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Abstract. This paper applies data-driven methods to understand learn-
ing and derives game design insights in a large-scale, drill-and-practice
game: Spatial Temporal (ST) Math. In order for serious games to thrive
we must develop efficient, scalable methods to evaluate games against
their educational goals. Learning models have matured in recent years
and have been applied across e-learning platforms but they have not
been used widely in serious games. We applied empirical learning curve
analyses to ST Math under different assumptions of how knowledge com-
ponents are defined in the game and map to game contents. We derived
actionable game design feedback and educational insights regarding frac-
tion learning. Our results revealed cases where students failed to trans-
fer knowledge between math skills, content, and problem representa-
tions. This work stresses the importance of designing games that support
students’ comprehension of math concepts, rather than the learning of
content- and situation-specific skills to pass games.
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1 Introduction

Serious games are in high demand with a fast-growing market [1]. As such, they
are poised to significantly impact future generations of learners. As more games
emerge, we face unprecedented challenges in evaluating the games against their
educational goals. Traditional methods fall short. Games are growing in size and
complexity, making it increasingly costly to evaluate games through controlled-
trial experiments. Games evolve quickly during production and maintenance
cycles, making it necessary to pinpoint design flaws and to derive actionable
feedback efficiently. We need new methods to penetrate the black box between
pre- and post-tests and to inform game design in an efficient, scalable fashion.

Serious game analytics [14] is an emerging field that uses data to connect
gameplay with learning. In contrast to traditional game analytics [7] that pri-
marily focuses on player enjoyment, serious game analytics grounds game design
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in students’ learning and performance on targeted skills. Serious game analytics
is extremely valuable for large-scale, curriculum-integrated games. This app-
roach not only helps pinpoint game design issues efficiently, but can also be
used to investigate the learning process and derive educational insights across
domains [13,14,19]. Serious game analytics shares similar and potentially trans-
ferable methods with Learning Analytics [27] and Educational Data Mining [23].
However, serious game analytics is concerned with more specific domains, where
learning is interleaved with game mechanisms as well as other factors. We need
more research to verify the applicability of these methods across domains, and
to adapt these methods to solve contemporary challenges in serious games.

In this paper, we applied empirical learning curve analyses. We fit and com-
bined learning curves under different assumptions of how knowledge components
are defined in the game and mapped to game contents. Our analyses aim to:
(1) Understand and model learning in ST Math–a large-scale, drill-and-practice
game that introduces and reinforces math skills through various problem-solving
scenarios. (2) Derive actionable feedback to help game designers better design
game content to support learning. (3) Provide data-driven insights on fraction
learning and the knowledge transfer between problem-solving scenarios. (4) Sug-
gest future research that analyzes and models learning in serious games.

1.1 Spatial Temporal Math (ST Math)

ST Math is designed to act as a supplemental program to a school’s existing
mathematics curriculum [13,19,24]. In ST Math, mathematical concepts are
taught through spatial puzzles within various game-like arenas. These games are
structured at the top level by objective, which cover broad learning concepts.
Within each objective, individual games teach more targeted concepts through
presentation of puzzles, which are grouped into levels for students to play. Stu-
dents begin by completing a series of training games on the use of the ST Math
platform and features. They are then guided to complete the first available objec-
tive in their grade-level curriculum, such as “Multiplication Concepts.” Within
an objective, games represent scenarios for problem-solving using a particular
mathematical concept, such as finding the right number of boots for X animals
with Y legs. Each game contains between one and ten levels, which follow the
same general structure of the game, but with increasing difficulty. Students must
unlock the games and levels in their designed order.

As with many games, students are given a set number of ‘lives’ per level.
Every time they answer a puzzle incorrectly they lose one life. Each answer
attempt is followed by animated feedback. For example, in a game asking stu-
dents to select a number of boots for two dogs, a wrong answer of six will show
that one dog has two feet without boots. After the feedback, students must
attempt the same puzzle again until they answer it correctly or they exhaust
all lives. If all lives for a given level are exhausted, students must re-attempt
the level. When students re-attempt a level there is a probability that they may
encounter a previously attempted puzzle, as puzzles are either randomly gener-
ated following a template, or randomly selected from a pre-designed puzzle pool.
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Once students pass a level, they can play the next level or any previously-passed
level. A general description and additional figures of ST Math can be found in
[13,19,24].

