
Learning Cognitive Models Using Neural
Networks

Devendra Singh Chaplot(B), Christopher MacLellan, Ruslan Salakhutdinov,
and Kenneth Koedinger

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15217, USA
{chaplot,cmaclell,rsalakhu}@cs.cmu.edu, koedinger@cmu.edu

Abstract. A cognitive model of human learning provides information
about skills a learner must acquire to perform accurately in a task
domain. Cognitive models of learning are not only of scientific inter-
est, but are also valuable in adaptive online tutoring systems. A more
accurate model yields more effective tutoring through better instruc-
tional decisions. Prior methods of automated cognitive model discov-
ery have typically focused on well-structured domains, relied on student
performance data or involved substantial human knowledge engineering.
In this paper, we propose Cognitive Representation Learner (CogRL),
a novel framework to learn accurate cognitive models in ill-structured
domains with no data and little to no human knowledge engineering.
Our contribution is two-fold: firstly, we show that representations learnt
using CogRL can be used for accurate automatic cognitive model discov-
ery without using any student performance data in several ill-structured
domains: Rumble Blocks, Chinese Character, and Article Selection. This
is especially effective and useful in domains where an accurate human-
authored cognitive model is unavailable or authoring a cognitive model
is difficult. Secondly, for domains where a cognitive model is available,
we show that representations learned through CogRL can be used to get
accurate estimates of skill difficulty and learning rate parameters with-
out using any student performance data. These estimates are shown to
highly correlate with estimates using student performance data on an
Article Selection dataset.

1 Introduction

A cognitive model is a computational model of human learning and problem-
solving which can be used to predict human behavior and performance on the
modeled problems. In this paper, we consider cognitive models in the context
of intelligent tutoring systems. A cognitive model that matches student behav-
ior provides useful information about skill difficulties and learning rates. This
information often leads to better instructional decisions by aiding in problem
design, problem selection and curriculum sequencing, which in turn results in
more effective tutoring. A common method for representing a cognitive model is
a set of Knowledge Components (KC) [1], which represent pieces of knowledge,
concepts or skills that are required for solving problems.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Penstein Rosé et al. (Eds.): AIED 2018, LNAI 10947, pp. 43–56, 2018.
https://doi.org/10.1007/978-3-319-93843-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_4&domain=pdf

44 D. S. Chaplot et al.

Cognitive models are a major bottleneck in intelligent tutor authoring and
performance. Traditional ways to construct cognitive models such as structured
interviews, think-aloud protocols and rational analysis requires domain expertise
and are often time-consuming and error-prone [2]. Furthermore, hand-authored
models can be too simplistic and are usually not verified or inconsistent with
data.

Cognitive model discovery, sometimes called “KC model discovery” (in Edu-
cational Data Mining) or “Q matrix discovery” (in Psychometrics), has been
attempted through a number of different methods, but the problem remains an
open, important, and interesting one. Some attempts emphasize interpretabil-
ity and application of the resulting models [3,4], while others have emphasized
methods that minimize upfront human effort in feature engineering [5–9].

So far limited attention has focused on more ill-defined domains that are
highly visual (e.g., classifying visual inputs) such as learning Chinese charac-
ters or non-discrete (probabilistic and/or with lots of exceptions) such as learn-
ing English grammar. In this paper, we tackle these ill-defined domains where
complex prior perceptual skills and large amounts of background knowledge are
required and where the input from the tutor is largely unstructured. We hypothe-
size that representations learned by machine learning techniques, which capture
high-level features, can be used to create a cognitive model of human learn-
ing. We propose a novel architecture called Cognitive Representation Learner
(CogRL) to automatically extract the set of KCs required for each problem in
these domains using representation learning (i.e. transforming the raw data input
to a representation that can be effectively exploited in machine learning tasks).
CogRL does not require any student performance data and works directly on
the unprocessed problem content in the tutor. Our contribution in this paper is
two-fold: firstly, we show that CogRL architecture is able to identify accurate
cognitive models which outperform the baselines in a wide variety of challenging
domains such as RumbleBlocks, Chinese Character, and Article Selection. This
is particularly useful in domains where a good human-authored cognitive model
is unavailable or difficult to construct. Secondly, for domains where a cognitive
model is available, we show that learned representations can be used to get accu-
rate estimates of skill difficulty and learning rate parameters without using any
student performance data.

