
An Improved Artificial Bee Colony Algorithm
for the Task Assignment in Heterogeneous

Multicore Architectures

Tao Zhang1,2, Xuan Li1,2(&), and Ganjun Liu1,2

1 School of Electrical and Information Engineering,
Tianjin University, Tianjin 300072, China

lixuantju@tju.edu.cn
2 Texas Instruments DSP Joint Lab, Tianjin University, Tianjin 300072, China

Abstract. The Artificial Bee Colony (ABC) algorithm is a new kind of intel-
ligent optimization algorithm. Due to the advantages of few control parameters,
computed conveniently and carried out easily, ABC algorithm has been applied
to solve many practical optimization problems. But the algorithm also has some
disadvantages, such as low precision, slow convergence, poor local search
ability. In view of this, this article proposed an improved method based on
adaptive neighborhood search and the improved algorithm is applied to the task
assignment in Heterogeneous Multicore Architectures. In the experiments,
although the numbers of iteration decreases from 1000 to 900, the quality of
solution has been improved obviously, and the times of expenditure is reduced.
Therefore, the improved ABC algorithm is better than the original ABC algo-
rithm in optimization capability and search speed, which can improve the effi-
ciency of heterogeneous multicore architectures.

Keywords: Artificial bee colony algorithm � Task assignment
Neighborhood search

1 Introduction

Nowadays single core architectures is gradually replaced by multiple cores due to
problems in obtaining further performance increases from single core processors [1].
Heterogeneous multicore architecture (HMA) is an integration of special purpose
processing cores. The purpose of task assignment in HMA is to help system designers
to get the best-performance and the lowest-cost design scheme in HMA [2]. Task
assignment in HMA minimizes the execution time and consumed power of the target
system [3] with certain constraint conditions.

Task assignment in HMA is an NP-hard problem [4]. Many heuristic algorithms
have been applied to solve the NP-hard problem [5–8]. Due to the advantages of few
control parameters, computed conveniently and carried out easily, ABC algorithm has
been applied to solve many practical optimization problems [9], which have obtained
preferable results.

ABC algorithm is based on swarm behavior, with the characteristics of integrity,
relevance, dynamic and orderliness on systematics [10]. It can be evolved from

© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 179–187, 2018.
https://doi.org/10.1007/978-3-319-93815-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93815-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93815-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93815-8_18&domain=pdf

disorder to order by self-organizing. Bees and bee colonies have feedback features at
the same time [11]. Because it is limited by the way of evolution, there are still some
disadvantages, such as low precision, slow convergence [12], poor local search ability
[13–15]. In this paper, we describe the HMA as a model of a task assignment.
The HMA are combined with two different cores. The original ABC algorithm is used
in the model to achieve the DAG diagram corresponding to system tasks. Then an
improved method based on adaptive neighborhood search is proposed to address the
original ABC algorithm’s disadvantages. Five DAG figures are generated randomly
with TGFF [16] tools as a test set in order to compare the performance of the original
and the improved ABC algorithms. The experimental results demonstrate that the
improved ABC algorithm is more efficient.

2 Task Assignment Based on ABC

2.1 Bees Behavior

ABC simulates the co-operation, mutual coordination between individuals and groups
in intelligent foraging and breeding behavior of bee swarms. They exchange infor-
mation through dance and odor to finish foraging behavior. In a typical ABC algorithm,
three types of artificial bees are considered as agents for solving an optimization
problem, called employed bees, onlooker bees and scout bees. They have their own
division or labor in foraging. The scout bees are responsible for investigation. The
employed bees and onlooker bees are responsible for the exploitation of food sources.
The bees maintained good coordination to achieve a better balance, and then completed
the bee groups of foraging, reproduction and other behaviors.

2.2 Mathematical Model of the Artificial Bee Colony Algorithm

A system task is divided into a number of sub-tasks which can be completed by a
combination of core A (represented by 0) and core B (represented by 1). When the two
cores process the same task they consume different time and power. The coded
information corresponding to the task assignment can be seen as an ordered set of
binary numbers. The task assignment in HMA can be abstracted as a multi-objective
combinatorial optimization problem in mathematics, to find a sub-optimal solution or
the optimal solution under different constraints.

Bees can quickly find a better food source in foraging. Similarly, the task assign-
ment can quickly find a better solution in the process. The correspondence among bee
foraging behavior, mathematical model and task assignment is shown in Table 1.

Apparently, the more nodes there are, the more task assignment schemes. The
number of schemes is growing at an exponential rate to the number of nodes. In a
DAG, some tasks are completed by core A, the others are completed by core B.
Figure 1 presents one scheme of the task assignments.

