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Preface

This book and its companion volumes, LNCS vols. 10941 and 10942, constitute the
proceedings of the 9th International Conference on Swarm Intelligence (ICSI 2018)
held during June 17–22, 2018, in Shanghai, China.

The theme of ICSI 2018 was “Serving Life with Intelligence Science.” ICSI 2018
provided an excellent opportunity and/or an academic forum for academics and
practitioners to present and discuss the latest scientific results and methods, innovative
ideas, and advantages in theories, technologies, and applications in swarm intelligence.
The technical program covered most aspects of swarm intelligence and its related areas.

ICSI 2018 was the ninth international gathering in the world for researchers working
on swarm intelligence, following successful events in Fukuoka (ICSI 2017), Bali (ICSI
2016), Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013), Shenzhen
(ICSI 2012), Chongqing (ICSI 2011), and Beijing (ICSI 2010). The conference pro-
vided a high-level academic forum for participants to disseminate their new research
findings and discuss emerging areas of research. It also created a stimulating envi-
ronment for participants to interact and exchange information on future challenges and
opportunities in the field of swarm intelligence research. ICSI 2018 was held in con-
junction with the Third International Conference on Data Mining and Big Data
(DMBD 2018) at Shanghai, China, with the aim of sharing common mutual ideas,
promoting transverse fusion, and stimulating innovation.

ICSI 2018 took place at the Anting Crowne Plaza Holiday Hotel in Shanghai, which
is the first five-star international hotel in the Jiading District of Grand Shanghai.
Shanghai, Hu for short, also known as Shen, is the largest and the most developed
metropolis with both modern and traditional Chinese features in China. It is also a
global financial center and transport hub. Shanghai offers many spectacular views and
different perspectives. It is a popular travel destination for visitors to sense the pulsating
development of China. The participants of ICSI 2018 had the opportunity to enjoy
traditional Hu operas, beautiful landscapes, and the hospitality of the Chinese people,
Chinese cuisine, and modern Shanghai.

We received 197 submissions and invited submissions from about 488 authors in 38
countries and regions (Algeria, Argentina, Aruba, Australia, Austria, Bangladesh,
Brazil, China, Colombia, Cuba, Czech Republic, Ecuador, Fiji, Finland, Germany,
Hong Kong, India, Iran, Iraq, Italy, Japan, Malaysia, Mexico, New Zealand, Norway,
Portugal, Romania, Russia, Serbia, Singapore, South Africa, Spain, Sweden, Chinese
Taiwan, Thailand, UK, USA, Venezuela) across six continents (Asia, Europe, North
America, South America, Africa, and Oceania). Each submission was reviewed by at
least two reviewers, and on average 2.7 reviewers. Based on rigorous reviews by the
Program Committee members and reviewers, 113 high-quality papers were selected for
publication in this proceedings volume, with an acceptance rate of 57.36%. The papers
are organized in 24 cohesive sections covering major topics of swarm intelligence,
computational intelligence, and data science research and development.



On behalf of the Organizing Committee of ICSI 2018, we would like to express our
sincere thanks to Tongji University, Peking University, and Southern University of
Science and Technology for their sponsorship, and to the Robotics and Multi-body
System Laboratory at the School of Mechanical Engineering of Tongji University, the
Computational Intelligence Laboratory of Peking University, and the IEEE Beijing
Chapter for its technical cosponsorship, as well as to our supporters: International
Neural Network Society, World Federation on Soft Computing, Beijing Xinghui
Hi-Tech Co., Bulinge, and Springer.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the international Program Committee and additional
reviewers for reviewing the papers, and the members of the Publications Committee for
checking the accepted papers in a short period of time. We are particularly grateful to
Springer for publishing the proceedings in the prestigious series of Lecture Notes in
Computer Science. Moreover, we wish to express our heartfelt appreciation to the
plenary speakers, session chairs, and student helpers. In addition, there are still many
more colleagues, associates, friends, and supporters who helped us in immeasurable
ways; we express our sincere gratitude to them all. Last but not the least, we would like
to thank all the speakers, authors, and participants for their great contributions that
made ICSI 2018 successful and all the hard work worthwhile.

May 2018 Ying Tan
Yuhui Shi

Qirong Tang
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Semi-Markov Model of a Swarm Functioning

E. V. Larkin and M. A. Antonov(&)

Tula State University, Tula 300012, Russia
elarkin@mail.ru, max0594@yandex.ru

Abstract. The method of a physical swarm modeling, based on application of
semi-Markov process theory to description of swarm unit cyclograms is worked
out. It is shown, that ordinary semi-Markov processes with structural states are
abstract analogue of units cyclograms. The method of gathering of ordinary
semi-Markov processes into M-parallel process and further transformation of it
into complex semi-Markov process with functional states is proposed. It is
shown that functional states may be obtained as Cartesian product of sets of
ordinary semi-Markov processes states. Operation of semi-Markov matrices
Cartesian product is introduced. Method of evaluation of elements of complex
semi-Markov matrix is worked out.

Keywords: Swarm � Unit � Cyclogram � Structural state � Functional state
Parallel semi-Markov process � Complex semi-Markov process
Cartesian product

1 Introduction

At the present time physical swarms are widely used in various branches of human
activity, such as industry, defense, ecology etc. [1–3]. Below a physical swarm is
considered as a set of physical units, operated to realize a corporative aim [3]. Every
unit within overall intention executes its own function, so it operates in accordance
with its own co-algorithm. Every co-algorithm forms so called cyclogram of swarm
unit operation. Other level of swarming is an operation of swarm unit onboard
equipment. It also includes a set of physical blocks, every block operates due to its own
cyclogram, and operation of equipment as a whole leads to realization a corporative
aim of swarm [4].

Cyclograms have next features [5, 6]:

they are divided onto states and every state of a cyclogram fits the physical state of
the proper swarm unit;
the time of residence of the unit in the state of cyclogram is a random one, and is
known with exactness to density;
switches into neighboring states from the current state have a stochastic character;
all states of cyclogram are actual, i.e. from every state of cyclogram there is at least
one possible way to all other states.

Swarm control predetermines necessity of knowledge of all unites current states. At
now this problem may be solved by means of determining of current states of separate
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units. After determining the states other problem, namely time coordination of units
operation emerges. In this aspect task solution, which permits to determine complex
swarm state at any time, is preferable.

Features of cyclograms, mentioned above, permit to use for their modeling the
semi-Markov process theory [7–11], but semi-Markov models of parallel process are
not of widely used, and their creation is rather complicated scientific problem. This fact
explains importance and relevance of investigations in this domain.

2 M-Parallel Semi-Markov Process

Let us consider the pair [7]

B ¼ X;Pð Þ; ð1Þ

where X - is the set of elementary events; P - probabilistic measure.
Set X may be performed as the next union of subsets:

X ¼ Xt [ SM
m¼1

Xa
m

� �
;

Xt \ SM
m¼1

Xa
m

� �
¼ £;

Xa
m \Xa

n ¼
£; whenm 6¼ n;
Xa

m; whenm ¼ n;

� ð2Þ

where Xa
m ¼ xa

1 a;mð Þ; . . .;x
a
j a;mð Þ; . . .;x

a
J a;mð Þ

n o
are discrete countable subsets of ele-

mentary events, 1�m�M; Xt ¼ xt
1ðtÞ; . . .;x

t
jðtÞ; . . .

h i
is the infinite ordered subset of

elementary events constituting a continuum; ∅ is the empty set.
The function

a
[M
m¼1

Xa
m

 !
¼
[M
m¼1

a Xa
m

� �
; ð3Þ

where

a Xa
1m

� � ¼ a xa
1ða;mÞ

h i
; . . .; a xa

jða;mÞ
h i

; . . .; a xa
Jða;mÞ

h in o
; ð4Þ

a xa
j að Þ

� �
¼ aj mð Þ; ð5Þ
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forms the set of states

A ¼ A1; . . .;Am; . . .;AMf g; ð6Þ
Am ¼ a1ðmÞ; . . .; ajðmÞ; . . .; aJðmÞ

	 

; ð7Þ

where ajðmÞ is the abstract analogue of the j(m)-th physical state of m-th swarm unit
cyclogram.

In the state ajðmÞ m-th unit resides from begin of j(m)-th operations, predetermined

by m-th cyclogram, till its end. Function a xa
j að Þ

� �
of elementary event is discrete,

single-placed and one-to-one function, and is such, that to the event xa
jða;mÞ fits the state

ajðmÞ, and vice versa, to the state ajðmÞ fits the event xa
jða;mÞ.

Function

tj tð Þ ¼ s xt
jðtÞ

h i
ð8Þ

describes real physical time aspects of swarm operation. In particular, tj tð Þ - is the time,
which corresponds to the elementary event xt

jðtÞ. Function (8) is continual,

single-placed and one-to-one function, and is such, that to the event xt
jðtÞ fits the state

tj tð Þ, and vice versa, to the state tj tð Þ fits the event xt
jðtÞ,

Application of (8) to Xt gives

s Xtð Þ ¼ t; ð9Þ

where t is the real physical time.
Notions «global time» and «time intervals» should be distinguished (Fig. 1).

Global time tG is the same for all units of the swarm, and starts from beginning of
swarm existence.

On the Fig. 1 t� 0 - is the time of residence in j(a,m)-th physical state of m-th
swarm unit cyclogram; tG is the global time. Time interval counts out from the previous
switch till the next switch.

Fig. 1. Time intervals

Semi-Markov Model of a Swarm Functioning 5



Let us return to pair (1). Probabilistic measure

pjðmÞ ¼ P a : ajðmÞ 2Am
� � ð10Þ

may be aligned to subset Xa
m.

Measure (10) characterizes a residence of the m-th unit in one of states of subset Am

for external in relation, to mentioned unit, observer. The fact that the m-th unit may
reside in one, and only one state, imposes next restriction on probabilities:

XJðmÞ
jðmÞ¼1ðmÞ

pjðmÞ ¼ 1: ð11Þ

Nominate switch from aj mð Þ till an mð Þ as

sj mð Þ;n mð Þ ¼ aj mð Þ; an mð Þ
� �2 Sm; ð12Þ

where Sm is the set of possible switches, which may be obtained by means of expo-
nentiation into second Cartesian degree the set Am:

Sm ¼ Amð Þ2¼ fs1 mð Þ;1 mð Þ; . . .; s1 mð Þ;n mð Þ; . . .; s1 mð Þ;J mð Þ; . . .; sj mð Þ;1 mð Þ; . . .;

sj mð Þ;n mð Þ; . . .; sj mð Þ;J mð Þ; . . .; sJ mð Þ;1 mð Þ; . . .; sJ mð Þ;n mð Þ; . . .; sJ mð Þ;J mð Þ; . . .; g:
ð13Þ

To every pair of (13) may be aligned probabilistic measure

pjðmÞ;nðmÞ ¼ P s : s ¼ a; aþð Þ 2 Sm; a ¼ aj mð Þ; aþ ¼ an mð Þ
 �

; ð14Þ

where a� is the state of unit before switch, aþ is the state of unit after switch.
The time interval of m-th cyclogram starts at the moment of switch from the state

aj mð Þ till the state an mð Þ, 1� j mð Þ; n m� J mð Þð Þ. In such a way, on the global time axis
tG a flow of switches is generated which unites switch flows of units. Time interval
between switches is random value, so for j(m)-th state, if it is known that next switch
will be sj mð Þ;n mð Þ, probabilistic measure may be determined as follows:

fj mð Þ;n mð Þ tjðtÞ
� �

dt ¼ P t : t sk mð Þ;j mð Þ
� � ¼ 0; t sj mð Þ;n mð Þ

� � ¼ tjðtÞ
� �

; ð15Þ

where t sk mð Þ;j mð Þ
� �

is the time of switch into the state aj mð Þ; t sj mð Þ;n mð Þ
� �

is the time of
switch from the state aj mð Þ, if there was decision, that next state will be an mð Þ.

If in (15) to omit the index j(t), then time density fj mð Þ;n mð Þ tð Þ is the probabilistic
measure, which does not depend of pre-history of switches, but depends only of what
state of cyclogram m-th unit switches next time.
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So, conception (1) permits to formulate the notion of M-parallel semi-Markov
process as follows;

l ¼
[M
m¼1

lm; ð16Þ

lm ¼ Am; hm tð Þf g; ð17Þ

where lm is the ordinary semi-Markov process; Am is the set of states, described as (7);
hm tð Þ is the semi-Markov matrix of size J mð Þ � J mð Þ;

hm tð Þ ¼ hj mð Þ;n mð Þ tð Þ
 � ¼ pm fm tð Þ; ð18Þ

pm ¼
Z1

0

hm tð Þdt ¼ pj mð Þ;n mð Þ
 �

; ð19Þ

fm tð Þ ¼ hj mð Þ;n mð Þ tð Þ
pj mð Þ;n mð Þ tð Þ
� �

¼ fj mð Þ;n mð Þ tð Þ
 �

: ð20Þ

Processes lm 1�m�M belong to the category of ergodic semi-Markov processes.
They operate simultaneously in all units, and for proper control the swarm as a whole it
is necessary to build up the model of complex semi-Markov process.

3 Complex Semi-Markov Process

Events in complex semi-Markov process are shown on the bottom row of Fig. 1. This
process may be defined as follows [12–14]:

Ml ¼ MA;Mh tð Þ	 

; ð21Þ

where MA is the set of states; Mh tð Þ - is the semi-Markov matrix.
Below notions «structural state» and «functional state» will be used (Fig. 2).

Structural states are states of physical unit, follows from cyclogram of its functioning,
so m-th unit have J(m) states. Common number of structural states is equal to the sum

Ns ¼
XM
m¼1

Amj j ¼
XM
m¼1

J mð Þ: ð22Þ

The cartesian product of states Am gives set of functional states

MA ¼
YM
m¼1

CAm; ð23Þ

where
Q C is the nomination of group Cartesian product.
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The set of functional states is as follows:

MA ¼ fa1 að Þ; . . .; aj að Þ; . . .; aJ að Þg ¼ f½a1 1ð Þ; . . .a1 mð Þ; . . .; a1 Mð Þ�; . . .;
½aj 1ð Þ; . . .; aj mð Þ; . . .; aj Mð Þ�; . . .; ½aj 1ð Þ; . . .; aj mð Þ; . . .; aJ Mð Þ�g;

ð24Þ

where aj að Þ ¼ aj 1ð Þ; . . .; aj mð Þ; . . .; aj Mð Þ
 �

is the functional state;

J að Þ ¼
YM
m¼1

Amj j ¼
YM
m¼1

J mð Þ: ð25Þ

To define the semi-Markov matrix one should to consider the competition in
M simplest semi-Markov processes

~lm ¼ b1 mð Þ; b2 mð Þ
	 


;
0 fm tð Þ
0 0

� �� �
; 1�m�M: ð26Þ

Fig. 2. Parallel (a) and complex (b) semi-Markov process
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Process (26) is not ergodic, and it has starting state b1 mð Þ and absorbing state b2 mð Þ.
If all M processes start simultaneously, then weighted density of time of reaching the
absorbing state b2 mð Þ by m-th semi-Markov process ~lm is as follows;

XM
m¼1

hwm tð Þ ¼ fm tð Þ
YM

k ¼ 1;
k 6¼ m

1� Fk tð Þ½ �; ð27Þ

where Fk tð Þ ¼ Rt
0
fk sð Þds.

From (27) probability and pure time density of reaching the absorbing state b2 mð Þ by
m-th semi-Markov process ~lm may be obtained as follows [15, 16]:

pwm ¼
Z1

0

fm tð Þ �
YM

k ¼ 1
k 6¼ m

1� Fk tð Þ½ �dt; ð28Þ

fwm tð Þ ¼ hwm tð Þ
pwm

: ð29Þ

Expectation and dispersion of fwm tð Þ are defined as usually:

Twm ¼
Z1

0

tfwm tð Þdt; ð30Þ

Dwm ¼
Z1

0

t � Twmð Þ2fwm tð Þdt; 1�m�M: ð31Þ

To define the semi-Markov matrix Mh tð Þ one should to define Cartesian product of
matrices hm tð Þ as follows:

Mh tð Þ ¼
YM
m¼1

Chm tð Þ: ð32Þ

Rows and columns of Mh tð Þ should be numerated as follows:

QM
m¼1

C 1 mð Þ; . . .; j mð Þ; . . .; J mð Þf g
¼ 1 1ð Þ; . . .; 1 mð Þ; . . .; 1 Mð Þ½ �; . . .; j 1ð Þ; . . .; j mð Þ; . . .; j Mð Þ½ �; . . .;f

n 1ð Þ; . . .; n mð Þ; . . .; n Mð Þ; . . .; J 1ð Þ; . . .; J mð Þ; . . .; J Mð Þ½ �½ �g
¼ 1 að Þ; . . .; j að Þ; . . .; n að Þ; . . .; J að Þf g:

ð33Þ
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Cartesian product of two semi-Markov may be defined as follows:

2h tð Þ ¼ hk tð Þ � hm tð Þ ¼ hj kð Þ;n kð Þ
 �� hj kð Þ;n kð Þ

 � ¼ hj að Þ;n að Þ tð Þ
 �

: ð34Þ

where j að Þ ¼ j kð Þ; j mð Þ½ �; n að Þ ¼ n kð Þ; n mð Þ½ � are indices in two-dimensional space.
Let us consider the functional state a j kð Þ;j mð Þ½ � of complex semi-Markov process,

which represented with product (34). The functional state a j kð Þ;j mð Þ½ � describes the
competition between processes in structural states aj kð Þ and aj mð Þ. Let after a switch the
functional state become a n kð Þ;n mð Þ½ �. In the competition must be only one winner
(probability of draw is vanishingly small), so the Hamming distance between the
indices j að Þ and n að Þ must be as follows:

H ¼
0;when j kð Þ ¼ n kð Þ; j mð Þ ¼ n mð Þ;
2; when j kð Þ 6¼ n kð Þ; j mð Þ 6¼ n mð Þ;
1 in all other cases:

8<
: : ð35Þ

Time densities of residence the processes hk tð Þ, hm tð Þ in structural states aj kð Þ are as
follows:

fj kð Þ tð Þ ¼
XJ kð Þ

n¼1

hj kð Þ;n kð Þ tð Þ; fj mð Þ tð Þ ¼
XJ mð Þ

n¼1

hj mð Þ;n mð Þ tð Þ: ð36Þ

Element of the semi-Markov matrix 2h tð Þ, situated on the intersection of the
j kð Þ; j mð Þ½ �-th row and n kð Þ; n mð Þ½ �-th column determines weighed time density of
switch from the functional state a j kð Þ;j mð Þ½ � into the functional state a n kð Þ;n mð Þ½ �. This
element with use (27) may be obtained as follows:

if H = 0, then

hj að Þ;n að Þ tð Þ ¼ fj kð Þ;j kð Þ tð Þ 1�
XJ mð Þ

n mð Þ¼1

Hj m;n mð Þð Þ tð Þ
2
4

3
5

þ fj mð Þ;j mð Þ tð Þ 1�
XJ kð Þ

n kð Þ¼1

Hj k;n kð Þð Þ tð Þ
2
4

3
5;

ð37Þ

where fj kð Þ;j kð Þ and fj mð Þ;j mð Þ are determined as (18), (19), (20);

Hj k;n kð Þð Þ tð Þ ¼
Z t

0

Hj k;n kð Þð Þ sð Þdt; Hj m;n mð Þð Þ tð Þ ¼
Z t

0

Hj m;n mð Þð Þ sð Þds;
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if H ¼ 1; j kð Þ ¼ n kð Þ; j mð Þ 6¼ n mð Þ, then

hj að Þ;n að Þ tð Þ ¼ fj mð Þ;n mð Þ tð Þ 1�
XJ kð Þ

n kð Þ¼1

Hj k;n kð Þð Þ tð Þ
2
4

3
5; ð38Þ

If H ¼ 1; j kð Þ 6¼ n kð Þ; j mð Þ ¼ n mð Þ, then

hj að Þ;n að Þ tð Þ ¼ fj kð Þ;n kð Þ tð Þ 1�
XJ mð Þ

n mð Þ¼1

Hj m;n mð Þð Þ tð Þ
2
4

3
5; ð39Þ

if H = 2, then

hj að Þ;n að Þ tð Þ ¼ 0: ð40Þ

Semi-Markov matrix of complex process may be found with use the recursive
procedure:

Mh tð Þ ¼
YM
m¼1

Chm tð Þ ¼ M�1h tð Þ � hl tð Þ; ð41Þ

where M�1h tð Þ is a Cartesian product of M − 1 ordinary semi Markov matrices; hl tð Þ is
the M-th semi-Markov matrix of ordinary process.

Permutation of factors in (34), (41) leads only to permutation in rows and in
columns, and not change matrix as a whole. Also it is necessary to admit, that if all
ordinary processes lm, 1�m�M, are the ergodic ones, then complex semi-Markov
process Ml is the ergodic too. Complex semi-Markov process obtained is just alike
ordinary semi-Markov process with set of states and semi-Markov matrix (21). To
solve the problem of evaluation time intervals of wandering through the process states,
and probabilities of residence in states one can use known methods [5, 6, 8, 11] applied
directly to (21).

4 Computer Experiment

To verify the proposed approach to parallel process modeling a direct computer exper-
iment was carried out with use the Monte Carlo method. Structures of swarm cyclograms
are shown on the Fig. 3a. Cyclograms structural states areOnk and offk, k = 1, 2, 3. Time
of residence in the structural states are defined as onfk tð Þ, off fk tð Þ. Expectations of time are
as follows: onT1 ¼ 1, off T1 ¼ 3, onT2 ¼ 2, off T2 ¼ 2, onT3 ¼ 3, off T3 ¼ 1. Functional
states of the swarm are On;On;Onð Þ; . . .; Off ;On;Offð Þ; . . .; Off ;Off ;Offð Þf g. Calcu-
lated probabilities of residence in structural states in steady-state regime are as follows:
onp1 ¼ 0; 25, off p1 ¼ 0; 75, onp2 ¼ 0; 5; off p2 ¼ 0; 5; onp3 ¼ 0; 75; off p3 ¼ 0; 25. Cal-
culated probabilities of residence in functional states in steady-state regime are as
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follows:, fsp000 ¼ 0; 094; fsp001 ¼ 0; 281; fsp010 ¼ 0; 094; fsp011 ¼ 0; 281; fsp100 ¼ 0;
031; fsp101 ¼ 0; 094; fsp110 ¼ 0; 031; fsp111 ¼ 0; 094.

Distribution of probabilities of residence in functional states, obtained with use
Monte-Carlo method is shown on the Fig. 3b. The mean error, which gives proposed
method is 0,7%.

5 Conclusion

In such a way common approach to analytical description of parallel semi-Markov
processes is proposed. Approach permits to control the swarm states as a whole. After
transformation M-parallel semi-Markov process into complex semi-Markov process
time and probabilistic characteristics of the swarm states can be calculated with use
rather simple known methods.

Further research in this area may be directed to building up the model of swarm,
with description of unit behavior with use of strong Markov process abstraction.
Further direction of development is linked with numerical methods of complex
semi-Markov matrix parameters calculation with use numerical parameters of ordinary
processes only.

The research was carried out within the state assignment of the Ministry of Edu-
cation and Science of Russian Federation (No. 2.3121.2017/PCH).
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Abstract. Consider the interaction of populations, in which there are
exactly two species, one of which the predators eat the preys thereby
affecting each other. In the study of this interaction Lotka-Volterra mod-
els have been used. Other non-classical methodologies as Petri nets and
first order logic have been employed too. This paper proposes a formal
modeling and verification analysis methodology, which consists in rep-
resenting the interaction behavior by means of a modal logic formula.
Then, using the concept of logic implication, and transforming this logi-
cal implication relation into a set of clauses, a modal resolution qualita-
tive method for verification (satisfiability) as well as performance issues,
for some queries is applied.

Keywords: Predator-prey system · Modal logic · Model
Verification · Unsatisfiability · Modal resolution method

1 Introduction

Consider the interaction of populations, in which there are exactly two species,
one of which the predators eat the preys thereby affecting each other. Such pairs
exist throughout nature: fish and sharks, lions and gazelles, birds and insects,
to mention some. In the study of this interaction Lotka-Volterra models have
been used [1]. Other non-classical methodologies as Petri nets and first order
logic have been employed too [2,3]. This paper proposes a well defined syntax
modeling and verification analysis methodology which consists in representing
the predator-prey interaction system as a modal logic formula. The modal logic
approach introduces two new operators that enable abstract relations like neces-
sarily true and possibly true to be expressed directly, called alethic modalities,
what is not possible using first order logic. For example, the statement: 7 is a
prime number, is necessarily true always and everywhere, in contrast, the state-
ment the head of state of this country is a king is possibly true, because its
truth changes from place to place and from time to time. Other modalities that
have been formalized in modal logic include temporal modalities, or modalities
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 14–21, 2018.
https://doi.org/10.1007/978-3-319-93815-8_2
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of time, deontic modalities, epistemic modalities, and doxastic modalities. The
main idea consists in modeling the predator-prey system by means of a modal
logic formula. Then, using the concept of logic implication, and transforming
this logical implication relation into a set of clauses, a modal resolution quali-
tative method for verification (satisfiability) as well as performance issues, for
some queries is applied. The paper is organized as follows. In Sect. 2, a modal
logic background summary is given. In Sect. 3, the modal resolution principle for
unsatisfiability is recalled. In Sect. 4, the predator-prey problem is addressed.
Finally, the paper ends with some conclusions.

2 Modal Logic Background

This section presents a summary of modal logic theory. The reader interested in
more details is encouraged to see [4,5].

Definition 1. A modal language L is an infinite collection of distinct symbols,
no one of which is properly contained in another, separated into the following cat-
egories: parentheses, connectives, possibility modality, necessity modality, propo-
sition variables Φ0 = {p1, p2, · · · } (called atoms), contradiction (falsity), true
(tautology).

Definition 2. Well-formed formulas, or formulas for short, in modal logic are
defined recursively as follows: (i). An atom is a formula, ⊥ (false is a formula),
T (true is a formula) (ii). If F and G are formulas then, ∼ (F ), (F ∨G), (F ∧G),
(F ↔ G), �F , �F , are formulas. �A ≡∼ � ∼ A. Formulas are generated only by
a finite number of applications of (i) and (ii), therefore the set of welled formed
formulas is enumerable infinite.

Remark 1. It is important to underline the unique readability of the formulas
which is secured by the assumption that the operators are one to one.

Definition 3. A Kripke frame (frame) F is a pair (W,R) in which W is a set
of worlds (time, states, etc.), and R ⊆ W × W is a binary relation over W .

Definition 4. A Kripke model (model) M over frame F is a triple (F , π) =
(W,R, π) where π : Φ0 → 2W the set of worlds where each element of Φ0 is true
is an assignment or interpretation.

Definition 5. Given any model M, a world w εW , the notion of true at w is
defined as follows:

– M, w |= pn ⇔ w επ(pn), n = 1, 2, · · ·
– M, w |=∼ F ⇔ w � F
– M, w |= F ∧ G ⇔ w |= F and w |= G
– M, w |= F ∨ G ⇔ w |= F or w |= G
– M, w |= F → G ⇔ if w |= F then w |= G
– M, w |= F ≡ G ⇔ w |= F iff w |= G



16 Z. Retchkiman Konigsberg

– M, w |= �F ⇔ there exists u εW such that (w, u) εR,M, u |= F
– M, w |= �F ⇔ for all u εW such that (w, u) εR,M, u |= F

Definition 6. A formula F is consistent (satisfiable, true at w) in a model M
in a world w εW iff M, w |= F , then we say that M is a. model for F . If this
happens for all worlds w εW then we say it is true.

Definition 7. A formula F is inconsistent (unsatisfiable) in a model M iff
M, w � F for every world w εW , then we say that M is a countermodel for F .

Definition 8. A formula F is valid in a class of models CM if and only if it is
true for all models in the class. This will be denoted by |=CM F .

Definition 9. A formula F is valid iff it is valid for every class of models CM.
This will be denoted by |= F .

Definition 10. A formula G is a logical implication of formulas F1, F2, . . . , Fn

if and only if for every model M, that makes F1, F2, . . . , Fn true, G is also true
in M.

The following characterization of logical implication plays a very important role
as will be shown in the rest of the paper.

Theorem 1. Given formulas F1, F2, . . . , Fn, G, G is a logical implication of
F1, F2, . . . , Fn if and only if the formula ((F1 ∧ F2 ∧ . . . ,∧Fn) → G) is valid
in a class of models if and only if the formula (F1 ∧ F2 ∧ . . . ∧ Fn∧ ∼ (G)) is
unsatisfiable.

Proof. Setting the class of models equal to all the models that make F1 ∧ F2 ∧
. . . ,∧Fn true. The first iff follows directly by the definition of validity in a class of
models, and logical implication. For the second one, since F1∧F2∧ . . . ,∧Fn → G
is valid in a class of models, every model that makes F1 ∧F2 ∧ . . . ,∧Fn true does
not satisfy ∼ (G), therefore (F1 ∧ F2 ∧ . . . ∧ Fn∧ ∼ (G)) can not be satisfied.
Reversing this last argument we obtain the last implication.

Next, given a class of models CM, we define the syntactic mechanisms capable
of generating the formulas valid on CM.

Axioms: (1) All instances of propositional logic tautologies.
(2) �(F → G) → �F → �G.
Rules of inference: (1) Modus ponens

F, F → G

G

(2) Necessitation
F

�G
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We write � F if F can be deduced from the axioms and the inference rules.

Theorem 2 (Completeness [4]). A formula F is valid iff it is provable i.e.,
|= F ⇔� F .

Definition 11. A formula F in modal logic is said to be in disjunctive normal
form normal (DNF) if and only if is a disjunction (perhaps with zero disjunct)
of the form F == L1∨L2∨· · · Ln∨�D1∨�D2∨· · · �Dm∨�H1∨�H2∨· · ·�Hj,
where each Li is an atom or its negation, each Di is a DNF, and each Hi is
a CNF (next defined). A formula G is said to be in conjunctive normal form
(CNF) if it is a conjunction of Fi DNF i.e., G = F1 ∧ F2 ∧ · · · ∧ Fn which will
be denoted by the set G = {F1, F2, . . . , Fn}.
Definition 12. A formula in DNF is called a clause. A clause with only one
element is called a unit clause. A clause with zero disjunct is empty and it will
be denoted by the ⊥ symbol. Since the empty clause has no literal that can be
satisfied by a model, the empty clause is always false.

Definition 13. The modal degree of a formula F denoted by d(F ) is recursively
defined as follows:

– if F is a literal then its degree is zero
– d(F  G) = max(d(F ), d(G)), where  is ∧ or ∨
– d(∼ F ) = d(F )
– d(∇F ) = d(F ) + 1, where ∇ stands for � or �
Given a formula F , the following inductive procedure transforms F into a CNF
in such a way that the original formula is equal to its CNF form therefore
satisfying validity. (1) Using axioms 1 and 2, the definition ∼ �F ≡ � ∼ F
and the inference rules, eliminate all propositional other than ∧,∨,∼ and move
negations inside so that they are immediately before propositional variables, (2)
If d(F ) = 0 then apply the propositional procedure [6], (3) If F = �F1 with F1

in CNF, apply the theorem �(F ∧ G) ≡ �F ∧ �G to distribute the � operator
(this is proved with the aid of axiom 2). (4) If F = �F1 with F1 in CNF, then
do not do anything. (5) Otherwise, we have a combination of different formulas
which can be handled using the preceding rules.
Therefore, we have proved the following result.

Theorem 3. Let S be a set of clauses that represents a formula F in its CNF.
Then F is unsatisfiable if and only if S is unsatisfiable.

3 The Modal Logic Resolution Principle

We shall next present the resolution principle inspired by the propositional
logic resolution principle introduced by Robinson (see [6], the references quoted
therein, and [7]). It can be applied directly to any set S of clauses to test the
unsatisfiability of S. Resolution is a decidable, sound and complete proof sys-
tem i.e., a formula in clausal form is unsatisfiable if and only if there exists
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an algorithm reporting that it is unsatisfiable. Therefore it provides a consis-
tent methodology free of contradictions. It is composed of rules for computing
resolvents, simplification rules and rules of inference. The first ones compute
resolvents, simplified by the simplification rules, and then inferred by the rules
of inference.

Definition 14 [7]. Let Σ(A,B) → C, and Γ (A) → C be two relations on
clauses defined by the following formal system:

Axioms:
(1). Σ(p,∼ p) →⊥.
(2). Σ(⊥, A) →⊥.
Σ rules:

∨ − rule :
Σ(A,B) → C

Σ(A ∨ D1, B ∨ D2) → C ∨ D1 ∨ D2

� � −rule :
Σ(A,B) → C

Σ(�A, �(B,E)) → �(B,C,E)

�� − rule :
Σ(A,B) → C

Σ(�A,�B) → �C

Γ rules:

� − rule 1 :
Σ(A,B) → C

Γ (�(A,B, F )) → �(A,B,C, F )

� − rule 2 :
Γ (A) → B

Γ (�(A,F )) → �(B,A, F )

∨ − rule :
Γ (A) → B

Γ (A ∨ C) → B ∨ C

� − rule :
Γ (A) → B

Γ (�A) → �B

where A,B,C,D,D1,D2, denote general clauses, E,F denote sets (conjunc-
tions) of clauses, and (A < E) denotes the result of appending the clauses A
to the set E.

Simplification Rules: The relation ‘A can be simplified in B’ denoted A � B
is the least congruence relation containing: (S1) � ⊥�⊥, (S2) ⊥ ∨D � D, (S3)
⊥, E �⊥, (S4) A ∨ A ∨ D � A ∨ D. The simplified formula obtained is called
the normal form of the original formula and is the one to be considered when
computing resolvents.

Inference rules:
(R1)

C

D
if Γ (C) → D
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(R2)
C1 C2

D
if Σ(C1, C2) → D,

where C,C1, C2,D are general clauses.
A deduction of a clause D from a set S of clauses can be seen as a tree whose
root is D, whose leaves are clauses of S, and every internal node C has sons
A and B (respectively A) iff the rule R2 (respectively Rl) can be applied with
premises A and B (respectively A) and conclusion C. The size of a deduction is
the number of nodes of this tree. We say that D is a-consequence of S iff there
is a deduction of D from S denoted by S � D. These definitions and notations
are extended to sets of consequences: if S′ is a set of clauses, S � S

′
iff S � D

for every D εS
′
. A deduction of ⊥ from S is a refutation of S.

Theorem 4 [7]. The resolution proof system is decidable.

The main two results of this subsection: the completeness theorem for the reso-
lution proof system, and that proofs in the resolution proof system are actually
proofs in our modal logic axiomatic system are next presented.

Theorem 5 [7]. A set S of clauses is unsatisfiable if and only if there is a
deduction of the empty clause ⊥ from S.

Theorem 6. If there exists a deduction D from S in the resolution proof system
then there is a deduction D from S in our modal logic axiomatic system.

Proof. Let us proceed by induction on the size of the deduction. Base case: the
deduction is an axiom i.e., it is either Σ(p,∼ p) →⊥ or Σ(⊥, A) →⊥ which in
our modal logic system correspond to p∧ ∼ p →⊥ and ⊥ ∧A →⊥ which are
propositional logic tautologies. Next, let us assume that the conclusion holds for
every deduction of size less than or equal to k − 1. Then, we have a deduction of
Sk−1 from S in our modal logic system and a one length deduction in the resolu-
tion proof system of Sk from Sk−1 which turns out to be also a deduction in our
modal logic system (due to the induction hypothesis). Therefore concatenating
both we get a deduction of Sk from S.

4 Predator-Prey System

Consider the interaction of populations, in which there are exactly two species,
one of which the predators eats the other the preys thereby affecting each other’s
growth rates. Such pairs exist throughout nature: fish and sharks, lions and
gazelles, birds and insects, to mention some. It is assumed that, the predator
species is totally dependent on a single prey species as its only food supply, the
prey has unlimited food supply, and that there is no threat to the pray other than
the specific predator. The predator-prey system behavior is described as follows:
(1) Propositional variables: S: preys are safe, D: the preys are in danger, B: the
preys are being eaten, I: the predators are idle, L: the predators are in search for
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a prey, CL: the predators continue searching for a prey, A: the predators attack
the preys, F : the predator has finished eating the prey, P : the predator dies; (2)
Rules of Inference: (a) if S and L then CL, (b) if S and CL then �P , (c) if D
and (L or CL) then A, (d) if A then B, (e) if D then �A, (F) if L or CL and
�A then �A, (G) if �A then A, (i) if B then F (j) if F then I, (k) if I then L.

Remark 2. The main idea consists of: the predator-prey behavior is expressed
by a modal logic formula, some query is expressed as an additional formula. The
query is assumed to be a logical implication of the predator-prey formula (see
Theorem 1). Then, transforming this logical implication relation into a set of
clauses by using the techniques given in Sect. 2, its validity can be checked. It is
important to point out that other type of behaviors can be incorporated in to
the model by the modeler, making it as close to reality as needed.

The formula that models the predator-prey behavior turns out to be:

[S ∧ L → CL] ∧ [S ∧ CL → �P ] ∧ [D ∧ (L ∨ CL) → A] ∧ [A → B] ∧ [D → �A] ∧ (1)
[(L ∨ CL) ∧ �A → �A] ∧ [�A → A] ∧ [B → F ] ∧ [F → I] ∧ [I → L]

We are interested in verifying, the following statements:
(S1) Claim: We want to know that if the predators are in search or are

continuing searching for a prey and there is a possibility of attack then the prey
will be eaten. Specifically, we want to know if the following formula If (L or CL)
and �A then B is a consequence of formula 1.
The set of clauses for this case is given by:

S = {(∼ S∨ ∼ L ∨ CL), (∼ S∨ ∼ CL ∨ �P ), (∼ D∨ ∼ L ∨ A), (∼ D∨ ∼ CL ∨ A),

(∼ A ∨ B), (∼ D ∨ �A), (� ∼ A∨ ∼ L ∨ �A), (�∼ A∨ ∼ CL ∨ �A), (�∼ A ∨ A),

(∼ B ∨ F ), (∼ F ∨ I), (∼ I ∨ L), (L ∨ CL), (�A), (∼ B)}

Then a resolution refutation proof for S, is as follows:

(a) (� ∼ A∨ ∼ L ∨ �A)(�A) → (�A∨ ∼ L)(�∼ A ∨ A) → (∼ L ∨ A)
(b) (� ∼ A∨ ∼ CL ∨ �A)(�A) → (�A∨ ∼ CL)(�∼ A ∨ A) → (∼ CL ∨ A)
(c) (∼ A ∨ B)(∼ B) → (∼ A)
(d) From (a) and (c) we get (∼ L)
(e) From (b) and (c) we get (∼ CL)
(f) From (d) we get (∼ L)(L ∨ CL) → (CL)
(g) Finally, from (e) and (f) we get a deduction of the empty clause ⊥.

Therefore we have proved that the claim is true, this result is consistent with
reality.

(S2) Claim: We want to know that if the predators are in search or are
continuing searching for a prey and there is a possibility of attack then the
predator will be idle. Specifically, we want to know if the following formula If (L
or CL) and �A then I is a consequence of formula 1.
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The set of clauses for this case is given by:

S = {(∼ S∨ ∼ L ∨ CL), (∼ S∨ ∼ CL ∨ �P ), (∼ D∨ ∼ L ∨ A), (∼ D∨ ∼ CL ∨ A),

(∼ A ∨ B), (∼ D ∨ �A), (�∼ A∨ ∼ L ∨ �A), (�∼ A∨ ∼ CL ∨ �A), (�∼ A ∨ A),

(∼ B ∨ F ), (∼ F ∨ I), (∼ I ∨ L), (L ∨ CL), (�A), (∼ I)}

Then a resolution refutation for S is as follows:

(a) (� ∼ A∨ ∼ L ∨ �A)(�A) → (�A∨ ∼ L)(�∼ A ∨ A) → (∼ L ∨ A)
(b) (� ∼ A∨ ∼ CL ∨ �A)(�A) → (�A∨ ∼ CL)(�∼ A ∨ A) → (∼ CL ∨ A)
(c) (∼ F ∨ I)(∼ I) → (∼ F )(∼ B ∨ F ) → (∼ B)(∼ A ∨ B) → (∼ A)
(d) From (a) and (c) we get (∼ L)
(e) From (b) and (c) we get (∼ CL)
(f) From (d) we get (∼ L)(L ∨ CL) → (CL)
(g) Finally, from (e) and (f) we get a deduction of the empty clause ⊥.

Therefore, the claim holds, and the same conclusion given in (S1) extrapolates
for this case.

5 Conclusions

The main contribution of the paper consists in the study of the predator-pray
system by means of a formal reasoning deductive methodology based on modal
logic theory. The modal logic approach introduces new operators that enable
abstract relations like necessarily true and possibly true to be expressed directly.
The results obtained are consistent with how the predator-prey system behaves
in real life.

Acknowledgement. This work was supported by a grant provided by Honeywell
Centro de Investigacion y Desarrollo SRL de CV through Comision de Operacion y
Fomento de Actividades Academicas del IPN.

References

1. Haberman, R.: Mathematical Models in Mechanical Vibrations, Population Dynam-
ics, and Traffic Flow. Prentice Hall, Englewood Cliffs (1977)

2. Retchkiman Konigsberg, Z.: Stability problem for a predator-prey system. In: Tan,
Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 1–10. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1 1

3. Retchkiman, Z.: Modelling and verification analysis of a two species ecosystem via
a first order logic approach. IJPAM 104(3), 583–592 (2017)

4. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press,
Cambridge (1980)

5. Blackburn, P., Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier,
Amsterdam (2007)

6. Davis, M., et al.: Computability, Complexity and Languages. Academic Press,
New York (1983)

7. Enjalbert, P., del Cerro, L.F.: Modal resolution in clausal form. Theoret. Comput.
Sci. 65(1), 1–33 (1989)

https://doi.org/10.1007/978-3-642-13495-1_1


The Access Model to Resources in Swarm
System Based on Competitive Processes

Eugene Larkin(&), Alexey Ivutin, Alexander Novikov,
Anna Troshina, and Yulia Frantsuzova

Tula State University, Tula, Russia
elarkin@mail.ru, atroshina@mail.ru,

julianna_1204@mail.ru,

alexey.ivutin@gmail.com, alsnovikov@yandex.ru

Abstract. The article describes the approach to evaluation of the results of
“competitions” arising from the access of intellectual agents to resources in
distributed swarm systems. A mathematical model of “competitions” based on
Petri-Markov nets was developed. Expressions for calculation of time and
probabilistic characteristics of “competitions” are defined. Methods of simula-
tion modelling of the process of “competition” and experimental determination
of time parameters are proposed. The obtained results can be used for planning
information processes of swarm distributed system.

Keywords: Intellectual agents � Access to resources � Competition process
Group concurrent games � Petri-Markov nets � Effectiveness
The penalty of a participant

1 Introduction

In recent years, game theory has been increasingly used in industry, economy, military
spheres and cybernetics as a powerful mechanism for system modelling. Traditional
game theory has been developed for static games with their value matrices and player
strategies that can lead to the winning or loss of any resources. In computer science,
game theory is used to model interactions within networks, between processors,
computing modules, peripherals, and so on [1].

So far, the focus has been on pure antagonistic games (for example, zero-sum
games), useful for modelling systems developing in a “hostile” environment. The
temporal aspects of the evolution of games have been paid attention quite insufficiently.
In particular, mathematical formalism has not been worked out to determine the price
of “victory” (“loss”), if the price is reduced to a temporary factor, with group “com-
petitions” of agents [2, 3].

In this paper we discuss the use of the apparatus of Petri-Markov nets [4] for the
mathematical description of competitive processes that arise when the separate intel-
lectual units of swarm system are trying to gain access to shared resources and can be
considered as parallel random processes with a time factor. The introduction of the
Petri-Markov formalism [5–7] allows us to take into account the time parameter and
determine the payments of the participants in the game and, thus, its full price.
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2 The “Competition” Model, Based on Petri-Markov Nets

“Competition” is an important factor that determines the ability and speed of access to
the resources (including information) of swarm system by individual intellectual
agents. Any “competition” is one of the aspects of the interaction investigated in [4].
When accessing to an object, there are restrictions on the response time. If the response
of an object to the process impact is too great, it can lead to a violation of the
interaction of separate units, the breaking of information links, and ultimately reduces
the effectiveness of swarm system as whole.

Thus, the study of the competition is connected with the determination of the
waiting time for the elementary processes that have already ended, and processes that
have not yet been completed. Any competition can be reduced to a competition of two
processes, which is modeled by the Petri-Markov net (PMN) shown in Fig. 1.

Petri-Markov net has a structure:

P ¼ u ; wf g; f0; f1f g ; 0 1

0 1

� �
;

1 1

0 0

� �� �
;

M ¼ 1 ; 0ð Þ ; 0 f1 tð Þ
0 f2 tð Þ

� �
;

1 1

0 0

� �� �
;

ð1Þ

where u, w - places simulating the functioning of the hardware of the simulator and the
action of the trained operator, respectively; f0 - the starting transition modeling the
beginning of the “competition”, f1- the final transition modeling the fixing of the
outcome of the ‘‘competition’’. f1ðtÞ, f2ðtÞ is the distribution density of the completion
time of the “competition” by the first and second participant, respectively.

The distribution of the time spent by the tokens in places u and w PMN is
determined by densities, respectively, u(t) and w(t).

At the beginning of the “competition” the half-steps r0u and r0w are happening
simultaneously. The density of distribution of the difference in the time intervals for
achieving a transition f1 when these half steps are made is determined in the form of a

correlation
R1
0
uðsÞwðtþ sÞds.

The probability that the difference of random time intervals will be positive and

negative are, respectively,
R1
t¼0

UðtÞdWðtÞ and R1
t¼0

WðtÞdUðtÞ. Hence, the waiting time by

Fig. 1. “Competition” of two half-steps
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the half-step r0u for the event of half-step r0w completion is determined by the
expression:

fu!wðtÞ ¼
1ðtÞ R1

0
uðsÞwðtþ sÞds

R1
t¼0

UðtÞdWðtÞ
ð2Þ

where s is an auxiliary variable having a physical sense of time; UðtÞ;WðtÞ - the
corresponding distribution functions; 1(t) - is the Heaviside unit function.

It should be noted that operation (2) is not commutative. Accordingly, the waiting
time by the half-step r0u for the event of half-step r0w completion is equal to:

fw!uðtÞ ¼
1ðtÞ R1

0
wðsÞuðtþ sÞds

R1
t¼0

WðtÞdUðtÞ
; ð3Þ

and in the general case fu!wðtÞ 6¼ fw!uðtÞ.
In a frequently occurring practical case, K processes are divided into two groups.

Without violating the degree of generality, we will assume that the first group has
numbers from 1 to N, and the second group from the (N + 1) to K. Distribution density
of the execution time of the corresponding groups of processes are determined by the
dependencies:

f1$NðtÞ ¼
XN
m¼1

~fjðmzÞjðznÞðtÞ
YN

k ¼ 1
k 6¼ m

~FjðkzÞjðznÞðtÞ; ð4Þ

fNþ 1$KðtÞ ¼
XK

m¼Nþ 1

~fjðmzÞjðznÞðtÞ
YK

k ¼ N þ 1
k 6¼ m

~FjðkzÞjðznÞðtÞ: ð5Þ

The distribution densities of the waiting time by the first group of the moment when
the processes of the second group are completed are determined by the dependence:

f 1$Nð Þ! Nþ 1$Kð ÞðtÞ ¼
1ðtÞ R1

0
f1$NðsÞfNþ 1$Kðtþ sÞds

R1
t¼0

F1$NðtÞdFN þ 1$KðtÞ
: ð6Þ
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The distribution density of the waiting time by the second group of the moment,
when the processes of the first group are completed, is determined by the dependence:

f Nþ 1$Kð Þ! 1$Nð ÞðtÞ ¼
1ðtÞ R1

0
fNþ 1$KðsÞf1$Nðtþ sÞds

R1
t¼0

FNþ 1$KðtÞdF1$NðtÞ
: ð7Þ

As an example of determining the distribution density of the waiting time, a number
of important practical cases should be considered.

Case 1. Density uðtÞ ¼ dðt � TuÞ is d-function, wðtÞ is an arbitrary function with a
domain of non-zero values Twmin � t� Twmax and a mathematical expectation Tw.
Expression (2) for this case takes the form:

fu!wðtÞ ¼
1ðtÞ R1

0
dðs� TuÞwðtþ sÞds

R1
t¼0

1ðt � TuÞdWðtÞ
¼ 1ðtÞwðtþ TuÞR1

t¼0
1ðt � TuÞdWðtÞ

; ð8Þ

where 1(t – Tu) is the Heaviside unit function.
Depending on the location uðtÞ and wðtÞ on the time axis, the following situations

are possible (see Fig. 2).

(A) Tu\Twmin. In this situation, the denominator of the fraction (2) is defined as

follows:
R1

t¼Tu

dWðtÞ ¼ 1�WðTuÞ.

Expression (2) takes the form: fu!wðtÞ ¼ 1ðtÞwðtþ TuÞ
1�WðTuÞ .

The range of non-zero values is defined as: 0� t� Twmax � Tu.

Fig. 2. Different cases of waiting at uðtÞ ¼ dðt � TuÞ
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(B) Tu [ Twmax. In this situation, expression (2) does not make sense, because the
distribution density of the difference of the two random variables is completely
shifted to the negative time range that is not possible (the process that ends in
principle later can’t wait for the process ending earlier).

Case 2. The density wðtÞ ¼ dðt � TwÞ is a d-function, and uðtÞ is an arbitrary
function with a domain of non-zero values Tumin � t� Tumax and a mathematical
expectation Tu. Expression (2) for this case takes the form:

fu!wðtÞ ¼
1ðtÞ R1

0
dðtþ s� TwÞuðsÞds

R1
t¼0

UðtÞd1ðt � TwÞ
: ð9Þ

Depending on the location uðtÞ and wðtÞ the time axis, the following situations are
possible (Fig. 3).

(A) Tw\Tumin. In this situation, expression (2) does not make sense.
(B) Tumin � Tw � Tumax. In this situation, the denominator of the fraction (2) is defined

as:
R1

t¼Tw

UðtÞd1ðt � TwÞ ¼ 1� R1
t¼Tw

1ðt � TwÞdUðTwÞ ¼ UðTwÞ.

Expression (2) takes the form: fu!wðtÞ ¼ 1ðtÞuðTw�tÞ
UðTwÞ .

The range of non-zero values fu!wðtÞ is defined as: 0� t� Tw � Tumin.

(C) Tw [ Tumax. In this situation, the denominator of fraction (2) becomes equal to
one, expression (2) and expression for the range of non-zero values (2) takes the
form, respectively:fu!wðtÞ ¼ uðTw � tÞ, Tw � Tumax � t� Tw � Tumin.

Fig. 3. Different waiting times for wðtÞ ¼ dðt � TwÞ
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Case 3. Density wðtÞ ¼ k expð�ktÞ is an exponential distribution uðtÞ, and is an
arbitrary distribution density (the exponential distribution law is often used in the
classical reliability theory for mathematical flow simulation without failure/failure
recovery of complex systems).

Expression (2) for the case under consideration takes the form:

fu!wðtÞ ¼
1ðtÞ R1

0
uðsÞk exp½�kðtþ sÞ�ds

1� R1
t¼0

½1� expð�ktÞ�dUðtÞ
¼

1ðtÞ R1
0
uðsÞk expð�ktÞ expð�ksÞds

1� R1
t¼0

dUðtÞþ R1
0
expð�ktÞuðtÞdt

¼
1ðtÞk expð�ktÞ R1

0
uðsÞ expð�ksÞds

R1
0
uðtÞ expð�ktÞdt

¼ k expð�ktÞ:

ð10Þ

Obviously, the case considered reflects the property of the absence of aftereffect in
strictly Markov processes with continuous time, which can be formulated as follows. If
the time distribution between any two events in the system is distributed according to
an exponential law, the time remaining until the next event from the point of view of
the external observer will be distributed according to an exponential law, regardless of
the time of the beginning of the system observation. In this case, the distribution
density uðtÞ simulates an external observer, who enters into competition with the
Markov process. If in the process the next event occurs before the observation, from the
moment of the beginning of observation for the competition a new countdown begins.

For the distribution densities (2) and (3), the main numerical characteristics,
namely, mathematical expectation and dispersion, can be found:

Tu!w ¼
Z1

0

R1
0
uðsÞwðtþ sÞds
R1
t¼0

UðtÞdWðtÞ
tdt; ð11Þ

Tw!uðtÞ ¼
Z1

0

R1
0
wðsÞuðtþ sÞds
R1
t¼0

WðtÞdUðtÞ
tdt; ð12Þ

Du!w ¼
Z1

0

R1
0
uðsÞwðtþ sÞds
R1
t¼0

UðtÞdWðtÞ
t � Tu!w
� 	2

dt; ð13Þ
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Dw!uðtÞ ¼
Z1

0

R1
0
wðsÞuðtþ sÞds
R1
t¼0

WðtÞdUðtÞ
t � Tw!u
� 	2

dt: ð14Þ

3 The Procedure of Simulation Modelling of “Competitive”
Processes

The basic numerical characteristics and the density of the distribution of the waiting
time by the process u completion of the process w can be found by simulation if the
densities are known uðtÞ and wðtÞ. Determination of numerical characteristics is carried
out according to the following procedure.

Method 1. Determination of the distribution density of the waiting time by the
process uðtÞ for the completion process wðtÞ using the simulation model.

1. Start the random number generator and determine the value of some auxiliary
random variable 0\s\1 distributed equally.

2. From equation:

U tu
� 	 ¼ s ð15Þ

determine the value tu.
3. Start the random number generator and determine the value of the random variable

0\s\1.
4. From equation:

W tw
� 	 ¼ s ð16Þ

determine the value tw
5. Compare the values tu and tw. If tu [ tw, then counter Nu!w is increased by one,

and the array Mu!w is updated with the value tu!w ¼ tw � tu. If tu\tw, then
counter Nw!u is increased by one, and the array Mw!u is updated with the value
tw!u ¼ tu � tw.

6. Steps 1–5 is repeated N times.
7. Following the results of the simulation experiment, determine the following values:

– the probability of waiting time by the process uðtÞ for the completion of the
process wðtÞ:

pu!wðtÞ ¼ Nu!w

N
; ð17Þ
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– the probability of waiting time by the process wðtÞ for the completion of the
process uðtÞ:

pw!uðtÞ ¼ Nw!u

N
; ð18Þ

– the statistical average of waiting time by the process uðtÞ for the completion of
the process wðtÞ:

M� Tu!w


 � ¼
PNu!w

nðu!wÞ¼1
ðtu!wÞnðu!wÞ

Nu!w
; ð19Þ

– the statistical average of waiting time by the process wðtÞ for the completion of
the process uðtÞ:

M� Tw!u

 � ¼

PNw!u

nðw!uÞ¼1
ðtw!uÞnðw!uÞ

Nw!u
; ð20Þ

– statistical dispersion of the waiting time by the process uðtÞ for the completion
of the process wðtÞ:

D� Tu!w

 � ¼

PNu!w

nðu!wÞ¼1
ðtu!wÞnðu!wÞ �M� Tu!w


 �n o2

Nu!w
; ð21Þ

– statistical dispersion of the waiting time by the process wðtÞ for the completion
of the process uðtÞ:

D� Tw!u

 � ¼

PNw!u

nðw!uÞ¼1
ðtw!uÞnðw!uÞ �M� Tw!u


 �n o2

Nw!u
: ð22Þ

8. Align of the statistical time series of the waiting time by the process uðtÞ for the
completion of the process wðtÞ and the statistical time series of the waiting time by
the process wðtÞ for the completion of the process uðtÞ.
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4 Technique of Experimental Determination of Time
Characteristics of “Competition”

The basic numerical characteristics and the density of the distribution of the waiting
time by the process u for the completion of the process w can be found by means of
simulation, if the distribution density uðtÞ of the access time of an intellectual agent to
resource is known, and the distribution density of the response time wðtÞ of the
information resource is measured.

Method 2. Determination of the density of the distribution of the waiting time by
the process uðtÞ for the completion of the process wðtÞ using the simulation model.

1. Start the random number generator and determine the value of some auxiliary
random variable 0\s\1 distributed equally.

2. From equation:

U tu
� 	 ¼ s ð23Þ

determine the value tu.
3. Using the software developed by the authors of PMTimeTester, the values tw � tu

or tu � tw are determined.
4. Steps 1–3 repeat N times.
5. Based on the results of the simulation experiment, the values listed in point 7 of

methodology 1 are determined.
6. Align of the statistical time series of the waiting time by the process uðtÞ for the

completion of the process wðtÞ and the statistical time series of the waiting time by
the process wðtÞ for the completion of the process uðtÞ.

5 Conclusion

The paper presents a mathematical model of “competitions” that occur during the
accessing intellectual agents of swarm system to shared resources, based on the
mathematical formalism of Petri-Markov networks, which has shown its effectiveness
for modelling the considered class of processes. The temporal and probabilistic char-
acteristics of the competition were obtained in a general form, methods were proposed
for practical determination of the results of competitions on the basis of simulation
modelling.

The obtained results can be used both for planning the processes of information
exchange between separate units of swarm system in various scenarios of its func-
tioning, and for implementing the optimal mechanism for accessing to resources. The
proposed methods can become a base for creating mathematical models for solving
problems in the classical theory of games: optimization of game strategy, generation of
target functions, etc.
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Abstract. The article presents a multi-species object-based model of a marine
plankton community. The model was constructed using the synthesis of
Lagrangian and Eulerian descriptions: we described the living components of an
ecosystem by the individual-based approach and the non-living components
(hydrochemical fields) – in a traditional way as concentrations in the nodes of a
regular computational grid. A set of interacting objects simulated a plankton
community. Each object modeled behavior of a group of identical plankters
characterized by species, age, stage of development, biomass, abundance, and
rates of physiological processes. Bioenergetic interaction between the objects
and the environment was a source of population dynamics. We studied
self-organization of plankton spatial distribution with no significant
hydrophysical influences. Lloyd’s index of mean crowding, spectral and wavelet
analyses were used to investigate patterns of simulated spatial variability. We
compared spectra of simulated plankton patchiness with those estimated
according to observation data collected by the Video Plankton Recorder (VPR).

Keywords: Emergence � Plankton patchiness
Individual-based coupled physical biological model
Spatial heterogeneity of plankton distribution

1 Introduction

Spatial variability is an important attribute of marine ecosystems. Heterogeneity of
plankton distribution has a great influence on population dynamics, reproductive
processes, trophic relationships and structure of a plankton community, as reported
earlier, e.g. [5, 12]. A number of published papers describe this phenomenon at dif-
ferent scales using observation data, but the spectral structure of plankton patchiness is
not studied well enough. Large-scale and small-scale zooplankton patchiness is caused
by different mechanisms. Large patches, heterogeneous inside, can correlate with spots
of higher phytoplankton concentration or peculiarities of a temperature field. It suggests
that their origin is connected with ocean eddies or other hydrodynamic phenomena.
Small-scale heterogeneity (less than 10 km) does not generally correlate with hydro-
logical and hydrochemical variables, and can occur under almost uniform distribution
of these characteristics. We can assume that the reasons for such zooplankton vari-
ability are trophic interactions between the components of a plankton community and
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active movement of organisms and groups. At the moment, field data on small-scale
spatial plankton variability are very limited. Therefore, simulation seems to be a
convenient way to study the formation of marine plankton spatio-temporal patterns.

In recent decades, the method of complex natural systems simulation based on an
evolutionary approach has been actively developing. According to this approach, the
sustainable state of an ecosystem grows from the bottom up, from its smallest parts to
the level of a population or community. There are several types of modeling tech-
niques, which differ in the choice of basic objects as the smallest particles of the
system. We considered the individual-based approach the most appropriate for simu-
lation of a plankton community. As a methodological basis of modeling, individual-
based approach has several advantages and problems. It has a great potential benefit for
understanding the processes in a marine ecosystem, since it inherently involves indi-
vidual variability induced by local interactions between the individuals and their
resources [6]. Miller [11] published a review of studies using this approach for mod-
eling plankton fish stages. He considered individual-based coupled physical biological
models (ICPBM) combining low-level individual-based models with hydrophysical
ocean models. He concluded that such models can gain a better understanding of the
processes in an ecosystem, but reliability of findings from these models depends on the
accuracy of the hydrographic model and adequacy of tracking algorithms [11].

The underlying model of ocean physics forcing by weather conditions plays a
crucial role in marine ecosystem modeling. For example, representation of turbulent
mixing in the upper ocean is of vital importance for coupled models, since it directly
affects distribution of nutrient chemicals [9]. Recent experience in using
individual-based models for marine plankton simulation was discussed during the
workshop held in the framework of the Fifth International Zooplankton Production
Symposium in Pucón, Chile [4]. In his thesis, Lange [9] presented a new ICPBM. He
coupled an individual-based plankton ecosystem model with a general-purpose ocean
model using an adaptive unstructured finite element mesh. The author proved that such
coupled model could be used to combine individual and population-based methods in a
single virtual ecosystem model.

All cited articles considered hydrodynamic impact on biological components of the
ecosystem. The aim of this article is to study small-scale patchiness emergence caused
by trophic interrelations within a plankton community in absense of significant
hydrodynamic influences. For this purpose, we used the original object-based model of
plankton ecosystem dynamics [16, 17]. Simulated spatio-temporal plankton fields were
compared with observational data collected by VPR. We used the Lloyd’s index of
mean crowding, spectral and wavelet analyses, cross-correlation of wavelet amplitudes.

2 Methods

The object-oriented model of plankton ecosystem [17] was based on a combination of
Eulerian and Lagrangian approaches. The living components of a marine ecosystem
were described using individual-based approach (they are considered to be Lagrangian
particles), while the non-living ones – as spatial field variables. In comparison with
other ICPBMs it has some peculiarities.
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• We considered a set of identical plankters together with their nearest environment as
a basic structure element of the model [17]. The reasons for the choice were based
on the research by Piontkovsky and Williams [13]. They discovered that the process
of fragmentation of inhomogeneous biological fields had a certain finite spatial
scale, which corresponded to the scale of elementary non-divided aggregations. The
size of these elementary clusters depended on the species. The basic model objects
can penetrate into each other and move. Food intake was calculated in proportion to
the area of intersection of the objects (or an object and a grid cell in case of
non-living resources). Since an arbitrarily large number of model objects can exist
at the same point in space and time penetrating into each other, it seems that such
description could be used to simulate the existing plankton diversity adequately.

• Metabolic costs, consumption, assimilation, excretion, and growth rate of an object
were determined by its individual characteristics as well as external conditions,
which depend on the movement of objects, growth of populations, abundance of
resources, etc. Bioenergetic interaction between the objects and the objects and the
environment was a source of the system dynamics.

• Mortality consisted of two parts. The first part was general mortality; it was cal-
culated in proportion to biomass. The second part, due to predation, was calculated
explicitly as a part of a group in a “prey object” that was eliminated during con-
sumption of a “predator object”. We named this part “consumption”.

• Existing ICPBMs usually determine the hydrophysical forcing as the most signif-
icant factor for patchiness emergency. Contrary to this view, we studied the
self-organization of plankton patchiness in absence of advection or noticeable
hydrophysical influences. It is known that hydrophysical forcing can largely change
plankton patterns. For example, James et al. [7] compared dominant scales of
phytoplankton patches in lakes in summer and winter when ice covered the surface.
The lack of wind mixing led to a reduction in patches’ size by more than 20 times.
The temperature field was flat and constant during the simulation, since influence of
temperature variability on the growth of plankton population was excluded too.

In the framework of this model approach, a set of interacting objects described a
zooplankton community. Each object simulated behavior of a group of identical
plankters. The number of the objects in a system was usually tens of thousands.
Population dynamics arose because of these objects’ activities, which depend on the
environment and change it too. Phytoplankton, dissolved oxygen, organic, and inor-
ganic resources were embedded as arrays of concentrations in the nodes of a horizontal
grid covering the vertically integrated simulation domain. Living objects could inter-
change with these resources by means of a special procedure.

The model described the dynamics of a plankton community in a coastal pelagic
ecosystem that included seven compartments: phytoplankton p, bacteria b, ciliates a,
nanophages f (with length <1 mm), small mesoplanktonic euryphages v (1–3 mm),
small predators s (1–3 mm), large euryphages g1 (3–30 mm), and large predators g2
(3–30 mm). These groups were interconnected by trophic relations described by the
matrix of food preferences, which was constructed using the estimates of Shushkina
et al. [14] (Appendix [18]).
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According to the definition, a basic model object had the properties inherent to
simulated plankters and some other properties that determined behavior of a plankton
cluster. Therefore, a sub-model of object dynamics included the functions that
parameterize vitalities of the specimen and their behavioral rules. An object was
specified by its position within a computational domain, size, plankton group, weight
of an organism, biomass, and abundance. We supposed that the objects were
homogenous ignoring the vertical biomass distribution. The object’s biomass was
calculated by multiplying the weight of an organism by the number of individuals in a
unit volume.

Biomass dynamics of the objects were simulated using the energy balance approach
based on the studies [8, 19]. Detailed description of the model is in the Appendix [18].
Plankton objects can estimate the gradient of the main resource (phytoplankton) within
the limits of their area and move to improve their living conditions. Growing objects
can divide and form new entities simulating plankton reproduction. The reproduction
procedure included three stages, and conditions for their implementation were checked
at each time step. These conditions and stages were:

1. If the mass of an organism inside any object exceeded the maximum value,
reproduction was imitated. Individual mass became equal to the minimal accepted
mass of an organism, and a new value of plankton abundance was calculated.
Biomass of an object remained the same.

2. If an object’s density exceeded the maximum value, its volume doubled by
increasing the object’s radius;

3. If an object’s radius exceeded the maximum value, the object was bisected.
A random number defined the position of a new object; the distance between the
centers of two objects was determined equal to the diameter of the initial object.

The objects can be eliminated when their density decreased below the threshold
level. If this happened, an object’s mass entered a pool of suspended organic matter
increasing its concentration in the corresponding grid cells.

Initial distributions of hydrochemical elements were defined as random fields with
mean concentrations typical of the coastal zone. Computational grid contained
60 � 128 nodes with a spatial step of 100 m. The water temperature was 20 °C.
Random number generator determined initial coordinates of the objects and their
radiuses. At the initial time, they had minimal mass.

The model reproduced evolution of plankton objects as they interacted with each
other and the environment. Self-organization of this system during simulation resulted
in quasi-stable heterogeneous spatial distribution of zooplankton groups. We performed
a series of simulations changing the spatial step (from 50 m to 100 m), the size of the
calculation grid (30 � 128, 60 � 128, 90 � 128), the temperature and the initial
distribution of objects and their number at the initial time. The results presented below
are typical and refer to the end of the simulation. We pre-processed them to obtain
discrete two-dimensional fields of plankton biomass in the following way. Plankton
objects were “projected” onto the computational grid. Contribution of an object to the
total biomass within a grid cell was calculated in proportion to the intersection area of
an object and a grid cell. After processing all objects of one type, we obtained a discrete
approximation of two-dimensional biomass field of this plankton group. Then we
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studied these fields using spectral analysis and wavelet transformation. Lloyd’s index
analysis was applied to number of objects within grid cells.

3 Results and Discussion

We analyzed the degree of inhomogeneity of the spatial plankton distribution by
calculating Lloyd’s index of patchiness according to [10]. We found a relation between
individual properties (averaged specific metabolic costs) of a planktonic specimen and
the spatial structure of biomass distribution at the population level – growth of specific
metabolic costs led to more aggregate spatial distribution of this planktonic
group. Figure 1 shows an example of the revealed dependence of this indicator on
average specific metabolic costs estimated according to simulation data. In simulations
without predators other groups of the plankton community demonstrated less aggre-
gated distribution; their Lloyd’s indices were lower. Predators formed denser patches
compared to euryphages having approximately the same specific metabolic costs – the
line connecting points for s and g2 in Fig. 1 is above the approximate curve for all other
groups.

Small plankton organisms (with higher specific metabolism) formed more aggre-
gate spatial distribution characterized by patches of smaller scale and greater relative
density inside:

Drel ¼ ðDmax � DminÞ=D

Here D is a discretized biomass field D(x, y) of a plankton group. Drel decreased as
the population grew and became relatively stable by the 40th day of simulation. For
example, Drel was 10.6 for small nanophages (f) and 3.6 for large euryphages (g1). We
also observed dependence of this indicator on the character of feeding – in the group of
predators it was higher: 7.8 for predators (g2) in comparison with 5.7 for euryphages of
the same size (g1).

Fig. 1. The relationship between mean specific metabolic costs (organism level) of simulated
plankton groups and the degree of crowding (population level) estimated by Lloyd’s index: 1 –

bacteria and euryphages; 2 – the same in the absence of predators; 3 – predators
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Spatial spectra were calculated along the longer axis of the computational domain
with averaging over 30 periodograms. Figure 2a shows spectra of nutrient, phyto-
plankton and large euryphages (g1) biomass. In the shortwave range, phytoplankton
and zooplankton spectra are close to each other; their slopes are much smaller than the
slope of the resource spectrum. These features were also marked by other authors, for
example [1, 15], who analyzed the spectra based upon data of numeric simulations with
their plankton models. According to our estimates, mean slopes of spatial spectra in the
shortwave range were –2.7 for resource, –1.5 for phytoplankton, and –1.2 for large
zooplankton. These estimates well agreed with the data of the other authors and
experimental evaluation.

Consider the shortwave range of spatial spectra using pre-filtering of longwave
components by subtracting a moving average. Figure 3 shows the dynamics of spatial
spectra of all plankton groups and inorganic resource.

Firstly, one can observe low level of inorganic resource dispersion in the wave-
length range less than 3 km during the simulation (Fig. 3, a). Therefore, we can
conclude that plankton patchiness in this range was not connected with the resource
field; it was caused by trophic relationships in the simulated plankton community.
Formation of plankton patches of all trophic groups, except for predators, begins at
small scales at a shortwave spectrum. These patches gradually merge, and the dominant
scale of spatial heterogeneity increases. However, mesoplanktonic and large eur-
yphages demonstrate small-scale patchiness throughout the simulation. This may be
due to their character of feeding, because ciliates and nanophages forming small
clusters are prey for these animals. Under sharp competition for phytoplankton, animal
food becomes more important for these groups. We can observe multiscale variability
of plankton spatial distribution with two most common ranges of scales: 1.5–1.8 km
and 3–4 km. The second is the dominant scale of phytoplankton spatial variability
(Fig. 3, b) that is probably determined by aggregations of zooplankton, which has a
significant fraction of phytoplankton in its ration.

Fig. 2. Spatial spectra evaluated by the results of simulation – a: large zooplankton – 1;
phytoplankton – 2; nutrient – 3. Spatial spectra estimated on data of the truncated transect
(shallow region above the Georges Bank) – b: Calanus sp. abundance – 1; fluorescence – 2; light
transmission – 3.
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We performed wavelet transformation of the simulated fields and calculated cross
covariance between wavelet coefficients of the interacting plankton groups. We found
that wavelet components correlated at several scales (Fig. 4). The X-axis in Fig. 4 is
the spatial shift and the Y-axis is the spatial scale. Sinusoid shape of the correlation
function and its maximum modulus point to the previously identified dominant spatial
scales.

Fig. 3. Temporal dynamics of the spatial spectra of: a – nutrient; b – phytoplankton (p); c –

bacteria (b); d – ciliates (a); e – nanophages (f); f – mesoplanktonic euryphages (v); g – small
predators (s); h – large euryphages (g1); and i – large predators (g2).

Fig. 4. Cross-correlation functions of spatial wavelet components of simulated fields of
zooplankton and ciliates – a; phytoplankton and mesoplanktonic euryphages – b; phytoplankton
and small predators – c.
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3.1 Comparison with Observation Data

Consider the available observation data on spatial distribution of zooplankton and
phytoplankton collected by the VPR. During U.S. GLOBEC Georges Bank Project,
several experiments were performed to study small-scale plankton patchiness by means
of VPR observations [2, 3]. The VPR was towed at 2 m/s collecting data from surface
to bottom. It was equipped with video cameras, temperature and conductivity probes,
fluorometer and transmissometer. Transects across Georges Bank were conducted in
three different months in 1994 and 1995. Calanus finmarchicus was the dominant
zooplankton taxon present in the observations of all three transects, but abundances of
this group differed significantly in these experiments. Maximum abundances of
Calanus sp. and Phaeocystis spp. protocolonies were observed in March 1995. We
chose this deployment (EN262) to compare with our model results. It was carried out
from 41° N, 66.3° W to 42.3° N, 67.5 W during 6–8 March 1995 [2]. We assumed that
Calanus sp. could be compared with the model ‘large euryphages’, and observed
fluorescence – with model phytoplankton.

The data were collected along a zigzagged path, from surface to bottom, so vertical
and horizontal variability were mixed. Each data point contained horizontal coordi-
nates, pressure (depth), and measured characteristics: temperature, salinity, fluores-
cence, light transmission, taxon abundance, etc. The step of the zigzagged path was
larger in deep-water regions and approximately 2.4 km above the Georges Bank. To
exclude this period from our analyses we took fluorescence measurements in the layer
from 20 to 30 m and interpolated these data to obtain regular measurements with a
distance of 0.1 km as it was in our simulations. As a matter of fact, during this
procedure, we lost some portion of small-scale variability, but it was the only way to
exclude vertical variability from the fluorescence measurements. Vertical distribution
of Calanus sp. was quasi homogeneous, therefore we could take all data to obtain the
average value in a 100 m bit of a transect. We prepared the observed data so that they
could be compared with our simulated data. Figure 2b demonstrates spectra estimated
by the VPR data that we compared with spectra shown in Fig. 2a. Dominant spatial
scales of 3–4 km, 1.5 km, and 1–0.9 km are present in both diagrams. The spectra of
fluorescence and light transmission had high peaks at 1.5 km scale. Similar peaks were
observed on the spectra of Calanus sp. and Phaeocystis spp. Another local maximum is
present on spectra of all components except for light transmission at the scale of 1.0–
0.8 km.

Figure 5 shows the cross-correlation function between wavelet components of
fluorescence, light transmission, zooplankton and phytoplankton. Sinusoidal sharp of
the cross-correlation function on spatial scales 1–2 km and 3–4 km proved that the
most intense interaction of phyto- and zooplankton took place at these scales. This
could be associated with aggregations of aquatic organisms. Naturally, smaller patches
are present in multiscale variability of plankton fields. Quasi-horizontal shape of the
spectrum in the shortwave range indicates that there is no cascade fall of energy, which
is typical of a turbulence spectrum. Therefore, we can suppose that aggregations of the
analyzed scales include tightly packed small patches divided by distances that could be
neglected in comparison with the scale of patches. According to our estimates, phy-
toplankton and zooplankton fields did not correlate at the scales less than 0.5 km.
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4 Conclusion

We can conclude that the proposed object-based model of multi-species plankton
community gives reasonable results comparable to the observations data, and gives an
insight to the possible mechanisms of small-scale patchiness formation. There were no
external driving forces that could be considered as reasons for patchiness emergence in
our simulations. Multiscale patchiness appeared because of plankton growth and
reproduction, objects movement, their interaction with each other and with the envi-
ronment. We found similar scales in observed variability. This allows us to assume that
the revealed mechanism of patchiness formation really exists. Thus, we can assume that
such self-organizing patchiness is immanent to a plankton community and could be
observed in cases where it is not overshadowed by external effects, which may be more
intense, such as in lakes or semi-enclosed bays in calm weather. The model does not
claim to describe the whole spectrum of plankton patchiness. It has several limitations,
which define its applicability. However, according to the simulation results we can
assume that some frequently observed peaks in spatial variability spectrum can be
explained by trophic taxis and trophic interrelations within a plankton community.

The typical scales of self-organized patchiness are associated with the size and
physiological parameters of planktonic animals. We have found a dependence of
Lloyd’s index of mean crowding on average specific metabolic costs of a plankton
specimen. It is known that body size is an important parameter influencing ecological
processes in a pelagic plankton ecosystem. Many studies, both empirical and theo-
retical, reflect its role in ecosystem dynamics. In our research, we have also found the
connection between individual and population based properties of marine plankton.
Body size defines the rates of the main physiological processes in an organism, and
these rates regulate dynamics of a plankton community. There were no direct links
between physiological rate parameters and simulated plankton fields in our model, but
we have obtained these connections during the analysis of simulated fields. This
conclusion can be considered as a confirmation of adequacy of the proposed
object-based approximation of a plankton community.

Fig. 5. The cross-correlation functions of spatial wavelet components of: Calanus sp. and
Phaeocystis spp. abundances – a; light transmission and fluorescence – b; fluorescence and
Phaeocystis spp. abundance – c.
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Abstract. During the past few decades, many Evolutionary Algorithms
(EAs) together with the Constraint Handling Techniques (CHTs) have been
developed to solve the constrained optimization problems (COPs). To obtain
competitive performance, an effective CHT needs to be in conjunction with an
efficient EA. In the previous paper, how the Differential Evolution influence the
relationship between problems and penalty parameters was studied. In this
paper, further study on how much can be improved through good evolutionary
algorithms, or whether a good enough EA can make up the shortcoming of a
simple CHT, and which factors are related will be the focus. Four different EAs
are taken as an example, and Deb’s feasibility-based rule is taken as the CHT for
its simplicity. Experimental results show that better performance in EAs is not
necessarily the reason for the improved performance of constrained optimization
evolutionary algorithms (COEAs), and the key point is to find the shortcoming
of the CHT and improve the shortcoming in the corresponding revision of EA.

Keywords: Constrained optimization � Constraint handling techniques
Evolutionary algorithms � Cooperation

1 Introduction

Constrained Optimization Problems (COPs) are very common and important in the
real-world applications. The COPs can be generally expressed by the following
formulations:

Minimize f ð~xÞ
Subject to: gjð~xÞ� 0; j ¼ 1; � � � ; l

hjð~xÞ ¼ 0; j ¼ lþ 1; � � � ;m : ð1Þ
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where~x ¼ ðx1; � � � ; xnÞ is the decision variable. The decision variable is bounded by the
decision space S which is defined by the constraints:

Li � xi �Ui; 1� i� n : ð2Þ

where l is the number of inequality constraints and m-l is the number of equality
constraints.

The Evolutionary Algorithms (EAs) are essentially unconstraint search techniques
and play an important role in generating solutions. After solution generating, how to
choose the better solutions especially for the COPs is another equivalently important
issue, which leads to the development of various constrained optimization evolutionary
algorithms (COEAs) [1]. The three most frequently used constraint handling techniques
(CHTs) in COEAs are penalty functions, biasing feasible over infeasible solutions and
multi-objective optimization.

Besides these basic CHTs, some other concepts like cooperative coevolution [2]
and ensemble [3] have also been proposed, which can be seen as a dynamic adjustment
process. Also, some other dynamic approaches based on the three different situations in
solving COPs [4] have been developed.

Some researchers tried to solve the problem from the aspect of problem charac-
teristics [5, 6].

As Li et al. [7] mentioned, the experimental comparisons on different
constraint-handling techniques remain scarce. They compared different constraint-
handling techniques in evolutionary constrained multiobjective optimization. Three
representative constraint-handling techniques (i.e., Constrained-domination Principle,
Self-adaptive Penalty, and Adaptive Tradeoff Model) are combined with nondominated
sorting genetic algorithm II to study the performance difference on various conditions.
The three properties of the problems are also summarized: the shape of Pareto front, the
dimension of decision vector, and the size of feasible region. This research also gives
some conclusion on these three different CHTs.

Kukkonen et al. [8] compared two existing constraint handling approaches with
Differential Evolution (DE) as the searching algorithm. The two constraint handling
approaches both prefer feasible solution candidates over infeasible, but when choosing
between two infeasible solutions, one calculates the sum of constraint violations while
the other approach uses Pareto dominance of constraint violations. This paper got the
conclusion that neither of the constraint handling approaches can be judged to be better
than the other.

We should also notice that when solving COPs, researchers mainly focus on the
design of the search algorithms, i.e., trying to improve the performance of the EAs so
as to make up the shortcoming of CHTs without carefully studied the characteristics of
CHTs. But whether this works, or how much the search algorithm can make up for the
CHTs, e.g., supposing the CHT is a very inefficient method, is few studied. A simple
idea is the EAs should be in conjunction with an effective CHT so as to get a com-
petitive performance. And that is what we try to study in this paper.

In the previous paper [9], how the Differential Evolution influence the relationship
between problems and penalty parameters was studied. In this paper, we will give
further study on how much can be improved through good EAs.
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In the final revision period of this paper, a constrained composite differential
evolution (called C2oDE) [15] was proposed, which makes use of the idea of CoDE
[10] to solve COPs. The method carefully selects three different trial vectors of DE to
strike a balance between diversity and convergence. Besides, two CHTs, i.e., the
feasibility rule and the e constrained method, are combined for selection. Moreover, a
restart scheme is also added. It should be pointed out the main purpose of the paper
(C2oDE) is to get a better performance, while this paper tries to verify whether the good
EAs can make up for the CHTs through the comparison among different EAs. The
paper of C2oDE can also help to explain that good EAs need to be in cooperation with
CHTs to get better performance (as two CHTs are carefully adopted).

The rest of this paper is organized as follows. Section 2 illustrates the basic idea
and the CHT used in this paper. The experimental results and analysis are presented in
Sect. 3. Finally, Sect. 4 concludes this paper and provides some possible paths for
future research.

2 On the Cooperation Between EAs and CHTs

2.1 Basic Idea

The flowchart of COEAs is illustrated as in Fig. 1. After initialization, the EAs are
mainly for generating solutions while the CHTs are mainly for solution ranking, then
the chosen solution will be the parents in the EAs for the next generation.

In the previous paper [9], to compare whether the evolutionary algorithm will
influence the relationship between constrained optimization problems and penalty
parameters, Ori-DE and CoDE [10] were adopted.

In this paper, to deeply understand the effect and to check the cooperation between
EAs and CHTs, besides the two DE algorithms adopted in the previous paper, two PSO
algorithms (Ori-PSO [11], CLPSO [12]) are also introduced, and the CHT adopted is
the simple Deb’s feasibility-based rule [13], as shown in Fig. 2.

Initialization

Generating Solutions
(EAs)

Choosing Solutions
(CHTs)

Output

Fig. 1. Flowchart of COEAs
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For page limited, the basic operators of DE and PSO are not introduced.

2.2 Deb’s Feasibility-Based Rule

In this section, the CHT adopted (i.e., Deb’s feasibility-based rule) is given.
Unlike the penalty function method which uses the penalty parameter to decide the

balance between objective function and constraint violation, Deb’s feasibility-based
rule is one of the methods which compare separately the objective functions and
constraint violations. It pair-wise compare individuals based on the rules below:

(1) Any feasible solution is preferred to any infeasible solution.
(2) Among two feasible solutions, the one having better objective function value is

preferred.
(3) Among two infeasible solutions, the one having smaller constraint violation is

preferred.