2 Datasets

2.1 RumbleBlocks

Prior methods of cognitive model discovery only handle domains with textual
problem content. We use data collected from the educational game RumbleBlocks
[10] to test our system’s ability to operate in a domain based on visual inputs.
This game tasks students with building tower structures out of blocks in order
to teach them basic structural stability and balance concepts. For the purposes
of this study, we were less interested in modeling construction skills and more
interested in modeling skills for recognizing when towers are more stable. To this

Learning Cognitive Models Using Neural Networks 45

end, we used a data set collected for a simplified task [11], where students were
shown images of RumbleBlocks towers in a randomized order and are asked to
classify each tower as either “concept 1” or “concept 2”. After each classification,
students were provided with correctness feedback. The labels (concept 1 and
concept 2) were intentionally kept vague so that students would be unable to
use their prior stability and balance knowledge. The data set consists of twenty
students classifying thirty towers.

Fig. 1. Architecture of the Cognitive Representation Learner (CogRL) to estimate
the Q-Matrix. For each domain, a neural architecture is chosen and trained using the
problem content in the tutor and corresponding correct answer. The trained neural
architecture is used to produce representation vectors in the pre-output layer for each
problem. The resultant matrix is converted to a Q-Matrix by thresholding the values
in the representations at 0.95.

2.2 Chinese Characters

For this domain, we use the Chinese vocabulary dataset1 from the LearnLab
Datashop [12]. The problems in the dataset contain 1105 unique Chinese charac-
ters with two types of responses, English and pinyin. Pinyin refers to the English
character orthography for the Chinese character pronunciation. The dataset con-
sists of 94 students and a total of 61,323 student-item transactions. We extract
the set of Chinese characters in the dataset and convert them to 16× 16 images
for representation learning.
1 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=213.

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=213

46 D. S. Chaplot et al.

2.3 Article Selection

For this domain, we use the data from English Article Selection task in the
Intelligent Writing Tutor2. In this task, each question is a fill in the blank with
three options: ‘a’, ‘an’ and ‘the’. The dataset has 84 unique problems, 79 students
with a total of 4,243 student-item transactions. The dataset also provides a
human-authored cognitive model with 9 Knowledge Components.

Fig. 2. Architecture of the convolutional neural network used for learning representa-
tions for the RumbleBlocks dataset. The pre-output layer (Fully Connected Layer) is
used as the learned representation for each input image.

3 Methods

3.1 Cognitive Representation Learner

In this subsection, we describe the architecture of the proposed method, Cog-
nitive Representation Learner (CogRL). For each domain, we train a Neural
Architecture to predict the correct answer for the given problem in the domain.
As shown in Fig. 1, the neural architecture, which is domain-specific, is con-
nected to a fixed size pre-output layer, which will serve as the representations
for corresponding problems. The pre-output layer is in turn connected to the
output layer which predicts the correct answer for the given input problem.
After training the architecture on the problems in the tutor, we use the trained
model to compute the representations vectors in the pre-output layer for each
problem. These representations are thresholded at 0.95 and used as columns of
the estimated Q-matrix. In other words, each dimension of the learned repre-
sentation constitutes a Knowledge Component in the predicted cognitive model.
This cognitive model is evaluated by fitting an Additive Factors Model [13] using
the student performance data.

