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Abstract. We propose an acceleration method for the fireworks algo-
rithms which uses a convergence point for the population estimated
from moving vectors between parent individuals and their sparks. To
improve the accuracy of the estimated convergence point, we propose
a new type of firework, the synthetic firework, to obtain the correct of
the local/global optimum in its local area’s fitness landscape. The syn-
thetic firework is calculated by the weighting moving vectors between a
firework and each of its sparks. Then, they are used to estimate a con-
vergence point which may replace the worst firework individual in the
next generation. We design a controlled experiment for evaluating the
proposed strategy and apply it to 20 CEC2013 benchmark functions of
2-dimensions (2-D), 10-D and 30-D with 30 trial runs each. The experi-
mental results and the Wilcoxon signed-rank test confirm that the pro-
posed method can significantly improve the performance of the canonical
firework algorithm.
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1 Introduction

The fireworks algorithm (FWA) [1], as a new member of swarm intelligence algo-
rithms inspired by the explosion of real fireworks, has attracted much attentions
in academia and industry. It simulates explosions repeatedly to implement local
search points (sparks) around a specific point (firework) and evolves towards
the optimal solution. Many improved versions of FWA have been proposed. The
enhanced FWA (EFWA) [2] improves the corresponding operations of the orig-
inal FWA and can achieve a better performance. Dynamic FWA (dynFWA)
[3] uses a dynamic explosion amplitude for the current best firework to tune
the search range more intelligently. An amplitude reduction strategy and local
optima-based selection strategy [4] were also proposed to improve the perfor-
mance of FWA obviously. Although many new ideas and mechanisms have been
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introduced to FWA to develop new variations, little attention was given to the
generated sparks, which therefore offer a potential new direction for research.

Using gradient information has always been a very hot topic full of potential.
Many practitioners have tried to build and use gradients to accelerate conver-
gence. For example, [5] estimates the natural gradient for the exponential family
based on regularized linear regression. In addition, [6] proposes an alternative
way to compute search directions by exploiting neighborhood information. In
this paper, we introduce a new type of firework, the synthetic firework. Using
gradient information derived from the generated sparks, we can gain an under-
standing about the direction of local evolution on the fitness landscape. This
local gradient information is then used to estimate a convergence point for the
fireworks population.

The main objective of this paper is to use the estimated convergence point
as an elite individual to accelerate FWA by substituting it for the worst firework
individual in next generation if its fitness is better. The secondary one is to
analyze the applicability of the proposed strategy, and introduce some topics
which are open to discussion.

We introduce the framework of canonical FWA in Sect. 2.1 and a method
for estimating the convergence point in Sect. 2.2. New types of fireworks are
described in detail in Sect. 3. We evaluate them by comparing them with the
original FWA using 20 benchmark functions of 3 different dimensions in Sect. 4.
Finally, we discuss the experimental evaluations in Sect. 5 and conclude in Sect. 6.

2 Related Research

2.1 Fireworks Algorithm

Real fireworks are launched into the sky, and many sparks are generated around
the fireworks. The explosion process of a firework can be viewed as a local search
around a specific point. FWA simulates this explosion process iteratively to find
the optimal solution. Figure 1 illustrates the process of FWA, which consists
principally of three operations: explosion, mutation and selection [1].

Since there are some limitations in classic FWA and its performance is also
not very prominent among all its subsequent variants, such as EFWA and

(a) (b) (c)

Fig. 1. The search process of FWA. (a) fireworks are generated, (b) sparks are created
around each firework, and mutation points are also generated, (c) new fireworks are
created in the next generation using the sparks from (b). Steps (b) and (c) are iterated
until the termination condition is satisfied.
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dynFWA, we employ the more powerful EFWA [2] as our baseline algorithm
and combine it with our proposed strategy. The EFWA introduces five major
improvements into conventional FWA to improve its performance. For details on
these improvements, refer to [2].

2.2 Method for Estimating the Convergence Point for a Population

The convergence point for the moving vectors between parent individuals and
their offspring in the next EC search generation can be calculated mathemati-
cally [7,8]. Let us begin by defining symbols. ai and ci in the Fig. 2 are the i-th
parent individual and its offspring individual, respectively (ai, ci ∈ R

d). The i-th
moving vector is defined as the direction vector, bi = ci −ai. The unit direction
vector of the bi is given as b0i = bi/||bi||, i.e. bT

0ib0i = 1.

