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Abstract. Revised Bloom’s Taxonomy is used for classifying educa-
tional objectives. The said taxonomy describes a hierarchical ordering of
cognitive skills from simple to complex. The Revised Taxonomy relaxed
the strict cumulative hierarchical assumptions of the Original Taxonomy
allowing overlaps. We use a knowledge tracing model, Deep Knowledge
Tracing (DKT), to investigate the hierarchical nature of the Revised
Taxonomy and also study the overlapping behavior of the Taxonomy.
The DKT model is trained on about 42 million problems attempted on
funtoot by the students. funtoot is an adaptive learning platform where
students learn by answering problems. We propose a novel way to inter-
pret the model’s output to measure the effects of each learning objective
on every other learning objectives. The results confirm the relaxed hier-
archy of the skills from simple to complex. Moreover, the results also
suggest overlaps even among the non-adjacent skills.

Keywords: Deep knowledge tracing · Revised Bloom’s Taxonomy
Cognitive skills · Hierarchical taxonomy · Deep learning
Student modeling · Domain knowledge · funtoot

1 Introduction

Benjamin S. Bloom, along with a group of educators took up a task of classifying
educational goals and objectives. They aimed to classify thinking behaviors that
were believed to be important in the process of learning. The output of their
research was a taxonomy of three domains:

– The cognitive
– The affective
– The psychomotor

The cognitive domain was further broken down into six cognitive levels of com-
plexity (called, learning objectives): Knowledge, Comprehension, Application,
Analysis, Synthesis, and Evaluation.
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The levels are often depicted as a stairway, with emphasis on climbing to a
higher level of complexity. The taxonomy is hierarchical, each level is subsumed
by the higher levels. In other words, a student functioning at the ‘Application’
level has also mastered the material at the ‘Knowledge’ and ‘Comprehension’
levels.

A revision of this framework was developed in a similar manner 45 years
later [2]. The Revised Taxonomy is also hierarchical in nature, like the original
one. In the Revised Taxonomy, the six major categories - Remember, Under-
stand, Apply, Analyse, Evaluate, and Create, differ in their complexity, with
Remember being less complex than Understand, which is less complex than
Apply, and so on. However, the complexity of the six categories is allowed to
overlap, unlike in the case of Original Bloom’s Taxonomy. Great emphasis is
placed on the teacher usage rather than on developing a strict hierarchy.

Bloom’s Taxonomy has been widely used in curriculum development [7], stu-
dent assessment [23] and instruction evaluation. In curriculum design it serves
as a common vocabulary to structure the curriculum’s learning objective within
the competency-based curriculum [3]. There are instructors who have applied
Bloom’s Taxonomy successfully in their classrooms. In circumstances when an
instructor desires to move a group of students through a learning process utiliz-
ing an organized framework, Bloom’s Taxonomy has been proven to be helpful.
Research has shown that the implementation of Bloom’s taxonomy in the cur-
riculum has shown a positive outcome on students’ test score [3,7,18].

Two important points, which various researchers have attempted to validate,
have been noted about the original taxonomy, as described in [4,10]:

1. Taxonomy contained the categories ordered from simple to complex and from
concrete to abstract.

2. The taxonomy was assumed to have a cumulative hierarchy; that is, mastery
of a simple category was a prerequisite to the mastery of the next more
complex category.

The authors have mentioned that even though the assumption of strict hier-
archy is relaxed in the new taxonomy [2, Appendix A], they do not mean that the
Revised Taxonomy is not hierarchical. Although the definition has been changed
slightly, the authors believe that the empirical evidence found for the original
taxonomy is not invalidated for the Revised Taxonomy. Hence, the empirical evi-
dence found in [2, Appendix A] should apply to the Revised Bloom’s Taxonomy
as well.

Funoot 1 is a personalized learning tutor which employs Revised Bloom’s Tax-
onomy to organize the domain knowledge. Each problem in funtoot is designed
to cater to a specific learning objective as defined in the Revised Taxonomy. We
model the students’ interactions generated on funtoot using a deep knowledge
tracing (DKT) model [19].

