)

Check for
updates

A Data-Driven Method for Helping Teachers
Improve Feedback in Computer Programming
Automated Tutors

Jessica MCBrooml(m), Kalina Yacef?, Irena Koprinskal,
and James R. Curran?

! The University of Sydney,
School of Information Technologies, Sydney, Australia
jmecb6755@uni. sydney. edu. au,
{kalina. yacef, irena. koprinska}@sydney. edu. au
2 Grok Learning, Sydney, Australia
james@groklearning. com

Abstract. The increasing prevalence and sophistication of automated tutoring
systems necessitates the development of new methods for their evaluation and
improvement. In particular, data-driven methods offer the opportunity to provide
teachers with insight about student interactions with online systems, facilitating
their improvement to maximise their educational value. In this paper, we present
a new technique for analysing feedback in an automated programming tutor.
Our method involves first clustering submitted programs with the same func-
tionality together, then applying sequential pattern mining and graphically
visualising student progress through an exercise. Using data from a beginner
Python course, we demonstrate how this method can be applied to programming
exercises to analyse student approaches, responses to feedback, areas of greatest
difficulty and repetition of mistakes. This process could be used by teachers to
more effectively understand student behaviour, allowing them to adapt both
traditional and online teaching materials and feedback to optimise student
experiences and outcomes.

Keywords: Data-driven teacher support - Automated tutoring systems
Feedback improvement - Tutoring system evaluation

1 Introduction

In recent years, steady progress has been made towards developing new data-driven
methods for feedback generation in automated tutoring systems. These are online
systems which provide automated marking of submissions and feedback to students.
This work has led to an increase in the sophistication of tutoring systems, with great
potential to improve educational outcomes. However, it has also increased the difficulty
of analysing and assessing the automated feedback given by these systems. As the
systems become more complex, teachers become more distanced from the direct
feedback and instruction given to individuals, and this is exacerbated by the increasing
number of students. It is therefore very challenging for teachers to identify and

© Springer International Publishing AG, part of Springer Nature 2018
C. Penstein Rosé et al. (Eds.): AIED 2018, LNAI 10947, pp. 324-337, 2018.
https://doi.org/10.1007/978-3-319-93843-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_24&domain=pdf

A Data-Driven Method for Helping Teachers Improve Feedback 325

diagnose issues with the system and monitor whether the instructional material they
have created is appropriate or could be improved.

Thus, to ensure that automated tutoring systems meet their potential to enhance
student experiences, it is essential to close the loop between teachers, systems and
students, by ensuring that information about student interactions with these systems is
passed back to teachers. In particular, it is important to develop data-driven methods for
assessing automated tutoring systems alongside methods of extending them. These
methods can allow teachers to use the wealth of data collected by the tutoring systems
to modify and improve these systems. They can also provide useful insights into
student learning, which can be applied in other contexts, such as inside the classroom,
to improve learning.

In this paper, we present a new data-driven method for assessing automated
tutoring systems in the context of a computer programming course. This method helps
teachers to understand the kinds of programs students write and how they change over
time in response to feedback. This allows them to: (i) gain insight into student learning,
e.g. by finding exercise parts where students have trouble, or identifying common
mistakes and difficult concepts, and (ii) improve the tutoring system, e.g. by revising
the pre-set feedback and testing cases in the system based on student behaviour. We
demonstrate an application of this method to real data from a beginner programming
course in Python, and also discuss possible extensions and broader applications of the
method to other areas.

2 Related Work

A variety of automated marking and tutoring systems have been reported in computer
science courses [1-7] and other areas [8—11] in recent years, and there has been much
work focused on improving the sophistication of feedback provided by these systems
[1, 5, 6, 8-11] Evaluations of these systems have often focused on functionality of the
system, including its usability [2] and the availability of hints [5, 6, 8, 10], student
opinions and engagement [4, 11, 12], before and after studies [11, 12] or comparisons
with expert opinions. These evaluation methods provide valuable feedback to teachers,
but some (e.g. comparative studies) do not scale well to large numbers of students due
to the significant manual work and time required, and the information provided about
how students interact with the system is often more general. Our work aims to address
this by providing teachers with a way to understand and visualise how large numbers of
students interact with an automated tutoring system, including how they respond to
feedback, which can lead to clear and actionable ways to improve the system.

