR and NNWR in [8]; and the proves of the
second parts are technical and will in [14], a detailed numerical study of how the
algorithm depends on the various parameters in Sect. 3.

3 Numerical Experiments

The numerical experiments in this section were performed for the model problem (1)
on the domain (−a, b)×(0, T )with f = 0, u0(x) = x(x+1)(x+3)(x−2) exp(−x),
g(−a, t) = t and g(b, t) = t exp(t). The diffusion problem is discretized using
a centered finite differences with mesh size h = Δx = 2 × 10−2 in space and
backward Euler with Δt = 4 × 10−3 in time. The domain is decomposed into
the space-time subdomains Ωi,n as described in Sect. 2. We test the algorithms by
choosing h0

n(t) = t2, t ∈ (Tn, Tn+1) as an initial guess.
We first test the parareal DNWR algorithm. Figure 2 shows the convergence

behavior for different values of θ with T = 2 andΔT = 1/5 for the case a = b = 3
on the left, and for the case a = 2, b = 3 on the right. Note that θ = 1/2 is the best
parameter in both cases as sated in Theorem 1, and the performance of the parareal
DNWR algorithm is similar when compared to the parareal algorithm, especially
when chose the parameter θ = 1/2. Then we show the convergence behavior
for the best parameters θ = 1/2 for different numbers of the time subintervals
N with T = 2 for both cases in Fig. 3, and for different time window length T
with ΔT = 1/5 in Fig. 4. We observe that the convergence of the parareal DNWR
slows down when the number of time intervals N is increased and time interval T
is increased, which is similar to the performance of the parareal algorithm; see [4].

For the parareal DNWR algorithm, Fig. 5 shows the convergence behavior for
different values of θ with T = 2 and ΔT = 1/5 for the case a = b = 3 on the left,
and for the case a = 2, b = 3 on the right. Note that θ = 1/4 is the best parameter in
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Fig. 2 Convergence of parareal DNWR for various values of the parameter θ with T = 2 and
ΔT = 1/5 for a = b = 3 on the left and a = 2, b = 3 on the right
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Fig. 3 Convergence of parareal DNWR for various values of the number of time subintervals N
with T = 2 and θ = 1/2 for a = b = 3 on the left and a = 2, b = 3 on the right
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Fig. 4 Convergence of parareal DNWR for various values of the time window length T with
ΔT = 1/5 and θ = 1/2 for a = b = 3 on the left and a = 2, b = 3 on the right
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Fig. 5 Convergence of parareal NNWR for various values of the parameter θ with T = 2 and
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Fig. 6 Convergence of parareal NNWR for various values of the number of time subintervals N
with T = 2 and θ = 1/4 for a = b = 3 on the left and a = 2, b = 3 on the right
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Fig. 7 Convergence of parareal NNWR for various values of the time window length T with
ΔT = 1/5 and θ = 1/4 for a = b = 3 on the left and a = 2, b = 3 on the right

both cases. Then we show the convergence behavior for the best parameters θ = 1/4
for different numbers of the time subintervalsN with T = 2 for both cases in Fig. 6,
and for different time window length T with ΔT = 1/5 in Fig. 7. We observe that
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parareal NNWR also has the similar performance as that of the parareal algorithm
and parareal DNWR. However, compared to parareal DNWR, the parareal NNWR
needs almost double numbers of iterations to achieve convergence in the same cases.

4 Conclusions

We introduced the parareal DNWR and parareal NNWR algorithms for the heat
equation, and provide their convergence properties for the two subdomain decom-
position in one spatial dimension case. We showed that the convergence can
be achieved in a finite number of iterations when choosing a proper relaxation
parameter as chose for the DNWR and NNWR algorithms. Numerical results
illustrate our analysis, which also indicate that the performance of parareal DNWR
is better than that of parareal NNWR. We will further find the possible way to
improve the performance parareal NNWR.
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Preconditioning of Iterative Eigenvalue
Problem Solvers in Adaptive FETI-DP

Axel Klawonn, Martin Kühn, and Oliver Rheinbach

1 Introduction

Adaptive coarse spaces for FETI-DP or BDDC methods make use of locally
computed (approximate) eigenvectors to enhance the coarse problem for faster
Krylov convergence; for different approaches to domain decomposition methods
with adaptive coarse spaces, see, e.g., [1–3, 5, 6, 8, 13–15, 17]. Of course, the
solution of the corresponding local generalized eigenvalue problems in all these
approaches adds a certain computational overhead to the setup of the method
which then needs to be amortized in the iteration phase. It has been observed that
an approximation of the eigenvectors already yields good convergence behavior;
see [9]. In this paper, we consider different types of preconditioners for the iterative
eigensolvers to obtain good approximate eigenvectors in a few steps.

We will give numerical results for the adaptive method of [10] for the equations
of linear elasticity on a bounded polyhedral domain Ω ⊂ R

3, i.e., we search for
u ∈ {v ∈ H 1(Ω)d : v = 0 on ∂ΩD} such that

∫
Ω

2με(u) : ε(v)dx +
∫
Ω

λdiv(u)div(v)dx =
∫
Ω

f · vdx +
∫
∂ΩN

g · vds. (1)
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Here, ∂ΩD ⊂ ∂Ω is a subset with positive surface measure where Dirichlet
boundary conditions are prescribed. Moreover, ∂ΩN := ∂Ω \ ∂ΩD is the Neumann
boundary, and λ,μ are the Lamé constants.

2 FETI-DP with a Generalized Transformation of Basis

For an introduction of FETI-DP; see, e.g., [4, 18]. Given a polyhedral domain Ω ⊂
R

3, we subdivideΩ intoN nonoverlapping subdomainsΩ1, . . . ,ΩN such thatΩ =⋃N
i=1 Ωi . The FETI-DP system is given by Fλ = d , where

F = BBK
−1
BBB

T
B + BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B = BΓ S̃

−1BTΓ .

Here, S̃ΠΠ constitutes the a priori coarse space where all vertex variables are chosen
to be primal.

We then use the generalized transformation-of-basis approach, as presented in
[11] and applied to the adaptive context in [10], to enforce additional, adaptively
computed constraints, which we also denote as a posteriori constraints. The idea of
the transformation-of-basis approach is to make a constraint vector c corresponding
to a (generally local) constraint on the displacements u, i.e., cT u = 0 an explicit
basis vector and enforce the constraint by partial subassembly at the degree of
freedom where the new basis vector is introduced. Given these (orthogonal) transfor-
mations T (i), i = 1, . . . , N , we therefore solve systems with transformed stiffness

matrices K
(i) = T (i)T K(i)T (i), transformed displacements u(i) = T (i)T u(i), and

transformed right hand sides f
(i) = T (i) T f (i), i = 1, . . . , N . In the standard

approach, constraints in the jump operator B corresponding to these a posteriori
primal constraints are removed. In the generalized approach, we do not remove
these rows but assemble the a posteriori primal variables and directly redistribute
the continuous values subsequently to all connected subdomains. That means, in
contrast to the standard transformation-of-basis approach, we also allow for scalings
of a posteriori primal variables, e.g., obtained from the adaptive approach in the next
section. For more details, see [10, 11].

3 Adaptive FETI-DP with a Generalized Transformation
of Basis

3.1 Generalized Local Eigenvalue Problems and Constraints
for a Transformation of Basis

We now present briefly the adaptive approach introduced in [9, 10]. Given a domain
decompositionΩ = ⋃N

i=1 Ωi , we define as an edge E il the interior of ∂Ωi ∩∂Ωj ∩
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∂Ωl , i.e., excluding the end points, and as a face F ij the interior of ∂Ωi ∩ ∂Ωj .
Subsequently, we will use the index s ∈ {j, l} to describe eigenvalue problems and
their operators defined on faces (s = j ) and edges (s = l), respectively. Let us note
that eigenvalue problems on faces are defined on the closure of the face.

Let Z be either a face or an edge shared by two subdomains Ωi and Ωs . We
introduce B

Z
is = [B(i)

Z
is B

(s)

Z
is ] consisting of all the rows of [B(i)B(s)] that contain

exactly one +1 and one −1. Analogously, we introduce the scaled jump operator
B
D,Z

is = [B(i)
D,Z

is B
(s)

D,Z
is ] as the submatrix of [B(i)D B(s)D ]. We need the local

operators Sis := blockdiag(S(i), S(s)) and P
D,Z

is := BT
D,Z

is BZ
is .

We now want to solve generalized eigenvalue problems on a subspace where Sis
is positive definite since Sis is in general only semidefinite. We therefore study the
problem of finding wkis ∈ (kerSis)⊥ with μkis ≥ TOL, such that

sis (P
D,Z

is vis , P
D,Z

iswkis) = μkissis (vis , w
k
is) ∀vis ∈ (kerSis )⊥. (2)

There, sis (·, ·) := (·, Sis ·) for uis × vis with uis , vis ∈ Wi × Ws and Wi , Ws

are the local finite element spaces on Ωi and Ωs . In practice, this is achieved by
implementing projections Πis and Πis and making the computation numerically
stable; cf. [13].

The constraint vectors qkis := PT
D,Z

is SisPD,Z
iswkis computed from the eigen-

value problems are either defined on edges or on closed faces. The constraints on
closed faces are then split into (additional) edge constraints and constraints on the
open face. This also enables an edge by edge and face by face orthogonalization.

In our approach, an edge constraint resulting from the eigenvalue problem of two
subdomains sharing this edge will always be enforced for all subdomains sharing
this edge. This does not increase the size of the coarse problem.

All the adaptive constraints are stored in an (orthogonalized) transformation
matrix T which is block diagonal with respect to the subdomains and with respect
to blocks corresponding to the faces and edges. The operator RT performs the finite
element assembly in the a posteriori primal variables, i.e., in all degrees of freedom
which belong to an adaptively computed new basis vector. The transposed operator
R then redistributes the values to the individual subdomains. We define the operator
RTμ := (RT R)−1RT . For more details, see [10, 11].

In contrast to the standard transformation-of-basis approach, we use the same
jump operator B as in the original FETI-DP master system. As a result, as in
deflation, the preconditioned system has at least one zero eigenvalue for each
adaptively computed constraint, i.e., for the a posteriori constraints.

The adaptive FETI-DP system using a generalized transformation of basis writes

M̂−1
T F̂ λ := (B̂D

̂̃SB̂TD) (B̂̂̃S −1
B̂T )λ

:= (BDT Rμ(R
T T T S̃T R)RTμT

T BTD)(BTR(R
T T T S̃T R)−1RT T T BT )λ = d,

(3)
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where F̂ is the transformed FETI-DP operator and M̂−1
T is the transformed Dirichlet

preconditioner. For this system, we now give, without proof, the condition number
bound. For more details, see [10].

Theorem 1 Let NF denote the maximum number of faces of a subdomain, NE
the maximum number of edges of a subdomain, ME the maximum multiplicity of
an edge and TOL a given tolerance for solving the local generalized eigenvalue
problems. If all vertices are chosen to be primal, the condition number κ(M̂−1

T F̂ )

of the FETI-DP algorithm with adaptive constraints enforced by the generalized
transformation-of-basis approach satisfies

κ(M̂−1
T F̂ ) ≤ 4 max{NF , NEME }2TOL.

3.2 Solving the Local Generalized Eigenvalue Problems

Adaptive methods are most suitable for hard problems that are not solvable by
standard techniques, e.g., as a result of strong heterogeneities present in the problem.
However, as a result of these heterogeneities the local generalized eigenvalue
problems can also be expected to be ill-conditioned, and unpreconditioned iterative
eigensolvers may also struggle; see, e.g., [16]. As in [16], we use the iterative
LOBPCG eigenvalue problem solver; see [12]. In practice, when using two pro-
jections Πis and Πis to remove the rigid body modes from Sis , the right hand side
of the eigenvalue problems writes

Πis(ΠisSisΠis + σis(I −Πis))Πis + σis(I −Πis) (4)

where σis is chosen as σis = max(diag(Sis)). The projection I − Πis consists
of the sum of several rank one matrices, and we usually avoid to building the
matrix explicitly. The operator ΠisSisΠis + σis(I − Πis) can be built cheaply by
only scaling a few rows and columns of the Schur complements and adding some
constants; see Fig. 1 for the nonzero pattern of Sis and ΠisSisΠis + σis(I −Πis).

We test five different preconditioners for the iterative eigensolver. First, we
take a Cholesky decomposition of the fully assembled right hand side (4) as
the (expensive) base line to compare against. We also test an LU and ILU(0)
decomposition of ΠisSisΠis + σis(I −Πis) and use the projection Πis to remove
the corresponding kernel from the preconditioner, i.e., we, e.g., use

ΠisLU
(
ΠisSisΠis + σis(I −Πis)

)
Πis,

where LU(·) denotes the computation of the LU decomposition of the argument.
Finally, we also test two different local lumped versions, i.e., an LU and a ILU(0)
decomposition of KΓΓ,is = blockdiag(K(i)

Γ Γ ,K
(s)
Γ Γ ), so for the LU decomposition,
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Fig. 1 Representative nonzero pattern of the matrices Sis (left) and Sis − [
ΠisSisΠis + σis(I −

Πis)
]

(center) for two randomly chosen subdomains Ωi , Ωs . Composite material with irregular
decomposition (right; visualization for N = 27 and 1/h = 10N1/3). In the right picture, large
coefficients E2 = 1e + 06 are shown in dark purple in the picture and low coefficients are not
shown; subdomains are shown in different colors in the background and by half-transparent slices

we implement the preconditioner

ΠisΠisLU
(
KΓΓ,is

)
ΠisΠis.

3.3 Heuristic Modifications

As in [9], we will introduce two heuristic variants (denoted Algorithm Ib and Ic).
The original algorithm is denoted Algorithm Ia.

Algorithm Ib: Reducing the Number of Edge Eigenvalue Problems We discard
edge eigenvalue problems for edges that do not have high coefficient jumps in their
neighborhood of one finite element.

Algorithm Ic: Reducing the Number of Edge Constraints In addition, we also
discard all edge constraints from face eigenvalue problems if there are no coefficient
jumps in the neighborhood of the edge.

The condition number bound derived for Algorithm Ia will, in general, not
hold for the two variants, however, it is likely that a modified theory, using slab
techniques as in [8], can be derived for Algorithm Ib.

4 Numerical Results

We present numerical results for Algorithms Ia, Ib, and Ic. We have a soft matrix
material with E1 = 1 with 4N2/3 stiff beams with E2 = 1e + 06; see Fig. 1. We
consider Ω = [0, 1]3 with Dirichlet boundary conditions for the face with x = 0
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and zero Neumann boundary conditions elsewhere; we have f = [0.1, 0.1, 0.1]T
and E(x) ∈ {1, 1e+6}. For the domain decomposition, the METIS graph partitioner
with options -ncommon=3 and -contig is used. Each local eigenvalue problem
is solved using LOBPCG with a block size 10, a given number of maximum
iterations from {5, 25, 100}, and a preconditioner; see Sect. 3.2. Our a priori coarse
space uses at least three primal vertices on each edge in order to remove local
hinge modes; see [9, 13]. We also set edge nodes primal that belong to an single
noded edges. The corresponding edge eigenvalue problem becomes superfluous. We
assume the Young modulus E(x) to be constant on each finite element, and we use
ρ-scaling in the form of patch-ρ-scaling. The coefficient (E(x∗)) at a node x∗ will
be set as the maximum coefficient on the support of the corresponding nodal basis
function ϕx∗ ; cf. [7]. In Table 1, “κ” denotes the condition number of the adaptively
preconditioned FETI-DP operator, “its” the number pcg iterations, “|Π ′|” the size
of the initial vertex coarse space and “|Π |” the size of the corresponding a posteriori
coarse space; the number of subdomains is “N”. The pcg algorithm is stopped after
a relative reduction of the starting residual by 10−10 or when 500 iterations are
reached.

5 Conclusion

We have presented results for different preconditioniers of the local generalized
eigenvalue problems. Obviously, the most expensive algorithm, the Cholesky
decomposition of the assembled right hand side of the eigenvalue problem yields
the best results with respect to the condition numbers and the iteration counts of the
FETI-DP algorithm. In this case, only a few iterations (e.g., 1–5) of the LOBPCG
solver are sufficient; cf. also our results in [9, 10]. However, an LU or ILU(0)-
factorization ofΠisSisΠis +σis(I −Πis) with a few more iterations can suffice. To
choose an LU or ILU decomposition of ΠisSisΠis + σis(I −Πis) is a reasonable
choice since this matrix can be built easily but just manipulating a few rows and
columns of Sis ; see Fig. 1. Note that the slight differences in the condition numbers
and iteration counts result from a small difference in the coarse space size. The
results for the lumped preconditioner, an LU or ILU decomposition of KΓΓ,is are
given for completeness and to show that the results were not as satisfactory as
expected. Eventually, note from [10] that also too many iterations (e.g., 200) of
the local solver might not be helpful if the local scheme diverges without notice. A
heuristic strategy for an (almost) optimal a priori choice of the maximum LOBPCG
iteration number is still under development.
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Table 1 Compressible linear elasticity on an irregular decomposition of Ω = [0, 1]3 with N
subdomains, 1/h = 10N1/3 and composite material with Young’s modulus E1 = 1 and E2 =
1e + 06

Local preconditioner: Chol
(
Πis(ΠisSisΠis + σis(I −Πis))Πis + σis(I −Πis)

)
.

Algorithm Ia Algorithm Ib Algorithm Ic

LOBPCG

N |Π ′| max its κ its |Π | κ its |Π | κ its |Π |
33 168 5 3.35 16 1905 3.35 16 1905 3.53 19 594

25 8.89 18 2025 8.89 18 2025 9.12 21 684

100 10.59 18 2013 10.59 18 2013 10.78 21 672

43 351 5 3.34 16 5259 3.34 16 5259 3.56 19 1674

25 14.95 24 5535 14.95 24 5535 15.33 25 1869

100 5.07 18 5496 5.07 18 5496 5.08 21 1848

Local preconditioner: ΠisLU
(
ΠisSisΠis + σis(I −Πis

)
Πis .

Algorithm Ia Algorithm Ib Algorithm Ic

LOBPCG

N |Π ′| max its κ its |Π | κ its |Π | κ its |Π |
33 168 5 110.84 38 1872 110.84 38 1872 163.73 43 603

25 3.84 18 1926 3.84 18 1926 3.84 20 660

100 3.84 18 1938 3.84 18 1938 3.85 21 666

43 351 5 471.97 62 5074 471.97 62 5074 521.66 67 1647

25 54.34 30 5259 54.34 30 5259 90.89 33 1830

100 56.50 30 5328 56.50 30 5328 99.32 32 1884

Local preconditioner: ΠisILU(0)
(
ΠisSisΠis + σis(I −Πis

)
Πis .

Algorithm Ia Algorithm Ib Algorithm Ic

LOBPCG

N |Π ′| max its κ its |Π | κ its |Π | κ its |Π |
33 168 5 5.36 17 2088 5.36 17 2088 5.45 21 711

25 3.82 20 1995 3.82 20 1995 3.84 21 678

100 3.35 17 1998 3.35 17 1998 3.52 20 675

43 351 5 24.35 26 6225 24.35 26 6225 26.50 30 2394

25 3.82 20 5964 3.82 20 5964 3.83 22 2277

100 4.37 20 5850 4.37 20 5850 4.42 22 2181

Local preconditioner: ΠisΠisLU
(
KΓΓ,is

)
ΠisΠis .

Algorithm Ia Algorithm Ib Algorithm Ic

LOBPCG

N |Π ′| max its κ its |Π | κ its |Π | κ its |Π |
33 168 5 1.81e+06 500 0 1.81e+06 500 0 1.81e+06 500 0

25 3.83e+04 500 441 3.83e+04 500 441 1.56e+05 500 102

100 4.53e+02 126 442 4.53e+02 126 442 4.68e+02 129 81

43 351 5 1.06e+06 500 0 1.06e+06 500 0 1.06e+06 500 0

25 5.97e+04 500 1254 5.97e+04 500 1254 1.72e+05 500 273

100 6.78e+02 181 936 6.78e+02 181 936 6.85e+02 183 213

(continued)
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Table 1 (continued)

Local preconditioner: ΠisΠisILU(0)
(
KΓΓ,is

)
ΠisΠis .

Algorithm Ia Algorithm Ib Algorithm Ic

LOBPCG

N |Π ′| max its κ its |Π | κ its |Π | κ its |Π |
33 168 5 1.81e+06 500 0 1.81e+06 500 0 1.81e+06 500 0

25 3.26e+04 500 462 3.26e+04 500 462 8.40e+04 500 111

100 1.97e+02 108 324 1.97e+02 108 324 2.00e+02 110 75

43 351 5 1.06e+06 500 0 1.06e+06 500 0 1.06e+06 500 0

25 4.56e+04 500 1236 4.56e+04 500 1236 8.51e+04 500 282

100 2.54e+04 316 978 2.54e+04 316 978 6.15e+04 329 222

Coarse spaces for TOL = 10 for all generalized eigenvalue problems
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Using Algebraic Multigrid in Inexact
BDDC Domain Decomposition Methods

Axel Klawonn, Martin Lanser, and Oliver Rheinbach

1 Introduction

Traditionally, domain decomposition methods use sparse direct solvers as building
blocks, i.e., to solve local subdomain problems and/or the coarse problem. Often,
the sparse direct solvers can be replaced by spectrally equivalent preconditioners
without loss of convergence speed. In FETI-DP and BDDC domain decomposition
methods, such approaches have first been introduced in [4, 6, 9], and have since then
successfully been used in large parallel codes [1, 7].

2 An Inexact BDDC Method

2.1 A BDDC Preconditioner for the Assembled System

Let us briefly describe the BDDC preconditioner which can directly be applied to a
linear system

Au = b (1)
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arising from a finite element discretization of a partial differential equation on
a computational domain Ω ⊂ R

d, d = 2, 3. The variant discussed here was
first introduced in [9]. Let Ωi, i = 1, . . . , N, be a nonoverlapping domain
decomposition of Ω such that Ω = ⋃N

i=1 Ωi . Each subdomain Ωi is discretized
using finite elements, the corresponding local finite element spaces are denoted by
Wi, i = 1, . . . , N , and the product space is defined byW = W1 ×· · ·×WN . Let us
also introduce the global finite element space V h corresponding to the discretization
of Ω and a restriction R : V h → W . We obtain local problems in the spaces Wi

Kiui = fi, i = 1, · · · , N.

Introducing the block operators

K =
⎛
⎜⎝
K1

. . .

KN

⎞
⎟⎠ , f =

⎛
⎜⎝
f1
...

fN

⎞
⎟⎠ ,

we can write A := RT KR and b := RT f . Finally, the interface between the
subdomains is Γ := ⋃N

i=1 ∂Ωi \ ∂Ω . Let us assume that the degrees of freedom
(d.o.f.) on the Dirichlet boundary ∂ΩD ⊂ ∂Ω are eliminated.

We use the index Γ for degrees of freedom on Γ . For degrees of freedom in the
interior of the subdomains and on the Neumann boundary ∂ΩN ⊂ ∂Ω , we use the
index I . For the construction of a BDDC preconditioner directly applicable to the
assembled linear system Au = b, we subdivide, as usual in BDDC and FETI-DP
methods, the interface Γ into primal (Π) and the remaining dual (Δ) degrees of
freedom. As primal variables usually subdomain vertices or averages over edges or
faces are chosen.

Let us introduce the space W̃ ⊂ W of functions, which are continuous in all
primal variables and the restriction operator R̄ : W̃ → W . We can now define a
partially assembled system matrix

K̃ := R̄T KR̄ (2)

and the corresponding right hand side f̃ := R̄T f . Using a scaled restriction operator
R̃D : V h → W̃ , we define the BDDC preconditioner by

M−1
BDDC :=

(
R̃TD − H PD

)
K̃−1

(
R̃D − PTDH T

)
; (3)

see [9]. Here, H : W̃ → V h is a discrete harmonic extension operator defined by

H :=
(

0 − (KII )
−1 K̃T

Γ I

0 0

)
, (4)
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whereKII and K̃Γ I are blocks of the partially assembled stiffness matrix

K̃ =
(
KII K̃

T
Γ I

K̃Γ I K̃Γ Γ

)
, (5)

which are common to both, BDDC and FETI-DP methods. The matrixKII is block-
diagonal and applications of K−1

II only require local solves on the interior parts of
the subdomains and are thus easily parallelizable.

Finally, let PD : W̃ → W̃ be a scaled jump operator defined by

PD = I − ED := I − R̃R̃TD. (6)

In the FETI-DP literature this operator is often defined as PD = BTDB; see [12,
Chapter 6] and [9] for more details. There, B is the standard jump matrix used in
FETI-type methods. Let us remark that the preconditioned system M−1

BDDCA has,
except for some eigenvalues equal to 0 and 1, the same spectrum as the standard
BDDC preconditioner formulated on the Schur complement; see [9, Theorem 1].
Therefore, under sufficient assumptions (see [9, Assumption 1]), the condition
number of the preconditioned system is bounded by

κ(M−1
BDDCA) ≤ Φ(H, h). (7)

For a homogeneous linear elasticity problem, if appropriate primal constraints are
chosen, we obtain the well known BDDC (and FETI-DP) condition number bound
withΦ(H, h) = C(1+ log(H/h))2. Here,H always denotes the maximal diameter
of all subdomains and h the minimal diameter of all finite elements.

2.2 Using Inexact Solvers and Implementation Remarks

In this paragraph, we describe the use of inexact solvers in the preconditioner
M−1
BDDC as suggested in [9] and also provide some remarks on our implementation.

We assume that K̂−1 and K̂−1
II are spectrally equivalent preconditioners for K̃

and KII , respectively. In this paper, we always choose a fixed number of V-
cycles of an AMG method for solving problems including K̃−1 and K−1

II for those
preconditioners. While K̂−1 requires an MPI parallel implementation of an AMG
method, an application of K̂−1

II requires only a sequential AMG, due to the block
diagonal structure ofKII . Using K̂−1

II , we define an approximate discrete harmonic
extension Ĥ by

Ĥ :=
(

0 −K̂−1
II K̃

T
Γ I

0 0

)
. (8)



428 A. Klawonn et al.

We investigate two different variants of the inexact BDDC preconditioner in this
paper, namely

M̂−1
BDDC,1 :=

(
R̃TD − H PD

)
K̂−1

(
R̃D − PTDH T

)
(9)

and

M̂−1
BDDC,2 :=

(
R̃TD − Ĥ PD

)
K̂−1

(
R̃D − PTD Ĥ T

)
. (10)

Let us remark that in M−1
BDDC,1 the discrete harmonic extension is applied exactly

using a direct solver, while in M−1
BDDC,2 the approximate discrete harmonic

extension Ĥ is used. We assume that K̂ satisfies

c̃uT K̃u ≤ uT K̂u ≤ C̃uT K̃u, ∀u ∈ W̃ , (11)

Our parallel implementation uses C/C++ and PETSc version 3.6.4 [3]. While the
matrix K̃ is an MPI parallel matrix, all other matrices are completely local to the
computational cores. All restrictions and prolongations are performed using PETSc
V ecScatter and V ecGather operations. More details on the implementation of the
linear BDDC preconditioner can be found in [8], where a parallel implementation
of an nonlinear inexact BDDC method is applied to hyperelasticity and elasto-
plasticity problems.

2.3 The GM (Global Matrix) Interpolation

Good constants c̃, C̃ in equation (11) are important for fast convergence. It is well
known, that for scalability of multigrid methods the preconditioner should preserve
nullspace or near-nullspace vectors of the operator. This is especially important for
K̃ . It is a bit less important for the blocks K(i)

II in KII , where a large portion of
the boundary has Dirichlet data. In this latter case, standard methods can also work
well.

Since the AMG method should preserve the nullspace of the operator on all
levels, these nullspace vectors have to be in the range of the AMG interpolation.
While classical AMG guarantees this property only for constant vectors, the global
matrix approach (GM), introduced in [2], allows the user to specify certain near-
nullspace vectors, which are interpolated exactly from the coarsest to the finest
level; details on the method and its scalability can be found in [2, 10]. Since we
are interested in linear elasticity problems, we choose the rotations of the body in
W̃ for the exact interpolation. All translations of the body are already interpolated
exactly in classical AMG approaches for systems of PDEs since they use classical
interpolation applied component-by-component.We partially assemble the rotations
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of the subdomainsΩi in the primal variables. In our implementation, we always use
BoomerAMG from the hypre package [5], where a highly scalable implementation
of the GM2 approach is integrated; see [2]. We will compare the use of the GM2
approach with a hybrid AMG approach for systems of PDEs. By hybrid AMG
approaches, we refer to methods, where the coarsening is based on the physical
nodes (nodal coarsening) but the interpolation is based on the unknowns. In general,
a nodal coarsening approach is beneficial for the solution of systems of PDEs, and
all degrees of freedom belonging to the same physical node are either all coarse
or fine on a certain level. The latter fact is also mandatory for the GM approach.
Therefore, GM is based on the same nodal coarsening and can also be considered
as a hybrid approach.

3 Numerical Results

As model problems, we choose linear elasticity problems in two and in three
dimensions. In two dimensions, we consider a beam Ω = [0, 8] × [0, 1] with a
homogeneous Dirichlet boundary condition on the left; see also Fig. 1. A constant
volume force is applied in y-direction and the material is chosen to be homogeneous
with E = 210 and ν = 0.3.

We first provide a comparison of the preconditioners M−1
BDDC,1 and M−1

BDDC,2

using a hybrid AMG approach or the GM2 approach for K̂ , respectively; see Fig. 2
for the results. Let us remark that we always use the standard hybrid approach for the
approximation of the discrete harmonic extension Ĥ in the case ofM−1

BDDC,2, since
this appears to be sufficient so far; also see the remark above on the large Dirichlet
boundary. We always use an HMIS coarsening, extended + i interpolation, and a
threshold of 0.375 for the detection of strong coupling. The interpolation operators
of the AMG method are truncated to a maximum of Pmax entries per row, to keep
the operator complexity low and to obtain sufficient weak scalability. We always
choose Pmax such that the operator complexity of the hybrid approach and GM2
approach are similar, to provide a fair comparison. We always use preconditioned
GMRES with a relative stopping criteria of 10−8.