1 http://www.funtoot.com/.

http://www.funtoot.com/
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In this study, we use the DKT model to study the interconnections between
different skills of the Revised Taxonomy. We then investigate the validity of
the above two mentioned assumptions and explore how well those assumptions
are realized from the student interaction data. The knowledge tracing model is
modeled with learning objectives as features, which gives us immense flexibility
to simulate a controlled environment. The different behaviors of the student like
mastery and learning can be encoded and the effects of learning objectives in
the process of learning can be investigated in detail.

The rest of the paper is organized as below: Sect. 2 discusses some of the
important prior works. Section 3 describes the dataset used to train the knowl-
edge tracing model. Section 4 describes the knowledge tracing model. Section 5
describes the experiments done. Section 6 reports the results of the experiment.
Section 7 concludes the paper with future work.

2 Literature Survey

This section discusses some of the works which also attempt to verify the
assumptions and/or claims of Bloom’s Taxonomy as discussed in Sect. 1. Multi-
ple attempts have been made in the past using various techniques of analysis to
verify the hierarchy of Bloom’s Taxonomy as well as Revised Bloom’s Taxonomy.

A meta analysis of [5,6,9,11,17,22] was conducted by the authors of Revision
of Bloom’s Taxonomy [2, Chap. 16] to verify the cumulative hierarchical nature in
the original Bloom’s Taxonomy [4]. These studies were considered for the meta-
analysis as they had published their original inter-correlation data, whereas, other
similar studies that had not published such data were not included in this study.

The inter-correlation data consisted of the category scores for a sample of
students who had taken the same tests. Each test measured a single taxonomic
level of the original Bloom’s Taxonomy. Each such score was then paired with
the score of every other category and correlations of such pairs were computed.

In case if the cumulative hierarchy were present, success in one category
would likely be accompanied by success in the category closest to it in the hier-
archy. Success in one category is a necessary but not a sufficient condition for
success in the more complex adjacent category. The correlations between these
categories would be higher than with the still more complex categories. Also,
successively more complex categories should show successively lower correlations
[2, Chap. 16].

The study concluded that the hierarchical ordering holds for the middle cate-
gories - Comprehension, Application and Analysis. Authors had also reversed the
last two categories of original taxonomy, Create and Evaluate to the revised tax-
onomy’s, Evaluate and Create to see how the data would look like. The authors
concluded that doing so gave somewhat better results.

The conclusion of the meta analysis was similar to the conclusion of most of
the six studies individually, namely, that, excluding Knowledge, the support for
a cumulative hierarchy was seen in the simpler categories.
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Two other studies in [8,15] were done using the data from Kropp and
Stoker’s [11,20] work. Authors of [15] used step-wise regression, path analy-
sis and factor analysis to reanalyse the data from Kropp and Stoker’s [11,20]
ninth grade sample of one of their tests - Atomic Structure. They found that all
the techniques had rejected a simple hierarchical assumption of the taxonomy.
Their results do not align with the analysis of the Kropp and Stoker’s study.
Authors of [8] applied an alternative method to the Kropp and Stoker’s [11,20]
data. They concluded that the simplex assumption of the Bloom’s Taxonomy is
supported when Knowledge is removed from the taxonomy.

Study in [12] showed that students are given a task that they can complete,
and when memory is tested for the same material, students who operate at
higher taxonomic level will produce superior memory scores than the students
who operated on the lower taxonomic level. Their results conform and provide
a moderately strong support for the hierarchical nature of the taxonomy.

A study done in [16] showed that the activities and assignments for Inter-
net for Business class in the order of cognitive skills of the Revised Bloom’s
Taxonomy prepare students with higher order thinking skills. They showed that
practicing the skills in the order of their difficulties had a positive effect on the
higher order skills.

All the above mentioned works except for [15] showed some evidence in sup-
port for the hierarchical nature of the taxonomy. The meta-analysis [2, Chap. 16]
and [8] both showed the support for the hierarchical nature after removing
Knowledge level. Authors of [2] have also discussed the ambiguity of the place-
ment of the Knowledge in the hierarchy based on the meta-analysis.