Deb’s feasibility-based rule is very simple, and easy to understand, though it has
some drawbacks, e.g., missing the information of some useful infeasible solutions, on
the other hand, it is also the characteristics we want to use to compare with the EAs.

3 Experimental Study

3.1 Experimental Settings

24 benchmark functions from IEEE CEC2006 [14] were used in our experiment. The
details of these benchmark functions are reported in Table 1, where n is the number of
decision variables, q ¼ Fj j= Sj j is the estimated ratio between the feasible region and
the search space, LI, NI, LE, NE is the number of linear inequality constraints, non-
linear inequality constraints, linear equality constraints and nonlinear equality con-
straints respectively, a is the number of active constraints at the optimal solution and
f x!�� �

is the objective function value of the best known solution.

Ori-DE

Deb s feasibility-based rule

CoDE

DE

Ori-PSO CLPSO

PSO

EAs

CHTs

Fig. 2. Illustration of the basic idea
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In the previous paper, DE/rand/1/bin and CoDE [10] was adopted as the search
algorithm. To better compare the influence of different evolutionary algorithms, two
variants of PSO (Ori-PSO [11], CLPSO [12]) are also introduced.

CLPSO uses a novel learning strategy whereby all other particles’ historical best
information can be used to update a particle’s velocity. This strategy enables the
diversity of the swarm to be preserved to discourage premature convergence.

In CoDE, several trial vector generation strategies with a number of control
parameter settings are randomly combined at each generation to create new trial vec-
tors. The three selected trial vector generation strategies are DE/rand/1/bin,
DE/rand/2/bin, and DE/current-to-rand/1. The three control parameter settings are
[F = 1.0, Cr = 0.1], [F = 1.0, Cr = 0.9], and [F = 0.8, Cr = 0.2]. It should be pointed
out that some minor changes have been made to the selection operation of CoDE, i.e.,
the offspring are selected from the pool which is composed by all the trial vectors and
target vectors.

Table 1. Details of the benchmark functions from IEEE CEC2006

Prob. N Type of obj. fun. q LI NI LE NE a f x!�� �

g01 13 quadratic 0.0111% 9 0 0 0 6 –15.0000000000
g02 20 nonlinear 99.9971% 0 2 0 0 1 –0.8036191042
g03 10 polynomial 0.0000% 0 0 0 1 1 –1.0005001000
g04 5 quadratic 52.1230% 0 6 0 0 2 –30665.5386717834
g05 4 cubic 0.0000% 2 0 0 3 3 5126.4967140071
g06 2 cubic 0.0066% 0 2 0 0 2 –6961.8138755802
g07 10 quadratic 0.0003% 3 5 0 0 6 24.3062090681
g08 2 nonlinear 0.8560% 0 2 0 0 0 –0.0958250415
g09 7 polynomial 0.5121% 0 4 0 0 2 680.6300573745
g10 8 linear 0.0010% 3 3 0 0 6 7049.2480205286
g11 2 quadratic 0.0000% 0 0 0 1 1 –0.7499000000
g12 3 quadratic 4.7713% 0 1 0 0 0 –1.0000000000
g13 5 nonlinear 0.0000% 0 0 0 3 3 0.0539415140
g14 10 nonlinear 0.0000% 0 0 3 0 3 –47.7648884595
g15 3 quadratic 0.0000% 0 0 1 1 2 961.7150222899
g16 5 nonlinear 0.0204% 4 34 0 0 4 –1.9051552586
g17 6 nonlinear 0.0000% 0 0 0 4 4 8853.5396748065
g18 9 quadratic 0.0000% 0 13 0 0 6 –0.8660254038
g19 15 nonlinear 33.4761% 0 5 0 0 0 32.6555929502
g20 24 linear 0.0000% 0 6 2 12 16 0.2049794002
g21 7 linear 0.0000% 0 1 0 5 6 193.7245100700
g22 22 linear 0.0000% 0 1 8 11 19 236.4309755040
g23 9 linear 0.0000% 0 2 3 1 6 –400.0551000000
g24 2 linear 79.6556% 0 2 0 0 2 –5.5080132716
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The parameters in the Ori-DE are set as follows: the population size (NP) is set to
100; the scaling factor (F) is randomly chosen between 0.5 and 0.6, and the crossover
control parameter (Cr) is randomly chosen between 0.9 and 0.95.

The parameters in the Ori-PSO are set as follows: the population size (NP) is set to
100; acceleration constants (c1, c2) are set to 1.49445, inertia weight (x) is linearly
decreasing between 0.9 and 0.4.

Besides the same setting as Ori-PSO, CLPSO adopts some other parameters:
refreshing gap (m) is set to 5, Learning Probability (Pc) is set as

Pci ¼ 0:00þ 0:50 �
ðexp 5 i�1ð Þ

NP�1

� �
� 1Þ

ðexp 5ð Þ � 1Þ ð3Þ

3.2 Experimental Results

25 independent runs were performed for each test function using 5 � 105 FES at
maximum, as suggested by Liang et al. [14]. Additionally, the tolerance value d for the
equality constraints was set to 0.0001, and the constraints were not normalization.

Tables 2 and 3 shows the feasible rate (the percentage of runs where at least one
feasible solution is found in MAX_FES, denoted as FR), the success rate (the per-
centage of runs where the algorithm finds a solution that satisfies the success condition,
denoted as SR) on different problems with different EAs respectively.

Table 2. Feasible Rate for Ori-DE, CoDE, Ori-PSO, and CLPSO

Algo. Prob.
g01 g02 g03 g04 g05 g06 g07 g08

Ori-DE 1 1 1 1 1 1 1 1
CoDE 0.32 1 1 1 0.36 1 1 1
Ori-PSO 1 1 1 1 0.8 0.32 1 1
CLPSO 1 1 0.28 1 0 1 1 1

Algo. Prob.
g09 g10 g11 g12 g13 g14 g15 g16

Ori-DE 1 1 1 1 1 1 1 1
CoDE 1 1 1 1 1 0 1 1
Ori-PSO 1 0.96 1 1 1 0.8 0.92 1
CLPSO 1 1 0.16 1 0 0 0 1

Algo. Prob.
g17 g18 g19 g20 g21 g22 g23 g24

Ori-DE 1 1 1 0 1 0 1 1
CoDE 1 1 1 0 0 0 1 1
Ori-PSO 0.68 1 1 0.08 0 0 0.84 1
CLPSO 0 1 1 0 0 0 0 1
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3.3 Comparison

From Tables 2 and 3, we can find some useful information:

(1) As to FR (Table 2), Ori-DE is better than or equal to CoDE in all problems. The
similar situation can be observed between Ori-PSO and CLPSO where CLPSO
only shows better performance at g06.

(2) As to SR (Table 3), Ori-DE gets a better performance at g01, g02, g14, g18 and
g19 while CoDE obtains a better performance at g05, g06, g11, g13, g 15 and g17;
there is not so much difference between Ori-PSO and CLPSO, where Ori-PSO
shows a better performance at g04, g06 and CLPSO performs better at g01and g16.

(3) When compared between Ori-DE and Ori-PSO, Ori-DE performs slightly better as
to FR. As to SR, the better performance of Ori-DE is more obvious. Ori-PSO
shows a better performance only at g06.

Through these comparisons, some interesting conclusions can be obtained:

(1) Better performance in EAs is not necessarily resulting in the improved perfor-
mance of COEAs. If the EAs are not in conjunction with the CHT, the perfor-
mance may get even worse.

(2) As to different kinds of EAs, PSO is well-known for its fast convergence while
DE is good at keeping the diversity. And Deb’s feasibility-based rule also shows a
fast speed without considering the information of many infeasible solutions. So if
the fast convergence of PSO meets the fast speed of Deb’s feasibility-based rule
and if they find the right direction at the beginning, then the result will be very
good; otherwise, the result will be much worse, as shown above.

Table 3. Success Rate for Ori-DE, CoDE, Ori-PSO, and CLPSO

Algo. Prob.
g01 g02 g03 g04 g05 g06 g07 g08

Ori-DE 1 0.88 0 1 0 0 1 1
CoDE 0.32 0.44 0 1 0.36 1 1 1
Ori-PSO 0 0 0 1 0 0.32 0 1
CLPSO 1 0 0 0 0 0 0 1

Algo. Prob.
g09 g10 g11 g12 g13 g14 g15 g16

Ori-DE 1 0 0.64 1 0 0.24 0.12 1
CoDE 1 0 1 1 0.16 0 1 1
Ori-PSO 0 0 0 1 0 0 0 0.2
CLPSO 0 0 0.04 1 0 0 0 1

Algo. Prob.
g17 g18 19 g20 g21 g22 g23 g24

Ori-DE 0 1 1 0 0 0 0 1
CoDE 0.8 0.04 0.84 0 0 0 0 1
Ori-PSO 0 0.04 0 0.04 0 0 0 1
CLPSO 0 0 0 0 0 0 0 1
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4 Conclusion

In this paper, the relationship between EAs and CHTs when solving COPs are further
studied. Four different evolutionary algorithms are taken as the search engines, while
Deb’s feasibility-based rule is taken as the CHT for its simplicity. Experimental results
show that better performance in EAs is not necessarily the reason for the improved
performance of COEAs and the key point is the cooperation between EAs and CHTs.
To get a deeper understanding, more EAs together with CHTs, and test functions are
needed for experiments. Besides, the inner mechanisms study, e.g., which factors or
what characteristics affect the performance will be the focus for further research.
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Abstract. Social intelligence is an emerging property of a system composed of
agents that consists of the ability of this system to conceive, design, implement
and execute strategies to solve problems and thus achieve a collective state of
the system that is concurrently satisfactory for all and each one of the agents that
compose it. In order to make decisions when dealing with complex problems
related to social systems and take advantage of social intelligence, cooperative
games theory constitutes the standard theoretical framework. In the present
work, an ontological framework for cooperative games modeling and simulation
is presented.

Keywords: Cooperative � Games theory � Ontology � Ontological framework
Simulation model � Clusters � Cooperation

1 Introduction

Social (collective) intelligence [1–3] is an emerging property of a system composed of
agents that consists of the ability of this system to conceive, design, implement and
execute strategies to solve problems and thus achieve a collective state of the system
that is concurrently satisfactory for all and each one of the agents that compose it.

Any collective purpose competes with the selfish tendency of each agent consisting
of believing, usually mistakenly, that his individual intelligence, as opposed to col-
lective intelligence, can lead him to obtain a better result operating from his dimension
and individual perspective than that which I would get if I worked from a strategy
focused on trust and agreements designed to give the greatest value to the collective
interest and the search for a state of equilibrium or a long-term metastable state.
A perfect example of the above reflection is the system “humanity” in its various
hierarchical levels of organization: global, regional, national, business, even family, in
which throughout history have been very rare periods of social stability obtained from
agreements and mutual trust.

When considering business organizations, companies all over the world strive to
gain bigger market shares and optimize their operations in the existing globalized and
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competitive markets. In order to deal with this scenario, the collective intelligence of
companies and organizations has produced the emergent system called “cluster” [2, 4,
5]. A cluster is known as a group of interconnected companies that share geographical
boundaries or perform common practices, as they are related to the same supply chain.
According to [6], clusters dominate today’s economic world map, and this is a relevant
feature of virtually every national, regional, state, and even metropolitan economy,
especially in more developed nations.

Clusters are based on cooperation activities. Nevertheless Patti, [3, 7–9] states that,
clusters benefit from both competition and cooperation. Specifically, in the case of
cooperation, much of this has been evidenced at a vertical level of the supply chain and
at a horizontal level if there is no direct competition or any external threat to the cluster
existence. Yet, as this author highlights, trust among companies and the face-to-face
interactions are key factors for cluster success.

In order to design robust clusters, which are not very vulnerable to the actions of
their individual components and the changing environmental conditions, in addition to
maximizing the benefits for component companies, it is very important to have tools
that make it easier to predict the effect each agreement will have. and each game rule
present in the framework of the creation of the cluster.

Cooperative game theory [4, 10, 11] provides a theoretical framework which may
be used in order to develop software tool to assist the decision making process in the
choice and design of agreements and game rules present in the coalition framework of a
cluster. However, the process that allows developing a software system to support
decision making based on the theoretical framework of cooperative game theory [5, 12,
13] is not a straightforward process, it requires: first, a very flexible and intuitive
modeling environment (called a “modeling framework” in the software engineering
literature) that allows to a user who is not a software engineering expert to identify and
represent the components of the cooperative game as well as identify and represent the
attributes and behaviors of each static component and, in addition, the decision rules of
the autonomous components (“agents”) present in the game. Second, the proposed
decision support system requires a “simulation framework” to facilitate the creation of
diverse simulation scenarios and its integration to a “simulation engine” in order to
reproduce a particular game dynamics. In order to facilitate the appropriate processing
and interpretation of the simulation results, the decision support system also should
include a scientific visualization engine.

A crucial step in the development of a software framework intended to support the
decision making phase of a cluster design, based in the cooperative game theory, is the
abstraction process. Abstraction is the most powerful resource to reduce and manage
the complexity of a system in the treatment of its associated problems.

2 Ontological Frameworks

In reference to the importance of the abstraction process and its relation to complexity,
Grady Booch writes: “an individual can comprehend only about seven, plus or minus
two, chunks of information at one time. This number appears to be independent of
information content. […], “The span of absolute judgment and the span of immediate
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memory impose severe limitations on the amount of information that we are able to
receive, process and remember. By organizing the stimulus input simultaneously into
several dimensions and successively into a sequence of chunks, we manage to break…
this informational bottleneck” [6]. In contemporary terms, we call this process
chunking or abstraction.

As Wulf describes it, “We (humans) have developed an exceptionally powerful
technique for dealing with complexity. We abstract from it. Unable to master the
entirety of a complex object, we choose to ignore its inessential details, dealing instead
with the generalized, idealized model of the object” [7]. For example, when studying
how photosynthesis works in a plant, we can focus on the chemical reactions in certain
cells in a leaf and ignore all other parts, such as the roots and stems. We are still
constrained by the number of things that we can comprehend at one time, but through
abstraction, we use chunks of information with increasingly greater semantic content.
This is especially true if we take an object-oriented view of the world because objects,
as abstractions of entities in the real world, represent a particularly dense and cohesive
clustering of information”.

In the last thirty years, software engineering has evolved from the “structured
programming paradigm” to contemporary methods of artificial intelligence, of which
game theory and agent-based modeling are essential components.

Under the paradigm of structured programming the words “program”, “model” and
“simulation” represented the same concept: an algorithm for the treatment and solution
of a problem and not the computational implementation of a model that captures by
abstraction the system’s identity which is relevant in the context of a problem, and in
this way, to allow its controlled manipulation according to a given scenario, what in
modern times is called “a simulation” [8].

At the present, in the beginning of the 21 century, societies confront complex
problems which require the development and use of software frameworks to support
the forecasting of the behavior and evolution of a social system for a given set of
possible scenarios and with it, to support the decision making process necessary for the
problem solution under controlled risk.

The search for solutions in the treatment of complex problems has produced and
consolidated the paradigm of “operations research” in which, knowing a multiplicity of
possible solutions, it is necessary to choose the solution that maximizes or minimizes
(optimizes) simultaneously a given set of “objective functions”, see Fig. 1.

In the application of the operations research paradigm, the most critical issue is the
model development. In order to simultaneously attain model controllability and realism
it is relevant the process of abstraction: the selection of the system’s components that
should be ignored and those that should be considered. In addition, when modeling
each system’s component it is also relevant the same selection regarding the compo-
nent’s attributes and components to be considered. To facilitate this process, this paper
proposes the use of “ontological frameworks”.

“An ontology is a formal description of concepts and relationships that can exist for
a community of human and/or machine agents. The notion of ontologies is crucial for
the purpose of enabling knowledge sharing and reuse” [9, 13–15]. From this definition
of ontology, an “ontological framework” is considered as a “semantic network”
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[10, 16–18] containing the minimally satisfactory set of concepts necessary to represent
an object or a system in the process of a model development.

3 Ontological Framework for Cooperative Games

“There are applications of game theory for which the assumption of maximizing individual
interests, with max-min as the resulting criterion for choice and with the use of randomization
as the means for creating mixed strategies, may be changed. The means for doing so is called
“bargaining” and the resulting games are called “cooperative games.”

Fig. 1. Operations research life cycle for dealing with a problem

Fig. 2. Human knowledge ontology diagram
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Basically bargaining is a process of making offers and demands with the objective
of achieving total, joint results that are better than can be obtained from simply the
competitive game. In such bargaining, of course, the competitive game sits in the
background as the fall-back position in the event that bargaining fails and there is no
cooperation in arriving at the solution” [11, 19–23] (Fig. 4).

Fig. 3. Generic game ontology diagram

Fig. 4. Cooperative game ontology diagram
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4 Discussion and Conclusions

Figure 1 shows the general context where game theory has its ontological roots. In this
level of the ontological framework, in addition to the primitive concepts from which
game theory concept components are derived, three kind of relations are defined:
association, composition and generalization.

An association relation represents a dependency between two classes (object cat-
egories) where the origin node uses the end node. As an example in Fig. 1 one instance
of the “Human” class requires one instance of the “Knowledge” class in order to enter
in relation with a given reality. A composition relation indicates that the origin node is
a component of the end node, for example, any instance of the class “Knowledge” is a
component of the “Human” class. Finally, a generalization relation (also called “in-
heritance relation”) indicates that the origin node is a subclass or “specialized” class of
the ending node, which is equivalent to say that the ending node is a “generalization” of
the beginning node [24–29].

Figure 2 presents the second level in the hierarchical structure of the proposed
ontological framework for cooperative games, where it is stated that a game is com-
posed by instances of the classes: player, interface, moves and rules. In addition, this
ontology diagram specifies the relations between players and strategies (composition)
and between players and interface, players and rules, and between moves and rules and
between moves and strategies [30, 31].

Finally, the ontology diagram in Fig. 3 specifies cooperative games as an extension
of general games where the additional elements are the coalition class, a specialization
of the player class and the binding agreements class as a specialization of the rules
class. In cooperative games players can make binding agreements, i.e. agreements they
must keep. In cooperative games the interest is on the formation of coalitions and on
the sharing of the benefits of cooperation rather than the means to achieve these.
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Abstract. Broadcasting is a popular and important way to information dis-
semination in vehicular ad-hoc networks (VANETs). But the weakness of
broadcasting which is called broadcasting storm also reduces the performance of
VANETs. In this paper, an adaptive game model for broadcasting in VANETs is
proposed firstly. Then we optimize the proposed model adapting to the distance
between two neighbor vehicles and use this optimizing game model to realize
the probabilistic broadcasting. The simulation results show that the proposed
adaptive game model can release the broadcasting storm, and make the per-
formance better.

Keywords: Broadcasting � VANET � Game model � Probabilistic broadcast
Simulation

1 Introduction

Vehicular Ad-hoc Networks (VANETs), which is a kind of Mobile Ad-hoc Networks
(MANETs), have been considered as an essential part of Intelligent Transportation
System (ITS) [1]. In VANETs, there are many kinds of information disseminated
between vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) [2].

Due to the high mobility and restricted mobility patterns of vehicles, it is chal-
lenging work to design message dissemination scheme with low delay and high reli-
ability. Broadcasting is a widely used dissemination technique in VANETs, but it also
can cause some problems as shown in works [3, 4].

Blind Flooding (BF) [5] is a simple broadcasting scheme. In BF, vehicles always
rebroadcast the messages received for the first or more times. However obviously, as
the increasing of the density, it will cause a large amount of redundant messages in
VANET, and also leads to the collision and congestion which degrade the availability
of broadcasting.

X-persistence Broadcasting [6] contains three broadcasting schemes: weighted p-
persistence, slotted 1-persistence, and slotted p-persistence schemes. In these schemes,
when a node receives a message, it calculates a rebroadcast probability according to the
distance from the sender. Generally, a node with a larger distance from the sender
obtains a higher rebroadcast probability.

BBBR [7] is a multi-hop broadcasting protocol based on network coding aiming to
minimize message retransmissions. Simulation results show that BBBR can decrease
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data packet rebroadcasting and reduce delay. However, using single forwarder node to
transmit bidirectional emergency messages may induce additional delays.

PREDAT [8] provides a broadcast storm mitigation solution without periodic
beacons. A circle-shaped communication area is divided into four quadrants. Four
subareas chose in each quadrant respectively are defined as the sweet spot. PREDAT
gets not only a high delivery ratio but a high overhead which is for the geographic
distribution of sweet spots.

TURBO [9] broadcasts messages to a group of vehicles. It employs two mecha-
nisms: a store-carry forwarding and a broadcast suppression. In store-carry forwarding,
each vehicle carries the message for a determined time and retransmits it when inter-
mittently connected network problems occur. In broadcast suppression, some specific
vehicles are selected to rebroadcast the messages. Despite being a beacon-oriented
approach, it does not implement any beacon congestion control.

DPS [10] selects a relay node to rebroadcast the message at each hop. To reduce
delay and collisions, DPS uses both the local density and the inter-vehicle distance in
the selection for selecting the vehicle farthest from the sender as the relay. DPS suffers
from excessive overhead caused by broadcast storm.

Fast-OB-VAN [11] aims to reduce the delay and to increase the delivery ratio.
Distances are represented by a 10-bit sequence. Vehicles having the most significant bit
in this sequence set to one may contend to transmit the packet. This method allows the
packet transmission by the farthest candidate relay. Fast-OB-VAN also suffers from a
high overhead as DPS.

In this paper, we propose an adaptive game mode for broadcasting in VANETs.
Using the proposed model, each in-between neighbor vehicle can calculate its broad-
casting probability according to the local network situations independently, such as the
distance to neighbors in our work.

2 Game Model for Broadcasting

2.1 Game Model

Considering a realistic broadcasting scene in VANET, there are r vehicles covered by
the communication range of vehicle a, i.e. vehicle a has r neighbors. So when vehicle a
generates and broadcasts a packet, all neighbors can hear the broadcasting. Then these
neighbors have two choices to handle the received broadcasting packets: rebroadcast or
discard. When some of neighbors choose rebroadcast, they will pay out a price
themselves, and bring gains to the others.

Based on the above descriptions, we firstly define the neighbor set C of vehicle a as
shown in Eq. (1)

C ¼ fn1; n2; n3; . . .; nrg ð1Þ
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Then, we model this broadcasting scene as a game named G among all the
neighbors in C:

Players: r neighbors in C r� 2ð Þ;
Strategy set: we define strategy set H ¼ fB, Dg, then each neighbor independently

chooses its strategy within H: Here, B and D signify reBroadcast and Discard
respectively.

Preferences: The preference to some strategy is determined by the expected value
of the utility function, i.e. the payoff gained by every neighbors. Equation (2) shows
the payoff of neighbor nj with three different cases. Here, ujðhÞ is the utility function of
nj, v is the gain gained for other neighbors’ rebroadcasting and c 0\c\vð Þ is the cost
paid for its rebroadcasting. Furthermore, h 2 H, ni 2 C, nj 2 C.

ujðhÞ ¼
v if hj ¼ Dand hi ¼ B for 9i 6¼ j
v� c if hj = B for 9nj 2 C
0 if hj ¼ D for 8nj 2 C

8<
: ð2Þ

2.2 Payoff Matrix of Game G

We define two proper subsets of the neighbor set C,

Cj ¼ fnj j nj 2 Cg

which subject to Cj [C�j ¼ C and Cj \C�j ¼ £.
Then, the combination Cj; C�j

� �
can have four choices in H: (B, D), (B, B), (D, B)

and (D, D). Here, (•, B) represents at least one vehicle in C�j chooses B, and (•, D)
represents all vehicles in C�j choose D. Therefore, the payoff matrix of game G can be
illustrated in Fig. 1. Here, 1� k� r � 1 and k 2 Z.

Γ j−

B D

Γ j

B v c− , ( )k v c− v c− , ( 1)r v−

D v , ( )k v c− 0, 0

Fig. 1. Payoff matrix of game G
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2.3 Symmetric Mixed Strategy Nash Equilibrium of Game G

In game G, all players share the same strategy set H. Furthermore, there are only two
strategies B and D in H, so according to the existence of mixed strategy Nash equi-
librium in finite game, G has a symmetric mixed strategy Nash equilibrium.

Firstly, we define a joint probability distribution ðpj; p�jÞ as the mixed strategy of
G over H, and the details of pj and p�j are shown in Eq. (3),

pj ¼ (pjB; pjD)
p�j ¼ (p�jB; p�jD)

ð3Þ

Here, 0\ pjB; pjD; p�jB; p�jD\1 and pjB + pjD ¼ 1, p�jB + p�jD ¼ 1.
Therefore, the expected payoff of Cj is shown in Eq. (4),

ujðpj; p�jÞ ¼ pjB pjD½ � ujðB; p�jÞ
ujðD; p�jÞ

� �

¼ pjB � ujðB; p�jÞþ pjD � ujðD; p�jÞ
ð4Þ

Let p 0\p\1ð Þ be the probability of choosing B, then Eq. (5) can be easily
drawn,

pjB = p

pjD = 1� p
ð5Þ

Substituting Eq. (5) into (4), we get

ujðpj; p�jÞ ¼ p � ujðB; p�jÞþ ð1� pÞ � ujðD; p�jÞ ð6Þ

Secondly, in Nash equilibrium, the mix strategy of any player is the optimal
reaction to that of the others, so it should satisfy the condition shown in Eq. (7).

@ujðpj; p�jÞ
@p

¼ 0 ð7Þ

Calculating Eq. (7), we get the result shown in Eq. (8),

ujðB; p�jÞ � ujðD; p�jÞ ¼ 0 ð8Þ

Here,

ujðB; p�jÞ ¼ ujðB; BÞ ujðB; DÞ½ � p�jB

p�jD

� �

¼ p�jB � ujðB; BÞþ p�jD � ujðB;DÞ
ð9Þ
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ujðD; p�jÞ ¼ ujðD; BÞ ujðD; DÞ½ � p�jB

p�jD

� �

¼ p�jB � ujðD; BÞþ p�jD � ujðD; DÞ
ð10Þ

p�jB ¼ 1�
Yr
i 6¼j

ð1� pÞ

p�jD ¼
Yr
i 6¼j

ð1� pÞ
ð11Þ

Substituting Eqs. (9), (10) and (11) into Eq. (8), we get

ð1�
Yr
i 6¼j

ð1� pÞÞ � ðv� cÞþ (
Yr
i 6¼j

ð1� pÞÞ � ðv� cÞ � ½ð1�
Yr
i 6¼j

ð1� pÞÞ � vþ (
Yr
i6¼j

ð1� pÞÞ � 0� ¼ 0 ð12Þ

Calculating Eq. (12), the optimal value of p is calculated as Eq. (13),

p� ¼ 1� ðc
v
Þ 1
r�1 ð13Þ

Therefore, in the Nash equilibrium of G, the optimal mix strategy for each player is
ðp�; 1� p�Þ, which means that the expected payoff from choosing B equals that from
choosing D for any players.

2.4 Optimizing the Game Model

In an ideal broadcasting, only the neighbors which locate on the edge of communi-
cation range are needed to rebroadcast, and all of the others are redundant. So, we take
v and c as two functions about the distance of two neighbors which are represented by
VðdÞ and CðdÞ respectively. Then, Eq. (13) can be optimized to Eq. (14),

Pðr; dÞ ¼ 1� ðCðdÞ
VðdÞÞ

1
r�1 ð14Þ

Here, CðdÞ is a monotonic decreasing function about d which means that the lower
the distance is, the more costs paid, and VðdÞ is a monotonic increasing function about
d which means that the lower the distance is, the more gains obtained.

Therefore, we can see that the broadcasting probability decreases with the
increasing of the number of neighbors, and increases with the increasing of the distance
from Eq. (14). These properties have two advantages: first, it can increase the proba-
bility for selecting the farthest neighbors to rebroadcast sequentially; second, it can
reduce the broadcasting redundancy effectively in dense VANET environment.

We define fðdÞ ¼ CðdÞ
VðdÞ, thus fðdÞ should satisfy the following conditions: (1) fðdÞ is

a monotonic decreasing function about d; (2) fðdÞ 2 ð0; 1Þ; (3) fðdÞ ¼ 1 when d ¼ 0,
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and fðdÞ ¼ 0 when d ¼ R. Here, R represents the communication range. Based on
these conditions, we choose a simplest form of fðdÞ as shown in Eq. (15),

fðdÞ ¼ ð1� d
R
Þa ð15Þ

Here, a ða 2 NÞ is an adjustment factor which can change the degree of the
monotonic decreasing of fðdÞ. Thus, we can get the resulting calculation of p based on
Eqs. (14) and (15),

Pðr; dÞ ¼ 1� ð1� d
R
Þ a
r�1 ð16Þ

3 Game Based Broadcasting Algorithm

In our Game based Broadcasting algorithm named GB for short, vehicles use periodic
Hello packets to collect neighbor information, such as ID, location, velocity and so on.

When a source vehicle generates and broadcasts a broadcasting packet, which is a
tuple like this <source, destination, pre-hop, pre-hop location, sequence number>.
Every neighbor heard this broadcasting packet starts GB algorithm. The details of GB
algorithm is shown in Fig. 2.

Algorithm 1. Game based Broadcasting (GB) Algorithm
one neighbor vehicle receives the broadcasting packet
IF this packet is a duplicated one which comes from the same source s

THEN
discards the packet

ELSE 
updates the record items with the information carried by this packet
calculates rebroadcasting probability p for this packet using Eqn. (16)
generates an uniform random number Y between 0 and 1
IF Y <= p THEN

updates this packet with the information itself
broadcasts the updated packet sequentially

ELSE 
discards this packet

ENDIF
ENDIF

Fig. 2. Game based Broadcasting (GB) algorithm
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4 Performance Evaluation

We evaluate the performance with NS2.35 and VanetMobiSim. VanetMobiSim is used
to generate simulating traffic scenes. The basic parameter settings are shown in Table 1.

4.1 Performance Metrics

(1) Saved-ReBroadcast (SRB). It is the ratio between the numbers of vehicles
receiving a packet and the number of vehicles actually rebroadcasting the packet.

(2) Average Delay (AD). It is defined as the dissemination delay of the packet from
the source vehicle to the last receiver. The faster the packet propagates, the more
efficient the corresponding protocol.

The results shown in the following section are the average value from five
simulations.

4.2 Performance Evaluation

We evaluate the performance of GB by comparing it to other two broadcasting algo-
rithms BF [5] and Weighted-p [6] in two different simulations. One simulation uses
different number of vehicles but fixed maximum velocity 20 m/s, and the other uses
different maximum velocity but fixed number of vehicles 50.

As shown in Fig. 3, the SRB of GB is better than that of Weighted-p and BF.
Furthermore, the SRB of GB and Weighted-p increases clearly as the number of
vehicles increases, but that of BF algorithm is nearly zero. It is because that BF uses
pure flooding scheme to broadcast, and then the other two algorithms realize the

Table 1. The parameter settings

Parameter Value

Scene 1000 m � 1000 m
Number of vehicles 10, 30, 50, 70, 90
Communication range 250 m
Velocity Min: 5 m/s,

Max: 10, 15, 20, 25, 30 m/s
Pause time 0 s
Data CBR, 512 Bytes/packet
Packet generating rate 1 packet/s, 4 sources
Simulation time 600 s
Parameter a 10
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probability broadcasting. As shown in Fig. 4, our GB algorithm has the least average
delay compared to the other algorithms. Furthermore, the average delay of BF
decreases as the number of vehicles increases, but that of the other algorithms
increases.
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As shown in Fig. 5, the SRB of GB and Weighted-p are fluctuating with the
increasing of velocity, and that of BF algorithm is nearly zero again. As shown in
Fig. 6, the average delay of GB is less than that of Weighted-p, and BF has the
maximum delay. Furthermore, we also can see that the impact of velocity on average
delay is smaller than that of the density.

5 Conclusion

In VANETs, broadcast storm may happen if vehicles rebroadcast the identical packet
received more than once. Based on the analyses using game theory, the proposed game
based broadcasting algorithm GB can promote the performance of VANETs. Simu-
lation results show that GB has higher efficiency and reliability.
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Abstract. Population-based optimization algorithms adopt a regular network as
topologies with one set of potential solutions, which may encounter the problem
of premature convergence. In order to improve the performance of optimization
techniques, this paper proposes a soft island model topology. The initial pop-
ulation is virtually separated into several subpopulations, and the connection
between individuals from subpopulations is probabilistic. The workability of the
proposed model was demonstrated through its implementation to the Particle
Swarm Optimization and Differential Evolution algorithms and their modifica-
tions. Experiments were conducted on benchmark functions taken from the
CEC’2017 competition. The best parameters for the new topology adaptation
mechanism were found. Results verify the effectiveness of the population-based
algorithms with the proposed model when compared with the same algorithms
without the model. It was established that by applying this topology adaptation
mechanism, the population-based algorithms are able to balance their
exploitation and exploration abilities during the search process.

Keywords: Island model � Population-based algorithms � Optimization
Particle swarm optimization � Differential evolution

1 Introduction

Many real-world problems in engineering and related areas can be reduced to opti-
mization problems, which usually have many local optima, so it is difficult to find their
global optima. For solving such problems, researchers have presented many methods in
recent years and population-based algorithms are among them [1]. Such algorithms do
not require any properties of the objective function (for instance, gradient information).
Therefore, more attention has been paid to population-based algorithms, and many
effective algorithms have been presented, including Differential Evolution (DE) [2] and
Particle Swarm Optimization (PSO) [3].

Although population-based algorithms have been applied successfully in solving
many difficult optimization problems, for example [4], they also have difficulties in
keeping the balance between exploration and exploitation when solving complex
multimodal problems. In order to achieve better performance for population-based
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algorithms, various modifications of the existing algorithms and also new techniques
have been developed.

In this paper, the problem of premature convergence and search diversification was
solved by dividing the initial population into several subgroups. All subgroups com-
municate with each other with some probability, while each subpopulation has its own
current best found solution and other necessary features, depending on the
population-based algorithm. The developed technique was called the ‘Soft Island
Model’ or SIM. The SIM approach was applied to the mentioned PSO and DE algo-
rithms and their variants. The efficiency of the mentioned algorithms with or without
the soft island model implementation was examined on test problems from the
CEC’2017 competition [5]. Experimental results demonstrated an improvement of their
work with the soft island model compared to the original versions.

Therefore, in this paper firstly the soft island model is described, and the
population-based algorithms used in this study to prove its usefulness are listed. Then
brief descriptions of the mentioned population-based algorithms, namely of the PSO
and the DE algorithms and their modifications, are presented. In the next section, the
experimental results obtained by both the used population-based algorithms with the
soft island model and the same algorithms without the model are discussed. After that,
the best parameters for the proposed soft island model were found. Finally, some
conclusions are given in the last section.

2 Soft Island Model

In this study, the soft island model (SIM) for improving the search diversity is intro-
duced. The key concept of the proposed technique SIM is that the initial population is
virtually separated into several subpopulations, and the connection between individuals
from the different subpopulations or islands is probabilistic. More specifically, each
island (subpopulation), when performing various operations on individuals, has a
higher probability of choosing individuals for these operations from the current island
than from other islands. The operations to be performed depend on the optimization
technique nature, as well as the features of each subpopulation that should exist for
each particular algorithm to work, for example, the best found solution.
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The soft island model can be described with the following pseudo-code:

Let the number of islands be M
The islands are I = {Ik}, where k = 1, … , M
The probability to choose a solution from current 
island: P – equal for all islands
For individual i in the population:

Let i belong to Ik

Generate a random number R from the range 
[0,1]
Individuals required for operation: Ind =
{Indj}, where j = 1, …, H; H depends on the 
algorithm
For the every Indj: 
If R < P then:

  Choose Indj from Ik

Else:
  Choose Indj from I\Ik 

End For
Perform algorithm-specific operations with 
chosen Ind

End For.

The individuals can be assigned to islands in any convenient manner, depending on
the algorithm. In case of an operation requiring several individuals, each of them can be
chosen from either the current island with a probability P or any island with a prob-
ability 1 − P.

The soft island model implements migration implicitly in a probabilistic manner,
specifically, the islands exchange information, and the information rate exchange
depends on the locality of each island. The migration strategy depends on the operators
used by the population-based algorithm. If the probability P is set to 1.0, then the
exchange between islands is eliminated, resulting in the optimization problem being
simply solved several times.

Let us consider several examples of SIM realization for the Differential Evolution
(DE) [2] and Particle Swarm Optimization (PSO) [3] algorithms. In the case of DE, the
main operator is mutation, which may use several randomly chosen individuals from
the population. The typical DE strategies are rand/1, rand/2, best/1, best/2 and
target-to-best/1 [6]. Also in this study, the soft island model was applied to the fol-
lowing variants of the PSO algorithm in addition to the original version: Gaussian PSO
[7], Cauchy and Gaussian-Based PSO [8], PSOs with linear- and exponent-decreasing
inertia coefficient [9, 10] and PSO with the simulated annealing inertia coefficient [11].
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3 Population-Based Optimization Algorithms

As was mentioned before, the Particle Swarm Optimization (PSO) [2] and the Dif-
ferential Evolution (DE) [3] algorithms (and their various modifications) were used for
the experiments. These algorithms were chosen due their high performance on various
optimization problems. Besides, both of them lay the foundations for different
biology-inspired algorithms (in the case of PSO) and evolutionary algorithms (in the
case of DE). Thus, in this section brief descriptions of the considered population-based
algorithms for solving the optimization problems to which the soft island model was
applied are presented.

Particle Swarm Optimization or PSO is an optimization technique inspired by the
social behaviour of bird flocking and fish schooling in search of food and was origi-
nally developed by Eberhart and Kennedy in 1995. The PSO algorithm is well-known
for its easy implementation, robustness to control parameters and computation effi-
ciency compared with other existing heuristic algorithms such as a genetic algorithm in
a continuous problem.

In the original version of the PSO approach, each individual (or particle) modifies
its movement according to its own experience and the experience of its neighbouring
particle. Each particle is described by its coordinates in the search space (position) and
velocity. Therefore, two equations are used in the PSO algorithm: the position update
equation and the velocity update equation [2]. The position and velocity of the particle
change in each iteration of the PSO algorithm to converge the optimum solution.

The most commonly used PSO variants consist in the modification of the inertia
weight or the position update equation, for example [9, 10] or [11]. However, there are
studies, for example [7], which suggested that a Gaussian distribution could be used in
the PSO position update rule. In addition, a PSO model that employs both Cauchy and
Gaussian distributions for sampling was later proposed [8].

Differential evolution (DE) is the continuous optimization technique first introduced
by Price and Storn in 1997 [3]. Over the last 20 years, it has become one of the most
popular and often prize-winning optimization techniques due to its simplicity in imple-
mentation and several important features. As with other biology-inspired methods, DE is
a population-based algorithm, and the population contains a number of solutions. One of
the main features of DE is the mutation scheme, which was shown to automatically adapt
to the scale of the optimized function, improving the performance. The algorithm also
contains crossover and selection schemes, which will be briefly described.

The key idea of differential evolution is in constructing a mutant vector using the
difference between two other vectors from the current population. There are several
popular mutations schemes, each having different behaviour, namely DE/rand/1,
DE/rand/2, DE/best/1, DE/best/2, DE/target-to-best/1 (DE/current-to-best/1) [6] and
many others.

There are various modifications of the DE algorithm, including jDE [12], JADE
[13], SHADE [14], L-SHADE [15] and many others, which mainly focus on the
control parameter and population size adaptation. However, here we will only consider
basic algorithms and their performance when using the soft island model concept. The
listed modifications could also be used with SIM.
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4 Experimental Results

Applying SIM to population-based algorithms requires some modifications of these
algorithms. First of all, if the algorithm uses the best solution in the population, this
best solution has to be different for each island. So, in the PSO algorithm with SIM,
each island has its own local best solution, and during the particle velocity calculation,
the choice of the best solution to follow is probabilistic: with the locality probability of
P, the best solution from the current island is chosen, otherwise it is chosen from any
other island.

In the case of DE, for DE/rand/1 and DE/rand/2, the random indexes r1 − r5 could
be chosen from either the current island or another island with the probability P. For
DE/best/1, DE/best/2 and DE/current-to-best/1, the best solutions could also be chosen
from other islands.

The two main parameters of the SIM are the number of islands and the locality
probability P. To discover the influence of these two parameters on the algorithm
efficiency, a number of experiments have been performed using CEC’2017 optimiza-
tion problems [5] introduced in the competitions for bound-constrained continuous
optimization. In these experiments, only problems with a dimension of 10 were used.

For all variants of PSO and DE, firstly the classical algorithms, i.e. 1 island, were
tested; and then the algorithms with 2, 3, 4, and 5 islands. The locality probability for 2
islands was tested from 0.5 to 1.0 with a 0.05 step. For 3 and more islands, the
probability changed from 0.35 to 1.0 with a 0.05 step. Note that the probability of 1.0
means that there is no exchange between islands, i.e. this corresponds to solving the
optimization problem several times with a smaller population size.

The population size for DE was set to 150, and the individuals belonging to islands
did not change during the optimization process. The total number of fitness calculations
available for all algorithms was equal to 100,000.

To measure the efficiency of the possible variants of the soft island model, 51 tests
for all 30 test functions have been performed. The difference between the function value
at the optimum and the achieved function value in the best found position is used as the
efficiency measure. The median value over 51 tests on each function and mean value
over all functions were calculated. Figure 1 shows the resulting efficiency for three DE
mutation strategies, namely best/1, best/2 and target-to-best/1 for 2, 3, 4 and 5 islands;
Fig. 2 shows the results for rand/1 and rand/2 strategies for the same number of islands.

Increasing the locality of each island improves the efficiency of the three first
variants of DE, which will be observed by the overall trend for these algorithms. The
probability value of around 0.90–0.95 appears to be the best choice for all mutation
strategies, while the probability of 1.0 (independent islands) results in a significant loss
of efficiency.

For two other variants of DE which do not have a separate best solution saved for
each island, it can be observed that the probability of 1.0 is better than any other
probability value. This is due to the nature of these mutation strategies, which are
focused on exploration, rather than exploitation. Allowing the islands to be indepen-
dent and having a smaller island size improves the exploitation abilities simply due to
the fact that this is the same as restarting the algorithm several times.
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Fig. 1. DE efficiency for different numbers of islands and different probabilities, strategies
DE/best/1, DE/best/2 and DE/target-to-best/1.

Fig. 2. DE efficiency for different numbers of islands and different probabilities, strategies
DE/rand/1 and DE/rand/2.

Soft Island Model for Population-Based Optimization Algorithms 73



In addition to considering averaged values, also the Mann-Whitney statistical tests
(p = 0.01) have been performed to estimate if there was really a significant improve-
ment in the efficiency of each algorithm. For this purpose, statistical tests comparing
the basic algorithm with one island with all the other SIM variants separately for all 30
functions have been performed. After this, the number of functions with significant
improvement according to the statistical test was calculated. The improvement was
determined as the number of cases where the efficiency significantly increased minus
the number of cases where the efficiency significantly dropped. Figure 3 shows the
graphs for the differential evolution.

The figures show that the overall trend is that increasing the locality of islands for
most mutation strategies significantly improves the performance of most algorithms.
However, the DE/best/1 strategy seems to suffer from a lack of exploration possibili-
ties, because increasing the probability over 0.8 results in a loss in efficiency. This can
be explained by the behaviour of the mutation strategy: it tends to search around the
best solution and, as a result, often stagnates next to the local optima. It may also be
observed that, for example, in the case of 4 or 5 islands, DE/best/1 is better than a
single island algorithm for small probabilities because the SIM provides several best
solutions to follow with an almost identical probability.

As for other mutation schemes, including DE/best/2, which appears to be more
robust, the probabilities of 0.9-0.95 are the best available choice. Increasing the
probability to the maximum value of 1.0 usually leads to a drop in efficiency for all

Fig. 3. Statistical tests results for DE for different numbers of islands and different probabilities,
all mutation strategies.
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algorithms and numbers of islands. This happens due to the need of islands to exchange
information in order to balance exploration and exploitation.

The next series of experiments was performed for the PSO algorithms. The
experimental setup was the same, and as long as all the used PSO variants have star
topology in their base, for the SIM operation each island had its own best solution.
During the particle position change, there is a chance to select the best solution from
either the current island with a locality probability, or from any other island.

The averaged median values over all runs and all functions are presented in Fig. 4.
For all PSO variants the trend is similar to the one that had been observed for DE: a
larger locality of islands results in better solutions being received by the algorithms.
The probability of 0.9−0.95 seems like an optimal solution for all PSO variants. At the
same time, increasing the probability to 1.0 and making islands independent results in a
lower overall performance.

The performed statistical tests for PSO present a different picture (Fig. 5):
increasing the number of islands usually gives better performance even with a small
number of islands. This can be observed even for small probability values, though not
for all the PSO variants.

With large numbers of islands, for example 5 islands, which corresponds to a
topology, when every island has weak connections to other islands and has the pos-
sibility to use their information about the best solution, a larger number of significant
improvements when increasing the probability value was received.

Fig. 4. PSO efficiency for different numbers of islands and different probabilities.
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For Gauss PSO, improvements were achieved on 25 functions out of 30 for
probability P = 0.9. As before, setting P = 1.0 significantly decreases the algorithm
performance, which proves the importance of the modification.

5 Conclusions

In this paper, a novel island model, in which the interconnection between islands is
probabilistic, i.e. there is no explicit migration operator, was presented. The locality of
each island and, consequently, its connectivity level to other islands is controlled by a
single parameter, the probability to choose a solution for the operation from another
island. The SIM is relatively easy to implement, and it can be applied to any evolu-
tionary, biology-inspired or other population-based optimization techniques, which
require in their operators the use of several solutions at once. The experiments
described in this study have shown that SIM allows higher performance rates to be
achieved compared to the original algorithm, which was also proved by the
Mann-Whitney statistical tests. The probability of 1.0 or close to 0.35−0.5 is worse
than the probability of 0.9 or 0.95. It confirms that the observed improvement happens
due to the fact that the larger probabilities allow information exchange to be limited,
but without disabling it completely, which improves both the exploration and
exploitation abilities of different algorithm schemes.

Further work for improving the SIM may include the automatic adjustment of the
locality of each island, depending on their performance and similarity, dynamic island

Fig. 5. Statistical tests results for PSO for different numbers of islands and different
probabilities.
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reallocation, applying islands of different types, the dynamic change of the type of
islands and so on.

Acknowledgments. Research is performed with the support of the Ministry of Education and
Science of the Russian Federation within State Assignment project № 2.1680.2017/ПЧ.

References

1. Eberhart, R., Shi, Y.: Computational Intelligence: Concepts to Implementations. Morgan
Kaufmann, San Francisco (2007)

2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural networks, IV, pp. 1942–1948 (1995)

3. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

4. Ryzhikov, I., Brester, Ch., Semenkin, E.: A multi-objective approach with a restart
meta-heuristic for the linear dynamical systems inverse mathematical problem. Int. J. Inf.
Technol. Secur. 10(1), 93–102 (2018)

5. Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem Definitions and
Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective
Bound Constrained Real-Parameter Numerical Optimization. Technical Report, Nanyang
Technological University, Singapore (2016)

6. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution - an
updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

7. Kennedy, J.: Bare bones particle swarms. In: IEEE Swarm Intelligence Symposium, pp. 80–
87 (2003)

8. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE
Trans. Evol. Comput. 16(2), 210–224 (2012)

9. Xin, J., Chen, G., Hai, Y.: A particle swarm optimizer with multistage linearly-decreasing
inertia weight. In: International Joint Conference on Computational Sciences and
Optimization, vol. 1, pp. 505–508 (2009)

10. Li, H.R., Gao, Y.L.: Particle swarm optimization algorithm with exponent decreasing inertia
weight and stochastic mutation. In: Second International Conference on Information and
Computing Science, pp. 66–69 (2009)

11. Al-Hassan, W., Fayek, M.B., Shaheen, S.I.: PSOSA: an optimized particle swarm technique
for solving the urban planning problem. In: International Conference on Computer
Engineering and Systems, pp. 401–405 (2007)

12. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters
in differential evolution: a comparative study on numerical benchmark problems. IEEE
Trans. Evol. Comput. 10(6), 646–657 (2006)

13. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external
archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

14. Tanabe R., Fukunaga, A.: Success-history based parameter adaptation for differential
evolution. In: IEEE Congress on Evolutionary Computation, pp. 71–78 (2013)

15. Tanabe, R., Fukunaga, A.: Improving the search performance of shade using linear
population size reduction. In: IEEE Congress on Evolutionary Computation, pp. 1658–1665
(2014)

Soft Island Model for Population-Based Optimization Algorithms 77



A Smart Initialization on the Swarm
Intelligence Based Method for Efficient

Search of Optimal Minimum
Energy Design

Tun-Chieh Hsu1 and Frederick Kin Hing Phoa2(B)

1 Department of Statistical Science, Duke University, Durham, USA
2 Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

fredphoa@stat.sinica.edu.tw

Abstract. Swarm intelligence is well-known to enjoy fast convergence
towards optimum. Recently, the Swarm Intelligence Based (SIB) method
was proposed to deal with discrete optimization problems in mathemat-
ics and statistics. Whether it was the traditional framework or the aug-
mented version, the initialization of the particles were always done ran-
domly. In this work, we introduced a smart initialization procedure to
improve the computational efficiency of the SIB method. We demon-
strated the use of the SIB method, initialized by both the uniform pool
(standard procedure) and the MCMC pool (smart initialization), on
the search of optimal minimum energy designs, which were a new class
of designs for computer experiments that considered uneven or func-
tional gradients on the search domain. We compared two initialization
approaches and showed that the SIB method with smart initialization
could save much experimental resources and obtain better optimal solu-
tions within equivalent number of iterations or time.

Keywords: Swarm Intelligence Based (SIB) method
Smart initialization · Minimum energy designs (MEDs)
Computer experiments · Nature-inspired metaheuristic algorithm

1 Introduction

In the past few years, there was a debate between spending long computing
time to obtain the best results and spending short computing time to obtain
adequately good results. For most practical problems in our real world, most
leaned on the latter position for cost efficiency. Nature-inspired metaheuristic
algorithms attempted to solve complicated optimization problems from natural
inspirations via simulating the composition, evolution, thinking, foraging and
many other behaviors of human, nature or animals [1]. Swarm intelligence, a
major class of metaheuristics, referred to the concept intrigued by the natu-
ral collective behavior of decentralized, self-organized system. Particle Swarm
c© Springer International Publishing AG, part of Springer Nature 2018
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Optimization [2], Shuffled Frog Leaping [3], Artificial Bee Colony [4] and many
others belonged to this class. Although these state-of-the-art algorithms were
widely used in many engineering problems for decades, they were not popular in
traditional optimization problems in mathematics and statistics mainly because
of the discrete domain.

[5] proposed a new nature-inspired metaheuristic optimization method called
the Swarm Intelligence Based (SIB) method. It apparently worked well in dis-
crete optimization problems in mathematics and statistics, such as the search
of circulant partial Hadamard matrices with maximum number of columns [6],
the optimal E(s2) supersaturated designs [7] and the optimal Latin hypercube
design under multiple objectives [8]. It also worked well in engineering prob-
lems with continuous domain, like an efficient construction of confidence regions
for target localization [9]. Recently, an augmented version of the SIB method,
namely the SIB 2.0, was proposed with the ability to change the particle sizes
during the optimization procedure, it was applied to some timely problems like
irregular-shaped community detection and change point analysis [10].

The SIB method inherited an excellent divide-and-conquer property from
most swarm intelligence approaches, and this property allowed the algorithm
to compute efficiently via parallel computing [11]. However, due to the curse of
dimensionality, the algorithm could not be efficient when the search domain or
the number of possible solutions was too large to handle. This work aims at
providing a remedy to effectively improve the efficiency of the SIB method via
a smart initialization. We demonstrate this remedy by searching a new class of
computer experimental design called the minimum energy design.

The rest of this paper was organized as follows. We introduced the minimum
energy design in Sect. 2. Then we recalled some basic concepts of the SIB method
and proposed the smart initialization in Sect. 3. We applied the new SIB method
to search for the best designs in Sect. 4. We provided some concluding remarks
in the last section.

2 Minimum Energy Design (MED): An Introduction

Modern experiments were capable of investigating large-scale systems with com-
plex response surface, but the cost reduction in terms of time, labor and other
monetary resources became the key issues for the design of experiments to
achieve cost-efficiency. Researches in experimental designs recently focused on
computer experiments, but it was nontrivial to assure if the deterministic com-
puter codes and the corresponding surrogate models accurately capture most
variability of the responses and represent actual systems respectively. As a result,
the initialization to assign representative and meaningful samples became a
recent focus to the statisticians. Space filling designs attempted to assign samples
to cover the available domain as apart as possible, aiming at gaining maximum
insights from the domain using the fewest number of samples. Such designs
became useful in complex meta-modeling [12] such as Krigin [13]. Extended
studies of such designs were referred to [14].



80 T.-C. Hsu and F. K. H. Phoa

An underlying assumption behind the formulation of traditional space filling
designs was that the domain is always flat or follows a constant function. How-
ever, some non-constant functions might be imposed in the domain in reality.
Traditional space filling designs lacked the ability to incorporate this informa-
tion, and thus failed to achieve optimal uniformity accordingly. This led to the
birth of Minimum Energy Design (MED), which was a new kind of space fill-
ing design proposed in [15]. Unlike traditional space filling designs, MED was
able to adapt different types of design region and objective. It used a physical
system analogy of electrical particles inside a box to motivate the design. The
particles with the same charge repelled each other and occupied the positions
where the total potential energy among the system could be minimized. This
repulsive characteristics connected the MED to the famous maximin distance
design proposed in [16].

Following [15], a MED D with its design points {x1, . . . , xn} was optimal if
it satisfied the criterion

max
D

min
i,j

d(xi, xj)
q(xi)q(xj)

. (1)

and the charge function was defined as

q(x) =
1

{f(x)}1/(2p)
. (2)

where f(x) was a desired density of the representative samples or the underly-
ing domain function. This formulation was inspired from the potential energy
between two particles. The detailed description of the formulation was referred
to [15]. The optimization procedure of MED was computationally difficult or
sometimes infeasible within reasonable time frame, so we proposed to tackle via
the SIB method.

3 Swarm Intelligence Based Method and the Smart
Initialization

We briefly review each step of the SIB method proposed in [5] below.

0: Randomly generate a set of initial particles.
Evaluate objective function value of each particle.
Initialize the local best (LB) for all particles and the global best (GB).

1: For each particle, perform the MIX operation.
2: For each particle, perform the MOVE operation
3: Evaluate the objective function value of each particle
4: Update the LB for all particles and the GB.
5: If the updated value is not converge or the algorithm does not reach the

setting iterations, repeat Step 1 to Step 4.
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Prior to the initialization step, several parameters and information were
required, including the stopping criteria, the swarm size N , and the numbers
of exchanges with the local best (LB) particle qLB and the global best (GB)
particle qGB . Then N initial particles were generated from a random pool of
particle units and objective function values were calculated, then the LB and
GB particles were defined accordingly.

The MIX operation was a unit exchange procedure. To exchange with the LB
(or GB) particle, the units in the current particle was first ranked and the worst
qLB (or qGB) units with the least contribution to the objective function values
were deleted. Then the best qLB (or qGB) units from the LB (or GB) particle
were added to the reduced particle. Therefore, the MIX operation creates two
hybrid particles for the MOVE operation to compare with the current particle in
terms of the objective function values. If either best particle was the best among
three, it was updated as the current particle in the next iteration. If the current
particle was still the best, some random components were added to the reduced
particle to form a new hybrid particle. The latter step ensures the particle to
escape from the local attractor. The search continued until the objective function
value reached its optimum or the number of iteration hit its limit.

As discussed in [5], there were several settings that governed the computa-
tional efficiency of the SIB method. It included the initial number of seeds, the
domain size and the number of unit exchanges with the best particles. It was
obvious that the larger initial number of seeds the faster the convergence to
the optimum, and the smaller the domain size the faster the convergence to the
optimum. It was an art to pick the adequate unit number of exchanges with the
best particles, and it required domain knowledge from the field experts. If one
chose the number to be too small, the convergence rate would be too slow to
the optimum. However, the particles would easily trap in local attractors if one
chose the number to be too large.

[5] did not mention that there was another key setting of governing com-
putational efficiency. It was the method of selecting the initial units and the
formation of the sample pool. Whether it was the traditional SIB method or the
SIB 2.0, the sample pool was always the complete possible set and the selection
of initial units to form a particle was always done randomly. It was similar to
imposing a uniform sampling on a group of numbers that was known in prior to
follow a specific distribution.

We propose in this work a smart initialization step that overwrites the ran-
dom selection of units for creating initial particles. It is not a defined step but
a concept. One can perform a screening-like procedure to pick the potentially
useful units in prior, or one can impose different weights or probabilities on all
units. The key idea is to select units not equally by utilizing some prior knowl-
edge or information. This new step may spend slightly additional computational
time before the traditional first step is performed, but it is usually worth to do
as the time of convergence towards optimum can be shortened significantly, or
better results can be obtained under the same amount of computational time.
We demonstrate this idea via the search of optimal MED in the next section.
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4 A Search of Optimal Minimum Energy Designs via
Swarm Intelligence

In this section, we take the two-dimensional probability distribution with
banana-shaped contour discussed in [17] as a demonstration. The density func-
tion was given by

fB = fd ◦ φB (3)

where fd is the density of a d-dimensional multivariate normal distribution,
N(0, diag(100, 1, 1, ..., 1)), and φB(x1, . . . , xd) = (x1, x2+Bx2

1−100B, x3, . . . , xd)
with constant B > 0. Thus,

fB(x1, . . . , xd) ∝ exp(
−x2

1

200
− 1

2
(x2 +Bx1

2 − 100B)2 − 1
2
(x2

3 +x2
4 + ...+x2

d). (4)

The dimension and constant was chosen as d = 2 and B = 0.03 for demonstration
purposes.

We first proposed the SIB algorithm to search for optimal MED:

0: (Random or Smart) Generate a set of initial MEDs.
Evaluate (1) of each MED.
Initialize the local best (LB) for all MEDs and the global best (GB).

1: For each MED, perform the MIX operation.
2: For each MED, perform the MOVE operation.
3: Evaluate (1) of each updated MED.
4: Update the LB for all MEDs and the GB.
5: If the algorithm does not reach the setting iterations, repeat Step 1 to Step 4.

In Step 0, the initial MEDs were generated by two different approaches and
we compared the performance of these two approaches. The first approach was
the “random” initialization that commonly used in the standard SIB method.
We first defined the objective function as Eq. 1, where Eq. 4 was considered
as the f(x) shown in Eq. 2. Then we set up the candidate pool by generating
10000 banana-shaped random samples uniformly scattered in the experimental
region [−20,−20] × [−10, 5]. We called it the “Uniform Pool” in the rest of
the paper. After the optimization was performed via the SIB method, these
scattered points eventually converged to the ideal banana-shaped distribution.
Figure 1 illustrated the sample points that were well-spread over all region of the
banana-shaped contour plot. This result successfully demonstrated that the SIB
method could capture the characteristic of the density with only a few points,
that greatly reduced the experimental and prediction costs in many industrial
practices, especially each data point was expensive.

In the second approach, we cooperated prior knowledge of the density and
“pre-selected” data points into the candidate pool via a Markov Chain Monte
Carlo (MCMC) sampling method. On top of the standard MCMC framework,
there were many extensions from MCMC algorithms that were widely used in
statistical inference. We chose the adaptive MCMC algorithm to approximate the
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Fig. 1. Different amount of banana-shaped random samples generated from SIBMED
method with 50 iterations.

data distribution by automatically earning better parameter values of MCMC
algorithms while they ran. Readers could refer to [17,18] for detailed introduc-
tion and method comparison. The smart initialization via unit “pre-selection”
sharpened the focus of the search domain that followed the target distribution,
and ensured that the random jump would not deviate too much for the target
distribution. We set up the candidate pool by pre-selecting 10000 data points
via adaptive MCMC sampling that were distributed in a banana shape shown
in Fig. 2.
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Fig. 2. The initiated MCMC pool

We call it the “MCMC Pool” in the rest of the paper. After the optimization
was performed via the SIB method, these pre-selected points also converged to
the ideal banana-shaped distribution illustrated in Fig. 3.

It was not trivial to observe the difference of data point distributions between
Figs. 1 and 3. In fact, both the uniform pool and the MCMC pool were capable
of generating representative sampling points, but samples from the MCMC pool
had certain advantages in terms of extreme-point representations, energy value
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Fig. 3. Different amount of banana-shaped random samples generated from SIBMED
using MCMC pool with 50 iterations.

and computational efficiency. First, under the same number of iterations, the
SIBMED initialized via the MCMC pool successfully generates samples from two
corners of the banana shapes when the MCMC pool is used in the initialization,
but the SIBMED initialized via the uniform pool fails to do so. This difference
is shown in the existence of samples in Fig. 3 but not in Fig. 1. In order to craft
the complete shape of the function, it is actually important to include a few
samples from the extreme regions, which are the regions that have very small
but nonzero probability for samples to exist. Failure to do so may alter the true
shape of the function.

Figure 4 recorded the performance of two initialization approaches. The
left figure showed the decrease of energy values when the number of iteration
increased. It was clear that the energy decreased more quickly when the MCMC
pool was used than that when the uniform pool was used. In particular, the
SIB initialized by the uniform pool required 30 iterations to obtain a MED with
energy value −1.13, but the SIB initialized by the MCMC pool required only 10
iterations to obtain a MED with energy value −1.11, and it decreased to −1.17
with 20 iterations. This showed that given a fixed number of iteration, the SIB
initialized by the MCMC pool could obtain a MED with lower energy value.
One might argue that the time for one iteration in two approaches might not be
the same. The right figure compared the time and iteration of two approaches.
It was natural to see an increasing trend on time when the number of iteration
increased. Although the time spent in the first 20 iterations were close for two
approaches, the SIB initialized by the MCMC pool clearly spent less time than
that initialized by the uniform pool to finish a single process.

In practice, one may likely be interested in how two pools are performed on
minimizing the energy of the MEDs in terms of computing time (in minutes),
which is shown in Table 1. Notice that the lower the energy, the better the space-
filling property of the MED. It is obvious that the computing time is much lower
when MCMC pool is used. The last row of the table shows the efficiency ratio
when comparing the computing time spent when MCMC pool is used instead of
the uniform pool. We define it as the ratio of computing time between the MCMC
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Table 1. Energy of designs and computing time using different pools

Pool Energy

−1.10 −1.14 −1.18 −1.20

Uniform pool 7.3 11.2 24.1 68.1

MCMC pool 2.4 4.0 8.6 16.1

Efficiency ratio 32.88% 35.71% 35/68% 23.64%

pool (numerator) and the uniform pool (denominator). To obtain a MED that
achieves a certain level of energy, the computing times being used in MCMC pool
are only 20–35% of those used in uniform pool. This shows the efficiency of using
MCMC pool in conjunction to the SIB method in the problem of optimization.

5 Discussion and Conclusion

The main contribution of this work was to introduce a smart initialization proce-
dure to improve the computational efficiency of the SIB method. This new pro-
cedure could be applied universally in all forms of the SIB method, or perhaps
some other nature-inspired metaheuristics algorithms. We demonstrated the use
of the SIB method, initialized by both the uniform pool (standard procedure)
and the MCMC pool (smart initialization), on the search of optimal minimum
energy designs (MEDs). This class of designs was useful and more realistic when
a computer experiment with uneven or functional gradient was imposed on the
solution domain. A comparison between two initialization approaches showed
that the SIB method initialized by the MCMC pool could save much experimen-
tal resources and obtain better MEDs.

There were still several potential improvements from this work. For example,
although we demonstrated the adaptability of the SIB method on the search of
optimal MEDs to improve the computational efficiency by cooperating with prior
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knowledge as the smart initialization, the modification or selection of the prior
knowledge could potentially be an important issue for investigation. A consid-
eration of inappropriate pool might neglect the uncertainties and led to missing
searches on important regions of the response surface. The topic of the candidate
pool selection to improve efficiency without overlooking useful information was
still under investigation.

There were several approaches for sampling from arbitrary distributions in
the literature. The most simplest approach was the inverse probability transfor-
mation method. The sampling procedure started from taking a uniform sample
u where u ∈ [0, 1] and then returns the largest number x from the domain of
the distribution P (X) such that P (−∞ < X < x) ≤ u. However, it required
a close form expression and thus was of limited use when the inverse function
did not exist or was difficult to obtain. An alternative approach was the Markov
Chain Monte Carlo (MCMC) method, which approximated the target poste-
rior distribution by drawing values of θ from the approximate distribution, then
sequentially updating those draws according to the most recent value. However,
the sampling results might not be as representative as what the SIB method
obtained. Therefore, this work introduced the SIB method to search for optimal
MED, which could be applied to obtain a representative sample from a com-
plex density. In specific, MED was able to reconstruct underlying distribution
by appropriately selecting the charge function, so that the sample points would
stay as far apart as possible but still retained the feature of the distribution.
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Abstract. The article considers the possibility of applying an optimization
algorithm based on the behavior of an ant colony to the problem of forming a
multiversion fault-tolerant software package. The necessary modifications of the
basic algorithm and a model of graph construction for the implementation of the
ant algorithm for the chosen problem are proposed. The optimization takes into
account such features as cost, reliability and evaluation of the successful
implementation of each version with the specified characteristics. A certain
combination of versions in each module affects the characteristics of the module,
and each characteristic of the module affects the characteristics of the system, so
it is important to choose the optimal structure for each module to ensure the
required characteristics of the system as a whole. The program system that
implements the proposed algorithm is considered. The simulation results
obtained with the help of the proposed software tool are considered. The results
confirm the applicability of the ant algorithms to the problem of forming a
multiversion software package, and they show their effectiveness.

Keywords: Ant algorithm � Multiversion programming � Software redundancy
Reliability � Optimization

1 Introduction

In recent years, industries that require reliable, fault-tolerant control systems i.e.
high-technology industries [1], using composite and dangerous materials, autonomous
unmanned objects, from multi-rotor systems delivering goods to vehicles with autopilot
function are developing. Increasingly, the problem of developing fault-tolerant control
systems becomes urgent. Nowadays the most relevant approach is N-version pro-
gramming. N-version programming [2] offers parallel execution of N independently
developed functionally equivalent versions with the selection of the correct output by
the decision block, usually based on voting. Each N versions transmits the results to the
decision block. The voting block accepts all N outputs as input data and uses them to
determine the correct or the best output. As a rule, there is no need to interrupt the
operation of the whole system while voting. To increase the fault tolerance of software
systems, the software redundancy is introduced into them in the most important
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modules. There exist several such modules as a rule. In our example we will consider
the software with 10 modules (m1–m10). Each module is a solution to a specific
problem in the program that can be solved in various ways using different algorithms.
We will assume that there exist 10 implementation types, i.e. 10 versions for each
module. Each version has its own characteristics: cost of implementation, reliability
and probability of successful implementation, i.e., the probability that it will be pos-
sible to implement a version with the chosen algorithms and functionality for the
declared cost and it will have the predicted reliability. The last parameter is important
for the risk evaluation to develop fault-tolerant systems. The characteristics are eval-
uated and determined on the basis of experience in this field, and, if it is necessary, a
prototype method [3] could be used to obtain more reliable evaluation of the charac-
teristics. A certain combination of versions in each module gives us the characteristics
of the module, and each characteristic of the module affects the characteristics of the
whole system, so it is important to choose the optimal structure of each module to
provide the required characteristics to the system as a whole. The structure develop-
ment of the multiversion software package is an important optimization problem that
can be solved in various ways, from simple enumeration to the genetic algorithms
getting the popularity recently. Thus, we proposed a method and tool for the software
control by configuration of the components of the fault-tolerant software and the
control system as a whole.

2 Ant Algorithm

Nowadays “natural algorithms” which are the optimization algorithms based on the
natural ways of decision making are actively investigated by a lot of scientists [4]. One
of those algorithms is the ant colony optimization algorithm (ACO) [5]. That algorithm
is a result of the combined work of scientists who study the behavior of social insects
and the IT specialists. The base of that algorithm is the ant behavior and their ability to
find the shortest route to a food source.

An ant colony is a multiagent system. Despite the simplicity of its separate parts,
that system can solve very sophisticated problems. Every single member of the colony
tries to find the shortest route to a source of food. While doing that, it does not have an
access to the knowledge of other members; therefore, there should be a way that can
help them to combine their knowledge. The ant ability to mark a route with pher-
omones is a way to combine their knowledge. If an ant finds a source of food, it marks
its route using pheromones on the way back to the colony. The other ants will use that
signal while searching for food. The more pheromones are used to mark the route the
higher probability that an ant will choose that route in his search for food is.

That mechanism of self-organization became a base for the ant colony algorithm.
The main idea of the algorithm is that the agents having the behavior that models the
behavior of ants are united into a set to solve the optimization problem. The agents
coordinate their work with the help of stigmergy which is a mechanism of the indirect
collaboration using the alterations in the common environment. In case of ACO that
mechanism is pheromones. The agents mark the traversed path with the help of
pheromones increasing the probability of choosing that route among other versions.
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There is a mechanism which is known as the evaporation of the pheromones and it is
used to prevent a situation when the algorithm goes irreversibly to the area of the local
extremum. That mechanism is used to make the paths which were chosen as a solution
by a mistake, less attractive by evaporating the pheromones on them. At the same time,
the routes which were selected by agents during the decision making process will
increase their attractiveness and that should lead to a situation where all the agents will
select a general solution [6].

3 Modification of the Ant Algorithm

We have a problem concerning the graph according to which ants will move. Our case
will differ from the traveling salesman problem that is often provided as an example of
the ant algorithms operation [7, 8]. In our case, it will be a directed graph where an ant
will receive M solutions according to the number of modules in the system; in this
example this number is 10. Each time the arcs will represent all possible implemen-
tations of this module. The required number of versions for the multiversion voting is
N > 2; we have only 10 types of versions. So we will consider all possible combi-
nations of these versions in the module at N from 3 to 10. Each version can be included
into the module only once, as the use of duplication in software systems does not make
any sense unlike the duplication in hardware systems because we copy all the errors
contained in it while copying the version [9]. Therefore, we cannot build a module
from more than 10 non-repeating versions. We will take into account all theoretically
possible combinations with the given constrains for a number of versions. The possible
number of these combinations will be 968 for each module, i.e., an ant will choose
from 968 arcs at each step at N from 3 to 10: {1;2;3}… {1;4;8;9;10}… {2;3;5;7;8;9}…
{1;2;3;4;5;6;7;8;9;10}. The total number of the implementation versions of the system
will be 968 m, where m is a number of modules in the system. To simplify the
calculations checking, we take a structure of the software where all the modules from 1
to m are performed sequentially with the probability P = 1. It should be noted that the
software implementation of our approach helps to specify any software structure due to
a minor correction of the program code since the calculation of the system’s charac-
teristics is implemented as a separate function.

The weight of each arc will be calculated according to the formula

Wij ¼ R � Vð Þb
C

; ð1Þ

and the probability of the transition along this arc is

Pij ¼
saij �Wij

P
saij �Wij

� � ; ð2Þ

where sij is a value of the pheromone on this arc, are coefficients that affect the
operation of the algorithm: the larger a, the more the ant’s solution depends on the
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pheromone level; the larger b, the larger the ant’s solution depends on the weight of the
arc [10]. It is important to note that in our case, the arc has no length as in the classical
algorithm, and the weight is more of an inverse characteristic, i.e. the more weight, the
more “attractive” the arc is.

In the classical model, when an ant traversed a route successfully it leaves a trace
on all the passed edges inversely proportional to the length of the traversed route. In our
implementation the pheromone value will increase by the set values in two cases: if an
ant selects a structure that satisfies the constraints (for example, when optimizing
according to the cost one should set constraints on minimum reliability and evaluation
of successful implementation of the system) and in the case when a structure replaces
the optimal solution. Further the given evaluation will be called as a successful ratio.
This change was done due to the same number of edges traversed by all ants (according
to the number of modules when each arc is a specific combination of versions in the
module) and the absence of a length indicator replaced by a weight indicator. More-
over, the traces of the pheromone evaporate, i.e., the intensity of pheromone decreases
on all the edges of each iteration of the algorithm. Thus, it is necessary to update the
intensity values.

4 Software Implementation

Let’s consider the software implementation of the proposed modified algorithm. Figure 1
shows the program interface and the optimization results of work at minimum cost and
minimum system reliability of 0.95 and the minimum successful ratio of 0.95. It is
possible to load version values from a file or generate values randomly with the help of
this program. In case of random generation, all versions get a cost value from 15 to 200,
the reliability from 0.60 to 0.99, the probability of successful implementation from 0.65
to 0.99. Randomly generated values can also be written to a file and used later. The form
specifies the minimum and maximum version values, by default from 3 to 10; the
program generates all possible combinations of 3, 4, 5, 6, 7, 8, 9, 10 non-repeating
versions in the module. When the “Getweight” button is pressed, the cost, reliability and
probability of successful implementation of all possible combinations of each module are
calculated. For example, it is possible to take the first module, made up of the following
versions {1; 2; 3}. The cost is calculated as Cm1 = C11 + C12 + C13, reliability is
calculated as Rm1 = R11 + (1–R11)*R12 + (1–(R11 + (1–R11)* R12))* R13, the
probability of successful implementation is calculated as Vm1 = V11* V12* V13.

Further all the necessary parameters are given on the form in order: the coefficients
a and b affecting the calculation of the probability of the ant moving to the certain arc,
pheromone evaporation rate after each iteration, a number of ants in each iteration,
constraints according to the cost, reliability, successful ratio for optimization, the
coefficients of increasing pheromones for routes that satisfy the constraints and route
that replaced the global best solution, and the selection of the optimization regimes:
maximum reliability, maximum successful ratio of the system, the maximum of their
product, the minimum cost of the system implementation. It should be noted that to
optimize according to the selected parameter, constraints by the remaining parameters
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are used; the constraint by the selected parameter is not checked, the program tries only
to maximize (minimize) the parameter with the remaining constraints.

In the middle part of the form the characteristics of all versions for all modules are
displayed, lines correspond to the modules, columns correspond to the versions, cost,
reliability and probability of successful implementation are given for each version. On
the right there is the output area of the calculation results. They are a number of possible
combinations of versions for each module, a number of possible combinations of the
system from the given number of modules, the selected optimal structure in the form of a
matrix, characteristics of the system for the selected optimal structure. The cost of the
whole system, its reliability and successful ratio are present. Also the parameters of the
selected versions for each module are highlighted in red in the characteristics area of all
available versions. Let’s consider the result of cost the optimization presented in Fig. 1.
It can be evident that the minimum number of versions required is 3 for the majority of
modules. The optimal structure satisfies the constrains and gives the price of the system
in 2346. It is possible to notice that not always the most successful versions are used if
one studies the characteristics of all versions carefully. For example, version 8 for
module 5 has a reliability of 0.92 at the cost of 18 and the probability of successful
implementation is 0.86, but it is not selected. This leads to the conclusion that the
resulting solution is not absolutely optimal and ants for the given number of iterations
did not pass a more optimal route, but the resulting solution as a whole is acceptable and

Fig. 1. Result of work at optimizing by cost
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successful, since the majority of the cheapest and the most reliable versions have been
selected and, as a result, they satisfy all the constraints.

Let’s consider the results of the system operation in various optimization modes
presented in Figs. 2, 3, 4. It is clear from the results that the algorithm works correctly;
it allows getting a good structure of the system for a relatively small number of
iterations. With the repeated starts of ants, the solution continues to improve when there
exist the better branches in the neighborhood of the most successful of the traversed
through routes. However, if any ants haven’t traversed through the branches corre-
sponding to the really optimal solution, or close to the optimal solutions at the initial
iterations, then the pheromones evaporate on them and the probability of passing
through them, and therefore improving the global best solution, is greatly reduced.

It also depends on the chosen coefficients a and b. However, the selection of b
values that are much higher than a, although it will allow to avoid such situations,
firstly will turn the algorithm into greedy reducing the influence of pheromones, and in
our case even less intelligent since with little effect pheromone on the probability of
branching, they will remain close, and hence the choice is more random.

Table 1 presents the results of the program with different coefficients alpha and beta.
The cost optimization is performed with constraints by the reliability and the

successful ratio when the reliability and successful ratio are more than 0.9. Every
implementation contains 10 iterations of 300 ants. According to the results one can that
an increase in the coefficient a with respect to b leads to a deterioration of the solution

Fig. 2. Result of work in the optimization by reliability
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Fig. 3. Result of work in the optimization of the successful ratio

Fig. 4. Result of work in the optimization by R*V
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since when selecting a route the arc weight is not so important for the ant. Therefore the
ant is unlikely to choose a more optimal route.

Table 2 shows the results of the program with different cost constraints. Then the
optimization by the reliability is performed. According to the results, as the cost
constraint increases the system collects much more reliable system structure. However,
after the cost of 4000, the reliability practically stops to increase, if with the constraints
of 2500–4000 the optimal structure has almost reached the constraint, then with the
constraint of 5000, the optimal structure costs 4227. That is far enough from the
constraint which means that with the specified version characteristics, further increase
in cost does not make sense in the case when a goal is to maximize the reliability.

Table 3 shows the results of the program with various numbers of ants in each
iteration; each time it takes 10 iterations. The cost optimization is performed when the
reliability constraints and a successful ratio are more than 0.9. According to the
received results, the solution is more successful when a number of ants from 10 to 200
increases since a larger number of ants capture more variants of routes. That means that
the probability of a more optimal path increases. An interesting result with a further
increase of ants in each iteration. The solution stops to improve. One can assume that
when 200 ants have traversed, the most successful paths receive a sufficient increase in
the level of pheromone. It greatly reduces the probability of finding subsequent ants in
each iteration of alternative route s that could lead to the improvement in the solution.
There exists another regularity that with an increase in the number of ants, the “ran-
domness” of the solution is reduced slightly. Table 3 shows the most successful

Table 1. Results of changes in the coefficients a and b

a; b 0.3;3 0.6; 2 1;1.5 2;1 3;0.5

Cost 2589 2828 3078 3103 3226
Reliability 0.9245 0.9207 0.9378 0.9761 0.9312
Succ. ratio 0.9997 0.9999 0.9994 0.9994 0.9975

Table 2. Results of changes in the maximum cost

Max cost 2500 3000 4000 5000

Cost 2490 2976 3990 4227
Reliability 0.9478 0.9701 0.9970 0.9985
Succ. ratio 0.9999 0.9992 0.9981 0.9955

Table 3. Results of changes in the ants number in the iteration

Ants 10 50 100 200 300 600

Cost 3200 2869 2655 2309 2512 2440
Reliability 0.9557 0.9283 0.9212 0.9551 09699 0.9163
Succ. ratio 0.9987 0.9998 0.9999 0.9999 0.9999 0.9999
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solutions from a set of experiments. If a number of ants is 10, the spread in the resulting
solutions is substantial (more than a thousand by value), then a number of ants is 300
and more, the close values are always obtained (the spread by value does not exceed
200).

5 Conclusion

The results of modeling in the proposed software environment show the applicability of
ant algorithms to the problems of forming the optimal structure of a multiversion
software package. The proposed algorithm has good performance as it allows obtaining
an acceptable solution for 100–3000 iterations. It is much faster than the comparison of
968 m combinations for the classic search for the optimal solution by going through all
the versions. The sensitivity of the algorithm to changes in the parameters of the
operation is investigated; regularities and optimal values of the parameters are revealed.
However, the result of the ant algorithm work is highly dependent on the passing of the
first group of ants that is almost random, since at the beginning the pheromone values
are the same, and the weights of the arcs are relatively close. The arcs will get an
increase in the value of pheromone when the first ants are selecting the routes that are
far from optimal, but improving the solution. However, the pheromone will evaporate
from really optimal but not used arcs. That will reduce the chance to find a really
optimal solution. To improve the operation of the algorithm further, one can suggest
the following variant: to run the first few groups of ants, compare the results obtained
by them at the first iteration, choose the best one and continue further modeling with
only the best group. It does not complicate the calculations significantly, but it will
eliminate the cases when the arcs far from the optimal solution received a high value of
pheromone at the beginning of the simulation and even a large number of further
iterations does not allow improving the solution.
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Abstract. Proteins complexes accomplish biological functions such as tran-
scription of DNA and translation of mRNA. Detecting protein complexes cor-
rectly and efficiently is becoming a challenging task. This paper presents a novel
algorithm, core-attachment based on ant colony optimization (CA-ACO), which
detects complexes in three stages. Firstly, initialize the similarity matrix. Sec-
ondly, complexes are predicted by clustering in the dynamic PPI networks. In
the step, the clustering coefficient of every node is also computed. A node whose
clustering coefficient is greater than the threshold is added to the core protein set.
Then we mark every neighbor node of core proteins with unique core label
during picking and dropping. Thirdly, filtering processes are carried out to
obtain the final complex set. Experimental results show that CA-ACO algorithm
had great superiority in precision, recall and f-measure compared with the
state-of-the-art methods such as ClusterONE, DPClus, MCODE and so on.

Keywords: PPI networks � Protein complexes � Core-attachment
Ant colony optimization

1 Introduction

Protein complex is a basic structural unit that can cooperate with each other to complete
the specific biological function [1, 2]. The protein-protein interaction (PPI) network [3]
is composed of a number of complexes which are related to each other to perform
certain functions.

In recent years, many methods have been proposed to predict protein complexes.
These methods greatly promote the progress in the field of complexes prediction.
According to the category of complex recognition algorithms, these algorithms can be
divided into the following categories: recognition algorithm based on dense sub-graph,
recognition algorithm based on hierarchical clustering, recognition algorithm based on
core-attachment structure.

Based on the theory of dense sub-graph in PPI networks, lots of algorithms are
proposed. In 2003, Spirin et al. [2] proposed the algorithm using the results of
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traversing the fully connected graphs to identify complexes. Bader et al. [4] proposed a
method, called molecular complex detection (MCODE). Palla et al. [5] proposed clique
percolation method (CPM) based on the close connection of sub-graph filtering algo-
rithm. And the algorithm’s application software is developed, called CFinder [6]. In
2006, Altaf-UI-Amin et al. [7] proposed the DPClus which can get the overlapping
complexes. In 2008, Li et al. [8] proposed IPCA algorithm, which is based on dense
sub-graph to identify overlapping complexes. In 2009, Liu et al. [9] proposed clus-
tering based on maximal cliques (CMC) algorithm, which can dig out the dense
sub-graph in PPI networks.

Hierarchical clustering theory is also used to predict protein complexes. In 2002,
Aivan and Newman proposed GN algorithm [10], which is used to partition the
modules in complex networks. In 2004, Hartuv et al. [11] proposed highly connected
sub-graph (HCS) algorithm. In 2009, Li et al. [12] proposed a fast hierarchical clus-
tering algorithm based on the local variable and edge clustering coefficient, and
redefined the protein complex. In 2012, Wang et al. [13] proposed OMIM algorithm to
predict duplicate complexes in hierarchical clustering system.