Fig. 1 Beam problem in two dimensions; exemplary decomposition in 32 subdomains depicted
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Fig. 2 Comparison for growing H/h and 512 subdomains of the different preconditioners
M−1
BDDC,1 using direct solvers (UMFPACK) for the discrete harmonic extension and M−1

BDDC,2
using an inexact discrete harmonic extension. Both variants are equipped with hybrid AMG
(marked with an H) or GM2, respectively. pmax denotes the truncation of the interpolation
matrices. Left: GMRES iterations. Right: Time to solution. Computation performed on JUQUEEN
BlueGene/Q at FZ Jülich, Germany

In Fig. 2, we present results for the two dimensional beam which is decomposed
into 512 subdomains. We increase the problem size by increasing the subdomain
size. As primal constraints, we only consider subdomain vertices. We use piecewise
quadratic finite elements and thus, the smallest problem carries 882 and the largest
problem 136K degrees of freedom per subdomain. We always use one MPI rank per
subdomain but use two MPI ranks for each core of the JUQUEEN BlueGene/Q
at Forschungszentrum Jülich, Germany, to make use of the hardware threads.
Therefore, we have 500 MB of memory available for each subdomain. Using direct
solvers for the discrete harmonic extension (i.e.,M−1

BDDC,1), we always have slightly

lower GMRES iteration counts and faster runtimes compared to M−1
BDDC,2, but

M−1
BDDC,2 is more memory efficient. The largest problem, which can be solved with

M−1
BDDC,1 carries 81K d.o.f. per subdomain (H/h = 100), while M−1

BDDC,2 can
handle problems twice as large, with 136K d.o.f. per subdomain (H/h = 130).

As expected, BDDC using the GM2 approach clearly outperforms the hybrid
approach. While the iteration count grows with H/h for the hybrid approach, it
stays nearly constant for the GM2 approach. For the problem with H/h = 120,
M−1
BDDC,2 with GM2 is six times faster than M−1

BDDC,2 combined with the hybrid

approach, and for H/h = 130, M−1
BDDC,2 with the hybrid approach does not fit in

the memory. Choosing Pmax = 2 solves this problem, but the number of iterations
is even higher.

We also present a weak scaling study for the best performing combination of
M−1
BDDC,2 and the GM2 approach using H/h = 80 and H/h = 100; see Fig. 3.

While a radical truncation of Pmax = 2 works fine for up to 8 192 subdomains,
Pmax = 4 is necessary for the larger configurations. All in all, the parallel efficiency
of 91% on 131K MPI ranks and 65K cores and a total problem size of 10 billion
degrees of freedom is satisfying.
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Fig. 3 Weak scalability for H/h = 80 and H/h = 100 and different truncations pmax. Setup
denotes the BDDC setup time, including all AMG setup times and Solve the time spent in the
GMRES iteration. Computation performed on JUQUEEN BlueGene/Q at FZ Jülich, Germany

Finally, we present a weak scaling study in three dimensions. We again consider a
linear elastic material and deform a heterogeneous cube. We have a single spherical
stiff inclusion (E = 21,000, nu = 0.3) in each subdomain. The remaining material
is softer with E = 210, nu = 0.3. This time, we choose piecewise linear finite
elements, H/h = 20, and, as primal constraints, we enforce continuity in all
subdomain vertices and in the midpoints of all edges. We use the same AMG
settings as before. In Fig. 4, we again observe a sufficient weak scaling behavior
using M−1

BDDC,2 with the GM2 approach, while the hybrid approach cannot deliver
satisfying convergence behavior, since it cannot fulfill (11) with good bounds.

4 Conclusion

We have shown that a classical AMG approach based on nodal coarsening for
systems of PDEs is not sufficient as a preconditioner of the partially coupled
matrix in the inexact BDDC approach introduced in Li and Widlund [9], since, for
elasticity, it does not fulfill (11) with good bounds. This can be resolved using the
GM2 approach, which preserves the nullspace of the partially assembled stiffness
matrix in the inexact BDDC method [9]. Our results show that the inexact BDDC
approach from [9] using a classical AMG preconditioner with GM2 interpolation is
highly parallel scalable and memory efficient.

Acknowledgements This work was supported in part by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) under grants
KL 2094/4-1, KL 2094/4-2, RH 122/2-1, and RH 122/3-2. The authors also gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for providing computing time

www.gauss-centre.eu


432 A. Klawonn et al.

Fig. 4 Heterogeneous and linear elastic material in three dimensions; H/h = 20. See Fig. 2 for
the remaining notation. Good scalability is achieved using the GM2 interpolation. Computation
performed on JUQUEEN BlueGene/Q at FZ Jülich, Germany
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On the Accuracy of the Inner Newton
Iteration in Nonlinear Domain
Decomposition

Axel Klawonn, Martin Lanser, Oliver Rheinbach, and Matthias Uran

1 Introduction

Nonlinear FETI-DP methods [3–6] belong to the family of nonoverlapping non-
linear domain decomposition methods and can be used to solve discrete nonlinear
problems A(u) = 0 arising from the discretization of nonlinear partial differential
equations. They can be characterized by decomposition before linearization,
and they can be interpreted as nonlinearly right-preconditioned Newton-Krylov
methods; see [6]. These methods localize work and have shown to be highly
scalable to more than 131,072 cores [6].

We decompose the computational domain Ω ⊂ R
d, d = 2, 3, into N

nonoverlapping subdomains Ωi , i = 1, . . . , N , such that Ω = ⋃N
i Ωi . The

associated local finite element spaces are denoted by W(i) and the product space
byW = W(1)×· · ·×W(N). We introduce W̃ ⊂ W as the space of all finite element
functions fromW which are continuous in certain primal variables, e.g., subdomain
vertices.
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1. Mapping: M :W ×V →W ×V .
2. M puts the current iterate into the neighborhood of the solution; see also [1].
3. M(ũ, ) is easily computable compared to the inverse action of A(ũ, ).

Fig. 1 Properties on the nonlinear preconditioner M for nonlinear FETI-DP methods

The fully assembled original finite element problem is equivalent to the nonlinear
FETI-DP saddle point system

A(ũ, λ) =
[
K̃(ũ)+ BT λ− f̃

Bũ

]
=

[
0
0

]
, ũ, f̃ , K̃(ũ) ∈ W̃ ; (1)

see [3]. Nonlinear FETI-DP methods are based on solving (1). Here, Lagrange
multipliers λ ∈ V are used to decompose the nonlinear problem into parallel local
problems on subdomains, and the linear constraint Bũ = 0 enforces the continuity
of the solution across the interface for nonprimal variables. Here, B is the standard
finite element jump operator and the space of Lagrange multipliers is defined as
V := range(B).

Instead of solving A(ũ, λ) = 0 directly with Newton’s method, which
was denoted Nonlinear-FETI-DP-1 in [3, 6], we introduce a nonlinear right-
preconditionerM(ũ, λ); see Fig. 1 for some desirable properties the preconditioner
should fulfill. The resulting nonlinear equation

A(M(ũ, λ)) = 0 (2)

is solved by a Newton-Krylov method. In each Newton iteration the evaluation
of the preconditioner g(k) = M(ũ(k), λ(k)) is computed. The nonlinear right-
preconditioner can be used to describe a (partial) nonlinear elimination of variables
[7]. We introduce the index sets E and L, where E is the set of variables which
will be eliminated nonlinearly by the application of M and L is the set of variables
which will be linearized. According to these two index sets, we split the variables ũ,
and the jump operator B, ũ = (ũE, ũL), B = [

BE BL
]
. Using this splitting, the

nonlinear system (1) writes

A(ũE, ũL, λ) =
⎡
⎢⎣
AE(ũE, ũL, λ)

AL(ũE, ũL, λ)

BEũE + BLũL

⎤
⎥⎦ =

⎡
⎢⎣
K̃E(ũE, ũL)+ BT

E
λ− f̃E

K̃L(ũE, ũL)+ BT
L
λ− f̃L

BEũE + BLũL

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ . (3)

Since the nonlinear elimination process is restricted to the variables ũE , the
nonlinear preconditioner M(ũ, λ) is linear in ũL and λ. Therefore, we introduce
the following notation

M(ũ, λ) = M(ũE, ũL, λ) := (MũE (ũE, ũL, λ), ũL, λ) = (MũE (ũL, λ), ũL, λ) (4)
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g(k)0 = (ũ(k), (k)) and l = 0

while ||AE(g
(k)
l )|| > I do

Newton update to g(k)l+1
l = l+1
g(k) = g(k)l

end while

g(k)0 = (ũ(k), (k)), l = 0, Jold = 1
2 ||A(g(k)0 )||2

while ||AE(g
(k)
l )|| > I do

Newton update to g(k)l+1

Compute: Jnew = 1
2 ||A(g(k)l+1)||2

if Jnew > Jold then
g(k) = g(k)l
break while

else
Jold = Jnew

end if
l = l+1
g(k) = g(k)l

end while

Fig. 2 Left: Computation of M . Right: Computation of M

and MũE (ũE, ũL, λ) is defined implicitly by

K̃E(MũE (ũE, ũL, λ), ũL)+ BTEλ− f̃E = 0. (5)

Hence, for the evaluation of g(k) := M(ũ
(k)
E , ũ

(k)
L , λ(k)), the nonlinear system

AE(g
(k)) = 0 (6)

has to be solved for fixed ũ(k)L and λ(k) until a sufficient tolerance εI is reached, e.g.,
by Newton’s method with the partial update

g
(k)
E,l+1 = g

(k)
E,l − (DũEAE(g

(k)
l ))−1AE(g

(k)
l ); (7)

see also Fig. 2 on the left. Thus, the application of the nonlinear right-preconditioner
is nothing else than minimizing the energy JE(ũ, λ) := 1

2 ||AE(ũ, λ)||2.
Replacing ũE in the second and third line of (3) by MũE(ũL, λ) yields the

nonlinear Schur complement

SL(ũ, λ) :=
[
K̃L(MũE (ũL, λ), ũL)+ BTLλ− f̃L

BEMũE (ũL, λ) + BLũL

]
. (8)

Finally, we can solve the resulting nonlinear Schur complement system SL(ũ, λ) =
0 with standard Newton-Krylov-FETI-DP (see [3]). For more details, we also refer
to [6].
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2 Nonlinear FETI-DP Methods Using Energy Reducing
Nonlinear Preconditioning

It is possible that the nonlinear elimination presented above leads to an increase in
the global energy J (ũ, λ) = 1

2 ||A(ũ, λ)||2, e.g., if the strong nonlinearities are not
contained in the index setE. In this case, our nonlinear FETI-DP methods can show
a loss of robustness and performance compared to the traditional Newton-Krylov-
FETI-DP approach; see Sect. 3. It can also happen, that our nonlinear FETI-DP
methods do not converge to a solution due to an inappropriate coarse space.

To increase the convergence radius for Newton type methods it is standard to
enforce a sufficient decrease in the global energy J in each Newton step [9].
This can be achieved by controlling the Newton update. If the Newton update does
not result in a sufficient decrease of the energy, the Newton step is rejected and
replaced, e.g., by a steepest descent step. To prove global convergence properties,
usually additional assumptions about the step length have to be fulfilled, which can
be controlled by a line search approach enforcing certain conditions of, e.g., Armijo
or Wolfe type [8]. For the use of line search in nonlinear FETI-DP methods, see [3].

Analogously to classical Newton-Krylov approaches, it is also possible to apply
these strategies to nonlinear right-preconditioned Newton-Krylov methods, which
is not considered in this paper. Nevertheless, we additionally have to control the
application of the nonlinear preconditioner to enforce an energy decrease in each
step, or, at least, to avoid an increase with respect to J .

To enlarge the convergence radius of our nonlinear FETI-DP methods we
therefore have to compute g(k) not only with respect to JE = 1

2 ||AE||2 but also
J = 1

2 ||A||2; cf. (3).
As described above, the application of the nonlinear preconditioner M in our

nonlinear FETI-DP methods leads to a minimization of 1
2 ||AE(ũ, λ)||2, but we

do not control how the global energy J evolves during this update process. To
do so, we introduce an approximation M (ũ, λ) of M(ũ, λ), which at least does
not increase the global energy J . The idea is, to stop the Newton iteration and
choose M (ũ, λ) = gl whenever the updated gl+1 does not fulfill the simple
decrease property J (gl+1) ≤ τJ (gl) for the global energy functional. We thus
avoid oversolving in the inner Newton iteration, somewhat analogously to inexact
Newton methods with carefully chosen forcing terms [2]. To make this property a
robust decrease condition, we choose 0 < τ ≤ 1 and, if not noted otherwise, we use
τ = 0.8 in our experiments. For more details see Fig. 2 on the right.

It is obvious that this approach never leads to an increased number of inner
Newton iterations but it can end up with two extreme cases. First, if the decrease
property is fulfilled for all inner Newton steps we have M (ũ, λ) = M(ũ, λ).
Second, if the decrease condition is not fulfilled for the first inner Newton step,
we obtain M (ũ, λ) = (ũ, λ) and the application of M reduces to the identity. The
latter case is identical to a single step of Nonlinear-FETI-DP-1, regardless which
set of variables E is chosen. Let us briefly recall the definition of Nonlinear-FETI-
DP-1 from [6], where the variable set E is chosen to be the empty set. Let us also
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remark that in the second case all factorizations from the inner Newton iteration can
be recycled for the subsequent outer Newton iteration and therefore no additional
work compared with a Nonlinear-FETI-DP-1 step is necessary.

Let us remark that we handle the very first computation of M in a slightly
different way, since we do not want to rely on the initial value ũ(0). We do
not stop the Newton iteration if J (g1) > τJ (g0) but we also compute gl until
J (gl) ≤ τJ (gl−1), l ≥ 2, is not fulfilled. In a similar way we can control the
computation of the initial value K̃(ũ(0)) = f̃ − BT λ(0) (see [3]) in the Nonlinear-
FETI-DP-1 approach.

In each outer Newton iteration, we now have to solve the linear system

DA
(
M (ũ(k), λ(k))

) (
δũ(k), λ(k)

)T = A
(
M (ũ(k), λ(k))

)
. (9)

Here, the entries in the right hand side belonging to the index set E can not be
guaranteed to be zero due to the fact that M might just be an approximation to M .

3 Numerical Results

In this section, we present numerical results for nonlinear FETI-DP methods using
the newly introduced energy reducing and robust preconditioner and compare
them to the nonlinear FETI-DP methods introduced in [3–6] and to the traditional
Newton-Krylov-FETI-DP approach. To provide a fair comparison, we choose for
all methods the same initial values u(0)(x1, x2) = x1 · x2 · (1 − x1) · (1 − x2),
λ(0) = 0, and the same tolerances εI and εO . Inner Newton iterations are stopped if
1
2 ||AE||2 ≤ εI = 1e − 12 or the decrease condition is not fulfilled and the global
Newton iteration is stopped if 1

2 ||A||2 ≤ εO = 1e− 12.
We refer to the nonlinear FETI-DP methods as NL-i, i = 1, . . . , 4, and to

the nonlinear FETI-DP methods using the new nonlinear preconditioner as NL-
ane-i, i = 1, . . . , 4. The traditional Newton-Krylov-FETI-DP method is denoted
NK. Let us briefly recall the different nonlinear variants from [6] by specifying the
nonlinear elimination sets. We choose E = ∅ in NL-1, E = [I,Δ,Π] in NL-2,
E = [I,Δ] in NL-3, and E = I in NL-4, where I denotes the set of variables
inside subdomains, Π denotes the set of primal variables, and Δ denotes the set of
all remaining interface variables.

As a model problem, we choose a two dimensional problem based on the scaled
p-Laplace operator for p = 4

αΔpu := div(α|∇u|p−2∇u).
We consider

−αΔ4u − βΔ2u = 1 in "
u = 0 on ∂",
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Fig. 3 Left: Channels with a width ofH/3, where H is the width of a subdomain; α = 1e5. Right:
Domain decomposition with ragged edges, H/h = 16

with the computational domain Ω = (0, 1)2 and the coefficients α = 1e5 and
β = 1.

The computational domain is decomposed into square subdomains and dis-
cretized by piecewise linear finite elements. We choose a problem, where the
nonlinearities have a nonlocal character. Here, columns of subdomains are inter-
sected by channels of widthH/2 from the upper to the lower boundary ofΩ , where
H is the width of a subdomain; see the left picture in Fig. 3. To simulate a less
structured domain decomposition, we also consider subdomains with ragged edges;
see the right picture in Fig. 3 for details. For all our tests we used a sequential
MATLAB implementation and we exclusively consider subdomain vertices as
primal constraints. Due to our sequential implementation, we choose and evaluate
different metrics or indicators to obtain a good estimation of the parallel potential
of the different nonlinear FETI-DP preconditioner variants. As a metric for the
global communication, we count the number of Krylov iterations (denoted # Krylov
It.). For the local work, we count the number of factorizations of DK̃BB or DK̃II
(denoted by “Local Fact.”), and we also count the factorizations of the FETI-DP
coarse problem (denoted by “Coarse Fact.”). Factorizations of the coarse problem
are necessary in the computation of the initial value for NL-1 and in the evaluation of
the nonlinear preconditioner for NL-2, while the evaluation of the preconditioner for
NL-3 and NL-4 does not include factorizations of the coarse problem. Therefore,
we subdivide the section “Coarse Fact.” into factorizations of the coarse problem
in the first/inner loop (denoted by “in.”) and in the main loop (denoted by “out.”).
For all methods the number of outer coarse factorizations is equal to the number
of outer Newton steps. For NL(-ane)-1 the number of local factorizations is equal
to the sum of inner and outer Newton iterations and for NL(-ane)-i, i = 2, 3, 4, the
number of local factorizations is equal to the number of inner Newton iterations; see
Table 1 and Fig. 4.

For our model problem, the index setE does not contain the nonlinearities for the
NL-4 and NL- ane-4 method. As a result the performance of NL-4 is worse than the
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Table 1 Model problem “Nonlocal Nonlinearities”; comparison of standard nonlinear FETI-DP
methods and nonlinear FETI-DP methods using the new approach (“ NL-ane-*”); channels with a
width ofH/2; α = 1e5 inside channels and β = 1 elsewhere; see also Fig. 3; domainΩ = (0, 1)2;
decomposed into square subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; τ = 0.8; computed
on Schwarz

Channels 2D

H/h = 16; exact FETI-DP; computed on Schwarz, α = 1e5

Normal edges Ragged edges

Local Coarse Krylov Local Coarse Krylov

Problem Nonlinear factor. factor. It. factor. factor. It.

N size |E| solver in. out. in. out.

16 4225 NK 13 − 13 173 13 − 13 2108

0 NL-1 no Init 13 − 13 188 13 − 13 2227

0 NL-ane-1 15 6 9 124 14 5 9 1211

0 NL-1 22 12 10 150 26 17 9 1170

4225 NL-ane-2 16 11 5 68 16 10 6 794
4225 NL-2 30 24 6 86 div div div div

4216 NL-ane-3 23 0 7 95 25 0 9 1134

4216 NL-3 30 0 6 86 div div div div

3856 NL-ane-4 17 0 13 254 14 0 13 2227

3856 NL-4 47 0 13 284 43 0 13 2277

256 66,049 NK 15 − 15 1391 15 − 15 3064

0 NL-1 no Init 14 − 14 1471 14 − 14 3139

0 NL-ane-1 16 6 10 741 15 5 10 2149

0 NL-1 23 13 10 730 36 25 11 2387

66,049 NL-ane-2 16 10 6 447 19 11 8 1664
66,049 NL-2 31 25 6 395 div div div div

65,824 NL-ane-3 17 0 6 429 18 0 8 1683

65,824 NL-3 35 0 6 379 div div div div

58,624 NL-ane-4 19 0 14 1647 15 0 14 3139

58,624 NL-4 54 0 14 1681 50 0 14 3156

The lowest numbers are marked in bold

performance of the traditional NK approach and the number of local factorizations
of NL- ane-4 is close to the number of Newton steps plus one; see Table 1 and Fig. 4.
This shows that the elimination of the interior variables is inappropriate for this
problem, but NL- ane-4 detects this and avoids spending time in the evaluation of
the inappropriate nonlinear preconditioner. As a consequence, NL- ane-4 is nearly
equivalent to NL-1 without the computation of the initial value or to NK and thus
superior compared to NL-4. The difference of one factorization results from the
additional step in the inner loop in the very first Newton step.

For the structured decomposition into square subdomains NL-2, NL-3, NL- ane-
2, and NL- ane-3 perform quite similar. The number of local solves for NL- ane-2
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Fig. 4 Model problem “Nonlocal Nonlinearities”; comparison of nonlinear FETI-DP methods and
nonlinear FETI-DP methods using energy minimizing preconditioning; channels with a width of
H/2; p = 4 and α = 1e5 in the channels and β = 1 elsewhere; see also Fig. 3; domain Ω =
(0, 1)2; decomposed into square subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; τ = 0.8;
computed on Schwarz. Top: Normal edges; Bottom: Ragged edges

and NL- ane-3 is half as large as for NL-2 and NL-3, but the number of Krylov
iterations is slightly higher; see Table 1 and Fig. 4 (top).

For the less structured decomposition with ragged edges the chosen coarse space
(subdomain vertices) is insufficient for NL-2 and NL-3, so these methods do not
converge, but using the new approach leads to convergence and saves about 50% of
Newton steps and Krylov iterations compared to the traditional NK approach; see
Table 1 and Fig. 4 (bottom). The new strategy thus increases the convergence radius
for NL-2 and NL-3.

4 Conclusion

We have introduced a strategy to automatically decide on the computational effort
to be spent in the inner Newton iteration in nonlinear domain decomposition. The
strategy considers the reduction of the global energy resulting from performing
local Newton steps on the subdomains. The Newton iteration performed for the
local elimination is stopped (and the step is discarded) when the resulting decrease
in the global energy is not satisfactory. This can also be interpreted as an inexact
nonlinear elimination. We have shown, that the local work can be significantly
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reduced compared to standard nonlinear FETI-DP methods while the number of
Newton steps and Krylov iterations remains nearly constant. We have also shown,
that the dependency on the coarse space is reduced for nonlinear FETI-DP methods
and that the robustness of the resulting methods is dramatically increased.
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Adaptive BDDC and FETI-DP Methods
with Change of Basis Formulation

Hyea Hyun Kim, Eric T. Chung, and Junxian Wang

1 Introduction

In this paper, BDDC (Balancing Domain Decomposition by Constraints) and FETI-
DP (Dual-Primal Finite Element Tearing and Interconnecting) algorithms with a
change of basis for adaptive primal constraints are analyzed. In our formulation,
adaptive primal constraints are introduced from appropriate generalized eigenvalue
problems. In the authors previous study [6], for the FETI-DP algorithm the adaptive
primal constraints are enforced by using a projection and it was shown that the
condition numbers are controlled by the user-defined tolerance value, which is used
to select the adaptive primal constraints from generalized eigenvalue problems on
each equivalence classes, edges and faces. The analysis in [6] could not be extended
to the FETI-DP algorithm with a change of basis formulation on the adaptive primal
constraints. In the change of basis formulation, each primal constraint is transformed
into a single unknown and treated just like unknowns at subdomain vertices as
in the standard FETI-DP algorithm. It is often observed that the change of basis
formulation is numerically more stable than the projection approach.
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Here we will propose a more general form of the FETI-DP preconditioner
and extend the analysis to the change of basis formulation. For the proposed
preconditioner, we can obtain the identity ED + PD = I for the averaging and
jump operators, see (8) for their definitions, and thus show that the condition
numbers of the adaptive BDDC and FETI-DP algorithms with the change of basis
formulation are identical. Unlike in the standard FETI-DP preconditioners, the
blocks of subdomain matrices and scaling matrices corresponding to the adaptive
primal unknowns appear in the proposed preconditioner. We note that in the same
mini-symposium an adaptive FETI-DP algorithm with a change of basis formulation
was presented in the talk by Axel Klawonn, where different generalized eigenvalue
problems are introduced and different tools are used in the analysis of condition
numbers.

We note that adaptive primal constraints are often required to obtain robustness
of domain decomposition preconditioners with respect to coefficient variations
in the model problem. For related works, we refer to [5] and [4] for two-level
additive Schwarz methods, and Spillane et al. [13] and Spillane and Rixen [12] for
FETI/BDD methods. In a pioneering work by Mandel et al. [11], adaptive BDDC
algorithms are developed and tested for 3D problems, where the adaptive primal
constraints are selected from generalized eigenvalue problems on each face. For 3D
problems, more advanced FETI-DP/BDDC algorithms are developed and analyzed
in more recent works, see [2, 10], and [7]. In [7, 10], and [6], the adaptive primal
constraints are enforced by using a projection in the FETI-DP algorithm.

2 BDDC and FETI-DP Algorithms

For the presentation of BDDC and FETI-DP algorithms, we introduce a finite
element space X for a given domain Ω , where the model elliptic problem is define
as

−∇ · (ρ(x)∇u(x)) = f (x) (1)

with a zero boundary condition on u(x) and with ρ(x) being highly varying and
heterogeneous. The domainΩ is then partitioned into non-overlapping subdomains
{Ωi}. We assume that the subdomain boundaries do not cut the triangles in the finite
element space X. We use the notation Xi to denote the restriction of X to Ωi . Each
subdomain is then equipped with the finite element space Xi .

We further introduce Wi as the restriction of Xi to the subdomain interface
unknowns, W , and X as the product of local finite element spaces Wi and Xi ,
respectively. We note that functions in W or X are decoupled across the subdomain
interfaces. We then select some primal unknowns among the decoupled unknowns
on the interfaces and enforce continuity on them and denote the corresponding
spaces W̃ and X̃.
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The preconditioners in BDDC and FETI-DP algorithms will be developed based
on the partially coupled space W̃ and appropriate scaling matrices. In our adaptive
methods, we will select primal unknowns on each nodal equivalence classes of
subdomain interfaces. In more detail, edges in 2D and faces in 3D are nodal
equivalence classes shared by two subdomains, edges in 3D are nodal equivalence
classes shared by more than two subdomains, and vertices are end points of edges
in both 2D and 3D.

In our approach, we first include the unknowns at subdomain vertices to the set of
primal unknowns. Adaptive primal constraints will be selected from eigenvectors of
generalized eigenvalue problems on faces and edges using a given tolerance value.
The associated adaptive primal unknowns are then obtained by applying change of
basis on the adaptively selected primal constraints and these explicit unknowns can
then be assembled strongly just like unknowns at subdomain vertices.

We introduce notations Ki and Si . The matrices Ki are obtained from Galerkin
approximation of

a(u, v) =
∫
Ωi

ρ(x)∇u · ∇v dx

by using finite element spaces Xi and Si are Schur complements of Ki , which are
obtained after eliminating unknowns interior to Ωi . Let R̃i : W̃ → Wi be the
restriction into ∂Ωi and let S̃ be a partially coupled matrix defined by

S̃ =
N∑
i=1

R̃Ti Si R̃i . (2)

We note that S̃ is then coupled at the unknowns on subdomain vertices and the
adaptive primal unknowns. Let R̃ be the restriction from Ŵ to W̃ , where the
subspace Ŵ of W̃ has unknowns continuous on the subdomain interface. The
discrete problem of (1) is then written as

R̃T S̃R̃ = R̃T g̃,

where g̃ is the vector related to the right hand side f (x).
In the BDDC algorithm the above matrix equation is solved iteratively by using

the following preconditioner,

M−1
BDDC = R̃T D̃S̃−1D̃T R̃, (3)

where D̃ is a scaling matrix of the form

D̃ =
N∑
i=1

R̃Ti DiR̃i .



448 H. H. Kim et al.

Here the matrices Di are defined for unknowns in Wi and they are introduced to
resolve heterogeneity in ρ(x) across the subdomain interface. In a more detail, Di
consists of blocks D(i)

F , D(i)
E , D(i)

V , where F denotes corresponding blocks to faces,
E to edges, and V to vertices, respectively. We note that those blocks satisfy the
partition of unity for a given F , E, and V , respectively. We refer to [9] for these
definitions.

The FETI-DP algorithm is a dual form of the BDDC algorithm. After the change
of unknowns on the adaptively selected constraints, we obtain the resulting FETI-
DP algebraic system

BS̃−1BT λ = d, (4)

where S̃ is the partially coupled matrix defined in (2), and B is the matrix with
entries 0, −1, and 1, which is used to enforce continuity at the remaining decoupled
interface unknowns, i.e., dual unknowns. We introduce the notation M for the
set of Lagrange multipliers λ, of which dimension is identical to the number of
continuity constraints enforced on the remaining decoupled interface unknowns.
The above algebraic system is then solved by an iterative method with the following
preconditioner

M−1
FET I =

N∑
i=1

B
(i)
D,ΔSi(B

(i)
D,Δ)

T (5)

where (B(i)D,Δ)
T : M → Wi is defined by

(B
(i)
D,Δ)

T λ|F = D
(j)
F,Δλij on each F ∈ F(i) (6)

and

(B
(i)
D,Δ)

T λ|E =
∑

l∈n(E,i)
D
(l)
E,Δλil on each E ∈ E(i). (7)

Here F(i) andE(i) denote the set of faces and edges of subdomainΩi , respectively,
n(E, i) denotes the set of neighboring subdomain indices sharing the edge E with
Ωi , and λij denotes the part of Lagrange multipliers λ used to enforce continuity on

the decoupled unknowns acrossΩi andΩj . The matricesD(j)
F,Δ andD(l)

E,Δ are given

by blocks of D(j)
F and D(l)

E as follows,

D
(j)
F,Δ =

(
D
(j)

F,ΔΔ

D
(j)
F,ΠΔ

)
, D

(l)
E,Δ =

(
D
(l)
E,ΔΔ

D
(l)
E,ΠΔ

)
,
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where the subscriptsΔ andΠ denote blocks of matrixD(j)

F andD(l)
E corresponding

to the decoupled unknowns and the adaptive primal unknowns, respectively. For
the unknowns at subdomain vertices, which belong to the initial set of primal
unknowns, the values of (B(i)D,Δ)

T λ are defined as zero. Differently from the standard
FETI-DP preconditioner, the proposed preconditioner contains the scaling matrices
involving the adaptive primal unknowns. With this new form of the FETI-DP
preconditioner, we can show that the adaptive FETI-DP algorithm with the change
of basis formulation has the same spectra except the values zero and one and thus
can obtain the same condition number bound as that of the BDDC algorithm. When
no adaptive primal unknowns are chosen, the preconditioner is identical to that
considered in the standard FETI-DP algorithm.

3 Adaptively Enriched Coarse Spaces

The adaptive constraints will be selected by considering generalized eigenvalue
problems on each equivalence class. The idea is originated from the upper bound
estimate of BDDC and FETI-DP preconditioner. In the estimate of condition
numbers of BDDC and FETI-DP preconditioners, the average and jump operators
are defined as

ED = R̃R̃T D̃, PD = BTDB, (8)

where B = (BΔ 0) and BTD = (B
(1)
D,Δ · · · B(N)D,Δ)

T . We note that B : W̃ → M and

BTD : M → W , see the definition of (B(i)D,Δ)
T in (6) and (7).

The adaptive constraints are then treated just like unknowns at subdomain
vertices after change of basis formulation in both BDDC and FETI-DP algorithms,
i.e., the continuity on them can be strongly enforced. We note that in our previous
work one can not get ED + PD = I when the standard FETI-DP preconditioner
is considered for the change of basis formulation, i.e., without the blocks from the
adaptive primal unknowns in the definition of the scaled jump operator BTD .