Madaus et al. have used squared semi-partial correlations and fitted a path
model to the levels of the taxonomy in [14]. They found that not only did the
magnitude of the paths between the adjacent levels declined as the levels became
more complex in the Bloom’s Hierarchy, but also that there were significant
paths between non-adjacent levels. This results are similar to our findings for
the Revised Bloom’s Taxonomy presented in this paper.

Authors of [18] attempted to categorize the cognitive skills involved in inter-
preting medical images. The authors had hypothesized that hierarchical levels
of cognitive process would emerge to define different levels of learning medical
imaging concepts. The authors have used Revised Bloom’s Taxonomy to assign
a category to each of the questions of their examination mentioned in the study.
The authors concluded that there was an inverse relationship between the depth
of cognitive process and mean scores. With the increase in the complexity of
the skills, there was a decrease in the score. However, the Revised Taxonomy’s
original script [2] says that it is not necessary to sequentially achieve each of the
levels, that is, students can achieve Create before the Remembering process. This
is consistent with the concept of problem-based learning [21], which emphasizes
on the early immersion in diagnostic thinking [18].

Athanassiou et al. describes the usage of Bloom’s Taxonomy in Management
classroom in order to facilitate students with Scaffolding in [3]. Usage of Bloom’s
taxonomy in this fashion allows students to determine the level of her own work.
The study concluded that the use of the taxonomy as a scaffolding device helped
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students improve their skills and become more aware of their learning process
and hence, have a pointed way of making improvements. Study in [3,16] shows
that the usage of Bloom’s Taxonomy helps improve the higher order skills in
students.

3 Dataset

In funtoot [13], the curriculum is designed such that a subject is broken down into
multiple high level topics. These topics are then divided into smaller units called
sub-topics (sc). sc is further broken down into a smallest teachable unit called sub-
sub-topic (ssc). This ssc can not be broken down further and is the most granular
level skill. For instance, subject Mathematics has a topic called Addition. Topic
Addition is further broken down into scs - Addition of two digit numbers, Addi-
tion of three digit numbers and so on. The Addition of two digit numbers contains
smallest teachable units - sscs, like Addition of two digit numbers with carry over,
Addition of two digit numbers without carry over and so on.

sscs are designed to achieve an expert defined learning objective. Problems
are then designed to cater to these learning objectives. A Bloom’s Taxonomy
learning objective (btlo) tag is assigned to each problem based on the learning
objective (from the Revised Bloom’s Taxonomy) it helps to achieve. We call this
a btlo tagging. ssc may not always have all the six learning objectives as defined
in the Revised Bloom’s Taxonomy.

Funtoot is a classroom based personalized learning tutor for grades 2 to 9 for
subjects - Maths and Science. It is used in over 100 schools following one of the
boards of education2 like: CBSE, KASB, ICSE or IGCSE. There are broadly 74
topics spanning Maths and Science in funtoot. These 74 topics have a total of
682 sscs.

In this study, we wish to verify the validity of the claims of the Revised
Bloom’s Taxonomy and Bloom’s Taxonomy. Hence, it is important for us to
have at least two btlos in an ssc to check the effect of one btlo on another. For
this reason, we have only considered sscs with more than two btlos which leaves
us with 536 sscs. Figure 1 shows the distribution of a number of sscs for btlos.

Fig. 1. ssc distribution across btlos Fig. 2. AUCs

2 https://en.wikipedia.org/wiki/Boards of Education in India.

https://en.wikipedia.org/wiki/Boards_of_Education_in_India
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The dataset has a total of 41.7 million problem interaction entries generated
by 1,03,593 students while interacting with 10,158 problems. Each interaction
represents a problem attempted by the student which is characterized by two
attributes: solved-fast (got the correct answer in first attempt) and solved (got
the correct answer in one or more attempts). While attempting the problem, if
the student’s response is incorrect, the student is notified about it along with
the explanation about why it is incorrect. She then gets another attempt at the
problem with a hint (if available). This continues till the predefined number of
attempts for that particular problem are exhausted. In the end, a student is
also provided with the detailed solution of the problem. Out of 41.7 million data
points, 29.7 million are solved (71%) and 22.7 million are solved-fast (54%).