An important part of our work involves clustering similar programs. Previous work
related to this includes clustering programs based on features or on their structure by
using metrics such as the tree edit distance [13]. Gross et al. [14] investigated the
usefulness of different similarity metrics in the context of programming and Paassen
et al. [15] discussed a scheme for learning parameters of structure metrics, which could
be used to determine program similarity. Another method is to focus on functionality or
semantics of programs. In [16], similar programs were grouped by renaming all similar
variables across programs (determined by running the programs), then combining

326 J. McBroom et al.

programs with the same sets of lines of code. Our clustering involves applying
functionality-preserving transformations to programs, followed by further processing to
account for differences that are irrelevant in the context of the exercise.
Functionality-preserving transformations have been applied in other work for different
purposes and languages [1, 5].

Our work falls into the broader area of mining log data from automated tutoring
systems to provide teachers with information to improve educational outcomes. Other
related work includes predicting students at risk of failing early in the semester [17],
characterizing and predicting the performance of different groups of students [18] and
analysing student behaviour and its evolution throughout the semester [19, 20].

3 Data

Our data come from Grok Learning [19], an online platform offering various pro-
gramming courses of different difficulty levels to students, each consisting of a series of
interactive lessons and exercises for students to complete. The exercises are marked
automatically using a series of test cases written in advance by teachers, and students
are provided with feedback based on the tests passed and failed. The students can then
use this feedback to improve their programs, re-submit and re-test them, until all tests
are passed.

The dataset used in this paper is extracted from a beginner Python programming
challenge run through Grok Learning in 2017. It comprises of programming attempts,
failed or successful, from two programming exercises (‘“What Rhymes with Grok’ and
‘Letter from the Queen’). Each exercise was attempted by over 5000 students, and the
data includes all student programs that were run through the system or submitted for
marking, any tests passed or failed by the programs, the feedback automatically gen-
erated by the tests, submission times and information on any errors from running the
programs.

4 Method

The method we propose aims to give teachers an overview of student interactions with
an automated tutor for computer programming for a given exercise. This includes: the
types of programs students submit, how students respond to the given feedback, the
student progression through the exercise and the exercise parts where students expe-
rience difficulty. This knowledge can assist teachers in identifying system strengths and
areas for improvement, and also in gaining insights into student learning.
Importantly, as our method is data-driven, using real student programs and their
subsequent revisions after receiving feedback, it can reveal underlying problems
experienced by students that were not necessarily anticipated by the teacher when
devising the test feedback. For example, in Table 1, a sample student submission for an
exercise discussed in the next section is shown, along with the feedback received. The
issue with the program is that it prints a hardcoded answer, instead of the user’s input,
and the feedback given addresses the issue by reminding the student to use a variable

A Data-Driven Method for Helping Teachers Improve Feedback 327

instead. However, our data-driven approach reveals that 100/172 students in this sit-
uation simply changed their hardcoded message after receiving the feedback. This is
not what a teacher would expect, and so highlights the value of data-driven analysis
techniques. Our approach can also reveal bugs in test cases, opportunities to make these
tests more targeted and whether students make similar mistakes in later exercises.

Table 1. Sample student program and feedback received. The feedback seems useful, but many
students do not respond as expected to it.

Student Program Feedback

input ('What rhymes | Testing the second example in the question (when the user en-
with Grok? ') ters sock). Your submission did not produce the correct output.
print ('rock") Your program output:

What rhymes with Grok? sock

rock

when it was meant to output:

What rhymes with Grok? sock

sock

Remember to store the user input in a variable, and to use the
variable name with print

Our approach consists of two main steps, summarised in Fig. 1. The first is to
cluster student programs based on their functionality, and the second is to extract useful
information from the clusters by building an interaction graph and using sequential
pattern mining. We describe these steps in more detail below.