2 Literature Review

Learning Curves are derived from the cognitive theory of Newell and Rosebloom
[17]. This theory assumes that with more practice, a students’ speed and accu-
racy at answering a question increase logarithmically. In other words, a good
learning curve shows that students’ accuracy increases, but the increase gets
smaller over time. After enough practice, the increase will be negligible, and
students can be considered to have reached their best performance.

Several learning models have been applied to fit learning curves. The Additive
Factors Model (AFM) [4] is a logistic regression that assumes the probability of
correctly answering a question depends on individual students’ parameters, the
skill difficulties, and the number of previous practices. For questions containing
multiple skills, the difficulty and practices of these skills are summed together.
This assumes that a student can correctly answer a question without knowing
all of the skills involved, provided the summation of known skills passes a cer-
tain threshold. The Conjunctive Factor Model (CFM) [5] is similar to AFM, but
assumes that the difficulties and practices of skills are multiplied together for
questions with multiple skills. This means that a student can never answer a
question correctly unless they know all the required skills. Another method is
Performance Factor Analysis (PFA) [18], which is similar to AFM with an addi-
tional assumption that success and failure have different impacts on learning.
Because we don’t currently have evidence that this additional assumption holds
in ST Math, we focused on applying AFM and CFM in this paper.

Despite the wide application of empirical Learning Curves on intelligent
tutors and other e-learning platforms, there has been little application in serious
games. As one exception, Harpstead and Aleven [8] applied the AFM model in a
physics game. Through examining learning curves, they identified an unforeseen
shortcut strategy with which students could pass the game without sufficiently
mastering its underlying math concepts. Similarly, Baker et al. [3] fit learning
curves in a action-based math game to model gains in speed and accuracy over
time. They found that modeling accuracy helped to identify skills that needed
extra support and scaffolding. However, modeling speed was difficult, because
it was hard to separate gains in math fluency from familiarity with the game-
play. Lomas et al. [15] applied learning curves to a game locating numbers on
a number line. They found when students were allowed to pass the game with
less accurate estimations, the learning rate was lower. In these cases, estimating
learning curves revealed areas for modification and improvement within serious
games. However, in all previous work, the games studied represented a single
problem-solving scenario. In contrast, games such as ST Math practice math
skills through various problem-solving scenarios. Applying learning curves to ST
Math can yield not only game design insights, but help understand how students
transfer knowledge across different problem solving scenarios.
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3 Data

MIND Research Institute, the developer of ST Math, collected and provided
the researchers with sample data from 3rd grade students who played ST Math
from August 2016 to February 2017. We focused on the “Comparing Fractions”
objective. Performance on fractions has been found to predict future mathe-
matical achievement [2,26,28]. Thus, investigating this objective will allow us
to contribute suggestions for game design of instruction around a crucial math
concept. This objective contains 26 levels across seven games; 1,007 students
completed the first game, and 860 students completed the last game. ST Math
recorded students’ IDs, answers, and response times for each puzzle attempt.
The data also included the correct answer for each puzzle, and the level, game,
and objective to which it belonged. We filtered out students’ replay of previously
passed levels [13] to focus solely on their attempts to pass an unlearned case.
The final data contains 146,498 unique puzzle attempts.

4 Analyses

Our goal was to understand and model learning in ST Math, and to suggest
better game design that would foster greater learning. ST Math is structured at
the top level by objectives, where games representing different problem-solving
scenarios and levels are puzzle sets of increasing difficulty. Puzzles are either ran-
domly generated following a template, or randomly selected from a pre-designed
puzzle pool. We first fit learning curves to the puzzles to identify the learning
patterns at each level. We then combined the levels hierarchically within each
game. We sought to find similarities between the levels–modeling levels as con-
tinuations within a single learning curve. Lastly, we sought to find associations
between games. We used an expert-designed Q-matrix with knowledge com-
ponents describing the shared math skills and problem representations across
games. We fit learning curves using different assumptions to identify how these
knowledge components interacted and affected students’ learning across games.