We will now introduce generalized eigenvalue problems for each face and each
edge. For a face F , the following generalized eigenvalue problem is considered

AFvF = λÃF vF , (9)

where

AF = (D
(j)
F )T S

(i)
F D

(j)
F + (D

(i)
F )

T S
(j)
F D

(i)
F , ÃF = S̃

(i)
F : S̃(j)F .

In the above S(i)F denote block matrix of Si to the unknowns interior to F and S̃(i)F are
Schur complements of Si obtained by eliminating unknowns except those interior
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to F . The matrices then satisfy the following minimal energy property,

vTF S̃
(i)
F vF ≤ vT Siv, for any v|F = vF , (10)

where v|F denotes the restriction of v to the unknowns interior to F . The notation
A : B is a parallel sum defined as, see [1],

A : B = A(A+ B)+B,

where (A+ B)+ denotes a pseudo inverse. The parallel sum satisfies the following
properties

A : B = B : A, A : B ≤ A, A : B ≤ B, (11)

and it was first used in forming generalized eigenvalues problems by Dohrmann and
Pechstein [3], of which idea was originated from the energy estimate of the average
operator in the BDDC algorithm.

In (9), the eigenvalues are all positive and we select eigenvectors vF,l, l ∈ N(F)
with associated eigenvaluesλl larger than the given λTOL. The following constraints
will then be enforced on the unknowns in F ,

(AF vF,l)
T (w

(i)
F − w

(j)

F ) = 0, l ∈ N(F).

After a change of basis, the above constraints can be transformed into explicit
unknowns.

In 3D, we can have an edge, a nodal equivalence class shared by more than two
subdomains, and for an edge E we introduce the following generalized eigenvalue
problem,

AEvE = λÃEvE,

where

AE =
∑

m∈I (E)

∑
l∈I (E)\{m}

(D
(l)
E )

T S
(m)
E D

(l)
E , S̃E =

∏
m∈I (E)

S̃
(m)
E ,

and I (E) denotes the set of subdomain indices sharing E in common, and∏
m∈I (E) S̃

(m)
E is the parallel sum of matrices S̃(m)E . We note that S(m)E and S̃(m)E are

defined similarly as S(m)F and S̃(m)F . For a given λTOL, the eigenvectors with their
eigenvalues larger than λTOL will be selected and denoted by vE,l , l ∈ N(E). The
following constraints will then enforced on the unknowns in E,

(AEvE,l)
T (w

(i)
E −w

(m)
E ) = 0, l ∈ N(E), m ∈ I (E) \ {i}.
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Similarly to the face case, the above constraints can be transformed into explicit
unknowns after the change of basis.

By using the adaptively selected primal unknowns on each face F and edge E as
above, we can obtain the following estimate

〈S̃(I − ED)w̃, (I − ED)w̃〉 ≤ CλTOL〈S̃w̃, w̃〉, (12)

where C is a constant depending on the maximum number of edges and faces
per subdomain, and the maximum number of subdomains sharing an edge but
independent of the coefficient ρ(x). We note that the above inequality is the key
estimate in the analysis of the BDDC algorithm.

4 Condition Number Estimate and Numerical Results

Using the adaptively enriched primal unknowns described in Sect. 3 and the estimate
in (12), we can obtain the following estimate of condition numbers for the given
λTOL:

Theorem 1 The BDDC algorithm with the change of basis formulation for the
adaptively chosen set of primal unknowns with a given tolerance λTOL has the
following bound of condition numbers,

κ(M−1
BDDCR̃

T S̃R̃) ≤ CλTOL,

and the FETI-DP algorithm with the change of basis formulation for the same set
of adaptively chosen set of primal unknowns has the bound

κ(M−1
FET IBS̃

−1BT ) ≤ CλTOL,

where C is a constant depending only onNF(i),NE(i), NI(E), which are the number
of faces per subdomain, the number of edges per subdomain, and the number of
subdomains sharing an edge E, respectively. In fact, the two algorithms share the
same set of eigenvalues except zero and one.

The proof of the above theorem and some numerical examples can be found in
a complete version of this paper [8]. In Table 1, we present some numerical
experiments for a 3D model problem. In particular, we consider a random coefficient
with value varying between 10−3 to 103, and show the number of iterations and the
number of primal unknowns with various choice of coarse partitionNd . We observe
a very robust performance.

Acknowledgements The first author was supported by the National Research Foundation of
Korea(NRF) grants funded by NRF20151009350, the second author was supported by the Hong
Kong RGC General Research Fund (Project 14317516) and the CUHK Direct Grant for Research
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Table 1 Performance of adaptive BDDC and FETI-DP with λFTOL = 10, λETOL = 103 for highly
varying and random ρ(x) in (10−3, 103) by increasing Nd and with a fixed H/h = 12: λmin
(minimum eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations), pnumF (total
number of adaptive primal unknowns on faces), and pnumE (total number of adaptive primal
unknowns on edges)

Nd Method λmin λmax Iter pnumF pnumE pF pE

23 Bddc 1.00 5.29 18 21 18 1.75 3.00

Fdp 1.00 5.29 18 21 18 1.75 3.00

33 Bddc 1.01 6.97 26 71 115 1.31 3.19

Fdp 1.00 6.97 27 71 115 1.31 3.19

43 Bddc 1.01 9.45 29 205 320 1.42 2.96

Fdp 1.00 9.45 30 205 320 1.42 2.96

pF and pE are the number of adaptive primal unknowns per face and per edge, respectively

2016–2017, and the third author was supported by the National Natural Science Foundation
of China (Grant No. 11201398) and Open Foundation of Guangdong Provincial Engineering
Technology Research Center for Data Science(2016KF07).
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Nonoverlapping Three Grid Additive
Schwarz for hp-DGFEM with
Discontinuous Coefficients

Piotr Krzyżanowski

1 Introduction

Let us consider a second order elliptic equation

−div(0∇u) = f, (1)

with homogeneous Dirichlet boundary condition. The problem is discretized by
an h-p symmetric weighted interior penalty discontinuous Galerkin finite element
method. A nonoverlapping additive Schwarz method (see [1, 3]) is applied to pre-
condition the discrete equations. For 0 ≡ 1, Antonietti and Houston [1] conjectured
on the basis of numerical experiments that if the coarse space contains piecewise
polynomial functions up to degree p, the condition number is O(pH /h). This
conjecture has recently been proved in [5] and independently by Antonietti, Houston
and Smears in [2], using slightly different techniques. In the former paper, a general
framework for the analysis of problems with discontinuous coefficients and varying
polynomial degrees across finite elements has been developed; however, a technical
assumption that the basis functions are continuous inside subdomains was made
when the coefficient was allowed discontinous in Ω . On the other hand, [2] made
use of approximation ideas of [6], allowing for more flexibility in the choice of
the finite element spaces. In this note, we extend the analysis to the case when
fully discontinuous finite elements are employed, under additional assumption that
the coefficient is constant inside coarse grid cells and an H 2–regularity assumption
on (1) holds.
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For more flexibility and enhanced parallelism, we formulate our results address-
ing the case when the subdomains (where the local problems are solved in
parallel) are potentially smaller than the coarse grid cells [4]. By allowing small
subdomains of diameter H ≤ H , local problems are cheaper to solve and the
amount of concurrency of the method is substantially increased, which can be
an advantage e.g. on multi-threaded processors. Moreover, small subdomains give
more flexibility in assigning them to processors for load balancing in coarse grain
parallel processing. In this way, an additional level of domain partitioning gives the
user more parameters to fine tune the actual parallel performance, and thus overall
efficiency, of the preconditioner for a given hardware architecture.

The paper is organized as follows. In Sect. 2, the differential problem and its
discontinuous Galerkin discretization are formulated. In Sect. 3, a nonoverlapping
two-level, three-grid additive ASM for solving the discrete problem is designed and
analyzed under assumption that the coarse mesh resolves the discontinuities of the
coefficient, the variation of the mesh size and of the polynomial degree are locally
bounded, and the original problem satisfies some regularity assumption. Section 4
presents some numerical experiments.

For nonnegative scalars x, y, we shall write x � y if there exists a positive
constant C, independent of: x, y, the fine, subdomain and coarse mesh parameters
h,H,H , the orders of the finite element spaces p, q , and of jumps of the diffusion
coefficient 0 as well, such that x ≤ Cy. If both x � y and y � x, we shall write x $
y.

The norm of a function f from the Sobolev space Hk(S) will be denoted by
||f ||k,S , while the seminorm of f will be denoted by |f |k,S . For short, the L2-norm
of f will then be denoted by |f |0,S .

2 Differential Problem and Its h-p Discontinuous Galerkin
Discretization

Let Ω be a bounded open convex polyhedral domain in Rd , d ∈ {2, 3}, with
Lipschitz boundary ∂Ω . We consider the following problem for given f ∈ L2(Ω)

and 0 ∈ L∞(Ω):
Find U∗ ∈ H 1

0 (Ω) such that

a(U∗, v) = (f, v)Ω, ∀v ∈ H 1
0 (Ω), (2)

where

a(u, v) =
∫
Ω

0∇u · ∇v dx, (f, v)Ω =
∫
Ω

f v dx.

We assume that there exist constants α0 and α1 such that 0 < α0 ≤ 0 ≤ α1 a.e.
in Ω so that (2) is well-posed. Without loss of generality we shall additionally
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suppose that α0 ≥ 1 and diam(Ω) = 1, which can always be guaranteed by simple
scaling. We also assume that 0 is piecewise constant, i.e. Ω can be partitioned into
nonoverlapping polyhedral subregions with the property that 0 restricted to any of
these subregions is some positive constant.

Let Th = {K1, . . . ,KNh } denote an affine nonconforming partition of Ω , where
Ki are either triangles in 2-D or tetrahedrons in 3-D. For K ∈ Th we set hK =
diam(K). By E in

h we denote the set of all common (internal) faces (edges in 2-D) of
elements in Th, so that e ∈ E in

h iff e = ∂Ki∩∂Kj is of positive measure. We will use
symbol Eh to denote the set of all faces (edges in 2-D) of fine mesh Th, that is those
either in E in

h or on the boundary ∂Ω . For e ∈ Eh we set he = diam(e). We assume
that Th is shape- and contact-regular, that is, it admits a matching submesh T

ĥ
which is shape-regular and such that for any K ∈ Th the ratios of hK to diameters
of simplices in T

ĥ
covering K are uniformly bounded by an absolute constant. In

consequence, if e = ∂Ki ∩ ∂Kj is of positive measure, then he $ hKi $ hKj . We
shall refer to Th as the “fine mesh”. Throughout the paper we will assume that the
fine mesh is chosen in such a way that 0|K is already constant for all K ∈ Th.

We define the finite element space V ph in which problem (2) is approximated,

V
p
h = {v ∈ L2(Ω) : v|K ∈ PpK forK ∈ Th} (3)

where PpK denotes the set of polynomials of degree not greater than pK . We shall
assume that 1 ≤ pK and that polynomial degrees have bounded local variation, that
is, if e = ∂Ki ∩ ∂Kj ∈ E in

h , then pKi $ pKj .
Next, we discretize (2) by the symmetric weighted interior penalty discontinuous

Galerkin method, see for example [1, 3]:
Find u∗ ∈ V ph such that

A
p
h (u

∗, v) = (f, v)Ω , ∀v ∈ V ph , (4)

where

A
p

h (u, v) = A
p

h(u, v)− F
p

h (u, v)− F
p

h (v, u)

and

A
p
h(u, v) =

∑
K∈Th

(0∇u,∇v)K +
∑
e∈Eh

〈γ [u], [v]〉e, Fph (u, v) =
∑
e∈Eh

〈{0∇u} , [v]〉e.

Here for K ∈ Th and e ∈ Eh we use standard notation: (u, v)K =∫
K
u v dx and 〈u, v〉e = ∫

e
u v dσ. On e ∈ E in

h such that e = ∂Ki ∩ ∂Kj we
set

{0∇u} = 0(∇u|Ki + ∇u|Kj ), [u] = u|Ki n|Ki + u|Kj n|Kj ,
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with

0 =
0|Ki 0|Kj
0|Ki + 0|Kj

, h = min{hKi , hKj }, p = max{pKi , pKj }, γ = 0 p2

h
δ,

where δ > 0 is a prescribed constant. The unit normal vector pointing outward Ki
is denoted by n|Ki . On e which lies on the boundary of Ω and belongs to a face of
Ki , we set {0∇u} = 0|Ki ∇u|Ki , [u] = u|Ki n|Ki and γ = 0|Ki pKi δ/hKi .

For sufficiently large penalty constant δ the discrete problem (4) is well–defined,
therefore we can define a norm |||u|||Ω by the identity |||u|||2Ω = A

p

h(u, u).

3 Nonoverlapping Two-Level, Three-Grid Additive Schwarz
Method

Let us introduce the subdomain grid TH as a partition of Ω into NH disjoint open
polygons (polyhedrons in 3-D) Ωi , i = 1, . . . , NH , such that Ω̄ = ⋃

i=1,...,NH Ω̄i

and that each Ωi is a union of certain elements from the fine mesh Th. We shall
retain the common notion of “subdomains” while referring to elements of TH .
We set Hi = diam(Ωi) and H = (H1, . . . , HNH ). We assume that there exists a
reference simply-connected polygonal (polyhedral in 3-D) domain Ω̂ ⊂ Rd with
Lipschitz boundary, such that every Ωi is affinely homeomorphic to Ω̂ and the
aspect ratios of Ωi are bounded independently of h and H . Moreover, we assume
that the number of neighboring regions in TH is uniformly bounded by an absolute
constant N .

Next, let TH be a shape-regular affine triangulation by triangles in 2-D or
tetrahedrons in 3-D, with diameter H . We denote the elements of TH by Dn,
n = 1, . . . , NH . We shall call this partition the “coarse grid” and assume:

0|Dn = 0n is a constant for each Dn ∈ TH .

We clearly haveNH ≤ NH ≤ Nh and TH ⊆ TH ⊆ Th (inclusions understood
in the sense of subsequent refinements of the coarsest partitioning), and maxh ≤
maxH ≤ H . We define the additive Schwarz method following [1] and [4], by
introducing the following decomposition of V ph :

V
p
h = V0 +

NH∑
i=1

Vi, (5)

where the coarse space consists of functions which are polynomials inside each
element of the coarse grid:

V0 = {v ∈ V ph : v|Dn ∈ Pq for all n = 1, . . . , NH } (6)
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where 1 ≤ q ≤ min{pK : K ∈ Th}. Next, for i = 1, . . . , NH we define

Vi = {v ∈ V ph : v|Ωj = 0 for all j �= i}.

One can view V0 as a rough approximation to V ph (using coarser grid and lower
order polynomials), cf. condition (9), while Vi can be thought of as V ph restricted
to Ωi , extended by zero elsewhere. Note that V ph already is a direct sum of spaces
V1, . . . , NH and when TH = TH , this decomposition coincides with [1]. Using
decomposition (5) we define, for i = 1, . . . , NH , subdomain solvers Ti : V ph → Vi ,
by

A
p
h(Tiu, v) = A

p
h (u, v) ∀v ∈ Vi,

so that on each subdomain one has to solve only a relatively small system of linear
equations (a “local problem”) for ui = Tiu|Ωi . These problems are independent
one from another, so can be solved in parallel. The coarse solve operator is T0 :
V
p
h → V0 defined analogously as Aph(T0u, v0) = A

p
h (u, v0) for all v0 ∈ V0. The

preconditioned operator is

T = T0 +
NH∑
i=1

Ti. (7)

Obviously, T is symmetric with respect to A
p

h (·, ·). ForDn in TH let us define an
auxiliary seminorm

|||u|||2Dn,in =
∑

K∈Th(Dn)
0|∇u|20,K +

∑
e∈E in

h (Dn)

γ |[u]|20,e, (8)

where E in
h (Dn) = {e ∈ Eh : e ⊂ D̄n \ ∂Dn}.

Lemma 1 (See [5]) Assume that V0 has the following approximation property:

∀u ∈ V ph ∃u(0) ∈ V0 :
NH∑
n=1

(
0nq

2

H 2 |u− u(0)|20,Dn + |||u− u(0)|||2Dn,in
)
� A

p
h (u, u). (9)

Then the operator T defined in (7) satisfies the inequalities

β−1A
p
h (u, u) � A

p
h (T u, u) � A

p
h (u, u) ∀u ∈ V ph ,
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where

β = H 2

q
max

n=1,...,NH

{
p2
i

hiHi

}
(10)

with hi = min{hK : K ∈ Th(Ωi)} and pi = max{pK : K ∈ Th(Ωi)}.
Theorem 1 Let us assume that there holds the followingH 2-stability property: for
every g ∈ L2 the solution z ∈ H 1

0 (Ω) of the problem

−div(0∇z) = 0g (11)

belongs to H 2(Ω) and
∑NH
n=1 0n||z||22,Dn �

∑NH
n=1 ρn|g|20,Dn with constant inde-

pendent of g. Then cond(T ) = O(β) where β is as in (10).

Proof We will show that the assumptions of Lemma 1 are satisfied. The proof will
extend the tools from [2] to the case of discontinuous coefficient; see also [6]. Let
us define the lifting operator R : L2(Eh) → V

p
h by

(ρR(φ),w) =
∑
e∈Eh

〈{ρw} , φ〉e ∀w ∈ V ph

and the discrete gradient of u ∈ V ph as G(u) = ∇hu− R([u]). Note that

(0R([u]), R([u])) =
∑
e∈Eh

〈{0R([u])} , [u]〉e

�
∑
e∈Eh

h1/2

p
|01/2R([u])|0,e · p

h1/2 |01/2[u]|0,e,

so by trace inequality (0R([u]), R([u])) � |01/2R([u])|0,Ω · ∑e∈Eh 〈γ [u], [u]〉e,
from which we conclude stability estimate

|01/2R([u])|20,Ω �
∑
e∈Eh

〈γ [u], [u]〉e ∀u ∈ V ph . (12)

Let U ∈ H 1
0 (Ω) solve the problem

(0∇U,∇w)Ω = (0G(u),∇w)Ω ∀w ∈ H 1
0 (Ω).

From the definition of U and mentioned above property of the lifting operator R it
directly follows that

|01/2∇U |0,Ω � |||u|||. (13)
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In order to prove (9) we estimate separately

NH∑
n=1

|||u− u(0)|||2Dn,in �
NH∑
n=1

|||u− U |||2Dn,in +
NH∑
n=1

|||U − u(0)|||2Dn,in = I1 + I2

and

NH∑
n=1

0n|u− u(0)|20,Dn �
NH∑
n=1

0n|u− U |20,Dn +
NH∑
n=1

0n|U − u(0)|20,Dn = I3 + I4.

Clearly, I1 � |||u|||2 + |||U |||2 = |||u|||2 + |01/2∇U |20,Ω � |||u|||2 by (13).
In order to bound I3, we use a variant of Aubin–Nitsche trick [2], which is the
reason for our H 2–stability assumption. Let us define z ∈ H 1

0 (Ω) as in (11) with
g = u−U . After multiplying (11) by (u−U) and integrating by parts on each fine
grid element K , we sum over all K ∈ Th; using the definition of R we arrive after
some calculations at

I3 = |ρ1/2(u− U)|20,Ω =
∑
e∈Eh

〈{ρ∇(zh − z)} , [u]〉e + (ρ∇(z− zh), R([u]))Ω

= I5 + I6

for any zh ∈ V
p
h . Applying Schwarz inequality first and then choosing zh as the

approximation to z in V ph we have, by the approximation property of V ph (cf. e.g. [2,
eq. (13)],

I6 �|01/2R([u])|0,Ω · |01/2∇(z− zh)|0,Ω

� |||u|||(
∑
K∈Th

0
h2
K

p2
K

||z||22,K)1/2 � |||u|||H
q
(

NH∑
n=1

0n||z||22,Dn)1/2,

so fromH 2-stability assumption we conclude that I6 � |||u|||·H
q

|ρ1/2(u− U)|0,Ω .

In a similar way we obtain I5 � |||u||| · H

q
|ρ1/2(u− U)|0,Ω , whence

I3 � H

q
|||u|||.

Finally, we bound the terms I2 and I4 in a standard way, by choosing u(0) on
each Dn as the q-th order polynomial interpolant of U|Dn . See [5, Corollary 2] for
details.
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4 Numerical Experiments

The H 2-stability requirement in Theorem 1 is quite limiting. As the following
experimental results indicate, the preconditioner works well for checkerboard
distribution of the coefficient, so there is room to relax assumptions Theorem 1.

Let us choose Ω = (0, 1)2. We divide Ω into NH = 2M × 2M squares Dn
(n = 1, . . . , NH ) of equal size. Let 0 be constant on a 2×2 grid with checkerboard
distribution: 0 = 1 in “white” squares and 0 = 0R (specified later) in “red” squares.
For simplicity we choose TH = TH , refined into a uniform fine triangulation
Th based on a square 2m × 2m grid, with each square split into two triangles of
identical shape. We discretize problem (2) on the fine mesh Th using (4) with equal
polynomial degree p across all elements in Th and with δ = 7. For the coarse
problem, we use polynomials of degree q .

We report the number of Preconditioned Conjugate Gradient iterations (with
zero as the initial guess) for operator T , required to reduce the initial norm of the
preconditioned residual by a factor of 108 and (in parentheses) the condition number
of T estimated from the PCG convergence history. We set the coefficients of the
discrete solution u∗ as random numbers from uniform distribution and construct f
such that (4) holds.

From Table 1 it is clear the converegence rate is independent from the jump of
the coefficient and the improvement of the condition number due to increase of q
is diminishing roughly like O(1/q). Table 2 confirms that the condition number
dependence on p and h behaves approximately like O(p2/h). For varying h and
H = H , an O(H /h) dependence of the condition number is verified in Table 3.
See [5] for more experimental results.

Table 1 Dependence of the
number of iterations and the
condition number (in
parentheses) on the contrast
ratio 0R and the coarse space
polynomial degree q

q

0R 1 2 3 4 5

100 90 (166) 72 (96) 64 (70) 57 (56) 54 (47)

108 89 (155) 69 (94) 63 (71) 57 (55) 53 (48)

Fixed p = 6, M = 2, m = 4

Table 2 Dependence of the
number of iterations and the
condition number (in
parentheses) on the fine mesh
size h = 2−m and polynomial
degree p

p

m 2 3 4 5 6

3 26 (11) 37 (22) 47 (37) 58 (57) 67 (78)

4 36 (20) 50 (42) 62 (72) 75 (112) 83 (149)

5 48 (38) 65 (79) 81 (140) 98 (219) 113 (303)

Fixed q = 1, M = 2 and 0R = 104
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Table 3 Dependence of the
number of iterations and the
condition number (in
parentheses) on
H = H = 2−M and
h = 2−m

M

m 2 3 4 5

3 47 (37) 38 (20)

4 62 (72) 49 (39) 38 (20)

5 81 (140) 65 (75) 50 (39) 38 (20)

Fixed p = 4, q = 1, 0R = 104
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5. P. Krzyżanowski, On a nonoverlapping additive Schwarz method for h-p discontinuous Galerkin
discretization of elliptic problems. Numer. Methods PDEs 32(6), 1572–1590 (2016)

6. I. Smears, Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin
approximations of Hamilton–Jacobi–Bellman equations. J. Sci. Comput. 74, 1–30 (2017)



Adaptive Deluxe BDDC Mixed
and Hybrid Primal Discretizations

Alexandre Madureira and Marcus Sarkis

1 Summary

Major progress has been made recently to make FETI-DP and BDDC precondi-
tioners robust with respect to any variation of coefficients inside and/or across the
subdomains. A reason for this success is the adaptive selection of primal constraints
technique based on local generalized eigenvalue problems. Here we introduce a
mathematical framework to transfer this technique to the field of discretizations.
We design discretizations where the number of degrees of freedom is the number
of primal constraints on the coarse triangulation and associated basis functions are
built on the fine mesh and with a priori energy error estimates independent of the
contrast of the coefficients.

2 Hybrid Primal Formulation

Consider the problem of finding the weak solution u : Ω → R of

− divρ∇ u = ρg = f in Ω,

u = 0 on ∂Ω,
(1)
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where Ω ⊂ R
d for d = 2 or 3 is an open bounded connected domain with

polyhedral boundary ∂Ω , the coefficient ρ satisfies 0 < ρmin ≤ ρ(x) ≤ ρmax
and g is a given forcing data. Define the ρ-weighted L2(Ω)-norm by ‖g‖L2

ρ (Ω)
=

‖ρ1/2g‖L2(Ω) and the energy norm by ‖v‖H 1
ρ (Ω)

= ‖ρ1/2 ∇ v‖L2(Ω). We obtain the
following stability result:

‖u‖H 1
ρ (Ω)

≤ CP ‖g‖L2
ρ (Ω)

,

where CP is the weighted Poincaré constant of ‖v‖L2
ρ (Ω)

≤ CP |v|H 1
ρ (Ω)

for all

v ∈ H 1
ρ (Ω) vanishing on ∂Ω .

We start by recasting the continuous problem in a weak formulation that depends
on a polyhedral and regular mesh TH , which can be based on different geometries.
Without loss of generality, we adopt above and in the remainder of the text, the
terminology of three-dimensional domains, denoting for instance the boundaries of
the elements by faces. For a given element τ ∈ TH let ∂τ denote its boundary and
nτ the unit size normal vector that points outward τ . We denote by n the outward
normal vector on ∂Ω . Consider now the following spaces:

H 1(TH) = {v ∈ L2(Ω) : v|τ ∈ H 1(τ ), τ ∈ TH },

Λ(TH ) =
{ ∏
τ∈TH

τ · nτ |∂τ : τ ∈ H(div;")
}
�

∏
τ∈TH

H−1/2(∂τ).
(2)

For w, v ∈ H 1(TH) and μ ∈ Λ(TH ) define

(w, v)TH =
∑
τ∈TH

∫
τ

wv dx (μ, v)∂TH =
∑
τ∈TH

(μ, v)∂τ , (3)

where (·, ·)∂τ is the dual product involvingH−1/2(∂τ ) and H 1/2(∂τ). Then

(μ, v)∂τ =
∫
τ

div σv dx +
∫
τ

σ · ∇ v dx

for all σ ∈ H(div; τ ) such that σ · nτ = μ. We also define the norms

‖σ‖2
Hρ(div;") = ‖ρ−1/2σ‖2

0,Ω + ‖ρ−1/2 div σ‖2
0,Ω,

‖μ‖
H

−1/2
ρ (TH ) = inf

σ∈H(div;")
σ · nτ=μ on ∂τ , τ∈TH

‖σ‖Hρ(div;"),

|v|2
H 1
ρ (TH )

=
∑
τ∈TH

‖ρ1/2 ∇ v‖2
0,τ .

(4)
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We use analogous definitions on subsets of TH , in particular when the subset
consists of a single element τ (and in this case we write τ instead of {τ }). We note
that since 0 < ρmin ≤ ρ(x) ≤ ρmax, the spaceHρ(div;") and H 1

ρ (TH ) are equal to
the spaces H(div;") and H 1(TH ), respectively.

In the primal hybrid formulation [11], u ∈ H 1(TH) and λ ∈ Λ(TH) are such that

(ρ∇ u,∇ v)TH − (λ, v)∂TH = (ρg, v)TH for all v ∈ H 1(TH),

(μ, u)∂TH = 0 for all μ ∈ Λ(TH).
(5)

Following Theorem 1 of [11], it is possible to show that the solution (u, λ) of (5)
is such that u ∈ H 1(Ω) and vanishing on ∂Ω satisfies (1) in the weak sense and
λ = ρ∇ u · nτ for all elements τ .

In the spirit of [3, 11] we consider the decomposition

H 1(TH) = P
0(TH)⊕ H̃ 1(TH),

where P
0(TH) is the space of piecewise constants, and H̃ 1(TH) is its L2

ρ(τ )

orthogonal complement, i.e., the space of functions with zero ρ-weighted average
within each element τ ∈ TH

P
0(TH) = {v ∈ H 1(TH ) : v|τ is constant, τ ∈ TH },

H̃ 1(TH) = {ṽ ∈ H 1(TH ) :
∫
τ

ρṽ dx = 0, τ ∈ TH }.
(6)

We then write u = u0 + ũ, where u0 ∈ P
0(TH) and ũ ∈ H̃ 1(TH), and find from (5)

that

(ρ∇ ũ,∇ ṽ)TH −(λ, ṽ)∂TH = (ρg, ṽ)TH for all ṽ ∈ H̃ 1(TH),

(λ, v0)∂TH = −(ρg, v0)TH for all v0 ∈ P
0(TH),

(μ, u0 + ũ)∂TH = 0 for all μ ∈ Λ(TH ).
(7)

Let T : Λ(TH ) → H̃ 1(TH ) and T̃ : L2(Ω) → H̃ 1(TH ) be such that, given
τ ∈ TH , μ ∈ Λ(TH ) and g ∈ L2

ρ(Ω), for all ṽ ∈ H̃ 1(TH ) we have

∫
τ

ρ∇(T μ) · ∇ ṽ dx = (μ, ṽ)∂τ ,

∫
τ

ρ∇(T̃ g) · ∇ ṽ dx = (ρg, ṽ)τ . (8)

Note from the first equation of (7) that ũ = T λ + T̃ g, and substituting in the other
two equations of (7), we have that u0 ∈ P

0(TH ) and λ ∈ Λ(TH ) solve

(μ, γ T λ)∂TH + (μ, u0)∂TH = −(μ, γ T̃ g)∂TH for all μ ∈ Λ(TH),
(λ, v0)∂TH = −(ρg, v0)TH for all v0 ∈ P

0(TH).
(9)
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From now on we drop the trace operator γ .
We use the unknowns u0 and λ to reconstruct the u as follows:

u = u0 + ũ = u0 + T λ+ T̃ g. (10)

Unlike the HMM [3] and DEM [1], the methods we describe below approximate
Λ(TH) by multiscale basis functions with larger support and with the lowest global
energy property which decay exponentially, achieving optimal energy approxima-
tion without requiring regularity of the problem.

3 Primal Hybrid Finite Element Methods

Let Fh be a partition of the faces of elements in TH , refining them in the sense that
every (coarse) face of the elements in TH can be written as a union of faces of Fh.
Let Λh ⊂ Λ(TH) be the space of piecewise constants on Fh, i.e.,

Λh = {μh ∈ Λ(TH ) : μh|Fh is constant on each face Fh ∈ Fh}.

For simplicity, we do not discretize H 1(τ ) and H(div; τ ) for τ ∈ TH . We
remark that the methods develop here extend easily when we discretize H(div; τ )
by simplices or cubical elements with lowest order Raviart–Thomas spaces or
discretize H 1(τ ) fine enough to resolve the heterogeneities of ρ(x) and to satisfy
inf-sup conditions with respect to the space Λh.