4 Deep Knowledge Tracing (DKT)

Intelligent Tutoring systems like funtoot aim to provide personalized study mate-
rial to students and help when needed. For this, the knowledge state of the
student needs to be monitored frequently and updated as and when students
interact with a digital tutor. The models capable of doing this are called Knowl-
edge tracing models. By modeling knowledge acquisition process of the students,
predictions can be made on the future interactions and based on these predic-
tions further instructions can be delivered in a personalized manner.

Several knowledge tracing models exist in literature. For this study, we have
used a Deep knowledge Tracing (DKT) model proposed in [19]. DKT is a time
series model based on Recurrent Neural Network. It takes as input the series of
exercises and a bit corresponding to it indicating the outcome from the student
interactions with the tutor.

In this study, we want to measure the effect of one btlo on its successor in
the Revised Bloom’s Taxonomy. We need a scope within which the DKT model
can capture interlinks between the btlos. In funtoot’s knowledge hierarchy, the
btlo is present in the ssc scope. Hence, we have trained the models at an ssc
level for simplicity.

Since we have 536 sscs, we have 536 DKT models and btlos are used as fea-
tures. So, the input vector is a series of btlos (tagged to the problems attempted
by the student) and their corresponding outcomes of the problem attempts:
solved and solved-fast in our case. For instance, if an ssc consists of three btlos,
the input consists of three neurons per btlo, one representing whether the inter-
action belonged to that btlo, one for solved and one for solved-fast. The model
outputs the probability that the problem will be solved and solved-fast for each
btlo, amounting to two output neurons per btlo.

The average AUC of the DKT models is 0.69 (σ = 0.07) for solved, 0.66
(σ = 0.05) for solved-fast and 0.71 (σ = 0.06) overall. Figure 2 shows the box-
plot of the distribution of AUCs across sscs for outputs solved, solved-fast, and
overall (average of solved and solved-fast).
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5 Experiments

The aim of this study is to verify if the skills in the Revised Bloom’s Taxonomy
are ordered from lower to higher level. We also attempt to see if lower order skills
are the prerequisites for higher order skills. In other words, we want to study
the effects of mastery of lower order skills on the chances of mastery of higher
order skills. We hypothesize that student’s mastery in the lower order skills
should increase her chances of mastery in the higher order skills. The evidence
of mastery of any skill is shown by solving successively 5 problems from that
skill in the first attempt (solved-fast).

We measure the effect of a lower order skill i on the higher order skill j in
following ways. Formula 1 measures the change in the solved-fast probability of
skill j after having shown the evidence of mastery of skill i compared to the
initial state (*).

(i → j) − (∗ → j) (1)

Here, * is the initial state when none of the skills are mastered and none of
the problems are solved by the students. This serves as the starting state of the
student.

Formula 2 shows the combined effect of skill i and all its lower skills on skill j.

(̂i → j) − (∗ → j) (2)

Here, ̂i is sequence of skills easier than i, including i, in simple to complex order.
In this formula, skill ̂i is mastered and the change of its effect on the probability
of skill j is measured compared to the initial state *. The mastery of such a set
of skills (̂i) is shown by showing the mastery of each skill in the same order.

Formula 1 represents the effect of skill i on skill j, which might include the
effects of the skills easier than i, whereas Formula 2 measures the combined
effect of skills ̂i on skill j. Both the above mentioned formulae do not show the
individual effect of skill i after the mastery of the lower order skills is achieved.
We compute this by Formula 3.

(̂i → j) − (i → j) (3)

Here, i is the set of the skills lower to skill i in the simple to complex order.
Formula 3 shows the isolated effect of skill i on skill j by taking the difference
of probability of skill j when skills ̂i and i are mastered.

For instance, consider an ssc containing four btlos: Remember, Understand,
Apply and Analyse. When we say ̂Apply, we mean the sequence of skills Remem-
ber, Understand, Apply. When we say Apply, we mean the sequence of skills
Remember, Understand.