Clustering by Functionality

Students
Interaction Data —#
/ Transformations —#® Context Consideration —#® Filtering
System *
* Analysis

Teacher =~ Closing the Loop Interaction Graph Sequential Pattern Mining Other Data

Fig. 1. Summary of our approach to closing the loop between teachers, systems and students

4.1 Clustering

To allow teachers to interpret a large number of student program submissions, we begin
by clustering programs based on their functionality. Two programs are considered to
have the same functionality if an observer with access to any input/output examples
cannot distinguish between the two programs. This definition is consistent with how

328 J. McBroom et al.

the testing is done using the pre-specified test cases. The advantage of using this
clustering approach is that a group of programs functioning similarly is easily exem-
plified by a single example, so the clusters are easy to interpret. Though differences in
syntax and efficiency can reveal further interesting information about student under-
standing, we do not focus on these here.

The clustering in the form we describe is applicable to ‘calculation-based’ pro-
grams. That is, programs employing any of the following: literals, mathematical
operators, variables, simple functions and console-based input and output. However,
this could be extended to broader classes of programs in future.

The method consists of three steps: the application of functionality-preserving
transformations, considering context and filtering, which we outline in turn.

Functionality-Preserving Transformations. We describe a number of transforma-
tions with Python in mind, but these could be generalised to other languages. Some
examples are shown in Table 2.

Table 2. Examples of Python programs and their standardised forms

Original Program Standardised Explanation

print (input ('Quo | print('Quokka ', end='") | separate input into printing and

kka ")) il = input() input, new variable for changing
print(il) value, standardised variable

naming

a = input () il = input() substitute variables, standardise

b= "." print (il + ".A\n', printing, standardised naming

c=a+b end="'")

print (c)

''"'comment'"' print('84', end = ''") remove comments and unused

a=2 variables, evaluate expressions,

print (7*12)

standardise printing

Variables. In general, transformations are applied so that variables are used only and
always for values that can vary on different runs of the program. Such values include
the output from random or input functions. If variables are not being used for these
values, they are introduced. Variables used for all other values (such as literals) are
removed and any occurrences of them are replaced by their value. The names of
variables are then standardised.

Expressions. Expressions are simplified where possible. This includes the evaluation of
consecutive literals or literals in commutative expressions and the elimination of trivial
operations, such as empty string addition. If the value of an expression can be deter-
mined without complete knowledge of all operands, it is also evaluated (e.g. an
expression with multiplication by 0).

Expressions are also expanded to standardise their form. This includes application
of distributive laws and replacement of some operations involving literals. For

A Data-Driven Method for Helping Teachers Improve Feedback 329

example, a* *2 would be replaced by a*a. For consistency, commutative expressions
are ordered by operand types, e.g. integers are placed first.

Function-Specific Transformations. Transformations specific to allowed functions are
applied to standardise programs further. For example, an input call can be separated
into a print call followed by an input call with no arguments. Consecutive print
statements are collapsed into a single statement with no varying keywords. Type casts
are removed where possible.

Other. If two variable declarations can be swapped without altering the function of the
program, a standardised ordering is applied, for example, based on the variable used
first. Whitespace, comments and any lines that do not affect the program’s functionality
are removed.

Considering Context. After transformations are applied and functionally equivalent
programs are clustered together, the number of clusters is then reduced by ignoring
differences that do not matter. An example of such a difference is whether a program
prints ‘hi’ or ‘hello’ in an exercise where the goal is to print ‘How are you?’: in
both cases, the programs are incorrect for the same reason.

This reduction is achieved by combining programs with a similar standardised form
together, so long as they fail the same test cases. For simple programs, this can just be
differences in strings or numerical values. For more complex programs, some mathe-
matical expressions could be treated as equivalent, or some statements with the same
general purpose. In our case study, we combined programs with exactly the same
abstract syntax tree structure and node types so, for example, differences in strings
would be ignored, so long as the same tests were passed and failed.

Filtering. Finally, to ensure teachers are left with a manageable number of clusters to
consider, clusters containing less than a specified number of programs are filtered out.
In the case study we describe next, this threshold was 10.

4.2 Analysis

After clustering, student interactions with the system are analysed using a combination
of different methods: building an interaction graph and finding frequent patterns.