In the RumbleBlocks and Chinese character datasets, the problems content
is in the form of images. We use convolutional neural networks for these two
datasets as they are shown to be effective in learning effective representations
from pixel-based image data [14]. For the Articles Selection dataset, the challenge
is that the size of the input is variable as opposed to fixed image size in the
2 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=307.

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=307

Learning Cognitive Models Using Neural Networks 47

RumbleBlocks and Chinese character datasets. Convolutional Neural Networks
can not handle variable input sizes. Recurrent models are suitable for handling
variable length input by treating the input as a sequence. Particularly, we use
a Long Short-Term Memory Network to learn representations for the Article
Selection dataset.

In each of these architectures, we use the pre-output layer of the network
as the representations for the corresponding input problem. The size of the
representation or pre-output layer is not tuned to optimize the results and kept
constant at 50 across all the architectures. These architectures and their training
procedure are described in detail in the following subsections.

Fig. 3. Architecture of the Long Short-Term Memory (LSTM) network used for learn-
ing representations for the Article selection tutor. The pre-output layer (Fully Con-
nected Layer) is used as the learned representation for each input sentence.

3.2 Convolution Neural Networks for RumbleBlocks and Chinese
Characters

Convolution Neural Networks [14] are a type of feed-forward neural networks
based on the convolution operation, which are typically used for processing visual
input. Each convolutional layer consists of a set of learnable filters or kernels,
which are convolved across the input image. The output is passed through a non-
linear activation function, such as tanh, and scaled using a learnable parameter.
Each element of yj in the output of a convolution layer is calculated according
to the following equation:

yj = gj tanh
(∑

i

kij ∗ xi

)
(1)

where xi is the ith channel of input, kij is the convolutional kernel, gj is a learned
scaling factor and ∗ denotes the discrete convolution operation calculated using
the following equation:

48 D. S. Chaplot et al.

(x ∗ k)ij =
R∑
p,q

xi−p,j−qkp,q (2)

where R is the kernel size.
The architecture of the convolutional neural network used for learning rep-

resentations for RumbleBlocks is shown in Fig. 2. The input image (75× 100) is
decomposed into red, green and blue channels which are connected to a convolu-
tional layer consisting of 10 filters of size 10× 10 with a stride of 5. The output
of the convolutional layer is fully connected to a layer of 50 nodes, which in-turn
is fully connected to the output layer predicting whether the configuration of
rumble blocks in the input image is stable or not. The network is trained using
stochastic gradient descent with a batch size of 32. After training the network,
the value of the pre-output layer (50-dimensional) is used as the representation
of the corresponding input image. We use the same architecture for Chinese
Characters dataset except that the filter size is reduced to 4× 4 with a stride 2
to match the size of a smaller 16 × 16 input image.

3.3 LSTMs for Article Selection

Long Short-Term Memory (LSTM) [15] networks are a type of Recurrent Neu-
ral Networks which are suitable for sequential data with a variable size of the
input sequence. In addition to the input at the current time step, nodes in a
recurrent layer also receive the output of the last time step as input. This recur-
rence relation makes the output dependent on all the inputs in the sequence seen
till the current time step. In addition to the hidden state in a vanilla recurrent
unit, LSTM units have an extra memory vector and they can use explicit gating
mechanisms to read from, write to, or reset the memory vector. Mathematically,
at each LSTM unit, the following computations are made:

it = σ(Wiixt + bii + Whih(t−1) + bhi)
ft = σ(Wifxt + bif + Whfh(t−1) + bhf)
gt = tanh(Wigxt + big + Whch(t−1) + bhg)
ot = σ(Wioxt + bio + Whoh(t−1) + bho)
ct = ft ∗ c(t−1) + it ∗ gt

ht = ot ∗ tanh(ct)

where ht is the hidden state at time t, ct is the cell state or memory vector at
time t, xt is the input at time t and it, ft, gt, ot denote the input, forget, cell
and out gates at time t, respectively.

