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Abstract. Proteins complexes accomplish biological functions such as tran-
scription of DNA and translation of mRNA. Detecting protein complexes cor-
rectly and efficiently is becoming a challenging task. This paper presents a novel
algorithm, core-attachment based on ant colony optimization (CA-ACO), which
detects complexes in three stages. Firstly, initialize the similarity matrix. Sec-
ondly, complexes are predicted by clustering in the dynamic PPI networks. In
the step, the clustering coefficient of every node is also computed. A node whose
clustering coefficient is greater than the threshold is added to the core protein set.
Then we mark every neighbor node of core proteins with unique core label
during picking and dropping. Thirdly, filtering processes are carried out to
obtain the final complex set. Experimental results show that CA-ACO algorithm
had great superiority in precision, recall and f-measure compared with the
state-of-the-art methods such as ClusterONE, DPClus, MCODE and so on.
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1 Introduction

Protein complex is a basic structural unit that can cooperate with each other to complete
the specific biological function [1, 2]. The protein-protein interaction (PPI) network [3]
is composed of a number of complexes which are related to each other to perform
certain functions.

In recent years, many methods have been proposed to predict protein complexes.
These methods greatly promote the progress in the field of complexes prediction.
According to the category of complex recognition algorithms, these algorithms can be
divided into the following categories: recognition algorithm based on dense sub-graph,
recognition algorithm based on hierarchical clustering, recognition algorithm based on
core-attachment structure.

Based on the theory of dense sub-graph in PPI networks, lots of algorithms are
proposed. In 2003, Spirin et al. [2] proposed the algorithm using the results of
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traversing the fully connected graphs to identify complexes. Bader et al. [4] proposed a
method, called molecular complex detection (MCODE). Palla et al. [5] proposed clique
percolation method (CPM) based on the close connection of sub-graph filtering algo-
rithm. And the algorithm’s application software is developed, called CFinder [6]. In
2006, Altaf-UI-Amin et al. [7] proposed the DPClus which can get the overlapping
complexes. In 2008, Li et al. [8] proposed IPCA algorithm, which is based on dense
sub-graph to identify overlapping complexes. In 2009, Liu et al. [9] proposed clus-
tering based on maximal cliques (CMC) algorithm, which can dig out the dense
sub-graph in PPI networks.

Hierarchical clustering theory is also used to predict protein complexes. In 2002,
Aivan and Newman proposed GN algorithm [10], which is used to partition the
modules in complex networks. In 2004, Hartuv et al. [11] proposed highly connected
sub-graph (HCS) algorithm. In 2009, Li et al. [12] proposed a fast hierarchical clus-
tering algorithm based on the local variable and edge clustering coefficient, and
redefined the protein complex. In 2012, Wang et al. [13] proposed OMIM algorithm to
predict duplicate complexes in hierarchical clustering system.

The core-attachment structure of complex is a significant view to detect protein
complexes. Leung et al. [14] designed CORE algorithm which calculates the p-value
for all pairs of proteins to detect cores. Wu et al. [15] proposed COACH algorithm.

Recently, swarm intelligence algorithms have been successfully applied to the
detection of complexes in PPI networks [20]. In addition, there are many other algo-
rithms, such as Markov Clustering (MCL) [16, 17] algorithm, ClusterONE [18]
algorithm, SPICi [19] algorithm and so on.

In this paper, we proposed a protein complex prediction algorithm based on
core-attachment structure and ant colony optimization method, CA-ACO. First, we
adopt the weighted matrix of the dynamic PPI network as the similarity matrix of the
undirected graph. Second, we use the clustering coefficient value of every node to
obtain the core proteins. We mark every neighbor node of core protein with unique
label through picking and dropping principle of ACO. Third, filtering processes are
carried out to obtain the clustering result.