In the interaction graph, nodes and edges represent student program clusters and
their transitions between these clusters respectively. By providing a general overview
of how students progress through the exercise, this graph can reveal places where
students struggle and therefore can be used to improve feedback. For example, cycles
in the graph could be indicative of student confusion or misleading feedback. Student
starting positions in the graph could also indicate how prepared students were for the
exercise, and ending positions in the graph could highlight areas of difficulty.

Next, sequential pattern mining is used to find common consecutive transitions
between clusters. This is done by iterating through the transitions of each student and
adding all unique paths of a given length to a tally. For example, a tally of 370 for the
path abc would indicate that 370 unique students submitted three consecutive programs

330 J. McBroom et al.

in clusters a, b then ¢ at some point when completing the exercise. Paths can then be
assessed for their efficiency and how reflective they are of the teacher’s expectations.

Any potentially interesting areas can be analysed in conjunction with other data
from the tutoring system, including submission times, how often students run their
code before marking it, which tests are passed and failed and samples of feedback for
different program clusters. This can allow teachers to assess whether feedback was
appropriate and students responded to it as expected, and how it could be improved in
future. It can also highlight opportunities to make testing more targeted if different
types of programs are failing the same test, and reveal issues with testing procedures if
some programs are passing tests they shouldn’t pass.

Finally, the performance of students across exercises can be observed to assess their
learning progress. For example, teachers can see if students continue to make similar
mistakes or continue to require similar feedback to earlier exercises.

5 Case Study

We demonstrate the application of this method using two beginner programming
questions from the Grok Learning programming challenge. These questions are par-
ticularly interesting because their completion rate is very high (over 97%), so a tra-
ditional analysis could risk skipping over them. However, the small percentage of
students who do not complete the tasks still represent a large enough group to be
interested in helping, and any improvements could help all students to interact more
usefully with the system.

In the first example, we will show how the method can be used to assess whether
student responses in different contexts reflect what an instructor might expect, and how
this can be used to improve the system test cases and the feedback provided to students.
In the second example, we focus on how the method can be used to understand student
learning and help to develop more targeted testing and feedback.

5.1 Example 1 — What Rhymes with Grok?

In this exercise, students write a program to print user input. Details of the exercise
from a student’s perspective are shown in Fig. 2, with instructions on the left, sample
code in the top right and details of tests run on the code in the bottom right.

Figure 3 shows the interaction graph produced by clustering programs of 5874
students who attempted this question. Circular nodes represent student program clus-
ters, and edges show the number of times a submission in the source node cluster was
followed by a submission in the target node cluster. Node and edge size correspond to
the number of submissions, so larger nodes and edges are more important. Edges from
the start and end nodes show the number of students who started and ended in each
cluster. Table 3 shows the most common cluster paths of length 3 and 4 among
students from the sequential pattern mining, ordered by the number of students taking
the paths.

A Data-Driven Method for Helping Teachers Improve Feedback 331

= 0 m i ? > B x
S Instructions Forums < ¥ What Rhymes with Grok? > Run Terminal Save Mark
[E Problem 4 Solutions program.py > < > + o

Your friend is writing a poem about the NCSS Challenge!
Help them come up with words that rhyme with Grok.

Your program should ask the user a question, What rhymes with
Grok?, and then print out their response, like this:

¢-0-0-0-0

What rhymes with Grok? rock
rock

Here is another example:

¢-0-0-0

What rhymes with Grok? sock
sock

It should still print out the word even when it doesn't rhyme:

What rhymes with Grok? basketball
basketball

¢ 0009 0O

1 word = input('What rhymes with Grok? ')
2 print(word)

“DSubmissions <> Output

V¥ #22 Passedall tests! ERCVELGILEEGE Load z

' Testing that the words in the prompt are correct.

Testing that the punctuation in the prompt is correct.

Testing that the capitalisation of the prompt is correct.

Testing that the whitespace in the prompt is correct.

Yay, you've got the first example right!

Testing the second example in the question (when the user enters sock).
Testing with the rhyming word block.

Testing a two word response (Tick Tock).

Testing a hidden test case (to make sure your program works in general).

AN U U O O S S O

Testing another hidden test case.

Fig. 2. A screenshot from a student’s perspective of the exercise “What Rhymes with Grok?”