The core-attachment structure of complex is a significant view to detect protein
complexes. Leung et al. [14] designed CORE algorithm which calculates the p-value
for all pairs of proteins to detect cores. Wu et al. [15] proposed COACH algorithm.

Recently, swarm intelligence algorithms have been successfully applied to the
detection of complexes in PPI networks [20]. In addition, there are many other algo-
rithms, such as Markov Clustering (MCL) [16, 17] algorithm, ClusterONE [18]
algorithm, SPICi [19] algorithm and so on.

In this paper, we proposed a protein complex prediction algorithm based on
core-attachment structure and ant colony optimization method, CA-ACO. First, we
adopt the weighted matrix of the dynamic PPI network as the similarity matrix of the
undirected graph. Second, we use the clustering coefficient value of every node to
obtain the core proteins. We mark every neighbor node of core protein with unique
label through picking and dropping principle of ACO. Third, filtering processes are
carried out to obtain the clustering result.

2 Methods

2.1 The ACO Based Core-Attachment Design

Since the protein is not always active in the cell cycle, in order to construct a dynamic
model, we integrate the static PPI data and gene expression data because gene
expression level and protein expression level are consistent. If the gene expression data
at a certain timestamp is better than a threshold, then it can be considered that the
protein is active at this timestamp. By using three-sigma [29] principle, active threshold
is set. At a certain timestamp, if two proteins are active and interactional, it can be
considered that there is an edge between the two proteins at this time. As gene
expression data has 12 timestamps, the static network is divided into 12 sub-graphs
which correspond to 12 timestamps. Eventually, the dynamic PPI network is con-
structed. Figure 1 shows a process of dynamic PPI networks construction.
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Considering the organization of complexes, we combine the structure of
core-attachment [14] with the principle of picking and dropping to predict complexes,
and propose a novel algorithm, named CA-ACO. Figure 2 shows a part of the
core-attachment formation design. There are two clusters which are in dotted circles of
green and blue. Protein p and protein q are seed proteins. The connection between a
protein and others is represented by a solid line or dotted line. The full line represents
that two proteins belong to a cluster. Otherwise, they don’t belong to a cluster. Taking
p’s neighbor protein a as an example, protein a does not belong to the cluster whose
seed protein is protein p. Then, we should pick up a, and decide if protein a belongs to
other cluster. Protein b is the neighbor protein of protein p and q. As the Fig. 2 shows,
the protein b belongs to two clusters whose seed proteins are protein p and protein
q. For protein c which is connected with protein p and protein q. Firstly, node c did not
belong to cluster p and was picked up. Then, we have to decide its relationship with
other seed nodes. There is a full line between c and q. Then, node c needs to be dropped
out and put in the cluster whose seed node is protein q.

2.2 Description of CA-ACO Algorithm

The process of CA-ACO algorithm can be divided into 3 steps: similarity matrix
initialization, clustering and purification.

In the first step, the similarity matrix of the dynamic PPI network is composed of
12 sub networks’ weighted matrix. The greater the weight value is, the greater the

Fig. 1. An illustration example of dynamic PPI networks construction
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similarity between the nodes is. The similarity matrix of PPI network initialization is
shown in Eq. (1).

Sðvi; vjÞ ¼ sðvi; vjÞ if ðvi; vjÞ 2 E
0 else

�
ð1Þ

Where s(vi, vj) is weight value of edge (vi, vj). It represents the strength of the
interaction of proteins vi and protein vj in weighted PPI network.

In the second step, we can obtain protein complex set from dynamic PPI network.
There are two main processes: seed protein selection and attachment formation. In seed
protein selection process, we need to compute the clustering coefficient value [30] of
every protein by Eq. (2).

ccvðviÞ ¼ 2� ni
jneighðviÞj � ðjneighðviÞj � 1Þ ð2Þ

where neigh(vi) is neighbor nodes set of a node vi. A protein whose clustering coef-
ficient value is greater than the threshold will be added to the core protein set. In
attachment formation step, we need to access to neighbor protein set of every core
protein. By carrying out the picking and dropping operation [21] of ACO, seed pro-
teins’ neighbor proteins can be clustered. The probability of picking is calculated by
Eq. (3).

ppðvjÞ ¼ ð kp
kp þ sðvi; vjÞÞ

2 ð3Þ

where kp is a picking constant whose range of values is from 0 to 1, s(vi, vj) is the
similarity between the protein vj and the current core protein vi. In the operation of
picking, the probability of picking is compared with a random probability. When the
probability of picking is more than the random probability, the operation of picking is

Fig. 2. A part of the core-attachment formation design (Color figure online)
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executed. Otherwise, the protein vj is labeled the complex whose seed protein is the
protein vi. The probability of dropping is calculated by Eq. (4).

pdðvjÞ ¼ 2� sðvi; vjÞ if s(vi,vj)\kd
1 else

�
ð4Þ

where kd is a dropping constant whose range of values is 0 to 1, s(vi, vj) is the similarity
between the protein vj and the current core protein vi. The probability of dropping is
compared with random probability in the operation of dropping. When pd(vj) is more
than a random probability, the operation of dropping is executed. Therefore, the protein
vj is labeled the complex whose seed protein is the protein vi. Through the clustering
process, we can get the initial clustering results where complexes have core-attachment
structure.

In the third step, purification process is carried out. In the complex set, the
complex with just one protein is deleted, and protein complex which has same proteins
as others is removed. The protein complex set is obtained.

The pseudo-code of CA-ACO method is described as follows.

Algorithm: CA-ACO algorithm
Input: a dynamic PPI network G
Output: protein complexes set PC
Step 1: Initialization similarity matrix: the similarity matrix is shown in Eq.(1). 
Step 2: Clustering:  

Initialization: Set various parameters.
Seed selection: Compute the clustering coefficient of protein to obtain seed proteins by Eq.(2) . 

 Attachment clustering:
flag =0; 
For protein vi in the core protein set

For node vj in the neigh(i) 
Compute the probability of picking up the protein vj, pp, by Eq.(3)
If pp < random value & flag=0

Then label node vj as vi cluster, continue
Else pick up node vj , flag = 1
For other core protein vk except protein vi

Compute the probability of dropping out the protein vj , pd, by Eq.(4) 
If pd > random value

Then drop down protein vj, label vj as vk , flag=0, continue
End If

End For
End If

End For
If flag=1

Drop down protein vj, don’t label and flag=0
End If

End For
Put proteins with same labels into a cluster, get clustering results

Return the protein complexes set dd from the PPI network
Step 3: Refinement: filtering the protein complexes of Step 2. Return the protein complex set PC
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3 Experiments and Results

3.1 Experimental Dataset

In this paper, we adopt the PPI data of S.cerevisiae from DIP [24], MIPS [31] and
Krogan database [32]. Dynamic PPI networks [3] at 12 timestamps correspond to 12
static PPI subnets. Different subnets have different size, as shown in Table 1.

In this paper, we use the standard known protein complex set, CYC2008 [25],
which contains 408 complexes and 1,628 proteins. The biggest cluster has 81 proteins
while the smallest cluster has 2 proteins in protein complexes of CYC2008.

3.2 Evaluation Criteria

The precision [24] indicates the proportion of the predicted protein complexes suc-
cessfully matched by the standard protein complexes in the prediction of the complex.
It can be defined as:

precision ¼ Ncp

jPj ð5Þ

where |P| represents the number of predicted protein complexes, and Ncp indicates that
the number of the predicted complexes successfully matched by the known protein
complexes.

The recall [24] indicates the proportion of the known protein complexes success-
fully matched by the predicted complexes in the standard of the complex. It can be
defined as:

recall ¼ Ncb

jBj ð6Þ

where |B| represents the number of known protein complexes, and Ncb indicates that the
number of the standard protein complexes successfully matched by the predicted
protein complexes.

Table 1. The number of proteins and interactions in each subnet of different PPI networks

Data Timestamp 1 2 3 4 5 6 7 8 9 10 11 12

DIP Proteins 797 941 796 623 601 530 493 944 1090 592 661 461
Interactions 981 1444 1188 745 750 646 573 1705 2185 856 974 526

MIPS Proteins 737 897 781 583 570 531 470 839 1014 523 616 402
Interactions 1097 1443 1183 754 684 642 504 1238 1637 878 1207 700

Krogan Proteins 336 379 320 256 206 189 202 580 626 304 330 250
Interactions 334 464 331 234 210 184 213 1025 1081 314 373 258
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The f-measure [24] denotes the harmonic mean of precision and recall. It can be
defined as:

f � measure ¼ 2� precision� recall
precisionþ recall

ð7Þ

In order to further validate the biological significance of the predicted protein
complexes, we need to carry out the functional enrichment analysis by using p-value
[36] formulated as follows:

p� value ¼
Xn
i¼m

M
i

� �
N �M
n� i

� �

N
n

� � ð8Þ

where N is the number of protein in the PPI network, M is the number of proteins in a
GO term, n is the number of proteins which are annotated with the same GO term.
Generally, the smaller the p-value of a protein complex is, the stronger biological
significance the complex processes will be.

3.3 Comparison with Other Methods

To evaluate the performance of CA-ACO algorithm, we compare CA-ACO with CMC
[9], MCODE [4], CFinder [6], ClusterONE [18], CORE [14], COACH [15], RNSC
[25], DPClus [7], MCL [16, 17], ACO-MCL [26], HC-PIN [27], MOEPGA [28] and
FOCA [20] in terms of precision, recall and f-measure in the DIP dataset. It is obvious
that the precision value of our method is greater than other methods precision value.
The recall values of CMC, MOEPGA and FOCA algorithms are superior to our
method, which are 0.5900, 0.6000 and 0.6360 respectively. However, the f-measure
value of our method is much higher than other typical algorithms’ f-measure value. Our
method’s f-measure value is 0.6653. It indicates that the performance of CA-ACO
algorithm is optimal. The above analysis can be shown in Fig. 3.

Moreover, we also compare our method with the following prediction methods:
CSO [33], ClusterONE [18], COACH [15], CMC [9], HUNTER [34] and MCODE [4]
in terms of precision, recall and f-measure in the MIPS and Krogran dataset. As shown
in Fig. 4, our method achieves the highest f-measure of 0.6025, recall of 0.5524 and
precision of 0.6665 in MIPS dataset. On the Fig. 5, our method achieves the highest f-
measure of 0.5844, recall of 0.4347 and precision of 0.8920 in the Krogan dataset.

We use functional enrichment analysis to validate the biological significance of
methods. We calculate the p-value of detected complexes whose size are greater than or
equal to 3. A complex is considered significant when its p-value is less than 0.01.
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Table 2 lists the number and percentage of the identified complexes whose p-value
is in the range of <E−10, [E−10, E−5), [E−5, 0.01), >=0.01. Table 2 shows the
comparison of the functional enrichment of complexes detected by CA-ACO, MCL,
CORE and ClusterONE on DIP, MIPS and Krogan datasets. As shown in Table 2, we

Fig. 3. Precision, recall, f-measure values of various algorithms on the DIP dataset

Fig. 4. Precision, recall, f-measure values of various algorithms on the MIPS dataset
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can obtain the number of predicted protein complexes by various methods on different
datasets. The percentage and the amount of the predicted protein complexes with p-
value fall into corresponding intervals. The percentage of complexes whose p-value is
greater than 0.01 in predicted complexes by CA-ACO algorithm is the smallest. So,
most of the predicted protein complexes by CA-ACO are meaningful. These illustrate
that our proposed algorithm is competent to identified significant protein complexes in
dynamic PPI networks.

Fig. 5. Precision, recall, f-measure values of various algorithms on the Krogan dataset

Table 2. Functional enrichment analysis of complexes detected on DIP, MIPS and Krogan
dataset

Dataset Algorithm PC <E−10 [E−10,E−5) [E−5, 0.01) >=0.01

DIP CA-ACO 481 15(3.12%) 107(22.25%) 254(52.81%) 105(21.83%)
MCL 1053 66(6.26%) 183(17.38%) 362(34.38%) 442(41.98%)
CORE 344 4(1.16%) 78(22.67%) 114(33.14%) 148(43.02%)
ClusterONE 574 73(12.72%) 177(30.84%) 184(32.06%) 140(24.39%)

MIPS CA-ACO 223 2(0.90%) 42(18.83%) 135(60.54%) 44(19.73%)
MCL 606 18(2.98%) 94(15.51%) 220(36.30%) 274(45.21%)
CORE 340 4(1.18%) 65(19.12%) 107(31.47%) 164(48.24%)
ClusterONE 372 23(6.18%) 117(31.45%) 126(33.87%) 106(28.49%)

Krogan CA-ACO 162 7(4.32%) 49(30.25%) 93(57.41%) 13(8.02%)
MCL 403 59(14.64%) 103(25.56%) 119(29.53%) 122(30.27%)
CORE 255 13(5.10%) 60(23.53%) 102(40.00%) 80(31.37%)
ClusterONE 399 56(14.04%) 98(24.56%) 120(30.08%) 125(31.33%)
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4 Conclusions

Many of the current methods predicting protein complexes are running in a static PPI
network, which ignoring the dynamic properties of the PPI network and the inherent
organization of the protein complex. In this paper, we proposed a novel method for
detecting protein complexes in dynamic protein interaction networks, CA-ACO, which
is based on the core-attachment structure of protein complexes. We compare the per-
formance of the CA-ACO algorithm with other state-of-the-art methods in DIP, MIPS
and Krogan dataset. Experimental results show that CA-ACO algorithm is obviously
superior to other methods. In addition, the shift from static PPI networks to dynamic
PPI networks is important to analyze the biological significance of complexes identified
from PPI networks. In the future, we will further optimize our algorithm to improve the
efficiency of algorithm and the effect of biological research.
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Abstract. Information-Centric Networking (ICN) aims to distribute
and retrieve the content by name. In this paper, we review and approve
the feasible Ant Colony Optimization (ACO)-inspired ICN routing solu-
tions, i.e., applying ACO to solve ICN routing problem. At first, some
significant challenges with respect to ICN routing are analyzed, such as
explosive increasing of Forwarding Information Base (FIB), retrieval of
closest content copy, uniform distribution of content and mobility sup-
port. Then, the solutions inspired by biology feature and behavior is
reviewed. In addition, a general design thought of ACO-inspired solu-
tion is presented. Finally, the feasibility of ACO-inspired ICN routing
solution is evaluated.

Keywords: ICN · Bio-inspired routing · ACO · Content retrieval

1 Introduction

Information-Centric Networking (ICN) [1] is a clean-slate design for accommo-
dating the ever increasing growth of Internet traffic by regarding named content
as network primitive. Some related projects have been developed, such as Data
Oriented Network Architecture (DONA) [2], Network of Information (NetInf)
[3], Publish/Subscribe Internet Technology (PURSUIT) [4] and Named Data
Networking (NDN) [5].

The typical features of ICN are summarized as follows: (i) directly accessing
content by a unique name, (ii) supporting in-network caching, (iii) consumer-
driven communication model, i.e., contents are pulled by consumers’ interests,
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 113–122, 2018.
https://doi.org/10.1007/978-3-319-93815-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93815-8_12&domain=pdf


114 Q. Zhang et al.

and (iv) stateful forwarding, i.e., ICN forwarding plane will record the con-
sumers’ interests before they are satisfied. Although these features can effectively
achieve content distribution and support mobility, there are some challenges to
achieve efficient routing in ICN (See Sect. 2). Many kinds of ICN routing schemes
have been proposed to solve the ICN routing problems, for example, translate
the name of the interest into its locator and route the request by the locator.
However, it is failed to exploit content copy in in-network caches in this routing
scheme. Given this consideration, inspired by the natural behaviors when search-
ing for the shortest path between nest and food source, the Bio-inspired solu-
tion has been investigated to solve the routing problems by many researchers.
Without loss of generality, this paper aims at surveying the Bio/Ant Colony
Optimization (ACO)-inspired ICN routing solution based on NDN architecture.
The contributions of this paper are triple, i.e., (i) reviewing ICN routing chal-
lenges, (ii) discussing bio-inspired ICN routing development, and (iii) analyzing
the feasibility of ACO-inspired ICN routing.

The rest of this paper is structured as follows. Section 2 analyzes some chal-
lenges of ICN routing. The potential of bio-inspired ICN routing is presented in
Sect. 3. Finally, Sect. 4 proposes a general ACO-inspired ICN routing solution.
Section 5 concludes the paper.

2 ICN Routing Challenges

2.1 Overview

In ICN, each Content Router (CR) has three tables, i.e., Content Store (CS),
Pending Interest Table (PIT) and Forwarding Information Base (FIB). Besides,
it can send two kinds of messages, i.e., interest packet which is sent by interest
requester to request the desired content, and data packet which is sent by content
provider to carry the corresponding content back to interest requester [6]. ICN
forwarding depends on FIB and PIT to select the appropriate interface, thus ICN
forwarding is stateful. ICN routing relies on the named-data link state protocol,
which is an extension of OSPF [7]. ICN routing depends on lookup, record and
forwarding with respect to CS, PIT and FIB, and it can be divided into three
categories from three different perspectives, as follows.

• From the perspective of the number of forwarding interfaces, ICN routing
consists of single-path and multi-path. The former is generated by selecting only
one outgoing interface in FIB to forward interest request, which has considerably
high demand on algorithm design, thus it is very difficult to retrieve the closest
content copy. In fact, due to the capacity of in-network caching and multicast,
ICN network usually has more than one content provider. In order to find all
contents and further retrieve the closest content copy, some CRs select two or
more outgoing interfaces to forward interest request [8].

• From the perspective of domain, ICN routing consists of intra-domain rout-
ing and inter-domain routing [9]. The former collects the link state information,
such as delay, bandwidth, error rate and throughput, and accomplishes routing
by coordinating lookup and forwarding among CS, PIT and FIB, which further
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demonstrates that the forwarding in ICN is stateful. The latter does the match
between two domains according to the longest name prefix, which is similar to
Border Gateway Protocol (BGP).

• From the perspective of efficiency improvement, ICN routing consists of
adaptive forwarding and cache-aware routing. The first one focuses on selecting
how many outgoing interfaces to forward interest request; the second one exploits
the in-network caching during the data routing process in order to help the
subsequent interest forwarding.

2.2 Challenges

However, ICN routing has some significant challenges, such as explosive increas-
ing of FIB, retrieval of closest content copy, uniform distribution of content,
mobility support and deployment at large-scale network, which cannot be effec-
tively addressed by the current proposals and are introduced as follows.

Explosive Increasing of FIB. FIB is used to guide interest forwarding. CRs
announce the provided content name prefix proactively by generating a certain
amount of data packets, and then these announced data packets are transmitted
within the network. When other CRs receive these data packets, basis on this,
they construct their FIBs [10]. It is obvious that this results in the explosive
increasing of FIB, because (i) the name length is variable and (ii) the number
of content is huge.

Retrieval of Closest Content Copy. ICN enables users to retrieve the closest
content copy from the CRs. However, how to obtain the cache information is a
nontrivial task, because cache information cannot be broadcast throughout the
network. What’s worse, contents might have been removed by the time a request
is routed to a specific node.

Uniform Distribution of Content. During the routing process, when the
requested content is distributed at several CRs, consumers send interest packets
to multiple outgoing interfaces. However, the network will face serious load and
even congestion without considering congestion control because ICN does not
inherently support the parallel transmission.

Mobility Support. The mobility in ICN usually consists of interest requester
movement and content provider movement. However, the inherent mobility sup-
port refers to interest requester movement rather than content provider move-
ment [11]. In general, interest requester movement can be addressed easily
because ICN is an interest-driven mode. Under such condition, the mobile inter-
est requester only needs to send new interest packet. On the contrary, content
provider movement is very difficult to be addressed.
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In fact, the mobility results from that most users have widely used mobile
devices which join or leave the network at any time. When mobile devices which
provide the content leave the network, interest requester cannot retrieve the con-
tent from the original mobile devices, which increases the difficulty and complex-
ity of routing. Many methods have been proposed, such as topology-awareness
[12], proxy point [13] and rendezvous point [14]. However, they all suffer from
handoff latency.

Deployment at Large-Scale Network. An enormous number of contents will
cause the explosive increasing of FIB. In addition, ICN adopts the named-data
link state protocol. When the network scale becomes large, the information con-
vergence speed becomes slow greatly [15], and thus decreases routing efficiency.

3 Bio-inspired ICN Routing Development

3.1 Bio-inspired Development

The bionics, as a classical discipline, was proposed in 1960. Regarding computer
science in bionics, the research is usually divided into three fields, i.e., system,
networking and computing [16], as shown in Fig. 1. Among them, the bio-inspired
system is capable of adapting and learning how to react to unforeseen scenarios
with emergent properties; the bio-inspired networking is capable of providing
new services and applications by considering intrinsic networking features; the
bio-inspired computing is capable of doing some operations according to the
inherent computing rules and behaviors of biology.

Even though the bio-inspired system and computing (e.g., neural network)
have already become widely useful, the application of bio-inspired networking
has not been developed sufficiently [17]. In particular, the current bio-inspired
researches do not fully incorporate system, networking and computing to solve
the routing optimization problem in spite of bio-inspired solutions are regarded
as a fruitful direction in networking and communication areas. Instead, an over-
whelming majority of researches only pay attention to bio-inspired computing,
even though some special issues from top journal were published [18–20].

3.2 Bio-inspired ICN Routing Solution

The typical features of biology are summarized as follows: self-evolution, self-
organization, collaboration, survivability and adaptation [17]. Bio-inspired ICN
routing solution is promising because it is capable of addressing the challenges
mentioned in Sect. 2.2. At first, biologies can adapt to the dynamically varying
environment, e.g., the explosive growth of FIB, such challenge is addressed by
biological self-evolution. Secondly, biologies can intelligently retrieve the most
suitable content copy by self-organization. Thirdly, biologies can easily accom-
plish uniform distribution of content by their frequent collaboration behaviors,
which decreases network load and thus improves ICN routing efficiency. Fourthly,
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Fig. 1. Main research areas of bionics in computer science.

biologies have survivability to recover from failures caused by devices or links
malfunction; the mobile phenomenon of either interest requester or content
provider belongs to a subset of failures, such challenge regarding mobility is
addressed by biological survivability. At last, biologies is adaptive to fully dis-
tributed environment, and further adapt to the large-scale network.

Bio-inspired ICN routing solution enables interest/data forwarding, traffic
control and even other key operations to display self-organization and adaptation
in order to improve routing efficiency, such as success rate, load balance and
throughput. It is worth pointing out that when these features are exploited to
address ICN routing challenges, they are not mutually independent. In general,
collaboration and organization among a group of biologies are used to conduct
interest/data forwarding, based on this, biologies adapt to external as well as
internal environment by adaptation and self-evolution, which embodies biological
survivability.

The design of bio-inspired ICN routing solution usually needs three main
steps, as follows. (i) Analyze ICN routing problem to be solved, and designate
an exactly bionic strategy because not all bionic strategies can fit a specific ICN
routing scenario. (ii) Map the major modules from biological system into ICN
networking layer by considering some special network features, and build the
corresponding mathematical models. (iii) Solve ICN routing problem accord-
ing to biological behaviors and rules. In fact, these three steps correspond to
bio-inspired system, bio-inspired networking and bio-inspired computing respec-
tively, which is a systematic design thought regarding all bio-inspired solutions.
However, the current bio-inspired proposals usually focus on bio-inspired com-
puting irrespective of its system and networking, and the corresponding design
thought is summarized as two main steps, as follows. (i) Declare a network prob-
lem as NP-hard, and (ii) use bio-inspired computing to solve it. It is obvious that
the design thought is not really bionic.
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4 ACO-Inspired ICN Routing Proposal

4.1 Feasibility Analysis

To the best of our knowledge, ants always release the pheromone over their
working trail. During the foraging process, ants can find food sources and deter-
mine the closest food source by indirectly communicating with others based on
pheromone, including some notable features, such as self-organization, positive
feedback, diversity, parallel computing, etc. Afterwards, the foraging behavior of
ant is modeled as ACO, which was proposed and developed by Dorigo in 1992
[21] and 1996 [22] respectively. In particular, a classical application of ACO is
to solve the Travelling Salesman Problem (TSP). To our minds, among many
biological species, only ACO-inspired ICN routing solution is feasible, and some
comprehensive illustrations are presented as follows.

• Concentrate on “what” instead of “where”. ICN pays attention to the
content rather than IP address. In other words, content provider is transparent
relative to interest requester. Similarly, ants focus on what food is, and they
do not know where food is because it is impossible to know food source before
foraging. Thus, food source is transparent relative to ant.

• Consumer-driven. In ICN, requester pull the content by sending interests,
that is, content provider has no corresponding operations until it is triggered by
successive interest requests; when the content is found, it is returned to interest
requester no matter which content provider it comes from; it is obvious that
ICN is the interest-driven mode. Similarly, food is not likely to be provided for
ant before food request is sent, which means that ACO is just as the ant-driven
mode.

• Mobility support. ICN inherently supports movement of interest requester
[23], that is, the content can be carried back to interest requester no matter where
interest request moves. Similarly, ants can find food by their collaboration and
self-organization no matter where food moves, which means that ACO supports
mobility of food. In addition, ICN does not inherently support movement of
content provider while ACO supports all mobile cases. Therefore, the mobile
phenomenon of content provider can be addressed by ACO-inspired solution.

• Multiple resources. In ICN, a specific content may exist at multiple different
content providers in the form of copy due to the inherent in-network caching.
Similarly, there are many same food sources in nature. In addition, both content
and food are diversified.

• Closest object retrieval. ICN inherently supports multicast and multi-path
transmission, and its goal is to retrieve the closest content copy from multiple
content providers. Similarly, ants can find all food sources by a distributed and
parallel manner; especially when the number of iterations reaches a certain level,
the closest food along the shortest path can be found.

• Naming style. ICN carries out the name-based routing, in which content
name is persistent, available and authentic. The food name, similarly, is also
unique in nature, that is, ants find food relying on the unique feature, i.e., food
name. In addition, different contents have different names, which depends on
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naming rule in ICN. Also, different foods have different names, which depends
on food odours

• Major system components. Each physical location in ACO is composed of
Food Warehouse (FW) to store foods, Pheromone Matrix (PM) to percept and
record pheromone, and Tabu Search Table (TST) to conduct forwarding of ant.
Similarly, each CR in ICN consists of CS, PIT and FIB which can correspond
to FW, PM and TST respectively.

According to the above seven interpretations, we believe that ACO-inspired
ICN routing has potential in theory.

4.2 Routing Mapping

Figure 2 shows two scenarios, i.e., one is ant foraging in ACO, and the other
one is content retrieval in ACO-inspired ICN routing. Specially, for an ant, the
foraging process can be simply described as follows. Each ant starts its travel to
find food from nest. When arriving at a location, it searches FW to see whether
the requested food can be found. If yes, it accomplishes foraging and goes back
to nest; otherwise, it percepts the surrounding pheromone by PM and begins the
following travel by TST. Similarly, we map ant behaviors into ICN, and each
interest ant retrieves the content starting from interest requester. When arriving
at one CR, it checks CS to see whether the content exists. If yes, data ant goes
back to interest requester and content retrieval is finished; otherwise, it percepts
the surrounding pheromone by PIT and begins the following interest forwarding
by FIB. Thus, we believe that using ACO to address ICN routing is feasible.

Fig. 2. ACO and ACO-inspired ICN.

In particular, during the process of designing ACO-inspired ICN routing
solution, the updating strategy of pheromone is very significant, and the previous
design model [24–28] on pheromone is presented as follows.

Ti,j(t, I) = (1 − ρ) · Ti,j(t, I − 1) + cci,j(t, I). (1)

Among them, Ti,j(t, I) is the total pheromone over the edge between CRi and
CRj (denoted by ei,j) at time t after I(∈ N) iterations; ρ is a volatilization
coefficient of pheromone, 1 − ρ is a residual factor of pheromone, and 0 < ρ < 1
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prevents the infinite accumulation of pheromone; cci,j(t, I) is the pheromone
over ei,j by some of m (∈ N) interest ants after the I − th iteration.

However, Eq. (1) shows a discrete model, which neglects the actually contin-
uous foraging behaviors. In order to make the modeling process fit the actual
ant behaviors better, we propose a continuous model [23], as follows.

Ti,j(t, I) = cci,j(t − ΔtI−1 − ΔtI−2 − · · · − Δt1, I)
+ cci,j(t − ΔtI−2 − · · · − Δt1, I − 1)
+ · · · + cci,j(t − Δt1, 2) + cci,j(t, 1).

(2)

Regarding the proposed continuous model, Eq. (2), there are some related
studies, such as [23,29,30], and the experimental results have demonstrated its
feasibility.

4.3 Evaluation of Routing Hops

Based on the NSFNET and Deltacom topologies, the routing performance of
above ACO-inspired ICN routing (ACOIR) is evaluated. Each CR stores 10,000
content items by adopting LRU replacement strategy. For comparison of the
ACOIR, the AIRCS [29], the SoCCeR [31], the QAPSR [24] and the MuTR [25]
are used as the benchmark method. In the simulations, the interest requests
are set to 50, 100, 150, 200, 250, 300, 350 and 400 respectively by 100 times
simulations. The performance of average routing hops is dispicted in Fig. 3.

Fig. 3. Average routing hops of ACOIR, AIRCS, SoCCeR, QAPSR and MuTR.

Obviously, ACOIR has the smallest average routing hops. ACOIR can always
retrieve the closest content copy, because of the diversity feature and positive
feedback feature of inp-ant.

5 Conclusions

In this paper, we present a short review on ACO-inspired ICN routing solution.
Firstly, three categories of ICN routing are reviewed, and some related challenges
are analyzed. Secondly, bio-inspired ICN routing solution is presented, which
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includes bionic development, features and design thought. Finally, the feasibil-
ity of ACO-inspired ICN routing is summerized from seven different aspects.
Furthermore, a continuous updating strategy regarding pheromone is proposed.

In future, we will do further research on the combination of bio-inspired
system, bio-inspired networking and bio-inspired computing. In addition, ICN
also has some potential to facilite advanced technologies, e.g., cloud computing,
big data and 5G.
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Abstract. Particle swarm optimization (PSO) is a widely-adopted opti-
mization algorithm which is based on particles’ fitness evaluations and
their swarm intelligence. However, it is difficult to obtain the exact fit-
ness evaluation value and is only able to compare particles in a pairwise
manner in many real applications such as dose selection, tournament,
crowdsourcing and recommendation. Such ordinal preferences from pair-
wise comparisons instead of exact fitness evaluations lead the traditional
PSO to fail. This paper proposes a particle swarm optimization based
on pairwise comparisons. Experiments show that the proposed method
enables the traditional PSO to work well by using only ordinal prefer-
ences from pairwise comparisons.

Keywords: Particle swarm optimization · Pairwise comparisons
Evolutionary algorithms · Swarm intelligence

1 Introduction

Particle Swarm Optimization is an optimization method in swarm intelligence
and was first proposed by Kennedy and Eberhart [5]. In the traditional PSO
algorithm, a particle changes its velocity and position under the guidance of
its own historical optimal position and the best position found so far by the
whole swarm in order to achieve the global optimization. With characteristics
of few parameters and easy implement, PSO has been applied to solve various
optimization problems.

Shi and Eberhart [14] introduced a new parameter called inertia weight w
to balance the global search ability and the local refinement. Besides, Clerc and
Kennedy [3] analyzed w of how to control the convergence tendencies. Zhan
et al. [16] presented an adaptive particle swarm optimization which consists of
two main steps. First, perform a real-time evolutionary state estimation proce-
dure to identify evolutionary state after evaluating the population distribution
and particle fitness. Then, when the evolutionary state is classified as conver-
gence speed, an elitist learning strategy is performed. Neri et al. [9] employed a
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 125–131, 2018.
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probabilistic representation of the swarms behavior. In [7], Li et al. proposed a
composite PSO algorithm called historical memory-based PSO (HMPSO) which
uses an estimation of distribution algorithm to estimate and preserve the distri-
bution information of particles’ historical promising pbests. Each particle adopts
the best candidate position of historical memory, particles’ current pbests, and
the swarm’s gbest. Cheng and Jin [2] proposed a competitive swarm optimizer
(CSO) introducing a pairwise competition mechanism where the particle that
loses the competition will update its position by learning from the winner. Shen
et al. [13] proposed a hierarchical learning bare-bones PSO (HLBPSO) using an
archive to store the accepted infeasible solutions and auxiliary operations in order
to help accept infeasible solutions to enter into the feasible region. Nitin et al.
[12] presented a Dynamic-PSO (DPSO) which provides dynamicity to particles
externally in such a manner that stagnated particles move towards potentially
better unexplored region to maintain diversity. Qin et al. [10] proposed an inter-
swarm interactive strategy which divides a swarm into a learning swarm and a
learned swarm. The particles in the learning swarm learn from the experience of
the learned swarm.

Nevertheless, it is difficult to obtain the exact fitness evaluation value but
a preference from a pairwise comparison in many real applications such as
dose selection [6], tournament [1], crowdsourcing [15] and recommendation [11].
Kpamegan and Flournoy [6] presented a class of up and down designs to
identify the dose that maximizes the patients’ success probability. Buhlmann
and Huber [1] proposed ranking in tournaments using pairwise comparisons.
Yi et al. [15] leveraged pairwise comparisons to present a crowdranking frame-
work based on the theory of matrix completion for infering the ranking list of
items. Lior and Kisilevich [11] presented a new, anytime preferences elicitation
method that uses pairwise comparisons between items to create users’ profiles.
Jamieson and Nowak [4] embedded the objects in a d-dimensional Euclidean
space and used pairwise comparisons to derive partial and full ranking.

Such ordinal preferences from pairwise comparisons instead of exact fitness
evaluations lead the traditional PSO to fail. This paper proposes a particle swarm
optimization based on pairwise comparisons. It derives the personal best position
and the global best position from pairwise comparisons such that the traditional
PSO can work.

The rest of the paper is organized as follows. Section 2 reviews the traditional
PSO. In Sect. 3, Particle swarm optimization based on pairwise comparisons
will be proposed to enable the conversion of traditional PSO to work based
on pairwise comparisons. The experimental results on benchmark functions are
presented in Sect. 4. Section 5 gives the conclusion and future work.

2 Standard Particle Swarm Optimization

PSO simulates social models such as birds flocking and fish schooling to solve
optimization problems. In [14], Shi and Eberhart proposed a standard particle
swarm optimization (SPSO). Each individual is modeled as a particle in an d-
dimensional search space and represents a candidate solution to the problem.
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Particles in the whole swarm are connected in a ring topology. Each particle
consists of two vectors, position vector Xi = [xt

i1,x
t
i2,...x

t
id] and velocity vector

Vi = [vt
i1,v

t
i2,...v

t
id] where i ε {1,2,...N}, N is the population size, d denotes the

dimension of the solution space, t is the iteration number. The best solution of
the ith particle found in the tth iteration is known as pbesti = [pti1,p

t
i2,...p

t
id] and

the best solution found by all particles is called gbest = [gt1,g
t
2,...g

t
d]. During the

evolutionary procedure, particles update these two vectors under the guidance
of the pbests and the best positions in their neighbors ptgd using the following
equations:

vt+1
id = wvt

id + c1r1
(
pbesttid − xt

id

)
+ c2r2

(
ptgd − xt

id

)
(1)

xt+1
id = xt+1

id + vt+1
id (2)

where w is termed inertia weight to balance the global search ability and the
local refinement and control the convergence tendencies [3]. c1 and c2 denote
acceleration coefficients. c1 represents the cognitive component and c2 is the
social component. As mentioned in [14], c1 and c2 is integer 2. r1 and r2 are
random values ranging in [0, 1]. Its main procedure is presented in Algorithm 1.

Algorithm 1. SPSO
1: Initialize a group of particles (population size N), including positions and velocities
2: while (stop criterion not met) do
3: for i = 1 to N do
4: Evaluate the fitness value of each particle
5: Compare each particle’s fitness value with its pbest
6: if the current fitness value is better then
7: Update the pbest
8: end if
9: end for

10: Update the gbest
11: Update particles’ velocities and positions according to Eqs. (1) and (2)
12: end while

3 PSO Based on Pairwise Comparisons

PSO cannot work without pbest and gbest. As a precondition of the traditional
PSO, a specific fitness value is calculated via the evaluation function. Then
the particle’s current fitness value is compared with its pbest’s fitness value to
update pbest and derive gbest which is the minimum of the updated pbests.
In the traditional PSO, it requires N times fitness evaluation totally in every
iteration to obtain the fitness value. Based on these fitness values, pbests and
gbests can be updated using Eqs. (1) and (2). So specific fitness value plays a
significant role in the traditional PSO.



128 J. Zhang et al.

Nevertheless, it is difficult to obtain the exact fitness evaluation value but a
preference from a pairwise comparison in many real applications such as dose
selection, tournament, crowdsourcing and recommendation, where it is only able
to compare particles in a pairwise manner. The outcome of the pairwise com-
parisons essentially represents pairwise preferences whether or not an particle is
preferred to another one. In this paper, we propose an extension of SPSO based
on pairwise comparisons for optimization (PC-SPSO), in which pbest and gbest
are inferred from pairwise comparisons. In order to understand PC-SPSO, we
give a definition and two algorithms as follows:

Algorithm 2. Getgbest(N, pbest, gbest)
Input: pbests of N particles in �d, pbest1, pbest2...pbestN
1: for i = 1 to N do
2: if the pbest of ith particle is better than gbest then
3: gbest = Xi

4: end if
5: end for
Output: gbest of the whole swarm

Algorithm 3. PSO Based on Pairwise Comparisons
1: Initialization
2: gbest = infinite
3: for i = 1 to N do
4: randomly initialize Vi and Xi

5: pbesti = Xi

6: Getgbest (N, pbest, gbest)
7: end for
8: while (stop criterion not met) do
9: /*pbest update*/

10: for i = 1 to N do
11: if PCi = 1 then
12: Update the pbest
13: end if
14: end for
15: /*update the gbest*/
16: Getgbest (N, pbest, gbest)
17: Update the Vi and Xi according to Eqs. (1) and (2)
18: end while

Definition 1. Let PCi be a pairwise comparison between particle i and its pbest,
i ε {1,2,...N}. The result is feedbacked by the environment and the following
equation is executed:

PCi =
{

1, if current particle is better than its pbest
0, otherwise.

(3)
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Given position i, j, the outcome of the comparisons is feedbacked by the envi-
ronment. If PCi = 1, position i is preferred over position j. With the definition
of PCi, the pseudecode of PC-SPSO algorithm is summarized in Algorithms 2
and 3. In order to update gbest, it is compared with every particle’s pbest orderly
and details are described in Algorithm 2. pbest is updated according to the value
of PCi.

4 Experiment

In this section, the convergence curves of the proposed PC-SPSO on CEC2013 [8]
benchmark functions are illustrated to verify the proposed method. We choose
representative uni-modal f1, multi-modal f12 and composition f23 test functions
and the parameter settings are as follows:

(1) repeat times = 51 in each test function to obtain the mean results.
(2) the total number of the whole swarm N = 50 and they are connected with

the ring topology.
(3) the inertia weight w = 0.72984.
(4) the acceleration coefficients c1 = c2 = 1.49617.
(5) the dimensions of all the test functions d = 30 (Fig. 1).
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Fig. 1. On unimodal function f1, as the number of pairwise comparisons increases, the
accuracy converges to zero.

The result is shown in the figures. The x-axis represents the number of pair-
wise comparisons and the y-axis represents the accuracy which is the differ-
ence between the experiment fitness values and the actual fitness values (Figs. 2
and 3).
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Fig. 2. The accuracy converges as the pairwise comparisons increases on multi-modal
function f12
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Fig. 3. As x increases, y converges to a constant value on composition function f23

5 Conclusion

In this paper, we introduce an extension of traditional PSO named PC-SPSO.
A novel strategy is proposed using only ordinal preferences from pairwise com-
parisons to obtain pbest and gbest to guide the overall particles’ directions when
it is difficult to obtain the exact fitness evaluation value but a preference from
a pairwise comparison in many real applications. The outcome of the pairwise
comparisons essentially represents pairwise preferences whether or not an parti-
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cle is preferred to another one. Experimental results carried out on benchmark
functions show the convergence property of the proposed methods.

Our future work will focus on how to reduce the number of pairwise compar-
isons to obtain a satisfactory gbest. The applications of algorithms will also be
considered in our future work.
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Abstract. Large biological molecules such as proteins associating to
form multi-component complexes are attracting more and more research
interests. The association reaction of the large biological molecules are
closely related with associate rate and reaction intermediate states which
are key to elucidate the reaction pathways as their kinetic and structural
characteristics which shed lights on the reaction process and energy land-
scape. This paper proposes a novel method modelling the chemical reac-
tions by using neural networks with the help of the predefined chemical
reaction model, and then follows by using the typical particle swarm opti-
mization algorithm to minimize the error between the output of neural
networks and experimental data. Experiments are conducted to demon-
strate the proposed method as a promising way dealing with this difficult
task.

Keywords: Particle swarm optimization · Artificial neural networks
Intermediate state kinetics · Parameter optimization

1 Introduction

Association reactions between chemical or biological species often involve an
intermediate state whose existence greatly expedite the efficiency of molecule
association thus increasing the chemical or biological reaction speed [1].

Reaction intermediates, transition states, or sometimes called encounter com-
plex along a reaction pathways refer to one or a set of configurations that possess
rotational or translational correlations between the interacting species. The inter-
actions between different subunits in a reaction intermediate might be native-like
or near native-like and it does not necessarily corresponds to a local energy min-
imum or a species trapped in kinetic experiments [2].

In comparison to protein folding, structural and kinetic studies on intermedi-
ates and transient states on protein-protein association pathways are much less
common mainly due to its low concentration and its fleeting existence [1].
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A much more general case is when experimental evidence provides only the
kinetic and structural information of the native state which often exist as the
dominant fraction and is much easier to detect using regular experimental tools.
Kinetic or structural characteristics of the transitional state often demonstrate
itself on experimentally measured data, for instance, a linear dependence of
the observed association rate constant on reactant concentration indicates an
absence of transitional state, while an hyperbolic dependence of reactant con-
centration signifies that the reaction is not a first order reaction and thus the
involvement of possible transitional state [5]; 2D NMR spectrum of proteins
might show a detenuation of peak intensity if the transitional state is involved
in an intermediate exchange with the native state [1]. Then it is crucial to extract
kinetic or structural information of the transitional state from the relatively scant
experimental.

The main objective of this paper is to model the chemical reaction process
and then use the particle swarm optimization algorithm to minimize the error
between the output of neural networks for modelling the chemical reactions
and experimental data. Based on the artificial neural networks and predefined
chemical reaction model, this paper presents a novel model-based parameter
extraction method to optimize the kinetic parameters associating with hidden
reacting species with high efficiency and computational cost.

We introduce some basic knowledge about the chemical reaction simulation
and model-based simulation in Sect. 2. Then we describe the proposed a neural
networks based method for extracting the intermediate state kinetic parameters
in Sect. 3. Some experimental results and discussions are given in Sect. 4. Finally,
a concluding remark is given in Sect. 5.

2 Background

2.1 Diffusion and Reaction Encounter Complex

Molecule association from unbound components can be described using single
or multi-step models, in multi-step models, an unstable encounter complex is
formed through diffusion, in certain cases, the encounter complex evolve into an
intermediate state that is a more stable species. The encounter complex and the
intermediate state are the most unstable species in the reaction pathway, bonds
in a intermediate or encounter complex are in the process of been constantly
broken and remade. Experimental detection of the encounter complex and inter-
mediate state has been done for some reactions, but for reactions, especially
large biological reactions, when the approach of experimental measurement is
limited, experimental detection of transient states might be extremely difficult.
Therefore, computational methods aimed to describe the reaction environment
and simulate the process of reaction emerges to track the course of molecule-
molecule association.
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2.2 Model-Based Simulation of Kinetic Parameters

Reaction models based on experimental evidence are beginning to be harness to
accurately model the reaction process of association reactions and to simplify
the complicated dynamic simulation of molecule association in an experimentally
directed way.

Reaction models depicts the rate of reaction, the number of species partic-
ipating in the reaction either in equation forms or in stochastic forms. Large
scale reactions that involve large quantities of reactants are can be described
by deterministic linear or non-linear ordinary differential equations for homoge-
nous reaction space or partial differential equations for reactions partitioned into
different compartments. Small scale association reaction that can be described
by a limited number of molecules are more accurately simulated by stochastic
simulation algorithms (SSA), chemical reaction models can be incorporated into
both of the aforementioned simulation strategies based on existing experimental
data.

Macroscopic deterministic reaction systems are often described by differential
equations such as in case of single reactant

G
(
x, y (x) , y(x)(1), ..., y(x)(n−1)

, y(x)(n)
)

= 0 (1)

or sets of differential equations when multiple reacting species is present
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G1

(
x, y1 (x) , y1(x)(1), y2 (x) ..., yk (x) , yk(x)(1)

)
= 0

...
Gk

(
x, y1 (x) , y1(x)(1), y2 (x) ..., yk (x) , yk(x)(1)

)
= 0

(2)

Some theoretical work has been done to understand the consequences of
stochastic fluctuation of molecule concentration on molecular interactions, which
form the basis of the majority of chemical or biological processes. In microscopic
systems where only a small number of molecules are present, stochastic diffusion
takes a crucial role; therefore, differential equations describing the behavior of
molecules in such a system will take diffusion and the location of each particles
into account. It has been shown experimentally that in some chemical or biolog-
ical systems, stochasticity of reaction results in large variability in the reaction
rate.

Take two freely diffusing reacting particles with a center to center distance r
as example, P (r, t) be the probability density of two particles to remain unbound
and separated with a distance r at time t.

∂p (r, t)
∂t

= D
1

rω−1

∂

∂r

(
rω ∂p (r, t)

∂r

)
(3)

The generalized form is when the space is divided into various compartments,
and in compartment Cj , where the molecule Xij denote a molecule species I in
subvolume Cj , exemplifying the reaction as

nijXij + nkjXkj → xijXij (4)
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where nij is the stoichiometry vector.
Modeling the reaction gives the reaction-diffusion master equation

∂p (x, t) /∂t = Mp (x, t) + Dp (x, t) /∂t.
p (x, 0) = δxx0

(5)

where M governs the reaction and D the diffusion.

Mp (x, t) = wrj (xj − nr) p (x1, ..., xj − nr, ..., xK , t)
−wrj (xj) p (x, t)

Dp (x, t) = q(i)
(
xi − m(i)

)
p

(
x1, ..., xi − m(i), ..., xN , t

)
− q(i)xikp (x, t)

(6)

in which qjk is the chemical reaction propensity function which is a measure
of the reaction rate of each species proportional to its copy number. D is the
diffusion rate constant and gamma the dimensionality.

Stochastic simulation algorithm (SSA) is used to model the chemical master
equation. SSA is a procedure for numerically simulating the time evolution of a
small scale, well-stirred, diffusion influenced chemically reacting system in which
the reaction rate is subjected to stochastic variations. The most well-known
and widely applied of which is developed by Gillespia and termed Gillespias
Algorithm, the general principle of which is for chemical reactions of the form:

A + A → C,A + B → D. (7)

The process of simulating the reaction numerically is as follows:

(1) Generate two random numbers r1, r2 uniformly distributed in (0, 1).
(2) Compute the propensity functions of each reaction by α1 = A(t)(A(t)−1)k1,

α2 = A(t)B(t)k2, α3 = k3 and α4 = k4. Compute α0 = α1 + α2 + α3 + α4.
(3) Here we determine the time when the next chemical reaction takes place as

t + τ where τ = 1
α0

ln
[

1
r1

]

(4) Compute the number of molecules at time t + τ by
A(t + τ) = A(t) − 2, A(t) − 1, A(t) + 1, A(t)
B(t + τ) = B(t) − 2, B(t) − 1, B(t) + 1, B(t)
if 0 ≤ r2 < α1/α0; if α1/α0 ≤ r2 < (α1 + α2)/α0; if (α1 + α2)/α0 ≤ r2 <
(α1 + α2 + α3)/α0; if (α1 + α2 + α3)/α0 ≤ r2 < 1;

The step (4) offers the choice of which reaction occurs at time step t and
the molecular number will be updated accordingly in the same step. However,
despite of recent major improvements in the efficiency of the SSA, its draw-
back remains the inaccuracy of simulation results which is a common occurrence
in experimental-data-independent computational simulations which is a direct
consequence of the unpredictability of chemical or biological systems.
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3 Proposed Method

3.1 Mathematical Modeling of Chemical or Biological Reactions

In this section, mathematical models of chemical or biological reactions are pre-
sented as differential equations. For systems where the reaction size is large
enough that stochastic fluctuations in solvents or the copy number of critical
reaction species have little effect on the macroscopic rate constants, Conven-
tional Deterministic Reaction Rate equation (RRE) is sufficient to describe the
reaction system. Depending on whether the reactants are partitioned into dif-
ferent spatial compartments, we categorize the RRE into ordinary differential
equations and Partial Differential equations.

The method regards ordinary differential equations of the form that describe
macroscopic reactions in which copy number of reactant are large enough and
spatial variability is low. Most of the deterministic chemical Rate equations can
be expressed in the form:

G
(
x, y (x) , y(x)(1), ..., y(x)(n−1)

, y(x)(n)
)

= 0, x ∈ D (8)

where D designates a certain definition domain of x, y signifies the solution to
be computed, y(n) denotes the nth order derivative of y.

The boundary conditions are defined as

ψi

(
x, y (x) , y(x)(1), ..., y(x)(n−1)

, y(x)(n)
)

|x=ti
= 0 (9)

where ti is any predefined points in domain D.

3.2 Neural Networks for Fitting Experimental Data and Solving
Differential Equations

As a universal approximator, it is proposed that neural networks with appropri-
ate architecture will be able to approximate any Borel measurable function to
any desired precision [6,7]. Given the general form of the differential equations
to be approximated are given above, here, we try to utilize a Feedforward Multi-
layer Perceptron (MLP) for fitting the given experimental data. An arbitrary
continuous function y and its n-th order derivatives dny

dxn can be approximated
by the feedforward MLP with multiple inputs, single output and single hidden
layer with low variance and bias, which are given below.

y (x) =
m∑

i=1

αif (wix + βi) (10)

dny

dxn
=

m∑
i=1

αi
dn

dxn
f (wix + βi) (11)
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Where x is the independent variable, αi, wi, βi are bounded real-valued adaptive
parameters from the neural networks, m is the total number of hidden nodes and
f is the activation function often taking the from of a sigmoid function

f (x) =
1

1 + e−x
(12)

Any given experimental data can be formulated with a linear combination of
neural nodes, with an arbitrary number of nodes m. The adaptive parameters
in the neural network can be modified by a search algorithm to account for the
fitting of the experimental data.

3.3 Fitness Evaluation Function

The solution of the differential equation is incorporated into the fitness function.
The fitness function contains two errors arising from the two subproblems. A
linear combination of errors with certain biases from the differential equation
and fitting of the neural network with experimental data form an unsupervised
error function. The error to be minimized can be defined as the sum of the
squared errors

e = e1 + e2 (13)

or it can be expressed as an weighted error evaluation with minimization priority
in either part of the error minimization according to the requirements.

e = (1 − λ) e1 + λe2 (14)

Where λ is the weight in the range of 0–1.
The weight factor puts emphasis on one error over the other, and offer more

freedom in user coordination, this leads to a higher accuracy and better robust-
ness. In the expression of e, e1 is the error that originate from differential equa-
tions and can be expressed as

e1 =
m∑

i=1

(
G

(
xi, y (xi) , y(xi)

(1)
, ..., y(xi)

(n−1)
, y(xi)

(n)
))2

(15)

Where function G is the same as in Eq. 16, m is the total number of points in
the definition domain of independent variable x.

The e2 is an error arising from neural network data fitting of experimentally
measured values with an expression in the form of

e2 = (D (xi) − N (x, p))2 (16)

where N(x, p) is single output neural network with parameter p and n input
units fed with variable vector x. D(xi) contains no adjustable parameters and
is the experimental data vector. The weights vector p is adjusted and trained to
adapt to the minimization problem.

In the minimization process, the parameters to be adapted in the minimiza-
tion algorithms are just the parameters from the differential equations and the
weights from the neural networks.
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3.4 Global Minimization Search Algorithm

Our purpose is to use a global searching method to find a set of optimal parame-
ters that best fit the experimental data and the chemical reaction derived differ-
ential equations. Here the typical particle swarm optimization (PSO) proposed
by Eberhart and Kennedy in 1995 as a stochastic global optimization technique
inspired from the behavior of particles or individuals in a swarm, is employed
to solve this problem [8,9]. The main advantages of PSO algorithm are that it
is simple in concepts, easy in implementation, stable in convergence and effi-
cient computationally compared to other heuristic optimization techniques. In
PSO algorithm, each individual of the swarm represents a possible solution in
the optimization problem. The problem of finding a global optimum is turned
into finding the optimum individual. Each individual or particle search in the
problem space, and its measure of quality are its positions and velocities in an
exploration space. The PSO algorithm initializes with each particle placed ran-
domly within an exploration space, and then each particle searches the space
with its positions and velocities updated iteratively according to previous local
best Lbestn−1

i and its global best Gbestn−1
i . The updating scheme are as follows:

V j
i = ωV j−1

i + c1r1

(
Lbestn−1

i − Xj−1
i

)
+ c2r2

(
Gbestn−1

i − Xj−1
i

)
(17)

Xj
i = Xj−1

i + V j
i (18)

In the updating scheme, i is the number of the particle, j is the number of
iteration, ω is the inertia weight, c1 and c2 defined by the authors as the local
and global acceleration constant, r1 and r2 are random vector in the range of 0
and 1, X and V are positional and velocity vectors.

The velocities in PSO algorithm are updated according to Eq. 15, the first
term is the velocity of the particle in previous iteration, the second term is
the difference between the position of the particle and its previous local best
position in the particles life history, the last term in the expression indicates the
difference between the global best position of the of the particles and the ith
particles present position. The more in the difference between the global best
position and the position of the ith particle in iteration n − 1, the greater the
change in the velocity of the particle in the next iteration, this difference will
propagate itself to the particles position in the nth iteration.

The stopping criteria of PSO algorithm is when an user defined cutoff of the
fitness value is reached by one of the particles of the swarm. Then the optimal
parameters from the neural networks and the differential equations will be the
outcomes of the PSO algorithms. The results can be used as references to future
application and analysis.

The main steps of our application of neural networks and PSO in data fitting
and parameter optimization process can be summarized as follows.

Step 1. Feedforward neural networks construction for experimental data fitting
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Step 2. Constructing differential equations according to the chemical or biolog-
ical reaction systems

Step 3. Fitness function construction by combining errors from data fitting and
differential equations

Step 4. PSO optimization of kinetic parameters

4 Experimental Results and Analysis

We have carried out our studies in different experimental conditions and have
measured the interconversion process of both monomers and dimers of MPro−C.
The experiments are done in 303K, 306K, 308K and 310K, the overall inter-
conversion rates are measured to be in increasing order. Elevated temperature
increases kinetic energy and translational velocities of particles in solutions,
enhancing the rate of particle collision, hence, increasing the temperature will
increase the overall association rate constant. However, intermediate states are
not detected directly by experimental measurement, but will the intermediate
state be affect in the same way by increasing temperature? Our method explicitly
deals with these kinds of problems.

We have carry out Neural Network Fitting of the dimeric species in our
program at various temperatures as shown in Fig. 1, Blue lines are experimen-
tally measured dimeric concentration curves and colored lines with markers are
outcomes from NN, we can see an clear overlap of the lines and an minimum
systematic fitting error of around 10−3, indicating the accuracy of the fitting
module in our program.

The intermediate state curve of WT MPro − C in various temperature are
shown in Fig. 2, in which the intermediate state concentration are plotted as
a function of time (with unit in seconds). The values of the concentration of
intermediates are back-calculated from experimentally derived Neural Network
functions based on our predefined model.

Close inspection of the intermediate concentration curve indicates that
almost for all of the temperatures investigated, the intermediate concentration
is highest or almost the highest at the start of the interconversion process and
slowly reaches a low steady value with respect to time demonstrating that the
interconversion is approaching equilibrium. We also observed a high value in
intermediate state concentration at the start of the reaction and then a dive
in the concentration curve with respect to time, the shifts in intermediate con-
centration is caused by the interplay between the four pathways with its rate
constants denoted by ka, kb, kc, and kd. The highest point in intermediate state
concentration may mark the opportune time for experimental detection of this
elusive species. Judging from these result, increasing solution temperature, more
rapid thermodynamic motion affect the association rate constant and in turn
place its impact on the turnover rate of the intermediate state.

The intermediate concentration generally increases as temperature increases,
probably due to its faster conversion from monomers. Nevertheless, judging from
table (4), the conversion rate from the intermediate state to dimeric state WT
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Fig. 1. Nerual Network Fitting of the dimeric species at various temperatures. The
experimental curves are drawn as blue lines while nerual network curve are represented
as colored lines interspersed with markers. 303K as green lines with flower markers,
306K with red lines and circular marker, 308K with cyan lines with diamond markers
and purple lines represents 310K with star markers. (Color figure online)

MPro −C also increases as temperature elevates, the general upshifting trend in
intermediate concentration with incrementing temperature might be the another
indication that the conversion from monomeric WT MPro −C to dimers is reac-
tion limited and thus increasing the reaction rate in the formation of intermediate
state from monomers largely compensates the increase in diffusional encounters
which works to reduce the concentration of the intermediate state.

As expected, the values of intermediate concentration is extremely low,
approaching or below the current experimental detection limits of ordinary facili-
ties such as Stop-Flow spectrometry, Nuclear Magnetic Resonance Spectroscopy,
Electron Microscopy or crystallography, to make matter worse, the rapid shift-
ing of the intermediate concentration and its final convergence to a extremely
low steady value at equilibrium makes experimental detection even harder and
thus the urgent need for theoretical and engineering prediction. The highest
point in intermediate state concentration yielded from our program may mark
the opportune time for experimental detection of this elusive species. Judging
from these result, increasing solution temperature, more rapid thermodynamic
motion affect the association rate constant and in turn place its impact on the
turnover rate of the intermediate state.

The overall absolute error that combines the errors from Neural Network
fitting and the deviations of the parameter-reconstructed reaction from the given
models are given in Fig. 3, which shows the combined absolute errors obtained
for MPro − C systems in different temperature as PSO optimization progresses.
As the number of iteration increases, the absolute errors decreases, first with a
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Fig. 2. Intermediate state curves as calculated from program-derive kinetic parameters
of model 1. The meaning of each curve are indicated by its legend.

steep dive probably resulting from random global search in the parameter search
space, and then with local adjustment which lead to a gradual reduction of the
errors at the later part of the minimization process. Convergence is generally
reached at 30000 iterations except for 303K, however, an acceptable error cutoff
is already reached. Compromising execution time and performance, an iteration
of 30000 is selected for all runs of our program.

Fig. 3. The minimization of overall absolute error with the number of iteration. Dif-
ferent temperatures are represented by different thin colored lines, and the progression
and the final convergence of total error are clearly observed in the figure. (Color figure
online)

In summary, the convergence of total error is achieve at around iteration
30000 in PSO, while convergence of parameters is also achieved at 30000 itera-
tions. Noticing that the optimized parameters of the kinetic equations reached
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convergence rapidly, without much random variations, meaning that the param-
eters are robust and stable in the optimization process undertaken by PSO. In
neural network fitting of experimental data, fewer neural nodes in neural net-
works simplifies the network topology, reduces the amount of unknown param-
eters that went along with the neural networks, decreasing the possibility of
overfitting. We reduced the number of nodes in the hidden layer to 5 to prevent
overfitting while at the same time best maintaining the fitting capability of the
neural networks.

The results of the optimum parameters yielded by our methods is obtained in
the our experiments for both the wildtype MPro −C and its mutants in various
solution conditions. The outcome of the parameter values are the average of 10
repetitive runs of our program, with an variance in acceptable range. As was
shown in the experiments, the values of the kinetic rate constant pertaining to
the intermediate states of both the wild-type and the mutant protein in various
experimental conditions are somewhat different, but the overall trends are gen-
erally the same with kb � kc, ka � kd, implying the lifetime of the intermediate
state is transient, and due to the rapid turnover rate of the intermediate state,
its quantity shall be dramatically low.

5 Conclusion

In this paper, a novel approach for predicting kinetic rate constants and reacting
species concentration, which make use of the neural networks to model the chemi-
cal reaction and is optimized by using the typical swarm intelligence optimization
algorithm, i.e., particle swarm optimization. The extensive experimental results
have demonstrated the validation and effectiveness of our proposed approach in
this paper.
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Abstract. The ascending of quantity of CO2 emissions is the main factor
contributing the global warming which results in extremely abnormal weather
and causes disaster damages. Due to intensive CO2 pollutants produced by
classic energy sources such as fossil fuels, practitioners and researchers pay
increasing attentions on the renewable energy production such as wind power.
Optimal wind turbine placement problem is to find the optimal number and
placement location of wind turbines in a wind farm against the wake effect. The
efficiency of wind power production does not necessarily grows with an
increasing number of installed wind turbines. This paper presents a
hyper-heuristic framework combining several lower-level heuristics with an
artificial bee colony algorithm and a simulated annealing technique to construct
an optimal wind turbine placement considering wake effect influence. Finally,
we compare our approach with existing works in the literature. The experimental
results show that our approach produces the wind power with a lower cost of
energy.

Keywords: Micro-siting � Artificial bee colony � Simulated annealing
Hyper-heuristic � Wind turbine

1 Introduction

The climate change incurred by global warming has great impact on natural environ-
ment, and thus influencing human life. The ascending of quantity of CO2 emissions is
the main factor contributing the global warming which results in extremely abnormal
weather and causes disaster damages. The use of renewable energy, such as solar and
wind power, has become an important focus of social awareness. Wind power pro-
duction is growing at the annual rate of about 30% in recent years, and it has been
widely used in Europe, America, and Asia. As of end of June 2016, the leading Big
Five countries for wind power production are China: 158 GW, United States: 74.7 GW,
Germany: 47.4 GW, India: 27.2 GW and Spain: 23 GW [1]. Taiwan has abundant wind
capacity due to its long coast line. However, 97.84% of Taiwan’s energy supply in
2015 is imported and only 0.16% is generated from wind power (MOEA. http://www.
moeaboe.gov.tw/). The wind capacity is under-explored and the development of new
wind farms is beneficial to both economic growth and air pollutant reduction for
Taiwan.
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Optimal wind turbine placement (OWTP) is an optimization problem to find the
optimal number and placement location of wind turbines in a wind farm against the
wake effect incurred by wind flow. The determined layout of the turbines in a wind
farm is called micro-siting. Many optimization methods have been applied to solve the
problem. Among them, genetic algorithm (GA) is the most prevalent one [2–5]. GA is
an instance of metaheuristic algorithms which search beyond local optimality by
enhancing global exploration capability based on computational intelligence. Other
metaheuristic algorithms include ant colony optimization [6], particle swarm opti-
mization [7], artificial bee colony [8], simulated annealing [9], to name a few.

Moreover, hyper-heuristic [10] is able to adapt to the characteristics of the given
problem class. Hyper-heuristic framework deploys a problem-specific heuristic level
and a global strategic level. The problem-specific heuristic level fosters several existing
lower-level heuristics and the global strategic level selects the most appropriate
heuristic to perform in a computation iteration. Hyper-heuristic is thus representing a
class of heuristics instead of a single one. As the OWTP problem involves intensive
matrix optimization which can be tackled by effective matrix-based lower-level
heuristics and also due to the effective global exploration of artificial bee colony and
simulated annealing, this paper proposes a hyper-heuristic algorithm with artificial bee
colony and simulated annealing for optimal micro-siting of wind farms.

The remainder of this paper is organized as follows. Section 2 describes the model
for calculation of wind power generation considering the wake effect, and review the
hyper-heuristic optimization framework. Section 3 articulates the proposed
hyper-heuristic algorithm. Section 4 describes the experimental results. Finally, Sect. 5
concludes this work.

2 Literature Review

2.1 Wind Energy Production Under Wake Effect

Given a wind farm divided into d � d grids, the center of each grid is a candidate
location for placing a wind turbine to capture the wind energy. However, installing
more wind turbines does not guarantee the maximal production efficiency because of
the wake effect. The wake zone in a downstream wind depends on the terrain, wind
direction, and surface roughness. The radius of the wake (r1) caused by an upstream
wind turbine increases linearly proportional to the downstream distance (D). The radius
of the wake (r2) at a downstream wind turbine is computed as follows.

r2 ¼ r1
1� a
1� 2a

� �1
2

ð1Þ

where a is the axial induction factor. Let v0 be the mean wind speed without the wake
effect and a be the entrainment constant which depends on the hub height (h) and
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surface roughness (z). The wind speed (vi) at the downstream turbine with a distance
(D) to its preceding turbine is estimated by

vi ¼ v0 1� 2a
1þ a D=r2ð Þ
� �� �

ð2Þ

a ¼ 0:5
ln h=zð Þ ð3Þ

If we assume there are n upstream turbines, the wind speed at a downstream wind
turbine is therefore calculated as follows.

vi ¼ v0 1�
Xn
j¼1

1� vj
v0

� �2
 !1

2

0
@

1
A ð4Þ

The yearly wind energy production by the wind farm with NWT turbines considering
the wake effect is given by

E ¼
XNWT

k¼1

Z
i2S

Z
j2D

tijnv
3
k ð5Þ

where tij is the time proportion in a year for the observed wind speed i and wind
direction j described in probability distributions S and D and n is the constant for power
conversion efficiency.

2.2 Hyper-Heuristic

Hyper-heuristic is an abstract-level algorithm framework which can select, combine, or
generate more primitive heuristics to create an effective metaheuristic algorithm for the
given type of problems [10, 11]. It works as follows. A set of lower-level heuristics for
a particular class of problems are identified and implemented. These problems share
some properties such as scheduling problems or allocation problems. A higher-level
strategic methods including a heuristic selection (HS) method and a move acceptance
(MA) method are designed. The HS is applied to select a lower-level heuristic to
perform on the incumbent solution, and the MA is executed to evaluate the merit of the
output and decides whether to accept the changed solution. Hyper-heuristic is an
iterative learning process which learns the optimal strategy that selects the best
lower-level heuristic to perform for different learning stages. As a result,
hyper-heuristic can be thought of a heuristic for choosing heuristics, and it works in the
heuristics space in contradiction to working in the solution space.

Hyper-heuristic algorithms have created several successful applications. Burke
et al. [10] evaluates a hyper-heuristic approach for timetabling and rostering problems.
The strategic-level hyper-heuristics selects low-level heuristics based on the rein-
forcement learning framework. A tabu list of heuristics is also maintained which
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prevents certain heuristics from being chosen at certain times during the search. Özcan
et al. [11] proposes a timetabling hyper-heuristic framework which combines succes-
sive stages of heuristic selection and move acceptance. The heuristic selection is
automatically controlled by the reinforcement learning technique, while the great
deluge is employed to implement the acceptance function of the solution move.

3 Proposed Methods

In this section, we propose a hyper-heuristic algorithm of artificial bee colony and
simulated annealing for resolving the OWTP problem. Our method is conceptualized in
Fig. 1. Each of the components is described in the following sections.

3.1 Artificial Bee Colony Optimization

The artificial bee colony (ABC) algorithm simulating the honeybee-foraging behavior
to solve optimization problems [8]. We modify the ABC algorithm as follows. In each
ABC iteration, the employed bee recalls its previously visited solution, from which a
local search procedure is performed. We deploys a hyper-heuristic framework for
implementing the local search procedure as shown in Fig. 1. The details of the
developed hyper-heuristic will be noted. The onlooker bee selects a solution inhabited
by an employ bee with a probability based on the quality estimate of the solution. It
also conducts a local search (which is, again, implemented by a hyper-heuristic) to
enhance the quality of the solution. The third type of search pattern is occasionally
performed by the scout bee. When a solution whose quality fails to improve in a
predefined number, called limit, of iterative steps, a scout bee is generated to find a new
solution to replace the old one. The iterative procedure is repeated until a stopping
criterion is met, and the best solution observed by all bees is output as the final solution.
To cope with the micro-siting dimensions, all three types of bees employ the matrix

Fig. 1. Conceptual flowchart of the proposed method.
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form solution representation scheme as shown in Fig. 2. Considering a wind farm with
10 � 10 grids, a candidate micro-siting solution is represented by a binary matrix
where entry value one indicates a wind turbine is placed at that location and entry value
zero means no wind turbine is installed in that grid. The bee solutions are improved by
matrix improvement lower-level heuristics which are provided in the hyper-heuristic
framework as will be noted.

Two widely-used objectives for OWTP is the cost of energy (COE) and the effi-
ciency of production (EOP), both are feasible for defining the fitness of a bee solution.
The COE is defined as the monetary cost per unit of energy produced. In this paper, we
employ a purchase-discount model for wind turbines as follows.

C ¼ NWT
2
3
þ 1

3

� �
e�0:00174N2

WT

� �� �
ð6Þ

The purchase cost has an incentive term which is maximally one third off the
turbine unit price. The COE is thus the purchase cost divided by the produced power,

COE ¼ NWT
2
3
þ 1

3

� �
e�0:00174N2

WT

� �� �,XNWT

k¼1

Z
i2S

Z
j2D

tijnv
3
k ð7Þ

The EOP is defined as the ratio between the production power with and without the
wake effect. It reflects the appropriateness of the turbine placement in reducing the
wind wake as much as possible. The EOP is computed as follows.

EOP ¼
XNWT

k¼1

Z
i2S

Z
j2D

tijv
3
k

,XNWT

k¼1

Z
i2S

Z
j2D

tijv
3
0 ð8Þ

Fig. 2. Matrix form representation of a bee solution.
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3.2 Hyper-Heuristic Improvement

Our hyper-heuristic framework has two layers. The problem-dependent layer consisting
of a repository of lower-level heuristics (LLHs) and the problem-independent layer
containing heuristic selection (HS) and move acceptance (MA) methods. A new bee
solution is produced by applying HS to select one or more LLHs performing on the
current solution. The MA method then makes the decision about whether to accept the
new solution to replace the old one.

LLHs: As a micro-siting is represented as a matrix form (Fig. 2), a number of matrix
improvement LLHs are implemented as follows.

• Row-swap LLH: Randomly select two rows from the current matrix solution. Swap
the two rows to produce a new matrix.

• Row-copy LLH: Randomly select two rows from the current matrix solution. Copy
one of the rows to replace the other. Replace the old matrix with the new one.

• Row-flip LLH: Randomly select one row from the current matrix solution. For each
binary bit contained in the selected row, flip its bit value (from 0 to 1, or vice versa)
with a mutation probability. Replace the old matrix with the new one.

• Column-swap/column-copy/column-flip: The three LLHs are similarly imple-
mented but are performed in a column-wise fashion.

HS: The HS method selects one LLH with a probability proportional to the LLH’s
previous performance. Initially, all LLHs are assigned an equal probability. Once an
LLH is selected and performed, the change in COE or EOP value (quality of the
micro-siting) is used to update the LLH’s probability. If the value is improved, the
selection probability of the LLH is tuned up, and vice versa. Hence, the hyper-heuristic
framework dynamically learns the optimal strategy for heuristic selection.

MA: The MA method decides to accept the newly produced matrix in a probabilistic
way. We implement the metropolitan criterion introduced in simulated annealing [9] as
our MA method. All improving solutions are selected. The worsening solutions are
accepted with a probability determined by the metropolitan criterion with a probability
exp(−D/T) where T is the temperature parameter and D is the worsening amount in the
fitness value.

4 Experimental Results

The simulations are conducted on well-known benchmark micro-siting problems
introduced in Mosetti et al. [2] and Grady et al. [3]. The specifications of the problem
instances follow the settings from the original papers for fair comparison where d = 10,
TC = 0.88, H = 60 m, z = 0.3 m, and r1 = 40 m.

4.1 Problem A

Problem A is a test case having multiple wind directions and multiple wind speeds.
There are 36 wind directions with different occurrence probabilities. The wind speeds
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are 8, 12, and 17 m/s, respectively. The simulation results are tabulated in Table 1.
We see that Mosetti method practiced a conservative energy production which yields a
yearly power of 13460 with only 15 wind turbines installed. The EOP is 94.62%, the
highest value among all methods. Both Grady and the proposed method installed 39
turbines in the wind farm, producing a power of 32038 and 33310, respectively.
Therefore, the micro-siting produced by the proposed method is more robust against
the wake effect than that produced by the Grady method. The COE obtained by the
proposed method is the best among all compared approaches. The proposed method
also outperforms the Grady method in obtaining a higher EOP.

4.2 Problem B

Problem B has the same wind conditions (multiple wind directions and multiple wind
speeds) as Problem A, but adding land usage constraint. In the given wind farm, some
parts of land cannot be placed turbines because of, such as, unstable terrains or
undesirable high cost for installing turbines in swamp areas. Figure 3 shows the wind
turbine layouts obtained by the proposed method. We observe that the wind turbines
are positioned along the main wind direction (northwestern wind) and the
land-constrained grids (shaded areas) are not used for turbine installation. The exper-
imental result shows that the number of turbines installed by the proposed method is 27
which cost 20.5314 unit price. The produced power is 24649. The COE and EOP are
0.000833 and 84.65%, respectively.

Table 1. Simulation results with Problem A.

Mosetti Grady Proposed method

E 13460 32038 33310
NWT 15 39 39
C 13.3802 26.9217 26.8217
COE 0.000994 0.000840 0.000821
EOP (%) 94.62 86.62 90.45

Fig. 3. Problem B: wind turbine layouts obtained by the proposed method.
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5 Conclusions

In this paper we have proposed a hyper-heuristic framework with an artificial bee
colony algorithm to construct an optimal wind turbine placement considering wake
effect influence. The proposed hyper-heuristic contains two layers. The
problem-dependent layer contains several lower-level heuristics (LLHs) which are
matrix improvement methods particularly designed for the micro-siting matrix solution
form. The problem-independent layer consists of a heuristic selection (HS) method and
a move acceptance (MA) method. The HS selects a LLH to perform on a solution, and
the MA decides whether to accept the move or not. Finally, we compare our approach
with benchmark works in the literature. The experimental results show that our
approach not only obtains a better production efficiency, but also produces the wind
power with a lower cost of energy.
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Abstract. The knapsack problem is one of the well known NP-Hard
optimization problems. Because of its appearance as a sub-problem in
many real world problems, it attracts the attention of many researchers
on swarm intelligence and evolutionary computation community. In this
paper, a new binary artificial bee colony called NB-ABC is proposed to
solve the 0-1 knapsack problem. Instead of the search operators of the
original ABC, new binary search operators are designed for the different
phases of the ABC algorithm, namely the employed, the onlooker and the
scout bee phases. Moreover, a novel hybrid repair operator called (HRO)
is proposed to repair and improve the infeasible solutions. To assess the
performance of the proposed algorithm, NB-ABC is compared with two
other existing algorithms, namely GB-ABC and BABC-DE, for solving
the 0-1 knapsack problem. Based on a set of 15 0-1 high dimensional
knapsack problems classified in three categories. the experimental results
in view of many criteria show the efficiency and the robustness of the
proposed NB-ABC.

Keywords: Binary optimization problem · 0-1 knapsack problem
Artificial bee colony

1 Introduction

The knapsack problem is a classical binary optimization problem in operational
research which was demonstrated to be NP-Hard [1]. Although the knapsack
problem is one of the old problems in combinatorial optimization, this prob-
lem still attracts the attention of many researchers on swarm intelligence and
evolutionary computation community. This is mainly due to the possibility of
modeling many real world optimization problems as knapsack problems. In other
words, the application of the knapsack problem can be found in many areas
including resource allocation [2], project selection [3], investment decision mak-
ing problem [4] among others.
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The 0-1 knapsack problem is a very important variant of the knapsack prob-
lem which can be described as follows: given a knapsack with a capacity C and a
set of D items where each item i (i = 1, 2, ...,D) has its own profit Pi and weight
Wi, the main objective is to select a subset of items from the D items so that
to maximize the total profit without exceeding the capacity C of the knapsack.
Formally, the 0-1 knapsack problem is modeled as follows:{

Maximize
∑D

i=1 Pi ∗ Xi

Subject to
∑D

i=1 Wi ∗ Xi ≤ C
(1)

where Xi = 1 if the item i is selected and Xi = 0 if the item i is not selected.
Due to the lack of efficiency of exact algorithms in case of high dimen-

sional problems, alternative nature-inspired metaheuristic algorithms represent
an important class of approximate methods that are widely used to solve different
optimization problems including the 0-1 high dimensional knapsack problem.

Among a large set of recently developed nature-inspired metaheuristic algo-
rithms, Artificial Bee Colony (ABC) is a simple and efficient optimization algo-
rithm which is inspired from simulating the foraging behavior of bees [5]. ABC
has been widely used to solve many optimization problems such as: numerical
optimization problems [6], uncapacitated facility location problem [7], wireless
sensor network [8], as well as the knapsack problem [9,10,12].

However, most of metaheuristic algorithms including ABC have been initially
developed for continuous optimization problems. Thus, their original operators
cannot be directly applied to binary optimization problems like the 0-1 knapsack
problem. Indeed, to apply such algorithms to binary optimization problems, some
modification techniques are required [13].

The ABC algorithm has been proposed for solving the 0-1 knapsack problem.
Liu et al. [9] have proposed a binary discrete ABC named (BABC) where a round
operator with a position clipping boundary condition (PCBC) have been used
together to convert the real variables, obtained from using the original ABC
equations, into binary variables.

Based on the genetic operators, Ozturk et al. [10] have developed a hybrid
binary ABC named GB-ABC where the crossover and swap operators are used
in the neighborhood searching mechanism instead of the original search equa-
tions. Besides, in order to perform the neighborhood searching mechanism, two
different food sources are randomly selected. Then, the crossover followed by the
swap operator are applied randomly between the current, the two chosen, the
zero and the global best food sources to generate children and grand children
food sources. The best solution among the produced food sources is selected as
a neighborhood solution of the current food source.

Later, By using also a hybrid algorithm with the Differential Evolution (DE)
[11], Cao et al. [12] recently developed a new modified ABC called (BABC-
DE). A binary search operator which comprehensively considers the memory
and neighbor information is designed in the employed bee phase. The binary
swap mutation and the crossover operator of DE are used in the onlooker phase.
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Although BABC-DE outperforms the other existing algorithms in solving
the 0-1 knapsack problem, we show in this paper that its results can be further
improved. To do so, we propose in this paper, a new modified binary artificial
bee colony algorithm that we call NB-ABC to solve the 0-1 knapsack problem.

In the proposed algorithm NB-ABC, we develop new search mechanisms for
the employed, the onlooker and the scout bee phases. Besides, new binary search
operators using the well known Boolean operators such as OR, XOR and com-
plement are developed to improve the exploitation and exploration capabilities
of the algorithm. Furthermore, a hybrid strategy composed of two phases is
adapted in order to repair and improve the unfeasible solutions.

In order to assess its performance, the proposed algorithm NB-ABC is com-
pared with the two aforementioned recent algorithms designed for solving the
0-1 knapsack problem, namely GB-ABC and BABC-DE. The comparison is
performed on a large set of 0-1 high dimensional knapsack instances including
three kind of problems. The experimental study shows that globally, the results
obtained by NB-ABC are better than those obtained by the other considered
algorithms in terms of solutions quality, convergence as well as robustness.

The rest of this paper is organized as follows: Sect. 2 describes the details
of the proposed method. In Sect. 3 we present and discuss the proposed exper-
imental study. Finally, Sect. 4 concludes the paper and gives some perspectives
for future work.

2 The Proposed NB-ABC Algorithm

Before detailing the different parts of the proposed algorithm, let us start by
discussing the search equation used in the employed and onlooker phases of
the standard ABC algorithm [5]. According to the search Eq. 2, the difference
between the current solution Xi and the neighborhood solution Xk in a ran-
domly selected variable j is calculated and multiplied by the parameter Φ which
determines the magnitude and the direction of the perturbation. This pertur-
bation is then added to the current food source solution Xi to obtain a new
candidate solution Vi.

Vij = Xij + Φ × (Xij − Xkj) (2)

Semantically speaking, the new candidate solution is obtained by moving
the old solution towards or away from another randomly selected solution. The
direction (towards or away from) of the new candidate solution depends on the
sign of the parameter Φ: If Φ is positive (resp. negative), the new candidate
solution is located near (resp. away from) the randomly selected solution.

Based on this observation, new binary operators are developed in this paper
instead of the search Eq. 2. The concept of movement is replaced here by either
adding new items to the current solution or adding new items and removing some
redundant items, which improves both exploitation and exploration abilities of
the algorithm. Note that, the concept of magnitude cannot be applied in our
study due to the nature of 0-1 knapsack problem where each variable is either
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1 or 0. Moreover, unlike the original search equation of ABC in which only one
variable is modified, the proposed binary operators can change more than one
variable, depending on the chosen operators. Indeed, it has been observed that
the modification of more than one variable speeds up the convergence of the
algorithm.

2.1 Representation, Initialization and Evaluation of the Solutions

In NB-ABC, the colony (population) is composed of a set of food sources or
solutions Xi, i = (1, 2, ..., SN) where each solution Xi = (Xi1, Xi2, ..., XiD) is
a binary vector of length D. D is the dimension of the problem which corresponds
to the number of items in the considered knapsack problem. The jth bit of the
ith solution equals 1 (resp. 0) if the jth item is selected (resp. is not selected).

In addition to Xi, each solution has a fitness (Profiti), a weight (Weighti),
a feasibility (Feasibilityi) and a variable named triali which counts the number
of consecutive times the solution Xi has not been improved.

At the initial stage, a set of food sources are randomly generated using the
Bernoulli process as follows:

Xij(0) =

{
1, if α > 0.5
0, Otherwise

(3)

where α is a random number in the range [0, 1] and j ∈ {1, 2, ...,D}.
The fitness evaluation process is performed after each phase of NB-ABC in

order to calculate the profit and the weight of each solution Xi as well as to check
the feasibility of this solution. Profiti is simply the sum of profits of all items
included in Xi. Similarly, Weighti is the sum of weights of all items included in
this solution (see (4)). A solution Xi is infeasible if its weight is greater than the
capacity of the knapsack.

[Profiti,Weighti] = [
D∑

j=1

Pj ∗ Xj ,
D∑

j=1

Wj ∗ Xj ] (4)

where Pj and Wj represent the profit and weight of the jth item.

2.2 The Hybrid Repair Operator (HRO)

The operators used in the initialization as well as the three bee phases of NB-
ABC may produce infeasible solutions. In order to repair and improve them, we
introduce in NB-ABC a hybrid repair operator called (HRO) which includes two
phases: greedy DROP phase and random ADD phase.