The architecture used for learning representations for Article selection is
shown in Fig. 3. The input question is split into two parts around the blank.
Each character in both the parts has a 32-dimensional embedding. The part
before the blank is fed into the forward part of the LSTM sequentially, while
the part after the blank is fed into the backward LSTM in the reverse order.
At the end of the sequence, both LSTM parts are flattened and combined to a

Learning Cognitive Models Using Neural Networks 49

layer of 256 neurons. This layer is fully connected to a pre-output layer with 50
neurons. This layer will serve as the representation for the given input question,
which is fully connected to the output layer. The network is trained with all
the questions in the English IWT dataset described in Sect. 2 using stochastic
gradient descent with a batch size of 32. At the end of the training, for each input
question, the pre-output layer embedding is stored as the feature representation
of the question.

4 Experiments and Results

Each dimension of the representations learned using CogRL is considered to
denote a Knowledge Component (KC). For each problem in a dataset, the rep-
resentations are thresholded at 0.95, which means that if an element of the
representation of a problem is greater than 0.95, then the problem is predicted
to require the corresponding KC. This essentially creates a multi-KC Cognitive
Model or a Q-Matrix whose rows are the thresholded representations for each
problem. This automatically discovered cognitive model is evaluated by fitting
the Additive Factors Model to the student performance data. We compare the
CogRL cognitive model with two alternative theories of transfer of learning [16].
One, the Faculty Transfer model, is based on faculty theory of transfer that sug-
gests that the mind is like a muscle and generally improves with more experience
[17]. The other, the Identical Transfer model, is based on the identical elements
theory of transfer that suggest learning transfer occurs across nearly identical
stimuli [18]. These models are implemented as follows:

– Faculty Transfer: All the problems require a single common knowledge com-
ponent.

– Identical Transfer: All the problems require a single unique knowledge com-
ponent.

The proposed model is also compared with the best human expert cognitive
model available with the tutoring system from which the data was collected.
We use Item-stratified cross-validation Root Mean Square Error as the metric of
comparison. The results shown in Table 1 indicate the CogRL cognitive model
outperforms the baselines by a considerable margin, 0.444 vs 0.465 for Chinese
Character, 0.449 vs 0.451 for Rumble Blocks and 0.399 vs 0.411 for Article
Selection datasets. This indicates that the CogRL architecture is able to learn
useful representations which constitute the underlying Knowledge Components
for problems in various domains.

We also try to analyze the representation learned by CogRL qualitatively.
Figure 4 shows two sets of problem images in the Rumble Blocks domain, which
require a common knowledge component. Problem images which have a similar
configuration of the blocks are predicted to require a common KC. Note that the
exact position of the blocks in all the shown images is very different although
they look similar visually.

50 D. S. Chaplot et al.

Table 1. Cross-validated RMSE values for fitting Additive Factors Model (AFM) using
various Cognitive Models on three different datasets. The proposed model, CogRL,
outperforms the baselines by a considerable margin.

Dataset Faculty Transfer Identical Transfer Best Human Model CogRL

Chinese Character 0.471 0.493 0.465 0.444

Rumble Blocks 0.451 0.537 0.451 0.449

Article Selection 0.415 0.522 0.411 0.399

Fig. 4. Examples of non-identical RumbleBlocks problem images in two KCs discov-
ered using Representation Learning. Input images which have a similar configuration
of the blocks have a similar representation. Note that the images in one set are not
identical, the exact position of the blocks is different in each image, although they look
very similar visually.

Fig. 5. t-SNE Visualization of Representations learnt for various Problems in the Arti-
cle Selection dataset labelled using (a) Correct answer, (b) Underlying KC in the best
human-authored cognitive model.