581 ®
616

620

5713
1267

\“V

498 342

862 2916

' I

Fig. 3. Interaction graph for the exercise “What Rhymes with Grok”

Identifying Areas of Interest. From the graph and common paths, we can make some
general observations about student interactions with the system. Firstly, cluster b is the
most common starting point, followed by a, f, ¢ and d. In the graph, there are self-loops
on a, f, ¢ and d and a cycle between p and k, and repetitions of these also appear in
many common paths. The paths cab and dab, with three different nodes, could also be
interesting. Table 4 shows a summary of the potentially interesting clusters just
identified, including a sample program from each cluster.

332 J. McBroom et al.

Table 3. Path patterns for the exercise “What Rhymes with Grok?”

Path Cluster Path and
Length | Number of Students

3 aab cchb | aaa | fff | ccc | cab | dab | ddb | ftb | pkp 1t
306 170 | 134 | 129 | 102 | 94 85 82 59 53 52
4 aaab ceeh aaaa Niiia cecee et
119 72 64 47 47 34

Table 4. Cluster summaries

Cluster | Size Failed test Sample Program
b 5713 None x = input("What rhymes with Grok? ")
print(x)
a 2044 prompt ws x = input("What rhymes with Grok?")
print(x)
f 1455 prompt print('Hello!")
words
¢ 1281 prompt name = input('what is your name ')
words print(name)
d 691 prompt case | name = input('what rhymes with Grok? ')
print(name)
p 397 eg2 input('What rhymes with Grok? ')
print('rock")
k 338 egl name = input('What rhymes with Grok? ')
print('clock")

Investigating Areas of Interest. From where students began, it is clear many were
generally well prepared for the exercise: cluster b indicates a correct solution, and
clusters a, ¢ and d are close to a correct solution, with just some issues with the prompt
string. The students who began at f, however, were missing some key concepts as they
were only using the print function.

In relation to the cycle between p and k, both clusters are similar in that students
used the input function, but printed out a hardcoded message instead of the user’s
response. When this hardcoded message was not ‘rock’, the first example test was
failed. Otherwise, the second test was failed. A cycle between these clusters suggests
students were changing the hardcoded string instead of correcting the issue. The
feedback given to these students, shown in Table 5, consisted of a notification that their
output was incorrect and, in the case of p, a suggestion on how to correct this was
given. However, according to the data, 50% of submissions (200/397) in cluster p were
followed by a submission in cluster k, and this involved 58% of unique students
(100/172) who had a program in cluster p. For k, the figures were similar: 171/338
submissions (51%) and 84/139 students (60%). Though a teacher might expect students
to change the hardcoded string based on the feedback at k, the fact that the same is true

A Data-Driven Method for Helping Teachers Improve Feedback 333

Table 5. Sample feedback for programs in clusters k and p

k Sample Feedback p Sample Feedback
Testing the first example in the question. Testing the second example in the question
Your submission did not produce the correct | (when the user enters sock). Your submission
output. Your program output: did not produce the correct output. Your
What rhymes with Grok? rock program output:
clock What rhymes with Grok? sock
when it was meant to output: rock
What rhymes with Grok? rock when it was meant to output:
rock What rhymes with Grok? sock
sock
Remember to store the user input in a
variable, and to use the variable name with
print

of p is surprising. One possibility is that students try to modify their code as soon as
they see the output is wrong, without reading all of the feedback. This could perhaps be
addressed by including the suggestion at the beginning of the feedback.

The common paths, dab and cab, are examples of students responding to feedback
as expected, being guided efficiently to the solution. At d, ¢ and a, the feedback directs
students to correct the words, capitalisation and whitespace respectively in their input
prompts. The median time taken for each of the transitions (ca, da and ab) was 54, 32
and 44 s respectively, and the median number of times students ran their code after
correcting their code was one, the required number. This suggests students on these
paths quickly understood and responded to the given feedback.

Of the clusters with self-loops, students in f seemed to experience the most diffi-
culty: it has the largest proportion of repeated submissions (38%) by the largest pro-
portion of unique students (42%), and the largest median time between repeats (42 s).
In fact, 24% of the 161 students who did not complete the exercise stopped at f. Though
this number was still small relative to the total number of students, it could still be an
opportunity to improve feedback. The feedback given for the sample program in cluster
ffocused on the input prompt not containing the correct words, but perhaps it could be
changed to target the presence of certain features in a student program instead, such as
an input function.