4.1 Fitting Learning Curves

We used the AFM [4] and CFM [5] models to fit learning curves. We decided
to model the probability that a student answered a puzzle correctly on the first
attempt only. This is because students receive animated feedback after each
answer, with some feedback enabling them to quickly correct a wrong answer
without having to redo the entire problem. Thus, subsequent attempts may not
truly reflect each student’s knowledge of the mathematics content. Next, we
decided to fit a learning curve on the first N puzzles in each level, where N
is the number of puzzles that must be answered correctly in order to pass the
level. We chose N because students who passed the level without exhausting all
of their lives (which is the majority in most levels) will not need another attempt.
Attempts following N will only contain data from low-performing students who
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had to attempt the level multiple times to pass. Thus, we only consider students’
first N puzzles (practice opportunities) in order to fit our learning curve on
the same population. Lastly, for student variables in AFM and CFM, we used
students’ average performance in the prior two objectives: “Fraction Concepts”
and “Fractions on a Number Line.” These two reflect students’ knowledge of
fractions prior to attempting this objective.

4.2 Analyzing Puzzles in Levels

In ST Math, each level stresses skills of increasing difficulty under a problem-
solving scenario defined by the game. The increased difficulty can be introduced
by changes in math content (e.g., using larger numbers), changes in problem
representation (e.g., use of math symbols instead of an visual object), or other
factors. However, in each case the problem-solving scenario (e.g., finding shoes for
animals) remains the same. Thus, we started by assuming one-to-one mappings
between levels and knowledge components, and fit learning curves with AFM.

Figure 1 shows the learning curve fit, with content of representative games
described in the later text. We applied 10-fold cross-validation and reported
the model’s accuracy as the percentage of instances correctly predicted by the
logistic regression models. The majority of puzzles were answered correctly by
over 50% of students, therefore we include the AUROC to describe how well
models can differentiate between true positive and false positive.

We looked for four specific patterns to derive game-design feedback. A
good learning curve displays a logarithmic pattern indicating that students
increased their accuracy with practice and thus that learning appears to be
well-supported. An incomplete learning curve is similar to a good learning
curve except it does not include a flat tail. This indicates that students can still
improve with more practice. Next, a flat learning curve, which we defined
here as having a smooth curve with e <= 0.05, means that students’ perfor-
mance did not improve substantially with practice. It could be that the level is
too difficult or that the game content is not well-designed thus students did not
learn with practice. It could also be that the level is too easy: students started
with near perfect performance. Lastly, a non-learning curve does not follow a
logarithmic or flat pattern. Performance in this type of learning curve increased
or decreased suddenly at specific attempts. When this happens, it means that
there was a change in the puzzle’s template that introduced what the students
perceived to be a new knowledge component. For example, a level can have half
of the puzzles randomly generated with odd denominators, and the other half
randomly generated with even denominators. If students failed to transfer the
knowledge when denominators changed, we will see two disjointed learning
curves.

The majority of levels (16 of 26) showed the logarithmic pattern of a learning
curve, which means that the game design helped students learn (or improve their
performance). A few learning curves are incomplete (e.g., Game 7 L3), suggesting
that game designers should increase the number of puzzles required to pass the
levels (L) as students still have room for improvement.
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Fig. 1. Learning curve plots and AFM statistics.
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Four of the 26 levels had flat learning curves. Among these, Game 3 L3&4
appear too difficult and need to be re-designed to support learning. L3 presents
a fraction and requires students to find two different ways of dividing a vertical
bar by selecting the number of segments that equals the given fraction, as shown
in Fig. 2. However, the denominator of the given fraction is not allowed as a
choice. For example, if the fraction is 3/4, the option to divide the bar into
fourths is grayed out, forcing students to divide the bar into eighths and choose
6/8, and then 9/12. L4 concerns a similar skill with more difficult content. A
longitudinal study by Hansen et al. also found questions where the denominator
of the fraction did not correspond directly to the pieces in the presented model
posed the most difficulties for low-achieving students [9]. Thus, designers may
wish to offer extra scaffolding on these two levels. On the contrary, Game 1 L2
and Game 7 L1 appeared to be too easy because performance is consistently
near perfect. For example, in Game 7 L1 students order fractions with the same
denominator and different numerators, with visualizations showing the size of
these fractions as the widths of bars. This level is too easy because students can,
without understanding fractions, visually compare the bar widths. However, this
level serves to teach the game mechanics for the subsequent levels in this game.
Thus, we suggest designers either reduce the number of puzzles, or use one puzzle
in this level as a tutorial for L2, instead of as an independent level.