Learning Cognitive Models Using Neural Networks 51

The representations learnt for the article selection dataset are visualized using
t-Distributed Stochastic Neighboring Embedding (t-SNE) [19] in Fig. 5. t-SNE
is a popular dimensionality reduction technique well suited for visualizing high
dimensional data. The representations of problems are labeled according to the
correct answer in Fig. 5(a) and according to the underlying KC in the human-
authored cognitive model in Fig. 5(b). As shown in the Fig. 5(a), the representa-
tions for problems with the same answer are very similar to each other. However,
one problem with answer ‘an’ is very similar to all problems with answer ‘a’
rather than other problems with answer ‘an’. In Fig. 5(b), we can see that this
problem is the only problem in the dataset with KC “general count an htg”.
The problem is “The salesman is not honest man”, which belongs to this
KC because the word following the blank starts with a vowel sound but not
a vowel character. This makes it very similar to problems where the following
word starts with a consonant and have ‘a’ as the correct answer. Many novice
learners confuse problems in this KC to have ‘a’ as the correct answer. It is
interesting to see that automatically learned representations also have this kind
of relationship, which suggests that these representations might be indicative of
human learning.

5 Extension: Estimating Skill Difficulty and Learning
Rates

Intelligent Tutoring Systems are able to improve student learning across a wide
range of domains by utilizing student modeling techniques (such as Additive Fac-
tors Model [13], Bayesian Knowledge Tracing [20], Performance Factor Analysis
[21]) to track the skills students have acquired and to focus practice on unlearned
skills. However, student modeling approaches require reasonable initial param-
eters in order to effectively track skill learning. In prior work, researchers have
used pilot studies with fixed, non-adaptive, curriculum to empirically determine
the difficulty and learning rates of skills in order to appropriately set the knowl-
edge tracing parameters. In the previous sections, we showed that representation
learning using neural architectures can be used for automatic cognitive model
discovery, which is especially effective in domains where a good human-authored
cognitive model is unavailable. In this section, we show that in domains where a
good cognitive model is available (such as article selection), representation learn-
ing can be used to estimate the difficulty and learning rates of skills or knowledge
components in the given cognitive model. For this task, we leverage the formal-
ism of the Apprentice Learning Architecture [22] to simulate entire classroom
studies for Article Selection dataset and demonstrate that empirical estimates
of skill difficulty and learning rate parameters from these simulation data have
high agreement with the parameters empirically estimated from human data. It
is not possible to study the other domains in this context as a human-authored
cognitive model is unavailable. The Apprentice learner is trained using the same
sequence of problems as received by students in the Articles selection dataset.
For each problem, the representations learned by CogRL are passed as input fea-
tures to the Apprentice Learner. The learner fits a decision tree classifier on seen

52 D. S. Chaplot et al.

problem examples to simulate learning. The data generated using this simula-
tion is fit using Additive Factor Model to get skill slope and intercept estimates.
These estimates are compared to parameter estimates using the original student
performance data.

As a baseline, we also train the Apprentice Learner using human-authored
features defined by domain experts. For the article selection tutor, the domain
experts defined 6 binary features, each of which is true if the following conditions
hold true:

– ‘next word starts with vowel’: Whether the word following the blank starts
with a vowel. This feature approximates whether the noun following the arti-
cle begins with a vowel sound.

– ‘next word ending st nd rd th’: Whether the word following the blank ends
with ‘st’, ‘nd’, ‘rd’ or ‘th’. This feature is an approximation of whether the
next word is an ordinal number or not.

– ‘contains that where who’: Whether the question contains ‘that’, ‘where’ or
‘who’. This feature is an approximation of whether the noun following the
article is made definite by a prepositional or an adjective phrase.

– ‘next word already mentioned’: Whether the word following the blank is
already mentioned elsewhere in the question. The feature is an approximation
of whether noun that follows the article is already known or mentioned.

– ‘next word ends in s’: Whether the word after the blank ends with a ‘s’. This
feature approximates if the noun following the article is not a singular count
noun.

– ‘contains but comma’: Whether the sentence contains ‘but’ or ‘,’. This feature
approximates whether the question has two clauses and the noun following
the article is referred in the first clause and therefore, already known. For
example, “When I have watermelon, I try not to eat seeds”.