In the first phase, the selected items are sorted in terms of the ratio Pi/Wi

in an increasing order. Then, a greedy selection is performed to take off items
starting from that having the smallest ratio and so on until the capacity of the
solution becomes smaller than the knapsack capacity. During the second phase,
we randomly add to the knapsack some items from the unselected ones as long
as the capacity of the knapsack is not exceeded. Note that DROP phase aims to
make the solutions feasible while ADD phase improves the repaired solutions.
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2.3 The Neighborhood Search Mechanism of NB-ABC

In the NB-ABC algorithm, new search operators are designed based on the sim-
ilarity between the current solution and the selected neighbor solution. Firstly,
each employed bee randomly selects a neighbor solution Xk from the colony.
Then, a binary vector V 1i is generated by using the following binary operator:

V 1i = (Xk AND (Xi XOR Xk)) (5)

V 1i gives all the items that are exclusively selected in the neighbor solution Xk

of the current solution Xi. From this vector, two randomly selected items are
added to the current solution to obtain a new candidate solution Vi.

In case of absence of exclusive items in Xk, two other binary vectors V 2i and
V 3i are generated by using the following equation:

[V 2i, V 3i] = [(Xi OR Xk), (Xi AND Xk)] (6)

Here, V 2i contains all the items that are not selected in both solutions Xi and
Xk while V 3i contains all common items that are selected in both Xi and Xk.

A new candidate solution Vi is generated by randomly adding two items to
the current solution Xi from the items of V 2i and randomly taking out one item
from the items of V 3i.

2.4 The Employed and Onlooker Bee Phases

During the employed bee phase, each employed bee performs the above neigh-
borhood search mechanism on its attributed food source and produce a new food
source Xk. After that, the new food source Xk is evaluated and repaired if it is
infeasible. The profit of Xk is compared with the profit of Xi. If the new food
source Xk is better than Xi, the employed bee moves to the new food source
Xk. Otherwise, the employed bee keeps the food source Xk. Finally, the obtained
solution and the best solution are compared.

After that, as in the original ABC [5], all the employed bees complete their
search: they come back to the hive to share theirs fitness information with the
onlooker bees. Each onlooker bee chooses a food source Xi based on a probability
degree Probi proportional to its profit Profiti using (7). After the selection of
the food source, the same steps are applied as in the employed bees.

Probi =
Profiti∑SN

k=1 Profitk
(7)

2.5 The Scout Bee Phase

The scout bee looks for a food source that has not been improved after several
trials by comparing its value of the parameter Trial with that of the parameter
Limit of the algorithm. The scout bee replaces this food source with a new
randomly generated food source. In NB-ABC, a new mechanism is used for all
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the food sources that have not been improved. This mechanism involves the best
food source in the scout bee process.

After randomly generating a new food source, the new food source is modified
by taking out all the items that are selected both in this solution and in the best
so far found solution. In order to define these items, we use the following binary
operator:

NewXi1 = (Xi AND Xbest) (8)

where Xbest denotes the best food source found so far.
Inversely, all the items that are not selected in the best food source and the

new food source are added to the knapsack. These items are determined by the
following binary operator:

NewXi2 = (Xi OR Xbest) (9)

The proposed scout bee phase operator allows us to generate new food sources
that are significantly different from the best food source. These new generated
food sources enable the algorithm to explore new search regions which improves
the exploration ability of the algorithm.

2.6 Main Steps of NB-ABC for Solving 0-1 Knapsack Problem

The main steps of NB-ABC for solving 0-1 knapsack problem are given in
Algorithm 1. After the random initialization of SN food sources (lines 1–11). The
algorithm iteratively performs three consecutive phases: employed bee, onlooker
bee and scout bee phases (lines 13–18) until the stopping criterion is met. Note
that the stopping criterion used in NB-ABC is the maximum number of evalu-
ation function FEmax.

3 Experimental Study

This section presents the results of evaluation of NB-ABC. NB-ABC has been
compared with two other recent ABC based algorithms that are BABC-DE and
GB-ABC, on a large set of 0-1 high dimensional knapsack problems.

All compared algorithms are implemented with MATLAB R2015a on the
same PC with Intel(R) Core(TM) i5-2430M, 2.40 Ghz CPU, 4.00 GB RAM and
Windows7 operating system.

3.1 General Setting of the Experiments

The proposed algorithm NB-ABC has only two parameters which are the pop-
ulation size PopSize and the parameter Limit. The population size is fixed to
50 (i.e. The number of food sources SN = PopSize/2 = 25) for all knapsack
problems. The parameter Limit influences the frequency of the scout bee phase.
After various simulations, we have found that 100 is a suitable value of this
parameter for the high dimensional knapsack problems used in this study.
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Algorithm 1. NB ABC Algorithm

Require: The food sources number SN , the maximum number of function evaluations
FEmax, the parameter Limit.

Ensure: The best solution Xbest with its profit Value Profitbest.
1: Xi = Initialization Phase(SN, D);
2: for each bee i = 1 to SN do
3: Triali ← 0;
4: Profiti, Weighti, F easibilityi ← Fitness Evaluation Process(Xi); {Sect. 2.1}

5: if (Feasibilityi == false) then
6: Profiti, Weighti, F easibilityi ← HRO(Xi); {Sect. 2.2}
7: end if
8: if (Profiti > Profitbest) then
9: Xbest ← Xi; Profitbest ← Profiti; {Update Xbest}

10: end if
11: end for
12: FE ← SN ;
13: while FE <= FEmax do
14: Xi ← Employed Bee Phase(SN, Xi); {Sect. 2.4}
15: Xi ← Onlooker Bee Phase(SN, Xi);
16: FE ← FE + 2 × SN ;
17: Xi ← Scout Bee Phase(SN, Xi, Limit); {Sect. 2.5}
18: end while
19: Return Xbest, Profitbest.

The parameters of GB-ABC and BABC-DE are taken from their original
papers: In BABC-DE [12], the number of food sources SN = 25, Limit = 0.1 ∗
SN ∗ D, w linearly decreases from 0.8 to 0.4 and Pcr = 0.9. For GB-ABC [10],
the population size is PopSize = 30 and Limit = 500.

GB-ABC uses a penalty-based technique to deal with infeasible solutions.
However, it has been shown that this technique is inefficient with large scale
optimization problems. Thus, to correctly compare GB-ABC with the other algo-
rithms, we have used in GB-ABC the same repair operator (HRO) used in the
proposed NB-ABC. Moreover, in order to ensure a fair comparison, the same
stopping criteria is used for all the compared algorithms which is the maximum
number of function evaluations FEmax.

In the following experiments, each algorithm is run 50 time for each 0-1
knapsack problem. To asses the performance of each algorithm, we record the
best, the worst and the average value of the best obtained solutions. We also
record the standard deviation of the obtained solutions to evaluate the robustness
of the algorithms. Finally, the obtained results are ranked based on the above
criteria.

3.2 Comparison Results

In order to deeply evaluate the performance of the proposed NB-ABC, we per-
form the comparison between the algorithms on three different datasets used in
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[12] and containing high dimensional (difficult) instances. The three datasets are
randomly generated as follows:

Dataset1: Uncorrelated high dimensional 0-1 knapsack problems.
This dataset contains 5 items from kp1 to kp5 with different dimensions. The
values of weights Wi are randomly generated between 5 and 20 while the
values of profits Pi are generated between 5 and 40.
Dataset2: Weakly related high dimensional 0-1 knapsack problems.
This dataset contains 5 items from kp6 to kp10 with different dimensions.
Each weight Wi is randomly generated between 5 and 20 while its corre-
sponding profit Pi is chosen from the range [Wi − 5,Wi + 5].
Dataset3: Strongly related high dimensional 0-1 knapsack problems.
This dataset contains 5 items from kp11 to kp15. The value of each weight
Wi is randomly chosen from 5 to 20 and its corresponding profit Pi equals
Wi + 5.

For each knapsack problem kpi, i ∈ {16, 17, . . . , 30}, the capacity Ci = 0.75 ×∑D
j=1 Wi. Note that the three datasets are created only once and used for all

compared algorithms.
The results of comparison between NB-ABC, BABC-DE and GB-ABC are

given in Tables 1, 2 and 3.

Table 1. The optimization results of algorithms NB-ABC, BABC-DE and GB-ABC
for the uncorrelated high dimensional 0-1 knapsack problems

KP Dim FEmax Algorithm Mean Best Worst StdDev Rank

kp1 100 10000 NB-ABC 2087,02 2088 2087 0, 14 2

BABC-DE 2087,16 2088 2085 1, 03 1

GB-ABC 1916,44 2051 1677 115, 44 3

kp2 200 20000 NB-ABC 4127 4127 4127 0 2

BABC-DE 4127,76 4128 4126 0, 59 1

GB-ABC 3667,3 4089 3234 333, 96 3

kp3 500 20000 NB-ABC 10227,1 10228 10227 0, 3 1

BABC-DE 10225,82 10228 10219 1, 73 2

GB-ABC 8280,74 9333 8012 223, 01 3

kp4 1000 50000 NB-ABC 20325,92 20326 20325 0, 27 1

BABC-DE 20324,14 20326 20315 1, 98 2

GB-ABC 16145,9 16484 15703 187, 02 3

kp5 2000 50000 NB-ABC 40909 40909 40909 0 1

BABC-DE 40900,14 40908 40861 8, 69 2

GB-ABC 32019,26 32445 31390 266, 5 3

Average rank/Overall rank 1.4/1 1.6/2 3/3
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For the uncorrelated high dimensional 0-1 knapsack problems given in
Table 1, we can remark that for the two first problems kp1 and kp2, BABC-
DE outperforms NB-ABC and finds the best result whereas NB-ABC finds the
best results on the three other problems (kp3 to kp5). GB-ABC can not outper-
form the other algorithms on any of the used 0-1 knapsack problems. Globally,
we conclude that NB-ABC has better performance on solving the uncorrelated
high dimensional than the other algorithms since it achieves the first overall
rank.

From the results of the algorithms on solving the weakly related high dimen-
sional 0-1 knapsack problems presented in Table 2, it is clear that the proposed
NB-ABC obtains the best results on all problems of this dataset. Moreover, we
can remark that the standard deviation of the proposed algorithm equals zero
for all problems witch reflects the robustness and stability of NB-ABC on solving
this kind of 0-1 knapsack problems.

Table 2. The optimization results of algorithms NB-ABC, BABC-DE and GB-ABC
for the weakly related high dimensional 0-1 knapsack problems.

KP Dim FEmax Algorithm Mean Best Worst StdDev Rank

kp6 100 10000 NB-ABC 1108 1108 1108 0 1

BABC-DE 1106,7 1108 1106 0,95 2

GB-ABC 1022,12 1096 929 33,69 3

kp7 200 20000 NB-ABC 2179 2179 2179 0 1

BABC-DE 2175,22 2179 2169 2,37 2

GB-ABC 1912,9 2016 1816 50,64 3

kp8 500 20000 NB-ABC 5554 5554 5554 0 1

BABC-DE 5543,5 5550 5535 3,94 2

GB-ABC 4664,56 4793 4515 71,86 3

kp9 1000 50000 NB-ABC 10690 10690 10690 0 1

BABC-DE 10662,16 10675 10640 7,58 2

GB-ABC 8938,62 9245 8598 107,53 3

kp10 2000 50000 NB-ABC 21900 21900 21900 0 1

BABC-DE 21827,52 21855 21800 11,94 2

GB-ABC 18028,92 18377 17699 160,21 3

Average/Overall rank 1/1 2/2 3/3

The comparison results on the strongly related high dimensional 0-1 knapsack
problems presented in Table 3 demonstrates once again the efficiency of NB-ABC
since it outperforms both BABC-DE and GB-ABC.

In addition to the performance measures shown in Tables 1, 2 and 3, the
convergence speed is also an important criterion which should be observed. To
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Table 3. The optimization results of algorithms NB-ABC, BABC-DE and GB-ABC
for the strongly related high dimensional 0-1 knapsack problems.

KP Dim FEmax Algorithm Mean Best Worst StdDev Rank

kp11 100 10000 NB-ABC 1348 1348 1348 0 1

BABC-DE 1342,9 1348 1338 2,57 2

GB-ABC 1334,68 1348 1276 15,81 3

kp12 200 20000 NB-ABC 2704 2704 2704 0 1

BABC-DE 2690,4 2699 2679 4,63 2

GB-ABC 2628,82 2694 2470 60,98 3

kp13 500 20000 NB-ABC 6662,6 6663 6658 1,04 1

BABC-DE 6617,66 6643 6578 13 2

GB-ABC 6333,84 6558 6115 93,19 3

kp14 1000 50000 NB-ABC 13520,82 13526 13516 2,89 1

BABC-DE 13434,7 13466 13381 19,37 2

GB-ABC 12596,94 13035 12281 153,48 3

kp15 2000 50000 NB-ABC 27245,12 27251 27234 4,5 1

BABC-DE 27062,06 27111 26986 31,55 2

GB-ABC 25047,26 25398 24623 176,8 3

Average rank/Overall rank 1/1 2/2 3/3

do so, the convergence curves of some 0-1 knapsack problems in particular runs
are depicted in Fig. 1.

This figure shows that for kp2 and kp7, the convergence behaviors of NB-
ABC and BABC-DE are very similar, which means that the two algorithms are
very competitive on solving these problems. For kp5 and kp10, BABC-DE con-
verges faster than NB-ABC at the beginning, but later, NB-ABC still constantly
converges and surpasses BABC-DE. For kp13 and kp15, initially, BABC-DE and
NB-ABC perform similarly. However, after a number of evaluations, the proposed
NB-ABC algorithm outperforms BABC-DE and converges to better results.

Despite the stable behavior of GB-ABC in most of cases such as kp5, kp10,
kp13 and kp15, its convergence is significantly slower that the two other algo-
rithms.

To complete our experimental evaluation, the non parametric right-tailed
Wilcoxon signed rank test is performed for NB-ABC against BABC-DE and GB-
ABC. The non parametric Wilcoxon signed rank test [14] is a pairwise test that
aims at determining whether significant differences exist between the averages of
two samples. In our case, each sample is presented by the average of best results
obtained by an algorithm over the 50 runs for problems kp1 to kp15.

Table 4 shows the results of the right-tailed Wilcoxon signed rank test for
problems kp1 to kp15. R+ is the sum of ranks in which NB-ABC outperforms
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Fig. 1. Convergence curves of NB-ABC, BABC-DE and GB-ABC for kp2, kp5, kp7,
kp10, kp13 and kp15

the other compared algorithm while R− is the sum of ranks in which NB-ABC
is outperformed by the other compared algorithm.

We can see that, NB-ABC obtains more R+ than R− compared with the two
other algorithms (especially with GB-ABC). This means that NB-ABC often
achieves better results than those obtained by GB-ABC. Moreover, the obtained
p − value is below 0.05 which allows us to reject the null hypothesis H0 stating
that the two compared algorithms have the same performance. Thus, we can
conclude that NB-ABC is significantly better than BABC-DE and GB-ABC.

In summary, although the authors in [12] have demonstrated the effectiveness
of BABC-DE comparing to several other algorithms used on their comparison,
the above experiments show that our proposed algorithm NB-ABC can improve
further the results obtained by BABC-DE. Indeed, on the one hand, the pro-
posed mechanism search operator used on the employed and onlooker bee phases
allows the algorithm to mainly improve the exploitation as well as the explo-
ration as second objective. On the other hand, the scout bee phase improves the
exploration ability of the algorithm by allowing it to visit new search regions.
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Table 4. The results of right-tailed Wilcoxon signed rank test of NB-ABC against
BABC-DE and GB-ABC (α = 0.05) for kp1 to kp15.

NB-ABC vs. R+ R− p − value H0 Rejection

BABC-DE 117 3 1.52e−04 Yes

GB-ABC 120 0 3.05e−05 Yes

4 Conclusion and Future Works

In this paper, a new modified ABC-based algorithm called NB-ABC is developed
to solve the 0-1 knapsack problem. In our proposal, new binary operators have
been designed instead of the original search equations suitable for the continuous
optimization problems but not for binary optimization ones.

The experimental results confirm the efficiency and robustness of our algo-
rithm compared with GB-ABC and BABC-DE in view of several criteria.

Several orientations are opened for future work. First, we plan to deeply
analyze the few cases where NB-ABC does not give the best results in order to
improve it. Then, since the obtained results of NB-ABC are very interesting for
0-1 knapsack problem, we want to adapt it for solving other binary optimization
problems issued from practical domains such as data mining and bioinformatics.
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Abstract. This paper proposes a new hybrid metaheuristic algorithm
called teaching-learning artificial bee colony (TLABC) for function opti-
mization. TLABC combines the exploitation of teaching learning based
optimization (TLBO) with the exploration of artificial bee colony (ABC)
effectively, by employing three hybrid search phases, namely teaching-
based employed bee phase, learning-based onlooker bee phase, and gen-
eralized oppositional scout bee phase. The performance of TLABC is
evaluated on 30 complex benchmark functions from CEC2014, and exper-
imental results show that TLABC exhibits better results compared with
previous TLBO and ABC algorithms.
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1 Introduction

Metaheuristic search (MS) algorithms have received much attention regarding
their potential as global optimization technique. Teaching learning based opti-
mization (TLBO) [1] and artificial bee colony (ABC) [2] are two relative new
MS algorithms. TLBO [3] is inspired by the teaching and learning process of a
typical class, and it uses two operators namely teacher phase and a learner phase
to search good solutions. ABC [2] is inspired by the intelligent foraging behavior
of honey bees, and it uses three kinds of bees, namely employed bees, onlooker
bees, and scout bees, to find good solutions. Both TLBO and ABC have aroused
much interest in the last years and have been successfully applied to different
kind of optimization problems [4–8].

Previous studies show that TLBO is good at exploitation [4], while ABC
has a good exploration for global optimization [9]. However, a good search pro-
cess needs to balance both exploration and exploitation; therefore, this paper
proposes a hybrid teaching-learning-based artificial bee colony (TLABC) algo-
rithm for global optimization. The proposed TLABC employs three hybrid search
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-93815-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93815-8_17&domain=pdf


Teaching-Learning-Based Artificial Bee Colony 167

phases, namely teaching-based employed bee phase, learning-based onlooker bee
phase, and generalized oppositional scout bee phase, which can efficiently com-
bine the exploitation of TLBO with the exploration of ABC. TLABC is evaluated
on 30 complex benchmark functions from CEC2014, and compared with eight
well-established ABC and TLBO algorithms.

2 A Brief Introductions to TLBO and ABC

2.1 Teaching-Learning-Based Optimization

TLBO is a population-based optimization method which mimics the teaching
and learning processes of a typical class [3]. The optimization process of TLBO
is divided into two stages: teacher phase and learner phase.

In the teacher phase, the teacher provides knowledge to the learners to
increase the mean result of the class. The learner with the best fitness in the
current generation is identified as the teacher x teacher, and the mean position

is represented as xmean= 1
NP

NP∑

i=1

x i. The position of each learner is updated by

Eq. (1):
xnew
i = x old

i + rand · (x teacher − TF · xmean) (1)

where xnew
i and x old

i are the i-th learners new and old positions, respectively;
rand is a random vector uniformly distributed within [0, 1]D; TF = round[1 +
rand(0, 1)] is the teacher factor; and its value is heuristically set to either 1 or
2. If xnew

i is better than x old
i , xnew

i is accepted and flowed to learner phase,
otherwise x old

i is unchanged.
In the learner phase, each earner randomly interacts with other different

learners to further improve his/her performance. Learner x i randomly selects
another learner x j(j �= i) and the learning process can be expressed by Eq. (2):

xnew
i =

{
x old
i + rand · (x i − x j), if f(x i) ≤ f(x j)

x old
i + rand · (x j − x i), if f(x j) > f(x i)

(2)

2.2 Artificial Bee Colony

ABC is a swarm intelligence algorithm inspired on the foraging behavior of honey
bee swarms [10]. It implements a cycle of the employed bee phase, onlooker bee
phase and scout bee phase to search good solutions.

The ABC algorithm starts with randomly producing food sources:

xij = xmin,j + (xmax,j − xmin,j) · rand (3)

where x i = (xi1, xi2, · · · , xiD), i ∈ {1, 2, · · · , NP} represents the i-th solution;
xmin,j and xmin,j are the lower and upper bounds for the dimension j, respec-
tively; rand is a random real number in the range of [0, 1]. The fitness values of
the food sources are then calculated as:

fit(x i) =
{ 1

1+f(x i)
if f(x i) ≥ 0

1 + |f(x i)| otherwise
(4)
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where f(x i) is the objective function value of x i.
In the employed bee phase, each employed bee performs a modification

on the position of the food source by randomly selecting a neighboring food
source. A new food source can be generated from the old food source u i =
(ui1, ui2, · · · , uiD) as follows:

uij = xij + ψ · (xij − xkj) (5)

where k ∈ {1, 2, · · · , NP} is randomly chosen index and must be different from
i; ψ is a random number in the range [−1, 1].

In the onlooker bee phase, an onlooker bee selects a food source to seek out
ac-cording to the selection probability p, which is calculated as

pi =
fit(x i)

SN∑

i=1

fit(x i)
(6)

where fit is the fitness value of the solution, which is calculated as using Eq. (4).
After the onlooker bee selects a food source x s to seek out, a candidate food
source position us = (us1, us2, · · · , usD) will be produced by using Eq. (5).

If the food source position of the employed bees cannot be further improved
through a given number of steps (limit) in the ABC algorithm, this employed
bee becomes a scout bee. The new random food source position (scout bee) will
be generated from the Eq. (3).

The candidate solution is compared with the old one. If the new food source
has a better quality than the old source, then the old source is replaced by the
new one. Otherwise, the old source is retained.

3 Proposed Teaching-Learning-Based Artificial Bee
Colony

TLBO is good at exploitation, but its exploration is relative poor for complex
problems [4]. On the other hand, ABC has a good exploration for global opti-
mization but poor at exploitation [9]. In order to balance the exploration and
the exploitation during the searching process, this section proposes a hybrid
teaching-learning artificial bee colony (TLABC) algorithm, which effectively
combines the exploitation of TLBO with the exploration of ABC.

TLABC starts with initializing NP food sources x i = (xi1, · · · , xij , · · · , xiD),
and calculates the fitness values using Eq. (4). Then it uses three hybrid search
phases to find good solutions: (1) teaching-based employed bee phase, (2)
learning-based onlooker bee phase, and (3) generalized oppositional scout bee
phase. The details of these three phases are described as follows.
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3.1 Teaching-Based Employed Bee Phase

In the teaching-based employed bee phase, each employed bee searches a new
food source u i = (ui1, ui2, · · · , uiD) using a hybrid TLBO teaching strategy:

ui,d =
{

xold
i,d + rand2 · (xteacher,d − TF · xmean,d) if rand1 < 0.5

xr1,d + F · (xr2,d − xr3,d) otherwise
(7)

where r1, r2, and r3(r1 �= r2 �= r3 �= i) are integers randomly selected from
{1, 2, · · · , NP}; d ∈ {1, 2, · · · ,D}; rand1 and rand2 are two random numbers
uniformly distributed within [0, 1]; and F is a scale factor in [0, 1]. If u i is better
than x i, then u i is used to replace x i.

The hybrid TLBO teaching strategy using Eq. (7) can be viewed as a hybrid
of basic teaching strategy of TLBO and mutation operator of differential evolu-
tion [11], and it is illustrated in Fig. 1.

Fig. 1. Hybrid TLBO teaching strategy.

Remark 1: In the basic TLBO teaching strategy, all individuals use the same
differential vector (x teacher−TF ·xmean) to update the positions, so the diversity
of the search directions is poor. By contrast, the hybrid TLBO teaching strategy
uses a combination of TLBO teaching strategy and differential evolution muta-
tion operator, which can improves the diversity of search directions greatly, and
enhance the search ability of the proposed algorithm.

3.2 Learning-Based Onlooker Bee Phase

After the teaching-based employed bee phase, TLABC enters into the learning-
based onlooker bee phase. In the learning-based onlooker bee phase, an onlooker
bee selects a food source x s to seek out according to the selection probability p,
which is calculated using Eq. (6).

Then, the onlooker bee searches new food sources using the learning strategy
of TLBO as follows:

us =
{
x s + rand · (x s − x j), if f(x s) ≤ f(x j)
x s + rand · (x j − x s), if f(x j) > f(x s)

(8)
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where j ∈ {1, 2, · · · , NP} and j �= s. If us is better than x s, then us is used to
replace x s.

3.3 Generalized Oppositional Scout Bee Phase

After the learning-based onlooker bee phase, TLABC enters into the general-
ized oppositional scout bee phase. The generalized oppositional scout bee phase
is proposed in [12], and it uses generalized opposition-based learning strategy
[13] to enhance the basic scout bee phase. In this phase, if a food source x i

cannot be improved further for at least limit times, it is considered to be
exhausted and would be abandoned. Then, a new random candidate solution
x i = (xi1, · · · , xij , · · · , xiD) together with its generalized oppositional solution
xGO
i = (xGO

i1 , xGO
i2 , · · · , xGO

iD ) are generated using Eqs. (3) and (9) respectively.

xGO
ij = k · (aj + bj) − xij (9)

where k is a random number in [0, 1], and aj = max
i

(xij), bj = min
i

(xij).

The better solution between x i and xGO
i are used to replace the old exhausted

food source:

x i =
{
x i, if f(x i) ≤ f(xGO

i )
xGO
i , if f(x i) > f(xGO

i ) (10)

3.4 Framework of TLABC

Based on the three search phases described above, the framework of TLABC
can be summarized in Fig. 2.

Remark 2: TLABC employs the three bee phases of ABC to search solutions,
which is beneficial for global exploration. Meanwhile, TLABC uses the improved
TLBO search equations and opposition-based learning strategy in the three
bee phases, which is benefit for local exploitation. Therefore, it is hopeful that
TLABC can provide a better balance between exploration and exploitation com-
pared with the TLBO and ABC algorithms.

4 Experimental Results and Analysis

In this section, the proposed TLABC is evaluated on 30 benchmark functions
from CEC2014 competition [14] and compared with well-established TLBO and
ABC algorithms. The benchmark functions can be categorized into four groups:
(1) G1: unimodal functions (F01–F03); (2) G2: simple multimodal functions
(F04–F16); (3) G3: hybrid functions (F17–F22); and (4) G4: composition func-
tions (F23–F30). More details for these functions can be found in [14]. The
evaluation is performed under 30 variables, i.e., D = 30. The maximum number
of functional evaluations MaxFES = 104 × D was used to terminate TLABC
and the compared algorithms. All algorithms are run 30 times independently.
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Fig. 2. Framework of TLABC.

4.1 Compared with TLBO Algorithms

TLABC is first compared with four well-known TLBO algorithms, they are basic
TLBO [3], nonlinear inertia weighted TLBO (NIWTLBO) [15], TLBO with
learning experience of other learners (LETLBO) [16], and generalized oppo-
sitional TLBO (GOTLBO) [5]. The parameters settings for TLABC and the
compared TLBO algorithms are listed in Table 1.
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Table 1. Parameter settings for TLABC and the compared TLBO algorithms

Algorithm Parameter settings

TLBO Population size NP = 50

NIWTLBO NP = 50, inertia weight w = 0 ∼ 1.0

LETLBO NP = 50

GOTLBO NP = 50, jumping rate Jr = 0.3

TLABC NP = 50, limit = 200, scale factor F = rand(0, 1)

Table 2 compares TLABC and the TLBO algorithms on four groups of bench-
mark functions. Following [17], each cell of the win-draw-loss table (see Table 2)
consists of three numbers in α−β−γ style. In each triplet, α denotes the number
of functions on the corresponding group which the TLABC performs statistically
better than its competitor. The next number β shows how many times TLABC
performs statistically similar its competitor. And, γ denotes the number of func-
tions that TLABC performs statistically worse than its competitor. Note that in
this table two algorithms are considered to be significantly different if the p-value
of Wilcoxon rank-sum test is less than 0.05, and statistically similar otherwise.

Table 2. The win-draw-loss statistics results between TLABC and the compared
TLBO algorithms

TLBO NIWTLBO LETLBO GOTLBO

G1 3-0-0 3-0-0 3-0-0 2-1-0

G2 9-2-2 9-2-2 7-3-3 8-3-2

G3 3-2-1 3-0-3 3-1-2 2-3-1

G4 5-2-1 3-2-3 6-2-0 1-2-5

Total 20-6-4 18-4-8 19-6-5 13-9-8

First, for unimodal functions F01–F03, TLABC performs significantly better
than TLBO, NIWTLBO, and LETLBO on all 3 functions, and better than
GOTLBO on 2 functions.

Second, for simple multimodal functions F04–F16, TLABC is significantly
better than TLBO, NIWTLBO, and LETLBO on 9, 9, 7, and 8 functions, respec-
tively. It is significantly worse than TLBO, NIWTLBO, and LETLBO on 2, 2,
3, and 2 functions, and similar to them on 2, 2, 3, and 3 functions, respectively.

Thirdly, for hybrid functions F17–F22, the performance of TLABC is better
than TLBO, LETLBO and GOTLBO, while similar to NIWTLBO.

Finally, with regard to composition functions F23–F30, TLABC performs
better than TLBO and LETLBO, similar to NIWTLBO, while worse than
GOTLBO.
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In summary, compared with the TLBO algorithms, TLABC shows the best
overall performance on the unimodal functions, simple multimodal functions and
hybrid functions. On composition functions, GOTLBO shows the best perfor-
mance, TLABC and NIWTLBO the second. Based on the comparisons, it can
be seen clearly that TLABC significantly improves the performance of TLBO
on multimodal functions (i.e. the functions in Group 2). It should be attributed
to the utilization of the three bee phases in TLABC, which is beneficial for
the global exploration of TLABC. Meanwhile, the performance of TLABC is
also very competitive on the other three group functions compared with TLBO
algorithms.

4.2 Compared with ABC Algorithms

TLABC is also compared with four well-established ABC algorithms, they are
basic ABC [2], gbest-guided ABC (GABC) [9], modified ABC(MABC) [18],
and Gaussian bare-bones ABC (GBABC) [12]. The parameters settings for the
TLABC and compared ABC algorithms are listed in Table 3.

Table 4 shows the win-draw-loss statistics results between TLABC and the
compared ABC algorithms.

Table 3. Parameter settings for TLABC and the compared TLBO algorithms

Algorithm Parameter settings

ABC Population size NP = 100, limit = 100

GABC NP = 100, limit = 100, C = 1.5

MABC NP = 100, limit = 100, modification rate MR = 0.4, scaling
factor SF = 1

GBABC NP = 100, limit = 100, crossover rate CR = 0.3

Table 4. The win-draw-loss statistics results between TLABC and the compared ABC
algorithms

ABC GABC MABC GBABC

G1 3-0-0 3-0-0 2-1-0 3-0-0

G2 3-2-8 3-2-8 5-2-6 3-2-8

G3 5-0-1 5-0-1 3-0-3 3-3-0

G4 7-0-1 6-2-0 5-2-1 4-3-1

Total 20-6-4 18-4-8 19-6-5 13-9-8

First, for unimodal functions F01–F03, TLABC performs significantly better
than ABC, GABC, and GBABC on all 3 functions. TLABC performs signifi-
cantly better than MABC on 2 functions, and similarly on 1 function.

Second, for simple multimodal functions F04–F16, the performance of
TLABC is not very satisfactory. It performs worse than the other ABC.
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Thirdly, for hybrid functions F17–F22, TLABC performs significant better
than ABC, GABC, MABC, and GBABC on 5, 5, 3, and 3 functions, respectively.
It is performs worse than ABC, GABC, MABC and GBABC on 1, 1, 3, and 0
functions, and similar to them on 0, 0, 0, and 3 functions, respectively.

Finally, with regard to composition functions F23–F30, TLABC shows the
best performance on most of functions. It also outperforms the ABC algorithms
on most of functions.

In summary, TLABC shows the best overall performance on the unimodal
functions, hybrid functions, and composition functions. For the simple multi-
modal functions, the performance of TLABC is not very satisfactory, but it also
gets the best results on some multimodal functions.

From the comparisons, we can see that TLABC significantly improves the
performance of ABC on unimodal functions (i.e. the functions in Group 1).
This can be attributed to the use of the improved TLBO search equations
and opposition-based learning strategy in TLABC, which enhances the global
exploitation of TLABC. However, it sacrifices the exploration of the algorithm, as
the performance of TLABC is not very satisfactory on simple multimodal func-
tions compared with the ABC algorithms. Fortunately, TLABC achieves a very
excellent performance on the hybrid functions and composition functions; there-
fore, the introduction of TLBO search equations and opposition-based learning
strategy is useful for the overall performance enhancement of ABC.

4.3 Multiple-Problem Statistical Comparison

Table 5 shows the results of multiple-problem Wilcoxon test [19] between TLABC
and the compared TLBO and ABC algorithms. It can be seen from the Table 5
that TLABC attains higher positive-ranks (R+) than negative-ranks (R−) com-
pared with all the ABC and TLBO algorithms. This means that TLABC is
overall better than the compared algorithms for all functions. Also, there are
significant differences among TLABC, ABC, TLBO, NIWTLBO, LETLBO and
GOTLBO when α = 0.05 and α = 0.1.

Table 5. Results of Multiple-problem Wilcoxon test between TLABC and the com-
pared TLBO and ABC algorithms

R+ R− p-value α = 0.05 α = 0.1

TLABC vs TLBO 375 60 3.32E-04 Yes Yes

TLABC vs NIWTLBO 318 117 2.91E-02 Yes Yes

TLABC vs LETLBO 331 104 1.29E-02 Yes Yes

TLABC vs GOTLBO 328 107 1.57E-02 Yes Yes

TLABC vs ABC 331 134 4.27E-02 Yes Yes

TLABC vs GABC 311 154 1.09E-01 No No

TLABC vs MABC 284 181 0.2 No No

TLABC vs GBABC 256 209 0.2 No No
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Fig. 4. Convergence graphs of TLABC and the compared algorithms on four typical
functions.

Figure 3 shows the results of the Friedman rank test among TLABC and the
compared algorithms. As shown in Fig. 3, TLABC gets the best rank, followed
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in order by GBABC, GABC, GOTLBO, MABC, ABC, TLBO, LETLBO, and
NIWTLBO.

Figure 4 plots the Convergence graphs of TLABC and the compared algo-
rithms on four typical functions F02, F09, F22, and F26. Overall, TLABC
converge faster than the compared ABC and TLBO algorithms on these four
functions.

5 Conclusion

Teaching learning based optimization (TLBO) and artificial bee colony (ABC)
are two metaheuristic algorithms which have aroused great interests in recent
years and have demonstrated their effectiveness on a wide variety of optimization
problems. TLBO employs teaching and learning operators to search solutions,
and its production operators are good at exploitation. ABC uses three search
phases, namely employed bee phase, onlooker bee phase, and scout bee phase, to
explore solutions. ABC is good at exploration; however, its exploitation ability
is relative poor. In this paper, we have proposed a new hybrid algorithm named
teaching-learning-based artificial bee colony (TLABC), which employs the teach-
ing and learning operators of TLBO and the three bee search phases of ABC.
The proposed TLABC is evaluated on the CEC2014 benchmark functions, and
compared with previous eight well-known TLBO and ABC algorithms. Based
on the experimental results, we can conclude that:

(1) TLABC significantly improves the performance of TLBO algorithms on mul-
timodal functions. It should be attributed to the utilization of the three bee
phases in TLABC, which is beneficial for the global exploration of TLABC.

(2) TLABC significantly improves the performance of ABC on unimodal func-
tions. This can be attributed to the use of the improved TLBO search equa-
tions and opposition-based learning strategy in TLABC, which enhances the
global exploitation of TLABC.

(3) TLABC can provide a better balance between exploration and exploitation
compared with the TLBO and ABC algorithms. The overall performance of
TLABC is better than all the compared TLBO and ABC algorithms on 30
CEC2014 benchmark functions, which demonstrates the superiority of the
proposed hybrid algorithm.
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Abstract. The Artificial Bee Colony (ABC) algorithm is a new kind of intel-
ligent optimization algorithm. Due to the advantages of few control parameters,
computed conveniently and carried out easily, ABC algorithm has been applied
to solve many practical optimization problems. But the algorithm also has some
disadvantages, such as low precision, slow convergence, poor local search
ability. In view of this, this article proposed an improved method based on
adaptive neighborhood search and the improved algorithm is applied to the task
assignment in Heterogeneous Multicore Architectures. In the experiments,
although the numbers of iteration decreases from 1000 to 900, the quality of
solution has been improved obviously, and the times of expenditure is reduced.
Therefore, the improved ABC algorithm is better than the original ABC algo-
rithm in optimization capability and search speed, which can improve the effi-
ciency of heterogeneous multicore architectures.

Keywords: Artificial bee colony algorithm � Task assignment
Neighborhood search

1 Introduction

Nowadays single core architectures is gradually replaced by multiple cores due to
problems in obtaining further performance increases from single core processors [1].
Heterogeneous multicore architecture (HMA) is an integration of special purpose
processing cores. The purpose of task assignment in HMA is to help system designers
to get the best-performance and the lowest-cost design scheme in HMA [2]. Task
assignment in HMA minimizes the execution time and consumed power of the target
system [3] with certain constraint conditions.

Task assignment in HMA is an NP-hard problem [4]. Many heuristic algorithms
have been applied to solve the NP-hard problem [5–8]. Due to the advantages of few
control parameters, computed conveniently and carried out easily, ABC algorithm has
been applied to solve many practical optimization problems [9], which have obtained
preferable results.

ABC algorithm is based on swarm behavior, with the characteristics of integrity,
relevance, dynamic and orderliness on systematics [10]. It can be evolved from
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disorder to order by self-organizing. Bees and bee colonies have feedback features at
the same time [11]. Because it is limited by the way of evolution, there are still some
disadvantages, such as low precision, slow convergence [12], poor local search ability
[13–15]. In this paper, we describe the HMA as a model of a task assignment.
The HMA are combined with two different cores. The original ABC algorithm is used
in the model to achieve the DAG diagram corresponding to system tasks. Then an
improved method based on adaptive neighborhood search is proposed to address the
original ABC algorithm’s disadvantages. Five DAG figures are generated randomly
with TGFF [16] tools as a test set in order to compare the performance of the original
and the improved ABC algorithms. The experimental results demonstrate that the
improved ABC algorithm is more efficient.

2 Task Assignment Based on ABC

2.1 Bees Behavior

ABC simulates the co-operation, mutual coordination between individuals and groups
in intelligent foraging and breeding behavior of bee swarms. They exchange infor-
mation through dance and odor to finish foraging behavior. In a typical ABC algorithm,
three types of artificial bees are considered as agents for solving an optimization
problem, called employed bees, onlooker bees and scout bees. They have their own
division or labor in foraging. The scout bees are responsible for investigation. The
employed bees and onlooker bees are responsible for the exploitation of food sources.
The bees maintained good coordination to achieve a better balance, and then completed
the bee groups of foraging, reproduction and other behaviors.

2.2 Mathematical Model of the Artificial Bee Colony Algorithm

A system task is divided into a number of sub-tasks which can be completed by a
combination of core A (represented by 0) and core B (represented by 1). When the two
cores process the same task they consume different time and power. The coded
information corresponding to the task assignment can be seen as an ordered set of
binary numbers. The task assignment in HMA can be abstracted as a multi-objective
combinatorial optimization problem in mathematics, to find a sub-optimal solution or
the optimal solution under different constraints.

Bees can quickly find a better food source in foraging. Similarly, the task assign-
ment can quickly find a better solution in the process. The correspondence among bee
foraging behavior, mathematical model and task assignment is shown in Table 1.

Apparently, the more nodes there are, the more task assignment schemes. The
number of schemes is growing at an exponential rate to the number of nodes. In a
DAG, some tasks are completed by core A, the others are completed by core B.
Figure 1 presents one scheme of the task assignments.

The best scheme from all the task assignment schemes is to be selected according to
their fitness values and the probability to be searched. The maximum fitness food
source is selected, which may be the optimal or suboptimal solution corresponding to
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the best task assignment in HMA. The Eq. (1) is used to describe the best scheme of
task assignment in HMA.

Max fitness :¼ maxðfitness½i�Þ
PN�1

j¼0
Tj\Time Limit

s:t:
PN�1

j¼0
Powerj\Power Limit

8
>>>>>><

>>>>>>:

ð1Þ

Here fitnessðiÞ is the fitness value of i-th food source, Tj and Powerj are the total
time consuming and the total power consuming of the j-th node respectively.
Time Limit and Power Limit are the maximum time and the maximum power limi-
tations respectively.

2.3 Description of the Original ABC Algorithm

ABC is applied to solve the traveling salesman problem in literature [11]. The algo-
rithm based on the mathematical model in Eq. (1) is applied to task assignment in
HMA.

At first, the bees are equally divided into scout bees and onlooker bees. The scout
bees search the food source and the food source in its neighborhood. If the fitness of its
neighborhood position is greater than its fitness, then the location of i-th food source is
substituted by the location of its neighborhood. Onlooker bees are sent according to the
probability of each candidate food source to search food. The greater the probability is,

Table 1. The correspondence among Bee foraging behavior, mathematical model and task
assignment

Bee foraging behavior Mathematical model Task assignment

All the food sources All the solutions All the Task assignment
The location of a food
source

One solution One Task assignment scheme

The best food source The best solution The best Task assignment
scheme

The fitness of a food
source

The quality of a solution Performance of the system

Bees’ foraging speed Solutions’ convergence
rate

The speed of optimization
capability

CoreA CoreB CoreB CoreA ...

Task 0 Task 1 Task 2 Task 3 ...

CoreA

Task N

Fig. 1. One scheme of the task assignments.
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the greater likelihood of neighborhood search is. If the fitness of the neighborhood
position is greater than that of the current location, the current location is substituted by
the location of its neighborhood.

When the time consumed by the neighborhood search is greater than the maximum
limit time of food source, the food source is initialized. When its search time is greater
than the global maximum limit, the worst food source is initialized. Every bit of coding
information (0 or 1) is selected probably in the initialization.

At last the optimal or suboptimal food source searched is recorded. The information
coding corresponds to the best scheme of task assignment in HMA. In original ABC
algorithm, scout bees and onlooker bees finish their neighborhood search by updating
one bit of information coding randomly, such as 0 (1) is updated as 1 (0). So the
information update of food source is implemented.

3 The Analysis and Improvement of ABC Algorithm

3.1 The Shortcoming of the Original ABC Algorithm

In ABC algorithm, food source is updated through replacing the sub-optimal position
by optimal position. The food-searching process is equivalent to the process of finding
the optimal solution to task assignment in HMA.

When the initial position of the food source is far away from the optimal food
source, there is a big difference between the encoded information of them. The method
mentioned above will be very low efficiency. Obviously, the convergence rate will be
lower and the method will increase the number of invalid iterative search. It is a broader
range and high-discrete solution space. Finding the optimal solution is a continuous
iteration and selection process. Therefore, in order to improve the optimization capa-
bility and reduce the time overhead, invalid iterations should be avoided or minimized.

3.2 The Improvement of ABC Algorithm

In view of the deficiencies of the original ABC algorithm, the efficiency of ABC
algorithm is improved from the aspects of invalid iteration and neighborhood search
strategy.

The Improvement of Neighborhood Search Strategy
When neighborhood search iteration is less than the constraint condition, the neigh-
borhood search strategy updates one bit of the coded information in an iteration. On the
contrary, when neighborhood search iterations exceed the constraint condition, but the
fitness of the corresponding food source cannot be improved, then, the neighborhood
search strategy is changed to update several bits of the coded information in an
iteration.

Function named Search_Neighbourfood_Strategy_Improved([i]) is used to updates
the coded information of the food source randomly. The pseudo-code is as follows
(Table 2):
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Here, Xi;old location is the information coding of the i-th food’s current location,
Xi;neighbour location is the information coding of the i-th food source’s neighborhood.

The Improvement of Calculating the Worst Food Source
During later iteration, all of the current food sources are approaching the final result.
The worst food source is re-coded according the best food source’s current location
instead of initialize the worst food source. Several bits of the best food source’s current
location are kept and the remaining bits are re-coded. The pseudo-code is as follows
(Table 3):

Here, Xbest location is the information coding of the current best food source’s
location, Xneighbour location is the information coding of the current best food source’s
neighborhood, Xnew location is the information of the new solution.

4 Experimental Results and Analysis

Algorithms in this paper are implemented in C-language and tested on a computer with
Intel core i5-4460 and 8 GB RAM. The running environments consists of Windows 10
and Microsoft Visual Studio 2013 Ultimate. In the experiment we set population size as
15. Food sources number is equal to 0.5 * population size. The number of initial time
scout bees is equal to the follow bee, which scale is equal to 0.5 * population size.

Table 2. The pseudo-code of the new neighborhood search program for the i-th food source.

Function：： Search_Neighbourfood_Strategy_Improved([i]) 
begin

1

/*update several bits of the coded information to realize the neighborhood search*/

, _ : _ , _( )i neighbour location Update nbits i old locationX X= ; 

/*The location of neighborhood food source is assigned to the current food source*/

, _ , _:i old location i neighbour locationX X= ; 

2 end

Table 3. The pseudo-code of generating a new solution.

Function：：SendScoutBees_new([i]) 
begin

1

/*update several bits of the coded information to realize the neighborhood search*/

__ : _ ( )neighbour location best locationX update nbits X= ; 

/*The location of neighborhood food source is assigned to the new food source*/

__ :new location neighbour locationX X= ; 

2 end
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Five DAGs generated randomly with TGFF tool are regarded as a sample set to
compare the test results of the original ABC algorithm and the improved ABC (I-ABC)
algorithms. The parameter settings are shown in Table 4.

The comparison results between the ABC and the I-ABC algorithms are shown in
Table 5.

To illustrate the effectiveness of the I-ABC algorithm, its performances are shown
in Figs. 2 and 3.

According to the comparison in Table 5, Figs. 2 and 3, data could be analyzed from
the following three aspects:

The Local Search Ability: Although the number of iterations is reduced from 1000 to
900, the optimal solution of the improved algorithm is not only not worse, even better
than that of the original algorithm. It is more obvious for the case of 52 nodes. From 30
nodes to 132 nodes, the quality of the solution increases about the 21.27%, 23.02%,
18.11%, 14.57%, 3.37% respectively. Meanwhile the time-consumed is reduced, and
the power-consumed is the similar. Therefore, the I-ABC algorithm shows better local
search ability.

Table 4. Parameter settings

Parameters Values

CoreA execution time [392 ms, 450 ms]
CoreA consumed power [25 w, 35 w]
CoreB execution time [72 ms, 84 ms]
CoreB consumed power [264 w, 336 w]

Table 5. Comparison results between the ABC and the I-ABC algorithms

Nodes Algorithm Iterations Optimal
solution

The worst
solution

Average
solution

Average
consumed
power

Average
execution
time

30 ABC 1000 1590.1074 1911.0752 1801.8261 5970.2704 0.2317 s
30 I-ABC 900 1238.3132 1163.5138 1418.6363 5962.4877 0.2214 s
52 ABC 1000 1618.9009 2471.8289 2116.6482 1053.5813 1.5177 s
52 I-ABC 900 1493.8208 2072.0464 1629.4947 1055.6977 1.4246 s
75 ABC 1000 1791.9229 2784.7266 2337.8188 1544.2631 6.1917 s
75 I-ABC 900 1660.3372 2356.6123 1914.4037 1551.2477 5.8043 s
102 ABC 1000 2104.1284 3092.9399 2600.3895 2066.0012 13.6863 s
102 I-ABC 900 1968.8102 2662.5608 2221.5824 2090.9569 12.9610 s
132 ABC 1000 2708.5594 3218.9221 2934.5233 2905.2343 34.2272 s
132 I-ABC 900 2701.4824 3028.0132 2835.6697 2998.8134 32.6838 s
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The Solution Accuracy: The D-value between the worst solution and the optimal
solution in the I-ABC algorithm is reduced obviously. The final solution is also reduced
significantly. For the case of 132 nodes, the final solution reduced about 3.5%, so the
algorithm’s accuracy is improved.

The Convergence Speed: When the consumed power is substantially the same, the
improved algorithm can reduce the average execution time of the task.

From what we have been discussed above, we can get a conclusion that the pre-
cision of optimal solution of the I-ABC algorithm is higher than that of the original
ABC algorithm, and the average execution time is reduced. The I-ABC algorithm is
more efficient.

Fig. 2. Comparison of two algorithms over the average solution and the average execution time.
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5 Conclusion

ABC algorithm has the features of less parameter and strong robustness, for which it is
used in task assignment in HMA. Based on the original ABC algorithm, the neigh-
borhood search scheme is proposed to solve the problems of low precision, slow
convergence and poor local search ability. The experimental result shows that, in the
case of less iterations, the I-ABC algorithm reduces the task execution time, and in case
that the power-consumed obeys the restrictive conditions, the I-ABC algorithm reduces
average solution with reduced numbers of iteration. D-value between the worst solution
and the optimal solution is also reduced. The task assignment in HMA could be more
efficient with the I-ABC algorithm.
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Abstract. Vehicle routing problem (VRP) is a classic combinatorial
optimization problem and has many applications in industry. Solutions
of VRP have significant impact on logistic cost. In most VRP models, the
shortest distance is used as the objective function, which is not the case
in many real-word applications. To this end, a VRP model with fixed
and fuel cost is proposed. Genetic algorithm (GA) is a common app-
roach for solving VRP. Due to the premature issue in GA, a tabu bee
colony-based GA is employed to solve this model. The improved GA has
three characteristics that differentiate from other similar algorithms: (1)
The maximum preserved crossover is proposed, to protect the outstand-
ing sub-path and avoid the phenomenon that two identical individuals
cannot create new individuals; (2) The bee evolution mechanism is intro-
duced. The optimal solution is selected as the queen-bee and a number
of outstanding individuals are as the drones. The utilization of excellent
individual characteristics is improved through the crossover of queen-bee
and drones; (3) The tabu search is applied to optimize the queen-bee in
each generation of bees and improve the quality of excellent individuals.
Thus the population quality is improved. Extensive experiments were
conducted. The experimental results show the rationality of the model
and the validity of the proposed algorithm.

Keywords: Vehicle routing problem · Genetic algorithm
Bee colony algorithm · Tabu search

1 Introduction

The Vehicle Routing Problem (VRP) [11], introduced by Dantzig and Ramser
in 1959, is defined as follows: some routes are made, in which vehicles can
pass through a series of points in an orderly manner under the certain con-
straints, to achieve some optimization, such as the shortest distance, mini-
mum cost and other targets. Reasonable vehicle routing can reduce the logistics
c© Springer International Publishing AG, part of Springer Nature 2018
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costs and enhance the competitiveness of enterprises. Therefore, the VRP has
drawn widespread attention from the scholars. We elaborate the existing research
results from two aspects of the VRP models and its solution algorithms.

The analysis of relevant literature shows that most of the VRP models take
the shortest distance as the objective function, which ignores the fuel consump-
tion, load rate and other related factors. For example, the shortest distance is
considered as the objective function [2,10]; A VRP model with the lowest carbon
emissions is proposed in [9]; The literature [12] optimizes the vehicle fixed-cost
without the fuel-cost. Such VRP models are different from the actual situations.

For solving the route optimization problems such as Traveling Salesman
Problem (TSP) [6] and VRP, bionic algorithms are widely used, such as the
Genetic Algorithm (GA) [13], the Ant Colony (ACO) algorithm [3,8,14] and
the Simulated Annealing (SA) [1] algorithm. Among them, GA is used most fre-
quently due to the high concurrency and fantastic local search ability. However,
the traditional GA also has some drawbacks [7], such as the premature issue and
individual degradation, which affects the global optimization ability and conver-
gence speed, leading to that it can only be used for small-scale VRP models.
Generally, the distribution of enterprises is large and the optimization result of
vehicle routing directly affects the logistics cost. Therefore, it is necessary to
optimize the traditional GA to improve the performance for solving large-scale
VRP models.

A VRP model with the fixed-cost and fuel-cost is built in this study to reduce
the logistics costs based on the above analysis. Further, a tabu bee colony-based
genetic algorithm is proposed to solve the VRP model. The proposed algorithm
is novel in three aspects. First, the maximum preserved crossover is put forward,
to protect the outstanding sub-path which would be destroyed in traditional
crossover and avoid the phenomenon that two identical individuals cannot pro-
duce new individuals. Second, the bee evolution mechanism is introduced in
this paper. The optimal solution is selected as the queen-bee and a number of
outstanding individuals are chosen as the drones. The utilization of excellent
individual characteristics is improved through the crossover of queen-bee and
drones. Finally, the tabu search [4] is applied, to optimize the queen bee in each
generation of bees and improve the quality of the excellent individuals, so as to
improve the population quality.

2 Mathematical Model of VRP

Most of the existing VRP models take the shortest distance as the objective
function, and do not address the fuel consumption, cost and other related factors,
which is different from the real situations. Addressing on this issue, a VRP model
with the fixed-cost and fuel-cost is constructed in this paper.

The proposed VRP model can be described as follows: Let G = (V,E) be a
graph where V = 0, 1, ..., n is a vertex set, and vertex 0 represents a depot, while
the remaining vertices correspond to customers; cij is the linear distance between
customer i and j; Q is the vehicle capacity; qi is the demand of customer.
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Given the following variables:

xijk =

{
1, the vehicle k moves from customers i to j.

0, otherwise
(1)

yik =

{
1, the delivery for customer i is done by the vehicle k.
0, otherwise

(2)

The total fuel-cost can be calculated as formula (3):

C = si[e1 + pi(e2 − e1)] = e1si + sipi(e2 − e1) (3)

Where, e1, e2 are the no-load fuel-cost and the full-load fuel-cost of vehicle
respectively, si is the total distance.

cmin =
L∑

i=0

L∑
j=0

m∑
k=1

cijxijke1 +
L∑

i=0

L∑
j=0

m∑
k=1

cijxijkpijk(e2 − e1) (4)

Fall =
m∑

k=1

y0kF (5)

F is the fixed-cost of each vehicle, then the objective function can be
described as follows:

Zmin =
L∑

i=0

L∑
j=0

m∑
k=1

cijxijke1 +
L∑

i=0

L∑
j=0

m∑
k=1

cijxijkpijk(e2 − e1) +
m∑

k=1

y0kF (6)

Subject to:

pijk =
(
∑L

j=1 qjyjk − ∑j−1
i=1 qiyik)

q
(7)

L∑
i=1

qiyik ≤ Q, k = 1, 2, ...,m (8)

m∑
k=1

yik, i = 1, 2, ..., L (9)

L∑
j=1

x0jk = m (10)

L∑
i=1

xijk = yik, j = 1, 2..., L, k = 1, 2, ...,m (11)

L∑
j=1

xijk = yik, i = 1, 2..., L, k = 1, 2, ...,m (12)
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xijk(xijk − 1) = 0 (13)

yik(yik − 1) = 0 (14)

Equation (4) represents the total vehicle fuel-cost; Eq. (5) represents the total
fixed-cost of the all vehicles departing from the depot; Eq. (6) is the objective
function of the problem; Eq. (7) represents the vehicle load rate from customer
i to customer j; Eq. (8) is the constraint of loading capacity; Eq. (9) is the
vehicle constraint; Eq. (10) makes sure the number of vehicles can meet the
customers’ demands; Eqs. (11) and (12) are the constraints between customer
and corresponding vehicle; Eqs. (13) and (14) mean xijk, yik are both integer
variables.

3 Tabu Bee Colony-Based Genetic Algorithm

In this paper, a tabu bee colony-based genetic algorithm is proposed to solve the
VRP model. The proposed algorithm is novel in three aspects. First, the max-
imum preserved crossover is put forward, to protect the outstanding sub-path
which would be destroyed in traditional crossover and avoid the phenomenon
that two identical individuals cannot produce new individuals. Second, the bee
evolution mechanism is introduced in this paper. The optimal solution is selected
as the queen-bee and a number of outstanding individuals are chosen as the
drones. The utilization of excellent individual characteristics is improved through
the crossover of queen-bee and drones. Finally, the tabu search is applied, to opti-
mize the queen bee in each generation of bees and improve the quality of the
excellent individuals, so as to improve the population quality.

The tabu bee colony-based genetic algorithm is designed as follows:

(1) Chromosome coding: The natural number encoding is used to express each
solution as the form (0, i1, i2, ..., ie, 0, if , ..., ik, 0, ip, ..., in, 0), where 0 repre-
sents the distribution center, and ij means the customer j in sub-path i.

(2) Initial population: The customers’ permutation is randomly generated, in
which 0 is inserted at the beginning and the end, and m−1 0 are inserted in
the middle according to the constraints (m is the number of sub-paths, given
by the algorithm). This step would be repeated until the initial population
of size N is generated.

(3) Fitness function: The objective function Eq. (6) is selected as a fitness func-
tion to calculate the individual fitness values in the population.

(4) Select operator: The individuals are sorted according to their fitness val-
ues. The best individual is selected as the queen-bee and optimized by the
tabu search operator. And a number of outstanding individuals are selected
as drones by roulette options. The sector is divided to make the excellent
individuals enter the next generation more possibly.

(5) Tabu operator: The Eq. (6) is considered as the objective function, and the
queen-bee is the initial solution. In order to search for a better solution space,
four operators are used: reversal operator, 1-0 exchange, 2-opt exchange and
3-opt exchange.
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Fig. 1. Illustration of the tabu search operator

(a) Reversal operator: Some parts of one sub-path are reversed, it is an inter-
nal exchange of lines. As shown in Fig. 1, the sub path 234 is reversed to
432.

(b) 1-0 exchange: One customer is removed to another sub-path. For example,
the customer 2 is inserted between customer 7 and 8 in Fig. 1, which
belongs to the exchange between lines.

(c) 2-opt exchange: Two points in two sub-paths are selected to exchange the
tails of them, just as shown in Fig. 1.

(d) 3-opt exchange: Four continuous customers (i, i+1, j, j+1) are exchanged
to (i+1, i, j+1, j). As shown in Fig. 1, 1234 are changed to 2143.

(6) Maximum preserved crossover operator: Two same father individuals can-
not generate new individual and good sub-path would be destroyed in tra-
ditional crossover. A new crossover operator is proposed in this paper. As
shown in Fig. 2, the sub-path with the highest load rate is selected and
moved to the top of the temporary string. Then the customers that are
same as the temporary one are deleted. The remaining customers’ permuta-
tions are transformed into the path form, and these sub-pathes are merged
to complete the crossover operator.

(7) Mutation operator: As shown in Fig. 3, two non-0 codes are randomly
selected to exchange their bits to produce a new path.

(8) Bee evolution mechanism: The optimal individual is used to assist popula-
tion evolution so as to improve the utilization of excellent characteristics,
and operated as follows:

(a) According to the above steps, population A and B of size N have been
generated, after that, queen-A and queen-B are selected and optimized
by tabu operator.

(b) Two random numbers ra and rb between (0, 1) are generated that ra+rb =
1, and N/2ra and N/2rb drones are selected from population A and B.

(c) Queen-A and queen-B cross with corresponding drones respectively, to
form a new population C of size N .
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Fig. 2. Illustration of the crossover operator

Fig. 3. Illustration of the mutation operator

(d) The population C is mutated to generate a new population D, and the
corresponding queen-D is selected and optimized.

(e) Queen-A, queen-B and queen-D are admitted to compete. The best indi-
vidual is selected as the queen of the new generation, and group D, is the
new population. The above steps would be repeated until the iteration is
over and then output the optimal solution.

4 Simulation Experiments

4.1 Datasets

This paper uses the distribution network with 30 nodes in [5] to estimate the
rationality of the VRP model and the performance of the proposed Tabu Bee
Colony-based Genetic Algorithm (TBCGA). The coordinates and demands of
the nodes are shown in Table 1. The standard Genetic Algorithm (GA) [5], Tabu
Search (TS) algorithm [5], Cloud Adaptive Genetic Algorithm (CAGA) [5] and
TBCGA are selected to run 20 times based on the above dataset. Then we get
the optimal solution, the worst solution, mean value and other factors from the
results. Next we analyze the efficiency and stability of the algorithm. Experiment
parameters are set as Table 2.

4.2 Experimental Analysis

The details of the optimal solution obtained based on our proposed algorithm are
described in Table 3. In this table, the first column is the capacity of the vehicle.
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Table 1. Demands and coordinates of synthetic dataset.

No. Demands/t Coordinates/KM No. Demands/t Coordinates/KM No. Demands/t Coordinates/KM

1 1.8 (2,83) 11 0.6 (64,16) 21 1 (40,11)

2 2.7 (73,63) 12 2.2 (9,98) 22 0.9 (17,37)

3 3.4 (85,100) 13 0.8 (12,43) 23 1.8 (70,75)

4 1.3 (41,70) 14 1 (52,53) 24 3.9 (52,4)

5 0.3 (4,36) 15 0.4 (25,61) 25 2.3 (81,91)

6 0.8 (44,36) 16 4 (72,47) 26 1.6 (87,22)

7 3.5 (13,10) 17 0.1 (90,28) 27 2.3 (34,40)

8 1.7 (19,40) 18 1 (18,75) 28 3.2 (85,58)

9 1 (10,66) 19 1.5 (43,3) 29 3.1 (9,93)

10 0.7 (15,87) 20 0.8 (55,5) 30 2.1 (68,98)

Table 2. Experiment parameters.

Parameters Value Interpretation Parameters Value Interpretation

Q 8t The vehicle
capacity

E1 0.56 yuan/(km.t) The full-load
oil cost

E2 0.56 yuan/(km.t) The full-load
oil cost

F 100 yuan/time Fixed-cost of
vehicle

N 100 Population
size

C 50 Iteration

Table 3. The optimal solution in proposed algorithm.

Load Path Mileage
/KM

Oil cost
/yuan

To-cost
/yuan

Load-rate
%

To-cost
/yuan

8t 0-6-27-15-9-1-18-0 141.95 131.48 231.48 91.25 1515.00

0-25-3-30-0 129.63 135.20 235.20 97.5

0-4-10-29-12-0 129.61 123.89 223.89 91.25

0-8-22-13-5-7-0 136.62 130.95 230.95 90

0-2-28-23-0 94.11 92.13 192.13 96.25

0-21-19-24-20-11-0 112.01 117.94 217.94 97.5

0-14-16-17-26-0 103.77 83.41 183.41 83.75

The second column lists the sub-path of the best solution. The third to fifth
columns provide the mileage, load-rate, and oil-cost of each sub-path respec-
tively. The sixth column presents the all-cost which is the sum of the vehicle
fixed-cost and the oil-cost. The last column gives the total cost required for the
entire solution. As shown in Table 3, the distance of the sub-path 0-2-28-23-0
is the shortest, but its total cost is not the least. Similarly, the sub-path
0-6-27-15-9-1-18-0 has the longest distance, however it doesn’t have the high-
est cost. Consequently, the distance of path is not the decisive factor of cost.
The model which takes the shortest distance as the objective function can not
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Fig. 4. The iteration of optimal solution

always get the least cost. Thus the VRP model with the fixed-cost and fuel-cost
is more consistent with the actual distribution.

Next we use the GA, TS, CAGA and TBCGA to simulate based on the
above instance, and compare the convergence of the optimal solutions obtained
from each algorithm, to validate the performance of the TBCGA. The results
are shown in Fig. 4.

In Fig. 4, all the GA, TS and CAGA are trapped in local optimal solu-
tions compared to the TBCGA. And the solution of the TBCGA is the best,
which means that the TBCGA has the strongest global optimization ability.
The TBCGA gets the optimal solution in eighth generation, and the GA, TS
and CAGA converge in about the 43rd, the 22nd, and the 26th generation. The
converge speed from fast to slow are the TBCGA, TS, CAGA and the GA algo-
rithm. Thus, the TBCGA performs better than other algorithms. Further, in
order to validate the stability of our proposed algorithm, we use GA, TS, CAGA
and TBCGA to run 20 times based on the above instance, to count the optimal
solution, the worst solution, the mean value and other indicators. The results
are shown in Table 4.

In Table 4, all the optimal solutions of GA, TS and CAGA are 1560.41 yuan,
but the optimal solution of TBCGA is 1515.00 yuan, which is obviously more
competitive. For the worst solution, the one of GA is 5632.85 yuan, the one of TS
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Table 4. Demands and coordinates of synthetic dataset.

Algorithm The optimal solution in proposed algorithm

Optimal
solution
/yuan

The worst
solution
/yuan

Mean value Run time/s Success
rate/%

Average
number
iters/time

SGA 1560.41 5632.85 2654.38 12.2 15 52.31

TS 1560.41 4562.21 2156.43 32.5 12 26.42

CAGA 1560.41 3245.23 1685.62 8.9 48 33.26

TBCGA 1515.00 1615.44 1568.88 10.1 52 15.67

is 4562.21 yuan, the one of CAGA is 3245.23 yuan, which all have a big difference
with their corresponding optimal solutions. But the worst solution in TBCGA
is 1615.44 yuan, closing to the optimal value. This shows that our proposed
algorithm is more stable and there is less fluctuation between the obtained values.
The mean value obtained from TBCGA is also superior to the others. The time
required for our algorithm is also relatively small. In addition, for the success-rate
and the average iterations, our algorithm also outperforms other algorithms. The
simulation results demonstrate that the proposed algorithm TBCGA performs
better than the compared algorithms in terms of the global optimization ability,
convergence speed and the stability of algorithm.

5 Conclusion

In this paper, we study the vehicle routing problem, and establish a VRP
model with vehicle fixed-cost and oil-cost. We propose a Tabu Bee Colony-based
Genetic Algorithm for solving the VRP model. The simulation results indicate
that the proposed algorithm is competitive in terms of the quality of the solu-
tions found, convergence speed and the stability of algorithm. However, there are
some deficiencies in this study, mainly reflected in the following two points: (1)
The runtime of our algorithm is not the shortest; (2) The VRP models with the
same type of vehicles may result in the waste of resources, due to the differences
between vehicle capacity and customer demands. Next, we will focus on how to
shorten the algorithm runtime and study the VRP models with multiple vehicles
to better simulate the realistic distribution.
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Abstract. This study aims to generate the optimal trajectories for the biped
walking up sloping surfaces after ensuring the minimum energy consumption by
using genetic algorithm (GA) and motion/force control scheme. During opti-
mization, the step length, the maximum height of swing foot and walking speed
were optimized with the seven-link biped model. The impactless bipedal
walking was investigated for walking on the ground level and slopes with
different gradients, respectively. The results showed that the biped consumed
more energy when the optimal walking speed increased for walking on the same
slopes. There were no great differences in optimal step length when the biped
changed the walking speed. The results showed that the proposed approach is
able to generate optimal gaits for the biped simply by changing boundary
conditions with GA.

Keywords: Biped � Genetic algorithm � Optimization � Slope
Impactless

1 Introduction

The biped robots are required to have humanlike walking pattern to adapt to compli-
cated environment like walking on flat terrain, negotiating stairs, going upslope and
downslope. That is, the biped should have the ability to maintain stability and consume
minimum energy during walking.

As one kind of special locomotion patterns, impactless walking ensures the feet
contact the floors with zero velocity for the whole walking cycle [1]. Gong and
Schiehlen [2] and Gong [3] have reported that the motion/force control scheme can be
used effectively to generate stable walking for the biped walking on slopes and stairs.
Haq et al. studied the impactless walking gaits of the 7-link planar bipedal robot and
proposed that locking the knee and increasing springs of different joints could decrease
the energy consumption [4].

Due to the advantages of efficiency and being robust, genetic algorithm (GA) was
frequently adopted in many researches as the global optimization method. GA was used
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to optimize the angle trajectories for the bipedal level ground walking and going
up-stairs based on Consumed Energy (CE) and Torque Change (TC) by Capi et al. [5].
Cardenas-Maciel et al. [6] generated periodic motions for a numerical investigation
case of a 3 degrees of freedom (DOFs) biped robot while ensuring minimal energy. Lim
et al. [7] proposed the real-coded genetic algorithms (RCGA) to generate various
three-dimensional (3D) optimal locomotion trajectories for biped robots ascending and
descending stairs. Safa et al. [8] investigated the passive bipedal locomotion on a series
of parallel local slopes, and found that adding feet and an upper body could increase the
maximum stable speed and the stability of the biped robot. An time-efficient and
force-resisting control strategy were used to control the joint motors of a walking biped
robot based on GA and the linear interpolation technique by Kim et al. [9].

This study proposes an optimization method in generating optimal trajectories for
the biped walking up different slopes via the combination of the motion/force control
scheme and GA. This paper is organized as follows. Section 2 introduces the 7-link
planar biped model. Section 3 briefly explains the process and parameters of GA and
definition of cost function. Simulations and comparisons of the biped walking up
slopes with different gradients at different speeds are demonstrated in Sect. 4. Section 5
makes some concluding remarks of this study.

2 Biped Motion Analysis for Ascending Slopes

2.1 Dynamics of the 7-Link Planar Biped Model

In this study, a planar 7-link biped robot was investigated to walk up the slopes with
different gradients ensuring the dynamic balance. Figure 1 demonstrates the schematic
view of the 7-link biped model going up slopes, which was used in our previous study
[3]. The biped robot has two thighs, two shanks, two feet and one head-arms-trunk
(HAT). Table 1 lists the physical parameters of the biped [3]. It is assumed that one
complete gait cycle is composed of two phases, the single support phase (SSP) and
double support phase (DSP).
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Fig. 1. Schematic view of the 7-link biped model [3].
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For an autonomous multibody system with n DOFs, the vector y 2 Rn can define
the n position coordinates. The equation of the “flying” biped can be written as

M yð Þ€y ¼ h _y; yð ÞþBTs ð1Þ

where y ¼ y1 � � � ; yn½ �T and M yð Þ represents the inertia matrix; h _y; yð Þ is the applied and
centrifugal forces; B is the control input matrix; s represent the control troques/forces.
The equations of motions of the 7-link biped model were generated by using the
software Neweul-M2 [10].

The “flying” biped has nine DOFs and six control inputs. For the walking biped,
there are 6 DOFs in the SSP and 3 DOFs in the DSP, respectively. During SSP, there
are 3 rheonomic constraints (motion constraints) on the upper body and 3 rheonomic
constraints (motion constraints) on the lifting leg. While during DSP, there are 3
rheonomic constraints (motion constraints) on upper body and 3 scleronomic con-
straints (force constraints) on the hind leg (trailing leg). Therefore, the control strategy
for the whole process of walking is the mixture of motion control and force control.

The specified motion is investigated to ensure the feet contact with the ground with
zero velocities during the whole process of walking, which is regarded as impactless
walking.

The motions of equations for the walking biped are the same with our previous
study [3], which can be defined as:

M€y ¼ hþBTsþCT
b kb þCT

c kc; ð2Þ

Cc _y; y; tð Þ€yþCc0 _y; y; tð Þ ¼ 0: ð3Þ

In this case, kb represent the specified reactions of constraints; CT
c kc are the reaction

forces of constraints; Cb ¼ @/b=@y and Cc ¼ @/c=@y where /b are rheonomic con-
straints of SSP and /c are scleronomic constraints of DSP.

The next step is to calculate the control torques/forces s with:

s ¼ DcB
T

� ��1
Dc M€y� h� CT

b kb
� � ð4Þ

where Dc is the orthogonal complement matrix to matrix Cc.

Table 1. The parameters of the biped model [3].

Parameter k ¼ 1 k ¼ 2 k ¼ 3

mk 5:3 kg 2:25 kg 0:5 kg
Jk 0:08 kg �m2 0:09 kg �m2 0:006 kg �m2

lk 0:3 m 0:35 m –

ck 0:07 m 0:145 m 0:05 m
mT 14:8 kg – –

JT 0:9 kg �m2 – –

cT 0:2 m – –
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Then, the reactions of constraints kc can be calculated by

kc _y; y; tð Þ ¼ � CcM
�1CT

c

� ��1
Cc0 þCcM

�1 hþBTsþCT
b kb

� �� �
; ð5Þ

where Cc0 _y; y; tð Þ ¼ � _Cc _yþ d=dt @/c=@tð Þ� �
:

2.2 Constraints of the Biped Model

The constraints /a are the trajectories the position of hip joint and the orientation of
HAT,

/a ¼
xH � xHn tð Þ

yH � h0 þ xH � tancð Þ
hT

2
4

3
5 ¼ 0: ð6Þ

Constraints /b and /c represent the trajectories of left and right lower limb joints,

/b;c ¼
xH þ l1sinhi1 þ l2sinhi2 � xAi
yH � l1coshi1 � l2coshi2 � yAi

hi3 � p=2þ cð Þ

2
4

3
5 ¼ 0; ð7Þ

where i ¼ Ror L; xAi and yAi represent the coordinates of the ankle joints; c is the
gradient of the slopes.

3 Optimization Strategy of Genetic Algorithm (GA)

3.1 GA Process

Being robust and able to finding global solutions, genetic algorithms (GAs) are widely
used in many optimization problems. Based on natural selection and natural genetic
principles, the GA operates via several processes, that is initialization, evaluation,
selection, reproduction, replacement and termination.

During the initialization stage, a set of candidate individuals is generated randomly,
which is called as population. In the evaluation stage, the objective function is used to
evaluate each candidate individual. The fittest individuals are selected by
survival-of-fittest mechanism based on the values of the evaluation at the selection
stage. These fittest individuals are often called parents. The reproduction stage is to
generate new individuals by the application of genetic operations including crossover
and mutation. The first genetic operation, crossover, can create new individuals with
information of two parents. These new individuals serve as the offspring population.
Then, the diversity in the population is produced by changing the value of one
parameter in the individual via mutation. In the replacement stage, the original parental
population are replaced by the new offspring population in this stage. The whole
process is called one generation (GN), and can be repeated in an iterative manner.

The termination of the iterations is decided by the terminating conditions.
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3.2 GA Parameters

In the presented approach, GA is adopted to search for optimal step lengths (s), the
maximum height from the current sloping surface of swing foot (hA) and walking
velocities for the biped ascending different slopes. The initial population is 10.
Single-point crossover and discrete mutation operator are used. The crossover ratio and
mutation ratio are set as 0.9 and 0.02, respectively. The maximum of generations
(GNmax) is defined as 1000. The GA process switches to the termination stage, when the
number of generation equals to GNmax or when the value of the objective function does
not change for 10 conservative generations. Figure 2 shows the whole process of GA.

3.3 Cost Function

The cost function is used to evaluate energy efficiency of the joint trajectories during
one step. It is important to minimize the energy consumption in the design of a biped
robot and generation of the locomotion pattern. The sum of the work by the six lower
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EVALUATION

End

Start

Initial Conditions:
γ, GNmax

Population:
v, step length, hA

Yes

Energy Optimized 
Trajectory

GN < GNmax
ε > εmin 

Selection
Parents

Genetic Operations:
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Fig. 2. Flowchart for the GA processes.
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limb joints is the energy consumption of the system. For one joint, the work can be
defined as

W tð Þ ¼
Z t1

t0

lmxj jdt; ð8Þ

where t is the time, lm represent the control torques of six lower limb joints and x are
the relative angular velocities of six joints. The period of one step equals to the duration
from t0 to t1. The total energy cost for one step can be obtained by adding the work by
six joints. The actuator and transmission efficiency are not included in the mechanical
power output. The mechanical power output is defined as P ¼ lmxj j.

Specific resistance (e) has been used as the index to evaluate the performance of
legged vehicles [11]. The specific resistance can be obtained with the mechanical
power, P, the biped weight, mg and walking speed, v, as

e vð Þ ¼ P vð Þ
mgv

: ð9Þ

In this study, the objective function depends on the minimized specific resistance
ðemin).

4 Simulation Results

We investigated the bipedal walking on level ground (0�) and up slopes with the
gradients of 3�, 6�, 9� and 12� at different walking speeds, respectively. During opti-
mization, the range of parameters: step length (sÞ, the maximum height from the current
sloping surface of the swing foot (hA), slow walking speed (vs), normal walking speed
(vn) and fast walking speed (vf ) were varied in the ranges of (0.1 m, 0.4 m), (0.05 m,
0.15 m), (0.4 m/s, 0.6 m/s), (0.6 m/s, 0.8 m/s) and (0.8 m/s, 1.0 m/s), respectively.
Generally, GA yielded the optimal values between 30 generations to 85 generations.

All the optimal values for the biped walking up slopes were obtained by calculating
emin. Figure 3 showed the optimal consumed energy and step length against the gra-
dient of the slope (c). Figure 3(a) demonstrated that the minimal energy consumption
was ascendant with the increase of c. And emin increased when the optimal walking
speed enhanced. As showed in Fig. 3(b), walking velocity didn’t have obvious influ-
ences on the optimal step length (s). While the optimal step length decreased when c
increased. All the values of hA were close to the lower boundary for the biped walking
on different slopes at different speed. The optimal minimal walking velocities were also
nearly the same with the lower boundary which was defined before.

Figure 4 depicted the stick diagrams of the biped walking on flat terrain and
different slopes at the optimal fast speed.

Figure 5 plotted the ankle joint trajectories of the biped walking on slopes with
gradient of 6� and 12� at slow speed, normal speed and fast speed, respectively.
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Fig. 3. Optimal data for the biped walking up different slopes vs. c: (a) minimum specific
resistance (emin); (b) optimal step length (s).
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Fig. 4. Stick diagrams of the biped walking at optimal fast speed: (a) on the flat terrain; (b) on
the slope with the gradient of 6�; (c) on the slope with the gradient of 9�; (d) on the slope with the
gradient of 12�.
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5 Conclusions

Simulation results show that GA is able to generate the optimal trajectories of the
impactless bipedal walking on the slopes. There are great differences in energy con-
sumption for the biped walking at different speeds. It has been observed that biped
consumed more energy when walking at faster speed. There were no obvious differ-
ences in optimal step length when walking speed changed. The rise of slope gradients
can result in the decline of the optimal step length for the biped ascending slopes. These
conclusions confirm the validity and effectiveness to generate various optimal gaits of
the biped simply by appropriately altering some of the boundary conditions.
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Fig. 5. Ankle joint trajectories of the biped: (a) walking up the slope with the gradient of 6� at
slowing speed; (b) walking up the slope with the gradient of 6� at normal speed; (c) walking up
the slope with the gradient of 6� at fast speed; (d) walking up the slope with the gradient of 12� at
slow speed; (e) walking up the slope with the gradient of 12� at normal speed; (f) walking up the
slope with the gradient of 12� at fast speed.
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Abstract. Solving a multi-objective optimization problem results in a Pareto
front approximation, and it differs from single-objective optimization, requiring
specific search strategies. These strategies, mostly fitness assignment, are
designed to find a set of non-dominated solutions, but different approaches use
various schemes to achieve this goal. In many cases, cooperative algorithms
such as island model-based algorithms outperform each particular algorithm
included in this cooperation. However, we should note that there are some
control parameters of the islands’ interaction and, in this paper, we investigate
how they affect the performance of the cooperative algorithm. We consider the
influence of a migration set size and its interval, the number of islands and two
types of cooperation: homogeneous or heterogeneous. In this study, we use the
real-valued evolutionary algorithms SPEA2, NSGA-II, and PICEA-g as islands
in the cooperation. The performance of the presented algorithms is compared
with the performance of other approaches on a set of benchmark multi-objective
optimization problems.

Keywords: Multi-objective optimization � Real-valued genetic algorithm
Island model cooperation

1 Introduction

Multi-objective optimization problems (MOPs) are quite essential in Decision-Making
Theory because the decision-making process is in most cases related to a few criteria
which could contradict one another. These problems differ from single-objective
optimization problems since the goal is to find a good approximation of the Pareto
front. In this study, we consider the widest class of optimization problems called black
box optimization problems (BBOPs). There are many problems which might be
reduced to BBOPs and whose objective functions can only be evaluated and, in gen-
eral, there is no information about these functions and their mathematical properties.

Evolutionary algorithms (EAs) and particularly genetic algorithms (GAs) with
different schemes and modifications are the most common search heuristics to solve
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complex BBOPs, and so these algorithms are also useful and efficient in solving MOPs.
In this study, we present real-valued modifications of three widely used multi-objective
genetic algorithms (MOGA): the Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[1], the Non-Sorting Genetic Algorithm II (NSGA-II) [2], and the Preference-Inspired
Co-Evolutionary Algorithm with goal vectors (PICEA-g) [3]. The effectiveness of
these algorithms has been shown on benchmark and real problems in many studies
[4–6].

Despite the recent development of a wide range of novel effective MOGAs,
according to the No Free Lunch theorem, a particular algorithm performs well on a
specific class of problems. There are some combinations of settings which make an
algorithm more efficient in solving a particular problem. In many cases, “adaptation”
for a problem can be achieved by meta-heuristics [7], in particular, by the use of
coevolution: different algorithms solve the same problem and share computational
resources and information about a search space. In addition, there is also a hypothesis
that a cooperation of algorithms allows the benefits of each algorithm to be kept and
this cooperation may even outperform the algorithms included in it [8–10]. We propose
using an island model cooperation wherein each algorithm works independently from
the others and after a certain number of iterations, the algorithms exchange their best
solutions. The proposed approach has been applied in various problems and there are
results proving its high performance [11, 12].

In this study, we consider a number of implementations of the island model
algorithm and vary the cooperation settings to provide a deeper analysis of their
influence on the algorithm performance. We investigate two island models: homoge-
neous, i.e. the cooperation of similar algorithms, and heterogeneous, the cooperation of
distinct algorithms. Other important factors of the island model cooperation, which are
also under investigation, are the migration rate (interval) and the migration set cardi-
nality. The MOPs solved are taken from the CEC 2009 competition and the results
obtained are compared with the results of other EA-based approaches.

2 Multi-objective Genetic Algorithm for Real-Valued
Problems

2.1 Problem Statement

We consider MOPs on a real-valued search space, so we need to find a solution of the
following extremum problem:

X� ¼ x� : 6 9x 2 Rn ! F xð Þ � Fðx�Þf g; ð1Þ

where X� is a set of non-dominated solutions, n is a dimensionality of a search space,
an objective vector-function F �ð Þ : Rn ! Rm and m is the number of criteria. Here, the
operator � has the following meaning (in the case of minimization):
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x; y 2 Rn; x � y , 9i�m : Fi xð Þ\Fi yð Þ; 8j 6¼ i : Fj xð Þ�Fj yð Þ: ð2Þ

The minimization MOP can be defined as follows:

x 2 Rn; i ¼ 1;m;FiðxÞ ! min: ð3Þ

While solving (3), our goal is to find an approximation of the Pareto front. The
main feature of MOPs is that we do not need to find a precise non-dominated solution,
but a set of solutions that portrays the Pareto front well. In those cases when we know
the Pareto front, Inverted Generational Distance (IGD) [13] can be used to estimate the
solution quality:

qIGD X�; bX
� �

¼ 1
X�j j �

X X�j j
i¼1

min
j¼1; bX

�
�
�
�
x�i � bxj

�
�

�
�; ð4Þ

Here bX is the found approximation of the Pareto front and X� is the true Pareto
front (1). The Euclidean distance is used as the norm. In this study, to investigate the
algorithm performance, we involve ten unconstrained real-valued MOPs (seven
problems with two objectives and three problems with three objectives) from the CEC
2009 competition [13], where the true Pareto front is given for each problem. There-
fore, it is possible to estimate the closeness of the found solution to the true Pareto front
by (4) and, thus, to estimate the algorithm performance based on this metric.