If a lower order skill i is a prerequisite of a higher order skill j, then the mas-
tery of the skill j would assure the mastery of skill i. We study this prerequisite
nature by measuring the effect of the mastery of the skill j on the mastery of
skill i through the following formulas.
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In Formula 4, the probability of the skill i after the mastery of skill j is
compared against the probability of skill i at the initial state.

(j → i) − (∗ → i) (4)

If indeed skill i is the prerequisite of skill j, the probabilities of skill i after
the mastery of skill j would be the same as the probability of skill i after having
mastered the skill i. The difference between these probabilities is captured by
Formula 5.

(j → i) − (i → i) (5)

The skills lower than i might also have an effect on the mastery of skill i
which is not considered by the Formula 5. Hence, in Formula 6, the probability
of skill i after the mastery of skill j is compared against the probability of skill
i after the mastery of the skills ̂i.

(j → i) − (̂i → i) (6)

We also compare the probabilities of each pair of skills at the initial state
and the final state (when all the skills are mastered in simple to complex order).
For this, we have measured the correlations between the probabilities of all pairs
of skills and the differences between them are also computed.

The results of the initial and final correlations are shown in Tables 2 and 3
respectively. Tables 4 and 5 show the difference between the probabilities at the
initial and final state. The results of all the above formulae 1, 2, 3, 4, 5 and 6
are shown in Tables 6, 7, 8, 9, 10 and 11 respectively.

In Tables 6, 7 and 8, we measure the effect (i → j). Here i is the row header
and j is the column. That is, the top left most cell (1, 1) refers to (R → U) in
these tables. In Tables 9, 10 and 11, we measure the effect (j → i). Here j is the
row header and i is the column. That is, the top left most cell (1, 1) refers to
(U → R) in these tables.

To compare a pair of skills, the sscs having both the skills are used and the
number of sscs for all the pairs of skills is shown in Table 1. In formula 2, 3
and 6, we consider the sscs where at least one lower skill than i is present. The
reduced number of sscs, if any, for all such pairs are shown in the parentheses
in Table 1.

Table 1. Counts of SSCs con-
taining BTLO Pairs

U Ap An E C

R 339 264 165 39 3

U 411(253) 237(160) 64(39) 7(3)

Ap 222(209) 63(61) 8(7)

An 64(62) 8

E 7

Table 2. Initial correlations

U Ap An E C

R 0.39(0.0) 0.14(0.03) 0.1(0.22) −0.24(0.15) −0.58(0.61)

U 0.34(0.0) 0.28(0.0) 0.16(0.21) 0.83(0.02)

Ap 0.22(0.0) −0.07(0.6) −0.23(0.58)

An 0.36(0.0) 0.07(0.86)

E 0.68(0.09)
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6 Results

In Tables 2 and 3, the values in the parentheses are the p-values. From Table 2,
it can be seen that for the skills Remember, Understand, Apply and Analyse,
their initial correlations with their adjacent more complex skills is the highest
and the correlations decrease with the increase in the difficulty of the skills. The
correlations at the diagonal cells decreases with the increase in the complexity
of the skill. However, there is an increase in the correlation of the pair Analyse-
Evaluate compared to the previous diagonal pair Apply-Analyse. Even though
the correlation between the pair Evaluate-Create is very high, its p-value is 0.09.
Ideally, for all the columns, the maximum correlations should be the diagonal
entries. This pattern holds for all the btlos except for Analyse and Create. Both
Analyse and Create achieve maximum correlation of 0.28 and 0.83 respectively,
with the same btlo Understand. The initial differences are negative for the pairs
where complex skills are involved in Table 4. The column entries for Create are
the most negative values.

The pattern where each entry in the matrix is less than the entry to its left
and also to the entry below it, is called simplex [2, Chap. 16]. The adherence to
this simplex behavior in initial correlations is quite prominent. However, this is
not the case with final correlations as seen in Table 3. The correlations of skills
Understand and Apply with the complex skills increases with the increase in the
complexity of the skills. The first three diagonal correlations see a decrease with
the increase in the complexity of the skills. The correlation between the pair
Evaluate and Create is 0.74 but it is marginally significant (p-value= 0.06). Like
the initial differences, the final differences (Table 5) between the probabilities are
negative for the complex skills.