2 Methods

2.1 The ACO Based Core-Attachment Design

Since the protein is not always active in the cell cycle, in order to construct a dynamic
model, we integrate the static PPI data and gene expression data because gene
expression level and protein expression level are consistent. If the gene expression data
at a certain timestamp is better than a threshold, then it can be considered that the
protein is active at this timestamp. By using three-sigma [29] principle, active threshold
is set. At a certain timestamp, if two proteins are active and interactional, it can be
considered that there is an edge between the two proteins at this time. As gene
expression data has 12 timestamps, the static network is divided into 12 sub-graphs
which correspond to 12 timestamps. Eventually, the dynamic PPI network is con-
structed. Figure 1 shows a process of dynamic PPI networks construction.
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Considering the organization of complexes, we combine the structure of
core-attachment [14] with the principle of picking and dropping to predict complexes,
and propose a novel algorithm, named CA-ACO. Figure 2 shows a part of the
core-attachment formation design. There are two clusters which are in dotted circles of
green and blue. Protein p and protein q are seed proteins. The connection between a
protein and others is represented by a solid line or dotted line. The full line represents
that two proteins belong to a cluster. Otherwise, they don’t belong to a cluster. Taking
p’s neighbor protein a as an example, protein a does not belong to the cluster whose
seed protein is protein p. Then, we should pick up a, and decide if protein a belongs to
other cluster. Protein b is the neighbor protein of protein p and q. As the Fig. 2 shows,
the protein b belongs to two clusters whose seed proteins are protein p and protein
q. For protein c which is connected with protein p and protein q. Firstly, node c did not
belong to cluster p and was picked up. Then, we have to decide its relationship with
other seed nodes. There is a full line between c and q. Then, node c needs to be dropped
out and put in the cluster whose seed node is protein q.

2.2 Description of CA-ACO Algorithm

The process of CA-ACO algorithm can be divided into 3 steps: similarity matrix
initialization, clustering and purification.

In the first step, the similarity matrix of the dynamic PPI network is composed of
12 sub networks’ weighted matrix. The greater the weight value is, the greater the

Fig. 1. An illustration example of dynamic PPI networks construction
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similarity between the nodes is. The similarity matrix of PPI network initialization is
shown in Eq. (1).

Sðvi; vjÞ ¼ sðvi; vjÞ if ðvi; vjÞ 2 E
0 else

�
ð1Þ

Where s(vi, vj) is weight value of edge (vi, vj). It represents the strength of the
interaction of proteins vi and protein vj in weighted PPI network.

In the second step, we can obtain protein complex set from dynamic PPI network.
There are two main processes: seed protein selection and attachment formation. In seed
protein selection process, we need to compute the clustering coefficient value [30] of
every protein by Eq. (2).

ccvðviÞ ¼ 2� ni
jneighðviÞj � ðjneighðviÞj � 1Þ ð2Þ

where neigh(vi) is neighbor nodes set of a node vi. A protein whose clustering coef-
ficient value is greater than the threshold will be added to the core protein set. In
attachment formation step, we need to access to neighbor protein set of every core
protein. By carrying out the picking and dropping operation [21] of ACO, seed pro-
teins’ neighbor proteins can be clustered. The probability of picking is calculated by
Eq. (3).

ppðvjÞ ¼ ð kp
kp þ sðvi; vjÞÞ

2 ð3Þ

where kp is a picking constant whose range of values is from 0 to 1, s(vi, vj) is the
similarity between the protein vj and the current core protein vi. In the operation of
picking, the probability of picking is compared with a random probability. When the
probability of picking is more than the random probability, the operation of picking is

Fig. 2. A part of the core-attachment formation design (Color figure online)
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executed. Otherwise, the protein vj is labeled the complex whose seed protein is the
protein vi. The probability of dropping is calculated by Eq. (4).

pdðvjÞ ¼ 2� sðvi; vjÞ if s(vi,vj)\kd
1 else

�
ð4Þ

where kd is a dropping constant whose range of values is 0 to 1, s(vi, vj) is the similarity
between the protein vj and the current core protein vi. The probability of dropping is
compared with random probability in the operation of dropping. When pd(vj) is more
than a random probability, the operation of dropping is executed. Therefore, the protein
vj is labeled the complex whose seed protein is the protein vi. Through the clustering
process, we can get the initial clustering results where complexes have core-attachment
structure.

In the third step, purification process is carried out. In the complex set, the
complex with just one protein is deleted, and protein complex which has same proteins
as others is removed. The protein complex set is obtained.

The pseudo-code of CA-ACO method is described as follows.