We then pose the problem of finding u0
h ∈ P

0(TH ) and λh ∈ Λh such that

(μh, T λh)∂TH + (μh, u
0
h)∂TH = −(μh, T̃ g)∂TH for all μh ∈ Λh,

(λh, v
0)∂TH = −(ρg, v0

h)TH for all v0
h ∈ P

0(TH ).
(11)

We note that T restricted to τ , denoted by T τ : Λτh → H̃ 1(τ ) solves

(ρ∇(T τμτh),∇ v)τ = (μτh, v)∂τ for all v ∈ H̃ 1(τ ),

and note that ρ∇(T τμτh) · nτ = μh on ∂τ . Note also that (μh, T μh)∂TH = 0
implies T μh = 0 and μh = 0. As (11) is finite dimensional, it is well-posed since it
is injective. We define our approximation as in (10), by

uh = u0
h + T λh + T̃ g. (12)

Simple substitutions yield uh, λh solve (5) if Λ(TH ) is replaced by Λh, i.e.,

(ρ∇ uh,∇ v)TH − (λh, v)∂TH = (g, v)TH for all v ∈ H 1(TH),

(μh, uh)∂TH = 0 for all μh ∈ Λh.
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We also assume that Λh is chosen fine enough so that

|u− uh|2H 1
ρ (TH )

= (
λ− λh, T (λ− λh)

)
TH ≤ H̃2‖g‖2

L2
ρ (Ω)

,

where H̃ represents a “target precision” the method should achieve. For instance,
one could choose H̃ = H or H̃ = hs for some 0 < s ≤ 1. It must be mentioned
that λh is never computed, only an approximation of order H̃.

Above, and in what follows, c denotes an arbitrary constant that does not depend
on H , H̃, h, ρ. For details and proofs, see [7]. See also [6] for a related multiscale
conforming method.

4 Adaptive BDDC Spectral Decomposition I

Let τ ∈ TH , F a face of ∂τ , and let Fcτ = ∂τ\F . Define

Λτh = {μh|∂τ : μh ∈ Λh},ΛFh = {μh|F : μh ∈ Λτh},ΛF
c
τ

h = {μh|Fcτ : μh ∈ Λτh}.

Denote μτh = {μFh ,μF
c
τ

h } with μτh ∈ Λτh, μFh ∈ ΛFh and μ
Fcτ
h ∈ ΛFcτh , and define

T τFF : ΛFh → (ΛFh )
′, T τF cF : ΛFh → (Λ

Fcτ
h )

′

T τFFc : ΛFcτh → (ΛFh )
′, T τF cF c : ΛFcτh → (Λ

Fcτ
h )

′,

andnotethat (μh, T
τμh)∂τ = (μFh , T

τ
FFμ

F
h )F +

(μFh , T
τ
FF cμ

Fcτ
h )F + (μ

Fcτ
h , T

τ
F cFμ

F
h )F cτ + (μ

Fcτ
h , T

τ
F cF cμ

Fcτ
h )F cτ .

It follows from the properties of T τ that T τFF and T τF cF c are symmetric and positive
definite matrices, and follows by Schur complement arguments that

(μFh , T
τ
FFμ

F
h )F = ({μFh , 0}, T τ {μFh , 0})∂τ

≥ min
ν
Fcτ
h ∈ΛFcτh

({μFh , νF
c
τ

h }, T τ {μFh , νF
c
τ

h })∂τ = (μFh , T̂
τ
FFμ

F
h )F , (13)

T̂ τFF = T τFF − T τFFc(T
τ
F cF c)

−1T τF cF

and the minimum is attained at ν
Fcτ
h = −(T τF cF c)−1T τF cFμ

F
h .
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To take into account high-contrast coefficients, we consider the following
generalized eigenvalue problem: Find (αFi , μ

F
i,h) ∈ (R,ΛFh ) such that:

1. If the face F is shared by elements τ and τ ′ we solve

(νFh , (T
τ
FF + T τ

′
FF )μ

F
h,i )F = αFi (νF , (T̂

τ
FF + T̂ τ

′
FF )μ

F
h,i )F , ∀νFh ∈ ΛFh .

2. If the face F is on the boundary ∂Ω we solve

(νFh , T
τ
FFμ

F
h,i)F = αFi (ν

F
h , T̂

τ
FFμ

F
h,i )F , ∀νFh ∈ ΛFh .

The use of such generalized eigenvalue problems is known in the domain decom-
position community as “adaptive selection of primal constraints”. It is used to make
preconditioners robust with respect to coefficients; see [9, 12] for RT0 and BDM1
where only face eigenvalue problems for two- as well as for three-dimensional
problems. Here, we apply this technique to design robust discretizations; see [4, 6]
on related work for classical FEM discretizations.

Now we decomposeΛFh := Λ
F,1
h ⊕Λ

F,Π
h where

Λ
F,1
h := span{μFh,i : αFi < α∗}, Λ

F,Π
h := span{μFh,i : αFi ≥ α∗}.

From (13) we know that αFi ≥ 1. The parameter α∗ is defined by the user and
it controls how fast is the exponential decay of the multiscale basis functions.
We point out that the dimension of the space ΛF,Πh is related to the number of
connected subregions on τ̄ ∪ τ̄ ′ with large coefficients surrounded by regions with
small coefficients. Finally, let Λh = ΛΠh ⊕Λ

1
h , where

ΛΠh := {μh ∈ Λh : μh|F ∈ ΛF,Πh for all F ∈ ∂TH },
Λ

1
h := {μh ∈ Λh : μh|F ∈ ΛF,1h for all F ∈ ∂TH }.

(14)

5 NLSD-Nonlocalized Spectral Decomposition Method I

Define the operator P : H 1(Ω) → Λ
1
h such that for w ∈ H 1(TH ),

(μ
1
h , T Pw)∂TH = (μ

1
h ,w)∂TH for all μ1

h ∈ Λ1
h . (15)

Let us decompose λh = λΠh + λ
1
h . We first eliminate λ1

h from the first equation
of (11) to obtain

λ
1
h = −P(u0

h + T λΠh + T̃ g), (16)
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hence

uh = (I − T P)u0
h + T (I − PT )λΠh + (I − T P)T̃ g). (17)

Then using algebraic manipulations with (11) and (15) we find u0
h ∈ P

0(TH) and
λΠh ∈ ΛΠh satisfy:

(μ̂Πh , T λ̂
Π
h )∂TH + (μ̂Πh , û

0
h)∂TH = −(μ̂Πh , ̂̃T g)∂TH for all μΠh ∈ ΛΠh

(λ̂Πh , v̂
0
h)∂TH − (Puh0 , v

h
0 )∂TH = −(ρĝ, v̂0

h)TH for all v0
h ∈ P

0(TH ),
(18)

where the hat functions are non-local multiscale functions defined by

λ̂Πh = (I − PT )λΠh , μ̂Πh = (I − PT )μΠh , û0
h = (I − T P)u0

h,

v̂0
h = (I − T P)v0

h,
̂̃
T g = (I − T P)T̃ g and ĝ = (I − P T̃ )g.

We note that the idea of performing global static condensation goes back to the
Multiscale Variational Finite Element Method [5]. Recent variations of this method
called Localized Orthogonal Decomposition Methods were introduced and analyzed
in [8, 10] and references therein. Some theoretical progresses for high-contrast
were made in [5] for a class of coefficients and by using overlapping spectral
decomposition introduced in [2]. Here in this paper no condition on the coefficient
is imposed and the theoretical results are based on non-overlapping decomposition
techniques.

5.1 NLSD Method II

In the splitting (17), the non-local term T Pu0
h adds theoretical difficulties and more

complexity on the implementation. We now introduce the Adaptive BDDC Spectral
Decomposition II such that Pu0

h = 0. Indeed, first decompose Λh = ΛRTh ⊕ Λ̃
f

h ,

where ΛRTh (Λ̃fh ) is the space of constant (average zero) functions on each face F

of TH . Further decompose Λ̃fh = Λ̃
f,Π
h ⊕ Λ̃

f,1
h by solving the same generalized

eigenvalue problem before however on Λ̃f,Fh rather than on ΛFh . Denote ΛΠh =
ΛRTh ⊕ Λ̃f,Πh andΛ1

h = Λ̃
f,1
h . Repeat the same algebraic steps as in Sect. 5 and use

that (μ1
h , v

0
h)∂TH = 0. This method is analyzed in [7].
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6 LSD-Localized Spectral Decomposition Method II

We next show that the exponential decay of the multiscale basis functions is inde-
pendently of the coefficient contrast. Hence, instead of building global multiscale
basis functions we actually build local basis functions. Lemma 1 implies exponential
decay of functions, such as PT μΠh and Pv0

h when μΠh and v0
h has local support, and

Lemma 2 shows T (P − Pj )v decreases exponentially.
For K ∈ TH , define T0(K) = ∅, T1(K) = {K}, and for j = 1, 2, . . . let

Tj+1(K) = {τ ∈ TH : τ ∩ τ j �= ∅ for some τj ∈ Tj (K)}.

Lemma 1 Let v ∈ H 1(TH) such that supp v ⊂ K , and μ1
h = Pv. Then

|Tμ1
h |2
H 1
ρ (TH \Tj+1(K))

≤ e
− [(j+1)/2]

1+d2α∗ |T μ1
h |2
H 1
ρ (TH )

.

We now localize Pv since it decays exponentially when v has local support. For
each fixed K , j , let Λ1,K,j

h ⊂ Λ
1
h be the set of functions of Λ1

h which vanish
on faces of elements in TH \Tj (K). We introduce the operator PK,j : H 1(TH) →
Λ

1,K,j
h such that, for v ∈ H 1(TH),

(μ
1
h , T P

K,j v)∂TH = (μ
1
h , v)∂TH for all μ1

h ∈ Λ1,K,j
h .

For v ∈ H 1(TH ) let vK be equal to v on K and zero otherwise. We define then
Pjv ∈ Λ1

h by

Pjv =
∑
K∈TH

PK,j vK. (19)

Lemma 2 Let v ∈ H 1(TH) and P defined by (15) and Pj by (19). Then

|T (P − Pj )v|2
H 1
ρ (TH )

≤ cj2dd4α2∗e
− [(j−3)/2]

1+d2α∗ |v|2
H 1
ρ (TH )

.

We define the LSD methods by (18), (16) and (17) with Pj instead of P . Denote

the solution by ujh. The follow lemma shows the localization error.

Theorem 1 For the LSD II method, if j = c
(
4d2α∗ log(CP /H̃)

)
then

|uh − u
j
h|H 1

ρ (TH) ≤ cH̃‖g‖L2
ρ (Ω)

.
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Additive Schwarz with Vertex Based
Adaptive Coarse Space for Multiscale
Problems in 3D

Leszek Marcinkowski and Talal Rahman

1 Introduction

The choice of coarse spaces play an important role in the design of fast and
robust Schwarz methods for problems of multiscale nature. Standard methods with
standard coarse spaces have often difficulties to solve such problems, and even
fail to converge due to computing in the finite precision arithmetic. The purpose
of this paper is to propose a robust coarse space, adaptively enriched, for solving
second order elliptic problems in three dimensions with highly varying coefficients,
using the standard finite element for the discretization and the overlapping additive
Schwarz method as the preconditioner. The coefficient may have discontinuities
both inside and across subdomains. The convergence of the proposed method, as
presented in the paper, is independent of the distribution of the coefficient, as well
as the jumps in the coefficients, when the coarse space is chosen large enough. For
similar works on domain decomposition methods addressing such problems, we
refer to [7, 17] and the references therein.

Additive Schwarz methods for solving elliptic problems discretized by the finite
element, which was proposed over 30 years ago, have been studied extensively over
the past decades, see [16, 18] for an overview. It is known in general that if the
coefficients are discontinuous across subdomains but are varying moderately with
in each subdomain, then the standard coarse spaces are enough to generate additive
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Schwarz methods which are robust with respect to those jumps, cf. e.g. [16, 18].
This is however not true in the case when the coefficients may be highly varying and
discontinuous almost everywhere, the fact which has in recent years drawn several
researchers’ attraction, cf. e.g. [2–15, 17].

In the present work, we extend some of the ideas presented in those papers, and
propose to construct a coarse space based on the vertices of the subdomains and a
twofold enrichment of the coarse space, which is done through solving two specially
designed lower dimensional eigenvalue problems, one on each face common to
two neighboring subdomains and one on each interior edge of the subdomains,
and chosing the first few eigenfunctions corresponding to the bad eigenmodes. The
analysis show that the condition number bound of the resulting system depends only
on the threshold used to choose the bad eigenvalues.

The remainder of the paper is organized as follows: in Sect. 2 we introduce
our differential problem, and its finite element discretization. In Sect. 3 a classical
overlapping Additive Schwarz method is presented. Section 4 is devoted to the
construction of our adaptive coarse space and Sect. 5 gives the theoretical bound
for the condition number of the resulting system.

2 Discrete Problem

We consider the following elliptic boundary value problem: Find u∗ ∈ H 1
0 (Ω)

∫
Ω

α(x)∇u∗∇v dx =
∫
Ω

f v dx, ∀v ∈ H 1
0 (Ω), (1)

where α(x) ≥ α0 > 0 is the coefficient, Ω is a polyhedral domain in R
3 and

f ∈ L2(Ω). Let Th be the quasi-uniform triangulation of Ω consisting of closed
tetrahedra such that Ω̄ = ⋃

K∈Th K . Let hK denote the diameter of K , and h =
maxK∈Th hK the mesh parameter for the triangulation.

We will further assume that α is piecewise constant on Th without any loss
of generality. We assume that there exists a coarse nonoverlapping partitioning
of Ω into open connected Lipschitz polytopes Ωi , called structures, such that
Ω = ⋃N

i=1 Ωi and they are aligned with the fine triangulation, in other words a
fine triangle of Th can be contained in only one of the coarse substructures. For the
simplicity of presentation, we further assume that these substructures form a coarse
triangulation of the domain which is shape regular in the sense of [1].

Let Fij denote the open face common to subdomainsΩi andΩj , and let E denote
an open edge of a substructure, not in ∂Ω . We denote with Ωh, ∂Ωh, Ωih, ∂Ωih,
Fij,h, and Eh, the sets of vertices of the elements of Th, corresponding to Ω , ∂Ω ,
Ωi , ∂Ωi , Fij , and E , respectively
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Let Sh be the standard linear conforming finite element space defined on the
triangulation Th,

Sh = Sh(Ω) := {u ∈ C(Ω) ∩H 1
0 (Ω) : v|K ∈ P1, K ∈ Th}.

The finite element approximation u∗
h of (1) is then defined as the solution to the

following problem: Find u∗
h ∈ Sh such that

a(u∗
h, v) = (f, v) , ∀v ∈ Sh. (2)

Note that α can be scaled without influencing the solution, hence we can easily
assume that α(x) ≥ 1. As ∇u∗

h is piecewise constant over the fine elements, we
can further assume that α is piecewise constants over the elements of Th, since∫
K α∇u∇v dx = (∇u)|K(∇v)|K

∫
K α(x) dx.

Since each subdomain inherits a local triangulation Th(Ωk) from Th(Ω), two
local subspaces can be defined as the following,

Sh(Ωi) := {u|Ωi
: u ∈ Sh} and Sh,0(Ωi) := Sh(Ωi) ∩H 1

0 (Ωi),

along with a local projection operator Pi : Sh → Sh,0(Ωi) as the following, find
Piu ∈ Sh,0(Ωi) such that

ai(Piu, v) = ai(u, v), ∀v ∈ Sh,0(Ωi),

where ai(u, v) := a|Ωi (u, v) = ∫
Ωi
α(x)∇u∇v dx.

The discrete harmonic part of u ∈ Sh(Ωi) is defined as Hiu := u − Piu, or
equivalently as Hiu ∈ Sh(Ωi) which satisfies the following,

{
ai(Hiu, v) = 0, ∀v ∈ Sh,0(Ωi),

Hiu(s) = u(s), ∀s ∈ ∂Ωih.
(3)

We say that a function u ∈ Sh is discrete harmonic if it is discrete harmonic in each
subdomain, i.e. u|Ωi = Hiu|Ωi ∀i.

3 Additive Schwarz Method

In this section, we present the overlapping additive Schwarz method for the discrete
problem (2). We refer to [16, 18] for a more general discussion of the method.
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3.1 Decomposition of Sh

The space Sh is decomposed into the local subspaces {Vi}i , and the global coarse
space V0, as follows.

Vi = {u ∈ Sh : v(x) = 0 ∀x ∈ Ωh \Ωi}, i = 1, . . . , N,

where u ∈ Vi can take nonzero values at the nodes that are in Ωi and on ∂Ωi

only, giving {Vi}i as subspaces with minimal overlap. The global coarse space V0 is
defined in Sect. 4. For i = 0, . . . , N , the projection like operators Ti : Sh → Vi are
defined as

a(Tiu, v) = a(u, v), ∀v ∈ Vi. (4)

Now, introducing the additive Schwarz operator as T := T0 + ∑N
i=1 Ti, the

original problem (2) can be replaced with the following equivalent problem: Find
u∗
h such that

T u∗
h = g, (5)

where g = ∑N
i=0 gi and gi = Tiu. Note that gi may be computed without knowing

the solution u∗
h of (2): a(gi, v) = (f, v) for all v ∈ Vi.

4 Adaptive Vertex Coarse Space

We introduce our adaptive vertex based coarse space in this section. Each edge E
inherits a 1D triangulation Th(E) from Th. For each edge Eh, let Sh(E) be the space
of traces of functions of Sh on the edge, that is the space of continuous piecewise
linear functions on Th(E), let Sh,0(E) = Sh(E)∩H 1

0 (E) be its subspace with compact
support, and let the edge bilinear form aE(u, v) : Sh,0(E)×Sh,0(E) → R be defined
as

aE (u, v) =
∑

e∈Th(E)

∫
e

αeu
′v′ ds, (6)

where αe = maxe⊂∂K αK is the maximum value of the coefficient over the
tetrahedra sharing the fine edge e ∈ Th(E). Here u′, v′ are the weak derivatives
of u, v ∈ Sh,0(E). The definition of the form aE (u, v), in particular the definition of
α, is introduced in a way which enables us to estimate this form from above by the
sum of energy norms over all subdomains which share this edge.
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4.1 Vertex Based Interpolation Operator

We introduce the vertex interpolation operator IV : Sh(Ω) → Sh(Ω) as follows.
For u ∈ Sh(Ω)
• IV u(x) = u(x) where x is a crosspoint (a subdomain vertex inside Ω),
• IV u on each edge E satisfies, cf. (6):

aE(IV u, v) = 0, ∀v ∈ Sh,0(E). (7)

• IV u(x) = 0 at all x ∈ Fij,h for each face Fij ,
• IV u is discrete harmonic in the sense as described in Sect. 2.

Note that IV u is uniquely determined by the values of u at the crosspoints, as (7)
uniquely determines IV u at the edge interior nodes, IV u is equal to zero at all face
interior nodes, and then extended as discrete harmonic to the subdomain interior
nodes, cf. (3). The auxiliary coarse space V̂0 is then defined as the image of this
interpolation operator IV , that is V̂0 := Im(IV ) = IV Sh.The coarse space V0 is
the algebraic sum of V̂0 and a sequence of small subspaces built with functions that
are extensions of certain eigenfunctions of the two particular classes of eigenvalue
problems presented below.

4.2 Eigenvalue Problems

We start by introducing the two classes of local eigenvalue problems, one on the
subdomain edges or the edge interfaces, and one on the subdomain faces or the face
interfaces.

4.2.1 Eigenvalue Problem on Edge Interface

Find the eigen pairs (λEj , ψ
E
j ) ∈ R+ × Sh,0(E)

aE (ψ
E
j , v) = λEj bE (ψ

E
j , v), ∀v ∈ Sh,0(E), (8)

where aE (u, v) is as defined in (6), and

bE (u, v) = h−4
∫
GE
αû v̂ dx, (9)

and GE is a 3D layer around and along the edge E , defined as the sum of all fine
tetrahedra of Th those touching E by a fine edge or a vertex, and û, v̂ ∈ Sh are
the discrete zero extensions of u, v ∈ Sh,0(E). The scaling in the form bE (u, v),
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and in the form bkl(u, v) in (11) below, comes from an inverse inequality and the
lines of the proof of Theorem 1, which will be provided in a full version of this
paper published elsewhere. The functionsψE

j are extended inside as follows, taking
zero values at the nodal points of all remaining edges and faces, and then extending
further inside as discrete harmonic in the sense as described in Sect. 2. The extension
is denoted by the same symbol. Writing the eigenvalues in the increasing order, i.e.
0 < λE1 ≤ λE2 ≤ . . . λEME for ME = dim(Sh,0(E)), we define the local edge spectral

component of the coarse space as follows. Let VE = Span(ψE
j )
nE
j=1,where nE ≤ ME

is the number of eigenfunctions ψE
j , whose eigenvalues λEj are less then a given

threshold prescribed for each subdomain by the user.

4.2.2 Eigenvalue Problem on Face Interface

Each face Fkl inherits a 2D triangulation consisting of triangles Th(Fkl), and a local
face finite element space Sh(Fkl) being the space of traces of Sh onto Fkl , and
Sh,0(Fkl) = Sh(Fkl) ∩ H 1

0 (Fkl). We introduce F I,ij as the sum of closed triangles
of Th(Fkl) such that all their nodes are not in ∂Fkl .

The face eigenvalue problem is then to find the eigen pairs (λklj , ψ
kl
j ) ∈ R+ ×

Sh,0(Fkl) such that

akl(ψ
kl
j , v) = λ

Fkl
j bkl(ψ

kl
j , v), ∀v ∈ Sh,0(Fkl), (10)

where

akl(u, v) =
∑

τ⊂FI,kl

∫
τ

ατ∇u(x)∇v(x), bkl(u, v) = h−3
∫
GFkl

αû v̂ dx, (11)

and ατ = maxτ⊂∂K αK is the maximum value of the coefficient over the tetrahedra
sharing the fine face τ ∈ Th(FI,kl ), GFkl is a 3D layer of tetrahedra around and
along the face Fkl , defined as sum of all fine tetrahedra of Th those touching Fkl by
a fine face, a fine edge or a vertex, and û, v̂ ∈ Sh are the discrete zero extensions
of u, v ∈ Sh,0(Fkl). The functions ψklj are extended inside as follows, taking zero
values at the nodal points of all remaining faces and edges, and then extending
further inside as discrete harmonic in the same sense as in Sect. 2. The extension is
denoted by the same symbol.

Again, by writing the eigenvalues in the increasing order as 0 ≤ λkl1 ≤ λkl2 ≤
. . . λklMkl

forMkl = dim(Sh,0(Fkl)), we can define the local face spectral component

of the coarse space as follows. Let Vkl = Span(ψklj )
nkl
j=1,where nkl ≤ Mkl is the

number of eigenfunctionsψklj whose eigenvalues λklj are less than a given threshold
provided by an user.
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Finally, The coarse space V0, after the enrichment takes the following form:

V0 = V̂0 +
∑

Fkl⊂Γ
Vkl +

∑
E⊂Γ

VE . (12)

Note that V̂0 = IV Sh, as defined in Sect. 4.1.

Remark 1 The bilinear forms bE(u, v), cf. (9), and bkl(u, v), cf. (11), can be defined
in other ways. For instance, we can consider larger layers GE or GFkl , or even
consider nonzero extensions of u ∈ Sh,0(E) and u ∈ Sh,0(Fkl), but with minimal
energy. We can also take the bilinear forms to be equal to the restrictions of the
scaled original energy form to their respective layers or to the whole substructures,
that is following the ideas of [10–12]. In all cases, we will have similar estimates as
in Theorem 1 in the next section.

5 Condition Number

Following the abstract Schwarz framework, cf. [16, 18], and the classical theory of
eigenvalue problems, we can show the following theoretical bound on the condition
number for the preconditioned system of our method.

Theorem 1 For all u ∈ Sh, the following holds,

c

(
1 + max

E

1

λnE+1
+ max

Fkl

1

λnkl+1

)
a(u, u) ≤ a(T u, u) ≤ C a(u, u),

where C, c are positive constants independent of the coefficient α, the mesh
parameter h and the sudomain size H .
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An Immersed Boundary Method Based
on the L2-Projection Approach

Maria Giuseppina Chiara Nestola, Barna Becsek, Hadi Zolfaghari,
Patrick Zulian, Dominik Obrist, and Rolf Krause

1 Introduction

During the last decades, Fluid–Structure Interaction (FSI) [10, 12] has received
considerable attention due to various applications where a fluid and a solid
interact with each other (such as in aeronautics, turbomachinery, and biomedical
applications).

Several approaches have been developed in order to reproduce the interaction
between a fluid and a surrounding solid structure, which can be classified in
boundary-fitted and embedded boundary methods. In the boundary-fitted methods,
the fluid problem is solved in a moving spatial domain over which the incompress-
ible Navier-Stokes equations are formulated in an Arbitrary Lagrangian-Eulerian
(ALE) framework [11] while the solid structure is usually described in a Lagrangian
fashion. Although this approach is known to allow for accurate results at the
interface between solid and fluid, for scenarios that involve large displacements
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and/or rotations, the fluid grid may become severely distorted, thus affecting both
the numerical stability of the problem and the accuracy of the solution.

In order to circumvent those difficulties, embedded boundary approaches such as
the Immersed Boundary Method (IBM), have been introduced to model the fluid-
structure interaction on a stationary fluid grid analyzed in an Eulerian fashion. The
main aspect of this technique is the representation of the immersed solid material as
a force density in the Navier-Stokes equations.

In the IBM, the volume of the solid is commonly described by systems of
fibres that resist extension, compression, or bending [2, 10, 12]. Some alternative
approaches have been proposed on the basis of the finite element method for the
spatial approximation of the Lagrangian quantities (force densities, displacement
field, etc.). In all these approaches the reaction force exerted by the solid on the
fluid is computed explicitly by using the fluid velocity field to get the corresponding
displacement of the solid structure [1, 4, 6].

We describe an alternative framework for FSI simulations, where we employ
the finite difference method for simulating the fluid flow and couple it with a
finite element method for the structural problem. The main novelties of this work
are (I) the description of the solid body motion obtained by solving implicitly
the elastodynamic equations and (II) the treatment of the Lagrangian-Eulerian
interaction which is achieved by means of the L2-projection. Such approach
allows for the transfer of data between non-matching structured (Cartesian) and
unstructured meshes arbitrarily distributed among different processors.

All the modules of the FSI computational frameworks are integrated into the
multi-physics simulation framework MOOSE (mooseframework.org). The code is
optimised for modern hybrid high-performance computing platforms such as the
Cray XC50 system at the Swiss National Supercomputing Centre CSCS.

2 Strong Formulation of the FSI Problem

In this section we provide a brief description of the methodology adopted in our
framework to solve the FSI problem. Since the proposed approach follows the
main principle of the IBM, we employ the standard Eulerian formulation for the
Navier-Stokes equations for incompressible flows, whereas the elastic response of
the embedded structure is described in a Lagrangian fashion.

Let Ω ⊂ R
d (with d = 1, 2, 3) be a bounded Lipschitz domain denoting the

physical region occupied by the coupled fluid-structure system. We label x ∈ Ω as
the spatial point, and x̂ ∈ Ω̂s as the material (or reference) point, with Ω̂s ⊂ R

d

denoting the material (reference) configuration of the solid domain (Fig. 1).
We assume that the map χ̂χχ : Ω̂s × I → R

d is a one-to-one correspondence
between the material x̂ and the actual x positions occupied by the elastic structure
during the time interval I = [0 T], s. t. (̂x, t) → x = χ̂χχ(̂x, t), ∀t ∈ I . Additionally,
we denote with Γfsi the physical interface between the fluid and the solid mesh.

http://mooseframework.org
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Fig. 1 Lagrangian (left) and
Eulerian (right) coordinate
systems adopted in the
immersed boundary method

The strong formulation of the complete FSI problem reads as follows:

ρ̂s0
∂2ûs
∂t2

− ∇̂x̂ · P̂ = d on Ω̂s (a)

ρf
∂vf
∂t

+ ρf
(
vf · ∇)

vf + ∇pf − μΔvf = ffsi on Ω (b)

∇ · vf = 0 on Ω (c)

vf = ∂us
∂t

on Γfsi (d) (1)

Here Eq. (1)(a) is the equation of the elastodynamics where ρ̂s0 is the mass density
per unit undeformed volume of the elastic structure, ûs = ûs (̂x, t) is the related
displacement field, P̂ = P̂(̂x, t) is the first Piola-Kirchhoff stress tensor, d is a
prescribed external body force, and ∇̂x̂ · is the divergence operator computed in the
reference configuration. For an hyperelastic material, the first Piola-Kirchhoff stress
tensor P̂ is related to the deformation through a constitutive equation derived from a

given scalar valued energy function Ψ , i.e. P̂ = F̂ ∂ψ(Ê)
∂Ê

, where Ê := 1/2(̂F
T

F̂ − I)

is the Green-Lagrange strain tensor and F̂ is the deformation gradient tensor defined
as F̂ = ∇x̂x.

Equations (1)(b–c) represent the standard Navier-Stokes equations where ρf
is the fluid density, vf is the velocity field of the fluid, pf is the pressure, ∇x
is the gradient operator, Δx is the Laplacian operator computed in the current
configuration and ffsi is the force density generated by the embedded solid structure
as we will describe in Sect. 3.1.

Remark In the equation of the elastodynamics, i.e. Eq. (1)(a), the evaluation of the
inertial term must take care of the fluid in which it is embedded. This can be done by
subtracting the density of the fluid phase from the solid one (i.e. ρ̂s0 − ρf ) [8]. It is
worth to pointing out that, since in our case the fluid velocity field is used to recover
the displacement of the FSI interface, this difference is restricted only to Γfsi.
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3 Discretization of the FSI Problem

In this section, we provide some details about the discretization in time and in space
of the solid and the fluid sub-problems.

3.1 Solid Problem

For the time discretization of the solid problem, we adopt the classical Newmark
scheme. This scheme is based on a Taylor expansion of the displacements and the
velocities:

ûs,n+1 = ûs,n +Δt vs,n + Δt2

2
((1 − 2β)as,n + 2βas,n+1)

v̂s,n+1 = v̂s,n +Δt ((1 − α)̂as,n + α̂as,n+1)

where Δt is the time step size, as := ∂2ûs
∂t2

and vs := ∂ûs
∂t

are the acceleration and
the velocity of the solid, respectively, and the parameters α and 2β are chosen such
that α = 2β = 1/2.

For the spatial discretization of the structure problem, we assume that the solid
domain Ω̂s can be approximated by a discrete domain Ω̂h

s and the associated mesh
T̂ hs = {Ês ⊆ Ω̂h

s |⋃ Ês = Ω̂h
s }, where its elements Ês form a partition. The

Galerkin formulation of the elastodynamics equation reads:

For every t ∈ (0; T ] find ûhs (·, t) ∈ V̂
h

s := [V̂ hs (T̂ hs )]d ⊂ [H 1
0 (Ω̂s)]d so that:

(ρ̂s0̂ahs , δu
h
s )+ a(uhs , δu

h
s )− (dhs , δu

h
s ) = 0 (2)

By defining (Fh, δuhs ) = a(uhs , δu
h
s ) − (dhs , δu

h
s ) and using the Green’s formula

we get:

(ρ̂s0̂ahs , δu
h
s )+ (Fh, δuhs ) = (fhfsi, δu

h
s )L2(Γ hfsi)

(3)

where fhfsi represents the reaction force exerted by the solid structure on the fluid.