In the rows of the skills Remember, Understand and Apply in Table 6 of
Formula 1, the values decrease with the increase in the complexity of the skills
except for the last column Create. The effect of the skills Understand, Apply and

Table 3. Final correlations

U Ap An E C

R 0.2 0.08 0.04 −0.21 −1.0

(0.0) (0.19) (0.64) (0.2) (0.02)

U 0.18 0.11 0.27 0.78

(0.0) (0.08) (0.03) (0.04)

Ap 0.14 0.25 0.77

(0.04) (0.05) (0.03)

An 0.11 0.49

(0.39) (0.22)

E 0.74

(0.06)

Table 4. Initial differences

U Ap An E C

R 0.02 0.03 0.01 0.03 −0.02

U 0.01 −0.01 −0.02 −0.11

Ap −0.03 −0.04 −0.09

An −0.02 −0.05

E −0.01
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Table 5. Final differences

U Ap An E C

R 0.07 0.1 0.04 0.12 0.05

U 0.03 −0.01 −0.04 −0.16

Ap −0.06 −0.07 −0.07

An −0.05 −0.03

E 0.01

Table 6. Formula 1

U Ap An E C

R 0.1 0.04 0.03 0.01 −0.08

U 0.05 0.03 0.02 0.06

Ap 0.07 0.03 0.08

An 0.05 0.1

E 0.14

Analyse on the skill Create is even greater than their effects on their respective
adjacent complex skills, Apply, Analyse and Evaluate. The skill Evaluate has the
maximum effect of 0.14 on its adjacent complex skill, Create.

The effect of ̂Understand and ̂Apply is maximum on their respective complex
adjacent skills, Apply and Analyse computed using Formula 2 (seen in Table 7).
However, the effect of ̂Apply and ̂Analyse on the skill Create is greater than or
comparable to their effects on their respective complex adjacent skills - Analyse
and Evaluate. The effect of ̂Evaluate on its complex adjacent skill Create is the
maximum effect in the table.

The isolated effects (computed using Formula 3) of the skills in Table 8 are
similar to the effects seen in the Table 7 with a slight reduction in the magnitude.
However, there a couple of exceptions where we see a significant change. The
isolated effect of Understand on the skill Create is the maximum (0.1) and the
isolated effect of the skill Analyse is comparatively lesser on skill Create.

Formula 4 captures the effect of each skill on its lower order skills, the results
of which can be seen in Table 9. Ideally, the diagonal entries should decrease
with the increase in the complexity of the skill. Moreover, the entries in each row
should increase as they move further away from the diagonal. Also, the column
entries should increase as they move away from the diagonal. This expected
behavior is observed very clearly with a few exceptions. The effects of Create
on Understand and Apply are lower than expected and the effect of Create on
Evaluate is much higher than expected.

Table 7. Formula 2

U Ap An E C

R - - - - -

U 0.07 0.07 0.02 0.02

Ap 0.09 0.04 0.08

An 0.07 0.09

E 0.1

Table 8. Formula 3

U Ap An E C

R - - - - -

U 0.03 0.04 0.01 0.1

Ap 0.04 0.02 0.06

An 0.02 0.02

E 0.07
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Table 9. Formula 4

R U Ap An E

U 0.12

Ap 0.13 0.11

An 0.14 0.11 0.09

E 0.15 0.12 0.09 0.06

C 0.18 0.1 0.11 0.14 0.13

Table 10. Formula 5

R U Ap An E

U −0.08

Ap −0.06 −0.05

An −0.04 −0.03 −0.03

E −0.03 −0.05 −0.03 −0.07

C 0.12 −0.08 0.04 −0.02 0.03

If the effect of a skill j on a simpler skill i computed using Formula 5 happens
to be close to zero, that would imply that the skill j completely subsumes skill i.
For the cumulative hierarchical assumptions to hold true for the Revised Bloom’s
Taxonomy, all the values in Table 10 should have been close to zero, which is not
the case here.