Note that the article selection task is fairly complex and it is extremely difficult
to author text-based features that are sufficient to answer all questions in the
dataset correctly. For example, authoring text-based features which recognize
vowel sound in words not starting with vowels like ‘honest’ is extremely difficult.
The features authored by the experts are shallow and are sufficient to answer
only 75% of the questions correctly.

5.1 Parameter Estimation Results

The parameter estimates for the Article Selection dataset using (1) the original
student performance data, (2) using the simulated data with Human-authored
features, and (3) using the simulated data with CogRL features are shown in
Table 2. As shown in the table, the parameter estimates using CogRL features
have a high correlation of 0.986 for slope, and 0.748 for intercept with the
parameter estimates using the original data. This is considerably higher than
the correlation of parameter estimates using Human-authored features. Most
of the human-authored features are deep and result in very fast learning rate

Learning Cognitive Models Using Neural Networks 53

Table 2. Table showing parameter estimates for the Article Selection dataset using
the original student performance data, using the simulated data with Human-authored
features, and using the simulated data with Representation Learning features. The
parameter estimates using representation learning correlate highly with the parameter
estimates using the original data.

Original data Apprentice Learner trained using

Human-Authored features CogRL features

KC Name Intercept Slope Intercept Slope Intercept Slope

produce adjective phrase 0.818 0.093 0.881 0 0.563 0.156

produce already known 0.768 0.092 0.547 1.208 0.332 0.202

produce already mentioned 0.930 0.044 0.914 16.803 0.721 0.048

produce general count a etg 0.604 0.066 0.821 0 0.396 0.022

produce general count a htg 0.202 0.660 0.119 2.627 0.065 2.221

produce general count an etg 0.670 0.031 0.14 0.882 0.044 0.205

produce general count an htg 0.467 0.817 0 0 0.037 3.208

produce ordinal number 0.783 0.151 0.958 0 0.814 0.003

produce prep phrase 0.660 0.138 0.58 0.082 0.348 0.331

Correlation with Original 0.742 –0.187 0.748 0.986

for certain KCs such as ‘already mentioned’ and ‘already known’, while since
they don’t cover all features required for learning some other KCs such as ‘gen-
eral count an htg’, they have a learning rate of 0. CogRL captures features essen-
tial for learning all KCs and seems to better model the struggles that learners are
experiencing to acquire deep features. While it would be very difficult to train
the Apprentice Learner from raw problem data, CogRL features are able to con-
stitute the right amount of prior knowledge necessary to simulate learning in
this domain. Apart from providing accurate parameter estimates without using
any student performance data, the CogRL framework also minimizes the amount
of human-authoring necessary to conduct simulation studies in this challenging
domain.

6 Related Work

There has been a lot of interest in automating cognitive model discovery in the
recent past. Learning Factors Analysis is a method for cognitive model evalu-
ation and improvement which semi-automatically refines a given skill set. The
improved cognitive model discovered using LFA has been used to redesign an
intelligent tutoring system and shown to improve learning gains [4]. However,
LFA requires human-provided factors that require some knowledge engineering
or cognitive task analysis effort. eEPIPHANY [6] attempts to overcome this
limitation by using a collection of data-mining techniques to more automati-
cally improve a human-crafted set of skills. LFA and ePHIPHANY both require
a human-crafted set of skills as well as student performance data for cognitive
model discovery and improvement.

