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Abstract. A new hybrid algorithm, combining Particle Swarm Optimization
(PSO) and Differential Evolution (DE), is presented in this paper. In the pro-
posed algorithm, an alternative replication strategy is introduced to avoid the
individuals falling into the suboptimal. There are two groups at the initial
process. One is generated by the position updating method of PSO, and the other
is produced by the mutation strategy of DE. Based on the alternative replication
strategy, those two groups are updated. The poorer half of the population is
selected and replaced by the better half. A new group is composed and con-
ducted throughout the optimization process of DE to improve the population
diversity. Additionally, the scaling factor is used to enhance the search ability.
Numerous simulations on eight benchmark functions show the superior per-
formance of the proposed algorithm.
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1 Introduction

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart [1], is a
well-known global intelligence optimization algorithm. On the basis of individual
perception and social perception, the particles of PSO are replaced to enhance the speed
of convergence and search accuracy in every iteration. Since then, many modifications
have been developed. A recent version of modification was to update the particle
positions by using two selected functions and combining individual experiences to
avoid getting into the local optimum [2]. A fitness function was defined in [3] to
identify the parameters of nonlinear dynamic hysteresis model. To a certain extent, the
algorithm improves the convergence of the progress. However, a common problem
occurring in the simulation experiments is still the premature clustering in the early part
of iteration procedure.

Differential Evolution (DE) [4] is a population-based method of function opti-
mization like Genetic algorithm (GA), including mutation, crossover, and selection.
In DE, new individuals are generated from the information of multiple previous
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individuals to get out of stagnation. Hence, some improved DE algorithms are pro-
posed for getting better consequents. An improvement of DE with Taguchi method of
sliding levers had the powerful ability of global search and obtained a better solution
[5]. The fuzzy selection operation was used in an improved DE to reduce the com-
plexity of multiple attribute decisions and enhance population diversity [6]. Though the
DE has some advantages in global optimization, there is a dependency on controlling
parameters which are not easy to decide when confronting high-dimensional complex
problems.

In view of the advantages and disadvantages of PSO and DE, many hybrid algo-
rithms of PSO and DE are described to combine the advantages of both and better solve
various practical problems. The hybrid PSO and DE with population size reduction
(HPSODEPSR) [7] can achieve optimal or near optimal solution faster than other
comparison algorithms. The Bacterial Foraging Optimization (BFO) hybridized [8]
with PSO and DE was introduced to effectively handle the dynamic economic dispatch
problem. In order to improve the diversity and make each subgroup achieve a different
optimal solution in the range of fitness values, Zuo and Xiao [9] used a hybrid operator
and multi-population strategy performing the PSO and DE operation in turn. A novel
hybrid algorithm PSO-DE [10] jumped out of stagnation, increased the speed of
convergence and improved the algorithm’s performance. A modified algorithm
hybridizing PSO and DE with an aging leader and challengers was advanced to find the
optimal parameters of PID controller quickly [11]. Though those hybrid algorithms
improve the performance of the original algorithms (i.e. PSO and DE), premature
stagnation is still a major problem.

This paper presents a novel hybrid algorithm of PSO and DE (DEPSO) with
alternative replication strategy to overcome the above-mentioned problems. In the
proposed algorithm, population is separated into two groups which are generated by
two different methods, i.e. velocity updating strategy of PSO and mutative strategy of
DE. A novel population are produced according to alternative replication strategy. The
poor half of the population is eliminated while the other half is reproduced for the new
evolution. In order to enhance the diversity of the population, the scaling factor of
DEPSO is adjusted according to the linear decreasing rule.

The remaining paper is organized as follows. A brief introduction of PSO algorithm
and DE algorithm is provided in Sect. 2. In Sect. 3, the hybrid algorithm of PSO and
DE with alternative and replication strategy is described in detail. Section 4 gives
experimental results of the Simulations on benchmark functions. Finally, the conclu-
sion is presented in Sect. 5.

2 Description of Algorithms

2.1 Particle Swarm Optimization

In standard PSO algorithm, a group of particles flies in the search space to find the
optimal location. The particles are given random positions x and velocities v in the
initiate progress. In each iteration, the best position of each particle pbestid and the best
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position of global gbestid are learnt, which leads the particle to the new position.
Equations (1)–(2) are the updated rule [1]:

vGþ 1
id ¼ xvGid þ c1randð0; 1ÞðpbestGid � xGidÞþ c2randð0; 1ÞðgbestGid � xGidÞ ð1Þ

xGþ 1
id ¼ xGid þ vGþ 1

id ; i ¼ 1; ::;N; d ¼ 1; . . .;D ð2Þ

x ¼ xmax � ðxmax � xminÞ � G=Gmax ð3Þ

where xid and vid are the position and velocity of the ith particle, respectively, N is the
number of particles, and D is the dimensions of search space, c1 and c2 are acceleration
factors. Finally, x is the inertia weight adjusted by Eq. (3) in [12], xmax and xmin are
the maximum and the minimum value of inertia weight, respectively. G and Gmax are
the current number of iteration and the maximum number of iteration, separately.