Table 11. Formula 6

R U Ap An E

U -

Ap - −0.07

An - −0.06 −0.05

E - −0.03 −0.07 −0.1

C - −0.04 0.02 −0.04 0.06

The effects computed using Formula 6, shown in Table 11 are similar to the
effect seen in the earlier Table 10 with little reduction in the magnitude. However,
the effects of Evaluate on Understand and the effects of Create on Understand
and Evaluate show an unexpected increase. Ideally, all the effects in the Table 11
should have been similar to the effects in the Table 10 if the higher skills were
to subsume the lower skills.

7 Discussion and Conclusion

Based on the correlations and the results of Formulae 1, 2 and 3 (Tables 1, 2
and 3), it can be clearly said that skill Understand is more complex than skill
Remember and skill Apply is more complex than skill Understand. Skill Apply has
good effect on skill Analyse and their probabilities share a moderate correlation
indicating the complexity of Analyse being more than Apply. However, due to
the higher complexity of the skill Analyse, this effect of Apply on Analyse is not
expected to be very high.
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There is a moderate initial correlation of Analyse with Evaluate. The effect
of Analyse on Create is higher than expected. The effect of Evaluate on Create
is exceptionally good. These points strongly suggest that the difference in com-
plexity between the higher order skills Analyse, Evaluate and Create is not very
high.

The correlation of Understand with Analyse and high effect of Understand
on Analyse indicate some overlap between the two skills. Both Understand and
Apply have significant effects on Create which are even higher than their effects
on their respective adjacent complex skills, Apply and Analyse. This hints some
overlap between the skills Understand, Apply and Create. The overlap between
Understand and Apply has also been admitted in the script of Revised Bloom’s
Taxonomy [2].

From the above evidence, Understand seems to correlate with almost all the
higher order skills. Understand might be force fitted and seems out of place. It
seems to not have any individual and unique place in the relative ordering of the
skills. Understand was not included in the Original Taxonomy for the very similar
reason that, Understand for all the practical purposes actually means anything
from Comprehension to Synthesis. Despite of that, Understand was included
in the Revised Taxonomy considering its widespread usage as a synonym of
Comprehension.

Barring few exceptions in the results in Table 9, it can be clearly said that
the skills are rightly ordered from simple to complex in the Revised Taxonomy.
These results are based on the effects of mastery of skills on their lower order
skills (j → i) compared to the initial states. Hence, mastery of higher order
skills always increased the likelihood of the mastery of simpler skills, with the
larger likelihoods for more simpler skills. The exceptions suggested some overlap
between the pairs Create-Understand, Create-Apply and Create-Evaluate.

However, when the effects of mastery of skills on its lower order skills (j → i)
are studied against the effects of already mastered lower order skills on them-
selves (i → i), the results (as seen in Tables 10 and 11) deny the subsumption
of the lower order skills by the higher order skills. The chances of the mas-
tery of the lower order skills in the consequence of the mastery of higher order
skills do increase, but not to the extent of considering lower order skills as the
prerequisites (complete subset) of higher order skills.

In our attempt to generate optimal problem sequences using Revised Bloom’s
Taxonomy in [1], we found that when the problems are given to the students
in the order of the hierarchy, the gains produced were higher when measured
using Deep Knowledge Tracing model. These findings indicate that the Revised
Bloom’s Taxonomy is indeed hierarchical. Similar results were reported in [16]
where students practiced the skills in the order of their difficulties (of the Revised
Bloom’s Taxonomy) and it had a positive effect on the higher order skills.

Our results do not align with the findings of the work [18] which showed that
their implementation of Revised Bloom’s Taxonomy had a cumulative hierarchy.
We conclude that the Revised Bloom’s Taxonomy is indeed a hierarchy (clearly
observed in the lower learning objectives Remember, Understand and Apply)
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when the skills are judged on their relative (median) complexity. But, it is not
a strict hierarchy in the sense that it allows for overlaps even among the non-
adjacent skills, ensuring higher order skills do not subsume lower order skills.
Mastery of higher learning objective does not assure mastery of lower learning
objectives.
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