Unexpected Clusters. This exercise provides an example of how unexpected clusters
of programs can reveal potential issues with test cases. One small cluster of programs
(21 instances) that failed the first example test had an interesting structure: the pro-
grams asked for input from the user and printed it correctly, but the input prompt was
incorrect. This was interesting, because they passed the four tests checking the input
prompt. By analysing the programs in this cluster, teachers could correct the tests,
which could improve not only this exercise, but any others using similar tests.

334 J. McBroom et al.

5.2 Example 2 - Letter from the Queen

We briefly discuss a later exercise to show how this method can be used to measure
student improvement over time. This exercise requires students to prompt the user for
their age, convert the input to an integer, subtract it from 100 and print out the result.
The interaction graph for this exercise is shown in Fig. 4.

5199

[] . 94

> ® . ’ — b

306 ¢ 2
. . 670
’ 3637

379 A
242 518

\‘V

Fig. 4. Interaction graph for the exercise “Letter from the Queen”

Measuring Improvement. Despite the exercise being more difficult, a greater pro-
portion of students (69% compared to 50%) submitted a correct program on their first
try, and 99% completed the exercise, indicating students improved in this later prob-
lem. A similar hardcoded cycle as in the last problem can be seen (between e and j),
suggesting some students were repeating the same mistakes, but this occurred for a
smaller number of students. Similarly, the cycles on fand ¢ are similar to the cycles on
d, c and a in the earlier exercise in that they involve mostly correct student programs
with incorrect prompt strings. These too involve fewer students than previously, sug-
gesting improvement. Cluster d represents programs attempting to read too much input,
which was much less frequent in the previous exercise. This new issue could be a result
of students needing to print more output, which they mistakenly did by overusing the
input function. This overall suggests students were generally improving, with less
making the same mistakes as before and more making new mistakes as the question
increased in difficulty.

Targeting Tests. In this exercise, 9 tests were run on student programs, but almost all
failing programs were caught by the first three tests. This suggests there is an oppor-
tunity to make the tests more targeted to student code. From the clustering, teachers can
see different kinds of programs failing the same test, such as is shown in Table 6. This

A Data-Driven Method for Helping Teachers Improve Feedback 335

can then be used to create tests targeted at the different approaches. For example, one
could be targeted towards hardcoded answers (#), another could check the subtraction is
done correctly (g) and another could check for correct strings (f).

Table 6. Sample programs from clusters that fail the second test, which checks grammar

Cluster | Cluster Size Sample Program

f 847 print ("Years until your letter...")

X time = 100 - age
print (time)

¢ 46 input ('How old are you?')
print ('Years until your letter...')
print ('85")

g 41 age=input ('How old are you?')
print ('Years until your letter...')
print (int(age) - int(100))

6 Discussion and Conclusions

In this paper we have explored a new data-driven method for the assessment of online
automated tutors in the context of computer programming. This method involves
clustering student programs based on their functionality, building an interaction graph
and applying sequential pattern mining, while also using other data from the system, to
analyse student interactions and progress.

Our method can be used to gain insights into student learning, including how
students begin and end an exercise (e.g. indicating if they had the required prior
knowledge), common paths taken and cycles that may be indicative of difficulty. By
investigating these areas, teachers can identify difficult concepts and common mistakes.
The differences in student behaviour across exercises can allow teachers to measure
student learning by observing similarities and differences in the types of progressions
and mistakes made by students in each exercise.

This information can also facilitate the improvement of tutoring systems. For
example, the identification of areas where the feedback provided to students works
well, and areas where it can be improved, including in places where student responses
may be unexpected, can help teachers to revise automated feedback. In addition, it can
assist in the improvement of test cases: unexpected student program clusters can be
used to find problems with the sequence of tests, and different program clusters that fail
the same test can be used to create more targeted tests. This information can also be
used to provide feedback to students within the classroom, e.g. by explaining common
issues and how to address them before attempting an exercise.