2.2 Differential Evolution Algorithm

DE, proposed by Storn and Price [4], has the significant effect on solving application
problems. The outline of DE can be described as follows:

Step 1: initialize individuals according to the upper and lower bounds of search
space, and evaluate the fitness of each individual.
Step 2: compare the fitness of every individual and record the best individual.
Step 3: generate new vectors through mutation process. The mutation rule is as
follows Eq. (4):

vi ¼ xr1 þFðxr2 � xr3Þ; i ¼ 1; ::;N ð4Þ

where N is the number of individuals, xi is the ith individual and vi is the updated ith

vector through mutating. F is the scaling factor, r1, r2 and r3 not equal to each other are
randomly selected from [1, N].

Step 4: cross populations and mutant vectors to get a trial vector. Equation (5) is the
crossover formula:

uij ¼
vij if ðrandjð0; 1Þ�CRÞ or j ¼ jrand

xij otherwise

(
; j ¼ 1. . .D ð5Þ

where D is the number of parameters, while uij represents the ith individual at the jth

search space after crossing operation. CR is the crossover probability, and jrand is a
randomly selected index in the range of [0, D].
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Step 5: The greedy algorithm (i.e. Eq. (6)) is used to select individuals for the next
iteration process.

xi ¼
ui if f ðuiÞ� f ðxiÞ
xi otherwise

(
ð6Þ

3 DEPSO Algorithm with Alternative Replication Strategy

Due to rapid information search, the suboptimal solutions might be more frequently
obtained by PSO. Different from the PSO, population of DE tends to be more diversity
as the number of iterations increases but consumes more computational complexity. To
take advantages of those two algorithms, in this paper, a new hybrid DEPSO method is
proposed to improve the search capability of particles with smaller computational time.

For the purpose of preventing individuals from sinking into suboptimal solution,
we use the following alternative replication strategy to optimize the initial particles of
each iteration.

At the beginning of each iteration, a new group P1 is generated by PSO algorithm
(i.e. Eqs. (1)–(2)). Considering the optimal value of every individual xpbest, another
group P2 is renewed by the mutation process of DE algorithm (i.e. Eq. (7)). Based on
the fitness value, we compare the updated groups (i.e. P1 and P2) with the initial group
P0 and preserve the better individuals to form new P1 and P2.

xi ¼ Fðxpbest � xiÞþFðxr4 � xr5Þ; i ¼ 1. . .N ð7Þ

where N is individuals’ number, xi is the i individuals, F is the scaling factor, and r4 and
r5 are indexes selected from [1, N].

Sort the individuals of new groups (i.e. P1 and P2) according to the fitness values,
and the sorted groups are also compared to retain the superior individuals constituting a
group P3. The new group P3 eliminates half of the individuals with poor fitness values,
and the rest of the individuals are reproduced to keep the number of individuals.

In order to overcome the shortcoming of population reduction, the mutation factor
decreases linearly with the number of iterations increasing in the mutation procedure.
The scaling factor is controlled in Eq. (8).

F ¼ Fmax � ðFmax � FminÞ � G=Gmax ð8Þ

where Fmax, Fmin, G, and Gmax are the maximum mutation factor, minimum mutation
factor, the current number of iteration and the maximum number of iteration,
respectively.
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Finally, DE algorithm is re-simulated based on the group which is obtained using
the alternative replication strategy. The scheme of DEPSO is described as follows in
detail:
Step 1: initialize the position and velocity of every individual, and generate initial

group P0.
Step 2: calculate the fitness of each individual, and evaluate the best solution of each

individual pbest and the best solution of all individuals gbest.
Step 3: update the position and velocity of individuals using Eqs. (1)–(2), and

generate new group P1.

Fig. 1. Flowchart of DEPSO
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Step 4: mutate the initial individuals (i.e. Eq. (7)) and introduce a new group P2.
Step 5: calculate the fitness of two groups (i.e. P1 and P2), and compare the fitness

with the initial group P0 to update the groups P1 and P2, respectively.
Step 6: P1 and P2 are sorted based on the fitness. A new group P3 is constituted of

the superb individuals in the comparison of the sorted groups. The group P3

is updated by alternative replication strategy.
Step 7: new vectors are formed by the group P3 in the light of mutation process (i.e.

Eq. (4)).
Step 8: Equation (5) is applied to get trial vectors through the crossover of

individuals and mutant vectors in DE algorithm.
Step 9: select the best individuals using Eq. (6) and new offspring P0 are introduced

to execute the iterative procedure. Figure 1 presents the flowchart of DEPSO.