Fig. 2. The moving vector bi (= ci − ai) is calculated from a parent individual ai and
its offspring ci in the d-dimensional searching space. The � mark is the convergence
point for these moving vectors.

Let x ∈ R
d be the point that is the nearest to the n extended directional line

segments, ai + tibi (ti ∈ R). The nearest, means that the total distance from x
to the n extended directional line segments, J(x, {ti}) in Eq. (1), becomes the
minimum. We may insert an orthogonality condition, Eq. (2), into Eq. (1) and
thus remove ti.

J(x, {ti}) =
n∑

i=1

‖ai + tibi − x‖2 (1)

bTi (ai + tibi − x) = 0 (orthogonal condition) (2)

The x̂ that minimizes the total distance in the Eq. (1) is obtained by par-
tially differentiating each element of x and setting them equal 0. Finally, the
convergence point x̂ is given by Eq. (3), where Id is the unit matrix.
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x̂ =

{
n∑

i=1

(
Id − b0ib

T
0i

)}−1 {
n∑

i=1

(
Id − b0ib

T
0i

)
ai

}
(3)

3 Proposed Method

We introduce a new kind of firework, named the synthetic firework, to make
full use of the many generated sparks, which are otherwise only involved in the
selection operation and then destroyed. The synthetic fireworks and fireworks
of the current generation form many moving vectors which can be used to esti-
mate a convergence point that is expected to locate near the global optimum.
The estimated point is regarded as an elite individual and replaces the worst
individual from the next generation if its fitness is better.

The method for calculating the synthetic fireworks is as follows. Each firework
and its generated sparks form a subgroup, and we can construct many vectors
between the firework and its generated sparks. If the firework is worse than one
of the generated sparks, this vector’s direction is considered to be promising.
Otherwise, its antipode is used to calculate a synthetic firework. There are many
methods to evaluate the potential of these directions. In this paper, we simply
use the fitness difference between the endpoint and the start point of a vector to
evaluate it. Thus, the larger the fitness difference is, the higher will be the weight
of the vector. In order to not increase the number of fitness evaluations, we only
calculate the antipode for a firework which is lacking a fitness evaluation if the
antipodal direction is to be used. The fitness difference of the original vector
is roughly used to evaluate the used antipodal direction. Finally, a synthetic
firework can be roughly calculated by weighting those vectors with Eq. 4 in each
firework group. Figure 3 illustrates how a synthetic firework is thus formed.

Fig. 3. A synthetic firework is generated from a firework and its generated sparks. The
black five-pointed star and the red solid points represent the firework and its generated
sparks, respectively. The presence of a red hollow circle means that the antipode has
been used. The purple solid point is the synthetic firework obtained by weighting these
vectors. (Color figure online)

vi =
m∑

j=1

f(xi) − f(sij)∑n
i=1 ||(f(xi) − f(sij))||

∗ (sij − xi) + xi (4)
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Where xi and sij represent the i-th firework and its j-th generated spark or
antipodal point. vi is the i-th synthetic firework of the i-th firework group; m is
the number of generated sparks of the i-th firework; f() is a fitness function.

We can obtain new synthetic fireworks up to the population of the current
firework generation. Since we do not increase the number of fitness evaluations
and a new synthetic firework is expected to be better than the firework belonging
to its subgroup, we will not evaluate the synthetic fireworks. A moving vector is
calculated from the current firework to the newly generated synthetic firework in
each subgroup, and the convergence point is estimated using these moving vec-
tors with the estimation method described in the Sect. 2.2. Algorithm 1 outlines
the flow of EFWA using our proposed strategy.

Algorithm 1. The framework for the fireworks algorithm using our proposed
strategy. Steps 11 to 16 are from our proposal.
1: Initialize n fireworks randomly.
2: Evaluate the fitness of each firework.
3: while the termination condition is not satisfied do
4: Generate explosion sparks around each firework.
5: Use Gaussian mutation to obtain Gauss sparks.
6: if sparks are generated outside the search area then
7: Use a mapping rule to bring them back into the area.
8: end if
9: Evaluate the fitness of each generated spark.

10: Select n fireworks for the next generation from the generated sparks and the
current fireworks.

11: Calculate the synthetic fireworks for each subgroup.
12: Obtain moving vectors using the synthetic fireworks and the current fireworks.
13: Estimate a convergence point.
14: if the estimated convergence point is better than the worst firework in the next

generation then
15: Replace the worst firework with the estimated point.
16: end if
17: end while
18: end of program.