Fig. 2. An example of a too difficult level with flat learning curve.

Six levels follow a non-learning curve pattern. Two levels (Game 1 L1, Game
2 L4) present the same puzzles at the same attempt for all students to make a
specific point, such as understanding fractions equal to 1. These non-randomized
puzzles are easier, causing a jump in performance. However, we do not suggest
changing them due to their educational value. Four levels showed disjointed
learning curves. These learning curves revealed cases where students failed to
transfer between specific number content. For example, the first three puzzles of
Game 5 L2 require students to locate a fraction X/8 on a number line divided
into one fourths, and the last three require locating X/4 on a number line marked
with one eighths. Game 5 L3 has a similar setup, with X/6 and X/3. Although
these puzzles cover the same concept, the four disjointed learning curves show
that students failed to transfer between puzzle sets of different fixed denomina-
tors (the four puzzles types shown in Fig. 3). It could be that some students do
not understand the underlying concepts, but learned pattern matching based on



Learning Curve Analysis in a Serious Math Game 443

specific number content. Another possible explanation is that the number of par-
titions prevented transfer between the two puzzle sets. Mitchell and Horne found
that some students may incorrectly count the number of lines to determine where
a fraction falls on the number line instead of considering the spaces between the
lines [10]. Thus, game designers may consider providing practice with random-
ized numbers instead of presenting fixed numbers separately to reduce the ease
of content-specific pattern matching or counting.

Fig. 3. An example where students failed to transfer. The below four types of puzzles
showed four disjointed learning curves.

To summarize, fitting learning curves to each game’s level derived specific
game design insights, and helped us better understand how learning is structured
in the ST Math environment. However, a general trend was that a number
of the learning curves were disjointed. In many games, each level seemed to
form its own learning curve instead of forming a single learning curve with the
other levels. The lack of connection and the cases of disjointed learning curves
implied that 3rd graders may rely on content- and problem-specific procedural
knowledge or pattern matching strategies to solve puzzles, instead of transferring
the understanding of underlying math concepts [12,22]. When new content or
problem representations were introduced to practice the same math concept,
students treated them as new knowledge components.

4.3 Analyzing Levels in Games

In this section, we sought to find similarities between levels by looking for level
combinations that would form a continuous learning curve. Based on the pre-
vious analyses, we started by considering each level as a separate Knowledge
Component (KC), and applied a bottom-up approach to hierarchically combine
levels within a game based on learning curve fitting. We then searched for KC
pairs that, once combined as the same KC, yielded AFM models with the lowest
Bayesian information criterion (BIC) values as compared to other combination
choices. A lower BIC means that the model fit was comparatively better consid-
ering both the fit (maximum likelihood) and complexity (number of parameters).
This approach is similar to Cen and Koedinger’s work [4], except that they used a
top-down approach that searches to split one KC into multiple KCs to improve
the model. We applied this method to levels within a game instead of across
games. We did so because the conjunction of learning curves only makes sense
if the different levels involve practicing the same skill (KC). We excluded levels
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with disjointed or flat learning curves. This is because disjointed learning curves,
if split into multiple learning curves, have too few puzzles to study a pattern.
Flat learning curves, especially those with high performance, may be appended
to the tail of any previous learning curves that reached high performance in the
last attempts. Such conjunctions may not have empirical meanings.

Figure 4 shows the hierarchical combinations of levels in Game 6. The algo-
rithm first combined L1&4, which resulted in a lower BIC than the original
model in which each level is a different KC. Both L1&4 ask students to com-
pare two fractions with the same denominator and different numerators, with
one requiring students to answer with a ladder and the other with math sym-
bols. Similarly, L2&3 require comparing fractions of the same numerator with
ladders or math symbols, and were suggested to be combined next. This hierar-
chy showed that students can transfer easily between ladder and math symbols,
but not as easily from comparing fractions with the same denominator to com-
paring fractions with the same numerator and different denominators. This is
likely due to the simplicity of comparing fractions with the same numerator (or
denominator)–students only have to compare one number rather than consider-
ing the relationship between the numerator and denominator [6]. In other words,
comparing fractions was still a difficult skill and it wasn’t the symbolic repre-
sentation of greater than/less than that tripped students up. Thus, we suggest
re-positioning L4 to come after L1 or even removing ladders and using math
symbols only. However, when introducing comparing fractions with the same
numerator and different denominators in the next level, designers should pro-
vide other scaffolding to make connections between the two skills.