2.2 Proposed Algorithms

While designing MOGAs, researchers develop some specific mechanisms aimed at
getting a representative Pareto front approximation. This front estimation should por-
tray the peculiarities of the true front thoroughly. To achieve this purpose, in the
MOGA scheme special fitness assignment strategies (usually, based on the Pareto
dominance idea), diversity preservation techniques and elitism have been incorporated.

The algorithms used in our study are implemented according to their original
schemes. GAs typically operate with binary chromosomes [14]. However, this binary
solution representation often leads to a decrease in the algorithm performance on real-
valued optimization problems. Therefore, in our study, we implement real-coded
MOGAs and incorporate into their schemes particular genetic operators which can deal
with real-valued strings.

To select effective solutions for the offspring generation, we apply tournament
selection, which compares solutions based on their fitness values assigned according to
the scheme of a particular MOGA. The tournament size is equal to 7.

As a crossover operator, we use uniform (discrete) crossover. Each offspring gene
is chosen from the chromosomes of the selected parents with equal likelihood. In our
experiments, the number of parents is 2.
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In the mutation operator, we implement the next scheme [15]:

x0k ¼
xk þ rk � bk � akð Þ with probability pm

xk with probability 1� pm

(

; ð5Þ

with

rk ¼
ð2 � randÞ 1

gþ 1 � 1 if rand\ 0:5

1� 2� 2 � randð Þ 1
gþ 1 otherwise

;

(

ð6Þ

where rand is a uniformly random number [0, 1]. There are two control parameters: the
mutation rate pm ¼ 1=n and the distribution index g is equal to 1.0. ak and bk are the
lower and upper bounds of the k-th variable in the chromosome.

The main idea of the island model cooperation is that each algorithm is an isolated
island fulfilling the search independently. In some iterations (generations), islands
exchange some individuals. Here we denote the migration rate as mr and the cardinality
of the migration set is mc. In the proposed modification, the migration set replaces the
worst individuals in each island population. Here, “worst” denotes the worst individ-
uals in the population in the sense of fitness values, which are evaluated differently for
MOGAs, according to their fitness assignment strategies. The final approximation is
obtained by merging together all the populations and archives (if there are any), sorting
solutions with Fast Non-Dominated Sorting (taken from NSGA-II) and then selecting a
certain number of the best solutions.

The island heuristic can be implemented in two different ways: as a homogeneous
cooperation or as a heterogeneous one. In this paper, we consider both variants based
on the algorithms given above. The homogeneous cooperation includes a number of
islands working as one of the following MOGAs: SPEA-2, NSGA-II or PICEA-g,
whereas the heterogeneous cooperation consists of all three of these algorithms.

We take the following parameters by default: mc ¼ 30, mr ¼ 30, the subpopulation
size is li ¼ 600

ni
, where ni is the number of islands and the number of generations is 500.

3 Proposed Algorithm Performance Analysis

According to the rules of the CEC 2009 competition, for each algorithm run 300 000
objective vector-function evaluations might be performed. We perform 30 independent
program launches for each algorithm with particular settings on every problem.

3.1 Parameter Influence Analysis

Island Type. In this part, we consider the different structures of island algorithms.
First, we apply the homogeneous model with three parallel islands (SPEA2 – SPEA2 –

SPEA2, NSGA-II – NSGA-II – NSGA-II, PICEA-g – PICEA-g – PICEA-g). Then, we
compare the cooperative modifications with their original versions. In Fig. 1, we

On Island Model Performance 213



present the IGD values obtained with conventional algorithms (blue boxplots) and their
cooperative homogeneous modifications (green boxplots).

Furthermore, we include three different MOGAs in one heterogeneous cooperation
(SPEA2 – NSGA-II – PICEA-g). The results of this experiment might also be found in
Fig. 1 (purple boxplots “S-N-P”).

Based on the experimental results, we may conclude that the island cooperation
allows us to outperform the conventional algorithms which are in the cooperation. This
happens for most of the considered problems. Another conclusion is that the hetero-
geneous cooperation often outperforms homogeneous ones in the sense of the median
and minimum IGD values. Moreover, for some test problems homogeneous coopera-
tive MOGAs or even their conventional versions give better results.

However, we may note that for Test Problems 3, 7, 8, 9 and 10, conventional
MOGAs as well as their homogeneous cooperative versions provide us with essentially
different results. This proves that an arbitrary choice of the MOGA may lead to a
deterioration of the solution quality. Meanwhile, the heterogeneous cooperation allows
us to obtain IGD values which are comparable with the results of the best MOGA for
the problem.

Migration Rate. Next, for the heterogeneous cooperation we vary the migration rate
(interval) mr ¼ 10; 30; 50; 100, having the constant migration size mc ¼ 30.

Fig. 1. IGD metric values of homogeneous and heterogeneous algorithms. (Color figure online)
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The results obtained are given in Fig. 2. This examination proves that the migration
rate affects the IGD metric. For most of the test problems, the IGD value dramatically
decreases when the migration rate increases. This fact can be observed by the median
and minimum value of the IGD metric. At the same time, we can see that there is a
difference in IGD variances for migration rates equal to 50 and 100: there might be a
good migration rate value in between, so this requires further investigation.

Migration Size. Moreover, for the heterogeneous MOGA we also vary the migration
set cardinality (size) mc ¼ 2; 10; 30; 50; 100 (mr ¼ 30). The results for all the problems
are given in Fig. 3.

Figure 3 show that for diverse migration set cardinalities, the IGD values differ
insignificantly. Here we should refer to the dependency between the migration set
cardinality and the migration rate as well as the population size. All these parameters
should be considered together and it might be so that for 200 individuals in each
subpopulation, the migration occurs quite often (mr ¼ 30), so all these mc values work
in a similar way.

The Number of Islands. Finally, we investigate the number of islands: 3, 6 and 9 for
both homogeneous and heterogeneous cooperation. The results obtained are presented
in Fig. 4.

Fig. 2. IGD metric values for various migration rates.
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In this series of experiments, we set the following parameter values: for the 3-island
cooperation mc ¼ 30, li ¼ 200, mr ¼ 30; for the 6-island cooperation mc ¼ 15,
li ¼ 100, mr ¼ 30; for the 9-island cooperation mc ¼ 5, li ¼ 66, mr ¼ 30.

The results given in Fig. 4 reveal that for Test Problems 5, 6, 7, 8 and 10, coop-
erative MOGAs with different numbers of islands provide us with very similar results.
However, due to the parallel work of islands, one algorithm run requires much less
computational time if the cooperation has more islands. Therefore, from this per-
spective, 9-island cooperation seems to be more beneficial.

Nevertheless, we should admit that for different problems, increasing and decreasing
the number of islands works almost in an opposite way (Test Problems 1 and 4).

In addition to these parameters, various schemes of interaction between the islands
should be analysed because in this study we implement only a fully connected topology
(each island sends its best solutions to all the other ones and as a response it receives
solutions from other islands).

Fig. 3. IGD metric values for various migration set cardinalities.
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3.2 Overall Rating

Finally, we compare the results of the 3-island heterogeneous MOGA having default
parameters with the winners of the CEC 2009 competition based on the averaged IGD
values. The results are given in Table 1, where the CEC winners are denoted as
follows: MOEAD – 1, GDE3 – 2, MOEADGM – 3, MTS – 4, LiuLiAlgorithm – 5,
DMOEADD – 6, NSGAIILS – 7, OWMOSaDE – 8, ClusteringMOEA – 9, AMGA –

10, MOEP – 11, DECMOSA-SQP – 12, OMOEAII – 13.

Fig. 4. IGD metric values for homogeneous and heterogeneous cooperation with different
numbers of islands.
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Based on Table 1, it can be seen that the proposed approach competes with the
winners of the CEC 2009 contest. For Test Problem 10, the 3-island heterogeneous
MOGA takes second place in this top-list. Only for Test Problem 7 is it defeated by all
the CEC winners.

4 Conclusion

In this study, we investigate the island model cooperation of real-valued MOGAs
(SPEA2, NSGA-II, PICEA-g). Two types of cooperative modifications, which are
homogeneous and heterogeneous, are compared with conventional versions of the
algorithms considered. Based on this comparison, we conclude that the island model
cooperation allows the algorithm performance to be improved. Moreover, the hetero-
geneous MOGA is a reasonable alternative to an arbitrary choice of one particular
MOGA because in the series of our experiments it has demonstrated good reliability.

Then, we have varied the main control parameters of the island model cooperation
and found that its structure (the included algorithms) and the migration rate affect the
algorithm performance to a greater extent. Furthermore, the number of islands is also a
crucial parameter because the computational time reduces sufficiently when the number
of islands increases.

Further study is related to implementing modern effective MOGAs, which should
be included in the island model cooperation, and developing different schemes of the
interaction between the islands. It is also important to investigate the cross-parameter
influence on the performance of the cooperative MOGA, especially such parameters as
the migration rate and the migration set cardinality for each particular solution
exchange scheme.

Acknowledgements. This research is supported by the Russian Foundation for Basic Research
within project No 16-01-00767.

Table 1. Comparison of the proposed approach with other algorithms (problems 1–5).

Problem IGD Winning algorithms Defeated algorithms

1 0.04192 1–10 11–13
2 0.02834 1–11 13
3 0.12315 1–12 13
4 0.04598 2, 4–6, 10–12 1, 3, 7–9, 13
5 0.16959 2, 4, 5, 10, 13 1, 3, 6–9, 11, 12
6 0.16325 1, 4, 6, 9–13 2, 3, 5, 7, 8
7 0.09744 1–13 –

8 0.17850 1, 4–8, 10 2, 3, 9, 11–13
9 0.14448 1, 2, 4–8, 10, 12 3, 9, 11, 13
10 0.31011 4 1–3, 5–13
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Abstract. Feature selection is a key step in classification task to prune out
redundant or irrelevant information and improve the pattern recognition per-
formance, but it is a challenging and complex combinatorial problem, especially
in high dimensional feature selection. This paper proposes a self-adaptive
strategy based differential evolution feature selection, abbreviated as SADEFS,
in which the self-adaptive elimination and reproduction strategies are used to
introduce superior features by considering their contributions in classification
under historical records and to replace the poor performance features. The
processes of the elimination and reproduction are self-adapted by leaning from
their experiences to reduce search space and improve classification accuracy
rate. Twelve high dimensional cancer micro-array benchmark datasets are
introduced to verify the efficiency of SADEFS algorithm. The experiments
indicate that SADEFS can achieve higher classification performance in com-
parison to the original DEFS algorithm.

Keywords: Feature selection � Differential evolution � Self-adaptive strategy
Roulette wheel method

1 Introduction

Pattern recognition plays a crucial role in the recognition of patterns and regularities in
data mining [1]. An example of pattern recognition is classification. In classification
tasks, the unknown samples are assigned to one of a given set of classes based on the
training data. Dataset contains information that are either redundant or irrelevant [2],
which needs a pre-processing step to remove some features without losing much
information thus enhance the performance of classification and decrease the training
time.

Feature selection methods can be generally divided into two groups: the wrappers
and the filters [3]. Wrapper methods require the learning model to evaluate subsets of
features which allows, unlike filter approaches, to select the possible relevant features
and eliminate useless features for classification. Evolutionary computation (EC),
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inspired by the nature evolution of species, includes a series of global search techniques
[4–7]. However, in the existing era of large data mining, the dimension of features can
be large e.g. some cancer micro-array data where there are many thousands of features,
and a few tens to hundreds of samples. Therefore, it’s a challenge to find a promising
feature subset from such tens of thousands of features. All the algorithms still suffer
formulation of feature subset from original features.

Roulette has been successfully applied to feature selection, especially in evolu-
tionary algorithms. Al-Ani et al. [8] proposed a method to reduce the search space
using a set of wheels that involve distributing the features, but it do not take into
account of combination among features because all the features are divided into several
wheels. To prevent the same feature repeatedly appeared in a feature subset, Al-Ani
et al. [9] put forward a simple yet efficient DE based real number optimizer method
using a repair mechanism is used. However, it didn’t take into account the features that
had never appeared in the wheel. To address this issue, float-number optimizer has
been wildly studied since it is a simple operation. The literatures [10, 11] utilized
float-number optimizer based on differential evolution algorithm to solve the feature
selection problem. Their main contribution was to calculate the distribution of features
and supplied in classification task by using roulette wheels.

In this paper, more suitable solutions will be reorganized to replace the elimination
subsets and match different searching evolutionary phases. All the features associated
with corresponding parameters will be separately evaluated. The main contributions of
this paper are: (1) Self-adapted strategy is utilized to judge the opportunity for new
feature access. (2) The self-adapted strategy is embedded in the population to enhance
the effectiveness of feature subsets.

The remaining paper is organized as follows. The original differential evolution and
related work are reviewed in Sect. 2. The proposed improvement strategy is described
in detail in Sect. 3. Experiment on cancer micro-array benchmark datasets and
experimental results are given in Sect. 4. Finally, Sect. 5 provides the conclusions and
future work.

2 Related Algorithms

2.1 Differential Evolution

A population of NP individuals each of D-dimensional float number in the gth gen-

eration is a NP � D vector that can be represented as: X
!

i;j gð Þ, where i ¼ 0; 1; . . .;
NP − 1 and i indicates i-th individual in the population, j ¼ 1; 2; . . .; D where j rep-
resents the dimension of the population. In feature selection, where NP denotes the
number of subset, and D indicates the number of feature in each subset. Firstly, the
initial population is generated as [12].

Xi;jðgÞ ¼ Xjmin þ rand � ðXjmax � XjminÞ; i ¼ 0 to NP� 1; j ¼ 1 to D ð1Þ

where Xjmax (Xjmin) refers the maximum (minimum) space bound.
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Mutation is the crucial step in differential evolution algorithm, mainly used to
generate new individual which named mutant vector, several mutation schemes were
pointed out such as DE/rand/1, DE/rand/1/bin, DE/best/1 and DE/target-to-best/1 [13],
The most classical one is DE/rand/1, which choose three parent vectors and they
different from each other, one (i.e. Xr1;j) is use to add the other two weighted difference
vectors (i.e. Xr2;j and Xr3;j) in Eq. (2) [12].

Vi;jðgÞ ¼ Xr1;jðgÞþF � ðXr2;jðgÞ � Xr3;jðgÞÞ ð2Þ

where F 2 0; 1ð Þ denotes the weighting factor that controls the rate in the process of
population. Three individuals are chosen randomly to generate the new individual.

The next step is crossover phase, crossover operation is used to generate trial vector
Ui;j gð Þ from the pair of corresponding vector: target vector Xi;j gð Þ and mutant vector
Vi;j gð Þ according to a certain probability [12].

Ui;jðgÞ ¼ Xi;jðgÞ; if randjð0; 1Þ�CRor j ¼ jrand
Vi;jðgÞ; otherwise

�
ð3Þ

where CR 2 0; 1½ �, represents the probability of the crossover operation and it may
influence the exploration and exploitation of optimization.

Compared with the target vector and the trial vector, the best one will be chosen for
the next generation. Here is the selection operation [12]:

Xi;jðgþ 1Þ ¼ Xi;jðgÞ; if fitðXi;jðgÞÞ� fitðUi;jðgÞÞ
Ui;jðgÞ; otherwise

�
ð4Þ

where fit is the fitness value refers to the classification error rate in feature selection and
calculate by classifier (e.g. K-Nearest Neighbor classifier in this paper).

2.2 Roulette Mechanism

DE is a real number optimizer instead of a binary version, after rounding off each float
number or modifying phenomenon of over bounds, the same number will appear in an
individual, and which is not allowed in feature selection. Thus the roulette mechanism
is used to calculate the superior features. For each feature, a cost weighting is intro-
duced to calculate the probabilities called distribution factor, represents its distribution.
The distribution factor of the feature fi is calculated as follows [8]:

WðiÞ ¼ c� PDj

NDj þPDj
þ NF � DNF

NF
� ð1� NDj þPDj

maxðNDj þPDjÞÞ ð5Þ

where c 2 0; 1ð Þ is a control parameter, PDj represents frequency that feature j has been
appeared in the individuals with its fitness function values below the average. NDj
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represents frequency that feature j has been appeared in individuals with the fitness
function value above the average. NF denotes the number of total features. DNF is a
desire number of features. As seen in the equation, W ið Þ reflects the importance of
features to be selected. Then a relative difference is applicated to updateW ið Þ according
to the following equation [8]:

T ¼ ðWgþ 1 �WgÞ �Wgþ 1 þWg ð6Þ

where g and gþ 1 indicates the current and next generations.
The above equation provides higher weights to features if they perform better in the

next iteration compare with the current one. Next add some sort of randomness, which
could give appropriate emphasis to unseen features [8].

T ¼ T � 0:5� rand � ð1� TÞ ð7Þ

The distribution factors of features not only appear in roulette but also outside the
roulette are updated in each iteration, particularly, the value of distribution factor will
be smaller within the features outside the roulette.

3 The Proposed Algorithm

In the last chapter, we got a very important factor: distribution factor which will be
applied in our proposed strategies. After the repair step, elimination mechanism is used
to delete those individuals who do not perform well within the current generation. Only
eliminate the worse individuals is not logical because feature selection is a combina-
torial optimization problem and there may exist potential superior features in the worse
performance feature subset. Thus an elimination weight index was proposed to take
into consideration of the influence by two factors: fitness value and distribution factor.
The mechanisms of elimination and reproduction are used in several algorithms [14,
15], but they have not applied to the DE algorithm. Firstly, all the features are divided
into three parts, the details of the division are showed below.

• Part 1: features appeared in the roulette and perform well in current generation
• Part 2: features appeared in the roulette and perform worse in current generation
• Part 3: features did not appear in the roulette of current generation

The performance of the features contributing to the combination individuals can be
evaluated according to the fitness value, i.e. classification error rate. Particularly, it is
allowed that the same feature appear in both Part 1 and Part 2. And all the features are
divided into two subsets by another way, the details of the division are showed below.

• Subset 1: features whose distribution factor larger than the mean value
• Subset 2: features whose distribution factor lower than the mean value
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WR denotes the scale of non-excellent individuals within Part 2 as follows:

WR ¼ Ni
um

DNF
ð8Þ

where i represents the pool performance individual. Ni
um is the number of intersection

features between Part 2 and Subset II for ith individual. DNF is the desire number of
features. Elimination weight index of the individual i within the current generation g is
calculated as follows:

EWi ¼ a� fitþð1� aÞ � WR
maxðWRÞ ð9Þ

where a 2 0; 1ð Þ is the control parameter. In classification task, a could be larger than
0.5 thus a > (1 − a), i.e. the classification accuracy is more important than the dis-
tribution factor. By sorting elimination weight index from large to small, from the
above two equations, the feature subsets which perform worse and contain bigger
proportion of non-excellent features are more probability to be chosen to eliminate.

To improve the performance of the solutions and maintain the population explo-
ration properties in the early stages of the search. After the elimination step, the
potential features will be chosen to reproduce new individuals from candidate-features
pool. Historical memory cumulative is taken into account so as those features who
perform well in several generations or in different individuals have greater probability
to enter the pool of candidate-features. The index values are updated after each
elimination in the gth iteration according to the following scheme, while:

• Feature belongs to Part 1, the index values for reproduction is incremented by b.
• Feature belongs to Part 2, the index values for reproduction is decremented by b.
• Feature belongs to Part 3, the index values for reproduction remain unchanged.

The reproduction index of the feature fi, abbreviated as RI, within the current
generation g is calculated as follows:

RIðg + 1Þ ¼
RIðgÞþ b; if fi 2 Part 1

RIðgÞ � b; if fi 2 Part 2

RIðgÞ; otherwise

8>><
>>:

ð10Þ
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Pseudo-code: (SADEFS)
01 Input: dataset for training and testing: Tr and Te; number of features to be selected D; 

02 Initialization: Dim, population, fitness calculation, max iteration, LP，etc. 

03 Optimization process: 

04 For k = 1: max iteration

05   For j = 1: Number of individuals

06     Adapt the population using Eqs.(2–4)

07     Repair the population (refer to Eqs.(5–7))

08     if iteration< LP

09        Eliminate the individuals of population using Eqs.(8-9)

10        For i = 1：Number of features

11          Obtain the value RI and sort them       

12        end

13        Reproduction: Adapt the population using Eq.(10)

14     end

15   end 

16 end

17 Output: classification accuracy and its corresponding selected feature vector.

Adaptive rules use the feedback from search procedure to obtain better feature
subset. The probability of the reproduction operation of this feature in the next itera-
tions should be adequately high, depending on the value of RI. The value of RI to each
feature is initialized as the same value, i.e., all features have the equal probability to be
chosen. In particular, the importance of unless features will be lower than unseen
features after updating index. The number of learning iteration within the elimination
and reproduction operation hereby named learning period (LP, e.g. LP = 50 while max
iteration = 100).

4 Benchmark Tests and Experimental Results

To validate the SADEFS, we use several high dimensional cancer micro-array
benchmark datasets, which have often been used to test feature selection method in the
literature, Table 1 represents the detail information of the datasets. The basic param-
eters setting for both DEFS and SADEFS are the same, that is, the population size n is
set to be 50, and the maximum number of iterations is 100. The parameters for
SADEFS: LP = 50, RI ¼ 0:5; b ¼ 0:1, a ¼ 0:6, c ¼ 0:5.
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The average results of DEFS and SADEFS with 30 times running are minutely
shown on Fig. 1. The red dotted line and the blue line are the means of classification
accuracy of 30 times’ running for SADEFS and DEFS, respectively.

In previous research, DEFS had proved the better performance compare with some
FS algorithm, such as PSOFS, GAFS, ANTFS [8]. For each figure, the classification
accuracy rate (%) is used to denotes the performance of feature selection algorithms.
Results prove that SADEFS has the priority performance on some datasets e.g.
9_Tumors, Brain_Tumor1, Lung_Cancer and 11_Tumors, within other datasets just
perform a litter better because DEFS has reached very high classification accuracy rate
(nearly 100%).

According to these information, SADEFS is more effective or equal to select the
significant feature subset. Because in these datasets, the search space will be very large,
effectively identify who are the most promising features, which leads to compose the
superior feature subset. The learning period parameter LP may influence the result of
optimization. So dataset 9_Tumors is used to investigate the impact of parameter LP on
SADEFS algorithm. Table 2 shows the experimental results. The SADEFS algorithm
runs 30 times with five different learning periods LP of 10, 30, 50, 70, and 90. The bold
type is used to underline the best of all feature subset obtain the global optimum with
different LPs. Most of the best performance solution appear at LP = 50 or LP = 70, the
parameters near this range (LP = 50) seem more logical for controlling a balance
between the exploration and the exploitation.

Table 1. Datasets for feature selection.

Datasets Features Class Samples

Colon 2000 2 62
Leukemia (ALLAML) 7129 2 72
9_Tumors 5726 9 60
11_Tumors 12,533 11 174
14_Tumors 15,009 26 308
Brain_Tumor1 5920 5 90
Brain_Tumor2 10,367 4 50
SRBCT 2309 4 83
Leukemia1 5328 3 72
Leukemia2 11,225 3 72
Prostate_Tumor 10,509 2 102
Lung_Cancer 1 12,600 5 203
DLBCL 5470 2 77
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(a)                   (b)                        (c) 

 (d)                        (e)                        (f)

(g)                         (h)                        (i)

(j)                         (k)                     (l)

Fig. 1. Average classification accuracy within 30 runs for each subset size (Color figure online)
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5 Conclusion and Future Work

In this study, a novel self-adaptive population updating strategy with differential
evolution (DE) algorithm was proposed, which can reduce the exhaustive search by
eliminating some useless features and introducing most suitable feature. As evolution
proceeds, certain features in different solutions always perform well and keep effective
information associating with other features when searching through different regions.
The self-adaptive elimination and reproduction strategies are used to select the superior
features to replace the poor performance features according to their contribution in
classification performance in historical records.
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Abstract. Differential Evolution (DE) has been regarded as one of the excellent
optimization algorithm in the science, computing and engineering field since its
introduction by Storm and Price in 1995. Robustness, simplicity and easiness to
implement are the key factors for DE’s success in optimization of engineering
problems. However, DE experiences convergence and stagnation problems. This
paper focuses on DE convergence speed improvement based on introduction of
newly developed mutation schemes strategies with reference to DE/rand/1 on
account and tuning of control parameters. Simulations are conducted using
benchmark functions such as Rastrigin, Ackley and Sphere, Griewank and
Schwefel function. The results are tabled in order to compare the improved DE
with the traditional DE.

Keywords: Differential Evolution � Convergence speed � Mutation scheme
Control parameters

1 Introduction

Differential Evolution (DE) has received much attention from various researchers and
research institutions since its inception by Storn and Price two decades ago. DE’s
recognition involves its robustness, simplicity, speed and reliability to convergence to
true optimum when solving an optimization problem. DE has gained much more success
in series of benchmark academic competitions, black box global optimization compe-
titions and real world optimization applications, leading to a big interest from both
researchers and practitioners [6, 8]. Like other Evolutionary Algorithms (EA), DE uses a
population based stochastic search method instead of complex mathematical operation
[5]. By characteristics, DE is identified as an efficient and reliable global optimizer for
different optimization fields such as constrained and unconstrained optimization, mul-
timodal optimization and multi-objective optimization [6]. Despite DE algorithm being
regarded as one of the best reliable and efficient EA method for solving optimization
problems, it also has its own limitations. DE experiences stagnation, which in return
deteriorates its performance. The occurrence of stagnation causes the algorithm not to
get better solutions from the candidate solutions that are newly created, even though the
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diversity of the population remains [5]. Chances of stagnation occurrence depend on the
availability of number of different potential trial vectors and their survival chances in the
following generations [5]. In this paper, DE improvement is proposed, based on mod-
ification of mutation schemes and tuning of control parameters. The research will look to
improve DE’s convergence speed without experiencing stagnation. The improved DE
will be used to optimize power quality in smart. Unlike Genetic Algorithm optimizing
process which is affected by crossover function, in DE, mutation function plays a
significant role during optimization [7]. DE’s general notation is denoted as DE/X/Y/Z,
where X indicates the mutation vector, Y indicated the number of difference vectors
used and Z indicates the exponential or binomial crossover scheme [7]. As reported by
[8], Differential mutation contains two parts, selection of base vector and summing of
the difference vectors. The rest of the paper is organized as follows: Sect. 2 discusses
background of the classical DE, evolutionary functions and mutation function schemes.
Section 3 discusses the Improved DE algorithm formation and formulas. Section 4
gives the methodology to be followed during the experiment of DE improvement.
Section 5 gives the results of the experiment and the discussion of the results. Section 6
gives the conclusion of the research.

2 Differential Evolution

Differential Evolution (DE) algorithm is one of the stochastic population-based evo-
lutionary optimization algorithm that forms random search and optimization procedures
by following natural evolutionary principles. Its term DE is due to existence of a
special type of difference vector, as explained in [1]. During optimization, DE pre-
serves candidate solutions population and creates new candidate solutions by combi-
nation of existing candidate solutions according to their simple formulae. The best
candidate solution with better fitness on the optimization problem is kept close by [2].
DE uses three evolutionary functions during problem optimization, being mutation
function, crossover function and selection function. Mutation function randomly gen-
erates variations to existing individuals to present new information into the population.
The functioning creates mutation vectors vi, g at each generation g, based on the
population of the current parent {X1,i,0 = (x1,i,0, x2,i,0, x3,i,0, …, xD,i,0)|i = 1, 2, 3,
…., N}

DE=rand=1 vi; ¼ Xr0; þ Fi ðXr1; �Xr2; Þ ð1Þ

DE=current-to-rest=1 vi; ¼ Xi; þ Fi ðXbest; �Xi; Þ þ Fi ðXr1; �Xr2; Þ ð2Þ

DE=best=1 vi; ¼ Xbest; þ Fi ðXr1; �Xr2; Þ ð3Þ

where,

r0, r1, r2 = different integers uniformly chosen from the set {1, 2, … . ., N}\{i},
Xr1, − Xr2, = different vector to mutate the parent,
Xbest, = best vector at the current generation,
Fi = mutation factor which ranges on the interval (0, 1+).
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The crossover function performs an exchange of information between different
individuals in the current population. The final trial vector is formed by binomial
crossover operation.

ui;g ¼ u1;i;g; u2;i;g; . . .:; uD;i;g
� � ð4Þ

uj;; ¼ vj; i; g. . .. . . if randj ð0; 1Þ�CRi or j ¼ jrand
xj; i; g. . .. . .. . . otherwise

�
ð5Þ

where,

randj (a, b) = uniform random number on the interval (a, b) and newly generated for
each j,
jrand = jrandiant (1, D) = integer randomly chosen from 1 to D and newly gen-
erated for each i.

The selection function passes a driving force towards the most favorable point by
preferring individuals of better fitness. The selection operation selects the better one
from the parent vector Xi, and the trial vector ui, according to their fitness values f �ð Þ [3].

Xi;þ 1 ¼
ui; g. . .. . . if f ðui; gÞ\Xi; g

Xi; g. . .. . .. . .. . .. . . otherwise

(

ð6Þ

Unlike other evolutionary algorithms, DE requires selection of only three control
parameters, namely, Population Size (PS), Mutation Factor (F) and Crossover rate (Cr).
According to [4], number of iterations (Itermax) is not considered a control parameter,
since some stopping criteria is need on the simulation. However, it is very helpful to
have an estimation number of iterations in order to prevent a very long running time of
the program. Mutation factor F value that can be selected ranges from 0.1 to 2.0 while
the Crossover rate value ranges from 0.1 to 1.0. Population size is determined by the
Dimensionality D of the objective function, where the values from 5D to 10D are
suggested. However, the values are extended from 2D up to 40D [4].

3 Improved Differential Evolution

For DE improvement, two factors have been considered, the first being tuning of
control parameters to get the suitable combination to be used on a selected mutation
scheme. In this case the selected mutation scheme is DE/rand/1. DE/rand/1 is the most
commonly used scheme due to its simplicity and fast convergence during optimization
of the problem. The second factor is modification of selected mutation scheme. Three
modifications schemes are developed by taking Mutation Factor F into account on
mutation formula. As reported by [9], it is mutation that separates one DE strategy from
another. Mutation is responsible for expansion and exploration of the search space in
order to obtain the optimum solution for a given optimization problem, by combining
different parameter vectors in such a way that a new population vector, termed donor
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vector is generated [1]. F is responsible for the amplification of the differential variation
[1–10]. In this modification, F will also be used to amplify the base vector Xr0 in order
to explore much wider search space for better optimum solution. For the first modi-
fication, the individual vector Xr0 is squired and divided by mutation factor F as shown
in the formula. The formula will be named DE/Modi/1

DE=Modi=1 vi; ¼ ðXr0Þ2; � Fi þ Fi ðXr1; �Xr2; Þ ð7Þ

where,

r0, r1, r2 = different integers uniformly chosen from the set {1, 2, … . ., N}\{i},
Xr1, − Xr2, = different vector to mutate the parent,
Xr0, = base vector,
Fi = mutation factor which ranges on the interval (0, 1+).

On the second modification, the parent vector is multiplied by the mutation factor
F. In this case the individual vector is not squired as shown in the next formula. The
formula will be named DE/Modi/2

DE=Modi=2 vi;¼ Fi� Xr0; þ Fi ðXr1; �Xr2; Þ ð8Þ

The third and final modification involves three factors applied to the individual
vector. First it is squired as done on the first modification, secondly it is multiplied by
the mutation factor, thirdly, it is divided by 2 as shown in the formula. The formula will
be named DE/Modi/3

DE=Modi=3 vi;¼ Fi� ðXr0Þ2 � 2þFi ðXr1; �Xr2; Þ ð9Þ

4 Methodology

The following steps, which are also shown in Fig. 1, were taken during simulation of
the DE improvement by means of control parameter tuning and mutation scheme
modification. The following benchmark functions were used to during simulation of the
experiment, Rastrigin function, Ackley function, Sphere Function, Griewank Function.
Schwefel Function, Bukin Function. SumPower Function and SumSquare Function.
DE/rand/1 is selected for the experiment.

Step 1: DE/rand/1 pseudo-code is done on matlab and Setting of control parameters
is done in the following manner, the constant parameters: D = 2, PS = 50, I_-
max = 200. The varying parameters: F = [0.1–2.0], Cr = [0.1–1.0].
Step 2: Each benchmark function mentioned above is tested by varying F and C
from 0.1 to 2.0 and from 0.1 to 1.0 respectively in order to determine the perfect set
of values that makes a fast convergence on the optimization process.
Step 3: The determined set values of F and C are then used in the three modified
mutation schemes without being varied. In this case the determined set Combination
values of F/C are 0.2/0.2, 0.2/0.3, 0.2/0.5, 0.2/0.7, 0.2/0.9, 0.1/0.9, 0.4/0.9, 0.6/0.9

236 J. Saveca et al.



and 0.8/0.9. The results of all the convergence of all the above mentioned bench-
mark functions during F/C combination are tabled and will be compared with the
results of convergence that are obtained on the modified mutation schemes.
Step 4: The original mutation scheme DE/rand/1 formula is modified according to
the above mentioned mutation schemes modifications. The control parameters on
the modified mutation schemes are, F = 0.2, 0.1, 0.4, 0.6 and 0.8, C = 0.9, 0.2, 0.3,
0.5, 0.7 and 0.9, D = 2, PS = 50, I_max = 200.
Step 5: All the benchmark functions are simulated for convergence speed for
DE/Modi/1, DE/Modi/2 and DE/Modi/3. The results are tabled and compared with
the results of DE/rand/1.
Step 6: Statistical data and time complexity will be determined.

Following is the pseudo-code for DE with one of the modified mutation scheme
DE/Modi/3.

5 Results and Discussion

Follows are the results obtained during simulation of the five benchmark functions. All
simulations are ran up maximum of 200 iterations. All simulations are run according to
the following parameters: I_max = 200 iterations, D = 2, PS = 50 and F/C combina-
tion = 0.2/0.2, 0.2/0.3, 0.2/0.5, 0.2/0.7, 0.2/0.9, 0.1/0.9, 0.4/0.9, 0.6/0.9 and 0.8/0.9.

Following are the results of DE/rand/1 strategy as shown in Figs. 2, 3, 4, 5, 6 and
Table 1.

From the above results of DE/rand/1, it can be noticed that most functions con-
vergence becomes more strong after 63 iterations. For Griewank function, the

Set NP, C, F, parameters
ini alize popula on p= {x1, x2, x3...xm}, x1 є D
repeat
for i=1 to NP do

Generate MxN matrix
for m=1:M

for n=1:N
X(m,n)=X_min(n)+rand()*(X_max(n)-X_min(n));

end
end

generate a new mutant vector 
y = (xr1)2*Fx/2+ Fx *(xr2 –Xr3) 

if f(y) < f(x) then inert y into the new genera on
else insert x into new genera on

end
end

un l stopping criteria 

Fig. 1. DE/Modi/3 pseudo-code.
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Fig. 2. Ackley’s fitness vs iterations using
DE/rand/1.

Fig. 3. Rastrigin’s fitness vs iterations
using DE/rand/1

Fig. 4. Sphere’s fitness vs iterations using
DE/rand/1.

Fig. 5. Schwefel’s fitness vs iterations using
DE/rand/1.

Fig. 6. Griewank’s fitness vs iterations using DE/rand/1.
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convergence is not much strong as it generates the fitness of 0.007396 after 71 itera-
tions. Therefore it means Griewank function will require more generations in order for
it to have a strong convergence of fitness zero (0) or close to zero (0).

Follows are the results of DE/Modi/1 strategy as shown in Figs. 7, 8, 9, 10, 11 and
Table 2.

Table 1. DE/rand/1 results

Benchmark function DE/rand/1
Iterations Fitness

Ackley 65 7.989e−12
Rastrigin 63 0
Sphere 65 3.69e−25
Schwefel 65 3.862e−10
Griewank 71 0.007396

Fig. 7. Ackley’s fitness vs iterations using
DE/Modi/1.

Fig. 8. Rastrigin’s fitness vs iterations using
DE/Modi/1

Fig. 9. Sphere’s fitness vs iterations using
DE/Modi/1.

Fig. 10. Schwefel’s fitness vs iterations
using DE/Modi/1.

Improved Differential Evolution Based on Mutation Strategies 239



From the above results of DE/Modi/1, it can be noticed that the convergence of the
strategy is slightly slow for Ackley function. For Griewank, the convergence turns to
be very weak and slow compared to classical DE strategy. For Schwefel function the
convergence is robust but extremely slow compared to DE/Rand/1 strategy. The
convergence speed improved for Rastrigin and Sphere functions.

Table 3 is the results of DE/Modi/2 strategy.

Fig. 11. Griewank’s fitness vs iterations using DE/Modi/1.

Table 2. DE/Modi/1 results

Benchmark function DE/Modi/1
Iterations Fitness

Ackley 65 2.6e−08
Rastrigin 39 0
Sphere 22 1.79e−25
Schwefel 95 4.214e−12
Griewank 118 0.06904

Table 3. DE/Modi/2 results

Benchmark function DE/Modi/2
Iterations Fitness

Ackley 17 1.863e−11
Rastrigin 14 0
Sphere 19 1.04e−28
Schwefel 18 6.02e−11
Griewank 21 0
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From the results obtained from DE/Modi/2, it can be noticed that convergence
speed robustness of all the functions has improved compared to both above strategies
DE/Rand/1 and DE/Modi/1. In this strategy, Griewank function is able to reach a
robust convergence.

Table 4 is the results obtained from DE/Modi/3 strategy.

From the results of DE/Modi/3, it can be noticed that there is a slight change of
convergence speed between DE/Modi/2 and DE/Modi/3. Convergence speed for
Ackley and Rastrigin function slightly improved compared to DE/modi/2, while for
Sphere, Schwefel and Griewank function, convergence speed slightly dropped com-
pared to DE/Modi/2.

6 Conclusion

Based on the above results, it has been noticed that DE/Modi/1 results lack robustness
and convergence speed, making just 41.67% of best convergence time. For DE/Modi/3
it can be noticed that improvement is achieved compared to classical DE/Rand/1 with a
percentage of 81.94% of the best convergence time. DE/Modi/2 achieved the best
results with 84.72% of best convergence time compared to all other modified strategies
on this paper with best convergence speed and strong convergence. On the other hand
F/C combination of 0.1/0.9 produced fast and robust convergence during the
DE/Modi2 and DE/Modi3 simulation session, making it the best Mutation
Factor/Crossover Rate combination for the DE/Modi2 and DE/Modi3 mutation
strategies. It can be concluded that DE convergence speed has been improved through
modified strategies DE/Modi2 and DE/Modi/3 with F/C combination of 0.1/0.9. The
modified mutation strategies DE/Modi2 and DE/Modi/3 with F/C combination of
0.1/0.9 can be used in future due to their robust convergence, fast and effective con-
vergence speed and ability to optimize other functions that classical DE/rand/1 is not
able to optimize to minimum optimal point such as Griewank and Bukin function.
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Table 4. DE/Modi/3 results

Benchmark function DE/Modi/3
Iterations Fitness

Ackley 16 2.538e−11
Rastrigin 12 0
Sphere 15 1.189−26
Schwefel 24 4.09e−13
Griewank 29 0
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Abstract. Translation control of an immersed tunnel element under the water
current flow is a typical optimization problem, which always emphasizes on
short duration and high translation security. Various optimization approaches
have been proposed to address this issue in previous works, but most of them
take only one objective into consideration. Thus, it is solved as a single
objective optimization problem. However, the translation control of the
immersed tunnel element usually involves two or more conflicting objectives in
actual situation. It’s necessary to convert the translation control problem into a
multi-objective optimization problem to obtain effective solutions. Therefore, a
recently proposed multi-objective differential evolution algorithm is employed
to solve the problem in the present work. The translation model of the immersed
tunnel element is introduced with three sub-objectives. Results indicate that a
multi-objective differential evolution algorithm can provide a set of
non-dominated solutions for assisting decision makers to complete the transla-
tion of the immersed tunnel element according to different targets and changing
environment.

Keywords: Tunnel element � Multi-objective optimization
Differential evolution algorithm

1 Introduction

Compared with traditional transport engineering, an immersed tunnel has been widely
used since it can effectively shorten transport time and improve operation efficiency [1].

Numerous studies related to the immersed tunnel project have studied on the tug
towing process and focused on the stability of tug. Sinibaldi and Bulian [2] carried out
a numerical bifurcation analysis by a 4-degree of freedom nonlinear dynamical system
for determining the system equilibrium when a relevant parameter is revised. The
results indicate that the wind direction and speed significantly influence the response of
the system. Moreover, a potentially dangerous fishtailing phenomenon will happen
when stable equilibrium solutions do not exist. Bao [3] stated that the movement and
control of large vessels are generally affected by the pushing positions of tugs.
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Fitriadhy et al. [4] measured wind effects and obtained course stability regions of the
towed barge when the length of towing line and the angle or speeds of wind varied.

Works about translation of the immersed tunnel also involve varieties of models.
Not only tug towing forth but also the environment concerned is measured in each
optimization model. Wang [5] applied model test and numerical simulation to the
immersed tunnel transportation to obtain a variety of towing plans for the Hong Kong
Zhuhai Macao Bridge project. Moreover, a few comparative analysis approaches are
used to achieve the optimal scheme. Therefore, the towing resistance can be obtained
under a specific translation velocity. For assessing the hydrodynamic characteristics of
surroundings encountered in transit, Zhu et al. [6] used numerical simulation method to
track its variation range in line with various parameters. The results shows that the
change of the free-board and nearby waves both have impacts on the coefficients. Lu
et al. [7] investigated the environmental and geological conditions which were tightly
connected to the towing resistance of the immersed tunnel elements and searched
calculation methods of wind, wave and current resistance. It turned out that the water
depth and the angle between element and flow could directly affect the resistance. Li
et al. [8] introduced the immersed tunnel transportation problem in mathematical
description with working tugboats numbers, surplus towing force and the floating
speed, and designed the WLIPPSO method to solve the optimization problem. At last, a
better translation control plan was obtained.

Some interesting parts have also been investigated till now. Lin [9] employed a set
of physical models to analyze the motion and dynamic response of sinking tunnel
elements under different flow conditions. The results indicated that mooring ropes’
tension force increased with high wave height. Wu and Xie [10] adopted the finite
element software ANASYS to analyze tube tunnel. Based on the actual project data, the
environment interaction relations of tunnel elements were studied and the theoretical
calculation was carried out in order to provide the reference for later tube tunnel design.

Based on the aforementioned introductions, it can be found that the works related to
translation of the immersed tunnel element are rare in literature. Not to mention the fact
that the translation control of the immersed tunnel element is an optimization problem.
In Ref. [8], although a particle swarm optimization (PSO) is used to solve this problem,
a single objective optimization is considered. However, there are always two or more
conflicting objective functions in the translation control of the immersed tunnel ele-
ment. In other words, the translation control of the immersed tunnel element is a
multi-objective optimization problem. To solve this problem, a recently proposed
multi-objective differential evolution algorithm (i.e., multi-objective differential evo-
lution with performance-metric-based self-adaptive mutation operator (MODE-
PMSMO)) is used in the present work. Results indicate that the MODE-PMSMO is
able to provide a set of non-dominated solutions for helping decision makers to finish
the translation of the immersed tunnel element. Additionally, it is easy for decision
makers to select a suitable solution for dealing with uncertain disturbances.
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2 MODE-PMSMO Applied to Optimize the Translation
Control Problem of the Immersed Tunnel Element

2.1 Translation Control of the Immersed Tunnel Element

In this section, the translation model of the immersed tunnel element is introduced. It is
composed of translation velocity of the immersed tunnel element, resistance of the
immersed tunnel element translation and resultant force and resultant moment of the
tugs. The objective function for the translation control of the immersed tunnel element
can be defined as follows:

FðxÞ ¼ min �v1f g;min
XN
i¼1

Fi � Fi;max
� �

( )
;min

XN
i¼1

Fi;max � Fi
� �� Fmean
�� ��

( )" #T

: ð1Þ

s:t:

v1;min � v1 � v1;max

F1;min �F1 �F1;max

F2;min �F2 �F2;max

F3;min �F3 �F3;max

a1;min � a1 � a1;max

a2;min � a2 � a2;max

a3;min � a3 � a3;max

a4;min � a4 � a4;max

a5;min � a5 � a5;max

a6;min � a6 � a6;max

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

where v1 is the velocity of the immersed tunnel element relative to the shore, Fi is the
towing force of the i-th tug, ai is the angle of the positive x-axis counter clockwise to
the towing force Fi, and N is the quantity of the tugs. Fi;max and Fi;min are the maximal
and minimum towing force of the ith tug, respectively, Fmean is the mean value of the
surplus towing force of all tugs, and v1;min and v1;max are the lower and upper limits of
v1, respectively.

2.2 Methods of the MODE-PMSMO

It’s been well known that the performance of differential evolution algorithm is sen-
sitive to strategies and parameter settings. To further improve the performance of
multi-objective DE, Fan et al. [11] proposed the MODE-PMSMO. In the
MODE-PMSMO algorithm, a suitable mutation operator can be automatically selected
based on a modified performance metric. The flowchart of the MODE-PMSMO is
shown in Fig. 1. Furthermore, more detailed descriptions can refer to Ref. [11].
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3 Case Study

According to the translation model of the immersed tunnel element presented in
Sect. 2, the MODE-PMSMO [11] is employed to obtain a set of optimal operation
conditions. Both advantage and disadvantage of each optimal operation condition is
observed.

In the current experiment, the MODE-PMSMO is used to solve the translation
control problem of the immersed tunnel element in Hong Kong Zhuhai Macao bridge
project. Then, the number of tugs is set to be 6 in the present study. The population size
of the MODE-PMSMO is set to be 100. The maximum number of function evaluations
is set to be 30,000. Moreover, the parameter settings in translation model of the
immersed tunnel element are shown in Table 1. The upper and lower limits of variables
in Eq. (1) are shown in Table 2.

Four PF from four different views are plotted in Fig. 2. Figure 2(a) shows the PF
obtained by MODE-PMSMO on three objectives. Figure 2(b) exhibits that the trans-
lation velocity of the immersed tunnel element increases with decreasing the total

Fig. 1. The flowchart of the MODE-PMSMO
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surplus towing force, thus decision makers should strike a balance between the
translation velocity and the total surplus towing force based on different conditions.
From Fig. 2(c), it can be observed that high translation velocity is difficult to guarantee
the trade-off of the surplus towing force of each tug. Also, Fig. 2(d) indicates that large
total surplus of towing force can achieve a good balance to the surplus towing force of
each tug. Based on the above observations, it can be concluded that the translation
velocity is inversely proportional to the total surplus towing force, and large total
surplus of towing force is beneficial to implement the trade-off of the surplus towing
force of each tug. Additionally, two boundary points (i.e., S1 and S2) shown in Fig. 2
(b) are selected from the achieved PF. S1 denotes the total surplus towing force is

Table 1. Parameter settings in translation model of the immersed tunnel element

Immersed tunnel element Floating pontoon Seawater Current
velocity

Length
(L)

Width (B) Draft
(d)

Length
Lp
� � Draft dp

� �
Width
Bp
� � Width

B0
p

� � Density
(q)

v0

m m m m m m m kg/m3 knots
180 37.95 11.1 40.2 6.2 7.2 56.4 1025 2
Tug
G1,G2 G3,G4 G5,G6
Power Main engine

speed
Fi;max Power Main

engine
speed

Fi;max Power Main
engine
speed

Fi;max

Hp r/min ton Hp r/min ton Hp r/min ton
6800 750 56 5200 750 50 4000 750 43
h1 Current

direction
(h0)

Deg. Deg.
0 17

Table 2. Upper and lower limits of variables

Optimized variables Lower Upper

v1(knots) 0 6.623
F1(kN) 0 46 * 9.8
F2(kN) 0 46 * 9.8
F3(kN) 0 40 * 9.8
a1(Deg.) –75 165
a2(Deg.) –165 75
a3(Deg.) 35 255
a4(Deg.) 105 325
a5(Deg.) 15 350
a6(Deg.) 15 350
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Fig. 2. Obtained PF for the four different views

Table 3. Towing force and angle of each tug for S1

Tug No. Towing force (kN) Angle (deg.)

1 89.87 –58.49
2 1.99 3.35
3 3.67 186.59
4 0.14 257.25
5 122.78 249.21
6 18.98 198.24

Table 4. Towing force and angle of each tug for S2

Tug No. Towing force (kN) Angle (deg.)

1 404.88 –5.44
2 326.78 –13.63
3 60.16 40.25
4 342.62 324.64
5 122.78 50.51
6 286.43 3.42
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maximal while the translation velocity is minimal. S2 represents the translation velocity
is the fastest, but the total surplus towing force is minimal. The detailed results of two
points are summarized in Tables 3 and 4. It can be observed from Table 3 that, to
ensure the large total surplus of towing force, tugs 1, 5, and 6 play an important role in
the translation of the immersed tunnel element, whereas tugs 2, 3, and 4 can be used as
a standby tug to deal with changing environment or uncertain disturbance. Table 4
indicates that, to achieve high translation velocity, tugs 1, 2, 4, and 6 should provide
greater towing force to the immersed tunnel element, and tugs 3 and 5 can provide
relatively small towing force.

4 Conclusion

In this paper, the translation problem of the immersed tunnel element is converted into
a multi-objective optimization problem, which is solved by a recently proposed
multi-objective differential evolution algorithm, i.e., MODE-PMSMO. In the case
study, the parameter settings of the model are collected from Hong Kong Zhuhai
Macao bridge project. The simulation results show that the MODE-PMSMO can
provide a set of non-dominated solutions for helping decision makers and improve the
transportation efficiency. Moreover, decision makers can select another solution when
operating environment change dramatically.
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Abstract. Computing hierarchical routing networks in polygonal maps
is significant to realize the efficient coordination of agents, robots and
systems in general; and the fact of considering obstacles in the map,
makes the computation of efficient networks a relevant need for clut-
tered environments. In this paper, we present an approach to compute
the minimal-length hierarchical topologies in polygonal maps by Dif-
ferential Evolution and Route Bundling Concepts. Our computational
experiments in scenarios considering convex and non-convex configura-
tion of polygonal maps show the feasibility of the proposed approach.

Keywords: Route bundling · Hierarchical network design
Minimal trees

1 Introduction

Over the last decade research on Internet of Things and collaborative robots has
made clear that optimal and robust routing in networks are significant to realize
the effective coordination and communication of multi-agent systems; and the
fact of having obstacles over the map, makes the computation of collision-free
routing a relevant need in cluttered environments [3,14,41–43].

Research in route planning has its origins in the mid 60’s, and since the
seminal work of Lozano-Perez in 1979 [19], the problem has been extensively
studied in the literature. For recent reviews, see [22,38]. Often, collision-free
trajectories are computed considering the optimality of navigation in the free
space. And well-known methods such as RRT [16,17] and PRM [15] guarantee
probabilistic completeness, while RRT* guarantees asymptotic optimality. Also,
approaches based on sampling and optimization with gradient-based approaches
are used, such as CHOMP, STOMP, and TrajOpt. However, these methods are
sensitive to initial conditions (initial trajectory). Also, path planning based on
geometric information has been argued to be accurate [1,4,7,18,34], in which
finding optimal origin-destination is usually based on the triangulation of the
free space. Also, online and approximation approaches have been proposed as
well, e.g. the Potential Field method [2], and the Cell Decomposition method
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. Basic concept of the proposed approach

[11]. Furthermore, heuristic approaches have been used to achieve optimality
of routes in the global sense, and examples include nature inspired approaches
such as Neural Networks [8,36], Genetic Algorithms [6], Differential Evolution
[26,31,32,40,44] and Particle Swarm Optimization (PSO) [21,45].

Being related to the Steiner tree problem, path planning on hierarchical
bundles is key to allow efficient distribution and communication of sparsely dis-
tributed nodes. Having started in the 30’s [39], the Steiner tree problem was pop-
ularized in the 40’s [35]. In practical settings, the Obstacle-Avoiding Rectilinear
Steiner (OARST) given n nodes in a polygonal map has received recent attention
in VLSI systems [3,14,41–43]; and there exists a polynomial-time approximation
of the more general Obstacle-Avoiding Steiner Tree (OAST) with O(nlog2n) (n
is number of terminals and obstacle vertices) [23]. However, the exhaustive study
of global optimization and gradient-free approaches on Minimum Steiner Trees
in polygonal maps has received little attention.

Other related works to path planning on hierarchical bundles involve the edge
bundling in network visualization [5,10,12,13,37], the path bundling in bipartite
networks [26,29,32], and the minimal trees in n-star networks with fixed roots
[33]. However, path planning considering minimal Steiner trees and flexible root
configuration has received little examination in the literature.

In this paper, in order to fill the above gaps, we propose an approach to com-
pute minimal trees given n points with a star topology and flexible configuration
of the root, wherein the goal is to generate topologically compact and minimal
trees being free of clutter and easy to visualize. The basic idea of our approach,
depicted by Fig. 1, is to allow routes to be bundled by using a hierarchical con-
figuration, and optimize the location of the root by Differential Evolution. Our
results by using a diverse set of polygonal map configurations show the feasibility
to compute minimal trees in the plane.

In the rest of this article, after describing the key components in our proposed
approach, we discuss our findings though our computational experiments, and
finally summarize our insights and future work.
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2 Path Planning on Hierarchical Bundles

The basic outline of our algorithm is depicted by Fig. 1, in the following we
briefly describe the key components and dynamics.

2.1 Preliminaries

The input in our algorithm is the set of terminal nodes V and a polygonal map
P ; and the output is a tree layout aiming at minimizing the total tree length,
while not only preserving connectivity from the root r towards the nodes in the
terminal set V , but also avoiding the obstacles in map P .

2.2 Shortest Paths

The route r is known a-priori and its location is an interior point of the convex
hull of V . The shortest paths are computed from the root r towards each node
in the terminal V by using the A* algorithm with visibility graphs, rendering
the set ρ of shortest routes from the source r to each terminal node in V .

2.3 Route Bundling

Then, shortest routes are clustered by the hierarchical agglomerative approach
with complete and Euclidean metric, which renders a dendogram Z = [zij ] ∈
R

|ρ|×2 denoting the ordering of path bundling in which the rows of the matrix Z
are configured in ascending order, with similar (different) routes being located
first (last). For clustering and similarity computation, the distance between two
routes is computed by the following metric:

d(ρi, ρj) =

(
SP∑
k=1

||ρk
i − ρk

j ||2
)

.

(
cos−1

( ai.aj
|ai||aj|

))
, (1)

where ρi ∈ ρ, ρk
i is the k-th sampled point along the route ρi, SP is the number

of equally-separated interpolated points along the route ρi, and ai = ρend
i −

ρinit
i in which ρinit

i , ρend
i ∈ R

2 are the starting and the end coordinates of the
route ρi, respectively. The main rationale of using the above distance metric is
due to its key benefit of measuring not only piecewise gaps (due to difference
in topology), but also orientation gaps (due to arbitrariness of location of end
nodes). Furthermore, note that the above distance metric is able to be computed
under parallelization schemes, bringing benefits in scalability for large-scale path
planning applications.

By using the order of the dendogram (hierarchical clustering), routes are bun-
dled by a nature-inspired approach which considers the merging, the expansion
and the shrinkage of leaves [33]. The bundle process is executed in bottom-up
approach (from terminal nodes to root), followed by a top-down approach (from
root to terminal nodes), which ensures co-adaptation while searching for optimal
topologies.
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– Merging occurs when the anchoring node x is far from the root r, yet close
to either routes u or v. Farness of node x to r, and closeness of x to u, v is
computed by �(x, r) > δ1 and D(r, u, v) < δ2, respectively, where:

D(r, u, v) = min(�(r, u), �(r, v)), (2)
where �(x,w) is the length of the shortest route from node x to node w along
the polygonal map P . The role of using the user-defined thresholds δ1 and δ2
is to allow flexibility and granularity when designing and generating minimal
trees: smaller (larger) values of δ1(δ2) creates more (less) intermediate nodes
x, thus the global tree length is expected to be small (large). Then the farthest
leaf (u or v) is merged to the closest one (u or v), in which the closest leaf is
computed by the following metric:

closest =

{
u, for �(x, u) < �(x, v)
v, for �(x, u) > �(x, v)

(3)

As a natural consequence, the farthest node is the opposite of the above.
– Expansion occurs when the anchoring node x is far from the root r, and far

from leaves u, v.
– Shrinkage occurs either when the tree has a single leaf, or when the anchoring

node x is close to the root r and close to either u or v.

The above bundling operations are guided by the dendogram Z; in which
some of the edges of the T are compounded and some intermediate nodes are
inserted due to the expand operation. Note that tree operations are performed
recursively.

2.4 Optimizing the Root of Trees

The root in the tree T is allowed to be flexible, and its location is optimized by
minimizing:

J(T, r) =
∑

s∈leaves(T )

�(r, s), (4)

where r is the root of tree T . Note that the above definition is recursive. Due
to the nature of handling obstacles with arbitrary geometry, the optimization of
the above cost function is realized by Differential Evolution with Neighborhood
and Convex Encoding [26,32], which is used due to its advantages to not only
balance the exploration and the exploitation while searching for the optimal
location of the root, but also to render feasible root coordinates by using a
triangular encoding, which allows to sample obstacle-avoiding coordinates in
polygonal maps efficiently.

3 Computational Experiments

In order to evaluate the performance of our proposed path bundling algorithm,
we performed computational experiments in diverse scenarios.
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(a) Map 1 (b) Map 2

Fig. 2. Polygonal maps

3.1 Settings

Our computing environment was an Intel i7-4930K @ 3.4 GHz, Matlab 2016a. To
evaluate our approach in diverse scenarios, we used polygonal maps with convex
and non-convex polygonal configurations, as shown by Fig. 2 [9,20]. Also, for each
configuration, 5 independent runs for path planning in origin-destination pairs
consisting of 20 edges in a star-topology was performed. The main motivation of
using the above is due to our foci on scenarios being close to indoor environments,
where complexity is controlled by the convexity and the configuration of the
polygonal map.

As for parameters in Differential Evolution, we used: probability of crossover
CR = 0.5, scaling factor α = β = |ln(U(0, 1))/2|, population size with 10 indi-
viduals, neighborhood ratio η = 0.2, and termination criterion is 5000 function
evaluations. The main reason of using crossover probability CR = 0.5 is to give
the same importance to the sampling with historical search vectors, and with
local and global interpolations. The scaling factors α, β allow to search in small
steps when computing the self-adaptive directions. Furthermore, small values
of population size and neighborhood factor enable efficient sampling within the
local neighborhood [32]. Fine tuning of the above is out of our scope.

(a) Convergence in Map 1 (b) Convergence in Map 2

Fig. 3. Convergence over different Maps
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(a) E = 0 (b) E = 20 (c) E = 40 (d) E = 290

(e) E = 420 (f) E = 900 (g) E = 1180 (h) E = 5000

Fig. 4. Convergence examples in Map 1 after E function evaluations.

(a) E = 0 (b) E = 20 (c) E = 30 (d) E = 70

(e) E = 80 (f) E =150 (g) E =180 (h) E = 230

(i) E = 570 (j) E = 600 (k) E = 700 (l) E = 5000

Fig. 5. Convergence examples in Map 2 after E function evaluations.

3.2 Results

In order to show the learning performance of our proposed approach, Fig. 3
shows the convergence behaviour as a function of the number of evaluations over
independent runs. By observing Fig. 3, we can confirm that computing minimal
trees becomes possible within a 1000–1500 function evaluations.
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(a) Minimal Tree in Map 1

(b) Minimal Tree in Map 2

Fig. 6. Minimal trees.

Also, in order to show the evolvability performance of our proposed approach,
Figs. 4 and 5 show the elite solutions generating the path planners in hierarchical
bundles after E function evaluations. Here E = 0 denotes the input (as portrayed
by the basic concept in Fig. 1), and E = 5000, denotes the converged solution.
By looking at the generated topologies in Figs. 4 and 5, we can observe that
it is possible to compute the optimal location of the roots (which is different
from the initial solution), and that larger changes in topology occur at earlier
stages of the learning algorithm. We believe this fact occurs due to the highly
explorative (exploitative) nature in earlier (later) generations, which induces in
large (small) changes in the nature of the topology of minimal trees. Finally, to
visualize deployment, Fig. 6 shows the generated topologies of the minimal trees
in their respective environments [9,20].
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We believe that our obtained results are building blocks to further advance
path planning in hierarchical networks in the presence of polygonal obstacles.
Investigating the learning performance with canonical encodings in directed
graphs [28] and undirected graphs [24], the use of concurrency concepts in net-
works [30] and in exploration-exploitation [25], as well as the formation of mod-
ules in hierarchical bundles by succinct subset partitions [27] are in our agenda.

4 Conclusion

We proposed a method to compute hierarchical networks in polygonal maps given
n points configured in an n-star topology with flexible root location. The basic
idea of our approach is based on path bundling to find minimal trees while avoid-
ing obstacles, and evolution to compute the optimal location of the roots in the
minimal tree. Our computational experiments involving convex and non-convex
polygonal map scenarios confirm the feasibility to compute obstacle-avoiding
minimal trees, and the efficiency to converge to optimal solutions within 1000–
1500 function evaluations. In our future work, we aim at exploring the learning
performance of minimal topologies by using succinct encodings of graphs, con-
currency and combinatorial subset formation. We believe our approach may find
uses in Operations Research, Communications and Multi-Agent Systems.
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Abstract. We propose an acceleration method for the fireworks algo-
rithms which uses a convergence point for the population estimated
from moving vectors between parent individuals and their sparks. To
improve the accuracy of the estimated convergence point, we propose
a new type of firework, the synthetic firework, to obtain the correct of
the local/global optimum in its local area’s fitness landscape. The syn-
thetic firework is calculated by the weighting moving vectors between a
firework and each of its sparks. Then, they are used to estimate a con-
vergence point which may replace the worst firework individual in the
next generation. We design a controlled experiment for evaluating the
proposed strategy and apply it to 20 CEC2013 benchmark functions of
2-dimensions (2-D), 10-D and 30-D with 30 trial runs each. The experi-
mental results and the Wilcoxon signed-rank test confirm that the pro-
posed method can significantly improve the performance of the canonical
firework algorithm.

Keywords: Fireworks algorithm · Estimated convergence point
Synthetic individuals · Acceleration

1 Introduction

The fireworks algorithm (FWA) [1], as a new member of swarm intelligence algo-
rithms inspired by the explosion of real fireworks, has attracted much attentions
in academia and industry. It simulates explosions repeatedly to implement local
search points (sparks) around a specific point (firework) and evolves towards
the optimal solution. Many improved versions of FWA have been proposed. The
enhanced FWA (EFWA) [2] improves the corresponding operations of the orig-
inal FWA and can achieve a better performance. Dynamic FWA (dynFWA)
[3] uses a dynamic explosion amplitude for the current best firework to tune
the search range more intelligently. An amplitude reduction strategy and local
optima-based selection strategy [4] were also proposed to improve the perfor-
mance of FWA obviously. Although many new ideas and mechanisms have been
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 263–272, 2018.
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introduced to FWA to develop new variations, little attention was given to the
generated sparks, which therefore offer a potential new direction for research.

Using gradient information has always been a very hot topic full of potential.
Many practitioners have tried to build and use gradients to accelerate conver-
gence. For example, [5] estimates the natural gradient for the exponential family
based on regularized linear regression. In addition, [6] proposes an alternative
way to compute search directions by exploiting neighborhood information. In
this paper, we introduce a new type of firework, the synthetic firework. Using
gradient information derived from the generated sparks, we can gain an under-
standing about the direction of local evolution on the fitness landscape. This
local gradient information is then used to estimate a convergence point for the
fireworks population.

The main objective of this paper is to use the estimated convergence point
as an elite individual to accelerate FWA by substituting it for the worst firework
individual in next generation if its fitness is better. The secondary one is to
analyze the applicability of the proposed strategy, and introduce some topics
which are open to discussion.

We introduce the framework of canonical FWA in Sect. 2.1 and a method
for estimating the convergence point in Sect. 2.2. New types of fireworks are
described in detail in Sect. 3. We evaluate them by comparing them with the
original FWA using 20 benchmark functions of 3 different dimensions in Sect. 4.
Finally, we discuss the experimental evaluations in Sect. 5 and conclude in Sect. 6.

2 Related Research

2.1 Fireworks Algorithm

Real fireworks are launched into the sky, and many sparks are generated around
the fireworks. The explosion process of a firework can be viewed as a local search
around a specific point. FWA simulates this explosion process iteratively to find
the optimal solution. Figure 1 illustrates the process of FWA, which consists
principally of three operations: explosion, mutation and selection [1].

Since there are some limitations in classic FWA and its performance is also
not very prominent among all its subsequent variants, such as EFWA and

(a) (b) (c)

Fig. 1. The search process of FWA. (a) fireworks are generated, (b) sparks are created
around each firework, and mutation points are also generated, (c) new fireworks are
created in the next generation using the sparks from (b). Steps (b) and (c) are iterated
until the termination condition is satisfied.
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dynFWA, we employ the more powerful EFWA [2] as our baseline algorithm
and combine it with our proposed strategy. The EFWA introduces five major
improvements into conventional FWA to improve its performance. For details on
these improvements, refer to [2].

2.2 Method for Estimating the Convergence Point for a Population

The convergence point for the moving vectors between parent individuals and
their offspring in the next EC search generation can be calculated mathemati-
cally [7,8]. Let us begin by defining symbols. ai and ci in the Fig. 2 are the i-th
parent individual and its offspring individual, respectively (ai, ci ∈ R

d). The i-th
moving vector is defined as the direction vector, bi = ci −ai. The unit direction
vector of the bi is given as b0i = bi/||bi||, i.e. bT

0ib0i = 1.

Fig. 2. The moving vector bi (= ci − ai) is calculated from a parent individual ai and
its offspring ci in the d-dimensional searching space. The � mark is the convergence
point for these moving vectors.

Let x ∈ R
d be the point that is the nearest to the n extended directional line

segments, ai + tibi (ti ∈ R). The nearest, means that the total distance from x
to the n extended directional line segments, J(x, {ti}) in Eq. (1), becomes the
minimum. We may insert an orthogonality condition, Eq. (2), into Eq. (1) and
thus remove ti.

J(x, {ti}) =
n∑

i=1

‖ai + tibi − x‖2 (1)

bTi (ai + tibi − x) = 0 (orthogonal condition) (2)

The x̂ that minimizes the total distance in the Eq. (1) is obtained by par-
tially differentiating each element of x and setting them equal 0. Finally, the
convergence point x̂ is given by Eq. (3), where Id is the unit matrix.
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x̂ =

{
n∑

i=1

(
Id − b0ib

T
0i

)}−1 {
n∑

i=1

(
Id − b0ib

T
0i

)
ai

}
(3)

3 Proposed Method

We introduce a new kind of firework, named the synthetic firework, to make
full use of the many generated sparks, which are otherwise only involved in the
selection operation and then destroyed. The synthetic fireworks and fireworks
of the current generation form many moving vectors which can be used to esti-
mate a convergence point that is expected to locate near the global optimum.
The estimated point is regarded as an elite individual and replaces the worst
individual from the next generation if its fitness is better.

The method for calculating the synthetic fireworks is as follows. Each firework
and its generated sparks form a subgroup, and we can construct many vectors
between the firework and its generated sparks. If the firework is worse than one
of the generated sparks, this vector’s direction is considered to be promising.
Otherwise, its antipode is used to calculate a synthetic firework. There are many
methods to evaluate the potential of these directions. In this paper, we simply
use the fitness difference between the endpoint and the start point of a vector to
evaluate it. Thus, the larger the fitness difference is, the higher will be the weight
of the vector. In order to not increase the number of fitness evaluations, we only
calculate the antipode for a firework which is lacking a fitness evaluation if the
antipodal direction is to be used. The fitness difference of the original vector
is roughly used to evaluate the used antipodal direction. Finally, a synthetic
firework can be roughly calculated by weighting those vectors with Eq. 4 in each
firework group. Figure 3 illustrates how a synthetic firework is thus formed.

Fig. 3. A synthetic firework is generated from a firework and its generated sparks. The
black five-pointed star and the red solid points represent the firework and its generated
sparks, respectively. The presence of a red hollow circle means that the antipode has
been used. The purple solid point is the synthetic firework obtained by weighting these
vectors. (Color figure online)

vi =
m∑

j=1

f(xi) − f(sij)∑n
i=1 ||(f(xi) − f(sij))||

∗ (sij − xi) + xi (4)
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Where xi and sij represent the i-th firework and its j-th generated spark or
antipodal point. vi is the i-th synthetic firework of the i-th firework group; m is
the number of generated sparks of the i-th firework; f() is a fitness function.

We can obtain new synthetic fireworks up to the population of the current
firework generation. Since we do not increase the number of fitness evaluations
and a new synthetic firework is expected to be better than the firework belonging
to its subgroup, we will not evaluate the synthetic fireworks. A moving vector is
calculated from the current firework to the newly generated synthetic firework in
each subgroup, and the convergence point is estimated using these moving vec-
tors with the estimation method described in the Sect. 2.2. Algorithm 1 outlines
the flow of EFWA using our proposed strategy.

Algorithm 1. The framework for the fireworks algorithm using our proposed
strategy. Steps 11 to 16 are from our proposal.
1: Initialize n fireworks randomly.
2: Evaluate the fitness of each firework.
3: while the termination condition is not satisfied do
4: Generate explosion sparks around each firework.
5: Use Gaussian mutation to obtain Gauss sparks.
6: if sparks are generated outside the search area then
7: Use a mapping rule to bring them back into the area.
8: end if
9: Evaluate the fitness of each generated spark.

10: Select n fireworks for the next generation from the generated sparks and the
current fireworks.

11: Calculate the synthetic fireworks for each subgroup.
12: Obtain moving vectors using the synthetic fireworks and the current fireworks.
13: Estimate a convergence point.
14: if the estimated convergence point is better than the worst firework in the next

generation then
15: Replace the worst firework with the estimated point.
16: end if
17: end while
18: end of program.

Note that our proposed strategy does not change the structure of the original
FWA when it is combined with other fireworks algorithms. It simply uses the
fireworks and the generated sparks to build local gradient information, then uses
this to estimate a convergence point to accelerate convergence.

4 Experimental Evaluations

We use 20 benchmark functions from the CEC2013 benchmark test suite [9] in
our evaluations, which is designed for real parameter single-objective optimiza-
tion. Table 1 shows their types, characteristics, variable ranges, and optimum
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fitness values. These landscape characteristics include shifted, rotated, global on
bounds, unimodal and multi-modal. We test them with 3 dimensional settings:
D = 2, 10 and 30. We select EFWA [2] as our test baseline and combine it with
our proposal for this experiment using parameters as described in Table 2, where
the definition of the symbols can be found in the original literature [1,2].

For fair evaluations, we evaluate convergence against the number of fitness
calls rather than generations. We test each benchmark function with 30 trial
runs in 3 different dimensional spaces. We apply the Wilcoxon signed-rank test
on the fitness values at the stop condition, i.e. the maximum number of fitness
calculations, and compare EFWA with (EFWA + our proposed method). Table 3
shows the result of these statistical tests.

Table 1. Benchmark function: Uni = unimodal, Multi = multimodal.

No. Types Characteristics Ranges Optimum
fitness value

F1 Uni Sphere function [−100, 100] −1400

F2 Rotated high conditioned elliptic function −1300

F3 Rotated bent cigar function −1200

F4 Rotated discus function −1100

F5 Different powers function −1000

F6 Multi Rotated Rosenbrock’s function [−100, 100] −900

F7 Rotated Schaffers function −800

F8 Rotated Ackley’s function −700

F9 Rotated Weierstrass function −600

F10 Rotated Griewank’s function −500

F11 Rastrigin’s function −400

F12 Rotated Rastrigin’s function −300

F13 Non-continuous rotated Rastrigin’s function −200

F14 Schwefel’s function −100

F15 Rotated Schwefel’s function 100

F16 Rotated Katsuura function 200

F17 Lunacek BiRastrigin function 300

F18 Rotated Lunacek BiRastrigin function 400

F19 Expanded Griewank’s plus Rosenbrock’s function 500

F20 Expanded Scaffer’s F6 function 600
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Table 2. Parameter setting of EFWA.

Parameters Values

# of fireworks for 2-D, 10-D and 30-D search 5

# of sparks m 50

# of Gauss mutation sparks, 5

constant parameters a = 0.04 b = 0.8

Maximum amplitude Amax 40

stop condition; MAXNFC , for 2-D, 10-D, and 30-D search 1,000, 10,000, 40,000

Dimensions of benchmark functions, D 2, 10, and 30

# of trial runs 30

Table 3. Statistical test results of the Wilcoxon signed-rank test for average fitness
values of 30 trial runs of the proposal (EFWA + our proposed method) and conventional
method (EFWA) at the stop condition, MAXNFC . A � B and A > B mean that A
is significant better than B with significant levels of 1% and 5%, respectively. A ≈ B
means that although A is better than B, there is no significant difference between them.

Func. 2-D 10-D 30-D

f1 proposal � EFWA proposal � EFWA proposal � EFWA

f2 proposal ≈ EFWA proposal � EFWA proposal � EFWA

f3 proposal ≈ EFWA proposal > EFWA proposal > EFWA

f4 EFWA ≈ proposal proposal ≈ EFWA proposal ≈ EFWA

f5 proposal � EFWA proposal � EFWA proposal � EFWA

f6 proposal ≈ EFWA EFWA ≈ proposal proposal ≈ EFWA

f7 proposal > EFWA EFWA ≈ proposal proposal ≈ EFWA

f8 proposal ≈ EFWA EFWA ≈ proposal proposal ≈ EFWA

f9 EFWA ≈ proposal EFWA ≈ proposal EFWA ≈ proposal

f10 proposal > EFWA proposal � EFWA proposal � EFWA

f11 proposal ≈ EFWA proposal � EFWA proposal � EFWA

f12 EFWA ≈ proposal proposal ≈ EFWA proposal ≈ EFWA

f13 proposal ≈ EFWA proposal ≈ EFWA proposal ≈ EFWA

f14 proposal ≈ EFWA proposal > EFWA proposal � EFWA

f15 proposal ≈ EFWA proposal ≈ EFWA EFWA ≈ proposal

f16 EFWA ≈ proposal proposal ≈ EFWA proposal ≈ EFWA

f17 proposal � EFWA proposal � EFWA proposal � EFWA

f18 proposal > EFWA proposal ≈ EFWA EFWA ≈ proposal

f19 proposal ≈ EFWA proposal ≈ EFWA proposal � EFWA

f20 proposal ≈ EFWA proposal ≈ EFWA EFWA ≈ proposal
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5 Discussions

Most fireworks algorithm variants mainly use their computational resources for
generating sparks, but the information from these sparks is not fully used. In our
experimental evaluations, the total number of generated sparks was 10 times of
that of the fireworks. It is clearly productive to consider how these many sparks
can be used efficiently. We introduced a new type of firework, called the synthetic
firework, to explore local gradient information on the fitness landscape. Thanks
to the use of multiple vectors in each subgroup, the synthetic firework also has
a certain anti-noise property, as its calculation cancels noise from the directions
of the various moving vectors. This can help to improve the precision of the
estimated convergence point. In any case, the proposed method increases each
generation’s fitness calculations by only one - so we can say that it is a low risk,
high return strategy.

What potential still remains for our proposed firework, the synthetic fire-
work? Although we have used only the fitness difference between the two end-
points of a moving vector to evaluate it, we think that not only these fitness
differences but also their lengths should be considered to understand the local
gradient information more accurately, yielding further improvements in the esti-
mate. Additionally, there are many other ways to weight moving vectors and
increase the precision of the estimated convergence point. As an example, the
fitness value at the beginning point or the end point of a moving vector can be
used to evaluate it, which means that the lower the distance from the optimal
area, the higher the weight given. A precise way of obtaining reasonable weights
for the vectors is also a potential discussion topic.

We would like to point out that the new type of firework introduced can
be used to speed up convergence. In this paper, we used synthetic fireworks to
estimate a convergence point without evaluating their fitness. They have the
potential to act as a new guide for individuals, helping move them toward a
preferable evolutionary direction rather than random exploration. The new syn-
thetic fireworks can be introduced into a population to improve the diversity
and reduce selection pressure. How to use them reasonably is also a potential
discussion topic.

We also performed an extra experiment to investigate the fitness of syn-
thetic fireworks. We compared the synthetic firework with the firework individual
belonging to its same subgroup. The experimental results show that in the early
stages, synthetic fireworks are better than fireworks individuals, while the prob-
ability of a better synthetic firework decreases as the convergence progresses. For
optimization problems with different characteristics, it seems reasonable to use
a different method for assigning weights when creating the synthetic fireworks.
Perhaps different optimization stages could use different weighting methods to
obtain better synthetic fireworks. Summarizing the relationship between weight-
ing method and optimization problem is thus also a potential topic for study.

From the results of the statistical tests, we find that the proposed method is
beneficial for unimodal optimization problems (f1 − f5), while the performance
on low-dimensional multimodal optimization problems is not obvious. This may
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be because the basic estimation method, which is clearly effective for unimodal
optimization problems, is not always valid for multimodal problems where the
moving vectors go toward different local optima. Further, the number of moving
vectors is small (in this case, the number is 5), and even on some multimodal
optimization problems, it is less than the number of peaks. Regardless, the pro-
posed strategy does not show any deleterious effect. [10] confirmed the effective-
ness of using an extra individual pool to preserve outstanding individuals from
past generations and using this pool, instead of the current generation, to esti-
mate convergence points. For the next stage, using past searching individuals
to increase the number of moving vectors, and combining it with the cluster-
ing method may allow us to extend our proposal to multimodal optimization
problems.

6 Conclusion

We propose a new kind of fireworks which uses the generated sparks to efficiently
estimate a convergence point which can act as an elite individual to accelerate
the fireworks algorithm. The controlled experiments confirm that the proposed
strategy can significantly improve the performance of conventional EFWA, and
the higher the dimension, the more obvious the effect.

In future work, we will further study the proposed synthetic fireworks and
use them to beneficially guide the evolution of the population. Additionally, it
is suggested that we can further improve the accuracy of the estimated point by
using historical information to better understand the fitness landscape.
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Abstract. Grouping the sensor nodes into clusters is an approach to
save energy in wireless sensor networks (WSNs). We proposed a new
solution to improve the performance of clustering based on a novel swarm
intelligence algorithm. Firstly, the objective function for clustering opti-
mization is defined. Secondly, discrete fireworks algorithm for clustering
(DFWA-C) in WSNs is designed to calculate the optimal number of clus-
ters and to find the cluster-heads. At last, simulation is conducted using
the DFWA-C and relevant algorithms respectively. Results show that
the proposed algorithm could obtain the number of clusters which is
close to the theoretical optimal value, and can effectively reduce energy
consumption to prolong the lifetime of WSNs.

Keywords: Clustering · Discrete fireworks algorithm · Optimization
WSNs

1 Introduction

WSNs enable the reliable monitoring of a variety of environments for both civil
and military applications [1]. Usually, sensor nodes in the network are energy-
constrained and hard to get charged. To save energy and prolong the lifetime
of network, various protocols and approaches are designed for communication
between sensors and base stations. Grouping the sensor nodes into clusters is
one of them, which could effectively manage the network energy and enhance the
overall stability of the networks [2]. In order to obtain better performance, deter-
mining the number of cluster-heads and selecting appropriate sensor nodes as the
cluster-heads are important in the process of clustering [3]. Thus, evolutionary
algorithms are applied for solving this WSNs clustering optimization problem,
such as SAA (Simulated Annealing Algorithm) [4], PSO (Particle Swarm Opti-
mization) [5], ACA (Ant Colony Algorithm) [6], etc.

In 2010, a swarm intelligence algorithm named fireworks algorithms (FWA)
was proposed [7], and received increasing attention in recent years due to its
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 273–282, 2018.
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advanced performance for optimization and successful application in dealing
with complex optimization problems [8–11]. FWA shows its potential capacity
for solving clustering optimization in WSNs. However, the published literature
of this application are rare and hard to find.

As a consequence, this paper focuses on clustering in WSNs based on dis-
crete fireworks algorithm. Mathematical formulation of clustering optimization
in WSNs is built using first order radio model. DFWA-C is designed to find opti-
mized cluster-head nodes. To validate the performance of the proposed DFWA-C,
comparison simulations are conducted with exploiting the algorithms of DFWA-
C, Direct [1], LEACH [1] and HEED [12] respectively. Results show that DFWA-
C is effective and obviously outperform the other algorithms in lifetime and
remaining energy of WSNs.

2 Formulation of Clustering in WSNs

WSNs contain hundreds or thousands of sensor nodes and are deployed in broad
area. The amount of data produced by the nodes is transmitted to base stations
and provided to end-users. To complete these work, clustering-based routing
protocols are designed to reduce energy dissipation in WSNs [13]. Aiming to
minimize the energy consumption, optimization in clustering can improve the
performance of routing protocols.

2.1 WSNs Model

In this work, we use the WSNs model proposed in [1,4], which has the following
features.

– The base station is fixed and has unlimited energy.
– All the nodes in the network are homogeneous and energy-constrained.
– Every node has the capacity of data fusion, and the location information of

itself.
– Every node could be the cluster-head or the member-node, which is decided

by the base station and, a node can only be in one cluster.

The set of nodes in WSN is C = {c1, c2, . . . , cN}, where N is the number
of Nodes. The set of cluster-heads is CH = {ch1, ch2, . . . , chK}, where K is
the number of clusters or cluster-heads. Absolutely CH ∈ C, K ≤ N . How to
find the best K and choose CH from C is the clustering optimization problem.
During the lifetime of WSNs, there are many rounds and CH is reselected in
every round.

2.2 Energy Consumption Model

Energy consumption in WSNs is computed based on first order radio model
[1], which assumes the radio dissipates Eelec to run the transmitter or receiver
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circuitry and εamp for the transmit amplifier. Energy consumption of sending l
bits to a node whose distance is d meters is,

ETx(l, d) = l ∗ Eelec + l ∗ εamp ∗ d2 (1)

and energy consumption of receiving l bits is,

ERx(l, d) = l ∗ Eelec (2)

2.3 Objective Function

Reducing network energy consumption in every round will prolong the lifetime
of WSNs. Therefore, minimizing the energy consumption is the principal goal
of optimization. Assume l bits are sent by every node in one round and, there
are K clusters. In one cluster, the cluster-head node receive data from every
member node, fuse the received data and sensed data itself to l bits. Then, the
cluster-head node send them to base station. The total energy consumption in
one cluster is ECLU ,

ECLU = EMEM + ECH

=
Km∑

i=1

(l ∗ Eelec + l ∗ εamp ∗ d2i )

+ (Km ∗ l ∗ Eelec + l ∗ Eelec + l ∗ εamp ∗ d2CHtoBS)

(3)

where EMEM and ECH are the energy consumed by member nodes and cluster-
head node in one round. Km is the number of member nodes in the cluster. di

is the distance between member node i and cluster-head node. dCHtoBS is the
distance between cluster-head node and base station. For the whole network, the
total energy consumption ETOT in one round is sum of ECLU ,

ETOT =
K∑

i=1

Ei
CLU (4)

ETOT varies with K and CH . Let 0–1 array X = (x1, x2, . . . , xN ) be the
uniform representation of K and CH , where,

xi =
{

1 if ci ∈ CH

0 otherwise (5)

To minimize the total energy consumption, the objective function of opti-
mization is,

minf(X) = ETOT (X) (6)

where ETOT (X) is the total energy consumption under the cluster-head selection
array X. When the optimal X is found, the cluster-heads are obtained. Then,
all the nodes are divided in to different clusters based on the shortest distance
from the cluster-heads.
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2.4 Optimal Number of Clusters

Theoretically, there exists the optimal number of clusters, which can be used to
verify the performance of optimization algorithms. Suppose the N sensor nodes
are evenly deployed in the square area with length of LA meters and, the energy
consumption model is based on first order radio model, the optimal number of
clusters [5] is,

Kopt = LA ∗
√

Nεamp/2π(εampd2toBS − Eelec) (7)

where dtoBS is the mean distance between the cluster-head nodes and base
station.