Note that our proposed strategy does not change the structure of the original
FWA when it is combined with other fireworks algorithms. It simply uses the
fireworks and the generated sparks to build local gradient information, then uses
this to estimate a convergence point to accelerate convergence.

4 Experimental Evaluations

We use 20 benchmark functions from the CEC2013 benchmark test suite [9] in
our evaluations, which is designed for real parameter single-objective optimiza-
tion. Table 1 shows their types, characteristics, variable ranges, and optimum
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fitness values. These landscape characteristics include shifted, rotated, global on
bounds, unimodal and multi-modal. We test them with 3 dimensional settings:
D = 2, 10 and 30. We select EFWA [2] as our test baseline and combine it with
our proposal for this experiment using parameters as described in Table 2, where
the definition of the symbols can be found in the original literature [1,2].

For fair evaluations, we evaluate convergence against the number of fitness
calls rather than generations. We test each benchmark function with 30 trial
runs in 3 different dimensional spaces. We apply the Wilcoxon signed-rank test
on the fitness values at the stop condition, i.e. the maximum number of fitness
calculations, and compare EFWA with (EFWA + our proposed method). Table 3
shows the result of these statistical tests.

Table 1. Benchmark function: Uni = unimodal, Multi = multimodal.

No. Types Characteristics Ranges Optimum
fitness value

F1 Uni Sphere function [−100, 100] −1400

F2 Rotated high conditioned elliptic function −1300

F3 Rotated bent cigar function −1200

F4 Rotated discus function −1100

F5 Different powers function −1000

F6 Multi Rotated Rosenbrock’s function [−100, 100] −900

F7 Rotated Schaffers function −800

F8 Rotated Ackley’s function −700

F9 Rotated Weierstrass function −600

F10 Rotated Griewank’s function −500

F11 Rastrigin’s function −400

F12 Rotated Rastrigin’s function −300

F13 Non-continuous rotated Rastrigin’s function −200

F14 Schwefel’s function −100

F15 Rotated Schwefel’s function 100

F16 Rotated Katsuura function 200

F17 Lunacek BiRastrigin function 300

F18 Rotated Lunacek BiRastrigin function 400

F19 Expanded Griewank’s plus Rosenbrock’s function 500

F20 Expanded Scaffer’s F6 function 600
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Table 2. Parameter setting of EFWA.

Parameters Values

# of fireworks for 2-D, 10-D and 30-D search 5

# of sparks m 50

# of Gauss mutation sparks, 5

constant parameters a = 0.04 b = 0.8

Maximum amplitude Amax 40

stop condition; MAXNFC , for 2-D, 10-D, and 30-D search 1,000, 10,000, 40,000

Dimensions of benchmark functions, D 2, 10, and 30

# of trial runs 30

Table 3. Statistical test results of the Wilcoxon signed-rank test for average fitness
values of 30 trial runs of the proposal (EFWA + our proposed method) and conventional
method (EFWA) at the stop condition, MAXNFC . A � B and A > B mean that A
is significant better than B with significant levels of 1% and 5%, respectively. A ≈ B
means that although A is better than B, there is no significant difference between them.