3.2 Fluid Problem

The time integration of the fluid problem is carried out by a third order low-storage
Runge-Kutta scheme for both the advective and the diffusion terms [7].
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For the discretization of Eq. (1)(b), the usage of high-order (sixth) explicit-finite
differences leads to a linear system of equations of the form:

[
H G

D 0

][
vf

pf

]
=

[
z

0

]

Here the matrices D and G are the spatial discretization of the divergence and the
gradient operators, z is the discrete representation of the right hand side, and H
is the Helmholtz operator which coincides with the identity matrix (except for the
boundary conditions) due to the usage of a purely explicit time integration scheme.
By applying D to the equation Hvf + Gpf = 0, one may derive the following
equation for the pressure:

DH−1Gpf = DH−1z (4)

In order to guarantee the gradient of the pressure to be unique, the Schur comple-
ment DH−1G must be h-elliptic (i.e. must have only one zero eigenvalue). To this
aim we adopt Arakawa-C grids which combine several types of nodal points located
in different geometrical positions.

4 L2-Projection

For coupling the two sub-problems we adopt a volume L2-projection which allows
for the transfer of discrete fields between non conforming meshes arbitrarily
distributed among several processors. Such an approach ensures convergence,
efficiency, flexibility and accuracy without requiring a priori information on the
relation between the different meshes. To this aim, we attach Lagrangian basis
functions to the finite difference discretization [3], define the corresponding finite
element space as Vh

f = Vh
f (T

h
f ) ⊂ [H 1

0 (Ω)]d and introduce the vector of Lagrange

multipliers λλλhfsi with the related virtual variations, δλλλhfsi ∈ Mh
fsi(T̂

h
s ) ⊂ [H 1(Ω̂s)]d ,

where T hf represents the fluid grid.

In the following, the projection operator P : V hf → V hs is defined by focusing

on the scalar case, which means that for each component of the velocity vhf,i ∈ V hf ,

we may find whs,i = P(vhf,i ) ∈ V̂ hs , such that the following weak-equality condition
holds:
∫
T̂ hs ∩T hf

(vhf,i−P(vhf,i ))δλ
h
f si dV =

∫
T̂ hs ∩T hf

(vhf,i−whs,i )δλhfsi dV = 0 ∀ δλhfsi ∈ Mh
fsi

(5)
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By writing vhf , whs and δλhfsi in term of basis functions (here the index i is omitted

for a simpler notation), i.e. vhf = ∑
l∈Jf v

l
f N

l
f , whs = ∑

j∈Js w
j
s N

j
s and δλhfsi =∑

k∈Jfsi
δλkfsiN

k
fsi (where Js , Jf and Jfsi are index sets), we get the so called mortar

integrals: Bk,l = ∫
T̂ hs ∩T hf N

l
f N

k
fsi dV and Sk,j = ∫

T̂ hs ∩T hf N
j
s N

k
fsi dV . Equation (5)

can be then written in the following algebraic form:

ws = S−1Bvf = Tvf (6)

The transpose of T is used to transfer the reaction force from the solid to the fluid
grid.

In order to reduce the computational cost required to compute the inverse of the
matrix S, we adopt dual basis functions for the function space Mh

fsi. In this case this
function space is spanned by a set of functions which are biorthogonal to the basis

functions of V̂
h

s with respect to the L2-inner product:

(Nk
fsi, N

j
s )L2(T̂ hs ∩T hf ) = δk,j (N

j
s , 1)L2(T̂ hs ∩T hf ) ∀k, j ∈ Js (7)

The usage of the dual basis functions corresponds to replacing the standard L2-
projection with a Pseudo-L2-projection, which allows for a more efficient evaluation
of the transfer operator T since the matrix S becomes diagonal. The assembly of
the transfer operator is done in several steps [9]: (a) we compute the overlapping
region by means of a tree search algorithm, (b) generate the quadrature points
for integrating in the intersecting region, (c) compute the local element-wise
contributions for the operators B and S by means of numerical quadrature, and (d)
assemble the two mortar matrices.

5 Overview of the FSI Algorithm

In our framework a segregated approach is adopted to solve the fully coupled
FSI problem. More specifically, we use a fixed point (Picard) iteration scheme for
solving the arising coupled non-linear discrete system.

For a given time step n and given a starting solution at the Picard iteration l, the
following steps are performed within iteration l + 1:

Step 1: Velocity values are transferred from the fluid grid to the solid mesh.
Step 2: The elastodynamic equation (Eq. (1)(a)) is solved with the Dirichlet

boundary conditions (Eq. (1)(d)).
Step 3: The reaction force ffsi is computed and transferred from the solid mesh to

the fluid grid.
Step 4: The Navier-Stokes problem (Eq. (1)(b)–(c)) is solved by using the force

ffsi as source term.



An Immersed Boundary Method Based on the L2-Projection Approach 489

Step 5: Suitable residual norms are computed between the FSI interaction force
terms evaluated at iterations l and l + 1, i.e. ‖fl+1

fsi − flfsi‖∞/‖f0
fsi‖ for the relative

convergence criterion and ‖fl+1
fsi − flfsi‖∞ for the absolute convergence criterion

[4], and compared with given threshold values. This ensures the satisfaction of
the coupling between the two sub-problems, thus leading to either a new Picard
iteration or a new time step n + 1 otherwise.

We employ the numerical solver IMPACT (Incompressible (Turbulent) flows
on Massively PArallel CompuTers) for solving the non-dimensional Navier-
Stokes equations [7]. The solid problem and the assembly of the transfer
operator are implemented in the finite-element framework MOOSE (www.
mooseframework.org), whereas the library MOONoLiTH (https://bitbucket.org/
zulianp/par_moonolith) is used for detecting the overlapping region between the
fluid and the solid grids and computing the corresponding intersections.

6 Numerical Results

In this section we present results related to the Turek-Hron FSI benchmark which
considers the incompressible flow of a Newtonian fluid around an elastic solid
structure composed of a disk and a rectangular trailing beam.

The dimensions of the fluid channel are (Fig. 2a): length Lf = 3.0 m and height
Hf = 0.41 m. The disk center is positioned at C = (0.2 m, 0.2 m) (measured from
the left bottom corner of the channel) and the radius is r = 0.05 m. The elastic
structure bar has length Ls = 0.35 m and height Hs = 0.02 m; the right bottom
corner is positioned at (0.6 m, 0.19 m), and the left end is fully attached to the circle.
The fluid properties are ρf = 1000 kg/m3 and μ = 1 Pa s which lead to a Reynolds

Fig. 2 (a) Geometry of the Turek-Hron benchmark. (b) Amplitude displacement in x and y
direction of a control point A located at the end of the elastic beam. (c) Lift and drag forces.
(d) Fluid vorticity

www.mooseframework.org
www.mooseframework.org
https://bitbucket.org/zulianp/par_moonolith
https://bitbucket.org/zulianp/par_moonolith
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number of 200. The density of the solid structure is the same as the fluid phase,
and a Saint-Venant Kirchhoff model is adopted as constitutive law, for which the
first Piola-Kirchhoff stress tensor is defined as: P̂ = F̂(λ tr(Ê)I + 2μÊ) with μ =
2.0 MPa and λ = 4.7 MPa. Periodic boundary conditions are imposed along the
inlet and the outlet of the fluid channel together with no-slip boundary conditions
on the top and the bottom. Moreover at the inlet a Poiseuille flow with a centerline
velocity of 1.5 m/s is enforced by a fringe region appended downstream.

In Fig. 2b we show the displacements in x and y direction of a control point
P located at the end of the elastic beam (A ≡ (0.6 m, 0.2 m), Fig. 2a). The
amplitude of the last period of oscillation is in the range of 0.03 m for the vertical
displacement and of 0.0025 m for the horizontal displacement; the frequency of the
y-displacement is about 6 s−1, and the frequency for the x-displacement is about
11 s−1. All values are in good agreement with the original benchmark results [13].
In Fig. 2c we also show the forces exerted by the lift and drag forces acting on the
cylinder and the beam structure together. Again the values agree well with the results
obtained by other numerical methods applied to the same problem [14]. Finally, the
fluid vorticity is depicted in Fig. 2d ranging from −30 to 30 s−1, in agreement with
numerical values reported in Griffith [5] .

7 Conclusions

In this article we present a novel FSI framework based on the IBM. The description
of the solid motion, obtained by solving implicitly the elastodynamic equations,
ensures to yield extra stability and robustness. Moreover, the use of the fluid
solver IMPACT and of the software MOONoLith for the L2-projection allows for
a completely parallel framework suitable for the simulation of complex and large
simulations such the blood flow in human arteries and through heart valves.
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Combining Space-Time Multigrid
Techniques with Multilevel Monte
Carlo Methods for SDEs

Martin Neumüller and Andreas Thalhammer

1 Introduction

Stochastic differential equations (SDEs) have become an invaluable tool for mod-
elling time-dependent problems that are perturbed by random influences. Since
the importance of such models increases constantly, there is a high demand on
improving the efficiency of numerical algorithms for SDEs, especially, if one is
interested in the approximation of E[ϕ(X(T ))], where X(T ) denotes the (mild)
solution of an SDE evaluated at time T and E denotes the expectation, where ϕ is a
mapping determining the statistical quantity of interest.

In this work we focus on approximating E[ϕ(X(T ))] for the solution process
of linear SDEs driven by additive noise. For this we combine space-time multigrid
methods for approximating solutions of time-dependent deterministic differential
equations, see [4] and the references therein, and multilevel Monte Carlo (MLMC)
methods, see e.g. [5, 6]. Both methods as such are well-known to be parallelizable,
however, the combination of both methods is a completely new approach that
enables the full parallelization of the problem in space, time and probability.

The outline of this article is as follows: In the remainder of this section, we
introduce two model problems (the Ornstein-Uhlenbeck process and the stochastic
heat equation) together with discretization techniques for these model problems
with respect to space and time. Afterwards, we consider the multilevel Monte
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Carlo (MLMC) method for approximating the expectation in Sect. 2 and we discuss
parallelizable space-time multigrid methods based on the inherited space-time
hierarchy of the MLMC estimator in Sect. 3. Finally, we conclude by presenting
numerical experiments in Sect. 4.

1.1 Model Problems

Let T > 0 and let (Ω, {Ft }t∈[0,T ],F ,P) be a complete filtered probability space.
At first, we consider a one-dimensional model problem given by the stochastic
ordinary differential equation (SODE)

du(t)+ λu(t) dt = σ dβ(t) for t ∈ (0, T ], (1)

u(0) = u0,

where λ ∈ R
+
0 , σ, u0 ∈ R and β = (β(t), t ∈ [0, T ]) is a standard Brownian

motion. The solution of this SODE is a Ornstein-Uhlenbeck process defined by

u(t) = u0e
−λt + σ

∫ t

0
e−λ(t−s) dβ(s), t ∈ [0, T ]. (2)

As second model problem we consider the stochastic heat equation on a bounded
and convex domain D ⊂ R

d , d = 1, 2, 3, with homogeneous Dirichlet boundary
conditions. We rewrite the corresponding stochastic partial differential equation
(SPDE) as a stochastic evolution equation on the Hilbert space H = L2(D)

dU(t) = ΔU(t) dt + dW(t) for t ∈ (0, T ], (3)

U(0) = U0 ∈ H 2(D) ∩H 1
0 (D).

Subsequently, we denote by (ej , j ∈ N) the set of eigenfunctions of the Laplace
operator −Δ, which forms an orthonormal basis of H . Furthermore, let W =
(W(t), t ∈ [0, T ]) be anH -valuedQ-Wiener process with a linear, positive definite,
symmetric, trace class covariance operator Q. Then W can be represented as (see
e.g. [3, 7])

W(t) =
∞∑
j=1

√
μj ejβj (t), (4)

where (μj , j ∈ N) denotes the set of eigenvalues of Q satisfying Qej = μjej and
(βj , j ∈ N) is a sequence of independent standard Brownian motions.
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Then, by [3], there exists a unique, square-integrable mild solution to SPDE (3)

U(t) = S(t)U0 +
∫ t

0
S(t − s) dW(s) for t ∈ [0, T ], (5)

where S(t), t ∈ [0, T ], denotes the semigroup generated by the Laplace operator.

1.2 Discretization of Model Problems

In this section, we present fully discrete schemes for approximating the solution
processes from Eqs. (2) and (5). For this we fix an equidistant partition ΘK of the
time interval [0, T ] given by ΘK = {0 = t0 < t1 < · · · < tK = T }, where for
0 ≤ j ≤ K we choose tj = jΔt with time step size Δt = T/K .

For approximating the solution of the Ornstein-Uhlenbeck process (2), we
consider the backward Euler–Maruyama scheme given by the recursion

(1 + λΔt)uj = uj−1 + σΔβj , for 1 ≤ j ≤ K, (6)

where u0 = u0 andΔβj = β(tj )−β(tj−1). Rewriting the recursion (6) in a matrix-
vector representation yields

⎛
⎜⎜⎜⎝

(1 + λΔt)

−1 (1 + λΔt)

. . .
. . .

−1 (1 + λΔt)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2
...

uK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

σΔβ1(ω)+ u0

σΔβ2(ω)
...

σΔβK(ω)

⎞
⎟⎟⎟⎠ . (7)

In this article, we abbreviate this linear system by Lτu = f(ω), where we use the
ω-dependency in f(ω) to indicate that the right hand side is a random vector.

For the stochastic heat equation we want to obtain a fully discrete approximation
U
j

h of the mild solution U(tj ), tj ∈ ΘK , where Ujh attains values in a finite-
dimensional subspace Vh ⊂ H 1

0 (D). Besides an appropriate time integration
method, we apply a discretization scheme in space. For this we consider a standard
Galerkin finite element (FE) discretization based on a regular family (Th, h ∈
(0, 1]) of triangulations of D with maximal mesh size h. Then Vh denotes the
space of globally continuous and on Th piecewise linear functions. Furthermore,
we denote by Nh the dimension of Vh. By using the nodal basis functions (φi , 1 ≤
i ≤ Nh) ⊂ H 1

0 (D), the fully discrete approximation scheme based on Galerkin
finite elements in space and on the backward Euler–Maruyama scheme in time is
given by (see e.g. [2])

(Mh +ΔtKh)Uj = MhUj−1 +ΔWj for 1 ≤ j ≤ K, (8)
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where ΔWj denotes the vector representation of the FE approximation of the
Q-Wiener increments ΔWj (x) = W(tj , x) − W(tj−1, x), x ∈ D, and for j =
0, . . . ,K ,

U
j
h =

Nh∑
i=1

Uj [i]φi,

where Uj [i] denotes the ith component of the vector Uj ∈ R
Nh . Here, we denote

by Mh the standard mass matrix and Kh the standard stiffness matrix defined by

Mh[i, j ] :=
∫
D

φj (x)φi(x) dx, Kh[i, j ] :=
∫
D

∇φj (x) · ∇φi(x) dx, for i, j = 1, . . . ,Nh.

Finally, by rewriting the numerical scheme (8) in terms of a matrix-vector formula-
tion we obtain the large linear system

⎛
⎜⎜⎜⎝

Mh +ΔtKh

−Mh Mh +ΔtKh
. . .

. . .

−Mh Mh +ΔtKh

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

U1

U2
...

UK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ΔW1(ω)+MhU0

ΔW2(ω)
...

ΔWK(ω)

⎞
⎟⎟⎟⎠

(9)

that is subsequently abbreviated by Lh,τU = F(ω).

2 Multilevel Monte Carlo Methods

The goal is to approximate E[ϕ(u(T ))] or E[ϕ(U(T ))] for a sufficiently smooth
mapping ϕ : H → B, where B is a separable Hilbert space, by using suitable
estimators. For Y ∈ L2(Ω;B) a common way to approximate E[Y ] is to use a
standard Monte Carlo (MC) estimator defined by

EM [Y ] := 1

M

M∑
i=1

Y (i),

where (Y (i), i = 1, . . . ,M) are independent realizations of Y . Here, L2(Ω;B)
denotes the space of strongly measurable random variables Y that satisfy

‖Y‖2
L2(Ω;B) := E[‖Y‖2

B ] < ∞.
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Due to the rather slow convergence of the MC estimator of order M−1/2 in
the L2(Ω;B)-sense, the efficient multilevel Monte Carlo (MLMC) estimator has
been proposed in [5]. For its definition we consider a sequence (Y�, � ∈ N0) of
approximations of Y ∈ L2(Ω;B) based on different refinement levels � ∈ N0. The
MLMC estimator is then given by

EL[YL] :=
L∑
�=0

EM�[Y� − Y�−1],

where Y−1 = 0. The L2(Ω;B)-error of the MLMC estimator satisfies (see [6])

‖E[Y ] − EL[YL]‖L2(Ω;B) ≤ ‖E[Y − YL]‖B +
( L∑
�=0

M−1
� Var[Y� − Y�−1]

)1/2

(10)

where Var[Y ] = E[‖Y − E[Y ]‖2
B] for Y ∈ L2(Ω;B).

In the following two subsections, we discuss how to choose the number of
samples (M�, � ∈ N0) and the refinement parameter h and Δt in order to guarantee
the convergence of the MLMC estimator.

2.1 Ornstein-Uhlenbeck Process

Let u be given in Eq. (2) and for � ∈ N0 let uK� be the numerical approximation
of u(T ) based on the backward Euler–Maruyama scheme (6) with respect to the
partitionΘK� with time step size Δt�. Furthermore, let ϕ ∈ C2

b (R,R), i.e., ϕ : R →
R is twice continuously differentiable with bounded first and second derivatives.
Due to the additive noise structure of SDE (1) we obtain by results from [8] that

|E[ϕ(u(T ))− ϕ(uKL)]| ≤ CΔtL, Var[ϕ(uK�)− ϕ(uK�−1)]1/2 ≤ CΔt�.

Thus, by similar arguments as in [6], if we choose for any ε, CM > 0,

M0 = 2CMΔt−2
L 3, M� = 2CMΔt2�Δt−2

L �1+ε3 for � = 1, . . . , L, (11)

then ‖E[ϕ(u(T ))] − EL[ϕ(uKL)]‖L2(Ω;R) = O(ΔtL).
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2.2 Stochastic Heat Equation

LetU be given in Eq. (5) and for � ∈ N0 letUK�h� be an approximation ofU(T ) based
on the FE backward Euler–Maruyama scheme (8) with respect to the partition ΘK�
and the FE space Vh� . Furthermore, let ϕ ∈ C 2

b (H,B), i.e., ϕ : H → B is twice
Fréchet differentiable with bounded first and second Fréchet derivatives. Then by
using the results from [1], we get by choosing Δt� = h2

� for any γ ∈ [0, 1)

‖E[ϕ(U(T ))− ϕ(U
KL
hL
)]‖B ≤ Ch

2γ
L , Var[ϕ(UK�h� )− ϕ(U

K�−1
h�−1

)] ≤ Ch
2γ
� .

Thus, by [6], if we chooseΔt� = h2
� and for any

M0 = 2CMh−2γ
L 3, M� = 2CMh2γ

� h
−2γ
L �1+ε3 for � = 1, . . . , L. (12)

then ‖E[ϕ(U(T ))] − EL[ϕ(UKLhL )]‖L2(Ω;B) = O(h
γ

L).

3 Space-Time Multigrid Methods

The idea is to use the space-time hierarchy from the MLMC methods discussed in
Sects. 2.1 and 2.2 also for a space-time multigrid approach. In detail we use the
space-time multigrid method presented in [4] to solve the linear system (7) and (9)
at once. The advantage is that we can also add parallelization in time direction and
also with respect to the space dimension. So using the space-time hierarchy coming
from the MLMC method for the linear solver we obtain an algorithm which can be
applied in parallel with respect to space, time and probability. For the space-time
multigrid method we use a (inexact) damped block Jacobi smoother, see also [4],
i.e. for the problem (7) we use

u(n+1) = u(n) + αD−1
τ

[
f(ω)− Lτu(n)

]
for n = 0, 1, . . . ,

with the diagonal matrix Dτ := diag(1 + λΔt). Whereas, for the problem (9) we
use the smoothing iteration

U(n+1) = U(n) + αD−1
h,τ

[
F(ω)− Lh,τU(n)

]
for n = 0, 1, . . . ,

with the block diagonal matrix Dh,τ := diag(Mh + ΔtKh). To speed up the
application of the smoothing procedure we replace the exact inverse of Dh,τ by
applying one iteration of a multigrid V-cycle with respect to the matrixMh+ΔtKh.
Moreover we always set the damping parameter to α = 1

2 , see [4] for more details.
Choosing Δt ≈ h2 leads—in combination with the space-time hierarchy coming
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from the MLMC method—to a robust solver which is independent of the number of
time steps K the time step size Δt and the randomness ω.

4 Numerical Experiments

4.1 Ornstein-Uhlenbeck Process

We consider the SODE (1) with λ = 1, σ = 1 and u0 = 1. By choosing T = 1 and
ϕ(x) = x for all x ∈ R we are interested in approximating E[u(T )] = e−T .

For the numerical approximation we consider the backward Euler–Maruyama
scheme from Eq. (6) in the matrix-vector representation Lτu = f(ω), which is
solved by the time multigrid method described in Sect. 3. For the approximation
of the expectation we consider a multilevel Monte Carlo estimator based on the
sample size selection from Eq. (11) with ε = 1

2 and CM = 10.
In Table 1, ‖E[u(T )] − EL[uKL]‖L2(Ω;R) is approximated by a standard Monte

Carlo estimator given by

MS − err =
(

1

M

M∑
i=1

∣∣∣e−T − EL[uKL](i)
∣∣∣2
)1/2

,

where (EL[uKL](i), 1 ≤ i ≤ M) are independent realizations of the MLMC
estimator EL[uKL]. For this we choose M = 100 in the numerical experiments
from Table 1 and we observe the right convergence rates as predicted by the theory.

Table 1 Numerical test for SODE (1) (Ornstein-Uhlenbeck process)

L Time steps Realizations level 0 Realizations level L MS-err EOC

0 1 10 10 2.61915E−01 –

1 2 40 20 1.39399E−01 0.91

2 4 160 50 6.73215E−02 1.05

3 8 640 80 3.92162E−02 0.78

4 16 2560 110 2.02307E−02 0.95

5 32 10,240 140 1.00032E−02 1.02

6 64 40,960 180 4.80065E−03 1.06

7 128 163,840 220 2.31171E−03 1.05

8 256 655,360 270 1.13875E−03 1.02

9 512 2,621,440 310 5.29684E−04 1.10

10 1024 10,485,760 360 2.62618E−04 1.01
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4.2 Stochastic Heat Equation

For the stochastic heat equation (3) we consider the one-dimensional case
D = (0, 1) with initial value U0(x) = sin(πx). By choosing T = 0.2 and
ϕ(v) = v for all v ∈ L2(D), we are interested in approximating E[U(T , x)] =
exp(−π2T ) sin(πx), x ∈ D.

The eigenvalues of the Q-Wiener process are μj = j−(2r+1+ε) with r = 2 and
any ε > 0, see e.g. [7] for details. For approximating paths of theQ-Wiener process
we truncate the series representation (4) after the first Jh = Nh summands, see
e.g. [2].

For the numerical approximation in space and time, we consider the FE Euler–
Maruyama scheme from Eq. (8) on an equidistant mesh with grid width h� = 2−�−1

in the matrix-vector formulationLh,τU = F(ω), which is again solved by the space-
time multigrid method described in Sect. 3. For the approximation of the expectation
we consider the MLMC method based on the sample size selection (12) with ε = 0.5
and CM = 10.

In numerical experiments ‖E[U(T )] − EL[UKLhL ]‖L2(Ω;B) is approximated by a
standard Monte Carlo estimator, i.e., we consider

MS − err =
(

1

M

M∑
i=1

∥∥∥E[U(T )] − EL[UKLhL ](i)
∥∥∥2

L2(D)

)1/2

,

where (EL[UKLhL ](i), 1 ≤ i ≤ M) are independent realizations of the estimator

EL[UKLhL ] and

‖E[U(T )] − EL[UKL
hL

](i)‖2
L2(D)

=
∫ 1

0

(
exp(−π2T ) sin(πx)− EL[UKL

hL
(x)](i)

)2
dx.

In Table 2 we use M = 100 independent realizations of the MLMC estimator and
we observe the optimal convergence rates as predicted by the theory. Moreover we
give in Table 3 the averaged solving times for one single MLMC run for different
levels and different distributions of 512 cores. Here we observe that the best possible
setting is given by a balanced distribution of cores between parallelization in time
and parallelization of the Monte Carlo estimators. For example for level L = 7 the
best possible setting is given by 8 cores for time parallelization and 64 cores for the
Monte Carlo parallelization.
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Table 2 Numerical test for SPDE (1) (stochastic heat equation)—convergence

L Time steps # elements Realizations level 0 Realizations level L MS-err EOC

0 1 2 10 10 7.83487E−02 –

1 4 4 40 20 3.39860E−02 1.20

2 16 8 160 30 1.29145E−02 1.40

3 64 16 640 60 5.99035E−03 1.11

4 256 32 2560 90 2.71909E−03 1.14

5 1024 64 10,240 120 1.39772E−03 0.96

6 4096 128 40,960 150 6.89668E−04 1.02

7 16,384 256 163,840 190 3.41996E−04 1.01

Table 3 Numerical test for SPDE (1) (stochastic heat equation)—computation time for one
MLMC run with respect to different distributions of 512 cores (in seconds)

Cores time/Cores Monte Carlo

L 1/512 2/256 4/128 8/64 16/32 32/16 64/8 128/4

3 0.04 0.02 0.02 0.02 0.03 0.06 0.1 0.14

4 0.27 0.17 0.12 0.13 0.16 0.26 0.47 0.93

5 2.64 1.51 0.95 1.01 1.17 1.64 2.47 4.41

6 24.12 13.92 13.64 11.47 10.76 12.53 15.88 23.5

7 282.46 157.97 153.41 125.56 127.84 133.6 146.81 178.76
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On Block Triangular Preconditioners
for the Interior Point Solution
of PDE-Constrained Optimization
Problems

John W. Pearson and Jacek Gondzio

1 Introduction

A key application of domain decomposition methods, alongside a range of other
numerical techniques, is within preconditioned iterative methods for linear systems
of equations. In this paper, we examine such systems arising from optimization
problems constrained by PDEs—in particular we wish to consider the application
of interior point methods to formulations with additional bound constraints. The
crucial computational element of such solvers is the development of a fast and robust
method for the Newton systems that arise at each interior point iteration. We refer
to [1, 3, 8, 13], and the references therein, for previous research on such iterative
methods, as well as to [5] for the development of a multigrid scheme.

The key component of the authors’ previous work [13] was the consideration of
saddle point solvers for these linear systems. It was found that iterative methods
accelerated by block triangular preconditioners are highly effective for the solution
of such systems, often more so than those incorporating analogous block diagonal
matrices; however, in general it is difficult to robustly predict the convergence rate
of the iterative scheme when using block triangular preconditioners. In this work,
we present a new Bramble–Pasciak Conjugate Gradient method which allows one
to employ an efficient block triangular approximation, for which the preconditioned
system is self-adjoint and positive definite in some non-standard inner product. This
also enables one to predict the convergence of the algorithm based on the eigenval-
ues of the preconditioned system. Such guarantees are not available if one uses more
standard Krylov subspace methods for non-symmetric systems, for instance GMRES

or BICG. This also provides a framework for domain decomposition techniques,
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multigrid methods, or other tailored schemes to tackle the individual portions of
the block matrix systems at hand. The main contribution of this paper is therefore
the presentation of a new solver with the shared advantages of both its faster
computational performance, due to the favourable properties of block triangular
preconditioners, and the theoretical guarantees of convergence which it provides.

This paper is structured as follows. In Sect. 2 we describe the PDE-constrained
optimization problem of which we wish to consider the numerical solution. In
Sect. 3 we outline the Bramble–Pasciak Conjugate Gradient method, as well as the
block triangular preconditioner that we apply within it. In Sect. 4 we ascertain the
effectiveness of our methodology when applied to a number of practical problems.

2 PDE-Constrained Optimization Problem

The problem of which we consider the numerical solution in this paper is given as
follows:

min
y,u

1

2
‖y − ŷ‖2

L2(Ω)
+ β

2
‖u‖2

L2(Ω)

s.t. Dy = u, in Ω,

y = f, on ∂Ω,

ya ≤ y ≤ yb, a.e. in Ω,

ua ≤ u ≤ ub, a.e. in Ω.

This problem is solved on a domain Ω ⊂ R
d , d ∈ {2, 3}, with boundary ∂Ω . Here,

y, ŷ and u represent the state, desired state and control variables, with D some given
PDE operator. Further, β is a (positive) regularization parameter, with f , ya , yb, ua ,
ub given functions. The key to this problem is that we wish to find functions y and u
which solve the minimization problem constrained by a system of PDEs, while also
placing upper and lower bounds on the values that these functions may take.

As illustrated in [13], we may solve this problem using a discretize-then-optimize
strategy, where a Lagrangian is built on the discrete level and optimality conditions
are subsequently derived from it. The Lagrangian of which we wish to find the
stationary point(s), when a finite element method is applied to tackle the barrier
optimization problem, is given as follows:

L
(
y,u,λ

) = 1

2
yTMy − yTd y + β

2
uTMu + λT (Ky −Mu − f)

− μ
∑
j

log
(
yj − ya,j

) − μ
∑
j

log
(
yb,j − yj

)

− μ
∑
j

log
(
uj − ua,j

) − μ
∑
j

log
(
ub,j − uj

)
,
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where y and u are the discrete state and control variables, and yj , ya,j , yb,j , uj ,
ua,j , ub,j denote the values of y, ya , yb, u, ua , ub at the j -th finite element node.
The vector λ is the discrete adjoint variable, enforcing the PDE constraint (which in
discretized form is given by Ky −Mu = f). The matrix M is the well known finite
element mass matrix, with entries defined by [M]ij = ∫

Ω
φiφj dΩ , where φi denote

the finite element basis functions used. The matrix K relates to the weak form of
the PDE operator D . The vectors yd and f correspond to the functions ŷ and f
on the discrete level, and contain entries of the form

∫
Ω
ŷφi dΩ and

∫
Ω
f φi dΩ

respectively. The (positive) barrier parameter μ precedes a sum of logarithmic
terms which help to enforce the bound constraints on the state and control variables.