In future, this method could be improved by evaluating it with other teachers and
extending it to a broader class of computer programs and languages. It could also be
combined with other methods for clustering and analysis to provide further information
to teachers on the quality of the student programs, such as style, time and space
complexity, and could possibly be applied to all exercises in the course at once rather
than individual exercises.

336 J. McBroom et al.

Another direction for future work is extending the method to generate automated
feedback for students. For example, students could be encouraged to try new styles of
coding: by identifying parts of their code that functioned similarly to parts of other
students’ code, a tutoring system could suggest they try the other style, which might be
shorter or more efficient. Our method could also potentially be used in the generation of
feedback by identifying functionally similar past examples and adapting the given
feedback to new problems.

Ultimately, in a society where automated tutoring systems are becoming increas-
ingly complex and serving larger and larger cohorts of students, data-driven methods
such as the proposed method are essential to support teachers in their assessment with
empirical evidence. In this way, we can close the loop between teachers, students and
tutoring systems, ensuring teachers can diagnose and correct unexpected issues and, in
doing so, allow these systems to meet their full potential as effective learning tools.
Thus we believe the method we have presented is useful, not only to aid teachers now,
but as a stepping stone to the continued improvement of tutoring systems in the future.

References

1. Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T.: Ask-Elle: an adaptable
programming tutor for haskell giving automated feedback. Int. J. Artif. Intell. Educ.
27(1), 65-100 (2017). https://doi.org/10.1007/s40593-015-0080-x

2. Venables, A., Haywood, L.: Programming students NEED instant feedback! In: Proceedings
of the Fifth Australasian Conference on Computing (ACE), pp. 267—-272. ACM, Adelaide
(2003)

3. Edwards, S.H., Perez-Quinones, M.A.: Web-CAT: automatically grading programming
assignments. In: Proceedings of the 13th Annual Conference on Innovation and Technology
in Computer Science Education (ITiCSE), p. 328. ACM, Madrid (2008). https://doi.org/10.
1145/1597849.1384371

4. Enstrom, E., Kreitz, G., Niemela, F., Soderman, P., Kann, V.: Five years with Kattis using an
automated assessment system in teaching. In: Proceedings - Frontiers in Education
Conference (FIE), pp. T3 J-1-T3 J-6, IEEE, Rapid City (2011). https://doi.org/10.1109/fie.
2011.6142931

5. Rivers, K., Koedinger, K.: Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. Int. J. Artif. Intell. Educ. 27(1), 37-64 (2017).
https://doi.org/10.1007/s40593-015-0070-z

6. Chow, S., Yacef, K., Koprinska, 1., Curran, J.: Automated data-driven hints for computer
programming students. In: Adjunct Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization (UMAP), pp. 5—10, ACM, Bratislava, Slovakia (2017).
https://doi.org/10.1145/3099023.3099065

7. Gramoli, V., Charleston, M., Jeffries, B., Koprinksa, 1., McGrane, M., Radu, A., Viglas, A.,
Yacef, K.: Mining autograding data in computer science education. In: Proceedings of the
Australasian Computer Science Week Multiconference. ACM, Canberra (2016). https://doi.
org/10.1145/2843043.2843070

8. Stamper, J., Barnes, T., Lehmann, L., Croy, M.: The hint factory: automatic generation of
contextualized help for existing computer aided instruction. In: Proceedings of the 9th
International Conference on Intelligent Tutoring Systems (ITS), pp. 71-78. Springer,
Montreal, Canada (2008)

http://dx.doi.org/10.1007/s40593-015-0080-x
http://dx.doi.org/10.1145/1597849.1384371
http://dx.doi.org/10.1145/1597849.1384371
http://dx.doi.org/10.1109/fie.2011.6142931
http://dx.doi.org/10.1109/fie.2011.6142931
http://dx.doi.org/10.1007/s40593-015-0070-z
http://dx.doi.org/10.1145/3099023.3099065
http://dx.doi.org/10.1145/2843043.2843070
http://dx.doi.org/10.1145/2843043.2843070

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

A Data-Driven Method for Helping Teachers Improve Feedback 337

. Johnson, S., Zaiane, O.: Deciding on feedback polarity and timing. In: Proceedings of the

International Conference on Educational Data Mining (EDM), IEDMS, Chania, Greece,
pp- 220—222 (2012)