Algorithm: CA-ACO algorithm
Input: a dynamic PPI network G
Output: protein complexes set PC
Step 1: Initialization similarity matrix: the similarity matrix is shown in Eq.(1). 
Step 2: Clustering:  

Initialization: Set various parameters.
Seed selection: Compute the clustering coefficient of protein to obtain seed proteins by Eq.(2) . 

 Attachment clustering:
flag =0; 
For protein vi in the core protein set

For node vj in the neigh(i) 
Compute the probability of picking up the protein vj, pp, by Eq.(3)
If pp < random value & flag=0

Then label node vj as vi cluster, continue
Else pick up node vj , flag = 1
For other core protein vk except protein vi

Compute the probability of dropping out the protein vj , pd, by Eq.(4) 
If pd > random value

Then drop down protein vj, label vj as vk , flag=0, continue
End If

End For
End If

End For
If flag=1

Drop down protein vj, don’t label and flag=0
End If

End For
Put proteins with same labels into a cluster, get clustering results

Return the protein complexes set dd from the PPI network
Step 3: Refinement: filtering the protein complexes of Step 2. Return the protein complex set PC
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3 Experiments and Results

3.1 Experimental Dataset

In this paper, we adopt the PPI data of S.cerevisiae from DIP [24], MIPS [31] and
Krogan database [32]. Dynamic PPI networks [3] at 12 timestamps correspond to 12
static PPI subnets. Different subnets have different size, as shown in Table 1.

In this paper, we use the standard known protein complex set, CYC2008 [25],
which contains 408 complexes and 1,628 proteins. The biggest cluster has 81 proteins
while the smallest cluster has 2 proteins in protein complexes of CYC2008.

3.2 Evaluation Criteria

The precision [24] indicates the proportion of the predicted protein complexes suc-
cessfully matched by the standard protein complexes in the prediction of the complex.
It can be defined as:

precision ¼ Ncp

jPj ð5Þ

where |P| represents the number of predicted protein complexes, and Ncp indicates that
the number of the predicted complexes successfully matched by the known protein
complexes.

The recall [24] indicates the proportion of the known protein complexes success-
fully matched by the predicted complexes in the standard of the complex. It can be
defined as:

recall ¼ Ncb

jBj ð6Þ

where |B| represents the number of known protein complexes, and Ncb indicates that the
number of the standard protein complexes successfully matched by the predicted
protein complexes.

Table 1. The number of proteins and interactions in each subnet of different PPI networks

Data Timestamp 1 2 3 4 5 6 7 8 9 10 11 12

DIP Proteins 797 941 796 623 601 530 493 944 1090 592 661 461
Interactions 981 1444 1188 745 750 646 573 1705 2185 856 974 526

MIPS Proteins 737 897 781 583 570 531 470 839 1014 523 616 402
Interactions 1097 1443 1183 754 684 642 504 1238 1637 878 1207 700

Krogan Proteins 336 379 320 256 206 189 202 580 626 304 330 250
Interactions 334 464 331 234 210 184 213 1025 1081 314 373 258
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The f-measure [24] denotes the harmonic mean of precision and recall. It can be
defined as:

f � measure ¼ 2� precision� recall
precisionþ recall

ð7Þ

In order to further validate the biological significance of the predicted protein
complexes, we need to carry out the functional enrichment analysis by using p-value
[36] formulated as follows:

p� value ¼
Xn
i¼m

M
i

� �
N �M
n� i

� �

N
n

� � ð8Þ

where N is the number of protein in the PPI network, M is the number of proteins in a
GO term, n is the number of proteins which are annotated with the same GO term.
Generally, the smaller the p-value of a protein complex is, the stronger biological
significance the complex processes will be.

3.3 Comparison with Other Methods

To evaluate the performance of CA-ACO algorithm, we compare CA-ACO with CMC
[9], MCODE [4], CFinder [6], ClusterONE [18], CORE [14], COACH [15], RNSC
[25], DPClus [7], MCL [16, 17], ACO-MCL [26], HC-PIN [27], MOEPGA [28] and
FOCA [20] in terms of precision, recall and f-measure in the DIP dataset. It is obvious
that the precision value of our method is greater than other methods precision value.
The recall values of CMC, MOEPGA and FOCA algorithms are superior to our
method, which are 0.5900, 0.6000 and 0.6360 respectively. However, the f-measure
value of our method is much higher than other typical algorithms’ f-measure value. Our
method’s f-measure value is 0.6653. It indicates that the performance of CA-ACO
algorithm is optimal. The above analysis can be shown in Fig. 3.