The best scheme from all the task assignment schemes is to be selected according to
their fitness values and the probability to be searched. The maximum fitness food
source is selected, which may be the optimal or suboptimal solution corresponding to

180 T. Zhang et al.

the best task assignment in HMA. The Eq. (1) is used to describe the best scheme of
task assignment in HMA.

Max fitness :¼ maxðfitness½i�Þ
PN�1

j¼0
Tj\Time Limit

s:t:
PN�1

j¼0
Powerj\Power Limit

8
>>>>>><

>>>>>>:

ð1Þ

Here fitnessðiÞ is the fitness value of i-th food source, Tj and Powerj are the total
time consuming and the total power consuming of the j-th node respectively.
Time Limit and Power Limit are the maximum time and the maximum power limi-
tations respectively.

2.3 Description of the Original ABC Algorithm

ABC is applied to solve the traveling salesman problem in literature [11]. The algo-
rithm based on the mathematical model in Eq. (1) is applied to task assignment in
HMA.

At first, the bees are equally divided into scout bees and onlooker bees. The scout
bees search the food source and the food source in its neighborhood. If the fitness of its
neighborhood position is greater than its fitness, then the location of i-th food source is
substituted by the location of its neighborhood. Onlooker bees are sent according to the
probability of each candidate food source to search food. The greater the probability is,

Table 1. The correspondence among Bee foraging behavior, mathematical model and task
assignment

Bee foraging behavior Mathematical model Task assignment

All the food sources All the solutions All the Task assignment
The location of a food
source

One solution One Task assignment scheme

The best food source The best solution The best Task assignment
scheme

The fitness of a food
source

The quality of a solution Performance of the system

Bees’ foraging speed Solutions’ convergence
rate

The speed of optimization
capability

CoreA CoreB CoreB CoreA ...

Task 0 Task 1 Task 2 Task 3 ...

CoreA

Task N

Fig. 1. One scheme of the task assignments.

An Improved Artificial Bee Colony Algorithm 181

the greater likelihood of neighborhood search is. If the fitness of the neighborhood
position is greater than that of the current location, the current location is substituted by
the location of its neighborhood.

When the time consumed by the neighborhood search is greater than the maximum
limit time of food source, the food source is initialized. When its search time is greater
than the global maximum limit, the worst food source is initialized. Every bit of coding
information (0 or 1) is selected probably in the initialization.

At last the optimal or suboptimal food source searched is recorded. The information
coding corresponds to the best scheme of task assignment in HMA. In original ABC
algorithm, scout bees and onlooker bees finish their neighborhood search by updating
one bit of information coding randomly, such as 0 (1) is updated as 1 (0). So the
information update of food source is implemented.

3 The Analysis and Improvement of ABC Algorithm

3.1 The Shortcoming of the Original ABC Algorithm

In ABC algorithm, food source is updated through replacing the sub-optimal position
by optimal position. The food-searching process is equivalent to the process of finding
the optimal solution to task assignment in HMA.

When the initial position of the food source is far away from the optimal food
source, there is a big difference between the encoded information of them. The method
mentioned above will be very low efficiency. Obviously, the convergence rate will be
lower and the method will increase the number of invalid iterative search. It is a broader
range and high-discrete solution space. Finding the optimal solution is a continuous
iteration and selection process. Therefore, in order to improve the optimization capa-
bility and reduce the time overhead, invalid iterations should be avoided or minimized.

3.2 The Improvement of ABC Algorithm

In view of the deficiencies of the original ABC algorithm, the efficiency of ABC
algorithm is improved from the aspects of invalid iteration and neighborhood search
strategy.

The Improvement of Neighborhood Search Strategy
When neighborhood search iteration is less than the constraint condition, the neigh-
borhood search strategy updates one bit of the coded information in an iteration. On the
contrary, when neighborhood search iterations exceed the constraint condition, but the
fitness of the corresponding food source cannot be improved, then, the neighborhood
search strategy is changed to update several bits of the coded information in an
iteration.

Function named Search_Neighbourfood_Strategy_Improved([i]) is used to updates
the coded information of the food source randomly. The pseudo-code is as follows
(Table 2):

182 T. Zhang et al.

Here, Xi;old location is the information coding of the i-th food’s current location,
Xi;neighbour location is the information coding of the i-th food source’s neighborhood.

The Improvement of Calculating the Worst Food Source
During later iteration, all of the current food sources are approaching the final result.
The worst food source is re-coded according the best food source’s current location
instead of initialize the worst food source. Several bits of the best food source’s current
location are kept and the remaining bits are re-coded. The pseudo-code is as follows
(Table 3):

Here, Xbest location is the information coding of the current best food source’s
location, Xneighbour location is the information coding of the current best food source’s
neighborhood, Xnew location is the information of the new solution.