Barnes, T., Stampler, J.: Automatic hint generation for logic proof tutoring using historical
data. J. Educ. Technol. Soc. 13(1), 3—12 (2010). https://doi.org/10.1007/978-3-540-69132-
741

Perikos, 1., Grivokostopoulou, F., Hatzilygeroudis, I.: Assistance and feedback mechanism
in an intelligent tutoring system for teaching conversion of natural language into logic. Int.
J. Artif. Intell. Educ. 27(3), 475-514 (2017). https://doi.org/10.1007/s40593-017-0139-y
Dominguez, A., Yacef, K., Curran, J.: Data mining for individualized hints in eLearning. In:
Proceedings of the International Conference on Educational Data Mining (EDM), IEDMS,
Pittsburgh, PA, United States, pp. 91—-100 (2010)

Yin, H., Moghadam, J., Fox, A.: Clustering student programming assignments to multiply
instructor leverage. In: Proceedings of the Learning at Scale Conference (L@S), pp. 367
—372. ACM, Vancouver (2015). https://doi.org/10.1145/2724660.2728695

Gross, S., Mokbel, B., Paassen, B., Hammer, B., Pinkwart, N.: Example-based feedback
provision using structured solution spaces. Int. J. Learn. Technol. 9(3), 248-280 (2014).
https://doi.org/10.1504/ij1t.2014.065752

Paassen, B., Mokbel, B., Hammer, B.: Adaptive structure metrics for automated feedback
provision in intelligent tutoring systems. Neurocomputing 192, 3—-13 (2016). https://doi.org/
10.1016/j.neucom.2015.12.108

Glassman, E., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: Overcode: visualizing variation in
student solutions to programming problems at scale. ACM Trans. Comput. Hum. Interact.
22(2), 1-35 (2015). https://doi.org/10.1145/2699751

Koprinska, I., Stretton, J., Yacef, K.: Students at risk: detection and remediation. In:
Proceedings of the International Conference on Educational Data Mining (EDM), IEDMS,
Madrid, Spain, pp. 512—515 (2015)

Koprinska, 1., Stretton, J., Yacef, K.: Predicting student performance from multiple data
sources. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) AIED 2015. LNCS
(LNAI), vol. 9112, pp. 678—681. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19773-9_90

McBroom, J., Jeffries, B., Koprinska, 1., Yacef, K.: Mining behaviours of students in
autograding submission. In: Proceedings of the International Conference on Educational
Data Mining (EDM), IEDMS, Raleigh, NC, United States, pp. 159—166 (2016)
McBroom, J., Jeffries, B., Koprinska, 1., Yacef, K.: Exploring and following students’
strategies when completing their weekly tasks. In: Proceedings of the International
Conference on Educational Data Mining (EDM), IEDMS, Raleigh, NC, United States,
pp. 609—610 (2016)

Grok Learning. https://groklearning.com. Accessed 8 Feb 2018

Figures 1, 3 and 4 produced using Cytoscape graphing software Cytoscape. www.cytoscape.
org. Accessed 8 Feb 2018

http://dx.doi.org/10.1007/978-3-540-69132-7_41
http://dx.doi.org/10.1007/978-3-540-69132-7_41
http://dx.doi.org/10.1007/s40593-017-0139-y
http://dx.doi.org/10.1145/2724660.2728695
http://dx.doi.org/10.1504/ijlt.2014.065752
http://dx.doi.org/10.1016/j.neucom.2015.12.108
http://dx.doi.org/10.1016/j.neucom.2015.12.108
http://dx.doi.org/10.1145/2699751
http://dx.doi.org/10.1007/978-3-319-19773-9_90
http://dx.doi.org/10.1007/978-3-319-19773-9_90
https://groklearning.com
http://www.cytoscape.org
http://www.cytoscape.org

	A Data-Driven Method for Helping Teachers Improve Feedback in Computer Programming Automated Tutors
	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Method
	4.1 Clustering
	4.2 Analysis

	5 Case Study
	5.1 Example 1 – What Rhymes with Grok?
	5.2 Example 2 - Letter from the Queen

	6 Discussion and Conclusions
	References