Fig. 4. Hierarchical combinations of game 6 levels that led to models with different
BICs. BIC similar to baseline indicates that the combined levels share a similar KC.

In the rest of the games, the algorithm suggested combining the following
levels without much increase in BIC: L2&3 of Game 2 (BIC 14138 compared to
baseline 14127), L1&2 of Game 4 (BIC 14731 compared to baseline 14702), and
L3&4 of Game 7 (BIC 14425 compared to baseline 14352). The combination in
Game 4 shows that by locating fractions one by one on a number line, students
can easily transfer from comparing fractions with the same denominator and dif-
ferent numerators to comparing fractions with the same numerator and different



Learning Curve Analysis in a Serious Math Game 445

denominators. This implies that locating fractions on a number line is a strategy
that facilitates such a transfer (see the integrated theory of numerical develop-
ment in [21,25]). However, for comparing fractions with the same denominator,
the transfer between fractions smaller than 1 to larger than 1 is much more
difficult. It could be that students rely on the numbers in the fractions rather
than their magnitude [9,11], so when the fraction is greater than 1, they do not
have a conceptual understanding of where the fraction is located on a number
line in order to use the number line to help with comparisons. Thus, designers
may consider more scaffolding to help students make this transfer.

The other suggested combinations are pairs of levels concerning the same skill
with the same problem representation. To summarize, hierarchically combining
learning curves helped us identify where students may need extra support to
transfer between math skills and problem representations.

4.4 Analyze Games in Objective

From previous analyses, we learned that the performance in ST Math is influ-
enced by both targeted math skills and problem representations. Thus, in this
subsection, we sought to further investigate how math skills and problem rep-
resentations interact with each other and influence students’ learning across
games. We started with designing an expert Q-matrix (mapping from puzzles
to knowledge components) with two types of knowledge component: math skill
(KC-S) and problem representation (KC-R). Each level was mapped to at least
one KC-S and one KC-R, but not all KCs were mutually exclusive, which means
a level could contain multiple KC-Ss and/or KC-Rs. We constructed a total
of four KC-Rs, including: number line, vertical bar, horizontal bar, and rep-
resentation containing visual cues that help students solve the puzzle through
pattern-matching. We constructed 6 KC-S, including: presenting fractions (e.g.,
as segments of a bar); finding equivalent fractions; comparing three types of frac-
tions: same numerators, same denominators, and different in both numerators
and denominators; and comparing fractions greater than 1.

Next, we fit learning curves on the expert-designed Q-matrix with three
assumptions. The first assumption was that each KC contributed to perfor-
mance additively, as assumed by the AFM model. The second was that each
KC contributed to performance conjunctively(modeling the conjunctivity as a
multiplication of skill parameters), as assumed by the CFM model. We used R’s
optim package with BFGS optimization method to estimate the parameters of
CFM through maximizing the likelihood function. The third assumption was
that the KCs interacted neither additively nor conjunctively. This means the
same math skill presented in two separate levels would be viewed as two distinct
skills that students learned under different representations. Thus, a combina-
tion of KCs forms a new KC. In other words, each level would be mapped to
only one KC, and levels with the same KC-R and KC-S combinations shared
the same KC. When each level had one KC, AFM and CFM were equivalent.
This assumption yielded 15 KCs (15 different combinations of KC-R and KC-S)
across 26 levels.
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Table 1. Learning models under different assumptions of KC interactions.