4 Experimental Results and Analysis

Algorithms in this paper are implemented in C-language and tested on a computer with
Intel core i5-4460 and 8 GB RAM. The running environments consists of Windows 10
and Microsoft Visual Studio 2013 Ultimate. In the experiment we set population size as
15. Food sources number is equal to 0.5 * population size. The number of initial time
scout bees is equal to the follow bee, which scale is equal to 0.5 * population size.

Table 2. The pseudo-code of the new neighborhood search program for the i-th food source.

Function：： Search_Neighbourfood_Strategy_Improved([i])
begin

1

/*update several bits of the coded information to realize the neighborhood search*/

, _ : _ , _()i neighbour location Update nbits i old locationX X= ;

/*The location of neighborhood food source is assigned to the current food source*/

, _ , _:i old location i neighbour locationX X= ;

2 end

Table 3. The pseudo-code of generating a new solution.

Function：：SendScoutBees_new([i])
begin

1

/*update several bits of the coded information to realize the neighborhood search*/

__ : _ ()neighbour location best locationX update nbits X= ;

/*The location of neighborhood food source is assigned to the new food source*/

__ :new location neighbour locationX X= ;

2 end

An Improved Artificial Bee Colony Algorithm 183

Five DAGs generated randomly with TGFF tool are regarded as a sample set to
compare the test results of the original ABC algorithm and the improved ABC (I-ABC)
algorithms. The parameter settings are shown in Table 4.

The comparison results between the ABC and the I-ABC algorithms are shown in
Table 5.

To illustrate the effectiveness of the I-ABC algorithm, its performances are shown
in Figs. 2 and 3.

According to the comparison in Table 5, Figs. 2 and 3, data could be analyzed from
the following three aspects:

The Local Search Ability: Although the number of iterations is reduced from 1000 to
900, the optimal solution of the improved algorithm is not only not worse, even better
than that of the original algorithm. It is more obvious for the case of 52 nodes. From 30
nodes to 132 nodes, the quality of the solution increases about the 21.27%, 23.02%,
18.11%, 14.57%, 3.37% respectively. Meanwhile the time-consumed is reduced, and
the power-consumed is the similar. Therefore, the I-ABC algorithm shows better local
search ability.

Table 4. Parameter settings

Parameters Values

CoreA execution time [392 ms, 450 ms]
CoreA consumed power [25 w, 35 w]
CoreB execution time [72 ms, 84 ms]
CoreB consumed power [264 w, 336 w]

Table 5. Comparison results between the ABC and the I-ABC algorithms

Nodes Algorithm Iterations Optimal
solution

The worst
solution

Average
solution

Average
consumed
power

Average
execution
time

30 ABC 1000 1590.1074 1911.0752 1801.8261 5970.2704 0.2317 s
30 I-ABC 900 1238.3132 1163.5138 1418.6363 5962.4877 0.2214 s
52 ABC 1000 1618.9009 2471.8289 2116.6482 1053.5813 1.5177 s
52 I-ABC 900 1493.8208 2072.0464 1629.4947 1055.6977 1.4246 s
75 ABC 1000 1791.9229 2784.7266 2337.8188 1544.2631 6.1917 s
75 I-ABC 900 1660.3372 2356.6123 1914.4037 1551.2477 5.8043 s
102 ABC 1000 2104.1284 3092.9399 2600.3895 2066.0012 13.6863 s
102 I-ABC 900 1968.8102 2662.5608 2221.5824 2090.9569 12.9610 s
132 ABC 1000 2708.5594 3218.9221 2934.5233 2905.2343 34.2272 s
132 I-ABC 900 2701.4824 3028.0132 2835.6697 2998.8134 32.6838 s

184 T. Zhang et al.

The Solution Accuracy: The D-value between the worst solution and the optimal
solution in the I-ABC algorithm is reduced obviously. The final solution is also reduced
significantly. For the case of 132 nodes, the final solution reduced about 3.5%, so the
algorithm’s accuracy is improved.

The Convergence Speed: When the consumed power is substantially the same, the
improved algorithm can reduce the average execution time of the task.

From what we have been discussed above, we can get a conclusion that the pre-
cision of optimal solution of the I-ABC algorithm is higher than that of the original
ABC algorithm, and the average execution time is reduced. The I-ABC algorithm is
more efficient.

Fig. 2. Comparison of two algorithms over the average solution and the average execution time.

An Improved Artificial Bee Colony Algorithm 185

5 Conclusion

ABC algorithm has the features of less parameter and strong robustness, for which it is
used in task assignment in HMA. Based on the original ABC algorithm, the neigh-
borhood search scheme is proposed to solve the problems of low precision, slow
convergence and poor local search ability. The experimental result shows that, in the
case of less iterations, the I-ABC algorithm reduces the task execution time, and in case
that the power-consumed obeys the restrictive conditions, the I-ABC algorithm reduces
average solution with reduced numbers of iteration. D-value between the worst solution
and the optimal solution is also reduced. The task assignment in HMA could be more
efficient with the I-ABC algorithm.