4 Experiments and Analysis

4.1 Benchmark Functions and Algorithms

To verify the performance of the proposed DEPSO algorithm, eight benchmark
functions [13] (i.e. Sphere f1, SumPowers f2, Rosenbrock f3, Quartic f4, Rastrigin f5,
Griewank f6, Ackley f7, Schwefel2.22 f8) are applied to test the improved algorithm.
One important reason for choosing these eight functions is that they contain unimodal
functions (i.e. f1, f2, f3, and f4) and multimodal functions (i.e. f5, f6, f7, and f8). Addi-
tionally, these functions are minimum problems and the minimum value is known to be
zero. The performance of DEPSO is demonstrated through eight benchmark functions
and compared with some classic algorithms, i.e. PSO, DE, Genetic algorithm
(GA) [14], Artificial Bee Colony algorithm (ABC) [15, 16], and Bacterial Foraging
Optimization (BFO) [17]. All functions are tested on these optimization algorithms
through MATLAB R2014a software.

4.2 Experimental Parameters

The similar parameters of six optimization algorithms are set as follows: the size of the
population is 50, the maximum iterative number is set to 5000. Each function is run 30
times with the search space dimension 30, 50, and 80. The parameters of GA, ABC and
BFO are from [18] except the reproduction’s number of BFO is 25. More parameters
setting of PSO, DE and DEPSO are shown as follows: In PSO, c1 = c2 = 2, xmax = 0.9,
and xmin = 0.4; In DE, CR = 0.5, and F ranges from 0.4 to 0.9; In DEPSO, c1, c2, xmax

and xmin are the same as PSO. CR and F are the same as DE. The values are the results
of multiple simulations.
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Table 1. Experiment results on benchmark functions

Funs. D Ret. PSO DE GA ABC BFO DEPSO

f1 30 mean 4.73E−33 1.86E−40 2.76E−06 1.47E−17 3.98E−01 0.00E+00
std 1.43E−32 1.86E−40 2.07E−06 2.62E−17 8.93E−02 0.00E+00

50 mean 4.75E−14 2.03E−16 6.49E−04 2.02E−02 4.36E−01 0.00E+00
std 6.19E−14 6.72E−17 8.40E−06 2.49E−03 6.02E−01 0.00E+00

80 mean 5.83E−05 3.26E−05 4.12E−02 6.91E+03 1.01E+00 0.00E+00
std 6.91E−05 4.26E−07 1.01E−02 5.58E+02 1.42E+00 0.00E+00

f2 30 mean 3.34E−58 1.90E−81 3.43E−07 3.89E−01 1.54E−04 0.00E+00
std 4.39E−58 2.66E−81 2.37E−07 4.81E−01 2.17E−04 0.00E+00

50 mean 1.53E−12 4.18E−26 5.25E−07 5.31E+09 2.06E−04 0.00E+00
std 1.99E−12 5.86E−26 2.64E−09 5.03E+09 2.91E−04 0.00E+00

80 mean 1.92E+09 2.42E+00 4.25E−07 1.55E+28 1.08E−03 0.00E+00
std 2.64E+09 1.02E+00 3.64E−08 1.04E+28 1.52E−03 0.00E+00

f3 30 mean 6.15E+01 2.11E+01 7.79E+01 5.56E+01 4.92E+01 2.63E+01
std 4.87E+01 2.53E−01 7.07E+01 4.29E+01 2.78E+01 1.80E+00

50 mean 1.24E+02 4.60E+01 9.47E+01 5.28E+07 1.02E+02 4.53E+01
std 1.11E+02 3.62E−01 3.22E+01 1.08E+07 7.46E+01 1.79E−01

80 mean 3.36E+02 1.57E+02 2.37E+02 3.46E+09 1.84E+02 7.69E+01
std 4.59E+01 5.97E+00 1.07E+02 6.57E+08 1.48E+02 9.56E−01

f4 30 mean 4.79E−48 3.79E−61 7.06E−17 2.69E−17 1.25E−01 0.00E+00
std 6.20E−48 4.01E−61 1.43E−17 2.91E−17 1.77E−01 0.00E+00

50 mean 5.84E−20 1.07E−24 7.39E−12 3.46E−01 9.02E−01 0.00E+00
std 8.03E−20 9.60E−25 4.91E−13 2.38E−01 1.28E+00 0.00E+00

80 mean 1.63E−08 1.99E−09 7.48E−09 1.83E+01 3.34E+00 0.00E+00
std 1.69E−08 9.76E−10 2.52E−09 2.18E+00 4.73E+00 0.00E+00

f5 30 mean 4.90E+01 1.31E+03 1.76E+01 1.94E+03 3.66E+02 0.00E+00
std 2.59E+01 1.29E+02 6.53E−01 3.11E+01 5.17E+02 0.00E+00