3 Discrete Fireworks Algorithm for Clustering

FWA is a novel swarm intelligence algorithm which is inspired by observing fire-
works explosion. In FWA, two types of explosion (search) processes are employed
to keep the balance between global search capacity and local search capacity, that
make FWA excellent in convergence speed and global solution accuracy. The
solution space of clustering in WSNs is discrete. Therefore, FWA is redesigned
to discrete fireworks algorithm for discrete space.

3.1 Design of DFWA-C

In DFWA-C, location of element (fireworks or sparks) i is set to Xi =
(xi

1, x
i
2, . . . , x

i
N ) as defined above, whose value space is discrete. For each gener-

ation of explosion, M fireworks are set off in M locations. After explosion and
mutation of fireworks, the locations of sparks are obtained. All the locations
are evaluated by Eq. 6, for example, gorgeous degree (value of objective func-
tion) of element i is Yi = f(Xi). If the optimal location is found, the algorithm
stops. Otherwise, M locations are selected from the current sparks and fireworks
for the next generation of explosion. Three operators (explosion, mutation and
selection) are the key parts in DFWA-C.

Explosion Operator. Sparks are produced by the fireworks explosion, which
are viewed as searching process around specific point. Usually, high-quality fire-
work may be close to the optimal location, that it is proper to utilize more sparks
to search the local area around the firework. In the contrast, low-quality firework
may be far from the optimal location. Thus, few sparks should be generated from
the firework and the explosion radius should be larger. The number of sparks
generated by fireworks i is defined as follows,

Si = round

(
Sdef • fmax − f(Xi) + ε

∑M
i=1(fmax − f(Xi)) + ε

)
(8)
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where Sdef is a parameter controlling the total number of sparks. fmax is
the maximum value of objective function among the M fireworks, and ε is
an infinitely small constant to avoid zero-division-error. To avoid overwhelm-
ing effects, the value range of Si is set to be [Smin, Smax], which is a default
parameter.

The Amplitude of explosion for firework i is an integer that denotes the
number of changed dimensions in Xi, and is defined as follows,

Ai = ceil

(
Adef • f(Xi) − fmin + ε

∑M
i=1(f(Xi − fmin) + ε)

)
(9)

where Adef is the maximum amplitude that is set default. fmin is the minimum
value of objective function among the M fireworks.

Let Xi,j = (x1
i,j , x

2
i,j , . . . , x

N
i,j) denote the location of the j spark generated

by fireworks i. The procedure of producing Xi,j is described as follows,

Step1. Generate the integer r from 1 to N randomly.
Step2. Generate the interval length lr from 1 to Ai randomly.
Step3. Let the downward index rd = r, and the upward index ru = r + lr. If
r + lr > N then ru = N .
Step4. The value of Xi,j is set as,

xk
i,j =

{
1 − xk

i if rd ≤ k ≤ ru

xk
i otherwise (10)

Mutation Operator. To keep the diversity of sparks, mutation operator
is designed to generate mutation sparks which are able to escape from the
local location. Firstly, Mg mutation fireworks are selected randomly. Secondly,
mutation dimitions are selected randomly from N dimensions. Then, let X̂i =
(x̂1

i , x̂
2
i , . . . , x̂

N
i ) denote the location of mutation sparks generated by mutation

fireworks i,

x̂k
i =

⎧
⎨

⎩

1 if gk
i > 1 and xk

i ∈ DS
0 if gk

i ≤ 1 and xk
i ∈ DS

xk
i if xk

i /∈ DS
(11)

where DS is the dimension space. gk
i is a gaussian random number generated by

N(1, 1).

Selection Operator. The candidate fireworks set Θ consists of fireworks, explo-
sion sparks and mutation sparks. M fireworks are selected from set Θ for the
next generation explosion. The current element which has the best location eval-
uated by the objective function is kept. And the left M −1 elements are selected
based on their distances to each other. The generous distance of Xi and Xj is
defined as follows,

D(Xi,Xj) =
N∑

k=1

V k
i,j (12)
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where

V k
i,j =

{
1 if xk

i �= xk
j

0 if xk
i = xk

j
(13)

The probability of selecting element i from Θ is defined as

p(Xi) =

∑
j∈Θ D(Xi,Xj)∑

j∈Θ

(∑
k∈Θ D(Xk,Xj)

) (14)

3.2 Framework of DFWA-C

In order to obtain optimal clusters in WSN, N sensor nodes are coded into a 0–1
array which represents whether the node is chosen as cluster-head. Meanwhile,
the array indicates the location of firework in the discrete fireworks algorithm.
In DFWA-C, M fireworks are set off in M locations randomly at beginning.
Then, explosion sparks and mutation sparks are generated and evaluated by the
objective function. M fireworks are selected for the next generation until the
optimization is achieved. Framework of DFWA-C is depicted as Fig. 1.

Fig. 1. Flow chart of DFWA-C
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4 Simulations and Analysis

To investigate the performance of proposed DFWA-C, we conducted simulations
with respect to number of clusters and lifetime of WSNs. The simulated area is
150 m × 150 m. Base station is supposed to be at the center of the area, and
sensor nodes scatter in the area randomly. The parameters of WSNs are set as
follow: l = 200 bit, Eelec = 50 × 10−6 J/bit, εamp = 100 × 10−9 J/(bit × m2),
the initial energy of every sensor node is 10 J. The parameters of DFWA-C are
set as follow: M = 50, Sdef = 50, Adef is set to the same as the dimension of
firework location, Mg = 10. Then, Simulations run in the Matlab R2014a on
Intel(R) Core(TM) i5-3470 @3.2 GHz under Windows 7 environment.

4.1 Number of Clusters

The size of WSNs is set to 100, 200, 300, and 400 respectively. To eliminate
random errors, 30 WSNs are generated at each size and, simulation runs 100
times for each WSN. Number of clusters K is calculated by DFWA-C. The
optimal number of clusters Kopt is calculated by Eq. 7. The mean values are
shown in Table 1. Results show that deviations between K and Kopt always
exist. This is because Kopt is obtained under the ideal conditions that nodes are
evenly distributed. However, all the deviations are less than 10%. It shows that
the proposed algorithm could obtain the cluster number which is close to the
theoretical optimal value.

Table 1. Comparison of cluster number

Size of WSNs dtoBS K Kopt

100 59.14 10.40 10.93

200 57.37 16.86 16.02

300 55.41 21.97 20.44

400 54.70 26.04 23.97

4.2 Lifetime and Energy Consumption of WSNs

To evaluate energy consumption, we conduct network running simulation, and
compare with the algorithms of Direct, LEACH and HEED. The size of WSNs
is 100. To eliminate random errors, 30 WSNs are generated and, simulaition
runs 100 times for each WSN. In order to improve the computational efficiency,
the number of generations in DFWA-C is set to a fixed value of 30. Suppose
the lifetime of WSNs are the time when 50% nodes fail. The run results are
shown in Figs. 2 and 3. In Fig. 2, the lifetime of WSNs based on DFWA-C is 258,
as a comparison, the lifetime of WSNs based on other algorithms is less than
230. In Fig. 3, the energy consumption among the four algorithms have little
difference at beginning. However, the gap grows with time steps. After 200 time
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Fig. 3. Energy consumption

steps, remaining energy of WSNs based on Direct, LEACH and HEED are less
than 20%. Remaining energy of WSNs based on DFWA-C still has 26%. Results
show that proposed DFWA-C could effectively reduce energy consumption and
prolong the lifetime of WSNs.
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5 Conclusion

In this paper, we described DFWA-C, a novel swarm intelligence algorithm that
optimize the number of clusters and find the proper cluster-heads in WSNs. 0–1
array is designed to indicate whether the node is chosen as cluster-head, and
is also the location of firework. Then the objective function for clustering opti-
mization is proposed based on the array. Three operators (explosion operator,
mutation operator, and selection operator) are given to obtain the optimal loca-
tion of firework. At last, simulations are conducted to evaluate the performance
of proposed algorithm. Results show that the DFWA-C outperforms the Direct,
LEACH and HEED algorithms on reducing energy consumption and prolonging
the lifetime of WSNs. In future, we will keep improving the proposed algorithm,
especially on the computational complexity when the size of WSNs increases.
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Abstract. The p-median problem represents a widely applicable prob-
lem in different fields such as operational research and supply chain man-
agement. Numerous versions of the p-median problem are defined in lit-
erature and it has been shown that it belongs to the class of NP-hard
problems. In this paper a recent swarm intelligence algorithm, the bare
bones fireworks algorithm, which is the latest version of the fireworks
algorithm is proposed for solving capacitated p-median problem. The
proposed method is tested on benchmark datasets with different values
for p. Performance of the proposed method was compared to other meth-
ods from literature and it exhibited competitive results with possibility
for further improvements.

Keywords: Capacitated p-median · Optimization · Metaheuristics
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1 Introduction

The p-median problem was firstly introduced to mathematically define prob-
lems that are of the great importance, especially in operational research. It
describes the facility location problem which can be used in telecommunication
and industrial applications, transportation, distribution and many others. The
facility location problem refers to the situations where different objects of inter-
est such as hospitals, emergency ambulances, gas stations, antennas and more
need to be placed in such a way to optimally cover certain area. Besides p-median
problem, facility location problems can be described in different ways. Variety
of the problem definitions exist since it represents rather important theoretical
and practical problem.

The p-median is commonly used for solving facility location problem. It is
defined as a problem of placing the p facilities (medians) so that the overall
distance between n demanding points and the nearest facilities is the minimal.
Besides this basic definition of the p-median problem, several other versions
exist. Uncapacitated p-median problem [1] is the basic version, while the capaci-
tated p-median [2] represents extended version where each facility has the limited
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 283–291, 2018.
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capacity for serving the demand points. Continuous p-median used in [3] con-
siders continuous space for placing the facilities rather then predefined possible
positions.

The p-median problem has been proved to be NP-hard [4], which means
that deterministic methods cannot solve it, at least not within the acceptable
amount of time. Instead of exact, deterministic methods, for NP-hard optimiza-
tion problems different approximative methods have been used. One of most
used group of approximative methods during the last two decades are nature
inspired metaheuristics, especially swarm intelligence algorithms. Swarm intelli-
gence algorithms try to find a solution of the optimization problem by imitating
behavior of different swarms in the nature, e.g. bee food gathering, elephant
herding, ant colony path finding, etc. Very simple agents in term of the oper-
ations that they can perform, when communicate between themselves and use
the collective knowledge, can demonstrate impressive intelligence. Among the
earliest swarm intelligence algorithms are particle swarm optimization (PSO) [5]
and ant colony optimization (ACO) [6]. Due to the fact that the idea of imi-
tating phenomena from the nature achieved impressive results in solving hard
optimization problems, researchers proposed numerous swarm intelligence algo-
rithms with the aim to solve the problems even more efficiently. These algorithms
were widely explored and applied to the problems from various fields. For exam-
ple, firefly algorithm [7] was applied to support vector machine parameter tuning
problem [8], constrained mean-variance portfolio optimization problem [9], wire-
less sensor networks node localization [10], elephant herding optimization algo-
rithm [11,12] was used for image processing [13], unmanned aerial vehicle path
planning [14], brain storm optimization algorithm [15] was improved [16] and
applied to problems such as target covering by drones [17], robot path planning
[18], bat algorithm [19] applied to support vector machine parameters tuning
[20], extreme learning machine optimization [21], and many others.

Since p-median problem is an NP-hard optimization problem, swarm intelli-
gence and other nature inspired algorithms were used for solving it. In [3] genetic
algorithm was combined with particle swarm optimization for solving continuous
p-median problem. Inverse p-median problem where demands and coordinates
of customers should be adjusted according to the predetermined positions of p
facilities, was solved by the firefly algorithm in [22]. Artificial bee colony algo-
rithm improved by randomized local search was proposed for positive/negative
p-median problem in [23].

In this paper, one of the newest versions of the fireworks algorithm, bare
bones fireworks algorithm (BBFWA) was adjusted and used to solve capacitated
p-median problem. Based on the extensive search of the literature it can be
concluded that no version of the fireworks algorithm was used for solving this
problem.

The rest of the paper is structured as follows. In Sect. 2 mathematical model
of the capacitated p-median problem is defined. In Sect. 3 history of the fireworks
algorithm and the proposed bare bones fireworks algorithm are presented. Simu-
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lation results are shown in Sect. 4 and finally, in Sect. 5 conclusion and suggestion
for further research are given.

2 Mathematical Formulation of the p-Median Problem

Mathematical model of the capacitated p-median problem is defined as follows.
Demanding points vi where i = 1, 2, . . . , n are points in the two dimensional
space. They are also potential places for p medians or facilities. Each point
vi has demands of ci where again i = 1, 2, . . . , n. The shortest distance between
points i and j is denoted as di,j and it represents the Euclidean distance between
two points in the plane.

Next, we denoted variable yij that represents if the demanding point vi is
satisfied by the facility j:

yij =

{
1 if demand of point i is satisfied from facility j

0 otherwise
(1)

Capacitated p-median problem is defined by the model given below:

minimize
n∑

i=1

p∑
j=1

dijyij (2)

subject to

n∑
j=1

yij = 1 for i = 1, 2, . . . , n (3)

n∑
i=1

xi = p (4)

yij ≤ xj for i, j = 1, 2, . . . , n (5)
n∑

i=1

ciyij ≤ kj for j = 1, 2, . . . , n (6)

xi ∈ {0, 1} for i = 1, 2, . . . , n (7)
yij ∈ {0, 1} for i = 1, 2, . . . , n, j = 1, 2, . . . , p (8)

Function 2 is the objective function, sum of distances between demand vertex
and corresponding facilities. Equations (3–8) represent constraints. Equation (3)
refers to the constrain that each customer can use only one facility. The Eq. (4)
limits the number of placed facilities to be p. Equation (5) ensures that each
facility can be assigned only to the vertex where is facility. Constraint given by
Eq. (6) keeps the number of demands equal or lower to the facility capacity. The
last constrains defined by Eqs. (7) and (8) represent the variable domain.

In this paper we propose adjusted bare bones fireworks algorithm for solving
this NP-hard optimization problem.
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3 Bare Bones Algorithm for Capacitated p-Median
Problem

Bare bones fireworks algorithm (BBFWA) is one of the newest versions of the
fireworks algorithm (FWA) that was originally proposed in 2010 by Tan and Zhu
[24]. BBFWA was proposed in 2018 by Li and Tan [25]. Fireworks algorithm
was inspired by the explosion of fireworks. When explode, fireworks produce
sparks and in the BBFWA (and all other versions of the FWA) sparks represent
potential solutions, while firework’s position represents the best solution among
the sparks from the previous iteration.

Fireworks algorithm evolved in the last eight years. Drawbacks of the each
version were noticed and eventually removed. The first improved version, named
enhanced fireworks algorithm, was proposed in 2013 [26]. Next year, in 2014,
dynamic search in fireworks [27] and adaptive fireworks were presented [28]. A
year later, in 2015, fireworks with covariance mutation [29] was implemented,
after which a cooperative framework for fireworks algorithm was proposed in
[30]. Guided fireworks algorithm (GFWA) was the previous version presented in
2017 [31]. Bare bones fireworks is the simplest version so far, but very efficient. It
was tested on standard benchmark functions and compared to previous versions.
It obtained the best results for all test functions.

Since 2010, when the original FWA was presented, FWA and its later version
were applied to various real world optimization problems. In [32], it was used for
solving constrained portfolio optimization. Original FWA was used for parameter
tuning of local-concentration model for spam detection in [33]. Enhanced FWA
was applied to wireless sensor networks location problem in [34]. Multilevel image
thresholding problem was solved by FWA in [35]. Guided FWA was proposed for
solving image registration problem in [37] and JPEG quantization table selection
in [38].

As mentioned before, BBFWA is rather simple for implementation, but very
powerful optimization algorithm. Contrarily to the previous version, in the
BBFWA one firework and fixed number of sparks are used. In each iteration
the best solution is saved and in the next iteration, N solutions are generated
around it. Exploration and exploitation are implemented by regulating the size
of the space around the best solution where the new solutions are generated.
If the best solution in the current generation was not improved, window size is
reduced in order to better search the promising area in the next iteration. On
the other hand, if better solution was found, it means that the search space still
is not searched enough, thus the window size is increased. Pseudo code of the
BBFWA is given in Algorithm 1.

In Algorithm 1, Lb and Ub are lower and upper boundaries of the search space,
respectively. Vector x saves the best solution found at that moment, while f(x)
is the objective function. Solutions si, i = 1, 2, . . . , n are uniformly generated
around the best solution, i.e. in the hyper-rectangle bounded by x − A and
x+A, where parameter A determines the size of the hyper-rectangle. If the best
solution was not improved, at the end of one iteration, parameter A is multiplied
by constant Ca > 1, i.e. increased. On the other hand, if the best solution does
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Algorithm 1. Bare bones fireworks algorithm [25]
Sample x ∼ U(Lb, Ub)
Evaluate f(x)
A = Ub − Lb
repeat

for i = 1 to N do
Sample si ∼ U(x − A, x + A)
Apply mapping operator to si
Evaluate f(si)

end for
if min

i=1,2,...,N
(f(si)) < f(x) then

x = argmin(f(si))
A = CaA

else
A = CrA

end if
until maximal iteration number is reached
return x

not change, parameter A is decreased by multiplying it by constant Cr < 1. At
the beginning, A = Ub − Lb.

In this paper we used the BBFWA for solving p-median problem.
Dimension of input vector is equal to 2 ∗ p, the number of facilities that need

to be set multiplied by the dimension of the search space (which is in this paper
2). Search range was set to the minimal and maximal coordinates of the demand
points, i.e. [min(xi),max(xi)] where i = 1, 2.

Since for this problem the best solution can be the same for large number of
consecutive iterations, we limited incrementation of the parameter A so that it
cannot be larger then its initial value, Ub = Lb.

4 Experimental Results

The proposed algorithm was implemented in Matlab version R2016b. All exper-
iments were performed on Intel R© CoreTM i7-3770K CPU at 4 GHz, 8 GB RAM
computer with Windows 10 Professional OS.

Parameters were set based on the several experiments. It was noticed that
the solutions space needs to be widely searched. Parameters determined to be
the best in the original paper where the BBFWA was proposed [25], were not
adequate for the considered problem. Mentioned fact resulted by larger values
for parameters Ca and Cr. In other words, if the better solution is found, size of
the hyper-rectangle around the best solution is increased by factor 1.4 while in
case when no better solution is found, search space around the best solution is
reduced by factor 0.8. In order to compare the results with the method proposed
in [39], we set the population size and the maximal iteration number to N = 100
and maxIter = 50,000, same as in [39].
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Our proposed method was compared with genetic algorithm (GA) for con-
tinuous capacitated p-median problem proposed in [40]. In [40] parallel genetic
algorithm was proposed and tested on 3 real instances sjc3b, sjc4a and sjc4b
from [41]. Test examples sjc4a and sjc4b have 402 demand nodes that need to be
covered by 30 and 40 facilities, respectively. Dataset sjc3b has 300 demand nodes
and 30 facilities. The optimal solutions for this data sets are known. For each
test set, the proposed BBFWA was run 10 times. We reported the results same
way as in [40], confidence interval of percentage difference between the average
and the best solution obtained in 10 runs from the optimal solution. Confidence
level was 95%. Also, standard deviations were reported. Results obtained by the
proposed BBFWA and results from [40] are presented in Table 1.

Table 1. Comparison of our proposed algorithm and the method proposed in [40]

Inst. n p opt GAklas1 BBFWA

Average Best Average Best

sjc3b 300 30 40635.90 0.1692%± 0.0623% 0.0000% 0.1511%± 0.0471% 0.0000%

sjc4a 402 30 61925.51 0.3435%± 0.1377% 0.0329% 0.2384%± 0.1193% 0.0121%

sjc4b 402 40 52458.02 0.2794%± 0.0620% 0.0716% 0.2019%± 0.0494% 0.0665%

It can be seen in Table 1 that our proposed BBFWA outperformed parallel
genetic algorithm in all cases in terms of the average, standard deviation and the
best found solution in 10 runs. For the first test set, sjc3a, both algorithms were
able to find the optimal solution at least once in 10 runs. Our proposed BBFWA
on average was making 0.1511% error, while genetic algorithm was worse with
the error 0.1692%. For the second dataset, our proposed BBFWA was finding
better solution in all runs which resulted with average error 0.2384± 0.1193
compared to the genetic algorithm that obtained average 0.3435± 0.1377. For
this dataset the standard deviation is the largest which means that the rather
different solutions were found in 10 runs.

Additionally, we compared our results with the genetic algorithm proposed
in [42] where five test sets from OR-Library [43] were used. Comparison of the
results is shown in Table 2.

The proposed BBFWA again outperformed the genetic algorithm. Both algo-
rithms found the optimal solution in at least one run for datasets pmed9, pmed12
and pmed13. For instances pmed10 and pmed11, our proposed BBFWA was able
to find optimal solutions while the genetic algorithm was not. For the dataset
pmed10, the proposed BBFWA found on average significantly better solutions
while for the other instances the difference was not so large. In all cases, the
proposed method outperformed the genetic algorithm. Considering these results
and the ones from the previous examples, we can conclude that the BBFWA has
good qualities for solving p-median problem.
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Table 2. Comparison of the proposed BBFWA and GA proposed in [42]

Inst. n p pt Best solution Average solution

GA BBFWA GA BBFWA

pmed9 50 5 715 715 715 715.6 715.0

pmed10 50 5 829 837 829 838.0 830.2

pmed11 100 10 1006 1009 1006 1010.5 1007.2

pmed12 100 10 966 966 966 966.9 966.4

pmed13 100 10 1026 1026 1026 1028.0 1026.0

5 Conclusion

Novel version of the fireworks algorithm, bare bones fireworks algorithm, was
proposed for solving NP-hard optimization p-median problem. In this paper,
capacitated p-median problem was considered. The proposed method was com-
pared to other algorithms from the literature. Optimal solutions were achieved
for all tests which was not the case with genetic algorithm based methods pro-
posed in literature. Further work can include dynamic adjustment of the BBFWA
parameters that can additionally improve convergence speed.
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Abstract. This paper proposes an improved bacterial forging optimization with
differential tumble, perturbation, and cruising mechanisms, abbreviated as
DPCBFO. In DPCBFO, the differential information between the population and
the optimal individual is used to guide the tumble direction of the bacteria. The
strategy of perturbation is employed to enhance the global search ability of the
bacteria. While a new cruising mechanism is proposed in this study to improve
the possibility of searching for the optimal by comparing the current position
with the others obtained in the next chemotaxis steps. In addition, to reduce the
computation complexity, the vectorized parallel evaluation is applied in the
chemotaxis process. The performance of the proposed DPCBFO is evaluated on
eight well-known benchmark functions. And the simulation results illustrate that
the proposed DPCBFO achieves the superior performance on all functions.

Keywords: Bacterial forging optimization � Differential tumble
Cross perturbation � Cruising mechanism

1 Introduction

Inspired by the social behavior in the biological system, swarm intelligent optimization
algorithms are proposed by many scientists, such as particle swarm optimization
algorithm (PSO), ant colony optimization (ACO) and Artificial fish school algorithm
(AFSA). Recently, inspired by the foraging behavior of the E. coli bacteria, bacterial
foraging optimization (BFO) [1] was first proposed as a new swarm intelligent algo-
rithm. Due to the superior efficiency in dealing with real-world optimization problems
(e.g. face recognition problem [2], feature selection problem [3] and vehicle routing
problem [4]), BFO has attracted the attention of researchers from different fields.

However, due to the fixed step size and a lack of information communication
between bacterial individuals, premature convergence and higher computational
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complexity are the main shortcomings in the original BFO. So many improved versions
of BFO were proposed to address these two issues. These improved algorithms are
classified into two categories. Based on the adaptive chemotaxis step, one category is to
choose the local optimal and global optimal in the entire process. According to the
current and best positions of bacteria, a new improved version of BFO [5] adaptively
adjusted chemotaxis step and obtained the superior performance on some benchmark
functions. In [6], combining some strategies (i.e. bacterial chemotaxis method, com-
munication mechanism and adaptive foraging strategy), a new bacterial colony for-
aging (BCF) was proposed to improve the convergence performance. In order to
improve exploration and exploitation abilities, the unit length of the chemotaxis step
was adjusted according to the swarm information and the gravitational search method
in the effective bacterial foraging optimization (EBFO) [7]. The other category focuses
on increasing communication between bacteria by introducing a new method to the
original BFO. Aiming at obtaining lower computational complexity and maintaining
the critical search capability, a general loop strategy was employed to substitute the
nested loop and eliminate the reproduction step in the modified BFO [8]. The multi-
level thresholding approach is introduced in the modified BFO [9] for enhancing the
convergence performance. In addition, a novel modification of BFO [10] with new
designed chemotaxis and conjugation strategies was proposed to address the short-
coming of premature convergence. Though many modified version of BFO has been
developed in recent years, the premature convergence and higher computational
complexity are still the major problems.

In this paper, based on three mechanisms (i.e. differential tumble, cross perturbation
and cruising mechanism), a new modified version of BFO is proposed to enhance the
convergence performance and reduce the computational complexity. Differential
tumble method is developed and embedded in the chemotaxis process to improve the
convergence speed. In order to enhance the population diversity, cross perturbation
mechanism is introduced in the proposed DPCBFO algorithm. In addition, cruising
mechanism is used for bacterial to obtain the optimal foraging. Compared with two
algorithms (genetic algorithm and BFO), the new proposed combination algorithm is
tested on eight benchmark functions.

The rest of organized as follows. Section 2 briefly describes the BFO algorithm. In
Sect. 3, the novel DPCBFO algorithm is shown in detail. Section 4 gives experimental
results of the simulations on benchmark functions. Finally, the conclusion is presented
in Sect. 5.

2 Original BFO Algorithm

BFO [1], a recent stochastic search evolutionary algorithm, is first proposed by Passino,
which has three steps in the process, including chemotaxis, reproduction, and elimi-
nation & dispersal.

Chemotaxis: Bacteria move toward food by swimming or tumbling of flagella. The
bacteria can swim a few steps in a particular direction and then start to tumble, which is
beneficial for find the optimal food.
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Reproduction: Based on evaluating the fitness function as the health standard, the
least healthy half of bacteria die and the other healthier bacteria is reproduced in the
same location. Hence, the population of bacteria is constant.

Elimination & dispersal: Bacteria will undergo dramatic changes as the environ-
ment changes. When the environment is constant, the bacteria will change as the food
decreases.

In addition, BFO also has the characteristics of the cluster. Bacteria can find their
own way of foraging, and receive the signals from others. Meanwhile, bacteria keep a
safe distance between each other to ensure their living space. Therefore, the foraging
behavior of each bacterium in BFO is influenced by two factors: one is its own
behavior and the other is the information transmitted by other bacteria.

3 The Proposed DPCBFO Algorithm

Based on the differential, perturbation, and cruising mechanism, the proposed algo-
rithm is described in details as follows.

3.1 Differential Tumbling Mechanism

In the original BFO algorithm, the movements of bacteria are randomly generated.
Although it is an appropriate simulation of E. coli, it brings out some disadvantages,
e.g. low convergence rate, poor search performance.

Inspired by mutation method of the individual in differential evolution (DE) [11], a
new method of the chemotactic step is proposed based on the optimal position. The
direction of swimming is obtained by subtracting each bacterial position from the
optimal bacterial position. So the bacteria will be distributed around the optimal
position. In this way, it makes the algorithm explore more optimal values near the
current optimal position. The new optimal value is taken as the center of the
next-generation distribution. This strategy will facilitate the convergence rate. The
overall process can be modeled as:

Ui ¼ Ci � K1 � Xbest;G � Xr;G
� �þK2 � Xbest;G � Xi;G

� �� � ð1Þ

where Ci is the chemotactic step size. K indicates a vector, is a random number
between 0 to 1. K1 and K2 are two different random numbers of K. D is the dimension
of the problem. G is the current number of iterations. Xbest;G is the optimal position in
the current generation. r means the random integer in the range of [1, NP] and i means
particle ordinal. NP is the swarm size of bacteria.

3.2 Cross Perturbation Mechanism

In original BFO, tumbling can be seen as a perturbation before the bacteria swim.
However, the degree of original tumbling perturbation is too severe, which will lead to
poor search performance.
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In DPCBFO, after calculating the direction of tumbling, the current population will
be perturbed by the direction (i.e. the position of the bacteria was superimposed by the
cross perturbation formula with the corresponding tumbling direction). Inspired by
crossover operator of DE, a novel equation is proposed as follows.

x ji;G ¼
x ji;G þ/ j

i;G if rand j
i �CR

� �

x ji;G otherwise

(
j ¼ 1; 2; . . .;D ð2Þ

Based on the position vector, i.e. Xi;G ¼ x1i;G; x
2
i;G; . . .; x

D
i;G

n o
, we select partial

vector parameter values from the tumbling direction to being superimposed on the
original value of x in the cross-perturbation formula. CR means the crossover proba-

bility in the range from 0 to 1. Ui;G ¼ /1
i;G;/

2
i;G; . . .;/

D
i;G

n o
means the position vector

of tumbling direction i. rand j
i is a random number between 0 to 1. If rand j

i is smaller
than CR or equal to it, x ji;G will replace by the sum of x ji;G and / j

i;G. Otherwise, x
j
i;G

remains constant. We can control the degree of perturbation by changing the value of
CR. The softness of perturbation is ensured if making tumbling vector parameter / j

i;G

as a perturbation value. So it will not break up the trend of search optimal, and avoid to
get into premature convergence.

3.3 Cruising Mechanism and Chemotactic Algorithm Structure
Improvement

The slow convergence speed is the key problem in BFO algorithm. Low convergence
speed is accounted for the larger numbers of cycles performed in the iterations. In each
iteration, the chemotactic step needs to evaluate multiple positions. Therefore, a novel
mechanism – Cruising method, is proposed to obtain the optimal solution. It allows
bacteria to traverse all position according to the parameters of swimming times and the
direction of swimming. Then bacteria return to the optimal position in the process
(Fig. 1).

The advantage of cruising mechanism is that the bacteria will not stop like the
original BFO when it encounters a bad point. It will continue to travel completely and
get the optimal point of the entire path. The experiment makes bacteria be trapped into

Fig. 1. The diagram of cruising mechanism
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local optima in a low possibility. At the same time, due to the fixed number of swims,
the running speed will be improved by using parallel computing.

Based on the vectorizable parallel computing of cruising mechanism, the algorithm
structure of the chemotactic step is improved. As shown in Fig. 2, the left is the
chemotaxis operation of BFO, and the right is the chemotaxis operation of DPCBFO.

In the original BFO, there are three fitness evaluations within the chemotaxis step
(pre-cruise evaluation, after-cruise evaluation, and swimming evaluation). In cruising
mechanism of DPCBFO, the update point is selected by using greedy way. Therefore,
the above three assessments can be regarded as swimming times and incorporated into
the evaluation of the fitness value of the cruising route. With the swimming parameters
Ns controlling, the procedure calls the function of evaluation only once in the entire
chemotaxis. And, we simplify all kinds of loops and the cluster mechanism in the
chemotactic algorithm, due to the vectorized parallel computing.

Fig. 2. The comparison of BFO chemotaxis structure and DPCBFO chemotaxis structure
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4 Experiment

In order to compare DPCBFO with the original BFO and genetic algorithm (GA), the
performance of DPCBFO is evaluated on eight benchmark functions in this section.

4.1 Benchmark Function and Parameters Setting

To evaluate the performance of DPCBFO, eight well-known benchmark functions [12]
is used in this paper, including Sphere F1, Schwefel F2, Rosenbrock F3, Sum of
different power F4, Rastrigin F5, Sin F6, Ackley F7 and Quartic F8. In order to
enhance the probability of finding the optimal value from the beginning, the asym-
metric initialization method [13] is used in this proposed algorithm. Among these eight
functions, F1–F4 are unimodal functions and F5–F8 are multimodal functions. The
optimal value is 0. All functions have the dimension of 30.

Nre means the number of replication in the elimination & dispersal step. Ted means
the length of elimination & dispersal. Ns is the swimming times of bacteria per round.
The population of all algorithms is 50. The maximum number of iterations is 5000.
Each function runs 30 times. The parameters of GA and BFO all come from the
literature [14]. Detailed parameters of BFO: migration times Ned ¼ 2, chemotaxis times
Nc ¼ 100, swimming times Ns = 4, size of swimming step C = 0.1 and migration
probability Ped ¼ 0:25. To satisfy 5000 iterations, Nre is set to 25. The parameters
setting of DPCBFO is shown in Table 1.

4.2 Experimental Result and Analyses

Table 2 displays the simulation results of the comparative algorithms (i.e. DPCBFO,
BFO, and GA). On each function, the optimal value of the three algorithms is marked
as bold. The convergence curves of the comparative algorithms are shown in Fig. 3. As
shown in Table 2, the proposed algorithm obtains the superiority on both unimodal
function and multimodal functions in terms of convergence speed and convergence
performance.

The proposed algorithm is a variant of BFO, the performance of the new framework
is tested with a similar experimental setting. In the experiment, the optimal value can be

Table 1. Parameters setting

Function Ted Nre Ped CR C Ns

Sphere 5000 1 0.4 0.5 0.5 4
Schwefel 5000 1 0.4 0.5 0.5 4
Rosenbrock 50 2 0.4 0.01 0.5 4
Sum of different power 5000 1 0.4 0.5 0.5 4
Rastrigin 50 2 0.4 0.01 0.5 4
Sin 50 2 0.4 0 0.5 4
Ackley 50 2 0.4 0 0.5 4
Quartic 50 2 0.4 0 0.5 4
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Fig. 3. The iterative curves of the algorithms
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found without being copied or migrated in unimodal function. And in multimodal
functions, frequent copying and migration within a small period are required to
enhance the population diversity and optimal point. At the same time, the convergence
rate will have an obvious improvement in unimodal function with the participation of
CR. Although we set CR to 0 in some multimodal function, other CR values that are set
to only 0.01 have a very large effect.

5 Conclusions

In order to verify the optimization capabilities of the proposed DPCBFO algorithm,
eight well-known benchmark functions are used to test its performance. The results
illustrate that DPCBFO has the best performance and computational performance. And
it is significantly better than the original BFO. In DPCBFO, we use the differential
tumbling direction formula to deal with the problem of low efficiency in the original
formula. The cross-perturbation mechanism reduces the possibility of falling into local
optimum. And the parallel computing based on the cruising mechanism greatly reduces

Table 2. The experimental results of the benchmark functions

Function Result DPCBFO BFO GA

Sphere Mean 4.592E−234 3.988E−01 2.898E−06
SD 0.000E+00 7.165E−03 3.028E−12
Time 0.86 14.13 2.31

Schwefel Mean 4.887E−125 3.171E+00 1.726E+00
SD 3.834E−248 2.932E−01 6.085E−01
Time 0.95 13.58 2.64

Rosenbrock Mean 7.552E−06 6.843E+01 1.633E+02
SD 4.173E−10 8.103E+01 1.947E+04
Time 1.18 17.26 3.12

Sum of different power Mean 4.900e−324 3.954E−04 2.813E−07
SD 0.000E+00 5.049E−08 2.531E−14
Time 1.83 28.85 6.30

Rastrigin Mean 1.758E+00 9.407E+01 9.722E+01
SD 2.027E+00 3.534E+02 1.576E+03
Time 1.10 13.25 2.65

Sin Mean 8.202E−32 3.233E−01 1.310E+02
SD 4.761E−62 5.189E−03 3.525E+03
Time 1.37 15.76 3.54

Ackley Mean 1.435E−13 1.184E+00 4.109E+00
SD 3.748E−26 4.688E−02 7.549E−01
Time 1.18 13.78 2.92

Quartic Mean 2.293E−209 2.261E−01 1.627E−15
SD 0.000E+00 3.653E−03 3.100E−29
Time 1.93 14.45 3.12
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the running time of the algorithm. Different functions are designed different parameter
styles, so the establishment of adaptive parameter control mechanism is the future
research direction.
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Abstract. Path planning is a very important problem in robotics, espe-
cially in the development of Automatic Guided Vehicles (AGVs). These
problems are usually formulated as search problems, so many search
algorithms with a high level of intelligence are evaluated to solve them.
We propose a navigation algorithm based on bacterial swarming from
a simplified model of bacterium that promises simple designs both at
the system level and at the agent level. The most important feature of
the algorithm is the inclusion of bacterial Quorum Sensing (QS), which
reduces the convergence time, which is the major disadvantage of the
scheme. The results in both simulation and real prototypes show not only
stability but higher performance in convergence speed, showing that the
strategy is feasible and valid for decentralized autonomous navigation.

Keywords: Artificial bacterium · Autonomous · Path planning
Quorum Sensing

1 Introduction

One of the objectives of autonomous robotics is the development of AGVs [8].
These vehicles allow the autonomous transport of cargo along more or less pre-
defined routes between a point of origin and a target point. It is desirable in
these tasks that the vehicle be autonomous, find its destination regardless of
its current position, and solve problems caused by obstacles on the path. In
addition, depending on the environment and type of cargo, it is ideal to have
swarms of these vehicles. This type of activity is of great importance in indus-
trial automation schemes, since it allows the design of intelligent warehouses,
the implementation of flexible manufacturing systems, and considerably reduce
production times and costs [2,3].

Path planning is one of the key problems to be solved in the operation of
these autonomous vehicles [6,10]. This problem focuses specifically on finding a
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safe route from the current position of the robot vehicle to the final target posi-
tion, intelligently dodging obstacles in the environment, and according to some
motion policy that contemplates performance conditions and safe movement.
Path planning problems can be divided into two categories according to the
characteristics of the environment: static environments (do not change during
robot navigation) and dynamic environments (change during navigation task).

The majority of AGV’s researches contemplate static and generally observ-
able environments, which allows the mapping of the environment and the design
of the route in an off-line way, to then instruct the movement to the robots [5].
However, in real industrial environments the environments are usually dynamic,
with continuous movements of people and equipment. There are different docu-
mented cases in which biological systems efficiently solve this type of problems,
one of these schemes is observed in the interaction between bacteria [9,11].

Self-assembly processes are responsible for the generation of order in nature
[4]. They involve components at different scales, such as molecules, cells, organ-
isms, communities, ecosystems and weather systems. These interactions between
elements of relatively simple structure can be analyzed, modeled and replicated
in the design of artificial systems. One of these systems is the bacterial com-
munities. As biological organisms bacteria have a very simple structure, their
behavior can be described from local interactions between organisms and with
the environment, and as a system they have proven to be very successful in very
adverse conditions [1].

In the biological model, the cell-cell communication is performed through the
exchange of chemical molecules called auto inducers. This mechanism, called
Quorum Sensing (QS), allows bacteria to monitor their environment for the
presence of other bacteria, and thus, to respond to fluctuations in the number
and/or species present. That means, coordinate collective behavior in bacteria
under environment conditions [7].

During operation of this mechanism, the concentration of the signal molecule
reflects the number of bacterial cells in a particular area. The detection of a
threshold concentration, a molecular signal, indicates that the population has
reached the quorum, i.e., is ready to perform a specific collective behavior. This
means that QS is a mechanism used by bacteria to activate phenotypic changes
in the population, i.e., to coordinate gene-expression.

This research proposes a different design scheme inspired by this mecha-
nism of gene expression control, mechanism which is dependent on cell density,
and that allows to coordinate the navigation of a swarm of robots by means of
indications in the environment (landmarks), and local communication between
robots. The tasks to be carried out by robots are modeled as behaviours that are
expressed by the organism according to population density and a control policy.
That is, robots contain code equivalent to gene expression, which is responsible
for social behaviors of independent cells using extracellular signals.

The paper is organized as follows. In Sect. 2 presents a description of the
problem. Section 3 describes the proposed strategy and a general design outline
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for basic navigation tasks. Section 4 introduces some results obtained with the
proposed strategy. Finally, conclusion and discussion are presented in Sect. 5.

2 Problem Statement

The multi-agent model adopted for artificial systems design is composed of a set
of artificial bacteria or agents. This set of agents, and their interactions, reflect
the dynamics that will solve the problems. All agents are identical in design.
Nevertheless, to solve tasks, each of them undergoes certain behavior inside the
system along the time.

A bacterium is a pair

V = (f, p) (1)

where f is a nonnegative integer (f ∈ Z
+) that indicates the amount of neigh-

boring bacteria in contact, and p is a point in q-dimensional space (p ∈ R
q).

The population density is evaluated using the distance between bacteria. Let:

dij = d (Vi, Vj) (2)

as the distance between bacteria Vi and Vj , which is calculated by any appro-
priate norm. A bacterial population is defined as a nonempty set of bacteria.

W0 = {V1, V2, V3, · · · , Vm} (3)

with non-zero distance among bacteria:

dij �= 0, ∀i, j , i �= j (4)

A group of bacteria is characterized by the parameter T , the quorum thresh-
old, it is the parameter defining whether or not it has reached the quorum.
The principle of the algorithm based on QS is the grouping of agents. Agents
are grouped into different areas of the environment according to local readings
and their genome that follows some search criteria. Since the proposed model
considers only local interactions, and that the goal of the design focuses on the
coordination of the movement of the agents, the QS mechanism should facili-
tate the movement of agents in the environment towards areas with sufficient
population, reflecting the decisions of many agents.

The system is composed of the n agents (n artificial bacteria) as a continuous
system, whose dynamics can be described by differential equations. The agents
in this system, all identical in design, experience at any instant a behavior l of
a set la of possible behaviors of the agents. Furthermore, each agent is always
performing a behavior at any given time. The variables in these differential
equations indicate the size of the bacterial population that belongs to each of
these behaviors.

In particular, considering the circumstances under which bacteria can be
grouped, and that the intensity of this grouping is who allows to find a solution,
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Fig. 1. System and agents with three different behaviors. (a) System composed of a
group of agents (bacteria) in a three-stage process (a = 3), (b) system agents running
behavior l1, (c) system agents running behavior l2, and (d) system agents running
behavior l3.

we propose a general three-stage model (a = 3). The additional intermediate
stage should facilitate the population changes (Fig. 1).

Groups of agents at a given time experiencing the same behavior (any of the
a behaviors). Therefore, the system can be analyzed as consisting of groups of
agents characterized by a common behavior of a set of behaviors la.

The model for this system is hybrid, the different agent behaviors are trig-
gered by certain events (event-based). The set of agents, each with a continuous
dynamic Xa, switches between different behaviors during the development of
the task. The group of agents simultaneously experiencing the same behavior,
it also has a continuous collective behavior, so the system also has a continuous
dynamic Xp. When changing behavior one or more system agents (with dis-
crete control mode determined by La), changes the system as well (with discrete
control mode determined by Lp).

This means that the behavior space of the system is divided into a set Lp of
la regions. The state of the system Hp is therefore defined by the values of the
continuous variables of the system Xp and the discrete control mode determined
by Lp (Fig. 2).

Fig. 2. System and its fractions characterized by their behavior.
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Each of these population fractions is characterized by a set of differential
equations with state variables (vectors) denoted by:

xi � i = 1, 2, 3, · · · , b (5)

A set of dimension b (the number of grouping areas defined by the agents in
the system) that allows to describe the dynamics of the a different behaviors.
The hybrid system then can be described as:

Hp = {Xp, Lp}
Xp ⊂ R

b

la ⊂ Lp

(6)

The algorithm does not intend to explicitly define the position of the robots.
On the contrary, it looks to abstract the information from the environment to
reduce the complexity in the design of the path. These features ensure navigation
in environments with obstacles, even when they are in motion. It also eliminates
the problem of impossible movements for the robot, since the dynamics of the
robot is not part of the model. This allows the normal differences between robots,
and even the use of radically different robots. Also, the problem of controller
design is independent of the number of robots, which promises scalability to
large groups and system functionality against the failure of a few of them.

3 Methodology

The research proposes the system as a three-stage process of individual behav-
iors. These three basic behaviors are: (1) Reproduction, (2) Exploration, and (3)
Virulence.

The first behavior, Reproduction, allows to activate the robot in the envi-
ronment. The last behavior, Virulence, must be the robot’s final behavior when
it finds the target area. The second behavior, Exploration, should help to find
potential grouping areas. The principle of the algorithm based on QS is the
grouping of agents. Agents are grouped into different areas of the environment
according to local readings and their genome (internal code) that follows some
search criteria. The areas with the highest number of agents must show viru-
lence and will correspond navigation task solution. These population sizes are
then the most important variables in the model.

The population size of each of these fractions is characterized by a continuous
variable in the following way:

– R Agents whose behavior is reproduction.
– Xi Agents whose behavior is exploration in the area i of a total of b areas

in the environment.
– Zi Agents whose behavior is virulence in the area i of a total of b areas in

the environment.
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When agents begin to explore and activate their virulence, they begin to
group in different areas of the environment (a total of b areas). This increases
the number of system variables, where i indicates the grouping area of the agents.
When the agents are reproducing there is no grouping.

The reproduction is the first behavior for all bacteria. After an artificial agent
is enabled on the system (R), it begins to take local information but without
activating its virulence (Xi), to finally activate its virulence when the quorum
is fulfilled (Zi). The activation or virulence of agents that are exploring the
environment starts when Zi = T , the quorum threshold. Both explorers and
virulent can switch to new areas of the environment if the local information
indicates that they are in areas of higher performance (according to the task).
This is the most important part of the process, because it gives the opportunity
to each agent individually to find the best solution.

This parallel navigation structure allows that the explorers consider different
areas of the environment before gathering around some of them. Thus, when a
quorum is reached, the agents begin to become virulent according to the best
option for each of them. The flow chart of Fig. 3 shows the rules by which agents
interact with each other and with the environment to meet the goal.

Fig. 3. Flowchart for the proposed dynamic of bacterial QS.
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4 Results

The strategy was evaluated in different simulations and real platforms. In a
first simulated case we designed a simple navigation task. Let us think in an
environment with four high performance areas (for example, meeting areas with
some interesting variable: temperature, noise, light, humidity, ...) denoted by
the points p1, p2, p3 and p4. Among these points, we will assume that p1, p2
and p4 have a similar performance (local maxima, the variable is higher than
the average values of the environment, but not the maximum), while point p3
has a superior performance (global maximum, the variable has the maximum
value in the environment). Under these conditions, we expect that the agents
are distributed in the environment and navigate initially grouped around these
four points. But then, they must migrate to the point of higher performance p3.

We assume for simplicity that for the initial selection of the four areas do
not exist favoritism criteria, i.e.:

μ1 = μ2 = μ3 = μ4 = μ
λ1 = λ2 = λ3 = λ4 = λ

(7)

The migration process is based solely on the performance of the areas
detected by the agents (ρ and k calculation) and the QS. Accordingly, the system
of equations can be written as ecu. (8).

Ṙ = −4μR

Ẋ1 = μR + λZ1Θ (R)Θ (T − Z1) − ρ12X1 + ρ21X2 − k1X1

Ẋ2 = μR + λZ2Θ (R)Θ (T − Z2) − ρ23X2 + ρ32X3 + ρ12X1 − ρ21X2 − k2X2

Ẋ3 = μR + λZ3Θ (R)Θ (T − Z3) − ρ34X3 + ρ43X4 + ρ23X2 − ρ32X3 − k3X3

Ẋ4 = μR + λZ4Θ (R)Θ (T − Z4) + ρ34X3 − ρ43X4 − k4X4

Ż1 = k1X1 − ρ12Z1 + ρ21Z2 − λZ1θ (R)Θ (T − Z1)
Ż2 = k2X2 − ρ23Z2 + ρ32Z3 + ρ12Z1 − ρ21Z2 − λZ2θ (R)Θ (T − Z2)
Ż3 = k3X3 − ρ34Z3 + ρ43Z4 + ρ23Z2 − ρ32Z3 − λZ3Θ (R) θ (T − Z3)

Ż4 = k4X4 + ρ34Z3 − ρ43Z4 − λZ4Θ (R)Θ (T − Z4)

(8)

Each agent must determine the value of the coefficients from local interactions
between agents and with the environment. For this test will be assumed the
following values:

μ = 0.01 ρ34 = 0.001
λ = 0.03 ρ43 = 0.01

ρ12 = 0.001 k1 = 0.01
ρ21 = 0.001 k2 = 0.01
ρ23 = 0.01 k3 = 0.02
ρ32 = 0.001 k4 = 0.01

(9)

These values agree with the characteristics described for this example (higher
value for ρ23, ρ43 and k3). Figures 4, 5 and 6 show the results. We simulate the
system with an initial population of 300 agents in reproduction and a quorum
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threshold of T = 10. Figure 4 shows how this population is rapidly reduced by
activating the other two behaviors (almost 10% over the first 50 min). In Fig. 5
is shown as explorers agents increase in the four areas. While growth is similar
in all four cases, we can appreciate more agents in area 3 (blue curve). Finally,
in Fig. 6 is shown as increasing the virulent agents in the four regions. Initially,
the agents increase in all four cases. However, in areas 1, 2 and 4 the number
of agents decreases after about 200 to 300 min, while in area 3 (blue curve) the
number of agents always increases. These curves show the migration of agents
to the area 3.
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Fig. 4. Macro model simulation for a simple grouping task (T = 10) - Reproduction.
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Fig. 5. Macro model simulation for a simple grouping task (T = 10) - Exploration.
(Color figure online)

With a quorum threshold of T = 10 the four areas achieve to activate the
QS at some point (area three at 25 min, area one at 43 min, area two at 68 min
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Fig. 6. Macro model simulation for a simple grouping task (T = 10) - Virulence. (Color
figure online)

and area four at 73 min). Upon reaching a population of 10 agents, in four cases
there was an increase in the rate of population growth. With a quorum threshold
of T = 60, only area three activates the QS at 137 min. In the latter case, the
population of virulent agents in two and four areas never exceeds 10 agents, and
in the area one reaches up to 18 agents.

In experimental tests we evaluate the behaviors on a 45 cm × 61 cm robot
equipped with a set of nine infrared sensors (each with a range of 0.2 to 0.8 m).
From the signals of the infra-red sensors the robot determines the proximity to
other robots or obstacles in the environment. Once this information is identified,
the robot establishes its behavior, following the navigation policies of the model.

5 Conclusions

In this paper we propose a navigation scheme for robot swarms that mimics the
behavior of bacterial QS. The navigation scheme is supported in robot grouping,
which can be oriented to specific navigation tasks through landmarks in the envi-
ronment that the robot can identify locally. Grouping, and therefore navigation
is accelerated according to the number of agents in an area. In the cases ana-
lyzed, it is clear how the size of the quorum threshold affects QS. The variation
in the value of T directly affects the characteristics of the population growth in
each of the areas. Small values of T allow virulent agents to reach the QS and
increase their bacterial population in local minima, but they do not exceed the
local maximum. In this case, the grouping is also faster. With large values of T ,
the QS tends to be expressed only in the global maximum, but the process takes
a little longer. In both cases, the QS helps to find the global maximum (more
virulent bacteria gather at the area of higher performance).
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Abstract. The increasing scale and complex of software makes it difficult to
ensure the correctness and consistency of the software, therefore, formal methods
emerge and are gradually recognized by industry. Event-B and B method are two
formal system languages based on set theory and predicate logic. By comparing
the advantages and disadvantages of the Event-B and B method, combining with
the case and rewriting requirements from the aspects of environment, function
and properties, we use the Event-B to establish the abstract model of immune
system and refine it step by step according to the refinement strategy until val-
idating the model. The immune system is a typical large and high-complexity
model involving many cytokines and immune responses. Taking immune system
model as an example, this paper discusses how to apply the Event-B mothed to
this systems from the perspective of the above functions.

Keywords: Event-B � B method � Immune system � Formal modeling

1 Introduction

Formal method [1] has strict mathematical definition, rigorous reasoning and
increasingly sophisticated tools, gradually recognized by the industry circles, especially
in high-security and real time control system. Modeling and verifying the system by the
method is an effective way to eliminate the potential danger, and is the prerequisite for
the correct design and development of the system. For example, the Paris metro [2] is
modeled using the B method, and there are many cases [3, 4] in China that explicitly
indicate the need to use formal method when passing industry certification. The formal
methods mentioned are Z method, B method and Event-B. The B method and the
Event-B are the most widely used, while the Event-B is the simplification of the B
method and draws the advantages of other formal methods.

2 Comparison of Event-B and B Method

2.1 Definition and Advantages of B Method

B method [5], as a formal method, can provide an unambiguous, consistent and
accurate description of the system, which makes the system more reliable and accurate.
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The B method is analyzed by mathematical method, and avoids the inconsistency and
completeness in the requirements design process. It also makes the requirements
specification, design and abstract model in the system development process under a
unified mathematical framework. B machine includes variables, invariant and opera-
tion, which can describe the system from two aspects: static behavior and dynamic
behavior [6].

2.2 Event-B Method

Event-B [7] is formal method of system-level modeling and analysis. Key features of it
are the use of set theory as a modelling notation, the use of refinement to represent
system at different abstraction levels, and the use of mathematical proof to verify
consistency between refinement levels [8].

First of all, the Event-B model is composed of a state. The state is represented by
some constants and variables, the constants are connected by some axioms, variables
are connected by some invariants, and axioms and invariants are expressed by the set
theory expression; Secondly, the Event-B model is composed of many events, an Event
is composed of Guards and Actions, Guards represent the enabling condition of the
event, Actions represent the way in which the state is modified by the event, and
Guards and Actions are expressed in the set theory.

Event-B model consists of machine and context. Machine contains the dynamic
structure of the system model which includes variables, invariants and events, context
contains the static structure of the system model which contains constants and axioms.
These is a Sees relationship between them. There is an extension relationship between
contexts, and the extending context can quote the parameters in the extended context,
and this is also true in the machines [9]. Also, the machine can quote the parameters in
the context it sees (see Fig. 1).

Here are some of the advantages of the Event-B method:

• Event-B separates the Machine from the Context, reduces complexity, facilitates
management, and helps to correctly understand the concepts of abstraction and
refinement, which is the correct way to construct software.

• The Event-B can be started from the state diagram. In the Machine, a State machine
[10] is represented by a state diagram, and the relationship between two states is a
transfer representing Event. These two states respectively represents the precondi-
tion and post-conditions of the Event. The current condition starts when the Guards
are satisfied, until the post-conditions are satisfied. The Event is modified by
Actions.

Fig. 1. The model component of Event-B.
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• In the Event-B translation process, the transition rules are mature, which can be
implemented only with a state diagram, and that Event-B is generally more suitable
for the real-time control system.

• Event-B model is easier to refine, and it supports the formalized model of different
refinement levels, so that each abstract machine has its appropriate scale.

• Event-B is proved more convenient. The state is defined by a variable, and it
guarantees that the invariant is true regardless of the value of the variable. Most of
the theorem proving can be done automatically by relevant tools, reducing the
difficulty of proving.

2.3 The Comparison of Two Methods

From what has been discussed above, we draw the following conclusions (see Table 1).

From the above introduction and comparison of the two methods we can see that
Event-B method has more advantages compared with the method B, and with the
strong support of commercial tools, it has been widely used in industry.

3 Immune System Based on Event-B

The development method based on Event-B starts from requirements [12]. The
refinement strategy is built on the basis of describing the requirements specification and
extracting the corresponding abstract functions, properties and context requirements.

Table 1. Comparison of Event-B and B method.

B method Event-B

Basics Set theory, first order logic [5] Set theory, predicate logic [7],
increase context and event drivers
depending on the environment
requirements

Modeling The static property and dynamic
behavior are described by variable,
invariant, operation, etc.

The static property and dynamic
behavior are described separately and
can be started by state [9]

Refinement Using a gradual approach to enrich
the model, the most elaborate model
will be automatically translated into
program

Support for different elaboration
levels, elaborate model layer by
layer, also apply to large, complex
systems with fragile environments.
[11]

Proof Most of the corresponding
certification obligations are
automatically generated according to
the model statute

Most of the statues can be
automatically proved, the method can
support the automatic generation of
proof obligation, and provide the
automatic proof and manual proof
statistics
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Then we make a formal modeling and validate the model. If the model is correct, the
state and event of the abstract machine can be further refined and supplemented until
the model meets all requirements, and finally the verification result of the complete
model is obtained (see Fig. 2).

This section takes the immune system model [13] as an example to illustrate the use
of the Event-B method in the development of real-time control system. The system uses
the Rodin tool platform [14, 15] which is an open toolset. Rodin is developed based on
Eclipse, and the plug-in mechanism of Eclipse enables it to continuously extend
functionality, among which UML-B [16] is one of Rodin’s plug-ins. This plug-in is a
graphical formalized modeling notation, it provides an additional complement to the
Event-B model in the form of classes and state machines, UML-B tool generates the
Event-B model corresponding to the UML-B development, and then we using the
Rodin tool to perform and prove the obligations associated with the Event-B model.

3.1 Requirements Specification

Immune cells play a role in removing foreign bodies when they invade the body [17,
18]. The immune process is mediated by T cells. T cells begin to increase and dif-
ferentiate after being stimulated by antigens, and turn into effector T cells. When the
same antigen enters the body again, the effector T cells have direct killing effect to the
antigen. As we can see from the above requirements description, the main participants
in this system have antibodies, antigens and T cells.

There are six cell use-cases in the immune system, which are instruction, growth,
regrowth, proliferate, collide and kill. The use-cases before the collision are the first
four, and all use cases are included after the collision.

3.2 Establish the Initial Model

First, the initial model of the immune system is established through the above six use
cases, and an initial model of the immune system that do not collide is established at
this level of abstraction. The requirements description is shown below (see Table 2).

On the basis of this requirement description, we define the Context and Machine.

The Definition of Context. We create a static part of the immune system’s initial model
called Context_CELL, in which we define the type cell to describe the cell class, and all
other cells inherit the cell class. We define constant nonageMaxHp to represent the
maximum life value in the nonage period, constant matureMaxHp to represent the
maximum life value in the mature period, constant initialHp to represent the initial health
value, constant grow to represent growth value, constant regrow to represent regrowth
value, constant growTime and regrowTime to represent the point at which growth values
increase, constant splitCellNum to represent an increase in the number of cells.

Fig. 2. The overall architecture of Event-B development method.
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The Definition of Machine. We create a dynamic part of the immune system’s initial
model called Machine_Cell, and reference Context_Cell. The definition variable HP
represents the cell’s life value, cellNum represents the number of cells, and time
represents the time of cell movement.

The state Machine function of UML-B is used in Machine. State machines may be
attached to classes, to states of another statemachine or simply at the Machine level.
The transitions of a state machine represent events with the additional behavior asso-
ciated with the change of state defined by the transition. That is, the event can only
occur when the instance is in the source state and, when it fires, the instance changes to
the target state.

The four use-cases that are designed when the requirements are not refined are
expressed in this state machine. The state diagram is shown below (see Fig. 3).

Table 2. Requirements description for the initial model.

Model CELL Requirements description

Req1.1 Antigen cells enter the immune system
Req1.2 Some cells enter the nonage stage and begin to grow
Req1.3 The cells reach mature stage and continue to grow to the split stage
Req1.4 The cell divides during the period of split, and the new divided cells enter the

immature stage, and then turn to Req1.2

Fig. 3. State diagram of initial modeling
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Each transformation in the state machine represents an event, which is modified by
the Guards and Actions. The description of events and transformations is as follows:

1. The cells enter the immune system and begin to transition from the initial state to
the nonage state, we set the initial value for cells.

Instruction = InitialState1 —> nonage
Action1 hp(self) initialHp

2. The cells are transformed from nonage state into mature state. The life value is
between zero and the maximum life value of the nonage stage. Every period of time
the value of life increases by a certain amount. The Guards for growth restrain
Req1.2.

growth = nonage —> mature
Guard1 cellState(self) = nonage
Guard2 hp(self) > 0
Guard3 hp(self) < nonageMaxHp
Guard4 time(self) mod growTime = 0
Action1 hp(self) hp(self) + grow

3. The cells are transformed from mature state into split state. The life value is between
the maximum life value of the nonage period and the maximum life value of the
mature stage. Every period of time the value of life increases by a certain amount.
The Guards for growth restrain Req1.3.

regrow = mature —> split
Guard1 cellState(self) = mature
Guard2 hp(self) < matureMaxHp
Guard3 time(self) mod regrowTime = 0
Action1 hp(self) hp(self) + regrow

4. The cells are transformed from split state into nonage state. When the cell’s life
value is greater than or equal to the maximum life value of the mature stage, it
begins to divide, and the cells produced by the division are the nonage stage cells,
and the cell’s life value is restored to the initial value. The Guards for proliferate
restrain Req1.4, which ensures that the division is done in the mature state.

proliferate = split —> nonage
Guard1 cellState(self) = split
Guard2 hp(self) matureMaxHp
Action1 cellNum(self) cellNum(self) + splitCellNum
Action2 hp(self) initialHp
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3.3 Refinement of the Model

This section refines the initial model, adds the collision module on the basis of CELL,
and introduces the loss of life value and recovery of life value. The requirements
description of the refinement is described below (see Table 3).

First, we create Context_CELLR1 to inherit Context_CELL. Then, we add constant
otherAttack to indicate the attack value of the other cell in the collision, thisDef to
indicate the defensive value of the cell itself during a collision, selfResume to indicate
the cell’s own recovery value, disMin to indicate the minimum distance between two
cells, and lifecycle to indicate the loss value in the cell’s lifecycle transformation.

In the refinement of the event, Machine_CELLR1 is created to refine Machine_-
CELL, where Machine_CELLR1 can quote Context_CELLR1. In Machine_CELLR1,
the variable dis is defined to describe the distance between the cells, and when the
distance is less than or equal to the minimum distance, it represents a collision between
the cells. Continuing to use HP, cellNum, and time in Machine_CELL.

In the refinement of the state machine, we add collision and kill events. The state
diagram is shown below (see Fig. 4).

Table 3. Refinement of initial model.

Model CELLR1 Requirements description

Req2.1 Antigen cells enter the immune system
Req2.2 Some cells enter the nonage stage and begin to grow, the value of life

increases gradually over time, and the cells do not collide temporarily
Req2.3 The cells reach mature stage, the value of life increases gradually over

time; the cell starts to collide, and the life value is lost when the collision
occurs; if the cell life value is less than or equal to zero, the cell dies

Req2.4 The cell divides during the period of split, and the new divided cells enter
the immature stage, and then turn to Req2.2

Fig. 4. Refinement of the state diagram for the initial modeling
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The added events and transitions are described as follows:

1. The cells are in mature state, when the distance between the two cells is less than the
minimum distance, the cells collide, and the current value of cells change. The
Guards for collide restrain Req2.3, and it ensures that the collision is carried out in
mature state and that the distance between the cells should be minimized.

Collide = mature—>mature
Guard1 cellState(self) = mature
Guard2 dis(self) disMin
Action1 hp(self) hp(self) − otherAttack + thisDef – 
lifecycle

2. The state of the cell is transformed from mature to death, when the cell life value is
less than or equal to zero, the cell dies and clears the cell. The Guards for kill
restrain Req2.4.

kill = mature—>FinalState1
Guard1 cellState(self) = mature
Guard2 hp(self)  0 

We can see from the above that, the state diagram maps each instance to its state. In
this paper, the translation to Event-B is described using the disjoint sets representation.
The generated Event-B machine for CELLR1 is show in the Rodin screenshot of
Fig. 5. Each Event-B statement is preceded by it label which describes it purpose.

Fig. 5. Generated Event-B specification of CELLR1

324 S. Zou et al.



3.4 Proof of the Model

Through the refinement, the immune system model has been established, the following
is the use of strict mathematical justification to ensure the correctness of the model,
only when all the proof obligations of the model are correct can the correctness of
model be expressed [19]. The Rodin platform provides automatic verification tools for
model verification and simplifies the tedious process of certification. All the models for
the immune system were constructed using the UML-B tool and corresponding
Event-B machines were generated. All the proof obligations (POs) for the two
machines were generated and proved using the Rodin tool provers [20]. The total
number of proof obligations (POs) is 46 in which all of them are proved automatically.
The results are shown in the figure below (see Fig. 6).

4 Conclusion

In the above article, we briefly introduced the Event-B, B methods and their advantages
and disadvantages, also analyzed and compared them from several aspects and sum-
marized them. From the summary, it can be seen that the Event-B is more advanta-
geous than the B method. The case of the immune system proves that the formalized
method based on the Event-B is reliable and effective, and this technique and method
can improve the quality of the early model. We use the refinement to represent systems
at different abstraction levels and the mathematical proof to verify consistency between
refinement levels. In the specific usage scenario, Event-B technology is used to analyze
and model, so as to facilitate the communication, modification and confirmation of the
final model.
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Abstract. This paper describes a large-scale data clustering algorithm which is
a combination of Balanced Iterative Reducing and Clustering using Hierarchies
Algorithm (BIRCH) and Artificial Immune Network Clustering Algorithm
(aiNet). Compared with traditional clustering algorithms, aiNet can better adapt
to non-convex datasets and does not require a given number of clusters. But it is
not suitable for handling large-scale datasets for it needs a long time to evolve.
Besides, the aiNet model is very sensitive to noise, which greatly restricts its
application. Contrary to aiNet, BIRCH can better process large-scale datasets
but cannot deal with non-convex datasets like traditional clustering algorithms,
and requires the cluster number. By combining these two methods, a new
large-scale data clustering algorithm is obtained which inherits the advantages
and overcomes the disadvantages of BIRCH and aiNet simultaneously.

Keywords: Large-scale � Clustering � Immune network � BIRCH
AiNet

1 Introduction

As an unsupervised data analysis technique, cluster analysis has been applied in Data
Mining, Pattern Recognition, Image Segmentation and so on, whose goal is to deter-
mine the intrinsic grouping in a set of unlabeled data with no or poor prior knowledge.
K-means [1] and Fuzzy C-means (FCM) [2, 3] are the most classic ones. Besides,
Genetic Algorithm (GA) [4], Particle Swarm Optimization (PSO) [5], Multi-Objective
Algorithm [6], hierarchical methods [7] and density-based methods [8] are also applied
in cluster analysis.

Traditional clustering algorithms cannot well handle non-convex datasets because
clusters are represented by cluster centers. So kernel method [9], Spectral method
(SC) [10] and Principal Component Analysis (PCA) [11] are introduced to improve the
performance but still do not solve the problem fundamentally. However, the Artificial
Immune Network Clustering Algorithm [12, 13] can discover clusters of arbitrary
shape and represent them via a number of network nodes without providing the cluster
number. One of the most famous Artificial Immune Network models, aiNet [12], takes
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data points as antigens, simulates the process of antibody cloning and selection in
biological immune system to build an antibody network.

With the data size increasing exponentially, it is difficult for traditional algorithms
to process this kind of large-scale data. Balanced Iterative Reducing and Clustering
using Hierarchies (BIRCH) [14] and Clustering Using Representatives (CURE) [15]
are just designed to deal with the clustering problem of large database.

Although aiNet can handle non-convex datasets and does not require the cluster
number, it needs a long time to converge when handling large-scale datasets. In order
to produce the advantages of aiNet to cluster large-scale data, a two-step clustering
method combining the advantages and overcoming their shortcomings of BIRCH and
aiNet is proposed in this paper. First, a rough partition of the large-scale dataset will be
obtained by BIRCH. It divides the original dataset into small uniform pieces. Then, the
result will be gotten by clustering those pieces by aiNet.

The rest of the paper is organized as follows. Section 2 introduces the aiNet
clustering algorithm, BIRCH algorithm and some related work. Section 3 describes the
algorithm, BIRCH_aiNet we proposed in detail. Comparison experiments with BIRCH
[14], Inverse Weighted K-means Online Algorithm V2 (IWKO2) [18] and Online FCM
(OFCM) [19] are shown in Sect. 4 and conclusions in Sect. 5.

2 Related Work and AiNet Clustering Algorithm

In this section, we firstly present an overview of basic concepts and mechanisms of the
cluster analysis, then introduce aiNet and BIRCH algorithm and finally briefly describe
the advantages and disadvantages of them.

2.1 Clustering Analysis

Given a X ¼ fx1; x2; . . .; xng; xi 2 <d; i ¼ f1; 2; . . .;Ng, X is the dataset having N
patterns x1; x2; . . .; xN , and d is the dimension. Cluster analysis is to partition this
dataset into k disjoint clusters C ¼ C1;C2; . . .;Ckf g. And we expect patterns from the
same cluster are as similar as possible and those from different clusters differ as much
as possible.

2.2 AiNet Clustering Algorithm

Artificial Immune Network (aiNet) [12] was proposed by de Castro, which simulates
the process that the antigen (Ag) invades antibody (Ab) network in vertebrate immune
systems. It views data points in the dataset as antigens, which invade and stimulate the
immune network to produce antibodies. In the process, it will carry out immune
operations such as clone reproduction, affinity maturation and network suppression to
dynamically adjust the network structure until it converges. Finally, a network
reflecting the structure of the dataset will be generated. Because of the scale of the
network node set is much smaller than that of the original dataset, so it greatly reduces
the redundancy of the data. Figure 1 is the pseudo-code of aiNet.
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Procedures:

1. Initialize Ab set and following parameters: δ s (suppression threshold), δd  (natural 
death threshold), n (number of best-matching cells taken for each jAg ), N (clone 
number multiplier), ζ  (the rate of affinity maturation) and r (the rate of eliminated 
cells).

2. At each iteration step, do:
2.1 For each { }, 1, 2,...,=j AgAg j N , do:

2.1.1 Calculate its affinity { }, , 1, 2,...,=i j Abf i N to all , ,, 1 / ,=i i j i jAb f D

, || ||= −i j i jD Ab Ag ; 

2.1.2 Select the subset { }nAb composed of the n highest affinity antibodies; 

2.1.3 Clone each antibody in { }nAb based on their affinity ,i jf ,and generate a set C
of its clones: the higher the affinity, the larger clone size for each of the n selected 
antibodies (we can use Equation (1) to generate the total clone size Nc for each cell in

{ }nAb ); 

,
1

( )
=

= − ⋅∑
n

c i j
i

N round N D N (1)

2.1.4 Apply Equation (2) to each individual in C, and generate a mutated set ∗C ; 
,( ); 1/ ; {1,..., }α α∗ = + ⋅ − ∝ =k k k j k i j cC C Ag C f k N (2)

2.1.5 Calculate the affinity , ,1 /=k j k jd D between jAg and every element of ∗C :

, || ||∗= −k j k jD C Ag ; 

2.1.6 Re-select %ζ of the antibodies with highest ,k jd  from ∗C , and put them 

into the memory cell matrix jM ; 

2.1.7 Apoptosis: eliminate those memory cells in jM whose affinity , δ>k j dD ; 

2.1.8 Calculate the affinity ,i kS among the memory cells: , , ,|| ||,= −i k j i j kS M M
,∀i k ; 

2.1.9 Clonal suppression: clear those memory cells whose , δ<k j sS
2.1.10 [ ; ]← jM M M ; 

2.2 Calculate the affinity among all the memory cells from M :
, || ||, , , ,= − ∈ ∈ ∀i k i k
i kS M M M M M M i k ; 

2.3 Network suppression: eliminate the memory cells in M whose , δ<i k sS ; 
2.4 Randomly generate a few antibodies to replace the r% of the worst individuals 

in M : [ ; ]← newAb M Ab ; 
3. Test the stopping criterion: if the stop criterion is met, output Ab; otherwise turn 

to Step 2.

Fig. 1. The Pseudo code of aiNet.
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The stopping criterion: We can stop iterating applying any of the following
criteria:

1. When it reaches the maximum number of iterations;
2. When the network reaches a pre-defined number of cells;
3. When the average error between all the antigens and the network nodes exceeds a

pre-specified threshold;
4. If its average error rises after consecutive iterations.

When the process terminates, we will get the network node set. As Fig. 2 shows,
Fig. 2(a) is the distribution of an artificial dataset, and Fig. 2(b) is the network nodes
produced by aiNet. We can find that the node set has the same structure as the original
one but it is much smaller. So aiNet can reduce the redundancy of the data greatly.

After getting the node set, we firstly get the Minimum Spanning Tree (MST) of the
network. Then calculate the length of each edge of the MST and display them in a bar
graph. Then we can find that the length of two edges of the MST is far longer than
others. The dataset will be divided into three parts and cluster analysis is accomplished
via cutting these two edges of the MST.

2.3 BIRCH Clustering Algorithm

BIRCH [14] is a hierarchical clustering algorithm designed for large-scale database. It
adopted the idea of the Sequential Processing method [16, 17] which allows to process
the data point one by one, and reduces memory requirements of the algorithm.

Cluster Feature (CF) and Cluster Feature Tree (CF Tree) are the cores of BIRCH.
CF Tree, including many CFs, is a high-balanced tree representing the division of the
dataset. These CFs form a CF Tree according to the hierarchical relationship. And the
bottom CF, called minicluster, represents a mini cluster of the dataset.

Fig. 2. Original dataset and its structure: a. original dataset, b. network nodes produced by aiNet
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Given a dataset ~O ¼ f~o1;~o2; . . .;~ong;~oi 2 <d ; i ¼ f1; 2; . . .;Ng, then CF is defined
as:

CF ¼ ðN; LS; SSÞ ð3Þ

Where LS ¼ PN
i¼1

~oi represents the linear sum of all data points, and SS ¼ PN
i¼1

~o2i is the

quadratic sum. Via CF, we can obtain the following statistics:

(1). The center of CF: XO
�! ¼

PN
i¼1

Xi
!

N

(2). The radius of CF: R ¼ ð
PN
i¼1

ðXi
!

� XO
�!

Þ2

N Þ1=2

(3). The distance between two CFs: D12 ¼ ð
PN1
i¼1

PN1 þN2

j¼N1 þ 1

ðXi
!

�Xj
!

Þ2

N1N2
Þ1=2

(4). The formula to merge two CFs:

CF ¼ CF1 þCF2 ¼ ðN1 þN2; LS1
�!þ LS2

�!
; SS1
�!þ SS2

�!Þ

The process of building a CF Tree:
Step 1: Set the parameters: Branching factor (B) and Threshold (T). Then initialize

an empty CF as the root node, randomly choose a data point and put it in this CF;
Step 2: Randomly choose a data point and wrap it into a new CF (CF-new), and

calculate the distance between it and other existing CFs using formula (4)

D12 ¼ ð

PN1

i¼1

PN1 þN2

j¼N1 þ 1
ðXi
!� Xj

!Þ2

N1N2
Þ1=2 ð4Þ

Where Xi
!

and Xj
!

represent the points of two different CFs;
Step 3: Choose a CF (CF-close) which is the closest to CF-new, and determine

whether the value D is less than the Threshold (T): if so, turn to Step 4; otherwise insert
CF-new into the CF Tree and turn to Step 5;

Step 4: Determine if the number of children in CF-close is less than Branching
factor (B): if so, merge CF-new and CF-close; otherwise turn to Step 5;

Step 5: First merge CF-new and CF-close to form a new CF, then divide the new
CF (CF-merge) into two sub-CFs. The procedures are as follows: Find two children
which are the farthest in CF-merge, then take either of them as the seed node of each
sub-CF respectively and divide CF-merge into two small clusters based on the closest
criteria, finally wrap them into two CFs and insert the two new CFs into the Tree. Note
that we also need to check whether we have to split the parent as well up to the root, if
so, do the same as Step 5;
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Step 6: Check whether all the points of the original dataset have been scanned: if so,
output the CF Tree; otherwise, turn to Step 2.

BIRCH can generate the result by scanning the dataset only once and has good
performance in suppressing noise. But it can only process spherical dataset and requires
the cluster number.

2.4 The Advantages and Disadvantages of AiNet and BIRCH

Cluster Analysis is a complex problem in Data Ming, and there doesn’t exist a clus-
tering algorithm suitable for all kinds of datasets. Without exception, aiNet and BIRCH
also have this problem.

From Table 1, it is obvious that the advantages and disadvantages of them are mut-
ually complementary. So it’s logical to design a new algorithm by combining them.

3 Large-Scale Data Clustering Algorithm Based on BIRCH
and Artificial Immune Network

By combining aiNet and BIRCH, we designed a large-scale data clustering algorithm
which inherites their advantages and overcome their shortcomings. Firstly, it builds a
CF Tree by BIRCH, which makes the algorithm possess the ability of processing
large-scale datasets and restraining noise. Then, the miniclusters produced by BIRCH
will be processed by aiNet in order to deal with non-convex datasets. The procedures
are as below:

Step 1: Coarse division: use BIRCH to scan the dataset and build a CF Tree;
Step 2: Denoising: clear those low-density miniclusters;
Step 3: aiNet Learning: use aiNet to process the miniclusters and get the network

node set;
Step 4: Generate Minimum Spanning Tree (MST): generate a MST by linking the

network nodes;
Step 5: MST Separation: separate the MST by cutting those edges whose weight is

significantly larger than that of others;
Step 6: Result: divide the original dataset according to the MST separation.

Table 1. The advantages and disadvantages of aiNet and BIRCH

aiNet algorithm BIRCH algorithm

Advantages:
1. Don’t need to give the cluster number;
2. Suitable for non-convex datasets;
Disadvantages:
1. Need a long running time;
2. Sensitive to noise;

Advantages:
1. Low time and space complexity;
2. Strong ability of suppressing noise;
Disadvantages:
1. Need to give the cluster number;
2.Not suitable for non-convex datasets;
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4 Experimental Results

In order to test the performance of BIRCH_aiNet, we compare it with some repre-
sentative large-scale data clustering algorithms, such as BIRCH [14], IWKO2 (Inverse
Weighted K-means Online Algorithm V2) [18] and OFCM (Online FCM) [19]. Among
these algorithms, IWKO2 is the serial form of an improved K-means algorithm. It
introduces the concept of weight to address the problem of K-means, the sensitivity to
initial conditions. Meanwhile, a serial transformation is applied in the algorithm to
reduce its space complexity. OFCM is a partitioning method based on FCM, which
divides the original dataset into many subsets, utilizes FCM to process every subset and
combines them to obtain the result. The simulation has been carried out on a 2.7 GHz
AMD Athlon(TM) PC with 2G RAM by programming with Matlab. And 20 inde-
pendent runs were performed on each test problem.

4.1 Test Dataset

We chose 2 artificial datasets and 4 real world datasets, UCI datasets1, whose basic
characteristics are shown in Table 2.

En_data3 and En_sticks, based on two small-scale ones, data3 and sticks, are
large-scale artificial datasets which have more than one million samples. So their
distributions are the same as data3 and sticks. In addition, to test the algorithm’s ability
of anti-noise, 1% of noise samples are added in the datasets (shown in Fig. 3). We
tested these two datasets for the following reasons: (1) if the algorithm could process
those datasets whose samples are more than one million; (2) if the algorithm could
suppress the interference of noise; (3) if the algorithm could deal with non-convex
datasets.

Table 2. Description of the datasets

Dataset Number of samples Dimension The cluster number

Artificial dataset En_data3 1010000 2 3
En_sticks 1034000 2 4

UCI dataset Skin_Nonshin 245057 3 2
Covertype 581012 54 7
Shuttle 43500 9 7
Magic04 19020 10 2

1 http://www.ics.uci.edu/*mlearn/MLRepository.html.
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4.2 Experimental Results and Analysis

The main parameters of each algorithm are as follows: the Branching Factor of BIRCH
was set to 3000, and the Threshold was 0.01 except Magic04 and Covertype. The
Thresholds of Magic04 and Covertype were set to 0.1 and 0.3 respectively. The iter-
ation times of IWKO2 and OFCM were 20, and the cluster number was also provided
and remaining parameters can be referred in [18, 19]. The input algorithm, BIRCH, was
set as the same as BIRCH. As for the output algorithm, suppression threshold (rs) and
natural death threshold (rs) of aiNet were marked in the result.

The clustering result is shown by Clustering Accuracy (CA) [20] defined as:

CA ¼
Pk
i¼1

ni

n
ð5Þ

Where n is the size of the dataset, and ni is the number of points correctly divided
into the ith cluster. CA is in the interval of [0,1] and a large value means a good result.

Table 3 shows the results of the four compared algorithms on six datasets and each
result is the mean value of 20 independent experiments.

Fig. 3. Two large-scale artificial datasets: a. En_data3, b. En_sticks

Table 3. The Clustering accuracy

Dataset CA(%)
BIRCH IWKO2 OFCM BIRCH_aiNet(rd, rs)

En_data3 89.71 89.33 91.32 97.32 (0.01, 0.04)
En_sticks 71.08 69.61 79.55 100 (0.01, 0.04)
Skin_Nonshin 49.34 51.42 51.70 72.87 (0.03, 0.04)
Covertype 16.82 19.04 14.09 26.36 (0.3, 05)
Shuttle 50.4 47.11 40.06 83.16 (0.01, 0.1)
Magic04 46.18 43.74 58.36 64.45 (0.2, 0.4)
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It is obvious that BIRCH has the same result as IWKO2 on two artificial datasets,
and the result is a little worse than OFCM. It illustrates that fuzzy clustering algorithms
are more stable than traditional hard clustering algorithms. But BIRCH_aiNet can
correctly divide almost all the points on these two datasets and its Clustering Accuracy
is much higher than that of other five algorithms. The reason is that the two artificial
datasets are not spherical and the first three algorithms have poor performances on
these datasets, which proves our algorithm can well process non-convex datasets.
Figure 4 shows two scatter grams of the network nodes generated by aiNet on two
artificial datasets. It is noticeable that the network node set has the same distribution as
the original dataset and the noise points were also well suppressed.

BIRCH, IWKO2 and OFCM almost had the same result on UCI datasets. On
Covertype, IWKO2 performed better than BIRCH and OFCM; While on Shuttle,
BIRCH won; and on Magic04, OFCM got the best result among the three algorithms.
They three all have their own advantages, but there are no essential differences between
them. Our algorithm obtained the best result on all UCI datasets.