The essence of our interior point method is that at each step we wish to find the
stationary point of the Lagrangian L , with yj and uj updated to take account of the
previous iterate, and with μ reduced at each iteration by a factor which is chosen
in advance. The algorithm applied is stated in [13]—it is then shown that the main
computational bottleneck is the solution of the Newton system

⎡
⎣M +Dy 0 KT

0 βM +Du −M
K −M 0

⎤
⎦

⎡
⎣ δy

δu
δλ

⎤
⎦ (1)

=
⎡
⎣μ(Y − Ya)

−1e − μ(Yb − Y )−1e + yd −My∗ −KT λ∗
μ(U − Ua)

−1e − μ(Ub − U)−1e − βMu∗ +Mλ∗
f −Ky∗ +Mu∗

⎤
⎦

at each interior point step. The (diagonal) matrices Dy and Du are given by

Dy = (Y − Ya)
−1Zy,a + (Yb − Y )−1Zy,b,

Du = (U − Ua)
−1Zu,a + (Ub − U)−1Zu,b.

Here, Y ,U , Ya , Yb,Ua ,Ub are diagonal matrices containing the entries of y, u (at the
previous Newton step), ya , yb, ua , ub; further,Zy,a,Zy,b,Zu,a ,Zu,b denote diagonal
matrices with entries defined by Lagrange multipliers associated with bounds ya ,
yb, ua , ub, respectively. At each iteration, an interior point algorithm attempts to
approximately satisfy the following centrality condition:

(
Zy,a

)
jj

= μ

yj − ya,j
,

(
Zy,b

)
jj

= μ

yb,j − yj
,

(
Zu,a

)
jj

= μ

uj − ua,j
,

(
Zu,b

)
jj

= μ

ub,j − uj
.

The vector e contains a one at each entry, and the vectors y∗, u∗, λ∗ contain the
previous iterates for y, u, λ. We wish to solve the matrix system (1) for δy, δu, δλ,
the Newton updates of y, u, λ, at each interior point iteration.
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3 Bramble–Pasciak Conjugate Gradients
and Preconditioning

We now wish to approach the main computational challenge within the interior point
algorithm, namely the fast and efficient solution of the matrix system (1). This is
an example of a saddle point system, which is defined in general as a system of
equations of the form

[
A BT

B 0

]

︸ ︷︷ ︸
A

[
x(1)

x(2)

]

︸ ︷︷ ︸
x

=
[

b(1)

b(2)

]

︸ ︷︷ ︸
b

.

There has been a great deal of research on the subject of the numerical solution
of such systems, and we refer to [2] for a comprehensive survey. However, in the
setting of interior point methods, we face the additional challenge that the (1, 1)-
block A is severely ill-conditioned, due to the presence of diagonal scaling matrices
(defined as Dy and Du in Sect. 2 for our problem).

In [13], a block diagonal preconditioner was presented, involving approximations
Â and Ŝ for the (1, 1)-block and the (negative) Schur complement S := BA−1BT ,
respectively. These approximations were carefully chosen such that the precondi-
tioned system P−1A had clustered eigenvalues, and also such that Â−1 and Ŝ−1

could be applied cheaply. In this work, we wish to apply a suitable block triangular
preconditioner

P =
[
Â 0
B −Ŝ

]

within a non-standard Conjugate Gradient method. By doing so, we are able to
exploit the often superior convergence properties of block triangular precondition-
ers, alongside the theoretical guarantees of convergence that Conjugate Gradient
type methods provide. In particular, we may predict a certain rate of convergence of
the iterative method by examining the eigenvalues of the preconditioned system.

The idea of the Bramble–Pasciak Conjugate Gradient method [4] is that we apply
this method using an inner product within which the preconditioned system is self-
adjoint and positive definite. A suitable inner product is given by 〈·, ·〉H , with

H =
[
A− Â 0

0 Ŝ

]
.

The structure of the algorithm is presented below, and we refer to [4, 17, 18] for
further details.
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Algorithm: Bramble–Pasciak Method for A x = b with Preconditioner P

Initial vectors

Given x0, set r0 = P−1(b − A x0), p0 = r0

Conjugate Gradient loop

for k = 0, 1, . . .

αk = 〈rk, rk〉H
〈P−1A pk,pk〉H

xk+1 = xk + αkpk

rk+1 = rk − αkP
−1A pk

βk = 〈rk+1, rk+1〉H
〈rk, rk〉H

pk+1 = rk+1 + βkpk

end

The key components within the algorithm involve computing terms of the form

P−1v and H P−1v, where we write v = [
vT1 , vT2

]T
. The first of these tasks

may be accomplished by applying Â−1 and Ŝ−1 efficiently, whenever the inverse
of the preconditioner is required. For the application of H P−1v, which is needed
to compute terms of the form 〈P−1A pk,pk〉H and 〈rk, rk〉H within the Bramble–
Pasciak algorithm, we observe that

H P−1v =
[
A− Â 0

0 Ŝ

] [
Â−1v1

Ŝ−1BÂ−1v1 − Ŝ−1v2

]
=

[
AÂ−1v1 − v1

BÂ−1v1 − v2

]
.

Therefore, we are only required to apply Â−1 once in order to compute this term.
We therefore require efficient approximations for the (1, 1)-block and Schur

complement of the matrix system (1) under consideration. For this matrix,

A =
[
M +Dy 0

0 βM +Du

]
, B = [

K −M ]
,

S = BA−1BT = K(M +Dy)
−1KT +M(βM +Du)

−1M.

To approximate the (1, 1)-block, we apply a Chebyshev semi-iteration method [6, 7]
to the diagonally dominant matrices M + Dy and βM + Du. As it is necessary to
ensure that A − Â is positive definite, in turn to guarantee that the inner product
matrix H is positive definite, we pre-multiply this approximation by a constant
0 / γ < 1, which is chosen a priori such that this property holds (see [17]).
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In order to approximate the Schur complement, we employ a ‘matching strategy’,
which was derived in [14–16], and was demonstrated to be highly effective in the
context of interior point methods in [13]. We write

Ŝ = (
K + M̂

)
(M +Dy)

−1(K + M̂
)T
,

where M̂ = M
[
diag(βM +Du)

]−1/2[diag(M+Dy)
]1/2, with the aim of capturing

both terms of the exact Schur complement S within our approximation. The inverses
ofK+M̂ and its transpose may be efficiently approximated using multigrid, domain
decomposition, or other methods.

Making use of our approximations of A and S, we may then compile our
preconditioner

P =
⎡
⎣γ (M +Dy)Cheb 0 0

0 γ (βM +Du)Cheb 0
K −M −Ŝ

⎤
⎦ ,

which may be readily inverted, giving rise to a computationally efficient algorithm
within the inner product 〈·, ·〉H . Eigenvalue estimates for Â−1A and Ŝ−1S are
discussed in detail in [13]; applying these estimates within the Bramble–Pasciak
method leads to robust estimates of convergence rates for the iterative solver,
using previous research on this method for PDE-constrained optimization problems
without additional bound constraints [17].

4 Numerical Experiments

To test the practical effectiveness of our method we implement an interior point
scheme, within which we apply the Bramble–Pasciak Conjugate Gradient method
with the preconditioner stated in Sect. 3. For each problem, we discretize the
state, control and adjoint variables using Q1 finite elements. The Bramble–Pasciak
method is run to a tolerance of 10−8 at each interior point step, with the outer
(interior point) solver run to a tolerance of 10−6. We measure the average number
of Bramble–Pasciak iterations required per outer iteration, until convergence of
the interior point method is achieved. The (1, 1)-block of the matrix system (1) is
approximated using 20 steps of Chebyshev semi-iteration, with parameter γ = 0.95
chosen to ensure positive definiteness of H ; the matricesK + M̂ and its transpose,
within the Schur complement approximation, are approximately inverted using the
Aggregation-based Algebraic Multigrid (AGMG) software [9–12]. All tests are
carried out using MATLAB R2017b, on a quad-core 3.2 GHz processor.

For our first test problem, we consider the Poisson operator D = −∇2, take
ŷ = sin(πx1) sin(πx2), where x = [x1, x2]T ∈ Ω = [0, 1]2, and set y = 0 on the
boundary ∂Ω of Ω . We prescribe bound constraints on the state variable y, based
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on the physical properties of the problem. We solve the matrix systems for a range
of step-sizes h and values of β, and present the results obtained in Table 1. We
observe very low iteration numbers, considering the complexity of the problem and
the accuracy to which we solve the matrix systems, with only moderate increases as
h is decreased (i.e. as the dimensions of the matrix systems are increased). We also
observe a benign increase in Bramble–Pasciak iterations as β is decreased.

Our second test problem involves a convection–diffusion operator D =
−0.01∇2 + [ − 1√

2
, 1√

2

]T · ∇, a desired state ŷ = e−64
(
(x1−0.5)2+(x2−0.5)2

)
,

and the boundary condition y = ŷ. On this occasion we provide bound constraints
for the control variable u, as stated in Table 2. Once again, strong robustness of the
Bramble–Pasciak method is observed when either h or β is altered, illustrating that
our strategy may be applied to more varied differential operators and types of bound
constraints.

We thus establish that the new Bramble–Pasciak Conjugate Gradient algorithm
presented for this class of problems provides both enjoyable theoretical properties,
and the fast, robust numerical solution of a range of practical examples. It may be
concluded that this is therefore a suitable and effective technique for the interior
point solution of a number of PDE-constrained optimization problems.

Table 1 Results for the Poisson control example with state constraints, for a range of values of h
and β

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0 ≤ y ≤ 0.002 0 ≤ y ≤ 0.02 0 ≤ y ≤ 0.15 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.8 0 ≤ y ≤ 0.9

h 2−2 8.5 8.4 7.7 7.4 7.9 8.1

2−3 12.4 12.6 11.3 13.1 14.0 18.3

2−4 14.6 14.5 14.2 16.2 18.1 19.9

2−5 15.8 15.9 16.2 18.3 20.3 22.7

2−6 16.6 17.1 17.4 20.7 30.0 25.9

2−7 17.3 17.8 18.5 30.2 26.2 27.8

Presented are the average numbers of Bramble–Pasciak Conjugate Gradient iterations required, per
interior point step

Table 2 Results for the convection–diffusion control example with control constraints, for a range
of values of h and β

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0 ≤ u ≤ 0.1 0 ≤ u ≤ 0.5 0 ≤ u ≤ 2 0 ≤ u ≤ 5 0 ≤ u ≤ 6 0 ≤ u ≤ 6

h 2−2 8.3 9.8 11.8 14.3 15.4 16.0

2−3 8.4 10.9 14.8 16.9 20.6 24.4

2−4 8.2 10.4 13.6 26.6 33.8 35.2

2−5 8.1 10.1 12.4 16.9 29.9 33.5

2−6 8.1 9.9 12.2 15.3 25.9 24.6

2−7 8.3 9.9 12.1 15.3 18.3 18.9

Presented are the average numbers of Bramble–Pasciak Conjugate Gradient iterations required, per
interior point step
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Robust Multigrid Methods
for Isogeometric Discretizations
of the Stokes Equations

Stefan Takacs

1 Introduction

Isogeometric analysis (IgA) was introduced in [12], aiming to improve the connec-
tion between computer aided design (CAD) and finite element (FEM) simulation. In
IgA, as in CAD software, B-splines and non-uniform rational B-splines (NURBS)
are used for representing both the geometrical objects of interest and the solution of
the partial differential equation (PDE) to be solved.

In IgA, mostly B-splines or NURBS of maximum smoothness are used, i.e.,
having a spline degree of p, the functions arep−1 times continuously differentiable.
Using such a function space, one obtains on the one hand the approximation power
of high order functions, while on the other hand, unlike in standard high-order FEM,
one does not suffer from a growth of the number of degrees of freedom.

From the computational point of view, the treatment of the linear systems arising
from the discretization with high spline degrees is still challenging as the condition
number both of mass and stiffness matrices grows exponentially with the spline
degree. In the early IgA literature, finite element solvers have often been transferred
to IgA with only minimal adaptations. Numerical experiments indicate that such
approaches result in methods that work well for small spline degrees, but their
performance deteriorates as the degree is increased, often dramatically. In [10, 11],
the author and his coworkers have proposed multigrid methods which are provable
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robust in the polynomial degree and the grid size. Numerical experiments indicated
that the proposed approach of subspace corrected mass smoothers seems to pay
off (compared to multigrid methods with a standard Gauss-Seidel smoother) for
polynomial degrees of four or five.

In the present paper, we discuss the extension of the subspace corrected mass
smoothers beyond the case of the Poisson problem to the Stokes flow problem.
Unlike for the Poisson problem, for the Stokes problem already the setup of a stable
isogeometric discretization is non standard. As there have already been results in the
literature, we refer to [5], which serves as a basis of the present paper. Alternative
approaches can be found in [2, 6, 8] and others. After introducing discretizations,
we discuss the setup of the preconditioner.

For the Poisson problem, the multigrid solver has been applied directly and as
a preconditioner for the conjugate gradient method. For the case of a non-trivial
geometry transformation, in [10] a conjugate gradient method, preconditioned with
the multigrid method for the parameter domain, has been used. It has been shown
that in this case the resulting method is robust both with respect to the grid size and
the polynomial degree, but not in the geometry transformation.

There are a few approaches how to carry this over to the Stokes equations. The
first possibility is to apply the multigrid method directly to the problem of interest
(all-at-once multigrid method), cf. [16] for a particularly popular method in standard
FEM or [13] for a survey. As the results for the Poisson problem have indicated that
a direct application of the multigrid method in the presence of a non-trivial geometry
transformation is not optimal, we do not concentrate on that case.

We therefore consider a Krylov space method with an appropriate preconditioner,
living on the parameter domain. In principle, this could be the Stokes problem on
the physical domain, but such a choice (an indefinite preconditioner for an indefinite
problem) typically requires the use of a GMRES method, the convergence of which
is less well understood than that of the minimal residual algorithm, cf. [9]. So,
we consider elliptic preconditioners, particularly block-diagonal preconditioners.
As the Stokes equations are well-posed in H 1 (velocity) and L2 (pressure),
we just setup preconditioners for those spaces (operator preconditioning). Since
the subspace corrected mass smoothers suffer significantly from the geometry
transformation, we propose a variant (by incorporating an approximation to the
geometry transformation) which led to a significant speedup in several experiments.

As alternative Stokes solvers in IgA, we want to mention overlapping Schwarz
approaches, cf. [1], and BDDC approaches, cf. [15], which also yield robustness in
the spline degree for certain configurations (like generous overlap or the choice of
C0 regularity across the subdomain interfaces).

This paper is organized as follows. We will introduce the particular model
problem in Sect. 2 and discuss three kinds of discretizations for the mixed system
in Sect. 3. As a next step, in Sect. 4, we propose a preconditioner. Finally, in Sect. 5,
we give the results of the numerical examples and draw some conclusions.
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2 Model Problem

LetΩ ⊆ R
2 be a simply connected domain with Lipschitz boundary ∂Ω and assume

a force field f given on Ω and boundary data given on ∂Ω . The Stokes flow model
problem reads as follows. Find the velocity field u and the pressure p such that

−Δu+ ∇p = f and ∇ · u = 0 (1)

hold on Ω and Dirichlet boundary conditions hold on ∂Ω . After homogenization,
we obtain a mixed variational form, which reads as follows. Find u ∈ V := H 1

0 (Ω)

and p ∈ Q := L2(Ω) such that

(∇u,∇v)︸ ︷︷ ︸
a(u, v)

+ (∇ · v, p)︸ ︷︷ ︸
b(v, p)

= (f, v) ∀v ∈ V, (∇ · u, q)︸ ︷︷ ︸
b(u, q)

= 0 ∀q ∈ Q.

Here, and in what follows L2(Ω), H 1(Ω) and H 1
0 (Ω) are the standard Lebesgue

and Sobolev spaces, and (·, ·) is the standard norm on L2(Ω).
Existence and uniqueness of the solution and its dependence of the data follows

from Brezzi’s theorem [3], which requires besides boundedness and H 1-coercivity
of a the inf-sup stability

inf
q∈L2(Ω)

sup
v∈H 1(Ω)

(∇ · v, q)
‖v‖H 1(Ω)‖q‖L2(Ω)

≥ C,

which is known to be satisfied for the Stokes problem, cf. [4].

3 Discretization

The discretization is done using a standard Galerkin approach, i.e., we replace the
spaces V and Q by finite-dimensional subspaces Vh and Qh. As for the continuous
problem, existence and uniqueness of the solution can be shown by Brezzi’s
theorem. Boundedness and H 1-coercivity of a follow directly from the continuous
problem, but the inf-sup stability for the discrete problem does not. Therefore, we
have to guarantee that the discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
‖vh‖H 1(Ω)‖qh‖L2(Ω)

≥ C

is satisfied, which is actually a condition on the discretization. In Sect. 3.2, we will
discuss discretizations satisfying this condition.



514 S. Takacs

Assuming a particular discretization and a basis for the chosen space, one ends
up with a linear system to be solved: For a given f

h
, find xh such that

Ah xh = f
h
, where Ah =

(
Kh D

T
h

Dh 0

)
and xh =

(
uh
p
h

)
(2)

andKh is a standard stiffness matrix andDh is a matrix representing the divergence.

3.1 Discretization in Isogeometric Analysis

Let Sqp,h be the space of all q times continuously differentiable functions on (0, 1),
which are piecewise polynomials of degree p on a (uniform) grid of size h = 1/n.
As a basis for Sqp,h we choose the classical basis of B-splines, see, e.g., [7].

For the computational domains Ω ⊂ R
2, we first define the spline spaces for

the parameter domain Ω̂ = (0, 1)2. On the parameter domain, we introduce the
space of tensor-product splines, Sq1,q2

p1,p2,h
:= S

q1
p1,h

⊗Sq2
p2,h

, whereA⊗B denotes the
linear span of all functions (x, y) �→ u(x)v(y), where u ∈ A and v ∈ B. Note that
the restriction to two dimensions and to a uniform grid is only for ease of notation.
The extension to three and more dimensions or to non-uniform grids is completely
straight-forward. Assuming that physical domain Ω is the image of a B-spline or
NURBS mapping

G : Ω̂ = (0, 1)2 → Ω,

we define the spline spaces on the physical domain typically using a classical pull-
back principle. More complicated domains are represented patch-wise, where for
each patch a separate geometry transformation G exists. For simplicity, we do not
discuss that in the present paper.

3.2 Stable Discretizations for the Stokes Problem

As mentioned above, we are required to set up the discretization such that the
discrete inf-sup condition holds. We discuss this first for the parameter domain.
Here, we follow the outline of the paper [5], where three spline space configurations
have been proposed, which are variants of known stable spaces from standard finite
elements: Taylor-Hood like splines X̂(TH)

h , Nédélec like splines X̂(NE)
h and Raviart-

Thomas like splines X̂(RT)
h . All of them utilize the same grid for both the velocity

and the pressure, which makes the implementation significantly easier compared to
approaches that are based on setting up two different grids (like IgA-variants of the
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macro elements as proposed in [2]). All of these discretizations follow the spirit
of IgA, allowing to freely choose the underlying polynomial degree p. For all of
them, the smoothness is on the order of the polynomial degree, which preserves
the feature that the number of degrees of freedom is basically not increased when
the polynomial degree is increased. For the case of two dimensions, the spaces are
given by

X̂
(TH)
h := V̂

(TH)
h × Q̂h, V̂

(TH)
h := S

p−1,p−1
p+1,p+1 × S

p−1,p−1
p+1,p+1 ,

X̂
(NE)
h := V̂

(NE)
h × Q̂h, V̂

(NE)
h := S

p,p−1
p+1,p+1 × S

p−1,p
p+1,p+1,

X̂
(RT)
h := V̂

(RT)
h × Q̂h, V̂

(RT)
h := S

p,p−1
p+1,p × S

p−1,p
p,p+1 , Q̂h := S

p−1,p−1
p,p ,

where A × B := {(a, b) : a ∈ A, b ∈ B}. Observe that these spline spaces are
nested, i.e., we have V̂ (RT)

h ⊂ V̂
(NE)
h ⊂ V̂

(TH)
h and (for n >> p) a ratio of 9:5:3

for the number of degrees of freedom. The extension of these definitions to three
dimensions is straight-forward, cf. [5].

For all of these settings, the discrete inf-sup condition has been shown in [5]. For
the Raviart-Thomas like splines, the discrete inf-sup condition has not been proven
if Dirichlet boundary conditions are present. As the method still seems to work well
in practice, we include also the Raviart-Thomas discretization in our experiments.

The next step is to introduce the discretization on the physical domain. As
outlined in the beginning of this section, the discretization, once introduced on
the parameter domain, is typically defined on the physical domain just by direct
composition:

V
(X,D)
h := {vh | vh ◦G ∈ V̂ (X)h }, X ∈ {TH,NE,RT}.

For the Stokes problem, as an alternative, the divergence preserving Piola transform
has been proposed:

V
(X,P)
h :=

{
vh

∣∣∣∣ 1

det JG
JG vh ◦G ∈ V̂ (X)h

}
, X ∈ {TH,NE,RT},

where JG is the Jacobi matrix of G. The pressure distribution, which is a
scalar quantity, is always mapped directly, i.e., in all cases we choose the direct
composition

Qh := {qh | qh ◦G ∈ Q̂h}.

In [5], the inf-sup stability has been shown if the Piola transform is used and for the
Taylor-Hood like splines also if the direct composition is used. Again, we report also
on the numerical results for the cases that are not covered by the convergence theory
(direct composition for the Nédélec like and the Raviart-Thomas like splines).
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4 Robust Multigrid Solvers

As outlined in the introduction, the multigrid preconditioner aims to represent the
theoretical block-diagonal preconditioner Qh := diag(Kh, β−1Mh) where Kh is
the stiffness matrix, Mh is the mass matrix and β > 0 is an scaling parameter,
accordingly chosen. As mentioned above and as discussed in detail in [10], we
use as preconditioner for the problem on the physical domain the corresponding
preconditioner, say Q̂h, on the parameter domain. There, the matrices Mh and Kh
are replaced by M̂h and K̂h, their counterparts on the parameter domain. Note that
the stiffness matrix acts on the velocity variable, a vector-valued quantity, and that
this matrix is block-diagonal on the parameter domain and, iff the direct composition
is used, on the physical domain. In all cases, Kh and K̂h are spectrally equivalent.

Instead of an exact inverse of the matrix Q̂h, we only need to realize an
approximation to the application of K̂−1

h and M̂−1
h to any given vector. The

approximation of K̂−1
h is realized using one multigrid V-cycle with one pre- and

one post-smoothing step of the subspace corrected mass smoother, as proposed
in [10]. There, the algorithm was analyzed only for the case of splines of maximum
smoothness, however it can be applied for any spline space and robustness in the
polynomial degree can be guaranteed by a slight extension of the presented theory as
long as the smoothness is on the order of the polynomial degree. As in the previous
publications [10, 11], the grid hierarchy is set up for a fixed polynomial degree and
a fixed smoothness by just uniformly refining the grid. Using this approach, one
obtains nested spaces, so the setup of the coarse-grid correction is trivial.

One of the key observations which was leading to the results in [10, 11] was
that the spectral equivalence of the mass matrix and its diagonal deteriorates if
p is increased. This has also to be taken into account when constructing the
preconditioner for the pressure variable. Analogously to the smoother, we realize
the application of M̂−1

h exactly, based on the tensor-product structure of the mass
matrix.

The preconditioner is symmetric and positive definite and can therefore be
applied in the framework of a MINRES iteration.

5 Numerical Results

The numerical experiments have been performed using the C++ library G+SMO,
see [14], both for the unit square, i.e., for a problem without geometry transfor-
mation, and for a quarter annulus {(x, y) ∈ R

2+ : 1 < x2 + y2 < 4}. For both
problems, the problem has been constructed (with inhomogeneous right-hand-side
and inhomogeneous Dirichlet boundary conditions) such that the exact solution is

uh(x, y) =
(

cos(5x + 5y)+ sin(5x − 5y)
−1 − cos(5x + 5y)+ sin(5x − 5y)

)
,

and ph(x, y) = −(1 + x)(1 + y)+ c, where c is chosen such that
∫
Ω
ph dx = 0.
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Table 1 Iteration counts for the unit square

Taylor-Hood Nédélec Raviart-Thomas

� � �

p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 55 54 49 46 80 74 68 55 44 36 35 29

6 54 58 53 51 76 76 70 63 44 37 36 32

7 54 54 54 53 76 76 71 65 45 37 33 29

8 50 51 55 OoM 71 71 67 65 41 37 33 29

MINRES, preconditioned with standard GS-MG

5 64 167 >1k >1k 84 213 >1k >1k 124 219 >1k >1k

In Table 1, we report on the number of MINRES steps required for reducing the
initial error (measured in the �2-norm of the solution vector) by a factor of 10−6;
cases where the memory was not enough are indicated with OoM. We report on all
discretization schemes proposed. The need of the discussion of p-robust methods
is easily observed when looking at the results for a standard preconditioner: We
display the results if one multigrid V-cycle with Gauss-Seidel smoother is used for
the velocity and one symmetric Gauss-Seidel sweep is used for the pressure (GS-
MG). There, the number of iterations increases drastically if p is increased. As the
approach is perfectly robust in the grid size h = 2�, we omit the numbers for finer
grids. Compared to that approach, the preconditioner proposed in Sect. 4 (SCMS-
MG) led to results which are robust both in the grid size and the polynomial degree
and which works well for all discretizations. Although the iteration numbers are
smaller than for the GS-MG preconditioner, one has to consider that the costs of
the SCMS-MG preconditioner are significantly higher than those of the GS-MG
preconditioner, so the proposed method only pays off if higher polynomial degrees
(starting from 4 or 5) are considered. We have chosen β = 0.05 and as damping
parameter σ of the underlying smoother, cf. [10], either σ−1 = 0.04 ĥ2 (for Taylor-
Hood and Nédélec) or 0.16 ĥ2 (for Raviart-Thomas), where ĥ is the grid size on the
parameter domain. While some of the numbers might be improved by fine-tuning
the parameters, the given tables for reasonable uniform choices show what one can
expect for each of the methods.

In Table 2 we see how well the computed solution approximates the exact
solution in the L2-norm. Here, we have used the abovementioned solver, where the
stopping criterion has been chosen to reach either a relative error of 10−10 or 100
iterations. We present the error between the computed solution and the known exact
solution (for the pressure after projecting into the space of functions with vanishing
mean). We observe that, for the same choice of the polynomial order p and the
same grid size, the Taylor-Hood discretization yields the smallest errors, at the cost
of the largest number of degrees of freedom. For the Raviart-Thomas discretization
(where the inf-sup condition cannot be shown for the chosen Dirichlet boundary
conditions), we observe that the error for the velocity converges, while the error
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Table 2 Problem size and L2-errors for the unit square

Taylor-Hood Nédélec Raviart-Thomas

p � dof v p dof v p dof v p

2 4 2372 2e−5 1e−5 1637 2e−5 4e−5 869 3e−4 3e−2

5 9348 1e−6 6e−7 6341 1e−6 4e−5 3269 3e−5 2e−2

6 37, 124 7e−8 4e−6 24, 965 7e−7 9e−5 12, 677 7e−6 2e−2

7 147, 972 2e−8 7e−7 99, 077 8e−7 1e−4 49, 925 3e−6 2e−2

5 4 2891 2e−9 4e−8 2066 6e−8 2e−6 1202 9e−7 6e−3

5 10, 347 2e−9 1e−7 7154 8e−8 5e−6 3890 1e−6 3e−3

6 39, 083 3e−9 2e−7 26, 546 9e−7 2e−4 13, 876 6e−7 3e−3

7 151, 951 7e−9 4e−7 102, 194 2e−6 3e−4 52, 274 6e−7 4e−3

Table 3 Iteration counts for the quarter annulus (direct composition)

Taylor-Hood Nédélec Raviart-Thomas

� � �

p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 195 190 185 172 257 246 244 206 244 139 128 116

6 208 217 213 199 295 296 280 241 192 170 142 129

7 220 222 232 219 329 330 314 281 213 195 158 140

8 231 239 244 OoM 333 342 333 306 223 200 168 149

MINRES, preconditioned with SCMS-MG-geo

5 72 69 68 72 69 69 65 63 73 62 53 56

6 77 75 73 79 76 74 64 70 71 69 59 63

7 72 71 70 84 79 70 68 74 75 74 64 69

8 74 73 72 OoM 73 73 71 78 71 70 68 74

MINRES, preconditioned with standard GS-MG

5 70 173 >1k >1k 110 225 >1k >1k 182 220 >1k >1k

of the pressure stagnates at around 10−2. Observe moreover that for p = 5, the
approximation on the coarsest grid was fine enough such that the approximation
error could not be improved by refinement.

For the case of the quarter annulus, we distinguish between the results obtained
by the direct composition (Table 3) and for the Piola transform (Table 4). Again,
we obtain first that GS-MG is robust in h, but that the convergence deteriorates if
the polynomial degree grows. As it leads to better results, we have set up the GS-
MG on the physical domain. For the proposed SCMS-MG preconditioner, observe
that the results behave similar to those for the unit square, however the iteration
counts are much larger, particularly if the Piola transform is used. For the direct
composition, it is possible to improve the convergence significantly by replacing
the mass and stiffness matrix on the parameter domain by a simple tensor-rank-one
approximation of those matrices on the physical domain (SCMS-MG-geo). Note that
the tensor-rank-one approximation does not lead to any additional computational
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Table 4 Iteration counts for the quarter annulus (Piola transform)

Taylor-Hood Nédélec Raviart-Thomas

� � �

p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 331 331 338 317 288 313 332 305 480 309 295 300

6 407 400 402 371 361 387 405 374 368 344 323 299

7 452 455 455 450 413 450 476 476 418 395 367 341

8 487 485 500 OoM 458 494 556 568 441 438 411 361

MINRES, preconditioned with standard GS-MG

5 70 165 >1k >1k 69 164 >1k >1k 206 199 >1k >1k

costs after the assembling phase. The extension of such a rank-one geometry
approximation to the Piola transform is not yet known. For the original SCMS-
MG preconditioner, we have chosen β and σ as for the first model problem. Just
for the Raviart-Thomas smoother for the case with Piola transformation, we have
chosen β = 0.0025. For the rank-one corrected version, we have chosen β = 0.01;
the damping has been chosen based on approximations of constants of the inverse
inequality.