KC assumptions Model Accuracy AUROC BIC

High Baseline: Each level is a KC (26 KC,
each level has 1 KC)

AFM/CFM 0.782 0.622 134831 (+0.0%)

Combined (15 KC, each level has 1 KC) AFM/CFM 0.775 0.602 137425 (+1.9%)

Additive (9 KC, each level has >1 KC) AFM 0.768 0.58 141607 (+5.0%)

Conjunctive(9 KC, each level has >1 KC) CFM 0.761 0.54 149002 (+10.5%)

Low Baseline: Each game is a KC (7 KC,
each level has 1 KC)

AFM/CFM 0.756 0.54 150787 (+11.8%)

As shown in Table 1, our models have low discrimination ability based on
AUROC from 10-fold cross-validation. Thus, there are limitations when applying
traditional learning models to serious games, where it is easier for children to
guess or pattern match with visual cues in specific game environments. The
model based on the third assumption had the best fit, with only 1.9% increase
in BIC as compared to the most ideal model assuming each level is a KC. Our
result implies that ST Math’s targeted skills and problem representations do not
contribute to performance simply through additive or conjunctive relationships.
Instead, the same skill would be treated as different skills when combined with
other skills and problem representations. It could be that when students play
ST Math, they do not use math skills alone. Rather, students develop new skills
that are content- and situation-specific, based on the combinations of targeted
math skills and problem representations.

5 Discussion and Conclusion

In this paper, we demonstrated using learning curves as a simple, efficient way
to evaluate how well an educational game supports learning. Our results pin-
pointed problematic levels and cases where students needed extra support to
transfer between math skills, content, and problem representations. We derived
actionable feedback for ST Math and general insights on fraction learning.

This work has several limitations. First, ST Math is designed as a curriculum-
integrated game, but our data does not capture factors in classrooms. Future
research will include teacher interviews and classroom observations to better
assess the impact of classroom factors. Second, we limited the data to only the
number of puzzles required to pass a level which excluded some attempts by low-
performing students. Future research may explore methods to separate learning
curves for student sub-populations [16] in order to increase external validity.

Our results suggest that students developed new ‘skills’ based on the com-
bination of targeted math skills and problem representations, rather than sim-
ply combining them as assumed in the additive or conjunctive factor models.
The variety in ST Math’s problem-solving scenarios may improve students’
understanding of math concepts. However, this variety could distract learning if
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students focus more on content- and situation-specific practice than the under-
lying math concepts. The literature review by Lehtinen and Hannula-Sormune
[12] argues that in cases of transfer failures, the (new) situations are not nec-
essarily interpreted as mathematical by children. For example, students may
see Game 1–3 as ‘selecting divided bars and the number of segments to match
a given bar’s height/width,’ instead of ‘understanding fractions as proportions
and finding equivalent fractions by multiplying or dividing the numerator and
denominator by the same number.’ Thus, when bars are replaced with a number
line to practice the same math skill, it becomes a different task. Similarly, work
by Rau et al. [20] found that providing multiple representations can promote
better learning than a single graphical representation, but only when students
are prompted to self-explain how the graphics relate to the symbolic fraction
representations. With the increasing popularity of mini-games collections, it is
important to design scaffolding that facilitates transfer by focusing students on
the underlying math concepts instead of reinforcing simple strategies like pat-
tern matching. Such scaffolding should also be considered in other e-learning
platforms that offer multiple problem-solving scenarios for young children.

We learned several lessons from applying learning curves to this serious game
environment. Learning in game environments is inseparable from the games’
mechanisms, structures, and designs. Researchers should consider starting anal-
yses at a low granularity, such as the individual level we used here. Under-
standing students’ learning at a low granularity would help illuminate factors
that contribute to learning, and help structure analyses at higher granularities
where these factors may combine or evolve. Moreover, game performance does
not solely comprise learning. This means traditional learning modeling methods
may have limited power in serious games. Thus, researchers should be flexible
with different models and assumptions to work within specific game environ-
ments. Regardless, researchers should triangulate results with human interpre-
tations and the literature to make sure the results do not derive from unforeseen
game scenarios or the large amount of data. For example, Harpstead and Aleven
[8] used both data and human judgment to examine the fit of learning curves
in a physics game and identified an unforeseen pattern matching strategy. Liu
et al. [19] mined predictive relationships between ST Math objectives, and used
both human interpretation and literature to suggest game design feedback. Thus,
when analyzing serious game data, it is extremely important to not solely focus
on the performance of models, but also consider the models’ interpretation and
practical value.
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