To test the stability of every algorithm, the statistical results of BIRCH, IWKO2,
OFCM and BIRCH_aiNet on En_sticks, Skin_NonSkin, Shuttle and Magic04 are
shown. Figure 5 shows the statistical CA values of four algorithms of 20 independent
runs. Box plots were utilized to display the distribution of these samples. In a notched
box plot, the notches represent a robust estimation of the uncertainty about the medians
for box-to-box comparison. The boxes have lines at the lower quartile, median, and
upper quartile. The whiskers are lines extending from each end of the boxes to show
the extent of the remaining data. Outliers are data with values beyond the ends of the
whiskers. Symbol ‘+’ denotes outliers. The four plots present the results of the above
four clustering algorithms, BIRCH, IWKO2, OFCM and BIRCH_aiNet, to process
four datasets, En_sticks, Skin_Nonshin, Shuttle and Magic04, respectively.

Figure 5 shows our algorithm obtained the highest CA and had stronger stability on
En_sticks and Shuttle. Although OFCM appeared to be the most stable, its CA was
lower than that of our algorithm. BIRCH and IWKO2 had more outliers because they
are hard clustering algorithms and more easily fall into local optima.

Fig. 4. Network nodes of two datasets generated by Aritficial Immune Network: a. En_data3,
b. En_sticks
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5 Conclusions

This paper presented a large-scale data clustering algorithm based on BIRCH and
aiNet. It used BIRCH as the input algorithm to improve its capability of anti-noise and
aiNet was employed as the output algorithm to process complex datasets. So this
measure overcomes the disadvantages and retains the advantages of them, which results
in the good performance of our new algorithm on complex large-scale datasets.
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b. plotbox-Skin_Nonshin, c. plotbox-Shuttle, d. plotbox-Magic04

336 Y. Li et al.



References

1. Hartigan, J.A., Wong, M.A.: A K-Means clustering algorithm. Appl. Statis. 28(1), 100–108
(1979)

2. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters. J. Cybern. 3(3), 32–57 (1974)

3. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,
New York (1981)

4. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern
Recogn. 33(9), 1455–1465 (2004)

5. Das, S., Abraham, A., Konar, A.: Automatic kernel clustering with a Multi-Elitist particle
swarm optimization algorithm. Pattern Recogn. Lett.-PRL 29(5), 688–699 (2008)

6. Handl, J., Knowles, J.D.: Multi-objective clustering and cluster validation. In: Jin, Y. (ed.)
Multi-Objective Machine Learning, vol. 16. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-33019-4_2

7. Fred, A.L.N., Leitao, Y.M.N.: Partitional vs hierarchical clustering using a minimum
grammar complexity approach. In: Ferri, F.J., Iñesta, J.M., Amin, A., Pudil, P. (eds.)
Advances in Pattern Recognition. SSPR/SPR 2000, vol. 1876. Springer, Heidelberg,
pp. 193–202 (2000). https://doi.org/10.1007/3-540-44522-6_20

8. Nanni, M., Pedreschi, D.: Time-Focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst. 27(3), 267–289 (2006)

9. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13
(3), 780–784 (2002)

10. Ng, A.Y,, Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In:
Neural Information Processing Systems, pp. 849–856 (2001)

11. Martínez, A.M, Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell.–
PAMI 23(2), 228–233 (2009)

12. de Castro, L.N., Von, Z.F.J.: aiNet: an artificial immune network for data analysis. In: Data
Mining: A Heuristic Approach, pp. 231–259 (2001)

13. Timmis, J., Neal, M.: A Resource Limited Artificial Immune System for Data Analysis.
Research and Development in Intelligent Systems XVII, pp. 19–32, December 2000

14. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for
very large databases. In: Proceedings of ACM SIGMOD Conference, Montreal, Canada,
pp. 103–114 (1996)

15. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel
immune-inspired algorithm for anomaly detection. In: The 4th International Conference
on Artificial Immune Systems (ICARIS 2005), Banff, Alberta, Canada (2005)

16. Richard, O.D.: Sequential k-Means clustering (2008). http://www.cs.princeton.edu/courses/
archive/fall08/cos436/Duda/C/sk_means.html

17. Richard, O.D., Peter, E.H., David, G.S.: Pattern Classification, 2nd edn. China Machine
Press, Beijing (2004)

18. Barbakh, W., Fyfe, C.: Online clustering algorithms. Int. J. Neural Syst. 18(3), 185–194
(2008)

19. Havens, T.C., Bezdek, J.C., Leckie, C., et al.: Fuzzy c-means algorithms for very large data.
IEEE Trans. Fuzzy Syst. 20(6), 1130–1146 (2012)

20. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans.
Evol. Comput. 11(1), 56–76 (2007)

A Large-Scale Data Clustering Algorithm Based on BIRCH and aiNet 337

http://dx.doi.org/10.1007/3-540-33019-4_2
http://dx.doi.org/10.1007/3-540-33019-4_2
http://dx.doi.org/10.1007/3-540-44522-6_20
http://www.cs.princeton.edu/courses/archive/fall08/cos436/Duda/C/sk_means.html
http://www.cs.princeton.edu/courses/archive/fall08/cos436/Duda/C/sk_means.html


Hydrologic Cycle Optimization



Hydrologic Cycle Optimization Part I:
Background and Theory

Xiaohui Yan1 and Ben Niu2(&)

1 School of Mechanical Engineering, Dongguan University of Technology,
Dongguan 523808, China

2 College of Management, Shenzhen University, Shenzhen 518060, China
drniuben@gmail.com

Abstract. A novel Hydrologic cycle Optimization (HCO) is proposed by
simulating the natural phenomena of the hydrologic cycle on the earth. Three
operators are employed in the algorithm: flow, infiltration, evaporation and
precipitation. Flow step simulates the water flowing to lower areas and makes
the population converge to better areas. Infiltration step executes neighborhood
search. Evaporation and precipitation step could keep diversity and escape from
local optima. The proposed algorithm is verified on ten benchmark functions
and applied to a real-world problem named Nurse Scheduling Problem
(NSP) with several comparison algorithms. Experiment results show that HCO
performs better on most benchmark functions and in NSP than the comparison
algorithms. In Part I, the background and theory of HCO are introduced firstly.
And then, experimental studies on benchmark and real world problems are given
in Part II.

Keywords: Hydrologic cycle optimization � Swarm intelligence
Computing intelligence

1 Introduction

Optimization problems are kind of problems we unusually encountered in both engi-
neering and numerical calculation. Recently, many population-based algorithms are
proposed as the classic operation approaches. However, they are restricted and perform
not well in solving complex optimization problems. These population-based algorithms
include some evolutionary algorithms, such as Genetic Algorithm (GA) [1], Genetic
Programming (GP) [2], Swarm Intelligence algorithms inspired by animal colonies
(Particle Swarm Optimization (PSO) [3], Artificial Bee Colony (ABC) algorithm [4],
Bacterial Foraging Optimization (BFO) [5]), and some other heuristic algorithms, such
as Fireworks Algorithm (FWA) [6] and Brain Storm Optimization (BSO) [7].

Generally, when we use population-based algorithms to solve an optimization
problem, we unusually consider the objective function as a multi-dimension objective
space. And the individuals in the population-based algorithms are points in the space.
In each different algorithm, we use different evolution rules to control these points
move to better areas (areas with better fitness). By the iteration of selecting the superior
and eliminating the inferior, these points may converge near to the optimal point finally
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and the result is subsequently obtained. This process in very visual in a
three-dimensional figure (with one objective and two decision variables): Individuals
will move towards lower positions (for minimization problems) and gathered to global
or local optima.

There is a saying in an ancient Chinese poetry: ‘all rivers run east into the sea’. As
in China, the elevation is higher in the western area and lower in the eastern area in
general. Most of rivers will run east as the terrain reason. In fact, the water most
converged into the lowest place, the ocean, by the cyclical process. This is similar with
the optima searching process mentioned above. Inspired by this phenomenon and the
similarity, we decide to develop an optimization algorithm according to the hydrologic
cycle process.

In 2012, Eskandar proposed a water cycle algorithm called WCA [8], which has
raised wide attention of scholars. In this paper, we analyze the hydrologic cycle process
and its main factors firstly. Then, a novel hydrologic cycle optimization algorithm is
proposed under the model, which abbreviated as HCO. As a new and independent
algorithm proposed, the difference between HCO and WCA is analyzed in this paper.
Each operator of HCO is also simulated to demonstrate its effect. To verify opti-
mization ability of the proposed algorithm, we test it on a set of benchmark functions
and a real-world problem with several other well-known optimization algorithms. The
results show that the proposed algorithm outperformed than the other algorithms on
most benchmark functions and the nurse scheduling problem. The comparison and
application will be given in part II.

Part I of the paper is organized as followed. In Sect. 2, the hydrologic cycle model
and its main factors are introduced. In Sect. 3, the HCO algorithm is proposed and its
operators are described in detail. In Sect. 4, we discuss the difference between HCO
and WCA. The effect of three operators are simulated and analyzed in Sect. 5. Finally,
conclusions are drawn in Sect. 6.

2 Hydrologic Cycle Model

Water is the most abundant natural material on the surface of the earth. It covers more
than 71 percent of the earth’s surface. The state of water in the earth includes solid,
liquid and gas. Most of the water on earth exists in the atmosphere, ground, lakes,
rivers and oceans. As a common but important ecological phenomenon on the earth,
hydrologic cycle was firstly studied by Perot and Mariotte early in 16 century.

Hydrologic cycle refers to the water in the earth, move from one place to another by
a series of physical processes, such as evaporation, precipitation, infiltration, surface
flow and underground flow, and so on, while the total water keep balance [9]. For
example, water in the ocean may be vaporized to water vapor by absorbing energy of
the sun. Then, it could be transported to the land as a cloud. And finally, it falls onto the
mountains or rivers by precipitation such as rainfall [10]. The simplified model of the
hydrologic cycle is shown in Fig. 1.
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3 Hydrologic Cycle Optimization Algorithm

As described above, the core factors of hydrologic cycle model mainly contain
evaporation, precipitation, flow and infiltration. Based on the simplified model and
these factors, we proposed our hydrologic cycle optimization algorithm. In HCO, it
mainly contains three steps: flow, permeation, evaporation and precipitation.

3.1 Flow

Flow is the main reason that water will move and gather to lower areas. It is also one of
the most important phenomena in the hydrologic cycle on land. In our HCO algorithm,
flow is also the core operator. It provides the core evolutionary motivation.

In the optimization problems to be solved, there is no “gravity” exist, so we need to
set up some rules to simulate the water flow to lower areas. As the gradient information
is unknown, we let each individual try to move towards another individual which its
fitness is better (lower position) to test whether it is a gradient descent direction. If the
potential position newly produced is worse than the original position, the trial is
regarded as a failure. The new position is abandoned and it will stay at the original
position. And once the new position is better, it may find a descent direction. Then it
will move towards the direction several times till the direction becomes worse or the
maximum flow times is reached. The maximum flow times is a parameter which
controls the maximum move times in one flow step and avoids premature. In the
algorithm, we named it maxFT. The pseudo code of flow step is given in Table 1.

It should be mentioned that, in each flow step, for the individuals with best fitness,
there is no better position for reference. So for these (maybe only one) best individuals,
we select another individual from the population randomly as the flow direction. The
rest procedure is the same as above: If the new position is better, it flows towards the

Precipitation 

Evaporation Flow 

Infiltration
Ocean 

Mountains

Rivers

Sun
Clouds

Fig. 1. Simple model of hydrologic cycle
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direction till the new position becomes worse or the maximum flow times is reached.
And if the new position is worse than itself, it remain in the original position.

3.2 Infiltration

In the flow step. It is difficult to find a gradient descent direction for the best individual.
And this situation is also existing at the late stage of the searching process. Individuals
may converge to local optima and hard to find better positions. This phenomenon also
exists in the hydrologic cycle in nature. Water may gather in some lakes or other
low-lying areas and hard to flow to other areas as it is at the local lowest place. Though
the water can’t move to another place by flowing, it can move by some other physical
processes, such as infiltration or evaporation. Infiltration is especially common for
groundwater. Unlike the surface flow, the movement of groundwater is more slowly
and multi-dimensional. Besides on gravity, it is also related to the properties of
molecular force, heat, vegetation and void spaces of soil. In infiltration process of
groundwater, water might move downward to the underground rivers. It might also
move horizontally, or even move upward by syphon of soil or vegetation. Though this
circulation process is extremely slow and taking a long time, it is still an important part
of the hydrologic cycle.

For above reason, we use infiltration as the second operator of HCO. In this step,
water individual can move and search its neighborhood even it can’t find a gradient
descent direction. This is helpful for both exploiting the neighborhood and escaping the
local optima. In infiltration step, for each individual, we select another individual
randomly as a neighbor, and select some dimensions randomly preparing to execute a
neighborhood search. Then modify the selected dimensions towards or away from the
neighbor. The pseudo code of infiltration step of HCO is given in Table 2.

In this part, we didn’t use the greedy selection. Which means the position of the
individuals may become worse. This step could maintain the diversity of the population
in some degree.

Table 1. Pseudo code of flow step of HCO
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3.3 Evaporation and Precipitation

Evaporation and precipitation play an important role in the hydrologic cycle. It is the
main way that water changes its state and moves to another place far away. It is also the
core motivation that water could be transported from low-lying areas such as oceans
and lakes to high attitude areas such as mountains. In our HCO algorithm, we use this
operator to keep diversity and escape from local optima.

In evaporation and precipitation step, each water individual will be evaporated by a
probability, which is controlled by a parameter called . And if an individual
is evaporated, it will be precipitated to another position by two alternative rules: first, it
will be precipitated to a random position in the searching space; second, it will be
precipitated to a neighborhood position of best position so far. In the current version of
the algorithm, the neighborhood position is generated using Gauss mutation. The
pseudo code of evaporation and precipitation step of HCO is given in Table 3.

Just like the rainfall may occur on both the land and the ocean, we use the above
two rules to simulate these two kinds of phenomenon. The first rule could enhance the
diversity greatly and avoid trapping in local optima. And the second rule could enhance
the local exploitation ability near the optima. For convenience, the probabilities of the
two rules are the same in the current algorithm.

Table 2. Pseudo code of infiltration step of HCO

Table 3. Pseudo code of evaporation and precipitation step of HCO
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4 Difference Between HCO and WCA

As it has mentioned above, there are much similarities between HCO and WCA. They
are both inspired by the water cycle on the earth. However, as two different algorithms,
they have essential differences.

First, in WCA, individuals are divided into three different roles: sea, rivers and stream.
In each iteration, individuals are given their roles according to their finesses [11]. And the
role of may be transferred in these thee roles. In our HCO algorithm, all individuals are the
same role just like PSO algorithm. Each individual presents part of water in the current
position. Compared with WCA, HCO is simpler for understanding and coding.

Second, WCA algorithm mainly focus on the converge process of water. In each
step, stream converge to rivers, rivers converge to sea. In HCO algorithm, there are
another important step: infiltration. Infiltration is a common phenomenon existed in
nature. It plays an important role especially in groundwater cycle. The infiltration step
enhances the local search ability of HCO, and could avoid premature in some degree.

Third, in WCA, it uses parameter C as the moving step. The position updating
equation is absolute distance based [12]. It’s another parameter dmax = 1e − 16. The
proper parameter setting is important to the optimization ability. For different problems
with different scale, it may hard to set the values. In our HCO, position updating
equation is relative distance based. It could adapt to different problems.

Performance comparison between HCO and WCA will be given in part II.

5 Simulating and Testing the Effect to Operators of HCO

5.1 Flow Operator

Flow is the core operator of HCO. It makes the population converge to better areas. In
the first experiment, we use flow operator only. Infiltration, Evaporation and precipi-
tation are not used. Figure 2 shows the location changes of waters on function under
this situation.

It is clear that the water individuals gather rapidly as the iteration increases. All
individuals gather near in the optima position at about iteration 16, just seen in Fig. 2
(d). The simulation demonstrates that the population will converge to better position
under flow operator.

5.2 Infiltration Operator

Although the flow step make the population converge to better areas, it also may lead
the population to premature. Figure 3 shows the location changes of water individuals
on powers function. (a) and (b) are only use flow operator. (c) and (d) use both flow and
infiltration operator. In Fig. 2 (d), all points look like to overlap with each other as the
scale of axes. Actually, they may be like Fig. 3(a) if we enlarge the scale. As in flow
step, each individual move to another individual with better position, if we only use this
operator, individuals will only gather to best current position and hard to execute global
search. There is no trap-escaping mechanism. And the results may stop improving, just
like in Fig. 3(b).
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(a) iteration 1 (b) iteration 4

(c) iteration 8 (d) iteration 16

Fig. 2 Location changes of water individuals with only flow operator on ackley function
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Fig. 3. Location changes of water individuals on powers function
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Infiltration operator is a good supplement. In infiltration, individual moves to
random neighbor. Though the position of an individual may change worse, it enhances
the diversity and won’t make the population too near together. Just like Fig. 3(c) and
(d), the optimization result could continue improved.

In general, infiltration operator can keep diversity and avoid premature.

5.3 Evaporation and Precipitation Operator

As mentioned above, infiltration operator could keep diversity in some degree. How-
ever, it is a local search strategy essentially. We can see that though the points didn’t
overlap with each other in Fig. 3(c) and (d), they still gather in a tiny space. Once the
population gather in a local optima. It still has no chance to escape. A global search
approach must be introduced. In HCO algorithm, we introduce evaporation and pre-
cipitation operator to enhance the global searching ability. Water individuals can be
moved to random place in the searching space by a pre-determined probability.
Figure 4 shows the effect of evaporation and precipitation operator: a few individuals
jump to far away while most of the individuals gather near the optima.

Evaporation and precipitation operator could keep the diversity of population
further more. With this operator, the population could escape the local optima easily.

6 Conclusion

In this paper, a novel hydrologic cycle optimization algorithm is proposed by simu-
lating the natural phenomena of the hydrologic cycle on the earth. Three operators are
used in HCO: flow, infiltration, evaporation and precipitation. In flow step, water
individual flows and converge to better areas. In infiltration step, neighborhood search
is applied to avoid losing the dynamics of evolution. In evaporation and precipitation
step, individuals will be evaporated and move to random place or near the current
optima in the searching area. This operator could keep diversity and escape from local
optima.
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Fig. 4. Location changes of water individuals with evaporation and precipitation operator on
powers function
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In part I, the background and theory of HCO are given. The hydrologic cycle
phenomena and simple model on the earth is analyzed. Under the model, our HCO is
proposed. The difference of HCO and another algorithm inspired by water cycle, WCA
is drawn. And then, the effects of the three operators are tested and analyzed.

In part II, we compared the optimization ability of HCO with four other algorithms
on ten benchmark functions. Nurse Scheduling Problem (NSP) is also applied to test its
optimization ability on real-world problem. The experiments show that HCO performed
best on most functions and got a better solution in NSP than the comparison algorithms.

However, as a newly proposed algorithm, it has still much work to do. It performed
not well on two valley-shaped functions. The optimization ability for current version of
HCO is not sufficient compared with some recent variation algorithm. We will continue
to test and improve the model and algorithm in future work.
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Abstract. A novel Hydrologic Cycle Optimization (HCO) is proposed by
simulating the natural phenomena of the hydrologic cycle on the earth. Three
operators are employed in the algorithm: flow, infiltration, evaporation and
precipitation. Flow step simulates the water flowing to lower areas and makes
the population converge to better areas. Infiltration step executes neighborhood
search. Evaporation and precipitation step could keep diversity and escape from
local optima. The proposed algorithm is verified on ten benchmark functions
and applied to a real-world problem named Nurse Scheduling Problem
(NSP) with several comparison algorithms. Experiment results show that HCO
performs better on most benchmark functions and in NSP than the other algo-
rithms. In Part I, the background and theory of HCO are introduced firstly. And
then, experimental studies on benchmark and real world problems are given in
Part II.

Keywords: Hydrologic cycle optimization � Swarm Intelligence
Application � Nurse scheduling problem

1 Introduction

Optimization problems are kind of problems we unusually encountered in both engi-
neering and numerical calculation. Recently, many population-based algorithms are
proposed as the classic operation approaches. However, they are restricted and perform
not well in solving complex optimization problems. These population-based algorithms
include some evolutionary algorithms, such as Genetic Algorithm (GA) [1], Genetic
Programming (GP) [2], Swarm Intelligence algorithms inspired by animal colonies
(Particle Swarm Optimization (PSO) [3], Artificial Bee Colony (ABC) algorithm [4],
Bacterial Foraging Optimization (BFO) [5]), and some other heuristic algorithms, such
as Fireworks Algorithm (FWA) [6] and Brain Storm Optimization (BSO) [7].

There is a saying in an ancient Chinese poetry: ‘all rivers run east into the sea’. As
in China, the elevation is higher in the western area and lower in the eastern area in
general. Most of rivers will run east as the terrain reason. In fact, the water most
converged into the lowest place, the ocean, by the cyclical process. This is similar with
the optima searching process mentioned above. Inspired by this phenomenon and the
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similarity, we decide to develop an optimization algorithm according to the hydrologic
cycle process.

In 2012, Eskandar proposed a water cycle algorithm called WCA [8], which has
raised wide attention of scholars. In this paper, we analyze the hydrologic cycle process
and its main factors firstly. Then, a novel hydrologic cycle optimization algorithm is
proposed under the model, which abbreviated as HCO. As a new and independent
algorithm proposed, the difference between HCO and WCA is analyzed in this paper.
Each operator of HCO is also simulated to demonstrate its effect. To verify the per-
formance of the proposed algorithm, we test it on a set of benchmark functions and a
real-world problem with several other well-known optimization algorithms. The results
show that the proposed algorithm outperformed than the other algorithms compared on
most benchmark functions and the nurse scheduling problem. The comparison and
application will be given in part II.

Part II of this paper is structured as follows. In Sect. 2, the proposed HCO and other
four comparison algorithms are tested on ten benchmark functions. Results are pre-
sented and discussed. In Sect. 3, the HCO is applied to solve the nurse scheduling
problem with other comparison algorithms. Finally, conclusions of Part II are presented
in Sect. 4.

2 Experiments

In this section, the performance of HCO is tested on ten unconstrained benchmark
functions. Several classic algorithms are employed for comparison, including WCA,
PSO [9], GA and a variation of BFO algorithm, Modified Bacterial Foraging Opti-
mization (MBFO) [10]. Due to the similarity between flow operator in HCO and
chemotaxis step in BFO, MBFO is also selected to compare with our proposed HCO.

2.1 Benchmark Functions

The benchmark functions for our tests are listed in Table 1. Among these functions, f1
and f2 are unimodal functions with independent variables. They are bowl-shaped. f3–f6
are unimodal functions with dependent variables. f3 and f4 are plate-shaped. f5 and f6 are
valley-shaped. f7 and f8 are multimodal functions with independent variables. f9 and f10
are multimodal functions with dependent variables. All these functions are widely
adopted by many researchers to test the optimization ability of their algorithms [11, 12].

In our experiments, we tested algorithms on these benchmark functions with a
dimension of 20. To compare these algorithms fairly, we use the maximum number of
function evaluations (FEs) as the termination criterion in our tests. It is also used in
many other works [13, 14]. The FEs is setting as 100000 in our test.

2.2 Parameters Settings

The population sizes S of all algorithms are set as 50. In HCO, the maximum flow
times maxFT is 3. Evaporation probability Peva is 0.1. All the control parameters for the
involved comparison algorithms are set to be default of their original literatures.
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In MBFO, Nc = 50, Ns = 4, Nre = 4, Ned = 10, Pe = 0.25, k = 1.04, the initial step
size Cs = 0.1(Ub-Lb), where Lb and Ub refer the lower bound and upper bound of the
variables of the problems. In PSO algorithm, x decreased from 0.9 to 0.7. C1 =
C2 = 2.0. Vmin = 0.1 � Lb, Vmax = 0.1 � Ub. In GA, Pc is 0.95 and Pm is 0.1.
In WCA, Nsr = 4, dmax = 1e-16.

2.3 Results and Statistical Analysis

Results of the five algorithms on the benchmark functions are listed in Table 2. Best
values of these algorithms on each benchmark function are marked as bold. Conver-
gence plots of the algorithms are shown in Fig. 1.

HCO obtained the best mean values on seven of all ten functions. It is obvious that
HCO performed much better than other four comparison algorithms on Powers,
Sumsquares, Schwefel2.22, Ackley and Griewank, which could be seen in Fig. 1. On
these five benchmark functions, both the convergence speed and accuracy are much
better than comparison algorithms. Especially at the end stage of the algorithm, it still
maintains excellent convergence trend while other algorithms slow down their con-
vergence speed. On Griewank function, HCO performed best on all five algorithms
though its final mean value is not that distinct. However, the Min value equals zero,
which denotes that it could find global optima in some runtimes.

On Dixon_Price and Rosenbrock function, all algorithm didn’t perform well. It has
mentioned above these two functions are unimodal functions and have no local optima.
All algorithms trapped and barely improved after 5000 FEs. The final results obtained
by HCO are a little worse than WCA and PSO. On two multimodal independent
variable-functions, all algorithm didn’t perform well neither. On Schwefel function, the
results obtained by GA are a little better than HCO. On Rastrigin function, most
algorithms trapped into local optima while HCO obtained well results in some run-
times: though the mean value is not very good, the min value is acceptable. And the

Table 1. Benchmark functions

Function Formulation Type Variable
ranges

f (x*)

f1 Powers f xð Þ ¼ Pn
i¼1 xij jiþ 1 UI [−1, 1]n 0

f2 Sumsquares f xð Þ ¼ Pn
i¼1 ix

2
i UI [−10, 10]n 0

f3 Zakharov f xð Þ ¼ Pn
i¼1 x

2
i þ

Pn
i¼1 0:5ixi

� �2 þ Pn
i¼1 0:5ixi

� �4 UD [−5, 10]n 0

f4 Schwefel2.22 f xð Þ ¼ Pn
i¼1 xij j þ Qn

i¼1 xij j UD [−10, 10]n 0

f5 Dixon_Price f xð Þ ¼ xi � 1ð Þ2 þ Pn
i¼2 i 2x

2
i � xi�1

� �2 UD [−10, 10]n 0

f6 Rosenbrock f xð Þ ¼ Pn�1
i¼1 100 x2i � xiþ 1

� �2 þ 1� xið Þ2
� �

UD [− 15, 15]n 0

f7 Schwefel f xð Þ ¼ 418:9829n�Pn
i¼1 ðxi sin

ffiffiffiffiffiffi
xij jp� �

MI [−500, 500]n 0

f8 Rastrigin f xð Þ ¼ Pn
i¼1 x2i � 10 cos 2pxið Þþ 10

� �
MI [−10, 10]n 0

f9 Ackley

f ðxÞ ¼ 20þ e� 20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1

x2i

r� �

� e
1
D

PD
i¼1

cosð2pxiÞ
� �

MD [−32.768,
32.768]n

0

f10 Griewank
f ðxÞ ¼ 1

4000

PD

i¼1
x2i

� �
� QD

i¼1
cosð xiffi

i
p Þ

� �
þ 1

MD [−600, 600]n 0
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Table 2. Results obtained by HCO, MBFO, PSO, GA and WCA

HCO MBFO PSO GA WCA

Powers Mean 3.7016E-37 4.0119E-09 1.7294E-17 5.1447E-03 4.0180E-30
Std 1.1695E-36 1.2019E-08 3.1250E-17 4.0542E-03 1.0373E-29
Min 5.3919E-52 5.6070E-13 6.7939E-20 9.7543E-04 5.3039E-36
Max 3.6985E-36 3.8204E-08 8.5247E-17 1.5543E-02 3.2952E-29

Sumsquares Mean 5.1304E-25 1.2199E+01 9.8584E-03 4.7217E+01 1.6447E-20
Std 1.0731E-24 2.0548E+01 3.9476E-03 2.0118E+01 5.1203E-20
Min 6.1772E-29 5.6495E-05 5.6492E-03 1.6060E+01 1.7583E-23
Max 3.0061E-24 6.6103E+01 1.6082E-02 7.7512E+01 1.6217E-19

Zakharov Mean 1.2322E-04 1.2449E+02 5.8891E+01 4.0113E+02 7.9534E-09
Std 1.0867E-04 5.3491E+01 6.5056E+01 7.5368E+01 9.3902E-09
Min 8.1818E-06 5.8390E+01 2.8912E-02 2.5678E+02 1.2332E-09
Max 3.9409E-04 1.8146E+02 1.8165E+02 5.0564E+02 2.8489E-08

Schwefel2.22 Mean 3.9429E-24 2.7964E-02 2.5281E-01 8.9493E+00 1.0564E-07
Std 5.6621E-24 1.7066E-02 2.2667E-01 1.7111E+00 3.3294E-07
Min 3.2804E-27 6.3887E-03 9.4537E-02 6.1432E+00 4.8396E-13
Max 1.6339E-23 5.6358E-02 8.5706E-01 1.1179E+01 1.0532E-06

Dixon_Price Mean 1.1104E+00 3.8571E+01 7.8473E-01 9.4929E+01 6.6667E-01
Std 1.2158E+00 4.2162E+01 1.0083E-01 4.3812E+01 1.8892E-08
Min 6.6667E-01 6.6669E-01 6.7377E-01 5.6328E+01 6.6667E-01
Max 4.5537E+00 1.3319E+02 9.4180E-01 1.8785E+02 6.6667E-01

Rosenbrock Mean 3.0646E+01 6.0635E+02 4.6866E+01 1.3061E+03 4.7282E+01
Std 1.8369E+01 8.4787E+02 3.1384E+01 6.0339E+02 3.2017E+01
Min 2.0566E+01 1.5426E+01 2.6358E+01 5.2035E+02 7.6594E+00
Max 8.2560E+01 2.1822E+03 1.1366E+02 2.4317E+03 8.8487E+01

Schwefel Mean 3.0330E+03 3.0845E+03 6.3314E+03 1.0780E+03 3.6994E+03
Std 5.4843E+02 5.7164E+02 8.5847E+02 4.0631E+02 6.2497E+02
Min 1.8955E+03 2.0733E+03 4.6592E+03 6.1976E+02 2.7909E+03
Max 3.8184E+03 3.8909E+03 7.6603E+03 1.8282E+03 4.3276E+03

Rastrigin Mean 1.0509E+01 1.4878E+01 6.9609E+01 1.5907E+02 9.0654E+01
Std 6.8835E+00 5.2404E+00 1.5393E+01 3.6817E+01 2.7678E+01
Min 2.4213E+00 7.2997E+00 5.0816E+01 9.2285E+01 5.7727E+01
Max 2.4522E+01 2.2891E+01 9.6671E+01 2.3057E+02 1.4029E+02

Ackley Mean 8.1878E-12 1.3821E-02 1.8124E+00 1.9700E+01 3.1922E-01
Std 1.9798E-11 7.1328E-03 3.4190E-01 6.3694E-01 9.9788E-01
Min 2.2204E-14 4.1141E-03 1.3425E+00 1.8866E+01 2.8495E-10
Max 6.4209E-11 2.1115E-02 2.4979E+00 2.0578E+01 3.1591E+00

Griewank Mean 1.9717E-03 9.1016E-01 1.0035E-01 5.5634E+00 2.6971E-02
Std 4.3158E-03 7.5480E-01 4.9980E-02 1.9504E+00 2.6539E-02
Min 0.0000E+00 7.3105E-02 2.4494E-02 3.8840E+00 2.2204E-15
Max 1.2321E-02 2.1680E+00 1.9885E-01 1.0693E+01 8.3109E-02
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(a) Powers (b) Sumsquares

(c) Zakharov (d) Schwefel2.22

(e) Dixon_Price (f) Rosenbrock

(g) Schwefel (h) Rastrigin
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Fig. 1. Convergence plots of HCO, MBFO, PSO, GA and WCA algorithms on ten benchmark
functions
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convergence trend is nice at the end stage of the algorithm, seen in Fig. 1(h). In
general, HCO shows well optimization ability and performs best among the five
algorithms on most benchmark functions.

3 Real-World Application

In this section, the proposed algorithm is applied to solve Nurse Scheduling Problem in
order to test the performance of our algorithm in real-world application.

3.1 Nurse Scheduling Problem

Nurse Scheduling Problem (NSP) can be described as creating schedules by assigning
the nurses to specific shifts in specific time periods. In this paper, the model of NSP
[15] can be constructed as follows:

(i) Objective function

min f ðxÞ ¼
Xnn

i¼1

Xsk

j¼1

Xss

k¼1

Xsd

d¼1

xi;j;k;d � wj;k þ c�
Xsk

j¼1

Xss

k¼1

Xsd

d¼1

mj;k;d ð1Þ

Where nn is the number of nurses; sk is the number of skill types; ss is the number
of shift types; sd is the number of total days in scheduling cycle; xi,j,k,d represents that
Nurse i with skill type j is assigned on day d in shift type k; wj,k is the wage of nurses
with skill type j in shift type k; c denotes punishment coefficients and mj,k,d is the
number of nurses with skill type j that do not satisfy demands on day d in shift type k.

(ii) Hard constraints

Xss

k¼1

xi;j;k;d ¼ 1 i ¼ 1; 2; . . .nn; j ¼ 1; 2; . . .; sk; d ¼ 1; 2; . . .; sd ð2Þ

(i) Ackley (j) Griewank
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Fig. 1. (continued)
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xi; j;3;d þ xi; j;1;dþ 1 � 1 i ¼ 1; 2; . . .; nn; j ¼ 1; 2; . . .; sk; d ¼ 1; 2; . . .; sd � 1 ð3Þ

lp �
Xsd

d¼1

xi; j;k;d � up i ¼ 1; 2; . . .; nn; j ¼ 1; 2; . . .; sk; k ¼ 1; 2; . . .; ss ð4Þ

where lp and up represent the nurse’s lower limit and upper limit of work shifts,
respectively.

(iii) Soft constraint

Xnn

i¼1

xi; j;k;d � hi; j;k;d j ¼ 1; 2; . . .; sk; k ¼ 1; 2; . . .; ss; d ¼ 1; 2; . . .; sd � 1 ð5Þ

where hi,j,k,d is the minimum coverage demands of a hospital on day d, in shift type
k and for skill type j nurses.

3.2 Experiments

(i) Encoding

In HCO, each individual representing a potential scheduling solution for nn nurses
can be constructed as an array of 1 * nn. This array is consist of nn matrices of size
ss * sd, which is shown below (Fig. 2).

(ii) Experiment settings

In Sect. 2, we found that WCA and PSO algorithms perform well on some
benchmark functions. Therefore, in the NSP experiment, the competitive two algo-
rithms are chosen as comparison algorithms. The number of nurse is 11, including 5
juniors, 4 middles and 2 seniors. The hospital’s minimum coverage demand is gen-
erated randomly. Therefore, the parameters in NSP model are set as: nn = 11, sk = 3,
ss = 4 (morning shift, afternoon shift, night shift and free shift), sd = 7, c = 1000.

The population sizes S of all algorithms are 50 and the number of iterations is
10000. Each algorithm ran 10 times. Other parameters in HCO, WCA and PSO are the
same as the settings in Sect. 2.

Fig. 2. The combination of each individual
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(iii) Results and analyses

Table 3 presents the numerical results of the mean value and standard deviation for
each algorithm. Figure 3 shows the convergence characteristics for the three
algorithms.

As shown in Table 3 and Fig. 3, compared with the two other algorithms, HCO has
a stronger global search ability and obtains better solutions in NSP.

4 Conclusion

In Part II of this paper, to verify the optimization ability of the proposed HCO, we
tested it on ten classic benchmark functions. WCA, PSO, GA and a variation of BFO
algorithm-MBFO are employed for comparison. The results show that HCO performs
best on seven functions of all ten. And on six among that, the superiority is distinct,
which indicates the good performance of HCO. Moreover, HCO and other comparison
algorithms are applied to solve the nurse scheduling problem. The experimental results
show that HCO acquires better solutions than other comparison algorithms for NSP.

In the future, we will continue to improve model of HCO to enhance its perfor-
mance and may apply it to other real-world applications, like portfolio selections,
feature selections etc.

Acknowledgement. This work is supported by the National Natural Science Foundation (Grant
Nos. 71571120, 61703102), Natural Science Foundation of Guangdong (Grant Nos.
2015A030310274, 2015A030313649), Project of Guangdong Province Universities and Col-
leges Pearl River Scholar Funded Scheme 2016, and Project of Department of Education of
Guangdong Province (No. 2015KQNCX157).

Table 3. Numerical results obtained by the three algorithms

Algorithm HCO WCA PSO

Mean 4.49E+03 4.71E+03 4.68E+03
Std. 3.33E+01 1.27 E+02 2.65E+01
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Abstract. Competition of swarms, every of which performs a conveyor
cooperation of units, operated in physical time, is considered. Such sort of races
objectively exists in economics, industry, defense, etc. It is shown, that natural
approach to modeling of multiple relay-race with alternative routes is M-parallel
semi-Markov process. Due to alternation there are multiple arks in the graph,
represented the structure of semi-Markov process. Notion «the space of
switches» is introduced. Formulae for calculation the number of routes in the
space of switches, stochastic and time characteristics of wandering through M-
parallel semi-Markov process are obtained. Conception of distributed forfeit,
which depends on stages difference of swarm units, competed in pairs, is pro-
posed. Dependence for evaluation of total forfeit of every participant is obtained.
It is shown, that sum of forfeit may be used as optimization criterion in the game
strategy optimization task.

Keywords: Relay-race � M-parallel semi-Markov process � Stage
Route � Evolution � Distributed forfeit

1 Introduction

One of ways of unit cooperation in swarm is the conveyor interaction, in which second
swarm unit continue to process object of job (data, part of mechanism etc.) immediately
after previous unit finishes its part of job. A conveyor cooperation objectively exists in
economics, industry, defense, etc. As a rule, the swarm does not operate separately, but
in concurrency [1–4] with other swarms, which have conveyor organization too.
Conveyor organization of swarms may be represented as overcoming the distance,
which is divided onto stages [5]. Let us demand, that efficiency of distance overcoming
depends not only on overall winning the race, but on winning or losing stages of
distance. If stages are pre-determined, there is the only parameter, namely the time
distribution law, which participant can vary and control. In such a way, there is the
trivial solution of winning problem - to run distance stages with the greatest possible
speed [6, 7]. Such solution is acceptable for a swarm, whose units have sufficient
resources to maintain high speed of running distance stages. If it has not, swarm unit
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Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 361–373, 2018.
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tries to find asymmetric response, which leads to the final point of the distance, but
along the alternative route. For an external observer selection of route by swarm unit
occurs randomly, so model of running the distance on alternative routes should be the
stochastic one [8, 9]. The availability of alternative generates premises for an emer-
gence of game situations, in which one can to manage not only by the stage passing
time, but also by probabilities (for gamer adversary) or by periodicity (for gamer itself)
of rout selection. Those team which can evaluate the benefits and losses from choice of
this or that distance route, may construct the optimal strategy of relay-races game for
winning the competition as a whole.

Approaches for forecasting of benefits and losses of relay-races games are currently
known insufficiently, that explains necessity and relevance of the investigations in this
domain.

2 The Structure and the Model of Alternative Route
Relay-Race

The chart of relay-races with alternative routes is shown on the Fig. 1. Nodes of the
graph represent the relay points, arcs of the graph represent alternative routes.
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Fig. 1. Relay-races with alternative routes
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The following assumptions are made below [5]:

• in relay-races participate M swarms;
• swarms operate independently of each other;
• swarms should to overcome the distance in the real physical time;
• the distance is divided onto J stages, and every stage is overcame by one unit of the

swarm, so quantity of stages is equal to quantity units in the swarm;
• the j-th stage of m-th swarm includes K(m, j) routs;
• after finishing j-th stage by j-th unit of the m-th swarm (j + 1)-th unit may choose

one of K(m, j + 1) possible routes of the (j + 1)-th stage;
• first units start their first stages at once;
• time of passing of routes by units is a random one and is defined with accuracy to

density;
• after completion of j-th stage by j-th unit (j + 1)-th unit starts (j + 1)-th stage

without a lag;
• winning or losing of a stage competition is understood as completion the stage the

first or not the first;
• winner’s forfeit is distributed in time and depends on difference of stages and

routes, which pass winner and loser.

Model of multiple alternative route relay-races may be performed as M-parallel
semi-Markov process [7–10]

l ¼ A; hðtÞf g ð1Þ

where t - is the time; A - set of states; hðtÞ - is the semi-Markov matrix;

A ¼
[M
m¼1

mA; mA \ nA ¼ ;; when m 6¼ n. ð2Þ

mA ¼ ma0; . . .;
maj; . . .;

maJ
� �

: ð3Þ
ma0; 1�m�M - are the starting states of the M-parallel process; maJ , 1�m�M-

are the absorbing states of the M-parallel process;

hðtÞ ¼

1hðtÞ . . . 0 . . . 0
. . .

mhðtÞ
. . .

0 . . . 0 . . . MhðtÞ

2
66664

3
77775: ð4Þ

t - is the time; mhðtÞ- is the m-th semi-Markov matrix [8] of size ðJþ 1Þ � ðJþ 1Þ;
0 - is the zero matrix of size Jþ 1ð Þ � Jþ 1ð Þ.
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In its turn m-th semi-Markov matrix mhðtÞ of size J�J is as follows:

mhðtÞ ¼ mhj;lðtÞ
� �

: ð5Þ

where mhj;lðtÞ - is the vector-element of mhðtÞ, disposed on the intersection of j-th row
and l-th column;

mhj;lðtÞ ¼
mhjþ 1ðtÞ; when 0� j� J � 1;
0; otherwise;

�
ð6Þ

mhjðtÞ ¼ h1ðm;jÞðtÞ; . . .; hkðm;jÞðtÞ; . . .; hKðm;jÞðtÞ
� �

: ð7Þ

hkðm;jÞðtÞ ¼ pkðm;jÞðtÞ fkðm;jÞðtÞ: ð8Þ

pkðm;jÞ ¼
Z1
0

hkðm;jÞðtÞ dt: ð9Þ

pkðm;jÞ - is the probability of choice of kðm; jÞ route by j-th unit of m-th swarm;
fkðm;jÞðtÞ - is the time density of overcoming kðm; jÞ route by j-th unit of m-th swarm;
pkðm;JÞ ¼ 0, fkðm;jÞðtÞ ¼ lims!1 dðt � sÞ, 1�m�M.

Increment of numeration of j in (6) is due to the fact that initial values of j nominate
numbers of semi-Markov process states, output values of j nominate numbers of stages
of the distance or swarm units.

Let us consider the switch from maj to maj by any route in semi-Markov process
[11–13]

ml ¼ mA; mhðtÞf g: ð10Þ

Due to the fact, that all possible switches compile the full group of incompatible
events, time density of the process ml residence in the state maj is as follows [14]:

mfjðtÞ ¼
XKðm;jÞ

kðm;jÞ¼1

hk m;jð ÞðtÞ: ð11Þ

XKðm;jÞ
kðm;jÞ¼1

pkðm;jÞ ¼ 1: ð12Þ

Let us select from all possible routes of wandering through the process ml route as
follows:

slðmÞ ¼ kðm; 1Þ; . . .; kðm; jÞ; . . .; kðm; JÞ½ �: ð13Þ
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Common number of selected routes is equal to

KðmÞ ¼
YJ
j¼1

Kðm; jÞ: ð14Þ

Weighted time density of wandering from the state ma0 till the state maJ through the
selected route is as follows:

hkðmÞðtÞ ¼ L�1
YJ
j¼1

L hkðm;jÞðtÞ
� �" #

: ð15Þ

Probability of remaining the process on the route (13) may be evaluated as follows:

pkðmÞ ¼
Z1
0

hkðmÞðtÞ dt ¼
YJ
j¼1

pkðm;jÞ: ð16Þ

Pure time density of wandering from the state ma0 till the state maJ through the
selected route is as follows:

fkðmÞðtÞ ¼
hkðmÞðtÞ
pkðmÞ

: ð17Þ

Time density of wandering from the state ma0 till the state maJ on any possible
arbitrary route (13) is as follows:

mfRðtÞ ¼
XKðmÞ

kðmÞ¼1

hkðmÞðtÞ: ð18Þ

3 Common Formulae for Evolution Parameters

Let us extract from every semi-Markov process ml route (13). When there are wan-
derings through selected routes, switches in processes compete between them. The
result of competition is the combination of stages, occupied by corresponding swarm
units at a current time. All possible combination may be obtained as Cartesian product
of sets (13)
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SlðwÞ ¼
Q
M

C

m¼1

mslðwÞ ¼ kð1; 0Þ; . . .; kðm; 0Þ; . . .; kðM; 0Þ½ �; . . .;f
kð1; jÞ; . . .; kðm; jÞ; . . .; kðM; jÞ½ �; . . .; kð1; JÞ; . . .; kðm; JÞ; . . .; kðM; JÞ½ �g:

ð19Þ

where P
C
- is the sign of group Cartesian product.

Cartesian product gives M-dimensional space Sl(w) of states.
Process of switches begins from the state Sb ¼ kð1; 0Þ; . . .; kðm; 0Þ; . . .; kðM; 0Þ½ � ¼

0; . . .; 0; . . .; 0½ � and ends at the state Se ¼ kð1; JÞ; . . .; kðm; JÞ; . . .; kðM; JÞ½ � ¼
J; . . .; J; . . .; J½ �. Common number of states is equal to ðJþ 1ÞM . Wandering through
the space Sl(w) has the character of evolution, in which after every switch only one
element of vector S may increase on unit. Sequence of switches generates the trajectory
of switches. Common quantity of switches is equal to R = JM.

Common quantity of switch trajectories grows fast in dependence of number of
stages and swarms (R. Bellman’s “curse of dimensionality” [17]). To define common
quantity of switch trajectories let us link digit «1»with increment on the first co-ordinate
and digit «2» with increment on the second co-ordinate of two-dimensional, J1 � J2,
space of switches. Let us find the J1 � J2ð Þ-th Cartesian degree of the set 1; 2f g and
gather all vectors, which include J1 «ones» and J2 «twos» into one set. Cardinality of
this set is equal to J1 -th binomial coefficient, i.e.

QJ1;J2 ¼
J1 þ J2ð Þ!
J1! � J2! : ð20Þ

Let us divide set of «twos» onto subset of J2 «twos» and subset of J3 «threes», find
the J1 � J2 þ J3ð Þ-th Cartesian degree of the set 1; 2; 3f g and gather all vectors, which
include J1 «ones», J2 «twos» and J2 «threes» into one set. Then common number of
switch trajectories in 3 dimensional space may be find as follows:

QJ1;J2;J3 ¼
J1 þ J2 þ J3ð Þ! � J2 þ J3ð Þ!
J1! � J2 þ J3ð Þ! � J2! � J3! ¼ J1 þ J2 þ J3ð Þ!

J1! � J2! � J3! :

In common case

QJ1;...JM ¼
PM
m¼1

Jm

� �
!

QM
m¼1

Jm!
: ð21Þ

When J1 ¼ . . . ¼ Jm ¼ . . . ¼ JM ¼ J,
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QM
J ¼ ðMJÞ!

ðJ!ÞM : ð22Þ

For evaluation of stochastic and time characteristics of M-parallel semi-Markov
process evolution let us consider the common case, when time intervals between
switches are determined with densities g1ðtÞ; . . .; gmðtÞ; . . .; gMðtÞ. In such a case time
density till the first switch is defined as

gwðtÞ ¼
XM
m¼1

~gwmðtÞ ¼
XM
m¼1

gmðtÞ
YM

a ¼ 1
a 6¼ m

1� GaðtÞ½ �: ð23Þ

Where gwmðtÞ - is the weighted density of time of winning the m-th density;

G...ðtÞ ¼
Rt
0
g...ðsÞ ds - is the distribution function; a - is an auxiliary index.

Probability of the m-th density winning and pure density of the m-th density
winning are equal, correspondingly:

pwm ¼
Z1
0

~gwmðtÞ dt; gwm ¼ ~gwmðtÞ
pwm

: ð24Þ

Next formula, necessary for relay-races simulation, is the dependence for waiting
time density. If from competing processes gaðtÞ and gbðtÞ wins the process gbðtÞ, it
waits until gaðtÞ will be completed the stage. Waiting time is as follows [3, 5]:

gb!aðtÞ ¼ gbðtÞ !a ðtÞ
gðtÞ R1

0
gbðsÞ gaðtþ sÞ ds

R1
0
GbðtÞ dGaðtÞ

: ð25Þ

where gðtÞ - is the Heaviside function; a, b - are auxiliary indices.
With use of formulae obtained may be formed recursive procedure of relay-race

evolution analysis.

4 Recursive Procedure of Evolution Analysis

Recursive character of evolution follows from competitive character of choice of a
switch direction in the space Sl(w). For build up the recursive procedure let us to
introduce auxiliary time density rgjðmÞðtÞ, where r - is the common number of switches
during evolution; j - is the stage under consideration; m - is the number of swarm
(number of semi-Markov process).
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Recursive procedure for one of realization of switch trajectory is shown in the
Table 1.

On the first phase of recursion (no switches are made) original time densities fk(1,1),
…, fk(m,1), …, fk(n,1), …, fk(M,1) compete between them. To formalize competition
description next substitution should be done:

0g1ðmÞ :¼ fkðm;1Þ; 1�m�M ð26Þ

After winning in competition one of swarm, f.e. n-th, as it is shown in the Table 1,
when r = 1, time densities, which participate at the next phase are defined as follows:

1gjðmÞðtÞ :¼

fkðn;2ÞðtÞ; j :¼ 2

when n-th process wins; m ¼ n;
0g1ðnÞ!1ðmÞðtÞ ¼ 0g1ðnÞðtÞ ! 0g1ðmÞðtÞ;
j :¼ 1 when m-th process lost, m 6¼ n;

8>>><
>>>:

ð27Þ

where 0g1ðnÞðtÞ ! 0g1ðmÞðtÞ - is the operation, defined as (26).

Table 1. Recursive procedure

r S Densities
0 0, ..., 0, ..., 0, ..., 0 fk(1,1), ..., fk(m,1), ..., fk(n,1),  ...,  fk(M,1)

0g1(1), ..., 0g1(m), ..., 0g1(n), ..., 0g1(M)

1 0, ..., 0, ..., 1, ..., 0 0g1(n)→1(1), ..., 0g1(n)→1(m), ..., fk(n,2), ..., 0g1(n)→1(M)
1g1(1), ..., 1g1(m), ..., 1g2(n), ..., 1g1(M)

2 0, ..., 1, ..., 1, ..., 0 1g2(m)→2(1), ..., fk(m,2), ..., 1g2(m)→2(n), ..., 1g2(m)→2(M)
2g1(1), ..., 2g2(m), ..., 2g2(n), ..., 2g1(M)

...
r-1 j(1), ..., j(m), ..., 

j(n), ..., j(M)
...

r-1gj(1), ..., r-1gj(m), ..., r-1gj(n), ..., r-1ji(M)
r j(1), ..., j(m), ..., 

j(n), ..., j(M)+1
r-1gj(M)→j(1), ..., r-1g j(M)→j(m), ..., r-1g j(M)→j(n) , ..., fk(M,j+1) 

rgj(1), ..., rgj(m), ..., rgj(n), ..., rgj(M)+1
... ... ...

R-2 J(1), ..., J(m), .
..,J(n)-2, ..., J(M)

…
R-2g J(n)-1

R-1 J(1), ..., J(m), ..., J(n)-1, ..., 
J(M)

fk(n, J)
R-1g J(n)-1

R J(1), ..., J(m) ..., J(n), ..., 
J(M)

Relay-race is over
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Probability of winning the first unit of n-th swarm is defined with formulae (23),
(24), which for the case under consideration are as follows:

pw1ðnÞ qMJ
	 
 ¼ Z1

0

0g1ðnÞðtÞ
YM

a ¼ 1
a 6¼ n

1� 0G1ðaÞðtÞ
� �

dt: ð28Þ

On the r-th phase of recursion (r switches were made) time densities r−1gj(1), …,
r−1gj(m), …, r−1gj(n), …, r−1gj(M) compete between them. After winning in competition
one of swarm, f.e. M-th, as it is shown in the Table 1, time densities, which participate
at the next phase, are becoming as follows:

rgjðmÞðtÞ :¼

fkðM;jþ 1ÞðtÞ; j :¼ jþ 1;

when M-th process wins; m ¼ M;

r�1gjðMÞ!jðmÞðtÞ ¼ r�1gjðMÞðtÞ ! r�1gjðmÞðtÞ
j :¼ j when m-th process lost, m 6¼ M:

8>>>>><
>>>>>:

ð29Þ

Probability of winning the j-th unit of M-th swarm is defined with formulae (23),
(24), which for the case under consideration are as follows:

pwjðMÞ qMJ
	 
 ¼ Z1

0

rgjðnÞðtÞ
YM

a ¼ 1
a 6¼ M

1� rGjðaÞðtÞ
� �

dt: ð30Þ

On the last, (R − 1)-th stage there is no competition, and time between switches is
defined as R�1gJðnÞðtÞ.. In the case, shown in the Table 1, R�1gJðnÞðtÞ :¼ fkðn;JÞðtÞ;
pwJðnÞ qMJ

	 
 ¼ 1.

5 Evaluation of Effectiveness of Alternative Relay-Race
Strategy

Quite natural for evaluation of effectiveness is the model, in which

• the pairs of swarms, f.e. m-th and n-th are considered;
• swarm unit, which gets a stage with higher number, acquires from swarm unit, who

gets a stage with lower number, a forfeit;
• forfeit is defined as distributed payment ckðm;jÞ;kðn;iÞðtÞ, value of which depends on

time, difference of stages and selected routs.

Let us extract from common evolution, m-th and n-th swarms and tabulate it in the
Table 2. This gives s-th
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Analysis of evolution shows that situation, which change conditions of forfeit
payments emerges from winning of one of participant and lasts till the next switch. If
after r switches densities rgi(m)(t) and

rgi(n)(t) compete, then common sum of forfeit on
the stage is as follows [3, 5]:

rCkðm;jÞ;kðn;iÞ qMJ
	 
 ¼

R1
0

rgjðmÞðtÞ 1�rGjðnÞðtÞ½ �ckðm;jÞ;kðn;iÞðtÞ dtR1
0

rgjðmÞðtÞ 1�rGjðnÞðtÞ½ �dt
;

when

wins

swarm m;

R1
0

rgjðnÞðtÞ 1�rGiðmÞðtÞ½ �ckðn;iÞ;kðm;jÞðtÞ dtR1
0

rgjðnÞðtÞ 1�rGiðmÞðtÞ½ �dt
;

when

wins

swarm n;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð31Þ

where qMJ - is the number of evolution variant (selected switch trajectory).
Cost of pair competition on the qMJ -th switching trajectory is as follows:

Ckðm;jÞ;kðn;iÞ qMJ
	 
 ¼ X2J

r¼1

rCkðm;jÞ;kðn;iÞ qMJ
	 


: ð32Þ

The probability of emergence of qMJ -th trajectory is as follows:

pkðm;jÞ;kðn:iÞ qMJ
	 
 ¼ Y2J

r¼1

pwðrÞ: ð33Þ

where pwðrÞ - is the probability of proper direction choice on the switching trajectory.

Table 2. Evolution m-th and n-th swarms

r S Densities r S Densities
0 0, 0 fk(m,1), fk(n,1),

0g1(m), 0g1(n)

r+1 j(m)+1, j(n) fk(m,J+1), r+1gj(m)→j(n)
r+1gj(m)+1, r+1gj(n)

1 0, 1 0g1(m)→1(n), fk(n,2) 
1g0(m), 1g2(n)

...

R-2 J(m), J(n) ...
R-2gJ(m), R-2gJ(n)

2 1, 1 fk(m,2) , 1g1(m)→2(n)
... R-1 J(m), J(n)+1 R-2gJ(n)→J(m)

R-1gJ(m)r i(m), 
i(n) 

...
rgj(m), rgj(n) R J(m)+1,J(n)+1 Relay-race is over
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Common cost of paired (m-th and n-th swarms) relay-race on the pre-determined,
k(m)-th and k(n)-th routes is as follows:

CkðmÞ;kðnÞ ¼
XQM

J

qMJ ¼1

pkðm;jÞ;kðn:iÞ qMJ
	 


Ckðm;jÞ;kðn:iÞ qMJ
	 


: ð34Þ

With use (16) common cost of competition on the mentioned route pair is as
follows:

Cm;n ¼
XKðnÞ
kðnÞ¼1

XKðmÞ
kðmÞ¼1

pkðmÞpkðnÞCkðmÞ;kðnÞ: ð35Þ

Cost Cm;n is the forfeit, which in pair competition n-th swarm pays to m-th swarm.
To define all forfeits, which swarms «not m-th» pay to m-th swarm one should to
summarize Cm;n by n:

CmR ¼
XM

n ¼ 1;
n 6¼ m

Cm;n; 1�m�M: ð36Þ

Formula (36) may be used as a criterion of optimization of m-th swarm behavior
strategy in alternative route relay-race games. In this case possible routs, probabilities
and time characteristics of other swarms may be defined through observation of
partner’s activity. Own, m-th swarm routs, probabilities and time characteristics are
optimization variables. Methods of optimization task solving may be adopted from the
game theory.

6 Example

For verification of the method operation of the swarm with the structure, shown on the
Fig. 2, was considered

f1(1,1)(t)
1а0 1а1

1а2

f1(1,2)(t)

f1(2,1)(t)

f2(2,1)(t) f2(2,2)(t)

f1(2,2)(t)
2а0 2а1

1а2

Fig. 2. Structure of the swarm
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Time densities of passing the stages by the first swarm are

f1ð1;1ÞðtÞ ¼ f1ð1;2ÞðtÞ ¼ dðt � 1Þ: ð37Þ

which corresponds to the rigid schedule of stages overcoming. Time densities of
passing the stages by the second swarm are

f1ð2;1ÞðtÞ ¼ f1ð2;2ÞðtÞ ¼
1
0;2 when t � 1j j � 0; 1;

0 otherwise;

(
ð38Þ

f2ð2;1ÞðtÞ ¼ f2ð2;2ÞðtÞ ¼
�50tþ 56; 65

when 0; 933� t� 1; 133;

0 otherwise;

8>><
>>: ð39Þ

Expectations of (37), and (38) are equal to 1, just alike the expectation of (36).
Value of forfeit is proportional to the time, and equal for all combinations of stages
number difference, i.e. C ¼ 1 � t.

When second swarm choice “first-first” routes, calculated sum of forfeit, which first
swarm gets from the second swarm, is equal to zero due to the symmetry of densities
(37), (38) with respect to expectations. When second swarm choice “second-second”
routes, due to the asymmetry of densities (39), calculated sum of forfeit, which the first
swarm gets from the second swarm, is equal to 0.0042 despite of expectations equality
in (37) and (39). So when scheduling, first swarm should take into account aftereffect
caused by (39), which does not compensate by low probabilities of proper situation
emerging.

7 Conclusion

Working out the model of alternative route relay-race opens new page in the game
theory because competition evolve in real physical time. Every stage may be won or
lost by swarm unit and all swarms have possibilities of choice one of possible rout, as it
is in a real life.

Further investigation in this area should be directed to finding more tight links of
proposed method with classical game theory and use typical optimal game strategies
[18] in concurrency with partner swarms. Also it is possible of working out radically
new strategies, oriented only on the use with the model of multiple alternative route
relay-races.

The research was carried out within the state assignment of the Ministry of Edu-
cation and Science of Russian Federation (No 2.3121.2017/PCH).
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Abstract. Brain storm optimization (BSO) algorithm is a novel swarm
intelligence algorithm. Inspired by differential evolution (DE) with multi-
population based ensemble of mutation strategies (MPEDE), a new
variant of BSO algorithm, called brain storm optimization with multi-
population based ensemble of creating operations (MPEBSO), is pro-
posed in this paper. There are three equally sized smaller indicator sub-
populations and one much larger reward subpopulation. BSO algorithm
is used to update individuals in every subpopulation. At first, each creat-
ing operation has one smaller indicator subpopulation, in which different
mutation strategy is used to add noise instead of the Gaussian random
strategy. After every certain number of generations, the larger reward
subpopulation will be adaptively assigned to the best performing creat-
ing operation with more computational resources. The competitive per-
formance of the proposed MPEBSO on CEC2005 benchmark functions
is highlighted compared with DE, MPEDE, and other four variants of
BSO.

Keywords: Brain storm optimization · Multi-population
Ensemble of creating operations

1 Introduction

Brain Storm Optimization (BSO) algorithm is a novel swarm intelligence algo-
rithm which is inspired by the human brainstorming process [1]. More and more
attentions have been paid to the improvement and application of BSO algorithm.
Shi [2] presented BSO and verified the effectiveness of it by two benchmark func-
tions. The grouping operator and the creating operator of BSO were modified by
Zhan [3] in 2012. A quantum-behaved brain storm optimization (QBSO) [4] was
given in 2014, which improved the diversity of population and used the global
information. Cao et al. [5] described an improved BSO with differential evolution
strategy (BSODE) in 2015, in which the differential evolution (DE) strategy and
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 374–383, 2018.
https://doi.org/10.1007/978-3-319-93815-8_36
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a new step size are introduced. In 2016 a BSO algorithm with re-initialized the
bad ideas and adaptive step size (IRGBSO) [6] was given by Mohammed El-Abd.
Later he put forward the global-best BSO algorithm (GBSO) [7] by introduc-
ing a global-best version combined with per-variable updates and fitness-based
grouping to improve the performance of BSO in 2017.

In this paper, we propose a brain storm optimization with multi-population
based ensemble of creating operation (MPEBSO). The mutation and crossover
from DE are imbedded in the creating operation to avoid premature and generate
better ideas. Also, the scaling factor F in mutation strategy and the crossover
rate CR in crossover strategy are learned from the technique proposed in dif-
ferential evolution with multi-population based ensemble of mutation strategies
(MPEDE) [8].

The rest of the paper is organized as follows. The basic BSO and DE algo-
rithms are briefly introduced in Sect. 2. The proposed MPEBSO algorithm is
described in Sect. 3. The numerical experiments and results are shown in Sect. 4.
The last section is major conclusions and future research directions of this paper.

2 Two Basic Algorithms

2.1 Brain Storm Optimization

The BSO algorithm originates from the human brainstorming process. As stated
in literature [1,2], a potential solution to the problem is named an idea in BSO.
The BSO algorithm consists of clustering, replacing, and creating operations.

Clustering operation is responsible for gathering all similar ideas together.
During each generation, all ideas are clustered into M clusters by some clustering
method. The best idea in each cluster is selected as the cluster center.

Replacing operation of cluster center is also known as disrupting operation.
It means that a cluster is randomly chosen and replaced with a newly generated
idea with a probability of preplace to improve searching capability.

In the process of creating operation, a new idea can be generated based on one
or two ideas according to a probability of pone at first. Then, the corresponding
probabilities pone−center and ptwo−center are used to choose ideas from the cluster
center(s) or the random idea(s) in the cluster(s). The selecting operation is
defined as follows:

Xselected =
{

Xi, one cluster
rand ∗ Xi1 + (1 − rand) ∗ Xi2 two clusters , (1)

where rand is a random value between 0 and 1. Then, Xselected is updated as

Xnew = Xselected + ξ ∗ normrnd(0, 1), (2)

where normrnd is the Gaussian distribution with mean 0 and variance 1 to
add noise to the idea Xselected, and ξ in (3) is an adjusting factor slowing the
convergence speed down
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ξ = rand ∗ logsig(
0.5 ∗ iterationmax − iterationcurrent

k
), (3)

where logsig is a logarithmic sigmoid transfer function; iterationmax is the max-
imum iteration number; iterationcurrent represents the number of the current
iteration; and k is the slope of the logsig function.

2.2 Differential Evolution

Differential evolution [9] is an efficient global optimization algorithm. In the
process of DE, firstly, two individuals are selected from the parents to gener-
ate the difference vector; Secondly, another individual added to the difference
vectors can generate the new individual; Then, the new individual generates a
new offspring by crossover operation; Finally, selection operation is performed
between the parent and offspring individuals, and the eligible individual are kept
to the next generation.

In basic DE algorithm, the mutation vector is defined as “DE/rand/1”:

V g
i = Xg

r1
+ F ∗ (Xg

r2
− Xg

r3
), (4)

where g is the generation number, and the indices r1, r2 and r3 are mutually
exclusive integers randomly chosen from 1 to N . F is a mutation scaling factor
which affects the differential variation between two individuals.

In order to increase the diversity of the population, crossover operation is
introduced to generate offspring individual Ui at the kth generation:

Ug
i =

{
V g

i , if rand ≤ CR
Xg

i otherwise , (5)

where CR is a parameter of crossover rate.

3 The Improved Algorithm: MPEBSO

We introduce an ensemble of multiple creating operations into the brain storm
optimization. The new creating operations change the noise in Eq. (2) in the
original BSO. The whole population is dynamically divided into three indicator
subpopulations (with equal and relatively smaller sizes) and one relatively big
sized reward subpopulation at each generation. Every creating operation is ran-
domly assigned with an indicator subpopulation. The best performing creating
operation obtains the reward subpopulation after every certain generations with
the most computation resources.
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3.1 Three Different Creating Operations

It was show in MPEDE [8] that different mutation strategies are required for
a DE variant to solve various optimization problems efficiently. Furthermore,
even for the same problem, the most suitable strategies at different stages of
the evolutionary process may be different. Therefore, it is crucial that the most
suitable creating operation must be picked out during the evolution process of
MPEBSO. Different from basic BSO, three strategies are used to add noise to
the idea Xselected in (1), and the corresponding creating operations are described
in (6)–(8). The first creating operation is derived from the mutation strategy
“current-to-pbest/1” [8]:

Xnew = Xselected + F ∗ (Xpbest − Xselected + Xr1 − X̃r2), (6)

where F is the mutation scaling factor generated through the parameter adap-
tive approach in MPEDE; Xpbest is the best idea in the population; Xr1 is
randomly chosen from the corresponding subpopulation; X̃r2 is an individual in
an archive. The “current-to-pbest/1” with an archive performs well in solving
complex optimization problems by introducing more diversity in the mutation
operation [10]. After the mutation, crossover operation in (5) is performed on
Xnew. The parameter CR is also generated by the parameter adaptive approach
in MPEDE.

The second creating operation originates from the mutation strategy
“current-to-rand/1” [8] which is excellent in solving rotated problems with its
rotation-invariant [11]:

Xnew = Xselected + K ∗ (Xr1 − Xselected) + F ∗ (Xr2 − Xr3) (7)

where Xr1 , Xr2 and Xr3 are different ideas in the corresponding subpopulation,
and K is a rand number between 0 and 1. This creating operation is applied
without the aid of crossover operation.

The third creating operation is borrowed from the idea differential strategy
(IDS) in MBSO [3], which is proved to be better than the original Gaussian
random strategy:

Xnew = Xselected + F ∗ (Xr1 − Xr2). (8)

After the mutation, the crossover operation is also performed on Xnew as in the
first creating operation.

Three creating operations above use the difference between ideas. At first,
the ideas are different from each other. So, the difference is large and the ideas
which is newly generated can increase the diversity in the early stage. At the
later stage of the brainstorming process, the difference may be smaller which
means that the interference is also smaller to help update the ideas.
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3.2 Multi-population Based Creating Operation Ensemble
Approach

Inspired by MPEDE, the multi-population based creating operation ensemble
approach is proposed here. The whole population P is segmented into four sub-
populations randomly in each generation. Three indicator subpopulations which
have the same size and relatively small scale are P1, P2, and P3. One reward
subpopulation is P4 that has the relatively large scale. Suppose the size of P is
N , and the size of Pj is Nj . μj is the proportion of Pj in P , and μ1 = μ2 = μ3.

At the very start, three creating operations randomly obtain P1, P2 and P3

respectively. P4 is assigned to one of the creating operations. With the evolution
of the algorithm, after every gr (a predefined number) generations, the best
performing creating operation is picked out. In the next gr generations, the best
performing creating operation will obtain the reward subpopulation P4 which
means it has more computational resources. Picking out the best performing
creating operation is equivalent to selecting the biggest ratio of Δfj

ΔFESj
, where

the Δfj is the cumulative improvement of the objective function value that
comes with the jth creating operation, and ΔFESj is the function evaluations
consumed by the jth creating operation during the previous gr generations. The
above procedure is performed periodically with the parameter gr. The existence
of subpopulation is intended to provide sufficient computational resources for
each creating operation. The pseudo code of MPEBSO are listed in Fig. 1.

4 Experimental Results

Comparing the proposed MPEBSO with QBSO [4], BSODE [5], IRGBSO [6],
GBSO [7], DE [9], and MPEDE [8], the experimental results of benchmark
functions with 30 decision variables in CEC05 [12] are given under the same
machine with an Intel 3.20 GHz CPU, 8 GB memory, and the operating sys-
tem is Windows 7 with MATLAB 9.0 (R2016a). The common parameters of all
BSO variants are set as: M = 5, preplace = 0.2, pone = 0.8, pone−center = 0.4,
and ptwo−center = 0.5. All other parameters are consistent with the corre-
spond references. The additional parameters of MPEBSO is set as: N = 250,
μ1 = μ2 =μ3 = 0.2, μ4 = 0.4, and gr = 20. All functions in CEC05 have differ-
ent optimal values f(x∗). We set the maximum function evaluations as 300000.
Each algorithm runs independently 50 times on all benchmark functions. The
mean results (Mean) and the standard deviation (Std) of each algorithm are
recorded with the format of f(x) − f(x∗) in Tables 1 and 2. The best results are
highlighted in boldface. Rank records the performance-rank of seven algorithms
for dealing with each benchmark function according to their mean results. The
total rank for each algorithm is defined according to their mean rank values
over 25 benchmark problems. The number of (1st/2nd/7th) is counted for each
algorithm.
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Fig. 1. The pseudo code of the MPEBSO algorithm
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Table 1. Results of benchmark functions in CEC05 with 30 variables(f1–f13)

Functions Criteria QBSO BSODE IRGBSO GBSO MPEBSO DE MPEDE

f1 Mean 1.18E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 7.80E−03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rank 7 1 1 1 1 1 1

f2 Mean 5.32E+02 2.95E−04 1.83E−03 1.45E−02 0.00E+00 3.63E−05 9.49E−27

Std 4.12E+02 2.35E−04 1.28E−03 7.36E−03 0.00E+00 4.66E−05 3.45E−26

Rank 7 4 5 6 1 3 2

f3 Mean 3.15E+06 6.62E+05 5.98E+05 1.31E+06 2.26E+04 3.85E+05 2.04E+02

Std 1.40E+06 4.20E+05 2.87E+05 5.64E+05 1.81E+04 2.44E+05 6.53E+02

Rank 7 5 4 6 2 3 1

f4 Mean 1.40E+04 1.62E−01 2.37E−02 6.54E−01 2.15E−06 1.66E−02 6.21E−16

Std 3.80E+03 2.02E−01 2.37E+03 6.79E−01 7.48E−06 2.25E−02 2.83E−15

Rank 7 5 4 6 2 3 1

f5 Mean 6.77E+03 1.43E+03 3.76E+01 2.19E+02 3.87E+00 6.86E−01 1.11E−05

Std 2.02E+03 4.62E+02 1.75E−02 1.27E+02 1.25E+01 5.47E−01 2.97E−05

Rank 7 6 4 5 3 2 1

f6 Mean 4.47E+02 9.01E+02 9.92E+02 2.28E+02 1.12E+00 1.98E+00 1.19E+00

Std 5.29E+02 1.67E+03 2.01E+01 6.34E+02 1.82E+00 1.63E+00 3.15E+00

Rank 5 6 7 3 1 3 2

f7 Mean 2.50E−01 1.08E−02 7.09E−04 3.86E−03 1.07E−02 4.70E+03 2.96E−03

Std 1.10E−01 8.96E−03 2.65E−03 7.61E−03 1.26E−02 0.00E+00 4.15E−03

Rank 7 6 1 3 4 6 2

f8 Mean 2.11E+01 2.13E+01 2.13E+01 2.12E+01 2.09E+01 2.09E+01 2.10E+01

Std 6.12E−02 8.06E−02 8.79E−02 6.67E−02 4.46E−02 4.47E−02 5.11E−02

Rank 3 6 6 5 1 1 3

f9 Mean 3.11E+01 4.00E+01 2.81E+01 4.98E−01 3.70E+00 1.18E+02 0.00E+00

Std 9.72E+00 9.80E+00 5.71E+00 7.17E−01 7.59E+00 2.83E+01 0.00E+00

Rank 5 6 4 2 3 7 1

f10 Mean 1.16E+02 3.42E+01 2.52E+01 2.20E+01 2.19E+01 1.77E+02 2.45E+01

Std 2.58E+01 7.46E+00 6.46E+00 5.59E+00 6.82E+00 1.12E+01 6.46E+00

Rank 6 4 3 2 1 7 5

f11 Mean 2.97E+01 3.93E+01 2.71E+00 8.49E−01 1.64E+01 3.90E+01 1.67E+01

Std 3.82E+00 1.41E+00 2.11E+00 1.45E+00 3.20E+00 9.94E−01 7.11E+00

Rank 5 7 2 1 3 6 4

f12 Mean 3.07E+04 1.22E+05 1.38E+04 5.17E+03 4.56E+03 2.26E+03 1.23E+03

Std 1.16E+04 7.44E+04 1.51E+04 5.10E+03 5.94E+03 2.75E+03 1.67E+03

Rank 6 7 5 4 3 2 1

f13 Mean 4.74E+00 3.76E+00 3.30E+00 1.91E+00 1.68E+00 1.52E+01 1.96E+00

Std 4.33E−01 8.61E−01 5.24E−01 2.72E−01 3.24E−01 1.08E+00 1.94E−01

Rank 6 5 4 2 1 7 3

The proposed MPEBSO algorithm outperforms the others on 9 out of 25
benchmark problems, including two unimodal functions (f1, f2), three basic
multimodal functions (f6, f8, and f10), one expanded multimodal function (f13),
and three hybrid composition functions (f18, f24, and f25). MPEBSO is the sec-
ond performing algorithm on five functions (f3, f4, f16, f17, and f19). It can
be observed that MPEBSO algorithm has no worst performance on any bench-
mark function and ranks first over other comparative algorithms expect MPEDE.
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Table 2. Results of benchmark functions in CEC05 with 30 variables(f14–f25)

Functions Criteria QBSO BSODE IRGBSO GBSO MPEBSO DE MPEDE

f14 Mean 1.28E+01 1.29E+01 1.03E+01 1.01E+01 1.12E+01 1.32E+01 1.25E+01

Std 3.65E−01 5.97E−01 8.26E−01 1.03E+00 6.61E−01 1.76E−01 3.41E−01

Rank 5 6 2 1 3 7 4

f15 Mean 3.56E+02 3.74E+02 3.48E+02 3.32E+02 3.52E+02 4.00E+02 4.00E+02

Std 1.24E+02 8.29E+01 9.65E+01 5.57E+01 8.21E+01 4.08E+01 7.07E+01

Rank 4 5 2 1 3 6 6

f16 Mean 2.08E+02 2.05E+02 1.64E+02 1.61E+02 1.16E+02 2.09E+02 4.77E+01

Std 1.44E+02 1.75E+02 1.70E+02 1.66E+02 1.63E+02 4.07E+01 1.74E+01

Rank 6 5 4 3 2 7 1

f17 Mean 2.06E+02 9.35E+01 2.11E+02 1.19E+02 8.42E+01 2.29E+02 5.48E+01

Std 1.44E+02 7.70E+01 1.91E+02 1.32E+02 1.01E+02 3.17E+01 3.16E+01

Rank 5 3 6 4 2 7 1

f18 Mean 9.18E+02 9.05E+02 9.04E+02 9.04E+02 9.04E+02 9.04E+02 9.04E+02

Std 7.05E+00 1.90E+00 2.24E−01 3.56E+01 1.13E+00 8.57E−01 6.31E−01

Rank 7 6 1 1 1 1 1

f19 Mean 9.15E+02 9.05E+02 9.04E+02 9.04E+02 9.04E+02 9.03E+02 9.04E+02

Std 6.61E+00 4.95E+00 2.36E−01 4.00E+01 1.01E+00 5.13E−01 3.09E−01

Rank 7 6 2 2 2 1 2

f20 Mean 9.13E+02 8.98E+02 8.99E+02 9.04E+02 9.04E+02 9.04E+02 9.04E+02

Std 3.66E+01 2.54E+01 2.07E+01 2.95E+01 1.06E+00 8.08E−01 3.51E−01

Rank 7 1 2 3 3 3 3

f21 Mean 5.89E+02 1.02E+03 5.76E+02 5.00E+02 5.12E+02 5.00E+02 5.00E+02

Std 2.35E+02 3.85E+00 1.56E+02 0.00E+00 0.00E+00 0.00E+00 7.06E−14

Rank 7 6 5 1 4 1 1

f22 Mean 9.48E+02 8.33E+02 8.17E+02 8.79E+02 8.72E+02 8.78E+02 8.56E+02

Std 4.45E+01 3.14E+01 2.08E+01 2.57E+01 2.06E+01 1.47E+01 1.52E+01

Rank 7 2 1 6 4 5 3

f23 Mean 6.04E+02 1.02E+03 5.59E+02 5.34E+02 5.50E+02 5.50E+02 5.34E+02

Std 1.90E+02 9.15E+00 8.08E+01 3.52E−04 8.06E+01 8.06E+01 2.90E−13

Rank 6 7 5 1 3 3 1

f24 Mean 2.53E+02 8.17E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02

Std 2.04E+02 1.21E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.90E−14

Rank 6 7 1 1 1 1 1

f25 Mean 2.18E+02 2.10E+02 8.48E+02 2.20E+02 2.10E+02 1.64E+03 2.10E+02

Std 7.56E+00 2.46E−01 3.16E+02 4.18E+01 8.98E−01 4.07E+00 3.35E−01

Rank 4 1 6 5 1 7 1

Mean rank 5.96 4.92 3.48 3 2.2 4 2.08

Total rank 7 6 4 3 2 5 1

1st/2nd/7th 0/0/11 3/1/4 5/5/1 8/4/0 9/5/0 6/2/7 13/4/0

Figures 2(a) and (b) illustrates the convergence performance of five BSO variants.
Figures 2(c) and (d) illustrates the convergence performance of MPEBSO, DE
and MPEDE. The horizontal axis is the number of function evaluations (FES),
and the vertical axis is the function values over one independent run. The con-
vergence speed and precision of MPEBSO is slightly inferior to MPEDE, but it
is obviously superior to DE and other four variants of BSO.



382 Y. Sun et al.

0 0.5 1 1.5 2 2.5 3
FES ×105

10-10

10-5

100

105

1010

1015
fu

nc
tio

n 
va

lu
es

MPEBSO
GBSO
IRGBSO
BSODE
QBSO

(a) f6

0 0.5 1 1.5 2 2.5 3
FES ×105

101

102

103

104

fu
nc

tio
n 

va
lu

es

MPEBSO
GBSO
IRGBSO
BSODE
QBSO

(b) f16

0 0.5 1 1.5 2 2.5 3
FES ×105

10-10

10-5

100

105

1010

1015

fu
nc

tio
n 

va
lu

es

MPEBSO
DE
MPEDE

(c) f6

0 0.5 1 1.5 2 2.5 3
FES ×105

101

102

103

104

fu
nc

tio
n 

va
lu

es

MPEBSO
DE
MPEDE

(d) f16

Fig. 2. Comparison of convergence for MPEBSO and other comparison algorithms

5 Conclusion

Inspired by the MPEDE algorithm, we proposed a novel MPEBSO algorithm,
in which a multi-population based approach was utilized to realized a dynamic
ensemble of creating operations. In essence, this was the combination of BSO
algorithm and DE algorithm. The mutation and the crossover were used to
add noise instead of the Gaussian random strategy in basic BSO. The final
simulation results showed that this change promoted the convergence speed and
accuracy of MPEBSO. In the near future, we expect the creating operations
can be effectively improved and more new BSO variants can be applied to the
real-world optimization problems.
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Abstract. Whale optimization algorithm (WOA) is a newly proposed
search optimization technique which mimics the encircling prey and
bubble-net attacking mechanisms of the whale. It has proven to be very
competitive in comparison with other state-of-the-art metaheuristics.
Nevertheless, the performance of WOA is limited by its monotonous
search dynamics, i.e., only the encircling mechanism drives the search
which mainly focus the exploration in the landscape. Thus, WOA lacks of
the capacity of jumping out the of local optima. To address this problem,
this paper propose a memetic whale optimization algorithm (MWOA) by
incorporating a chaotic local search into WOA to enhance its exploitation
ability. It is expected that MWOA can well balance the global exploration
and local exploitation during the search process, thus achieving a better
search performance. Forty eight benchmark functions are used to verify
the efficiency of MWOA. Experimental results suggest that MWOA can
perform better than its competitors in terms of the convergence speed
and the solution accuracy.

Keywords: Evolutionary computation
Whale optimization algorithm · Chaos · Local search
Memetic computing · Optimization

1 Introduction

In recent years, metha-heuristic algorithms, e.g., particle swarm optimization
[1,2], differential evolution [3–5], gravitational search algorithm [6–9], artificial
bee colony algorithm [10], ant colony optimization [11,12], fireworks algorithm
[13,14], brain storm optimization [15–17], whale optimization algorithm (WOA)
[18] have attracted more and more interests due to its flexibilities in a wide suc-
cessful applications including optimization, prediction, classification, data min-
ing, internet of things, etc. The famous No-Free-Lunch theorems [19] demon-
strate that there is no such an algorithm which can outperform the others for all
c© Springer International Publishing AG, part of Springer Nature 2018
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problems, thus further indicating that the hybridization of different algorithms
seems to be promising for improving the performance of algorithms [20–25]. How-
ever, the issues of how to combine two or more different algorithms to achieve a
better performing hybrid algorithm which significantly outperforms its compo-
nent algorithms still remain very challenging.

In the literature, several frameworks have been proposed to combine differ-
ent algorithms for construct a hybrid and high-performing algorithm, e.g., in
a parallel manner [26], a cascade manner [27], an ensemble strategy [28], and a
memetic combination manner [29]. In this study, we propose a novel algorithm by
hybridizing the whale optimization algorithm (WOA) with chaotic local search
in a memetic combination manner.

WOA is a group-swarm intelligence technique applied algorithms. It mimics
hunting behavior of humpback whales to update the location of populations
for finding the optimal in search space. In exploration phase, humpback whales
will search for the prey which in WOA is considered as the potential solution
and encircle them. After that, other search agents will enhance their search
movements and update their positions according to the location of potential
solution. In the exploitation phase which aims for improving the solution quality
by searching the neighborhood of potential solution, the humpback whales will
use a search method called bubble-nets attacking method. This method has two
searching approaches: one is called shrinking encircling mechanism; the other is
spiral updating position. The two approaches, each has a probability of 50% to
be chosen for updating the positions of search agents. This choice mechanism
makes sure that search agents will keep their diversity in the whole search phase.
Although WOA has good search performance but still can’t avoid sticking into
local optima and has inferior solution quality.