54 D. S. Chaplot et al.

The requirement of student performance data makes these methods unus-
able for authoring a cognitive model for a new domain or a tutor with new
problems. Li et al. [8] is notable prior attempt at learning a cognitive model
without student performance data. Their SimStudent learns a cognitive model
by being tutored in the domain through demonstrations of correct actions and
yes-no feedback on SimStudent attempts at actions. They show improved cog-
nitive models in various domains such as algebra, stoichiometry and fraction
addition [2]. Furthermore, the skill learning in SimStudent was also integrated
with feature learning using probabilistic Context Free Grammars (pCFG) to
automatically learn features to train the SimStudent [23]. However, as discussed
previously, SimStudent requires structured input from the tutor interface and
the learning method is mostly applicable in well-defined problem domains where
minimal background knowledge is required.

Among approaches using neural networks in educational data mining, Wang
et al. [9] train an LSTM to predict student’s learning over time using student per-
formance data in programming exercises. The t-SNE visualization of the hidden
layer outputs of their trained neural network shows clusters of trajectories shar-
ing some high-level properties of the programming exercise. Pardos and Dadu
[24] use contextual representations learnt by a skip-gram model to predict miss-
ing skill from a KC model. Michalenko et al. [25] use word embeddings detect
misconceptions from students’ responses to open-response questions.

In contrast to prior work, we tackle domains where the tutor interface is
largely unstructured and problem solving requires complex prior perceptual skills
and large amounts of background knowledge. Furthermore, while handling these
complex domains, our methods do not require any student performance data
which makes them suitable for initializing cognitive models while designing a new
tutor. We also provide a method for estimating skill difficulty and learning rate
without any student performance data using simulations of Apprentice learner.
These estimates can be used as initialization in new tutors to provide a better
estimate of mastery for each student.

7 Conclusion and Future Work

We showed that representation learning using neural architectures can be used
for automatic cognitive model discovery without using any student performance
data, which is especially effective in domains where a good human-authored
cognitive model is unavailable or authoring a good cognitive model is difficult.
Qualitative analysis of representations learnt by CogRL suggests similarities with
human learning. For domains where a cognitive model is available, we show that
representation learning can be used to get effective estimates of skill difficulty and
learning rate parameters without using any student performance data. In future,
the CogRL framework can be modified to make the representations more inter-
pretable and provide constructive feedback for improving instructional design.

Learning Cognitive Models Using Neural Networks 55

References

1. VanLehn, K., Jordan, P., Litman, D.: Developing pedagogically effective tutorial
dialogue tactics: experiments and a testbed. In: Workshop on Speech and Language
Technology in Education (2007)

2. Li, N., Stampfer, E., Cohen, W., Koedinger, K.: General and efficient cognitive
model discovery using a simulated student. In: Proceedings of the Annual Meeting
of the Cognitive Science Society, vol. 35 (2013)

3. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for
cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan,
T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006).
https://doi.org/10.1007/11774303 17

4. Koedinger, K.R., Stamper, J.C., McLaughlin, E.A., Nixon, T.: Using data-driven
discovery of better student models to improve student learning. In: Lane, H.C.,
Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp.
421–430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-
5 43

5. González-Brenes, J., Mostow, J.: Dynamic cognitive tracing: towards unified dis-
covery of student and cognitive models. In: Proceedings of the 5th International
Conference on Educational Data Mining (2012)

6. Matsuda, N., Furukawa, T., Bier, N., Faloutsos, C.: Machine beats experts: auto-
matic discovery of skill models for data-driven online course refinement. Int. Educ.
Data Min. Soc. (2015)

7. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-
Dickstein, J.: Deep knowledge tracing. In: Advances in Neural Information Pro-
cessing Systems, pp. 505–513 (2015)

8. Li, N., Cohen, W., Koedinger, K.R., Matsuda, N.: A machine learning approach
for automatic student model discovery. In: Proceedings of the 4th International
Conference on Educational Data Mining (2011)

9. Wang, L., Sy, A., Liu, L., Piech, C.: Learning to represent student knowledge on
programming exercises using deep learning. In: Proceedings of the 10th Interna-
tional Conference on Educational Data Mining (2017)