References

1. Ya-Shu, C., Chiang Liao, H., Ting-Hao, T.: Online real-time task scheduling in
heterogeneous multicore system-on-a-chip. IEEE Trans. Parallel Distrib. Syst. 24(1), 118–
130 (2013)

2. Hayashi, A., Wada, Y., Watanabe, T., Sekiguchi, T., Mase, M., Shirako, J., Kimura, K.,
Kasahara, H.: Parallelizing compiler framework and API for power reduction and software
productivity of real-time heterogeneous multicores. In: Cooper, K., Mellor-Crummey, J.,
Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 184–198. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19595-2_13

3. Fred, A.B., Daniel, J.S., Landon, P.C.: The impact of dynamically heterogeneous multicore
processors on thread scheduling. IEEE Micro 28(3), 17–25 (2018)

4. Jing, L., Kenli, L., Dakai, Z., et al.: Minimizing cost of scheduling tasks on heterogeneous
multicore embedded systems. ACM Trans. Embed. Comput. Syst. 16(2), 1–25 (2016)

5. Lanying, L., Yan-bo, S.: New Genetic algorithm and simulated annealing integration of
Hardware/Software partitioning. Comput. Eng. Appl. 46(28), 73–76 (2010)

Fig. 3. Comparison results between the ABC and the I-ABC algorithms (132 nodes).

186 T. Zhang et al.

http://dx.doi.org/10.1007/978-3-642-19595-2_13

6. Jianliang, Y., Manmam, P.: Hardware/Software partitioning algorithm based on wavelet
mutation binary particle swarm optimization. In: 3rd International Conference on
Communication Software and Networks, pp. 347–359. IEEE (2011)

7. Ahmed, U., Khan, G.N.: Embedded system partitioning with flexible granularity by using a
variant of tabu search. In: Canadian Conference on Electrical and Computer Engineering,
pp. 2073–2076. IEEE (2004)

8. Hai, Y., Xiao-ya, F., Sheng-bing, Z., et al.: A guiding function based greedy partitioning
algorithm for dynamically reconfigurable systems. In: 8th International Conference on
Solid-State and Integrated Circuit Technology, pp. 2009–2012. IEEE (2007)

9. Dengxu, H., Ruimin, J., Shaotang, S.: An article bee colony optimization algorithm guided
complex method. In: 5th International Symposium on Computational Intelligence and
Design, pp. 348–351. IEEE (2012)

10. Wei, Z., Jing, L., Jian-chao, Z.: Artificial bee colony algorithm and its application in
combinatorial optimization. J. Taiyuan Univ. Sci. Technol. 1, 108–112 (2010)

11. Li, L., Cheng, Y., Tan, L., Niu, B.: A discrete artificial bee colony algorithm for tsp problem.
In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840,
pp. 566–573. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24553-4_75

12. Jun, L., Qian, W.: A modified artificial bee colony algorithm based on converge-onlookers
approach for global optimization, pp. 10253–10262. Applied Mathematics & Computation,
219(20) (2010)

13. Guopu, Z., Sam, K.: Gbest-guided artificial bee colony algorithm for numerical function
optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

14. Wang, H., Liu, J., Wang, Q.: Modified artificial bee colony algorithm for numerical function
optimization. Comput. Eng. Appl. 48(19), 36–39 (2012)

15. Bai, L., Li-gang, G., Wen-lun, Y.: An improved artificial bee colony algorithm based on
balance-evolution strategy for unmanned combat aerial vehicle path planning. Sci.
World J. 2014(1), 95–104 (2014)

16. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: task graphs for free. In: Proceedings of the Sixth
International Workshop on Hardware/Software Codesign, (CODES/CASHE 1998), pp. 97–
101. IEEE (1998)

An Improved Artificial Bee Colony Algorithm 187

http://dx.doi.org/10.1007/978-3-642-24553-4_75

	An Improved Artificial Bee Colony Algorithm for the Task Assignment in Heterogeneous Multicore Architectures
	Abstract
	1 Introduction
	2 Task Assignment Based on ABC
	2.1 Bees Behavior
	2.2 Mathematical Model of the Artificial Bee Colony Algorithm
	2.3 Description of the Original ABC Algorithm

	3 The Analysis and Improvement of ABC Algorithm
	3.1 The Shortcoming of the Original ABC Algorithm
	3.2 The Improvement of ABC Algorithm

	4 Experimental Results and Analysis
	5 Conclusion
	References