Func. 2-D 10-D 30-D

f1 proposal � EFWA proposal � EFWA proposal � EFWA

f2 proposal ≈ EFWA proposal � EFWA proposal � EFWA

f3 proposal ≈ EFWA proposal > EFWA proposal > EFWA

f4 EFWA ≈ proposal proposal ≈ EFWA proposal ≈ EFWA

f5 proposal � EFWA proposal � EFWA proposal � EFWA

f6 proposal ≈ EFWA EFWA ≈ proposal proposal ≈ EFWA

f7 proposal > EFWA EFWA ≈ proposal proposal ≈ EFWA

f8 proposal ≈ EFWA EFWA ≈ proposal proposal ≈ EFWA

f9 EFWA ≈ proposal EFWA ≈ proposal EFWA ≈ proposal

f10 proposal > EFWA proposal � EFWA proposal � EFWA

f11 proposal ≈ EFWA proposal � EFWA proposal � EFWA

f12 EFWA ≈ proposal proposal ≈ EFWA proposal ≈ EFWA

f13 proposal ≈ EFWA proposal ≈ EFWA proposal ≈ EFWA

f14 proposal ≈ EFWA proposal > EFWA proposal � EFWA

f15 proposal ≈ EFWA proposal ≈ EFWA EFWA ≈ proposal

f16 EFWA ≈ proposal proposal ≈ EFWA proposal ≈ EFWA

f17 proposal � EFWA proposal � EFWA proposal � EFWA

f18 proposal > EFWA proposal ≈ EFWA EFWA ≈ proposal

f19 proposal ≈ EFWA proposal ≈ EFWA proposal � EFWA

f20 proposal ≈ EFWA proposal ≈ EFWA EFWA ≈ proposal
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5 Discussions

Most fireworks algorithm variants mainly use their computational resources for
generating sparks, but the information from these sparks is not fully used. In our
experimental evaluations, the total number of generated sparks was 10 times of
that of the fireworks. It is clearly productive to consider how these many sparks
can be used efficiently. We introduced a new type of firework, called the synthetic
firework, to explore local gradient information on the fitness landscape. Thanks
to the use of multiple vectors in each subgroup, the synthetic firework also has
a certain anti-noise property, as its calculation cancels noise from the directions
of the various moving vectors. This can help to improve the precision of the
estimated convergence point. In any case, the proposed method increases each
generation’s fitness calculations by only one - so we can say that it is a low risk,
high return strategy.

What potential still remains for our proposed firework, the synthetic fire-
work? Although we have used only the fitness difference between the two end-
points of a moving vector to evaluate it, we think that not only these fitness
differences but also their lengths should be considered to understand the local
gradient information more accurately, yielding further improvements in the esti-
mate. Additionally, there are many other ways to weight moving vectors and
increase the precision of the estimated convergence point. As an example, the
fitness value at the beginning point or the end point of a moving vector can be
used to evaluate it, which means that the lower the distance from the optimal
area, the higher the weight given. A precise way of obtaining reasonable weights
for the vectors is also a potential discussion topic.

We would like to point out that the new type of firework introduced can
be used to speed up convergence. In this paper, we used synthetic fireworks to
estimate a convergence point without evaluating their fitness. They have the
potential to act as a new guide for individuals, helping move them toward a
preferable evolutionary direction rather than random exploration. The new syn-
thetic fireworks can be introduced into a population to improve the diversity
and reduce selection pressure. How to use them reasonably is also a potential
discussion topic.

We also performed an extra experiment to investigate the fitness of syn-
thetic fireworks. We compared the synthetic firework with the firework individual
belonging to its same subgroup. The experimental results show that in the early
stages, synthetic fireworks are better than fireworks individuals, while the prob-
ability of a better synthetic firework decreases as the convergence progresses. For
optimization problems with different characteristics, it seems reasonable to use
a different method for assigning weights when creating the synthetic fireworks.
Perhaps different optimization stages could use different weighting methods to
obtain better synthetic fireworks. Summarizing the relationship between weight-
ing method and optimization problem is thus also a potential topic for study.

From the results of the statistical tests, we find that the proposed method is
beneficial for unimodal optimization problems (f1 − f5), while the performance
on low-dimensional multimodal optimization problems is not obvious. This may
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be because the basic estimation method, which is clearly effective for unimodal
optimization problems, is not always valid for multimodal problems where the
moving vectors go toward different local optima. Further, the number of moving
vectors is small (in this case, the number is 5), and even on some multimodal
optimization problems, it is less than the number of peaks. Regardless, the pro-
posed strategy does not show any deleterious effect. [10] confirmed the effective-
ness of using an extra individual pool to preserve outstanding individuals from
past generations and using this pool, instead of the current generation, to esti-
mate convergence points. For the next stage, using past searching individuals
to increase the number of moving vectors, and combining it with the cluster-
ing method may allow us to extend our proposal to multimodal optimization
problems.

6 Conclusion

We propose a new kind of fireworks which uses the generated sparks to efficiently
estimate a convergence point which can act as an elite individual to accelerate
the fireworks algorithm. The controlled experiments confirm that the proposed
strategy can significantly improve the performance of conventional EFWA, and
the higher the dimension, the more obvious the effect.

In future work, we will further study the proposed synthetic fireworks and
use them to beneficially guide the evolution of the population. Additionally, it
is suggested that we can further improve the accuracy of the estimated point by
using historical information to better understand the fitness landscape.
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