As in the case of standard finite elements, there are several possibilities to
discretize the mixed formulation of the Stokes equations. Our experiments indicate
that it might pay off to use the (in terms of degrees of freedom) more expensive
variant of Taylor Hood discretizations than the other variants, particularly because
it is known that discretization also works for direct composition. The p-robust
smoothers which we have proposed for the Poisson problem can be carried over
also to the Stokes flow problem, however it seems that a further study is necessary
concerning its application in the framework of non-trivial geometry transformations.
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A Smoother Based on Nonoverlapping
Domain Decomposition Methods
for H(div) Problems: A Numerical Study

Susanne C. Brenner and Duk-Soon Oh

1 Introduction

LetΩ be a bounded domain in R3 andH0(div;Ω) be the space of square integrable
vector fields onΩ that have square integrable divergence inΩ and vanishing normal
components on ∂Ω (cf. [7]). In this paper we consider a multigrid method for the
following problem: Find u ∈ H0(div;Ω) such that

a(u, v) = (f , v) ∀ v ∈ H0(div;Ω), (1)

where

a(w, v) = α(div w, div v)+ β(w, v), (2)

and (·, ·) is the inner product on L2(Ω) (or [L2(Ω)]3). We assume that f ∈
[L2(Ω)]3 and α and β are positive. Unlike the scalar elliptic equation case, multigrid
methods for the problem (1) with simple smoothers do not work. We need a special
treatment for the smoother. In [2–4, 9], an overlapping domain decomposition
preconditioner was employed in the construction of the smoother.
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Our goal is to develop multigrid methods in the same spirit but using nonoverlap-
ping domain decomposition preconditioners instead, which reduce the dimensions
of the subproblems that have to be solved. We note that other multigrid methods for
H(div) were investigated in [8, 10].

Applications of fast solvers for H(div) problems are discussed for example in
[2, 11–13, 16]. In particular the multigrid method in this paper can be applied to
a mixed method for second order partial differential equations based on a first-
order system least-squares formulation [2, 6], which is equivalent to our model
problem. It can also be used as an effective preconditioner for H(div) problems
with variable coefficients. The model problem also arise in Reissner-Mindlin plates
[1] and Brinkman equations [15].

In [5], there are similar ingredients and convergence analysis for the convex
domain and the constant coefficient case. In this paper, we mainly focus on the
numerical study that is not covered by the theory in [5].

The rest of this paper is organized as follows. We present the standard discretiza-
tion of (1) by the lowest order Raviart-Thomas hexahedral element in Sect. 2.
We next introduce the V -cycle multigrid method in Sect. 3. Finally, numerical
experiments are presented in Sect. 4.

2 The Discrete Problem

Let Th be a hexahedral triangulation of Ω . The lowest order Raviart-Thomas
H(div) conforming finite element space [14] is denoted by Vh. A vector field v

belongs to Vh if and only if it belongs to H0(div;Ω) and takes the form

⎡
⎣a1

a2

a3

⎤
⎦ +

⎡
⎣b1x1

b2x2

b3x3

⎤
⎦

on each hexahedral element, where the ai’s and bi’s are constants. On each
hexahedral element T the vector field v is determined by the six degrees of freedom
defined by the average of the normal component on each face. The discrete problem
for (1) is to find uh ∈ Vh such that

a(uh, v) =
∫
Ω

f · v dx ∀ v ∈ Vh. (3)

In the multigrid approach we solve (3) on a sequence of triangulations
T0,T1, . . ., where T0 is an initial triangulation of Ω by hexahedral elements
and Tk (k ≥ 1) is obtained from Tk−1 by uniform subdivision. We will denote the
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lowest order Raviart-Thomas finite element space associated with Tk by Vk. The
k-th level discrete problem is to find uk ∈ Vk such that

a(uk, v) = (f , v) ∀ v ∈ Vk.

Let Ak : Vk −→ V ′
k be defined by

〈Akw, v〉 = a(w, v) ∀ v,w ∈ Vk, (4)

where 〈·, ·, 〉 is the canonical bilinear form on V ′
k ×Vk . We can then rewrite the k-th

level discrete problem as

Akuk = fk, (5)

where fk ∈ V ′
k is defined by

〈fk, v〉 = (f , v) ∀ v ∈ Vk.

Multigrid methods are optimal order iterative methods for equations of the form

Akz = g (6)

that includes (5) as a special case.

3 A V -Cycle Multigrid Method

Since the finite element spaces are nested, we can take the coarse-to-fine operator
Ikk−1 : Vk−1 −→ Vk to be the natural injection. The fine-to-coarse operator Ik−1

k :
V ′
k −→ V ′

k−1 is then defined by

〈Ik−1
k �, v〉 = 〈�, I kk−1v〉 ∀ � ∈ V ′

k, v ∈ Vk−1. (7)

We will use a smoother of the form

znew = zold +M−1
k (g − Akzold) (8)

for Eq. (6), where M−1
k : V ′

k −→ Vk is a nonoverlapping domain decomposition
preconditioner defined below.
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3.1 A Nonoverlapping Domain Decomposition Preconditioner

To conform with standard terminology in domain decomposition, in this subsection
we will denote Tk−1 by TH and Tk by Th. (Thus each element in TH is partitioned
into eight elements in Th.) The spaces Vk−1 and Vk are denoted by VH and
Vh respectively. The preconditioner M−1

k in (8) is denoted by M−1
h here. It is

constructed by substructuring.
For each element T ∈ TH , we define the twelve dimensional subspace V Th of Vh

by

V Th = {v ∈ Vh : v = 0 on Ω \ T }. (9)

The natural injection from V Th into Vh is denoted by JT and the operator AT :
V Th −→ (V Th )

′ is defined by

〈ATw, v〉 = a(w, v) ∀ v,w ∈ V Th . (10)

Let FH be the set of the interior faces of the triangulation TH . Given any F ∈
FH that is the common face of two elements T +

F and T −
F in TH , we define the four

dimensional subspace V Fh of Vh by

V Fh = {v ∈ Vh : v = 0 on Ω \ (T −
F ∪ T +

F ) and a(v,w) = 0 ∀w ∈ (V T
−
F

h + V
T +
F

h )}.
(11)

The natural injection from V Fh into Vh is denoted by JF and the operator AF :
V Fh −→ (V Fh )

′ is defined by

〈AFw, v〉 = a(w, v) ∀ v,w ∈ V Fh . (12)

if w ∈ Vh has the same degrees of freedom as v on ∂T +
F ∪ ∂T −

F .
The subspaces associated with the elements and interior faces of TH form a

direct sum decomposition of Vh:

Vh =
∑
T ∈TH

V Th +
∑
F∈FH

V Fh , (13)

and the preconditionerM−1
h is given by

M−1
h = ηF (

∑
T ∈TH

JT A
−1
T J tT +

∑
F∈FH

JFA
−1
F J tF ), (14)
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where ηF is a damping factor and J tT : V ′
h −→ (V Th )

′ (resp. J tF : V ′
h −→ (V Fh )

′) is
the transpose of JT (resp. JF ) with respect to the canonical bilinear forms.

3.2 The kth Level V -Cycle Multigrid Algorithm

The output MG(k, g, z0,m) of the kth level (symmetric) multigrid V -cycle algo-
rithm for (6), with initial guess z0 ∈ Vk and m smoothing steps, is defined by the
following recursive steps:

For k = 0, the output is obtained from a direct method:

MG(0, g, z0,m) = A−1
0 g.

For k ≥ 1, we set

zl = zl−1 +M−1
k (g − Akzl−1) for 1 ≤ l ≤ m,

g = Ik−1
k (g − Akzm) ,

zm+1 = zm + Ikk−1MG(k − 1, g, 0,m) ,

zl = zl−1 +M−1
k (g − Akzl−1) for m+ 2 ≤ l ≤ 2m+ 1.

The output of MG(k, g, z0,m) is z2m+1.

Remark 1 Given � ∈ V ′
k, the cost of computing M−1

k � is O(nk), where nk is the
dimension of Vk . Therefore the overall cost for computingMG(k, g, z0,m) is also
O(nk).

If the domain Ω is convex, we have the following convergence theorem:

Theorem 1 If z ∈ Vk and g ∈ V ′
k satisfy Akz = g, then we have

‖z −MG(k, g, z0,m)‖a ≤ C

C + 2m
‖z − z0‖a ∀ k ≥ 1,

where ‖ · ‖2
a = a(·, ·).

Due to space restriction, a detailed analysis will not be reported here. Further details
are provided in [5].
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4 Numerical Results

4.1 Jump Coefficient

In the first experiment we consider (1) on the unit cube Ω = (0, 1)3. We apply
multigrid algorithms with smoothers introduced in Sect. 3.1. The damping factor
ηF is taken to be 1/11. The initial triangulation T0 consists of eight identical cubes
and we use the coefficients α and β that have jumps across the interface between
the sub-cubes with a checkerboard pattern as in Fig. 1. We estimate the contraction
numbers of the kth level V -cycle multigrid method for k = 1, . . . , 5 and for m
smoothing steps, where m = 1, . . . , 6. We report the contraction numbers obtained
by computing the largest eigenvalue of the error propagation operators. The results
are presented in Table 1. The uniform convergence of the V -cycle multigrid methods
for m ≥ 1 is clearly observed and the method is not sensitive to the jumps of
coefficients.

4.2 Nonconvex Domain

In the second numerical experiment we report the results for our model problem (1)
on the nonconvex domainΩ = (0, 1)3\([1/2, 1]3). We use the constant coefficients
α = 1 and β = 1 and other general settings are quite similar to those of Sect. 4.1.
The results are presented in Table 2. It is observed that the method provides a
uniform convergence of the V cycle multigrid. However, the contraction numbers
are generally larger that those of the convex domain (Fig. 2).

Fig. 1 Checkerboard
distribution of the coefficients
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Table 1 Contraction numbers of the V -cycle multigrid method for the unit cube

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

αb = 0.01, βb = 100, αw = 1, βw = 1

k = 1 8.3e−1 6.8e−1 4.7e−1 2.2e−1 5.1e−2 4.7e−3

k = 2 9.0e−1 8.2e−1 7.1e−1 5.1e−1 3.2e−1 2.7e−1

k = 3 9.3e−1 8.8e−1 7.9e−1 6.4e−1 5.2e−1 4.7e−1

k = 4 9.3e−1 9.0e−1 8.4e−1 7.2e−1 6.4e−1 6.0e−1

k = 5 9.3e−1 9.0e−1 8.6e−1 7.8e−1 6.9e−1 6.9e−1

αb = 0.1, βb = 10, αw = 1, βw = 1

k = 1 8.7e−1 7.7e−1 6.0e−1 3.8e−1 2.1e−1 8.1e−2

k = 2 9.1e−1 8.4e−1 7.1e−1 5.4e−1 3.6e−1 2.8e−1

k = 3 9.2e−1 8.7e−1 7.8e−1 6.4e−1 5.2e−1 4.7e−1

k = 4 9.3e−1 9.0e−1 8.4e−1 7.4e−1 6.5e−1 6.0e−1

k = 5 9.4e−1 9.1e−1 8.7e−1 8.0e−1 7.2e−1 6.9e−1

αb = 1, βb = 1, αw = 1, βw = 1

k = 1 9.1e−1 8.3e−1 7.1e−1 5.0e−1 3.1e−1 2.3e−1

k = 2 9.2e−1 8.7e−1 7.9e−1 6.3e−1 5.0e−1 4.3e−1

k = 3 9.3e−1 9.0e−1 8.4e−1 7.4e−1 6.3e−1 5.8e−1

k = 4 9.4e−1 9.1e−1 8.7e−1 8.0e−1 7.1e−1 6.7e−1

k = 5 9.4e−1 9.2e−1 8.8e−1 8.2e−1 7.5e−1 7.2e−1

αb = 10, βb = 0.1, αw = 1, βw = 1

k = 1 9.0e−1 8.4e−1 7.0e−1 4.9e−1 3.3e−1 2.8e−1

k = 2 9.2e−1 8.9e−1 7.9e−1 6.4e−1 5.2e−1 4.7e−1

k = 3 9.4e−1 9.1e−1 8.4e−1 7.4e−1 6.4e−1 6.0e−1

k = 4 9.4e−1 9.1e−1 8.6e−1 8.0e−1 7.3e−1 6.8e−1

k = 5 9.4e-1 9.2e−1 8.9e−1 8.2e−1 7.6e−1 7.4e−1

αb = 100, βb = 0.01, αw = 1, βw = 1

k = 1 9.1e−1 8.4e−1 7.1e−1 5.1e−1 3.3e−1 2.9e−1

k = 2 9.3e−1 8.9e−1 7.9e−1 6.5e−1 5.2e−1 4.8e−1

k = 3 9.3e−1 9.1e−1 8.5e−1 7.4e−1 6.4e−1 6.0e−1

k = 4 9.4e−1 9.2e−1 8.8e−1 8.0e−1 7.1e−1 6.9e−1

k = 5 9.4e−1 9.3e−1 9.0e−1 8.4e−1 7.7e−1 7.5e−1

αb and βb for the black subregions and αw and βw for the white subregions as indicated in a
checkerboard pattern as in Fig. 1

Table 2 Contraction numbers of the V -cycle multigrid method for the non-convex domain as in
Fig. 2 with α = 1, β = 1

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

k = 1 9.3e−1 9.0e−1 8.2e−1 6.9e−1 5.5e−1 4.6e−1

k = 2 9.5e−1 9.2e−1 8.5e−1 7.7e−1 6.8e−1 6.3e−1

k = 3 9.6e−1 9.2e−1 8.8e−1 8.2e−1 7.7e−1 7.3e−1

k = 4 9.6e−1 9.3e−1 8.9e−1 8.5e−1 8.0e−1 7.8e−1

k = 5 9.6e−1 9.3e−1 9.0e−1 8.7e−1 8.4e−1 8.2e−1
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Fig. 2 Nonconvex domain
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Optimized Schwarz Method for Poisson’s
Equation in Rectangular Domains

José C. Garay, Frédéric Magoulès, and Daniel B. Szyld

1 Introduction

Classical Schwarz methods are Domain Decomposition (DD) methods in which
the transmission conditions between subdomains are Dirichlet boundary conditions.
Optimized Schwarz methods are DD methods in which the transmission conditions
are chosen in such a way as to improve the convergence rate with respect to the clas-
sical method [2, 3, 5]. These transmission conditions are optimized approximations
of the optimal transmission conditions, which are obtained by approximating the
global Poincaré-Steklov operator by local differential operators. There is more than
one family of transmission conditions that can be used for a given PDE , each of
these families consisting of a particular approximation of the optimal transmission
conditions. For example, for the problem involving Poisson’s equation, we have
OO0 and OO2 family of transmission conditions. TheOO0 family of transmission
conditions is obtained by using the zero-th order approximation of the Poincaré-
Steklov operator, i.e., it is approximated by a constant α, which leads to have Robin
boundary conditions on the artificial boundaries. The OO2 family of boundary
conditions involves the use of a differential operator that is a linear combination
of the normal derivative and tangential second derivatives.

Optimized Schwarz methods (OSM) are fast methods in terms of iteration count
when they are used as outer solvers. In [1] it is shown that OSM (as outer solvers)
are faster than GMRES preconditioned with a classical Schwarz preconditioner.
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Also, in parallel computations, OSM requires much less communications between
processes in comparison to Krylov methods. Given that communication dominates
the execution time of solvers in current supercomputer architectures and will also
do so in the upcoming exascale supercomputers, OSM has the potential to be a very
good method for solving problems arising from the discretization of PDEs.

In this paper we analyze the convergence properties of OSM applied as solvers
for Poisson’s Equation in a bounded rectangular domain with Dirichlet (physical)
boundary conditions and Robin transmission conditions. To our knowledge, this is
the first time an analysis of convergence of Optimized Schwarz applied to a problem
defined in a bounded domain and with arbitrary number of subdomains forming a
2D array (i.e., containing cross points) is presented.

2 Equations of OSM for Poisson’s in Rectangular Domain
for the OO0 Case

We want to solve Poisson’s equation in a rectangular domain subject to nonhomo-
geneous Dirichlet boundary conditions, i.e.,

{−Δu = f in Ω,
u = g on ∂Ω.

(1)

whereΩ = [0, L1] × [0, L2].
We divide the physical domain into p × q overlapping rectangular subdomains.

To simplify the presentation, we consider square subdomains where each side is of
length H and the same overlap on each side, but the analysis presented here is also
valid for arbitrary rectangles and arbitrary overlaps. Each of these subdomains is
represented by a pair of indexes, (s, r), with s ∈ {1, . . . , p} and r ∈ {1, . . . , q}.
Let h be the length of the side of each subdomain as if it were a partition with no
overlap. Let us now displace (outward) each of the boundaries of the nonoverlapping
subdomains by an amount γ . We have then overlapping square subdomains with
side H = h + 2γ and can use γ as a parameter to quantify the amount of
overlap between subdomains. The Optimized Schwarz iteration process associated
with problem (1) and with OO0 transmission conditions is defined, for an interior
subdomain (i.e., for 1 < s < p, 1 < r < q ), by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu
(s,r)
n+1 = f in Ω(s,r)

− ∂u
(s,r)
n+1
∂x

+ αu
(s,r)
n+1 = − ∂u

(s−1,r)
n

∂x
+ αu

(s−1,r)
n for x = (s − 1)h− γ

∂u
(s,r)
n+1
∂x

+ αu
(s,r)
n+1 = ∂u

(s+1,r)
n

∂x
+ αu

(s+1,r)
n for x = sh+ γ

− ∂u
(s,r)
n+1
∂y

+ αu
(s,r)
n+1 = − ∂u

(s,r−1)
n

∂y
+ αu

(s,r−1)
n for y = (r − 1)h− γ

∂u
(s,r)
n+1
∂y

+ αu
(s,r)
n+1 = ∂u

(s,r+1)
n

∂y
+ αu

(s,r+1)
n for x = rh+ γ,

(2)
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where ∂
∂x

and ∂
∂y

are, in this instance, normal derivatives and u(s,r)n+1 is the approxima-

tion of the solution of the problem (1) at the (n+1) iteration inΩ(s,r). The parameter
α is the one which we want to tune to optimize the convergence rate of the method.
Note that α = 0 would reduce the problem to pure Neuman boundary conditions
and therefore this case is not allowed. The subdomains touching the boundary have
one or two boundaries that are actually physical (not artificial) boundaries. The
equations for the subdomains touching the boundary are similar to (2) with the
exception that one or two of the boundary conditions are Dirichlet, namely, the ones
associated to the physical boundaries.

3 Recasting Equations as an Equivalent Fixed Point Iteration

By linearity, we can see that the local error (of interior subdomains) of the iteration
process is described by (2) with f = 0. Similar equations can be obtained for
subdomains touching the boundary. Using separation of variables, Sturm-Liouville
theory and superposition principle, we can write the local errors in the form of a
series [4]. Then, using the non-homogeneous boundary conditions in each local
problem, we obtain a relationship between the error series coefficients at iteration
(n+ 1) and the ones at iteration n.

3.1 Fourier Analysis of Solution of PDEs Defining the Local
Error

We analyze the local error of an interior subdomain, but the same analysis holds
for subdomains touching the boundary. Let η(s,r)n be the local error in Ω(s,r) at the
iteration n. By superposition principle, we can write η(s,r)n = η

(s,r)
n,1 +η(s,r)n,2 +η(s,r)n,3 +

η
(s,r)
n,4 , where η(s,r)n,i , i = 1, . . . , 4, is the solution of (2) with f = 0, and with one

non-homogeneous boundary condition and the rest homogeneous. Then, each part
of the local error η(s,r)n can be written as:

η
(s,r)
n,1 (x�, y�) =

∞∑
m=1

A
(s,r)
n,m,1φm(x�)ψm(H − y�) (3)

η
(s,r)
n,2 (x�, y�) =

∞∑
m=1

A
(s,r)
n,m,2φm(y�)ψm(x�) (4)
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η
(s,r)
n,3 (x�, y�) =

∞∑
m=1

A
(s,r)
n,m,3φm(x�)ψm(y�) (5)

η
(s,r)
n,4 (x�, y�) =

∞∑
m=1

A
(s,r)
n,m,4φm(y�)ψm(H − x�), (6)

where φm(x�) = ᾱ
zm

sin
(
zmx�
H

) + cos
(
zmx�
H

)
and ψm(x�) = ᾱ

zm
sinh

(
zmx�
H

) +
cosh

(
zmx�
H

)
, with zm satisfying the transcendental equation

tan(z) = 2zᾱ

ᾱ2 − z2 ,

ᾱ = αH , and x� and y� are local coordinates related to the global coordinates x and
y given by

x� = x − (s − 1)h+ γ

y� = y − (r − 1)h+ γ. (7)

Note that {φm}m∈N is a complete orthogonal set in [0,H ]. Therefore, Eqs. (3) and (5)
can be seen as Generalized Fourier series in x� and Eqs. (4) and (6) as Generalized
Fourier series in y�. Then, we have that

A
(s,r)
n,m,1 =

∫ H
0 η

(s,r)
n,1 (x�, yl)

[
ᾱ
zm

sin
(
zmx�
H

) + cos
(
zmx�
H

)]
dx�[−ᾱ

zm
sinh

(
zm(y�−H)

H

)
+ cosh

(
zm(y�−H)

H

)] ∫ H
0

[
ᾱ
zm

sin
(
zmx�
H

) + cos
(
zmx�
H

)]2
dx�

.

(8)

Let β : N × R → {−1} ∪ [0, 1] such that

β(m, ᾱ) =
{−1, if zm < 1

1
2 , if zm ≥ 1

·

Then, with y� = 0 and using integration by parts in (8) we can write

A
(s,r)
n,m,1 = B

(s,r)
n,m,1

z
1+β(m,ᾱ)
m

[
ᾱ
zm

sinh
(
zm
H

) + cosh
(
zm
H

)] ,

where B(s,r)n,m,1 is uniformly bounded for all m ∈ N. The same relationship holds

between A(s,r)n,m,i and uniformly bounded quantities B(s,r)n,m,i for i ∈ {2, 3, 4}. Plugging
these equalities in (3)–(6) and applying the nonhomogeneous boundary conditions,
we obtain the expression of the coefficients at iteration (n + 1) in terms of those
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at iteration n. For example, with a normalized overlap γ̄ = γ /H , we have for a
specific index k,

B
(s,r)
n+1,k,1 =

(
zk + ᾱ2

zk

)
sinh (2γ̄ zk)+ 2ᾱ cosh (2γ̄ zk)(

zk + ᾱ2

zk

)
sinh (zk)+ 2ᾱ cosh (zk)

B
(s,r−1)
n,k,1

+
∞∑
m=1

⎧⎨
⎩

4z4+β(k,ᾱ)
k

[
ᾱ
zk

tanh(zk)+ 1
] (
zm + ᾱ2

zm

)
sin ((1 − 2γ̄ )zm)[(

zk + ᾱ2

zk

)
tanh(zk)+ 2ᾱ

]
z

1+β(m,ᾱ)
m

(
zmz

3
k + zkz3

m

)

{
tanh(zm)

[
ᾱ(z2

k + z2
m) sin(zk)− zk(ᾱ

2 − z2
m) cos(zk )

] + zm(ᾱ
2 + z2

k) sin(zk)
}

[
ᾱ
zm

tanh(zm)+ 1
] [
(z2
k − ᾱ)2 sin(2zk)+ 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)
] B(s,r−1)

n,m,2

⎫⎬
⎭

+
(
−zk + ᾱ2

zk

)
sinh ((1 − 2γ̄ )zk)(

zk + ᾱ2

zk

)
sinh (zk)+ 2ᾱ cosh (zk)

B
(s,r−1)
n,k,3

+
∞∑
m=1

⎧⎨
⎩

4z4+β(k,ᾱ)
k

[
ᾱ
zk

tanh(zk)+ 1
] (
zm + ᾱ2

zm

)
sin ((1 − 2γ̄ )zm)[(

zk + ᾱ2

zk

)
tanh(zk)+ 2ᾱ

]
z

1+β(m,ᾱ)
m

(
zmz

3
k + zkz3

m

) (9)

{
tanh(zm)zk(ᾱ2 + z2

m)− zm

[
−2ᾱzk + (ᾱ2−z2

k
) sin(zk)+2ᾱzk cos(zk )

cosh(zm)

]}
[
ᾱ
zm

tanh(zm)+ 1
] [
(z2
k − ᾱ)2 sin(2zk)+ 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)
]B(s,r−1)

n,m,4

⎫⎪⎪⎬
⎪⎪⎭
.

Let Bn be the infinite vector containing all the error series coefficients at iteration n,

i.e., Bn = (bn1, bn2 , . . .) with bnj ∈
{
B
(s,r)
n,k,i : s ∈ {1, . . . , p}, r ∈ {1, . . . , q}, k ∈N,

i ∈ {1, . . . , 4}}. Then the relation between coefficients can be written as
Bn+1 = T̂ Bn, where T̂ : R

∞ → R
∞ is an infinite matrix. Note that

T̂ = (T̂ 1,1, . . . , T̂ p,q), where T̂ (s,r) is a local operator such that B(s,r)n+1 = T̂ (s,r)Bn

with B(s,r)n+1 being a vector containing all the error coefficients of the local problem
(s, r) at iteration (n+ 1).

Our main result is the following.

Theorem 1 For any positive value of the normalized overlap γ̄ there exist a
computable range of values of the normalized boundary parameter ᾱ for which
the OSM iteration given by (2) converges.

For its proof it suffices to show that each of the series in (3)–(6) converge uniformly
and that the error series coefficients tend to zero as the number of iteration goes to
infinity.



538 J. C. Garay et al.

4 Approximation of the Infinite Operator T̂ by a Matrix
of Finite Dimensions

Note that the following statements hold

1. In the r.h.s. of (9), the terms containing the coefficients B(s,r−1)
n,k,i , i = 1, 3,

decrease with k.
2. For a given n ∈ N0, B(s,r−1)

n,m,i is uniformly bounded in m ∈ N and i = 1, . . . , 4.

Moreover, B(s,r−1)
n,m,i ≤ M/zm for all m ∈ N and some M > 0.

3. For any number δ > 0 there exists a number kδ , such that for k > kδ, the sum of
the absolute values of the terms in the r.h.s. of (9) is less than δ.

4. For any number δ > 0 there exists a number mδ , such that for every k ∈ N the
sum of the absolute values of the terms in the r.h.s. of (9) corresponding to for
m > mδ is less than δ.

Let (Bn)|k≤kδ denote the vector resulting after discarding all the entries of Bn
corresponding to k > kδ. Then, based on the above three facts, we can write

(Bn+1)|k≤kδ =
(
T̂ (Bn)

)
|k≤kδ

= T̂δ

(
(Bn)|k≤kδ

)
+ ξn+1,kδ ((Bn)|k>kδ ), (10)

where T̂δ is a finite matrix obtained by discarding the rows and columns of T̂ related
to the coefficients pertaining to k > kδ , and ξn+1,kδ ((Bn)|k>kδ ) is the error obtained

by approximating (Bn+1)|k≤kδ by T̂δ
(
(Bn)|k≤kδ

)
.

We will discuss in the next section situations in which ρ(T̂δ) < 1, i.e., the spectral
radius of T̂δ is less than one. In the rest of this section we show that in addition the
error ξn+1,kδ ((Bn)|k>kδ ) tends to zero as n → ∞, and consequently Bn → 0 as
n → ∞.

A necessary condition for convergence of Optimized Schwarz is that Bn → 0
as n → ∞. Note that each entry of ξn+1,kδ ((Bn)|k>kδ ) is the truncation error that

results after truncating the series in the formulas of the coefficients B(s,r)n+1,k,i , by
keeping only the terms corresponding to k ≤ kδ. Thus, as it can be seen in (9), each
entry of ξn+1,kδ ((Bn)|k>kδ ) is just a linear combination of the entries of (Bn)|k>kδ .
Note also that the entries of (Bn)|k>kδ are linear combinations of the entries of Bn−1.
Hence, based on the four facts from above, we can choose a large enough kδ so that
the entries of (Bn+1)|k>kδ and ξn+1,kδ ((Bn)|k>kδ ) are as small as desired.

Using Eq. (10) recursively, we obtain the following equation

(Bn+1)|k≤kδ = T̂ n+1
δ ((B0)|k≤kδ )+

n+1∑
j=1

T̂
n+1−j
δ (ξj,kδ ((Bj−1)|k>kδ )). (11)
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Using (11), the four facts from above, and assuming that the spectral radius of T̂δ
is less than one and that remains practically constant for large values of kδ, it can be
shown that given a 0 < ε < 1 there exists a nε such that ||Bn||∞ ≤ ε||B0||∞ for all
n ≥ nε . Repeating this argument, we can then show that limn→∞ Bn = 0. Hence in
order to prove that Bn → 0 as n → ∞, it suffices to show that ρ(T̂δ) < 1 and that it
remains practically constant for large values of kδ. We show this in the next section.

It can be shown that the series describing the local errors converge uniformly
in Ω(s,r). This implies that if each term of the error series goes to zero as n goes
to infinity, so will do the series. Thus, given that Bn → 0 as n → ∞, i.e., the
coefficients of the error series go to zero as n goes to infinity, the error of the iterative
process converges to zero as n goes to infinity, which means that Optimized Schwarz
converges for the given Poisson’s problem for any initial error.

5 Spectral Radius of T̂δ

The spectral radius of T̂δ describes the convergence rate of the Optimized Schwarz
method. Thus, we define the optimal normalized boundary parameter ᾱ = αH as the
one which minimizes the spectral radius of T̂δ and thus gives the optimal asymptotic
convergence rate.

The values of the entries of the matrix T̂δ depend on the normalized overlap γ̄ ,
ᾱ and the truncation parameter kδ . The structure of the matrix depends on kδ, p, q
and the way we order the entries of Bn, i.e., the way we order each coefficient B(s,r)n,k,i

based on its values of s, r , k and i. For the ordering we have chosen, we computed
the spectral radius of the resulting matrix T̂δ, for γ̄ ∈ {0, 0.001, 0.01, 0.04, 0.08},
a set of values of ᾱ in the range [0.1, 500], kδ ∈ {3, 5, 10, 20, 50, 100}, and p, q ∈
{4, 5, 10, 20, 30}. In these computations we have observed the following.

1. There exist values of ᾱ for which the spectral radius of T̂δ is less than one.
2. For a given γ̄ and the range of ᾱ considered in the experiments, ρ(T̂δ) has a

local minimum, and it approaches a constant less than one for large values of ᾱ
(Fig. 1).