Moreover, we also compare our method with the following prediction methods:
CSO [33], ClusterONE [18], COACH [15], CMC [9], HUNTER [34] and MCODE [4]
in terms of precision, recall and f-measure in the MIPS and Krogran dataset. As shown
in Fig. 4, our method achieves the highest f-measure of 0.6025, recall of 0.5524 and
precision of 0.6665 in MIPS dataset. On the Fig. 5, our method achieves the highest f-
measure of 0.5844, recall of 0.4347 and precision of 0.8920 in the Krogan dataset.

We use functional enrichment analysis to validate the biological significance of
methods. We calculate the p-value of detected complexes whose size are greater than or
equal to 3. A complex is considered significant when its p-value is less than 0.01.

ACO Based Core-Attachment Method to Detect Protein Complexes 107



Table 2 lists the number and percentage of the identified complexes whose p-value
is in the range of <E−10, [E−10, E−5), [E−5, 0.01), >=0.01. Table 2 shows the
comparison of the functional enrichment of complexes detected by CA-ACO, MCL,
CORE and ClusterONE on DIP, MIPS and Krogan datasets. As shown in Table 2, we

Fig. 3. Precision, recall, f-measure values of various algorithms on the DIP dataset

Fig. 4. Precision, recall, f-measure values of various algorithms on the MIPS dataset
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can obtain the number of predicted protein complexes by various methods on different
datasets. The percentage and the amount of the predicted protein complexes with p-
value fall into corresponding intervals. The percentage of complexes whose p-value is
greater than 0.01 in predicted complexes by CA-ACO algorithm is the smallest. So,
most of the predicted protein complexes by CA-ACO are meaningful. These illustrate
that our proposed algorithm is competent to identified significant protein complexes in
dynamic PPI networks.

Fig. 5. Precision, recall, f-measure values of various algorithms on the Krogan dataset

Table 2. Functional enrichment analysis of complexes detected on DIP, MIPS and Krogan
dataset

Dataset Algorithm PC <E−10 [E−10,E−5) [E−5, 0.01) >=0.01

DIP CA-ACO 481 15(3.12%) 107(22.25%) 254(52.81%) 105(21.83%)
MCL 1053 66(6.26%) 183(17.38%) 362(34.38%) 442(41.98%)
CORE 344 4(1.16%) 78(22.67%) 114(33.14%) 148(43.02%)
ClusterONE 574 73(12.72%) 177(30.84%) 184(32.06%) 140(24.39%)

MIPS CA-ACO 223 2(0.90%) 42(18.83%) 135(60.54%) 44(19.73%)
MCL 606 18(2.98%) 94(15.51%) 220(36.30%) 274(45.21%)
CORE 340 4(1.18%) 65(19.12%) 107(31.47%) 164(48.24%)
ClusterONE 372 23(6.18%) 117(31.45%) 126(33.87%) 106(28.49%)

Krogan CA-ACO 162 7(4.32%) 49(30.25%) 93(57.41%) 13(8.02%)
MCL 403 59(14.64%) 103(25.56%) 119(29.53%) 122(30.27%)
CORE 255 13(5.10%) 60(23.53%) 102(40.00%) 80(31.37%)
ClusterONE 399 56(14.04%) 98(24.56%) 120(30.08%) 125(31.33%)
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4 Conclusions

Many of the current methods predicting protein complexes are running in a static PPI
network, which ignoring the dynamic properties of the PPI network and the inherent
organization of the protein complex. In this paper, we proposed a novel method for
detecting protein complexes in dynamic protein interaction networks, CA-ACO, which
is based on the core-attachment structure of protein complexes. We compare the per-
formance of the CA-ACO algorithm with other state-of-the-art methods in DIP, MIPS
and Krogan dataset. Experimental results show that CA-ACO algorithm is obviously
superior to other methods. In addition, the shift from static PPI networks to dynamic
PPI networks is important to analyze the biological significance of complexes identified
from PPI networks. In the future, we will further optimize our algorithm to improve the
efficiency of algorithm and the effect of biological research.
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