10. Christel, M.G., Stevens, S.M., Maher, B.S., Brice, S., Champer, M., Jayapalan, L.,
Chen, Q., Jin, J., Hausmann, D., Bastida, N., et al.: Rumbleblocks: teaching science
concepts to young children through a unity game. In: 2012 17th International
Conference on Computer Games (CGAMES), pp. 162–166. IEEE (2012)

11. MacLellan, C., Harpstead, E., Aleven, V., Koedinger, K.: Trestle: a model of con-
cept formation in structured domains. Adv. Cogn. Syst. 4, 131–150 (2016)

12. Koedinger, K.R., Baker, R.S., Cunningham, K., Skogsholm, A., Leber, B., Stamper,
J.: A data repository for the edm community: the pslc datashop. In: Handbook of
Educational Data Mining, vol. 43, pp. 43–56. CRC Press, Boca Raton (2010)

13. Cen, H.: Generalized learning factors analysis: improving cognitive models with
machine learning. ProQuest (2009)

14. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

16. Koedinger, K.R., Yudelson, M.V., Pavlik, P.I.: Testing theories of transfer using
error rate learning curves. Top. Cogn. Sci. 8(3), 589–609 (2016)

https://doi.org/10.1007/11774303_17
https://doi.org/10.1007/978-3-642-39112-5_43
https://doi.org/10.1007/978-3-642-39112-5_43

56 D. S. Chaplot et al.

17. Nichols, R., Yaffe, G., Reid, T., Zalta, E.N. (eds.): The Stanford Encyclopedia
of Philosophy. Winter 2016 edn. Metaphysics Research Lab, Stanford University
(2016)

18. Thorndike, E.L.: The Principles of Teaching: Based on Psychology, vol. 32. Rout-
ledge, Oxford (2013)

19. Maaten, L.: Learning a parametric embedding by preserving local structure. In:
van Dyk, D., Welling, M. (eds.) Proceedings of the Twelth International Confer-
ence on Artificial Intelligence and Statistics. Volume 5 of Proceedings of Machine
Learning Research. Hilton Clearwater Beach Resort, Clearwater Beach, Florida
USA. PMLR, pp. 384–391, 16–18 April 2009

20. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of
procedural knowledge. User Model. User-Adap. Inter. 4(4), 253–278 (1994)

21. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis -a new alter-
native to knowledge tracing. In: Proceedings of the 2009 Conference on Artificial
Intelligence in Education: Building Learning Systems That Care: From Knowledge
Representation to Affective Modelling, pp. 531–538. IOS Press, Amsterdam (2009)

22. MacLellan, C.J., Harpstead, E., Patel, R., Koedinger, K.R.: The apprentice learner
architecture: closing the loop between learning theory and educational data. In:
Proceedings of the 9th International Conference on Educational Data Mining
(2016)

23. Li, N., Matsuda, N., Cohen, W.W., Koedinger, K.R.: Integrating representation
learning and skill learning in a human-like intelligent agent. Artif. Intell. 219,
67–91 (2015)

24. Pardos, Z.A., Dadu, A.: Imputing kcs with representations of problem content and
context. In: Proceedings of the 25th Conference on User Modeling, Adaptation and
Personalization, pp. 148–155. ACM (2017)

25. Michalenko, J.J., Lan, A.S., Baraniuk, R.G.: Data-mining textual responses to
uncover misconception patterns. stat. 1050, 30 (2017)

	Learning Cognitive Models Using Neural Networks
	1 Introduction
	2 Datasets
	2.1 RumbleBlocks
	2.2 Chinese Characters
	2.3 Article Selection

	3 Methods
	3.1 Cognitive Representation Learner
	3.2 Convolution Neural Networks for RumbleBlocks and Chinese Characters
	3.3 LSTMs for Article Selection

	4 Experiments and Results
	5 Extension: Estimating Skill Difficulty and Learning Rates
	5.1 Parameter Estimation Results

	6 Related Work
	7 Conclusion and Future Work
	References