3. Given γ̄ , ᾱ, p and q , the value of ρ(T̂δ) remains practically constant for large
enough kδ (see Fig. 2).

4. For a given γ̄ , the optimal spectral radius of T̂δ remains practically constant as p
and q increase.

In Fig. 1, the results for the cases γ̄ = 0.001 and γ̄ = 0.01, with p, q = 10,
kδ = 20, ᾱ ∈ [1, 100], are shown.
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Fig. 1 (a) Spectral radius of T̂δ vs. ᾱ for γ̄ = 0.001, p, q = 10, kδ = 20 and ᾱ ∈ [0.1, 100]. (b)
Spectral radius of T̂δ vs. ᾱ for p, q = 10, kδ = 20, γ̄ = 0.01 and ᾱ ∈ [0.1, 100]

Fig. 2 Spectral radius of T̂δ vs. kδ for p, q = 10, γ̄ = 0.01 and ᾱ = 3.9697

6 Further Comments and Conclusion

In the case of elliptic problems with varying coefficients, the same procedure can be
applied to obtain an operator T̂ such that Bn+1 = T̂ Bn as long as the coefficients
are separable as products of one-variable functions. In this case, as well as in the
constant coefficients case, the entries of the operator T̂ depend on values and first
derivatives of φm and ψm with m ∈ N at specific points. Note that in the constant
coefficient case an explicit formula can be obtained for φm and ψm. In the varying
coefficients case, an explicit formula for φm and ψm may not always be available.
However, we can still compute values of φm and ψm and their first derivatives at
specific points using numerical methods and then use these values to compute ρ(T̂δ).
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In conclusion, we analyzed the convergence of the Optimized Schwarz method
applied to Poisson’s equation in a bounded rectangular domain subject to nonhomo-
geneous Dirichlet boundary conditions and transmission conditions of the family
OO0. The spectral radius of T̂δ can be less than one for any positive amount of
overlap. One can obtain the optimal boundary parameter that minimizes this spectral
radius. We outlined a proof showing that this bound on the spectral radius, together
with other results, can guarantee convergence of OSM for the problem studied.
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The HTFETI Method Variant Gluing
Cluster Subdomains by Kernel Matrices
Representing the Rigid Body Motions

Alexandros Markopoulos, Lubomír Říha, Tomáš Brzobohatý, Ondřej Meca,
Radek Kučera, and Tomáš Kozubek

1 Introduction

The history of the FETI (Finite Element Tearing and Interconnecting) method [4] is
longer than 20 years and over the years, numerous variants have been developed
(FETI-DP method [5, 7], T(otal)FETI method [2] etc.). The important impulse
for development of new FETI variants was given by the implementation on more
sophisticated computer architectures, where parallel processors are grouped into
clusters. From the point of view of minimal communications, it is reasonable to
copy the computer architecture into the FETI method that lead to the hybrid (two-
level) FETI methods. The FETI–FETI-DP method proposed in [6, 8] combines the
classical FETI method used on the global level with the FETI-DP method used
on the clusters. In this paper, we deal with the TFETI–TFETI method that uses
the TFETI method on both levels [1, 10]. It will be denoted as the H(ybrid)TFETI
method. The new approach presented in this paper is called HTFETIker . In this
method the gluing of subdomains (belonging to one cluster) is done using kernels
of the local subdomains. This technique accelerates iterations like in the case of the
transformation of basis discussed in [6]. In the numerical experiments we compare
HTFETIker with HTFETIcor method where the subdomains belonging to one cluster
are glued by the Lagrange multipliers (LMs) corresponding to the corner nodes.
Such method is similar to the FETI–FETI-DP method. The basic idea of the two-
level FETI method is graphically explained in the following benchmark, in which
we introduce also respective notation.
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Fig. 1 Two levels of decomposition: two clusters (C = 2), two subdomains (N = 2), three
elements (n = 3) in each space dimension

In order to simplify the presentation of the method, we use a simple cube
benchmark with a hierarchical decomposition and discretization depicted in Fig. 1.
This hierarchical decomposition and discretization consists of three levels:

– Level 1—decomposition into clusters is controlled by parameters Cx , Cy , and
Cz (numbers of clusters in x, y, and z direction). Each cluster occupies one
computational node.

– Level 2—each cluster is decomposed into the subdomains controlled by param-
eters Nx , Ny , and Nz (numbers of subdomains in x, y, and z direction).

– Level 3—each subdomain is discretized uniformly by hexahedral finite elements
handled by parameters nx , ny , nz (numbers of elements in x, y, and z direction).

If, for example, the number of clusters in all directions is the same Cx = Cy =
Cz = 2, the description in the text is simplified to C = 2. This simplified notation
is also applied to subdomainsN and elements n.

2 Cluster Constraints

2.1 Types of Subdomains-Gluing

In the following part we are going to focus on the constraints among subdomains
in the cluster. All the details of the HTFETI method and also the derivation of the
algorithm can be found in [10]. The notation used in this section relates to the same
paper.

Compared to the FETI method, in the described hybrid variant the neighboring
subdomains are grouped into clusters using additional constraints. Together, with
the commonly used joining of subdomains via corner nodes known in the FETI-
DP method, we present a new technique based on the kernels of stiffness matrices.



Simplification in the Implementation of the HTFETI Method Using Kernels of. . . 545

Fig. 2 Two-subdomain bonding, corners versus kernels: 3 forces per corner node (12 LM in
total)/3 forces and 3 moments per interface (6 LM in total)

Such an approach requires a robust algorithm for factorizing singular matrices but,
on the other hand, it simplifies implementation of the HTFETI method. Implicitly,
it enforces zero averages across the faces between the neighbouring subdomain.

For simplification, let us use the cluster consisting of two subdomains Ωj and
Ωk (see Fig. 2). The stiffness matrix of I -th cluster then will be

K̃I =
(

Kj :k B-
c,j :k

Bc,j :k O

)
=

⎛
⎜⎝

Kj O B-
c,j

O Kk B-
c,k

Bc,j Bc,k O

⎞
⎟⎠ (1)

which corresponds to Eq. (14) in [10] if interval j : k consists of j and k only.
Here, Kj and Kk are stiffness matrices, Bc,j , Bc,k are linear constraints keeping
both subdomains together, and O is a zero matrix with the appropriate size. In the
next subsections, let us explain how to choose the blocks Bc,j , Bc,k .

2.1.1 Corner Strategy—HTFETIcor Method

Using this method, Bc,j , Bc,k are signed Booleans matrices that enforce the
connectivity across the corner nodes (see Fig. 2 left). The structure is similar as
matrix of constraints in the FETI method (commonly denoted as B).

2.1.2 Kernel Strategy—HTFETIker Method

The kernel strategy glues the domainsΩj andΩk in a weaker sense using the kernel
Rj of matrix Kj . Instead of enforcing relative zero displacements in particular nodes
belonging to the interface Γjk = Ωj ∩Ωk, we prescribe constraints acting onto all
DOFs belonging to the face Γjk. The number of these constraints is determined by
the defect d of Kj (and Kk) that is d = 6 for the three-dimensional linear elasticity
problems.
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Let Qj be an appropriate permutation matrix separating Rj into two parts:

QjRj =
(

Rj,Ωj \Γjk
Rj,Γjk

)
,

where Rj,Γjk is given by the rows of Rj belonging to the interface Γjk = Ωj ∩Ωk

and Rj,Ωj \Γjk contains by the remaining rows. It is required that Rj,Γjk ∈ Rm×d ,
where m ≥ d . In the case of a three-dimensional linear elasticity problem, this
requirement is always satisfied if the common interface between two neighboring
subdomains is given by at least three nodes not lying in one line. The parameter m
is then equal to 9 (number of all degrees of freedom belonging to this set of nodes).
Then we define Bc,j and Bc,k as follows:

B-
c,j = Q-

j

(
O

Rj,Γjk

)
, B-

c,k = Q-
k

(
O

−Rj,Γjk

)
, (2)

where the permutation matrix Qk maps the rows of −Rj,Γjk (in Ωk) onto the
corresponding rows of Rj,Γjk (in Ωj ). The non-singularity of the matrices Bc,jRj

and Bc,kRk guarantees that the subdomains Ωj and Ωk are properly glued together
[9]. The gluing condition is schematically depicted in the right Fig. 2. The presented
idea can be simply extended to the clusters with more than two subdomains. The
approach is also applicable to non-singular matrices (transient problems).

2.1.3 Example: Constraints Assembled from the Analytically Computed
Kernel

Let us explain some general ideas regarding the analytical form available for kernels
in linear elasticity. Let the nodes shared by Ω i and Ωj lying on the interface
Γi,j = Ω i ∩ Ωj depicted in Fig. 3 be indexed by the set G = {1, 2, · · · , nΓi,j }.
Let the displacement vector of the g-th node xg = (xg, yg, zg) ∈ Γ i,j be denoted
ui,g = (ui,g, vi,g, wi,g) with respect to Ωi and uj,g = (uj,g, vj,g, wj,g) with

Fig. 3 Domain
decomposition of Ω body
into two subdomains Ωi and
Ωj
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respect to Ωj . It follows from the mechanical arguments that two subdomains are
kept together by three forces and three moments acting across the whole interface
Γij that avoids mutual movements and rotations. It can be achieved by zero averages
of displacements

nΓ∑
g=1

(
ui,g − uj,g

) = 0,
nΓ∑
g=1

(
vi,g − vj,g

) = 0,
nΓ∑
g=1

(
wi,g −wj,g

) = 0,

and rotations

nΓ∑
g=1

((
ui,g − uj,g

) · yg − (
vi,g − vj,g

) · xg
) = 0,

nΓ∑
g=1

((
ui,g − uj,g

) · zg − (
wi,g −wj,g

) · xg
) = 0,

nΓ∑
g=1

((
vi,g − vj,g

) · zg − (
wi,g −wj,g

) · yg
) = 0

across Γi,j . It also guarantees that the subdomains are sufficiently and optimally
bonded together with the minimal number of constraints.

Apart from the natural accelerating property, there is also another significant
feature of kernel-based Bc,i . Since its constraints enforce the equality across the
interface on average, the Dirichlet preconditioner acts on the whole interface as
well and it is completely adopted from (T)FETI method in an unchanged form.

2.2 Rank of the Cluster Constraint Matrix Bc,j :k

Sufficient mutual gluing of all cluster subdomains realized by kernels requires six
constraints per interface between two neighboring subdomains. The comparison
with the corner strategy will be shown on the cube problem. Since the matrix Bc,j :k
is always assembled without linearly dependent constraints, the rank and number of
rows are equal.

2.2.1 Academic Problem

For the sake of clarity, the cube problem is uniformly decomposed into subdomains
by setting:C = 1 andN = 2, 3, · · · , 10. Thanks to a simple cube geometry and the
uniform discretization and decomposition, we can derive the dependency between
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the number of subdomains N and the rank of the cluster matrix Bc,j :k . If the corner
strategy is used, three following situations can occur. The node is shared by two
subdomains (then it produces 3 · 1 LM), by four subdomains (3 · 3 LM) or by eight
subdomains (3 · 7 LM). In the first case, the subdomains are glued using corner
nodes, the dimension of Bc,j :k is

rank
(

Bcorc,j :k
)

= 21(N − 1)3 + 54(N − 1)2 + 36(N − 1). (3)

In the case Bc,j :k is assembled via parts of the kernels, each common interface
generates 6 LM and the dimension is

rank
(

Bkerc,j :k
)

= 18N2(N − 1). (4)

The ratio between “corner” and “kernel” case for N → ∞ is

lim
N→∞

rank
(

Bcorc,j :k
)

rank
(

Bkerc,j :k
) = 7

6
≈ 1.1667. (5)

In the numerical tests presented later we have used a variant with 1000
subdomains (N = 10) for each cluster. The kernel strategy exhibits an interesting
property because it provides fewer iterations, although in the corner strategy (in this
particular case) the matrix Bcorc,j :k contains 23.5% more constraints.

3 Numerical Test

The described algorithms were implemented into our ESPRESO (ExaScale PaRallel
FETI SOlver) package developed at IT4Innovations National Supercomputing
Center in Ostrava, the Czech Republic [3, 11].

For these computations we used facilities of IT4Innovations Czech national
supercomputing center (www.it4i.cz), namely Salomon cluster. The Salomon cluster
consists of 1008 compute nodes. Each node contains 24 core Intel Xeon E5-
2680v3 processors and 128 GB RAM. The interconnect is a 7D Enhanced hypercube
InfiniBand.

We varied the decomposition and discretization parameters on a cube benchmark
test in order to demonstrate the scalability of our method. The cube (30 mm) is
made of steel with the following parameters: Young’s modulusE = 2.1×105 MPa,
Poisson’s ratio μ = 0.3, density ρ = 7850 kg/m3, and gravity constant gx1 =
9.81 m/s2. The cube is fixed on the plane x = 0, and loaded by its own weight in
the x direction.

The problem is solved by the projected preconditioned conjugate gradient
method. The iterations are stopped after the relative preconditioned residual is

www.it4i.cz
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Fig. 4 Decomposition: uniform-left, METIS-right; C = 1, N = 2, 3, · · · , 12, n = 10. Number
of unknowns ranges from 27,783 to 5,314,683

reduced by stopping criterion to preconditioned residual ε = 1 × 10−4. The first
test shows weak scalability for the benchmark depicted in Fig. 1 with one cluster, a
fixed number of DOFs on each subdomain, and a variable number of subdomains.
The considered parameters are: C = 1, N = 2, 3, · · · , 12 and n = 10. The
initial and last variant contain 27,783 DOFs and 5,314,683 DOFs, respectively.
The linear system is preconditioned by the Dirichlet preconditioner. In Fig. 4 left,
the problem is decomposed uniformly. Naturally, the TFETI method provides the
best results. For the HTFETIker method, the number of iterations slightly increases
with the increasing number of subdomainsN3. The hybrid variant with corners (the
HTFETIcor method) exhibits the worst results of all three methods. On the other
hand when METIS is used as the decomposer (Fig. 4 right), the TFETI method can
lose the scalability due to the irregular interface. The HTFETIcor method is also
influenced by the decomposition, but the HTFETIker method keeps the relatively
same performance (a slightly increasing number of iterations) as in the uniform
decomposition case.

Result of similar tests with a larger number of DOFs per subdomain (parameters:
C = 1, N = 2, 3, · · · , 6, n = 20, DOFs ranging from 206,763 to 5,314,683)
are displayed in Fig. 5. For a uniform decomposition, the TFETI and HTFETIker
method exhibit an equal number of iterations. It implies that if the interface is large

Fig. 5 Decomposition: uniform-left, METIS-right; C = 1, N = 2, 3, · · · , 6, n = 20. Number
of unknowns from 206,763 to 5,314,683
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Fig. 6 HTFETI, uniform decomposition; C = 2,3,. . . ,12, N = 9, n = 14. Number of unknowns
from 48,582,831 to 10,390,538,091

enough (in this case 20 × 20 nodes versus 10 × 10), the TFETI method can be
replaced by the HTFETIker method containing one cluster. However, the HTFETIker
method is more expensive in preprocessing and partially also during the iterations.
On the other hand, as it was already observed, when METIS is used, the TFETI
method loses scalability faster, and therefore the utilization of the HTFETI method
can be meaningful.

The next set of numerical experiments in Fig. 6 shows weak scalability with the
lumped preconditioner (the number of iterations on the left, solver time on the right)
up to 1,259,712 subdomains and 10.4 billion unknowns. Because of the very large
number of subdomains, the TFETI method cannot be used for all the settings, and
for this reason, it is not included in this comparison. However, both diagrams show
weak scalability of the HTFETI method. It is also seen that the variant based on
kernels requires three times fewer iterations compared to the case with corners.

4 Conclusion

This work presents the Hybrid variant of the Total FETI method. The main idea
stems from the work published in [6], where the FETI and FETI-DP method are
combined. Here, the presented version is the TFETI-TFETI method that uses the
TFETI method on both levels. In the newly proposed variant, the subdomains are not
glued together by corners but through the whole interface between each neighboring
pair of subdomains via the kernels of the stiffness matrices. The numerical tests
show efficiency of our algorithm. The very promising results were obtained for
non-uniform decompositions. The Hybrid TFETI method based on kernels exhibits
better weak scalability compared to the TFETI method.
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Small Coarse Spaces for Overlapping
Schwarz Algorithms with Irregular
Subdomains

Olof B. Widlund and Clark R. Dohrmann

1 Introduction

Coarse spaces are at the heart of many domain decomposition algorithms. Building
on the foundation laid in [9], we have an ongoing interest in the development of
coarse spaces based on energy minimization concepts; see [2–4, 7].

This paper is a short report on a project which substantially extends results in a
DD21 conference paper, [5], and which now has resulted in an archival publication
[6]. Our work primarily concerns two-level overlapping Schwarz methods and
is exclusively for low order, conforming finite element approximations of three-
dimensional elliptic problems. What is new in this paper are some variants of the
algorithms reported in [6]. The focus of this study is the development of smaller
coarse spaces which, to the extent possible, will give us similar rates of convergence
as for those developed in the past. Extensive large scale experiments show that this
is possible and important; see e.g. [11] in these proceedings.

The domain of a scalar elliptic or elasticity operator is partitioned into non-
overlapping subdomains Ωi each of which is the union of elements. We use nodal
equivalence classes of finite element nodes on the interface, i.e., the nodes that
belong to more than one subdomain boundary, in the construction of our coarse
spaces. Two such nodes belong to the same equivalence class if they belong to
the same set of subdomain boundaries. The coarse nodes are associated with those
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equivalence classes which are maximal in the sense that they are not subsets of any
other. In many cases, the coarse nodes are simply the vertices of the subdomains but
there are also other cases which are identified automatically by our algorithm. Each
interface node n is thereby associated with a set of coarse nodes Cn. A coarse node
c is included in Cn if the equivalence class of n is a subset of that of c. For each
coarse node, we will construct one coarse basis function for scalar elliptic and six
for elasticity problems, which span the coarse space.

2 Elliptic Problems and the Coarse Basis Functions

In our study, we consider scalar elliptic problems defined in terms of a bilinear form

∫
Ω

ρ∇u · ∇v dx

where ρ(x) > 0 and constant = ρi in each subdomain Ωi into which Ω has been
partitioned. The functions u and v belong to a subspace of H 1(Ω) subject to a
Dirichlet condition on ∂Ω or a subset thereof. We also consider linear, compressible
elasticity defined by a bilinear form

2
∫
Ω

μ ε(u) : ε(v) dx +
∫
Ω

λ div u div v dx,

where μ(x) and λ(x) are the positive Lamé parameters, εij (u) = 1
2 (
∂ui
∂xj

+ ∂uj
∂xi
), and

ε(u) : ε(v) := ∑3
i=1

∑3
j=1 εij (u)εij (v). The Lamé parameters are also assumed

constant,μi and λi = (2μiνi)/(1−2νi), inΩi,with 0 < νi < 1/2. This variational
problem is posed in a subspace of (H 1(Ω))3 determined by a Dirichlet condition.
The energy of these systems are defined by these bilinear forms.

Three recipes for the construction of coarse space elements have been developed
in [6], each defined in terms of a partition of unity for each interface node. The
simplest one, referred to as Option 1, is given by

pnc := 1/Nc, (1)

where NC := |Cn|. Of the two other recipes, the one relevant for this paper is the
third defined in terms of di(n), i = 1, . . . , Nc, the distances between an interface
node n and the ci ∈ Cn, and given by

pnci := 1/di(n)

1/d1(n)+ 1/d2(n)+ . . .+ 1/dNc(n)
. (2)

This Option 2 is the only one used in the experiments reported in this paper.
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The values of these functions are used as Dirichlet data and extended into the
interior of the subdomains, minimizing the energy, and resulting in continuous
coarse basis functions for scalar elliptic problems. The support of a coarse basis
function associated with the coarse node c is the union of the closure of all Ωj with
c on their boundaries. For elasticity, we multiply the scalar function pnc by a 3 × 6
matrix with columns forming a basis for the space of rigid body modes prior to
extending the resulting values on the interface into the interiors of the subdomains.
We note that the resulting finite element functions will all be continuous given that
there are no jumps in the Dirichlet data across the interface.

The choice of minimal energy extensions results in coarse basis functions which
sum to 1, in any subdomain that does not touch the Dirichlet boundary, for the scalar
elliptic problems and rigid body modes for elasticity. This fact shows that the null
space condition will be satisfied, a condition necessary to obtain a convergence rate
bounded independently of the number of subdomains for any domain decomposition
algorithm. This approach works well even for subdomains with irregular boundaries
such as those obtained from mesh partitioners. The crucial part of the analysis of an
overlapping Schwarz algorithm requires a bound on the sum of the energy of the
components of the coarse space and of the local spaces of finite element functions,
supported in the overlapping subdomains chosen to define the local problems, in
terms of the energy of the sum of these functions; see, e.g., [14, Chapter 2]. The
choice of minimal energy extensions therefore makes sense also for this reason.

The development of domain decomposition theory has often focused on the
effect of large discontinuities of the coefficient. Thus, for iterative substructuring
algorithms, based on non-overlapping subdomains, a number of strong results
have been developed for elliptic problems where the coefficients are constant or
vary slowly inside the subdomains but without any restrictions on their variation
across the interface between the subdomains; see, e.g., [14, Chapters 4–6] and
[13]. Many of these algorithms are well-defined for arbitrary subdomains although
the theory has been fully developed mostly for subdomains that are tetrahedral or
unions of a few large tetrahedra; we note that some of the standard tools now have
been extended to Lipschitz subdomains, see [6]. In contrast, the theory for two-
level additive Schwarz methods is developed only for constant coefficients in [14,
Section 3.2]. However, the classical coarse spaces for these Schwarz algorithms
have been shown to be stable for quasi-monotone coefficients in [10]; for a related
condition, see Assumption 1 of this paper. The results in [10] considerably expanded
the class of subdomain coefficients for which results quite similar to those for
constant coefficients became possible.

To derive the final bounds for our overlapping Schwarz algorithms, we also need
to consider the components associated with local problems on overlapping subdo-
mains, which are often constructed by extending the nonoverlapping subdomains,
Ωi, into which the given domain Ω has been decomposed, by adding one or a few
layers of elements. Observing that we need solvers for Dirichlet problems on the
original subdomains Ωi to construct the coarse basis functions, we will in some of
our numerical experiments instead use theΩi as part of the covering. In addition, to
cover all of the domain Ω, we can then use boundary layers, which are unions of
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elements which include all points within a minimal distance δi to the boundary of
an individualΩi . As an alternative, we also use sets created by adding one or more
element layers to the closure of the individual subdomain faces.

We note that no new ideas are required to complete the part of the analysis related
to these locally supported subspaces; cf. [14, Subsection 3.2] and the discussion in
[4, Section 3]. Therefore, we have been able to focus on developing the coarse
spaces and bounds for the coarse component, which are always required in the
analysis of any Schwarz algorithm; see [14, Subsection 2.3].

The subdomains, Ωi, are unions of elements, that form quasi-uniform meshes
for each subdomain, and often have irregular boundaries, in particular, if they have
been generated by a mesh partitioner. Some of the tools used in our analysis, such as
a trace theorem, will require that the subdomains are Lipschitz. We note that in our
previous studies of two-dimensional problems, [4, 8], we have been able to extend
our analysis even to subdomains with fractal boundaries assuming only that they are
uniform in the sense of Jones [12].

We note from formula (1) that pnc is the same for all n in a nodal equivalence
class and for a particular c ∈ Cn; in the case of tetrahedral subdomains, the basis
functions constructed will be built from the face and edge functions, θF and θE ,
used extensively in the development of iterative substructuring algorithms as in
[14, Chapters 4–6]. The fact that these functions are piecewise constant causes
large changes in the coarse basis functions across boundaries between equivalence
classes, resulting in logarithmic factors, (1 + log(Hi/hi)), in our estimate of the
energy of the coarse basis functions; cf. [14, Lemma 4.25] for a bound on the energy
of the classical face function θF . Here,Hi is the diameter ofΩi and hi the diameter
of its smallest element. In [6], we have obtained the same quality bound for Lipschitz
subdomains by generalizing bounds for the face and edge functions for subdomains
to the Lipschitz case. By using the alternative (2), we obtain smoother coarse basis
functions and improved bounds.

3 Assumptions and Major Results

We will now consider two different assumptions on the coefficientμ of the elasticity
problem. The same assumptions are also used for the coefficient, ρ, of the scalar
elliptic problems.

Assumption 1 (Quasi-Monotone Face-Connected Paths) Let c be any coarse
node of Ωi and Sc be the index set of all subdomains containing c on their
boundaries. Select jc ∈ Sc such that μjc ≥ μj for all j ∈ Sc. Assume that there
exists a constantC and for any i ∈ Sc a sequence {i = j0

c , j
1
c , . . . , j

p
c = jc}, all in

Sc, such that μi ≤ Cμj�c
and thatΩ

j�−1
c

andΩj�c
have a subdomain faceF

j�−1
c ,j�c

in common for all � = 1, . . . , p and i = 1, . . . , N . In the case that c ∈ ∂Ω, we also
assume that ∂Ωjc ∩ ∂Ω contains at least one subdomain face.
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In other words, Assumption 1 means that there is a face connected path between
Ωi and Ωjc such that the Lamé parameter μi is no greater than a constant times
the Lamé parameter of any subdomain along the path. This assumption is similar
to the quasi-monotonicity assumption of [10]. We will also work with an additional
assumption.

Assumption 2 (Quasi-Monotone Edge-Connected Paths) Using the same nota-
tion as in Assumption 1, assume that there exists a sequence {i = j0

c , j
1
c , . . . , j

p
c =

jc}, all in Sc, such that ρi ≤ Cρj�c
and Ω

j�−1
c

and Ωj�c
have at least a subdomain

edge in common for all � = 1, . . . , p and i = 1, . . . , N . In the case that c ∈ ∂Ωi

also assume that ∂Ωjc ∩ ∂Ω contains at least one subdomain edge.

We note that Assumption 2 is weaker than Assumption 1 since we have more
options of continuing at every step in the construction of a path. We note that in our
proof for linear elasticity, we have had to use the more restricted Assumption 1. The
need for this has also been demonstrated by experiments reported in [6].

Our analysis can closely follow the theory as developed in [14, Section 2.3]; a
main effort is directed to constructing a coarse component u0, for any u, with a
good bound on the energy E(u0) in terms of E(u), the energy of the function u..

With estimates for our coarse interpolants in hand, we can then perform a local
analysis for an overlapping additive Schwarz algorithm using basically the same
approach as in [8] or [4]. This involves a set of partition of unity functions {ϑj }Nj=1
with 0 ≤ ϑj ≤ 1, |∇ϑj | ≤ C/δi , and with ϑj supported in the closure of a
subdomain which is part of the covering of Ω. Here, δj is the thickness of the part
of subdomain which is common to its neighbors. Given an estimate of the form

E(u0) ≤ CΘ(H/h)E(u),

where H/h := maxi Hi/hi, the resulting condition number estimate for the
preconditioned operator is given by

κ(M−1A) ≤ CΘ(H/h)(1 +H/δ), (3)

where H/δ := maxi Hi/δi . For Option 2, we can prove a uniform bound of
Θ(H/h) if Assumption 1 is satisfied. In addition, we have a bound Θ(H/h) ≤
(1 + log(H/h)) for the scalar case if Assumption 2 holds.

We note that our coarse spaces could alternatively be combined with local spaces
previously developed for iterative substructuring algorithms such as those of [9]; see
also [14, Chapter 5].

4 Numerical Results

Numerical results are presented in this section to help confirm the theory and to
demonstrate some advantages of the face-based local spaces. We note that large-
scale experiments with closely related algorithms are also reported in [11]. Our



558 O. B. Widlund and C. R. Dohrmann

results are for a unit cube domain with homogeneous essential boundary conditions
applied to one of its faces. Condition numbers (cond) of the preconditioned operator
and the number of iterations (iter) needed to achieve a relative residual tolerance of
10−8 for the solution of the linear system of equations,Ax = b, with random right-
hand-side vectors b are reported. The domain is decomposed into smaller cubic
subdomains, and formula (2) is used to construct the coarse space. We note that
the interface preconditioner is of a hybrid type which employs overlapping Schwarz
local spaces as in [3]. We also note that at the end of each step of the iteration, the
residual will vanish at all interior nodes of the subdomains. We use the lowest order
hexahedral nodal elements and Matlab.

Three different local spaces are considered. The standard one starts with all the
nodes of a non-overlapping subdomain and adds to them nodes from an integer num-
ber of layers of elements adjacent to the original nodes. The boundary layer local
spaces are identical to the standard ones with the exception that the starting nodes
only include those on the subdomain interfaces. We note these local spaces were
considered previously in [3]. Finally, the face local spaces of this study start with
nodes in the closure of each subdomain face and add layers of elements just as for
the other two local spaces. These spaces locally precondition an interface problem.

Our example has the overlap parameter H/δ = 3 fixed while the number of
elements (H/h) in each subdomain direction increases. In addition to condition
numbers and iteration counts, we also report in Table 1 the number of non-zeros
in the sparse Cholesky factorizations for the local spaces. Specifically, rnnz denotes
these numbers normalized by the number for the standard local space. Further, we
report estimates of the maximum eigenvalue λmax of the preconditioned operator.

Consistent with the theory, condition numbers for the face local spaces exhibit
sub-linear growth with respect to H/h. Although the number of iterations and
condition numbers are noticeably larger compared with the standard and boundary
layer spaces, the number of non-zeros in the local factorizations are considerably
smaller for the face spaces. One reason for the larger condition numbers of the
face spaces are the larger values of λmax shown in Table 1. The larger values can
be explained using a coloring argument. For instance, there are 12 different faces
which include each subdomain vertex in their closures. In contrast, each subdomain
vertex is included in only eight of the standard or boundary layer spaces.

Normalized solution times for the preconditioned conjugate gradient algorithm
applied to an elasticity problem (see bottom half of Table 1) are shown in Fig. 1
for the boundary layer and face local spaces. Notice for all values of H/h that the
normalized times are less than 1 for the boundary layer local spaces. Remarkably,
the smallest times are achieved using the face local spaces forH/h > 5 even though
the number of iterations are larger than those for the other two local spaces. The
improved performance here can be attributed to the much smaller factorization sizes
for the face spaces.

As found in [3], the number of iterations can be reduced significantly, for all
three local spaces, by dividing each element in the right-hand-side vectors for the
local solvers by the number of local spaces which share this element. Although this
results in a non-symmetric preconditioner, reduced solution times can be achieved
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Table 1 Results for a unit cube decomposed into 64 smaller cubic subdomains with overlap
H/δ = 3 for three different local spaces

Standard Boundary layer Face

H/h Iter Cond λmax Iter Cond rnnz λmax Iter Cond rnnz λmax

Scalar problem results

3 26 14.1 8.2 27 14.8 0.47 8.2 39 32.7 0.18 12.1

6 28 17.7 8.2 31 18.9 0.77 8.2 50 40.9 0.25 12.0

9 30 19.7 8.2 33 21.1 0.80 8.2 55 45.9 0.28 12.0

12 30 30.0 8.2 33 22.5 0.87 8.2 58 49.6 0.30 12.0

Elasticity problem results

3 33 13.6 8.2 34 14.4 0.47 8.2 47 30.9 0.17 12.1

6 36 15.8 8.2 38 16.8 0.69 8.2 59 35.3 0.23 12.0

9 37 17.1 8.2 40 18.2 0.78 8.2 62 38.7 0.26 11.9

12 38 18.0 8.2 41 19.1 0.78 8.2 64 41.2 0.27 11.9

The material properties are constant with ρ = 1 for scalar problems and μ = 0.385, λ = 1.54 for
elasticity problems

Fig. 1 Elasticity problem solution times for the preconditioned conjugate gradient algorithm
normalized with respect to solution times for the standard local space

as for restricted additive Schwarz preconditioners [1]. As a final note, for parallel
computations, it makes sense to assign the work for each face to just one of the
two subdomains, i.e. processors, which contain it. To achieve good load balance, an
assignment algorithm can be used to approximately minimize the maximum work
for any one processor.
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