50 mean 1.50E+02 3.76E+03 2.31E+02 5.41E+03 5.78E+02 0.00E+00
std 4.27E+01 4.86E+02 1.98E+02 3.31E+02 8.17E+02 0.00E+00

80 mean 4.02E+02 8.44E+03 1.72E+03 1.07E+04 1.39E+03 0.00E+00
std 3.02E+01 3.43E+02 4.60E+02 3.05E+02 1.96E+03 0.00E+00

f6 30 mean 0.00E+00 0.00E+00 7.75E−03 1.74E−11 1.04E−02 0.00E+00
std 0.00E+00 0.00E+00 1.07E−02 2.46E−11 1.41E−02 0.00E+00

50 mean 9.86E−03 0.00E+00 1.20E−02 1.73E−01 2.19E−02 0.00E+00
std 5.66E−14 0.00E+00 1.95E−03 1.03E−01 3.05E−02 0.00E+00

80 mean 9.77E−02 2.86E−05 1.68E−01 6.18E+01 2.55E−02 0.00E+00
std 1.24E−01 1.15E−05 2.54E−02 1.84E+00 3.57E−02 0.00E+00

(continued)
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4.3 Experiment Results and Discussion

To get experiment results, all benchmark functions are executed by coding these search
methods. The mean fitness value and the standard deviation obtained by six opti-
mization algorithms are displayed in Table 1. The bold type is used to underline the
best of all the numerical results attained by comparing six optimization algorithms.
Figure 2 lists the convergence curves of different test functions gotten by all the
algorithms with the dimension 50. In Fig. 2, in order to make the curves clear, the
results are the logarithm with base 10.

As shown in Table 1, DEPSO algorithm almost gets the optimal mean and standard
deviation among all the algorithms for the eight benchmark functions. It means that the
hybrid DEPSO algorithm is better than other algorithms in terms of search accuracy.
Additionally, the proposed algorithm obtains the minimum values (i.e. zero) on
functions of Sphere, SumPowers, Quartic, Rastrigin, Griewank, and Schwefel2.22. It
means that the convergence precision of the DEPSO algorithm is high in the selected
functions.

In terms of dimensionality, the DEPSO can perform better than other algorithms
when the dimension is increasing. From Fig. 2, we can conclude the convergent speed
of DEPSO algorithm is significantly faster than other algorithms and the convergent
results are closer to optimal values. Altogether, the performance of DEPSO algorithm
performs better whether in unimodal functions or in multimodal functions.

Table 1. (continued)

Funs. D Ret. PSO DE GA ABC BFO DEPSO

f7 30 mean 1.15E−14 4.44E−15 3.46E+00 3.74E−09 6.76E−01 8.88E−16
std 5.02E−15 0.00E+00 6.07E−01 2.38E−09 8.28E−01 0.00E+00

50 mean 5.77E−07 3.39E−09 5.58E+00 2.74E−01 7.49E−01 8.88E−16
std 7.10E−07 2.87E−10 7.20E−01 1.72E−01 9.64E−01 0.00E+00

80 mean 1.98E−02 1.13E−03 4.15E+00 1.14E+01 8.33E−01 4.44E−15
std 1.37E−02 1.75E−04 1.44E+00 8.78E−02 1.11E+00 0.00E+00

f8 30 mean 1.26E−21 3.59E−24 2.22E+00 3.42E−15 1.85E+00 0.00E+00
std 1.76E−21 1.92E−24 2.06E−01 1.25E−15 2.01E+00 0.00E+00

50 mean 8.29E−11 3.03E−10 2.10E+00 1.77E−04 3.59E+00 0.00E+00
std 3.55E−11 2.39E−11 2.47E−01 3.58E−06 4.27E+00 0.00E+00

80 mean 1.08E−04 1.09E−03 2.88E+00 9.71E+00 5.93E+00 0.00E+00
std 1.03E−04 4.51E−05 9.88E−01 9.38E−01 7.34E+00 0.00E+00
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Fig. 2. The iteration process of the algorithms when the dimensionality is 50
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5 Conclusion

A hybrid algorithm integrating the advantages of PSO and DE is proposed in this
paper. The results show that the DEPSO algorithm outperforms other algorithms in
terms of mean and standard deviation. Though DE with nonlinearly decreasing
mechanism of scaling factor can obtain the similar solutions on some benchmark
functions (e.g., Rosenbrock and Rastrigin), the convergence speed is not good than the
proposed DEPSO method. Thus, the proposed alternative replication strategy can
enhance the performance of the hybrid algorithm. Our future study will focus on the
application of the proposed algorithm to solve the real-world problems and more hybrid
methods will be developed to obtain better solutions.
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