On the other hand, chaos is a universal character of nonlinear dynamic sys-
tems and it is apparently an irregular motion, seemingly unpredictable random
behavior which can be exhibited by a deterministic nonlinear system in deter-
ministic conditions [30]. Because of ergodicity and randomicity, a chaotic system
changes randomly but eventually goes through every state of the search space if
the time duration is long enough. A chaotic local search is generated based the
chaotic systems.

For alleviating the inherent local optimal solutions trapping problem, the
memetic combination strategy is used in this study to combine chaotic local
search with WOA. The memetic combination strategy is considered as a union
of population-based global search and local improvements which are inspired by
Darwinian principles of natural evolution and Dawkins f notion of a meme [31].
The effectiveness of the hybrid algorithm relies on the use of WOA for globally
rough exploration and chaotic local search for locally fine improvements. To
testify the performance of the proposed memetic whale optimization algorithm
(MWOA), 23 widely used numerical test functions and 25 CEC2005 benchmark
functionsare tested. Experimental results show that MWOA can perform better
than WOA and other competitors in terms of the convergence speed and the
solution accuracy.
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2 Brief Description of Traditional WOA

As we know, whale is the biggest mammal in this world. Although they are
big, they have high intelligence quotient to guarantee the superb hunting skills
which include encircling prey and bubble-net attacking method. That is why
researchers can get the inspiration from humpback whales to create the whale
optimization algorithm [18]. The WOA has two main phases: exploration phase
and exploitation phase. In the latter phase, two hunting skills called encircling
prey and bubble-net attacking method are designed for improving the solution
quality by searching the neighborhood of the global best agent so far. Here is
the introduction about encircling prey and bubble-net attacking method.

2.1 Encircle Prey

Humpback whales will take an encirclement action to approach the location of
prey which is supposed as the global best agent so far in WOA, and other agents
will update their locations according towards it. The behavior is as follows:−→
D = |−→C −→

X∗(t) − −→
X (t)|, −→

X (t + 1) =
−→
X∗(t) − −→

A
−→
D , where

−→
X∗(t) is the global

best agent so far, t is the current iteration,
−→
A and

−→
C are coefficient vectors,−→

X is the position vector, and
−→
X∗ in each iteration will be replaced if a better

solution appears. And coefficient vectors are defined as follow:
−→
A = 2−→a −→r − −→a ,−→

C = 2−→r , where −→a is linearly decreased from 2 to 0 by the lapse of iteration
(in both exploration and exploitation phases) and −→r is a random vector and −→r
∈ [0, 1]. Otherwise p ≤ 0.5, the encircling prey and the exploration phase called
search for prey will be chosen according to the lapse of time.

2.2 Bubble-Net Attacking Method (Exploitation Phase)

For explaining this behavior of humpback whales, two methods are designed as
in the following.

Shrinking encircling mechanism: As Eq. (2) shows,
−→
A is decreased as well as

−→a is linearly decreased from 2 to 0. If the value of
−→
A is in [−1, 1], search agent

will appear in the place between position of original agent and global best agent
so far.

Spiral updating position: This method calculates the distance between whale
position (X,Y), and global best agent so far (X∗, Y ∗), then using a spiral equation
to simulate the helical structure of humpback whale movement. The equation is
as follows:

−→
X (t + 1) =

−→
D′(ebl) cos (2πl) +

−→
X∗(t) (1)

where
−→
D′ = |−→X∗(t) − −→

X (t)| represents the distance between ith whale and the
prey (global best agent so far), b is a constant for defining the shape of the
logarithmic spiral, and l is a random number in [−1, 1].
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For mimicking the simultaneous behavior that humpback whales move toward
the prey with shrinking circle and spiral-shaped path, WOA assumes that each
method has a probability of 50% to be chosen into the optimization process. The
mathematical model is as followed:

−→
X (t + 1) =

{ −→
X∗(t) − −→

A
−→
D, if p < 0.5−→

D′(ebl) cos (2πl) +
−→
X∗(t), if p ≥ 0.5

(2)

where p is a random number in [0, 1]. However as we know, it is far from enough
that an optimization algorithm only has exploitation phase. Hence, besides
the exploitation phase, WOA also has exploration phase which uses a random
dynamic method to keep the diversity of population and avoid premature con-
vergence.

2.3 Search for Prey (Exploration Phase)

Instead of the limitation in Eq. (2) which depends on the value of
−→
A in [−1, 1],

here in exploration phase, while
−→
A with the random values greater than 1 or less

than −1 will explore the space far away from the global best agent so far. To be
different from the exploitation phase, WOA choose a random agent instead of
the global best to generate a new one. And the model which will urge WOA to
implement global search is shown as follows:

−→
D = |−→C −→

X rand − −→
X |, −→

X (t + 1) =−→
X rand−−→

A
−→
D , where

−→
X rand is a random position vector (a random whale) chosen

from the current population.
As the method mentioned above, −→a is linearly decreased from 2 to 0, mak-

ing
−→
A in [−2, 2], depends on the value of

−→
A , WOA will randomly switch into

exploration or exploitation phase. This ensures WOA having a superior search
ability.

3 Memetic Whale Optimization Algorithm (MWOA)

In this study, 12 different chaotic maps are used to perform the chaotic local
search. These chaotic maps [8] include Logistic map, PWLCM, Singer map, Sine
map, Gaussian map, Tent map, Bernoulli map, Chebyshev map, Circle map,
Cubic map, Sinusoidal map, and ICMIC. The details of these chaotic maps can

Table 1. Success memory.

Index Chaotic map 1 Chaotic map 2 ... Chaotic map J

1 ns1,T−LI ns2,T−LI ... nsk,T−LI

2 ns1,T−LI+1 ns2,T−LI+1 ... nsk,T−LI+1

... ... ... ... ...

LI ns1,T−1 ns2,T−1 ... nsk,T−1
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Table 2. Failure memory.

Index Chaotic map 1 Chaotic map 2 ... Chaotic map J

1 ns1,T−LI ns2,T−LI ... nsk,T−LI

2 ns1,T−LI+1 ns2,T−LI+1 ... nsk,T−LI+1

... ... ... ... ...

LI ns1,T−1 ns2,T−1 ... nsk,T−1

be refer to [8]. In the proposed MWOA, with respect to each current global best
agent Xg, one chaotic map is selected from 12 chaotic maps according to the
probability learned from a success rate and a failure rate which are calculated
from a success memory and a failure memory. We previously set a learning
iteration (LI) of which number is 50. In these previous iterations, chaotic maps
are randomly selected like it in MWOA-R but the distinction is the result will be
marked in the success and failure memory depending on this chaotic local search
is successful or not. The method is used on the current global best agent Xg to
generate a new agent Xg′ for comparing the fitness of kth chaotic map to decide
whether Xg would be taken the place of by Xg′ . If Xg has been replaced, we call
it a success and plus one in the success memory while other chaotic maps will
get 0. Otherwise plus one in the failure memory and the same for other chaotic
maps. Here is the success memory Table 1 and failure memory Table 2.

If iteration number is over 50, the first column of Tables 1 and 2 will be
removed to make space for the newest one. At the first, each chaotic map can be
chosen at an equal probability 1/J . When the memory started to be recorded,
the probabilities of which chaotic map to be chosen will be renew after each
record. It is calculated by:

pj,T =
Sj,T∑T

j=1 Sj , T
(3)

Sj,T =
∑T−1

t=T−LI nsj,t∑T−1
t=T−LI nsj,t +

∑T−1
t=T−LI nfj,t

+ ε (4)

where j = 1, 2, ..., 12;T > LI. pj,T denotes the probability of each chaotic map
can be selected.

∑T−1
t=T−LI nsj,t calculates the total number of j − th chaotic

map successfully generates a new agent which can replace the current global
best agent Xg.

∑T−1
t=T−LI nfj,t is the total number of the new agents which can

not replace the current global best agent. Equation (4) calculates the success
rate and ε = 0.01 is for avoiding a null one. It is obvious that the chaotic map
with higher success rate will has a higher chance to be selected to generate new
agents.

The selected chaotic map is to generated a turbulence for the current global
best solution Xg in the population. It is aimed to perform a local improvement
for Xg according to
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Fig. 1. (a) 3D graph of the multimodal function F8 in 2D; (b) The 2-dimensional
sketch of the search trajectory for the multimodal function F8.

Xj
g′(k) = Xg(k) + r(ub − lb)(z(j) − 0.5) (5)

where j = 1, 2, ..., 12 stands for the number of each single chaotic map, ub
and lb are the upper bound and lower boundary respectively. z(j) is a chaotic
variable generated by jth chaotic map. r ∈ (0, 1) is chaotic search radius. It
should be noticed that if the acquired value of Xj

g′(k) in Eq. (5) locates out
of the search neighborhood [Xg − r(ub − lb),Xg + r(ub − lb)]n, these values
will be reset to the closest boundary value. In this range, the current global
best agent is labeled as Xg, chaotic local search visits the candidate agent
Xg(k) = X1

g (k), ...Xd
g (k), ...Xn

g (k), k = 1, 2, ..., where k denotes the iteration
number and n is the dimension. In each iteration, chaotic local search will search
all dimensions of Xg in turn to generate a new agent Xg′(k). It should be noted
that the proposed MWOA using the above described success- rate-based selec-
tion of chaotic maps is denoted as MWOA-M. Alternatively, the two variants of
MWOA where the probability pj,T of each chaotic map to be selected is generated
uniformly and equally to be 1 is called MWOA-R and MWOA-P, respectively.
In addition, only a single chaotic map is used in the framework of MWOA for
all used 12 maps is called MWOA-1, MWOA-2, ..., MWOA-12 sequentially.

After each chaotic local search, if the fitness of the new agent Xj
g′(k) is better

than current global best fitness value, Xj
g′(k) will replace Xg(k) to get into next

iteration. And we call it is a successful local search. By the lapse of iteration, it
is more efficient to narrow the search radius as: r = ρr where ρ is a shrinking
parameter which equals to 0.988.

4 Experiments

In the experimental period, we use benchmark functions and real world problems
to compare the performance between WOA and MWOAs. We choose 23 mostly
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used numerical functions which are divided into unimodal and multimodal func-
tions, where unimodal functions test the convergence speed of optimization algo-
rithms and multimodal functions can check out whether optimization algorithms
can avoid sticking into local optimal or not. The numerical functions can intu-
itively show the improvements in search ability compared with WOA. Figure 1(a)
illustrates the property of multimodal F8. Then we also use 25 CEC2005 com-
posite benchmark functions [32]. Because they are rotated and shifted so that
the problem of optimal usually lying at the center or boundary of search range
can be solved. Also hybrid composition functions can maximize the embodiment
of search ability. It should be pointed out that we perform a contrast experiment
by using a uniform distribution in [0, 1] and a standard normal distribution with
mean 0 and variance 1 to compare the difference between chaotic sequences and
random sequences and test the effect of chaos. The local search using uniform
distribution is called WOA-UD, and the other is named WOA-ND.

Fig. 2. Search performance of the algorithms for comparison on F7 and F43.

The population size is 30, and FES is set to D∗5000, while D is the dimension
of test function. Each function will be tested for 30 independent runs and their
statistical data are listed blow from the Tables 4 and 5. We use r = r∗ρ (where r
is set to 0.00001 and ρ is 0.988) as a common shrinking search radius in MWOAs.
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Fig. 3. Box-and-whisker diagrams of F7 and F43.

Table 3. Average Rankings of the algorithms based on Friedman test.

Algorithm Ranking (F1–F48) Ranking (F24–F48) p-value (F1–F48) p-value (F24–F48)

WOA 10 10.14 0.006826 0.026969

MWOA-R 7.05 6.80 - -

MWOA-P 11.19 11.68 0.000148 0.00123

MWOA-M 9.09 8.82 0.060991 0.180969

MWOA-1 8.95 8.66 0.081905 0.218018

MWOA-2 9.63 8.52 0.018222 0.254662

MWOA-3 9.22 9.52 0.046782 0.071646

MWOA-4 10.01 9.6 0.006633 0.06369

MWOA-5 8.71 8.26 0.128541 0.33359

MWOA-6 10.41 11.1 0.002084 0.004403

MWOA-7 9.53 9.54 0.022904 0.069584

MWOA-8 8.97 9.36 0.078602 0.089999

MWOA-9 9.97 10.22 0.007439 0.023516

MWOA-10 9.93 11.18 0.008333 0.003723

MWOA-11 9.33 8.76 0.036312 0.194273

MWOA-12 9.25 8.46 0.043701 0.27161

WOA-UD 9.75 9.96 0.013295 0.03637

WOA-ND 10.02 10.42 0.006444 0.016512

In Tables 4 and 5, the best value of each function is bolded for clarity. In
each function, best value belongs to MWOAs rather than conventional WOA.
And mostly concentrated on MWOA-R, MWOA-P and MWOA-M.
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Table 4. Experimental results of benchmark functions (F1–F24) using traditional
WOA, MWOA-S, MWOA-R, MWOA-P, CGSA-M, WOA-UD and WOA-ND.
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Table 5. Experimental results of benchmark functions (F25–F48) using traditional
WOA, MWOA-S, MWOA-R, MWOA-P, MWOA-M, WOA-UD and WOA-ND.
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To more precisely assess the performance of each algorithm, Friedman test
is proposed as a statistical analysis method to rank each one according to their
search results. The Friedman test is a nonparametric statistical analysis method.
It is used to test the performance between different groups. The group with better
performance will get lower rank in each benchmark function. In our experiment,
Friedman test is used to assess test functions separately.

Table 3 summarizes the average rank each algorithm obtained in total 48
benchmark test functions (from F1–F48) and independently lists the results of
CEC2005 benchmark functions (from F24–F48) because of the difficulty. Based
on this table, it is obvious that our proposed algorithms MWOA-R gets the top
rank in both all functions and CEC2005 test functions. It means that MWOA-
R outperforms MWOA-S and conventional WOA and testifies that the method
of randomly implement chaos into local search is a effective improvement and
worth developing in our following researches.

The convergence graphs of F3, F6, F43 and F47 are exhibited in Fig. 2. The
upper side is the average best-so-far solutions, and the lower side is the ratio
of the best-so-far solutions by the number of function evaluations. Two kinds of
convergence graphs can directly exhibit convergence speed between conventional
WOA and MWOAs. These graphs show the performance of MWOA-R is much
better than others. This point also can be seen from the boxplots in Fig. 3.

Table 3 also exhibits the p-values when MWOA-R is considered as the control
algorithm to compare with the rest of the algorithms. Under the condition of
considering α = 0.5, MWOA-R is better than 13/17 algorithms from F1–F48
and is better than 7/17 algorithms from F24–F48.

When considering α = 0.1, MWOA-R can perform better than 16/17 algo-
rithms from F1–F48 and perform better than 11/17 algorithms from F24–F48.

All these statistical analysis results can demonstrate that MWOA-R is the
most promising and the most competitive and can outperform the conventional
WOA with no doubt.

5 Conclusions

In our paper, we combine chaos with conventional meta-heuristic algorithm
WOA to yield a new improved version of WOA, called MWOA. Main conclu-
sions drawn from the experiments: As in Friedman test, MWOA-R gets the top
rank among all the tested algorithms, the combination of multiple chaos has
been verified considerable methods to enhance the performance of chaotic local
search. Most single chaos embedded MWOAs perform better than conventional
WOA and it indicates that chaotic local search can improve the performance of
WOA.
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A Novel Memetic Whale Optimization Algorithm for Optimization 395

References

1. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley,
Chichester (2006)

2. Yu, H., Xu, Z., Gao, S., Wang, Y., Todo, Y.: PMPSO: a near-optimal graph pla-
narization algorithm using probability model based particle swarm optimization.
In: 2015 IEEE International Conference on Progress in Informatics and Computing
(PIC), pp. 15–19. IEEE (2015)

3. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

4. Gao, S., Wang, Y., Wang, J., Cheng, J.J.: Understanding differential evolution:
a poisson law derived from population interaction network. J. Comput. Sci. 21,
140–149 (2017)

5. Shi, Q., Chen, W., Jiang, T., Shen, D., Gao, S.: Handling multiobjectives with
adaptive mutation based ε-dominance differential evolution. In: Tan, Y., Shi, Y.,
Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol.
9140, pp. 523–532. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20466-6 55

6. Ji, J., Gao, S., Wang, S., Tang, Y., Yu, H., Todo, Y.: Self-adaptive gravitational
search algorithm with a modified chaotic local search. IEEE Access 5, 17881–17895
(2017)

7. Gao, S., Vairappan, C., Wang, Y., Cao, Q., Tang, Z.: Gravitational search algo-
rithm combined with chaos for unconstrained numerical optimization. Appl. Math.
Comput. 231, 48–62 (2014)

8. Song, Z., Gao, S., Yu, Y., Sun, J., Todo, Y.: Multiple chaos embedded gravitational
search algorithm. IEICE Trans. Inf. Syst. 100(4), 888–900 (2017)

9. Li, S., Jiang, T., Chen, H., Shen, D., Todo, Y., Gao, S.: Discrete chaotic gravita-
tional search algorithm for unit commitment problem. In: Huang, D.-S., Jo, K.-H.
(eds.) ICIC 2016. LNCS, vol. 9772, pp. 757–769. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42294-7 67

10. Karaboga, D.: Artificial bee colony algorithm. Scholarpedia 5(3), 6915 (2010)
11. Gao, S., Wang, Y., Cheng, J., Inazumi, Y., Tang, Z.: Ant colony optimization with

clustering for solving the dynamic location routing problem. Appl. Math. Comput.
285, 149–173 (2016)

12. Gao, S., Wang, W., Dai, H., Li, F., Tang, Z.: Improved clonal selection algorithm
combined with ant colony optimization. IEICE Trans. Inf. Syst. 91(6), 1813–1823
(2008)

13. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13495-1 44

14. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks
algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 27–41 (2017)

15. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang,
G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21515-5 36

16. Wang, Y., Gao, S., Yu, Y., Xu, Z.: The discovery of population interaction with
a power law distribution in brain storm optimization. Memetic Comput. (2017).
https://doi.org/10.1007/s12293-017-0248-z

17. Yu, Y., Gao, S., Cheng, S., Wang, Y., Song, S., Yuan, F.: CBSO: a memetic brain
storm optimization with chaotic local search. Memetic Comput. (2017). https://
doi.org/10.1007/s12293-017-0247-0

https://doi.org/10.1007/978-3-319-20466-6_55
https://doi.org/10.1007/978-3-319-20466-6_55
https://doi.org/10.1007/978-3-319-42294-7_67
https://doi.org/10.1007/978-3-319-42294-7_67
https://doi.org/10.1007/978-3-642-13495-1_44
https://doi.org/10.1007/978-3-642-21515-5_36
https://doi.org/10.1007/s12293-017-0248-z
https://doi.org/10.1007/s12293-017-0247-0
https://doi.org/10.1007/s12293-017-0247-0


396 Z. Xu et al.

18. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95,
51–67 (2016)

19. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

20. Grosan, C., Abraham, A.: hybrid evolutionary algorithms: methodologies, architec-
tures, and reviews. In: Abraham, A., Grosan, C., Ishibuchi, H. (eds.) Hybrid Evo-
lutionary Algorithms. SCI, vol. 75, pp. 1–17. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73297-6 1

21. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput.
Intell. 9(3), 268–299 (1993)

22. Liao, T.W.: Two hybrid differential evolution algorithms for engineering design
optimization. Appl. Soft Comput. 10(4), 1188–1199 (2010)

23. Kao, M.Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms.
J. Algorithms 29(1), 142–164 (1998)

24. Gao, S., Tang, Z., Dai, H., Zhang, J.: A hybrid clonal selection algorithm. Int. J.
Innov. Comput. Inf. Control 4(4), 995–1008 (2008)

25. Wang, S., Aorigele, Liu, G., Gao, S.: A hybrid discrete imperialist competition algo-
rithm for fuzzy job-shop scheduling problems. IEEE. Access 4, 9320–9331 (2016)

26. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(2),
997–1006 (2004)

27. Gong, Y.J., Li, J.J., Zhou, Y., Li, Y., Chung, H.S.H., Shi, Y.H., Zhang, J.: Genetic
learning particle swarm optimization. IEEE Trans. Cybern. 46(10), 2277–2290
(2016)

28. Tasgetiren, M.F., Suganthan, P.N., Pan, Q.K.: An ensemble of discrete differential
evolution algorithms for solving the generalized traveling salesman problem. Appl.
Math. Comput. 215(9), 3356–3368 (2010)

29. Hart, W.E., Krasnogor, N., Smith, J.E.: Recent advances in memetic algorithms,
vol. 166. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-32363-5

30. Kellert, S.H.: In the wake of chaos: unpredictable order in dynamical systems.
University of Chicago press (1994)

31. Liu, B., Wang, L., Jin, Y.H.: An effective pso-based memetic algorithm for flow
shop scheduling. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(1), 18–27
(2007)

32. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. KanGAL report 2005005, p. 2005 (2005)

https://doi.org/10.1007/978-3-540-73297-6_1
https://doi.org/10.1007/978-3-540-73297-6_1
https://doi.org/10.1007/3-540-32363-5


Galactic Gravitational Search Algorithm
for Numerical Optimization

Sheng Li1, Fenggang Yuan2, Yang Yu2, Junkai Ji2, Yuki Todo3,
and Shangce Gao2(B)

1 College of Computer Science and Technology, Taizhou University,
Taizhou 225300, Jiangsu, China

2 Faculty of Engineering, University of Toyama, Toyama, Japan
gaosc@eng.u-toyama.ac.jp

3 Faculty of Electrical and Computer Engineering,
Kanazawa University, Kanazawa-shi 920-1192, Japan

Abstract. The gravitational search algorithm (GSA) has proven to be
a good optimization algorithm to solve various optimization problems.
However, due to the lack of exploration capability, it often traps into
local optima when dealing with complex problems. Hence its conver-
gence speed will slow down. A clustering-based learning strategy (CLS)
has been applied to GSA to alleviate this situation, which is called galac-
tic gravitational search algorithm (GGSA). The CLS firstly divides the
GSA into multiple clusters, and then it applies several learning strate-
gies in each cluster and among clusters separately. By using this method,
the main weakness of GSA that easily trapping into local optima can
be effectively alleviated. The experimental results confirm the superior
performance of GGSA in terms of solution quality and convergence in
comparison with GSA and other algorithms.

Keywords: Gravitational search algorithm
Clustering-based learning strategy
Population-based intelligent algorithm

1 Introduction

Meta-heuristic algorithms have developed dramatically in the past few decades.
They generally increase speed by sacrificing the optimality, accuracy, or com-
pleteness of solutions, so they are faster and more efficient in solving problems
than traditional methods. Meta-heuristic algorithms are often used to solve com-
putationally complex problems with clear simplifications and methods. They can
produce solutions on their own and their goal is to find a solution that is the
closest to the optimum within a reasonable time frame. Some well-known meta-
heuristic algorithms contains particle swarm optimization (PSO) [17], genetic
algorithms (GA), artificial neural networks, and so on. These algorithms have
drawn more and more attention since they have been proposed. Nature-inspired
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optimization algorithms [15] constitute an important branch of meta-heuristic
algorithms and they have been developed a lot in these years. Most of the meta-
heuristic algorithms (such as PSO, brain storm optimization [14,18], gravita-
tional search algorithm (GSA) [11] and firefly algorithm) belong to this branch.

GSA which is firstly proposed in 2009 has exhibited great performance due
to its strong search ability. It is a swarm intelligent algorithm based on the law
of gravity [8]. It reveals that there is an attractive force between any two objects,
and this force is proportional to their masses and inversely proportional to the
square of the distance between them. In GSA, each candidate solution is treated
as a single object. In each iteration, objects attract each other under the force
of gravity and exchange information with each other. Then objects update their
positions by moving randomly to the areas previously visited by others. The
Object with higher quality (representing better candidate solutions) are more
attractive, and make others move toward them, resulting in faster convergence
speed and better optimal solutions. However, it is undeniable that GSA still has
some inherent drawbacks. For example, it can easily fall into local optima, which
means that it is difficult to get better solutions in the subsequent search phases.
Exploration requires an algorithm that searches extensively for the optimal solu-
tion, and exploitation requires algorithms to search locally in the current space.
They are conflicting, which means emphasizing one will sacrifice the other. How
to maintain the proper balance between exploration and exploitation has become
a critical issue for all optimization algorithms [3–6,12]. In this work, we apply
a clustering-based learning strategy [1] to the GSA to improve its exploration
capability and maintain a good balance with subsequent exploitation capabil-
ity. In the clustering-based learning strategy, a cluster construction is used to
divide the whole population into several clusters, an intra-galaxy learning strat-
egy is devoted to evolving individuals to move toward heavier objects (i.e., better
solutions), and inter-galaxy learning strategy is implemented to realize informa-
tion exchanges among different clusters. By doing so, the information exchanges
among clusters are controlled, assuring to some extent that the population diver-
sity can be maintained. Experiment is conducted based on 23 traditional bench-
mark functions and 25 CEC2005 test functions. Simulation results suggest that
the proposed GGSA can perform better GSA and other algorithms in terms of
solution quality and convergence speed.

This paper is structured as follows. In Sects. 2, the basic concepts of GSA
and clustering-based learning strategy (CLS) are introduced, respectively. In
Sect. 3, we introduce the improved GSA with CLS, which is defined as galactic
gravitational search algorithm (GGSA). In Sect. 4, experiments and results are
exhibited. The general conclusions and plans will be presented in Sect. 5.

2 Gravitational Search Algorithm

GSA is a newly developed stochastic search algorithm based on the law of gravity
and mass interactions. This is a method that simulates mass interactions when
searching for multidimensional spaces under the influence of gravitation. In GSA,
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all objects attract each other by the power of gravity, which forces them to move
globally to the objects with greater masses.

We assume there are K objects, and define the position of the ith object by:
Xi = (x1

i , ..., x
d
i , ..., x

n
i ) for i = 1, 2, ...,K, where xd

i represents the position of
the ith object in the dth dimension. n is the dimension of the search space.

The force acting on the object i from the object j at iteration t is defined as
below:

F d
ij(t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + ε

)(xd
j (t) − xd

i (t)), (1)

where Mpi is the passive gravitational mass of the object i. Maj denotes the
active gravitational mass of the object j. G(t) indicates the current gravitational
constant. ε is a small constant to avoid the null value. Rij(t) is the Euclidean
distance between the objects i and j. It is defined as Rij(t) = ‖Xi(t),Xj(t)‖2.

The total force acting on the object i in the dth dimension is the sum of
the dth components of the forces from all other objects. To assign a stochastic
characteristic to GSA, we add a random weight to all forces that from all other
objects, thus the total force F d

i can be defined as

F d
i (t) =

N∑

j=1

randjF
d
ij(t), j �= i (2)

where randj is a random variable in the interval [0, 1].
Hence the acceleration ad

i (t) of the object i at iteration t, and in dimension
dth is expressed as ad

i (t) = Fd
i (t)

Mii(t)
, where Mii is the inertial mass of the object

i. The next velocity and position of object i at iteration t + 1 are calculated as
vd

i (t+1) = randi × vd
i (t)+ ad

i (t), xd
i (t+1) = xd

i (t)+ vd
i (t+1), where vd

i denotes
the current velocity of object i, xd

i is the current position of object i, randi

represents a random variable in the interval [0, 1], which is utilized to provide a
random characteristic to the search.

The gravitational constant G is initialized at the beginning and decreases
over time to adjust the search accuracy.

In other words, G is a function of the initial value G0 and iteration t: G(t) =
G0e

−α t
T , where G0 denotes the initial value of G. α is a constant value. T

represents the maximum iteration.
Gravitational and inertial masses are calculated by fitness values. Objects

with heavier masses mean stronger attractive force. This means that the better
objects are more attractive and move more slowly. Assuming that the grav-
itational and inertial masses are equal, the map of fitness can be used to
calculate the value of masses. We use the following equation to update the
gravitational and inertial mass: Mai = Mpi = Mii = Mi, i = 1, 2, ..., N ,
mi(t) = fiti(t)−worst(t)

best(t)−worst(t) , Mi(t) = mi(t)∑N
j=1 mj(t)

, where fiti(t) is the fitness value

of the object i at iteration t. best(t) and worst(t) are the best and worst fitness
values of the object i, respectively.
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For a minimization problem, worst(t) and best(t) are defined as best(t) =
minj∈{1,...,N} fitj(t) and worst(t) = maxj∈{1,...,N} fitj(t).

Reducing the number of objects in the equation over time is a way to achieve
a good balance between exploration and exploitation. Therefore, we suggest
only a set of objects that with greater masses can apply the force to others.
However, we need to exercise caution when using this policy, as this may reduce
the exploration capacity while increase the exploitation capacity.

To avoid trapping into local optima, the exploration must be used at the
beginning of the algorithm. Exploration must fade out and exploitation must fade
in during with the convergent procedure. In order to improve the performance
of GSA via controlling exploration and exploitation, only the Kbest agents will
attract the others. Kbest is a function of time in which the initial value K0

declines over time. In this way, all objects release the force at the beginning.
Kbest decreases linearly as time goes, and only one object can leave and apply
force to the others at the end of the convergent procedure. Therefore, Eq. (2)
can be modified as: F d

i (t) =
∑

j∈Kbest,j �=1 randjF
d
ij(t), where Kbest is the set of

first K objects with the best fitness values and heaviest masses.

3 Galactic Gravitational Search Algorithm (GGSA)

As we mentioned before, GSA has the following drawbacks: (1) easily fall into
the local optimum; (2) lack of the initial exploration capability which can lead
to slow convergence; (3) exploration capacity is insufficient which can lead to
fail to get the optimal solutions.

In this work, we apply a clustering-based learning strategy to the initial popu-
lation of GSA. It can improve the exploration capability of the initial population
and maintain the diversity of information among the populations. Good balance
can be maintained between exploration and exploitation capabilities of GSA at
the same time.

We define the improved GSA with CLS as galactic gravitational search algo-
rithm (GGSA) and the principle of GGSA is shown in Fig. 1.

In GSA, information among objects transfer with each other via the grav-
itational forces, hence, objects could constantly approach the optimal solution
through cooperation and competition in search space.

However, the exchanges of information among individuals in the initial stage
of the algorithm can not be fully utilized. Too many redundant searches lead
to inefficient search ability of the algorithm. In order to improve the search
efficiency, we need to assign more effective information to some representa-
tive individuals to increase their influence. In this section, we will introduce
a method called clustering-based learning strategy (CLS) [1] that could pro-
mote the exchange rate of information between individuals to further enhance
the performance of GSA. CLS is divided into three parts: cluster construction,
intra-galaxy learning strategy and inter-galaxy learning strategy.
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3.1 Galaxy Construction

In this research, we utilize the K-means clustering algorithm [7,9] which is widely
known as one of the most commonly used clustering methods to make the cluster
construction. K-means clustering algorithm divides a set of n objects into K
clusters which is an input parameter, and makes objects have high similarity
within the same cluster while objects have low similarity in different clusters.
The steps of K-means clustering are shown as below:

(1) K individuals are randomly selected as the initial seed, and the initial seg-
mentation is established by using the initial seed as the center of mass in
the initial cluster.

(2) Each individual is assigned to the nearest centroid to form a cluster.
(3) Keep the number of clusters unchanged. Recalculate the new centroid for

each cluster based on the Euclidean distance.
(4) Repeat steps (2) and (3) until the change of the clusters stops or the stop-

ping condition is met.

In K-means clustering algorithm, clustering similarity is based on the mean value
of the objects which can be regarded as the “center of gravity” in the cluster.
Initial population of GSA are divided into K clusters, just like the stars in the sky
are divided into their own galaxies. Thus we call the combination of GSA and K-
means clustering algorithm as galactic gravitational search algorithm (GGSA).

Start

Generate initial population

Evaluate the fitness for each agent

Update the G, best and worst of the population

Calculate M and a for each agent

Update velocity and position

Meeting end of criterion ?

Return best solution

Stop

Cluster construction

Intra-galaxy learning strategy

Inter-galaxy learning strategy

Yes

No

Fig. 1. General principle of GGSA.
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In GGSA, each cluster is regarded as galaxy and each object is considered as a
star in the galaxy.

3.2 Intra-galaxy Learning Strategy

This section explains the learning mechanism used within the galaxy which is
called intra-galaxy learning strategy. Stars in the same galaxy exhibit similar
status and behavior to improve their performance. Therefore, it would be bene-
ficial to enhance the search capabilities of GGSA by enhancing the information
exchange rate between the stars within the galaxy. The way to share valid infor-
mation via strengthening internal exchange within galaxies has proven to be an
effective interaction mode for optimization problems. Interaction of information
is operated through the following two steps.

Galactic Replacement Operator: In each galaxy, compare the fitness of the
galactic center with the worst star and replace the worst star with the galactic
center if the fitness of galactic center is better than the fitness of the worst star.

Internal Learning Operator: Each star exchanges information with the best
stars in the same galaxy, hence a trial star is produced through a learning opera-
tion (note that the details of the learning process will be given later). After that,
one-on-one survivor selection is used between each star and the corresponding
trial star. The best stars in each galaxy have the most valuable information, so
the best stars are chosen to exchange information with each star in the galaxy.
In this way, each star can get more useful information from better stars apart
from the best star in each galaxy. Therefore, they can have a greater possibility
of moving to a more suitable space promising with better solutions.

3.3 Inter-galaxy Learning Strategy

This section explains the learning mechanisms of exchanging information among
galaxies which is called inter-galaxy learning strategy. As different galaxies are
concentrated in different parts of the search space, the search can be directed to
more promising search areas by combining the valid information of each galaxy.
The combination about the valid information of different galaxies has proven to
be an effective way to explore the search space. This learning strategy consists
of two steps: exterior learning operator and global learning operator.

Exterior Learning Operator: Each galaxy is represented by the best star in
the galaxy, then exchanges information with the global best star of all galaxies
to generate a trial star. The reason for this step is that the global best star
is closest to the most promising areas of the search space, hence each galaxy
can quickly move toward more promising areas by exploiting the information
from the global best star. This step is similar to the internal learning operator
described in the previous section.



Galactic Gravitational Search Algorithm for Numerical Optimization 403

Global Learning Operator: The global best star interacts with all galactic
centroids. The goal is that the global best star can synthesize those information
for better performance because the centroid of all galactic centroids integrates
information from the entire population.

In the two operators above, the test stars are generated through the learning
operation and one-on-one survivor selections are made between each star and
the corresponding trial star. In addition, the inter-cluster learning strategy con-
ducting after the intra-cluster learning strategy can effectively prevent the loss
of population diversity.

3.4 Learning Operation

In the two learning strategies described above, the exchange of information takes
place through a learning operation that determines the way in which information
is obtained from better objects.

Firstly, a uniformly random number R ∈ (0, 1) is generated. rand(0.5, 1)
represents a uniformly distributed random number in (0.5, 1) and the test subject
is generated in a region between 0.5 ∗ (Sb + Si) and Si or its symmetry region
according to R is less than 0.5 or not to maintain the diversity of the population.
In this way, vector differences and perturbations are the same around a better
star. Therefore, the learning process has the characteristic of being rotationally
invariant.

4 Experiments and Results

To evaluate the performance of GGSA, we choose 48 benchmark functions which
are consisted of the most commonly used 23 standard benchmark functions and
CEC2005 benchmark function suit.

4.1 Experiment with 23 Standard Benchmark Functions

In this section, we express the experiments and results that employed with 23
standard benchmark functions [16].

We compared the experimental results of GGSA, GA, PSO and original GSA.
The results obtained from the 23 standard benchmark functions are shown in
Table 1, where best represents the best-so-far solution of 30 independent runs and
mean is the average solution. For the same test function, we use the red font
to label out the best solution of the four algorithms. The experimental results
obtained of GGSA are significantly better than the other three algorithms.

To verify this conclusion, we performed Wilcoxon rank-sum test [2] on the
experimental results.

The Wilcoxon test result on the experimental results above is shown in
Table 2, and the p-value is 1.1683E-5 which means the performance of GGSA is
far superior to that of GSA.
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Table 1. Experimental results of 23 standard benchmark functions

GA PSO GSA GGSA

F1 Best 9.6732E+00 1.1100E−04 6.5369E−17 5.7638E − 17

Mean 2.3159E+01 2.3000E−03 1.2064E−16 1.1559E − 16

F2 Best 7.1230E−01 6.7800E−03 3.1680E − 08 3.2595E−08

Mean 1.1123E+00 2.0021E+00 5.6314E−08 5.2552E − 08

F3 Best 3.9578E+02 1.3977E + 02 2.6443E+02 1.6462E+02

Mean 5.6168E+02 4.1145E + 02 5.1558E+02 5.1005E+02

F4 Best 9.4512E+00 5.4789E+00 9.5779E − 09 1.1052E−08

Mean 1.1673E+01 8.2144E+00 1.6790E+00 9.3929E − 01

F5 Best 5.4487E+02 8.2199E+01 2.6009E+01 2.3921E + 01

Mean 1.1101E+03 3.7000E+05 4.8754E+01 3.2823E + 01

F6 Best 4.1165E+00 6.1200E−03 0.0000E + 00 0.0000E + 00

Mean 2.4032E+01 9.0000E − 04 6.6667E−02 6.6667E−02

F7 Best 4.3100E−02 2.9800E−02 3.1676E−02 2.4149E − 02

Mean 5.6700E−01 4.1200E − 02 6.0760E−02 5.5661E−02

F8 Best −1.2000E + 04 −1.0600E+04 −3.5455E+03 −3.8695E+03

Mean −1.2000E + 04 −9.9800E+03 −2.5046E+03 −2.7293E+03

F9 Best 3.7689E + 00 3.5542E+01 1.8904E+01 1.5919E+01

Mean 5.9876E + 00 5.5126E+01 2.7129E+01 2.7063E+01

F10 Best 1.3425E+00 3.4000E−03 4.8418E − 09 5.1384E−09

Mean 2.1458E+00 8.9000E−03 7.9794E−09 7.8681E − 09

F11 Best 1.0479E+00 6.0000E − 04 3.3832E+00 3.0885E+00

Mean 1.1578E+00 1.2300E − 02 8.5573E+00 7.8041E+00

F12 Best 1.3900E−02 6.0000E−04 4.6969E−19 4.3708E − 19

Mean 5.6200E − 02 2.3450E−01 1.9735E−01 1.4285E−01

F13 Best 2.5100E−02 1.3400E − 31 6.9852E−18 3.6849E−18

Mean 8.7200E−02 3.1100E − 18 1.7005E−01 8.3418E−02

F14 Best 9.9800E−01 9.9800E−01 9.9800E−01 9.9800E − 01

Mean 9.9800E−01 9.9800E−01 4.6128E+00 3.9174E + 00

F15 Best 1.1000E−03 3.0700E−04 9.8339E − 04 1.3091E−03

Mean 4.0000E−03 2.8000E − 03 4.1833E−03 3.3619E−03

F16 Best −1.0313E+00 −1.0316E + 00 −1.0316E + 00 −1.0316E + 00

Mean −1.0313E+00 −1.0316E + 00 −1.0316E + 00 −1.0316E + 00

F17 Best 3.9790E−01 3.9790E−01 3.9789E − 01 3.9789E − 01

Mean 3.9960E−01 3.9790E−01 3.9789E − 01 3.9789E − 01

F18 Best 3.0000E+00 3.0000E + 00 3.0000E + 00 3.0000E + 00

(continued)
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Table 1. (continued)

GA PSO GSA GGSA

Mean 5.7500E+00 3.0000E + 00 3.0000E + 00 3.0000E + 00

F19 Best −3.8628E+00 −3.8628E+00 −3.8628E+00 −3.8628E+00

Mean −3.8627E+00 −3.8628E + 00 −3.8628E + 00 −3.8628E + 00

F20 Best −3.3220E + 00 −3.3220E+00 −3.3220E+00 −3.3220E+00

Mean −3.3098E + 00 −3.2369E+00 −3.3220E+00 −3.3220E+00

F21 Best −1.0153E+01 −1.0153E+01 −1.0153E+01 −1.0153E + 01

Mean −5.6605E+00 −5.7496E+00 −7.4498E+00 −7.9121E + 00

F22 Best −1.0403E+01 −1.0403E+01 −1.0403E+01 −1.0403E + 01

Mean −7.3421E+00 −9.1118E+00 −1.0303E+01 −1.0368E + 01

F23 Best −1.0536E+01 −1.0536E+01 −1.0536E+01 −1.0536E + 01

Mean −9.7634E+00 −9.7364E+00 −1.0276E+01 −1.0536E + 01

Table 2. Results obtained by the Wilcoxon test for algorithm GGSA

VS R+ R− p-value α = 0.05

GSA 265.5 10.5 1.1683E−5 YES

Some convergence charts are shown in Fig. 2. The green line represents the
convergence curve of GGSA, and the red dotted line represents the convergence
curve of GSA. Obviously, GGSA converges faster than GSA and can find better
solutions in the search space.

Box-and-whisker chart of some of the 23 standard benchmark functions are
displayed in Fig. 3. The top line represents the maximum solution, The bottom
line represents the minimum solution, The upper edge of the box represents the
value of three quarters. The lower edge of the box represents a quarter-value.
The red line represents the median line. The closer the upper and lower bounds
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Fig. 2. Convergence charts of F1 and F11 in 23 benchmark functions.
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Fig. 3. Box-and-whisker charts of F1 and F11 in 23 standard benchmark functions.

of the box, the more stable the result of the solution is. At the same time, the
lower the position of the box, the better the solution is. It can be seen from the
chart that the convergence of GGSA is more stable and better than GSA.

4.2 Experiment of CEC2005 Benchmark Functions

In this section, we utilize the CEC2005 composite benchmark functions [13]
to test the performance of GGSA. Firstly, a brief introduction to the CEC2005
composite benchmark functions is made. Function F1 to F5 are shifted unimodal
functions; Function F6 to F12 are multimodal basic functions; Function F13 and
F14 are multimodal expanded functions. Function F15-F25 are hybrid composi-
tion functions. The user-defined parameters are set as follows: the population
size (N) is set to be 100, the dimension of functions is 30, the maximum number
of iterations (1500) is chosen as the stopping criteria. The algorithm executes
independently on each test function for 30 times.

A contrast on the experimental results of GGSA, whale optimization algo-
rithm (WOA) [10] and original GSA is shown in Table 3, where mean represents
the average solution of 30 independent runs and Std is the Standard deviation.
As the same, we highlight the best results in red font. The result of the Wilcoxon
test is shown in Table 4. It is obvious that the experimental results of GGSA are
much better than those of the WOA and the original GSA.

We also displayed some convergence charts and box-whisker charts in Figs. 4
and 5. The conclusions of those charts also demonstrate the convergence stability
and the capability to find better solutions of GGSA.
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Table 3. Experimental Results of CEC2005

WOA GSA GGSA

Mean Std Mean Std Mean Std

F1 −4.44E+02 9.86E+00 −4.50E+02 1.49E−14 −4.50E + 02 1.49E−14

F2 6.01E+04 9.74E+03 1.44E+04 9.36E+02 1.43E + 04 1.25E+03

F3 3.67E+07 1.30E+07 1.09E+07 4.31E+06 9.58E + 06 2.15E+06

F4 1.43E+05 4.58E+04 5.09E+04 8.00E+03 4.53E + 04 5.32E+03

F5 1.78E+04 3.54E+03 1.62E+04 1.21E+03 1.59E + 04 1.39E+03

F6 6.24E+04 1.07E+05 3.93E + 04 7.03E+04 1.29E+05 1.91E+05

F7 4.57E+03 5.41E+01 1.10E+04 2.98E+02 1.06E + 04 2.37E+02

F8 −1.19E + 02 9.80E−02 −1.20E+02 8.30E−02 −1.20E+02 7.67E−02

F9 −1.19E+02 4.58E+01 −2.86E+02 4.87E+00 −2.88E + 02 5.48E+00

F10 8.27E+01 8.79E+01 −3.00E + 02 4.46E+00 −3.00E+02 5.95E+00

F11 1.26E+02 2.13E+00 9.01E + 01 2.27E−01 9.01E+01 2.88E−01

F12 1.48E+05 9.46E+04 9.94E+03 1.02E+04 9.19E + 03 6.18E+03

F13 −1.09E+02 5.17E+00 −1.21E+02 1.37E+00 −1.21E + 02 1.35E+00

F14 −2.87E + 02 2.52E−01 −2.86E+02 1.66E−01 −2.86E+02 1.75E−01

F15 7.81E+02 2.07E+02 4.20E + 02 3.98E−05 4.20E+02 4.11E−05

F16 5.70E+02 8.48E+01 3.41E + 02 2.16E+02 3.58E+02 2.18E+02

F17 6.63E+02 8.51E+01 4.68E+02 2.52E+02 3.51E + 02 2.26E+02

F18 1.05E+03 9.62E+01 9.46E+02 5.48E+01 9.27E + 02 7.24E+01

F19 1.05E+03 9.21E+01 9.60E+02 4.20E+01 9.46E + 02 6.24E+01

F20 1.04E+03 7.12E+01 9.46E+02 5.58E+01 9.45E + 02 5.46E+01

F21 1.58E+03 1.46E+02 1.03E+03 2.88E+02 1.01E + 03 2.76E+02

F22 1.57E+03 8.93E+01 1.26E + 03 9.97E+00 1.26E+03 1.18E+01

F23 1.61E+03 1.21E+02 9.46E + 02 2.23E+02 1.01E+03 2.77E+02

F24 1.58E+03 1.24E+02 4.60E+02 1.27E−12 4.60E + 02 1.19E−12

F25 1.89E + 03 5.09E+00 1.92E+03 7.64E+00 1.92E+03 7.20E+00

Table 4. Results obtained by the Wilcoxon test for GGSA

VS R+ R− p-value α = 0.05

WOA 276.5 48.5 1.3746E−3 YES

GSA 242.5 82.5 3.069E−2 YES
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Fig. 4. Convergence charts of F1 and F11 in CEC2005.
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Fig. 5. Box-and-whisker charts of F7 and F8 in CEC2005.

5 Conclusions

This paper mainly applies a clustering-based learning mechanism in GSA algo-
rithm to make up for the shortcomings of GSA. Both the Wilcoxon’s rank-sum
test and the statistical test results confirm that our improvements acting on the
GSA are effective and more competitive than the original GSA. This result indi-
cates that the combination of GSA with the clustering-based learning method
is an alternative modification to enhance the search ability of GSA, meanwhile
help it maintain population diversity during the convergent procedure. Further-
more, it gives an inspiration that the clustering-based learning method can be
applied to solve dynamic and multi-objective problems in our future research.
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Abstract. Logistics distribution center are important logistics nodes and the
choice of locations are critical management decisions. This study addresses a
logistics distribution center location problem that aims at determining the
location and allocation of the distribution centers. Considering the characteristic
and complexity of problem, we propose an improved harmony search algorithm,
in which we employ a novel way of improvising new harmony. The improved
algorithm is compared with genetic algorithm, particle swarm optimization,
generalized particle swarm optimization, and classical harmony search algo-
rithm in solving a simulated distribution center location problem. Experiment
results show that the improved algorithm can solve the logistics distribution
center problem with more stable convergence speed and higher accuracy.

Keywords: Optimization � Logistics distribution center location
Harmony search algorithm

1 Introduction

In recent years, with the rapid development of social economy and economic global-
ization, the logistics industry has been paid more attention and become an important
industry for economic development [1, 2]. As the node of logistics network, distri-
bution center connecting between the upriver supply points and the downriver
requirement points, play a role of connecting link between the preceding and the
following in the whole logistics system [3, 4]. Reasonable location selection for dis-
tribution centers determines the transport cost, inventory cost, customer satisfactions,
and overall efficacy and reliability of the logistic system. Therefore, how to design a
logistic distribution center location and allocation strategy has been a hot spot which
many service providers and academic researchers have paid their attention to.

Logistics distribution center location problem consists of two sub-problems: the
location and allocation. The location problem focuses on the selections of locations of
distribution centers. The allocation problem aims to allocate the distribution center to
corresponding customers in order to satisfy the customer demand of product. During
the location and allocation arrangement process, the distance cost should be minimized.
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Studies on selecting logistics distribution center location have proposed many
methods, which can be divided into two groups: qualitative analysis [5–7] and quan-
titative analysis [8, 9]. Quantitative analysis involves gravity method [8] and integer
programming [9], but gravity method is not applicable to discrete problems, and integer
programming cannot solve the problem well, which size is larger. Qualitative analysis
consists of fuzzy evaluation [7] and computational intelligence, etc. Fuzzy evaluation
method is not objective. Computational intelligence method involving genetic algo-
rithm [10], particle swarm optimization [11], solve the complex optimization combi-
nation problem well. Inspired by the study that harmony search algorithm (HS) can be
used in solving discrete problem [12], we propose an improved harmony search
algorithm (IHS) to solve logistics distribution center location problem.

The rest of this paper is organized as follows: the model of logistics distribution
center location is described in Sect. 2. A brief description for harmony search algo-
rithm is presented in Sect. 3. The improved harmony search algorithm is proposed in
Sect. 4. Section 5 designs simulation experiments. Finally, Sect. 6 discusses the
conclusions.

2 The Model of Logistics Distribution Center Location

Logistics center location model [11] is non-convex and non-smooth nonlinear pro-
gramming model with the complex constraints. Base on minimizing the total charge of
the distribution system, the problem of logistics distribution center location is to solve
the locations of centers and the allocations of service demands. To facilitate the for-
mulation and resolution of the problem, the following assumptions are set as under-
pinnings of the model:

(1) The inventory of each distribution center needs to meet all demands of the
requirement points that the distribution center serves;

(2) Each requirement point can only be supplied by one distribution center;
(3) The demand for each requirement point and the location of the requirement points

are already known;
(4) The total cost will not be considered other expense besides the cost of delivery.

The model parameters are defined as follow:

(1) N: The number of requirement points;
(2) M: The number of the distribution centers;
(3) Wi: The demand quantity of the requirement point;
(4) dij: The distance from requirements point i to the nearest distribution center j;
(5) Zij: 0–1 variables. When it is 1, the requirement point i is supplied by the dis-

tribution center j, otherwise, Zij ¼ 0;
(6) D: the upper distance for the new distribution center to the requirement points

which serviced by it.

Based on above assumptions, the model for distribution center location-allocation
selects the distribution center from the potential set and distributes items to the
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customers. The objective function below aims to minimize the total cost of delivery
from distribution centers from to requirement points:

F ¼ min
X
i2N

X
j2M

dijWiZij

Subject to
For the requirement point i the goods can only be delivered from one distribution

center set Mi:

X
j2M

Zij ¼ 1; i 2 N ð1Þ

The demand of customer is distributed by the potential distribution center:

Zij � rj ; j 2 Mi ð2Þ

The number of the distribution centers is equal to Q:

X
j2Mi

rj ¼ Q ð3Þ

The distributive scope should not exceed D:

dij �D ð4Þ

Zij and rj are 0–1 variables. When rj is 1, point j is chosen as the distribution center;

Zij 2 f0; 1g; rj �f0; 1g ð5Þ

3 The Basic Harmony Search Algorithm

Geem and Kim (2001) first proposed the harmony search algorithm [13]. Harmony
search algorithm is a simulation of the musical performance when musicians play all
the instruments to gain the better harmony. The steps of the basic harmony search
algorithm are as follows:

Step 1: Initializing the optimization problem and algorithm parameters.

First, the optimization problem is defined as follows:

Minimize f ðxÞ

Subject to Lxi � xi �Uxi; 8i 2 1; 2; . . .;Nf g
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The parameters are assigned in this step, including Harmony memory size (HMS),
Harmony memory (HM), Harmony memory considering rate (HMCR), Pitch adjusting
rate (PAR), and the maximum iteration (T).

Step 2: Create an initial Harmony Memory (HM).

The HM matrix is initialized by many randomly generated solution vectors as the
HMS.

HM ¼
X1

X2

..

.

XHMS

2
664

3
775 ¼

x11 x12 � � � x1N
x21 x22 � � � x2N
..
. ..

. � � � ..
.

xHMS
1 xHMS

2 � � � xHMS
N

2
6664

3
7775

Step 3: Improvise a new harmony.

A new harmony denoted as x0 ¼ ½x01x02. . .x0N�1x
0
N � is improvised by applying these

three rules: memory consideration, pitch adjustment, and random selection. For
example, xnewðjÞ will be generated from the j th of HM if a random number rand() in the
range of [0,1] is smaller than HMCR. Otherwise, xnewðjÞ will be generated by a random
selection. Then, each variable xnewðjÞ will be determined if it needs to be adjusted. If a
new random number rand() in the range of [0,1] is smaller than PAR, the variable
xnewðjÞ will be adjusted. LBðjÞ and UBðjÞ are the lower and upper bounds of the
decision variable xðjÞ.

ifðrand1ðÞ\HMCRÞ
xnewðjÞ ¼ xaðjÞ
ifðrand2ðÞ\PARÞ

xnewðjÞ ¼ xnewðjÞ � randðÞ � BW

else

xnewðjÞ ¼ LBðjÞþ randðÞ � ðUBðjÞ � LBðjÞÞ

Where a 2 ð1; 2; . . .;HMSÞ, xaðjÞ is selected from HM.

Step 4: Update the harmony memory.

If the new harmony is better than the worst on in harmony memory, the new
harmony would be added into the harmony memory and the worst one in harmony
would be removed.

Step 5: Check the termination criterion.

If the algorithm runs to the maximum iteration, the algorithm is stopped and return
the best harmony vector XBest in the HM. Otherwise, return to Step 2 (Fig. 1).
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4 The Improved Harmony Search Algorithm

4.1 The Solution Representation

The problem of logistics distribution center location consists of two problems; the
locations of centers and the allocations of service demands. Figure 1 shows the solution
representation of the example of the six positions coordinates of three centers and the
allocation of thirty requirement points.

We use x1, x2, x3, y1, y2, y3 to present the locations of three centers and use three
integers, “1”, “2” and “3” to represent which of the three centers supply for the
requirement points.

4.2 Improvement

In basic HS algorithm, each variable xnewðjÞ of the new harmony is improvised from the
xaðjÞ in the HM or randomly and undergoes a pitch adjustment with a probability of
PAR if it is updated by the memory consideration. Good fitness value in the HS
algorithm indicates that proper distribution centers location and allocation scheme of
the service demand is achieved which lead to less transportation cost collectively.

The way of improvising the new harmony is improved by the following method.
During each iteration, with a probability of HMCR, the new harmony Xnew is selected
from harmonies in HM and adjusted as: Xnew ¼ Xa þ randðÞ � BW . After the harmony
memory consideration is finished, if the random number rand2ðÞ is smaller than PAR,
adjust the best harmony as: X‘ ¼ Xbest þ randðÞ � BW and calculate the fitness value of
X‘. If the fitness value of X‘ is less than the fitness value of Xbest, the new harmony Xnew

is adjusted as: Xnew ¼ X‘.

if ðrand1ðÞ\HMCRÞ
Xnew ¼ Xa þ randðÞ � BW
if ðrand2ðÞ\PARÞ

X‘ ¼ Xbest þ randðÞ � BW
if Fitness ðX‘Þ\Fitness ðXbestÞ

Xnew ¼ X‘

else

Xnew ¼ LBþ randðÞ � ðUB� LBÞ

X1 X2 X3 Y1 Y2 Y3 D1 D2 D3 .... D30

Center location Demand allocation

Fig. 1. Vector solution for the logistics distribution center.
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Besides the improvement of improvising new harmony, algorithm need to obtain
the current optimum as quickly as possible ðXbest 2 HMÞ in early iterations, and to
explore the global optimum in late iterations. Therefore, the HMCR and PAR is

Set parameters and initialize harmony memory

Evaluate objective values, record best harmony ,best 
objective value, worst harmony, worst objective value

BWX dnarbest *()+=

rand1()<HMCR

rand2()<PAR

YES

YES

bwrandXnewX ()α

NO 

()new LBUBrandLBXNO

Evaluate objective value of new harmonies,
select the harmony with the best objective value

as the candidate Harmony

candidateX better than worstX

Update HM

Is stop criterion met?

NO 

YES

Output best solution

NO 

better than bestX

new =

YES

NO 

YES

−×+=

X

)(

Fig. 2. The chart of the proposed IHS.
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designed to gradually reduce from large value to small value as iteration go on. Cal-
culation function for HMCR and PAR is described as follows:

HMCR ¼ HMCRmax � HMCRmin

HMCRmax

� �
^ t

Tmax

� �

PAR ¼ PARmax � ðPARmax � PARminÞ � t
Tmax

� �

In the meantime, IHS algorithm increases number of new harmonies. Improvising
more new harmonies can not only obtain the current optimum, but also explore the
global optimum.

4.3 Algorithm Description and Flowchart

Based on the above analysis, the procedures of the proposed IHS are depicted in Fig. 2
and summarized as follows:

Step1: Initialize related parameters such as Harmony memory size HMS, maximum
Harmony memory considering rate HMCRmax, minimum Harmony memory con-
sidering rate HMCRmin, maximum Pitch adjusting rate PARmax, minimum Pitch
adjusting rate PARmin, and the maximum iteration T.
Step2: Create an initial Harmony Memory HM. The HM matrix is initialized by
many randomly generated solution vectors as the HMS.
Step3: Improvising some new harmonies. With a probability of HMCR, the new
harmony is selected from harmonies in HM and adjusted as: Xnew ¼ Xa þ
randðÞ � BW . If the random number is smaller than PAR, adjust the best harmony
as: X‘ ¼ Xbest þ randðÞ � BW and calculate the fitness value of X‘. If the fitness
value of X‘ is less than the fitness value of Xbest, the new harmony Xnew is adjusted
as: Xnew ¼ X‘.
Step4: Compare and obtain the candidate harmony. Calculate the fitness value of
new harmonies, and choose the least one as the candidate harmony Xcandidate.
Step5: Compare Xcandidate and Xworst of the HM. If Xcandidate\Xworst, update HM.
Step6: If the iteration is equal to maximum iteration T, export Xbest of the algorithm,
stop the algorithm. Otherwise, go back to Step3.

5 Numerical Experiments

To evaluate the performance of the proposed IHS algorithm, simulation setting is
designed as: distribution centers location will be ascertained in the area of 100� 100
based on demand and distance of 30 sampling points. We adopt MATLAB R2017a to
program, and compare the improved harmony search algorithm, basic harmony search
algorithm, genetic algorithm, particle swarm optimization algorithm and improved PSO
called GPSO [14]. All the data sampling points are described as Table 1.
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5.1 Parameter Settings

As for IHS algorithm, we test different parameters through experiments, and conclude
the parameters as follows: the harmony memory size is 20, the maximum iterations is
400, the number of new harmonies is 5, maximum Harmony memory considering rate
HMCRmax ¼ 0:99, minimum Harmony memory considering rate HMCRmin ¼ 0:6,
maximum Pitch adjusting rate PARmax ¼ 0:2, and minimum Pitch adjusting rate
PARmin ¼ 0:05.

Parameters settings of HS, GPSO, PSO and GA are displayed as follows: In the
basic HS algorithm, HMCR ¼ 0:9, PAR ¼ 0:25. In GPSO, c1 ¼ c2 ¼ 2, x ¼ 0:2,
tmax ¼ 2, tmin ¼ 0:7, N ¼ 20. In PSO, c1 ¼ c2 ¼ 2, x ¼ 0:2, N ¼ 20. In GA, the
crossover probability is 0.5, the mutation probability is 0.1, and population size is 20.

5.2 Conclusion Analysis

5.2.1 Comparison the Optimal Value
As shown in Table 2, the optimal value of the IHS algorithm is 3:32� 104 and it
decreases about 10.27% compared with the optimal value of the basic HS algorithm. It
also decreases about 14.21% and 13.76% compared with GA and GPSO. Iteration
number in Table 2 means the first iteration when the best fitness value was obtained.

Table 1. Location and demand of requirement points.

i ui; við Þ Wi i ui; við Þ Wi i ui; við Þ Wi

1 (9,91) 35 11 (25,95) 31 21 (20,66) 34
2 (26,31) 47 12 (76,93) 48 22 (56,43) 38
3 (78,28) 38 13 (85,76) 30 23 (92,59) 47
4 (8,12) 36 14 (75,56) 42 24 (79,9) 42
5 (39,42) 44 15 (63,26) 35 25 (89,87) 39
6 (11,26) 37 16 (42,23) 41 26 (54,91) 44
7 (10,64) 32 17 (37,87) 52 27 (62,67) 48
8 (89,40) 46 18 (48,63) 33 28 (31,54) 36
9 (8,47) 34 19 (32,75) 42 29 (18,45) 30
10 (22,17) 39 20 (18,82) 40 30 (67,85) 41

Table 2. The comparison of algorithms.

Algorithm name The best fitness value Average fitness value Iteration number

IHS 3:32� 104 3:45� 104 240

HS 3:70� 104 3:74� 104 260

GA 3:87� 104 3:93� 104 150

PSO 4:11� 104 3:98� 104 20

GPSO 3:85� 104 3:71� 104 50
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5.2.2 Comparison the Average Optimal Value and the Convergence
Speed
Since the GPSO and GA algorithm easily fall into local optimization and form
immature convergence, the average values of GA and GPSO running 30 times are
3:93� 104 and 3:71� 104, and the average value of IHS running 30 times is
3:45� 104. The average value of IHS decreases about 12.21% compared with the GA
algorithm, and it decreases about 7% compared with the GPSO algorithm. Thus, IHS
can save cost of transportation, indicating that the algorithm is efficient.

The change of the optimal fitness of the IHS algorithm, GPSO algorithm, PSO
algorithm and genetic algorithm can be seen from Fig. 3, and the IHS algorithm has the
highest accuracy. From Fig. 4, we also see the change of the average fitness of the four
compared algorithms, and the IHS algorithm has the most stable convergence and is not
easy to fall into local optimization and form immature convergence.

As shown in Fig. 5, the logistics distribution center location is (37.888, 72.486),
(21.941, 23.852), (72.661, 50.303) obtained by the IHS algorithm, the distribution
center located in (37.888, 72.486) can supply the demand for ten requirement points
(1, 7, 11, 17, 19, 20, 21, 26, 28, 30), the distribution center located in (21.941, 23.852)

Fig. 3. The comparison of best fitness
value.

Fig. 4. The comparison of the aver-
age fitness value.

Fig. 5. Logistics distribution center location.
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can supply the demand for eight requirement points (2, 4, 5, 6, 9, 10, 16, 29), and the
distribution center located in (72.661, 50.303) can supply the demand for twelve
requirement points (3, 8, 12, 13, 14, 15, 18, 22, 23, 24, 25, 27).

For the above results, the distribution center location method based on IHS can not
only determine the optimal distribution center, but also optimize structure of the
logistics network.

6 Conclusion

This paper presents an improved harmony search algorithm to address the logistics
distribution center location problem. In the proposed approach, a new way of impro-
vising the new harmony improves the ability of global optimum exploration and stable
convergence of harmony search algorithm. To verify the performance of IHS, the
experiments have been carried out. The results demonstrate that IHS is more effective
than basic HS, GA, PSO, an GPSO on solving the logistics distribution center location
problem.
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Abstract. Fruit fly optimization algorithm (FOA) is a novel bio-inspired
technique, which has attracted a lot of researchers’ attention. In order to improve
the performance of FOA, a modified FOA is proposed which adopts the phase
angle vector to encoded the fruit fly location and brings in the double
sub-swarms mechanism. This new strategies can enhance the search ability of
the fruit fly and helps find the better solution. Simulation experiments have been
conducted on fifteen benchmark functions and the comparisons with the basic
FOA show that h-DFOA performs better in terms of solution accuracy and
convergence speed. In addition, the proposed algorithm is used to optimization
the PID controller, and the promising performance is achieved.

Keywords: Fruit fly optimization algorithm (FOA) � Double sub-swarms
PID controller

1 Introduction

Inspired by the food finding behavior of fruit flies, fruit fly optimization algorithm
(FOA) was recently proposed by Pan [1]. As a novel bio-inspired technique, FOA has
attracted a lot of researchers’ attention and has been successfully applied to solve the
optimization problems in various areas, including the semiconductor final testing
scheduling problem [2], general regression neural network optimization [3, 4],
parameter tuning for proportional-integral-derivative controllers [5, 6], UAV path
planning [7], multidimensional knapsack problem [8], identification of dynamic protein
complexes [9], and so on.

However, the basic FOA still has the drawback that easily traps into the local
optimal or premature in the complicated optimization problems. In order to improve the
search efficiency and global search ability of the basic FOA, several improved versions
of FOA are proposed by researchers [2, 6, 8, 10–13]. Yuan et al. [13] employed the
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behavior of multiple fruit fly swarms and proposed the multi-swarm fruit fly opti-
mization algorithm (MFOA), in which several sub-swarms move independently in the
search space at the same time and local behavior rules between sub-swarms are also
designed. Pan et al. [11] introduced a new control parameter to adjust the search scope
around the fruit fly swarm location adaptively as well as a new solution generating
method to enhance the accuracy and convergence rate, and presented the improved fruit
fly optimization (IFFO) algorithm.

In this paper, the novel phase angle-encoded fruit fly optimization algorithm with
double sub-swarms (h-DFOA) is proposed and the PID controller based on h-DFOA is
designed as well. In h-DFOA, double sub-swarms lead the evolution process of the
fruit flies in order to enhance the balance of FOA in terms of the exploitation and
exploration ability, while the phase angle-based encoded strategy for fruit fly locations
helps to achieve the high performance in the convergence process. Numerical simu-
lation results illustrate that h-DFOA is not only superior to the basic FOA in solving the
Benchmark functions, but also more powerful in parameter tuning for the PID
controller.

The rest of this paper is organized as follows. Overview of the basic FOA is
described in Sect. 2. Section 3 presents the improved FOA with the detailed modified
strategies. Numerical experiment comparisons on the Benchmark functions are pro-
vided in Sect. 4. In Sect. 5, the proposed method is used to optimization the PID
controller. Section 6 concludes with a brief summary of this paper finally.

2 Fruit Fly Optimization Algorithm

The FOA is a novel bio-inspired algorithm firstly put forward in 2011 [1]. The
inspiration of FOA is that fruit flies are superior to other species in terms of olfactory
and visual senses. When looking for the food, the fruit fly can use its olfactory organ to
sense various odors floating in the air, and use its visual organ to spot the food and the
locations of other fruit flies. The food searching process of fruit flies is illustrated as
Fig. 1.

FOA randomly generates a fruit fly swarm’s initial location. Then, each fruit fly is
assigned the random direction and distance for following movement. As the food
location is unknown, the distance to the origin is estimated. After they arrive at the new
positions, the algorithm can find the best position with the results of calculation and
judgment. Repeating this process and FOA can finally get the optimal solution.
Compared with existing bio-inspired algorithms, FOA is much simpler to implement
[7], which only takes several lines to code the core part in any programming language.
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3 Improved FOA

The proposed h-DFOA adopts the phase angle vector to encoded the fruit fly location
and brings in the double sub-swarms mechanism to enhance the search ability of the
olfactory organ of the fruit fly.

(1) Phase angle-encoded location

In the original FOA, the location of the fruit fly is determined by the X-axis and
Y-axis coordinates, and the smell concentration judgement corresponds to the decision
variable of the problem solved. The mapping S ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
from the location to the

decision variable is evidently not the one-one mapping, because the four different
locations �X;�Yð Þ map to the same solution. Even if the fruit flies achieve the optimal
solution finally, the fruit flies actually do not converge to the same location. To
overcome this drawback, the improved FOA denotes the fruit fly location as a phase
angle vector H ¼ ½h1; h2; � � � ; hD�, where each phase angle hj 2 ½�p=2; p=2�. Set
f :½�p=2; p=2�D ! ½Smin; Smax� as the one-one mapping from the phase angle vector to
the decision variable in the search space, where Smin ¼ ½Smin;1; Smin;2; � � � ; Smin;D� and
Smax ¼½Smax;1; Smax;2; � � � ; Smax;D� are the lower and upper boundaries of the search
space, respectively. In this paper, the following sinusoidal function is adopted to

STRUCTURE OF FOA 
 /* Initialization */  
1 Set the generation counter NC = 0, the number of fruit flies as Mpop, and randomly initialize 

the fruit fly swarm’s location as [Xaxis, Yaxis]. 
 /* Iterative search */ 
2 while termination criteria is not satisfied do
3  Generation counter NC = NC + 1 
  /* Search using osphresis */ 
4  for i = 1 : Mpop do
5   Generate the random direction and distance, and 

Xi = Xaxis + random, Yi = Yaxis + random
6   Compute the distance to the origin: 

7   Calculate the judged value of smell concentration: Si=1/Di

8   Evaluate the smell concentration judge function (also called fitness function) to 
get the smell concentrations: Smelli = f(Si) 

9  end for 
  /* Search using vision */ 
10  Select the fruit fly that has the best smell concentration: index = arg max( Smelli ) 
11  if [Xindex, Yindex] has the better smell than [Xaxis, Yaxis], then The fruit fly uses vision to fly 

towards the location: Xaxis = Xindes and Yaxis = Yindes

12 end while

Fig. 1. Procedure of FOA.
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compute the smell concentration judgement S (decision variable of the problem) of the
location H for the fruit fly, as follows

S ¼ f Hð Þ ¼ ðSmax � SminÞ sinHþ Smax þ Sminð Þ�2 ð1Þ

The above transformation is a monotonic increasing function. Given any one angle
in the phase angle space, there is one and only one decision variable in the solution
space corresponding to the angle, and vice versa.

(2) Initialization of fruit fly swarm

In the initial phase of h-DFOA, the phase angle-encoded location of the i–th fruit
fly, denoted as the vector Hi ¼ ½hi;1; hi;2; � � � ; hi;D�, is randomly generated within [–p/2,
p/2], as follows

hi;j ¼ random �p=2; p=2ð Þ; j ¼ 1; 2; � � � ;D ð2Þ

where randomðÞ is the random number uniformly distributed within the range. Then,
evaluate and compute the smell concentration Smelli for each Hi. Find the best and the
worst smell concentration Smellbest, Smellworst, as well as the corresponding phase angle
Hg

best and Hg
worst. Unlike the basic FOA, the improved FOA has two sub-swarms,

namely the best fruit fly swarm with the phase angle location Hg
best and the worst fruit

fly swarm with the phase angle location Hg
worst.

(3) Double sub-swarm mechanism for the osphresis-based search

When the fruit flies execute the osphresis-based foraging in the g-th iteration, the
fruit fly individual firstly compute its distance to the best and the worst fruit fly swarms,
respectively. If the fruit fly is closer to the best fruit fly swarm than to the worst fruit fly
swarm, then it randomly generates the new phase angle location hgi;j around the best
swarm location hgbest;j within the interval �Rg;Rg½ � for each j. If the fruit fly is closer to
the worst fruit fly swarm than to the best fruit fly swarm, then it randomly re-initializes
the new phase angle location hgi;j within [–p/2, p/2] for each j. The improved
osphresis-based searching process is as follows

hgi;j ¼ hgbest;j þ random �Rg;Rgð Þ Hg
i�Hg

best

�� ��� Hg
i �Hg

worstk k
random �p=2; p=2ð Þ otherwise

�
ð3Þ

In the evolution process, the fruit flies are far from the optimum solution in the
early searching phase, and thus, the search radius should be suitably large to enhance
the exploiting capability to the unknown territory in the decision space. Then, in the
later iterations, the fruit flies are close to the optimum solution, and thus, the search
radius should be reduced to improve the exploring capability to the better solutions.
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Therefore, the proposed h-DFOA changes the search radius dynamically with the
iteration number is computed as follows

Rg ¼ p
2
logsig 10 � 0:5� g=Gmaxð Þð Þ ð4Þ

(4) Vision-based foraging search

The vision-based foraging search of the h-DFOA is also a greedy selection process
for the optimal individual. Firstly, evaluate and compute the smell concentration Smellgi
for each new generated Hg

i through the osphresis-based search phase. Then, select the
best Hg

b with the minimum smell concentration where b ¼ argmin Smellgið Þ and the
worst Hg

w with the maximum smell concentration where w ¼ argmax Smellgið Þ. Then,
compareHg

b,H
g
w with the current two fruit fly swarm locationHg

best,H
g
worst. IfH

g
b has the

lower smell concentration than Hg
best, the best fruit fly swarm updates the current

location and flies to the new locationHg
b. While ifHg

w has the upper smell concentration

Fig. 2. Procedure of h-DFOA.
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than Hg
worst, the worst fruit fly swarm updates the current location and flies to the new

location Hg
w. Otherwise, the two fruit fly swarm will remain at the current location and

begin to the next iteration calculation. The vision-based foraging process can be
expressed as follows

Hgþ 1
best ¼

Hg
b; Smellgb � Smellgbest

Hg
best; otherwise

(
and Hgþ 1

worst ¼
Hg

w; Smellgw � Smellgworst

Hg
worst; otherwise

(

ð5Þ

where Smellgbest and Smellgworst is the smell concentration of the two fruit fly swarm
location Hg

best and Hg
worst, respectively.

The implementation procedure of our proposed h-DFOA is as follows (Fig. 2):

4 Experimental Comparison on Benchmark Functions

In order to validate the effectiveness of h-DFOA, fifteen benchmark functions are
tested, including unimodal, multimodal and composition functions. All of these
benchmark functions are difficult minimization problems and the information are listed
the second and third columns in Table 1. The tests are implemented on a computer with
Intel(R) Core(TM) i3 3.07 GHz CPU, 4 GB memory, and Window 7. Both the FOA

Table 1. Statistical results for various methods (l ± r (best)) on Benchmark functions.

Dim. Range FOA h-DFOA

f1 2 [–100,100] –0.99 ± 3.40 � 10−3 (–0.99) –0.99 ± 3.30 � 10−3 (–1.00)
f2 10 [–100,100] 596.01 ± 179.69 (53.57) –209.13 ± 0.22 (–209.56)
f3 10 [–100,100] 830.30 ± 189.50 (551.00) 1.30 ± 0.57 (0.00)
f4 10 [–100,100] 869.05 ± 205.07 (463.89) 1.47 ± 0.25 (1.04)
f5 10 [–32,32] 9.91 ± 0.97 (7.32) 1.08 ± 0.44 (0.62)
f6 10 [–5.12,

5.12]
10.07 ± 2.01 (6.45) 0.01 ± 0.0035 (0.0087)

f7 10 [–100,100] 2.64 ± 0.24 (2.12) 2.47 ± 0.36 (1.76)
f8 10 [–10,10] 248.48 ± 78.40 (126.57) 4.27 ± 6.08 (1.84)
f9 10 [–1,1] –0.97 ± 0.0098 (–0.98) –1.00 ± 1.30 � 10−5 (–1.00)
f10 10 [–600,600] 8.15 ± 1.58 (3.48) 0.91 ± 0.12 (0.69)
f11 10 [–1,1] 3.21 � 10−4 ± 3.07 � 10−5

(5.36 � 10−4)
1.75 � 10−7 ± 1.37 � 10−7

(1.52 � 10−8)
f12 10 [–10,10] 3.56 ± 0.51 (2.63) 0.47 ± 0.26 (0.06)
f13 10 [–1.28,1.28] 0.08 ± 0.02 (0.02) 3.9 � 10−3 ± 2.5 � 10−3

(6.75 � 10−4)
f14 10 [–5.12,5.12] 38.77 ± 4.99 (26.76) 26.89 ± 14.12 (5.69)
f15 10 [–10,10] 4.1 � 104 ± 1.87 � 104

(1.76 � 104)
1.09 � 104 ± 1.22 � 104

(1.03 � 103)
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Fig. 3. Convergence progresses of FOA and h-DFOA.
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and h-DFOA algorithms are coded using the Matlab-2009a, and no commercial
algorithm tools are used. Due to the randomness nature of swarm intelligence algo-
rithms, the two tested algorithms are run 50 times independently for each function and
the statistical results are used for the performance evaluation and comparison. The main
parameters of the proposed h-DFOA and the basic FOA are set as maximum number of
iteration Gmax = 100, and the population size Mpop = 40.

Table 1 reports summary statistics for the optimum values found by the two FOA
algorithms for all Benchmark functions after 50 independent runs. It compares the best
values (best), the mean values (l), and the standard variance (r) of the solutions found.
For all functions, the results show that the proposed h-DFOA algorithm performs better
than the basic FOA algorithm. The h-DFOA algorithm gets the smallest variance over
the simulations. The simulation results show that the double sub-swarm based
osphresis search brings solutions with much higher accuracy to the optimization
problem. The convergence curves of the average best function values are displayed in
Fig. 3. It can be seen that, the basic FOA achieve the faster convergence speed and the
smaller cost than h-DFOA in the early iterations. However, in the later iterations that
the basic FOA comes to the stagnation, h-DFOA still shows the ability to search better
solutions. The searching range R of h-DFOA decreases with the increase of the iter-
ations, which contributes to improve the local search ability near the optimal solution
and leads to the improved global convergence of h-DFOA.

5 h-DFOA for PID Controller

The PID controller are the most common type of controllers by far, because of its
simple structure, strong robustness and high reliability [11, 12]. PID control system is
widely used in process control and motion control, particularly, in deterministic control
system with mathematical model. In the following section, we apply the proposed
h-DFOA to the parameter tuning for the PID controller.

In the PID controller, the output variable e(t) = r(t) − y(t) represents the tracking
error between the desired output value r(t) and the actual output value y(t). According
to the error signal e(t), the PID controller computes the sum of the proportional, the
integral and the derivative of this error signal, and inputs it to the controlled object.
The PID controller can be written as

uðtÞ ¼ KPðeðtÞþKI

Z t

0
eðtÞdtþKD

deðtÞ
dt

ð6Þ

where KP, KI and KD are the proportional gain, the integral gain and the derivative gain,
respectively.

With the PID controller and the controlled object, the dynamic performance of the
control system can be obtained. Therefore, the cost function is defined as follows:

J ¼ w1 � rþw2 � ts þw3 �
Z t

0
ej j dt ð7Þ
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where the overshoot of the control system is r ¼ yp � r
�� ���r � 100%, where yp is the

peak value of the output signal. The rise time of the control system ts is defined as the
minimum time when the output reaches and does not exceed the 5% error band. The
accumulated absolute error is e ¼ rðtÞ � yðtÞ. w1, w2 and w3 are weight coefficients.

To verify the efficiency of the proposed h-DFOA in parameter tuning for the PID
controller, comparison experiment between FOA and h-DFOA is provided. Consider
the following second-order system with the transfer function

GðsÞ ¼ sþ 10
s2 þ 5sþ 10

ð8Þ

The tuning parameters include KP, KI and KD, which means the optimization
problem is three-dimensional and D = 3. Set the population size of the h-DFOA and
FOA as Mpop = 30, and the maximum number of iteration as Gmax = 50. Figure 4
shows the evolution process of the cost function, as well as the response curves of the
closed-loop system. Table 2 shows the PID parameters obtained by h-DFOA and FOA
after 50 iterations.

From the above simulation result, it illustrates that h-DFOA has the better per-
formance and faster convergence speed compared with the basic FOA in PID
parameters tuning problem. The h-DFOA gets the best value after the 100 iterations,
but FOA falls into the local minimum. Therefore, h-DFOA can search the optimal
parameters more quickly and efficiently than the basic FOA. The time response curves
show that the overshoot obtained by h-DFOA is lower than that of FOA, while the rise
time of the h-DFOA is also lower than that of the basic FOA. The h-DFOA based PID
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Fig. 4. Comparison between FOA and h-DFOA in the PID controller parameter tuning.

Table 2. Results of the PID controller parameter tuning.

KP KI KD Jbest
FOA 6.99 3.14 3.67 1.57 � 104

h-DFOA 9.99 2.99 3.79 1.56 � 104
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controller creates the very perfect step response of the system, indicating that the
h-DFOA is better than FOA for parameters optimization of the PID controller.

6 Conclusion

In this paper, a novel component design is proposed to modify the basic FOA algo-
rithm. In order to improve the performance of FOA, the proposed h-DFOA adopts the
phase angle vector to encoded the fruit fly location and brings in the double
sub-swarms mechanism to enhance the search ability of the olfactory organ of the fruit
fly. This new strategy helps the basic algorithm find a better solution, which results in
high accurate solution and fast convergence speed. Simulation experiments have been
conducted on fifteen benchmark functions. Comparisons with the basic FOA show that
h-DFOA performs better in terms of solution accuracy and convergence speed. The
proposed h-DFOA is also used to optimization the PID controller, and the promising
performance is achieved. In the future research, we will conduct more theoretical and
experimental research works on FOA to further improve its performance and its
applications.
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Abstract. After studying the behavior of monarch butterflies in nature, Wang
et al. proposed a new promising swarm intelligence algorithm, called monarch
butterfly optimization (MBO), for addressing unconstrained optimization tasks.
In the basic MBO algorithm, the fixed butterfly adjusting rate is used to carry out
the butterfly adjusting operator. In this paper, the self-adaptive strategy is
introduced to adjust the butterfly adjusting rate. In addition, the crossover
operator that is generally used in evolutionary algorithms (EAs) is used to further
improve the quality of butterfly individuals. The two optimization strategies, self-
adaptive and crossover operator, are combined, and then self-adaptive crossover
operator is proposed. After incorporating the above strategies into the basic MBO
algorithm, a new version of MBO algorithm, called Self-adaptive Monarch
Butterfly Optimization (SaMBO), is put forward. Also, few studies of con-
strained optimization has been done for MBO research. In this paper, in order
to verify the performance of our proposed SaMBO algorithm, the proposed
SaMBO algorithm is further benchmarked by 21 CEC 2017 constrained opti-
mization problems. The experimental results indicate that the proposed SaMBO
algorithm outperforms the basic MBO and other five state-of-the-art meta-
heuristic algorithms.

Keywords: Monarch butterfly optimization � Migration operator
Butterfly adjusting operator � Self-adaptive � Constrained benchmark problems

1 Introduction

In our daily life, we are striving for maximum profit and minimum cost when tackling all
kinds of problems. These problems can be mathematically modelled into maximum/
minimum problems, which can be further solved by various optimization techniques.
Most researchers and engineers divide these optimization techniques into two
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categories: the traditional optimization methods and modern metaheuristic algorithms
[1]. The former has the strict process and will generate the same results under the same
conditions; while the latter based on random distribution only provides a loose frame-
work and different runs will generate different results even under the same conditions.
Because the modern metaheuristic algorithms can address more complicated problems
well that are difficult to be solved by the traditional methods, a huge number of
researchers from the various walks of life pay more and more attention to metaheuristic
algorithms. The metaheuristic algorithms largely involves the following optimization
techniques: evolutionary computation [2], swarm intelligence, and artificial neural
network [3]. Among different kinds of metaheuristic algorithms, swarm intelligence
(SI) algorithms [4] are one of the most representative paradigms.

Since particle swarm optimization (PSO) with the inspiration of bird flock [5–9] is
proposed in 1995, several scholars start to study the phenomena and laws of nature, and
they have designed various swarm intelligence algorithms, such as harmony search
[10, 11], artificial bee colony [12, 13], cuckoo search [14–19], fireworks algorithm
[20], bat algorithm (BA) [21–24], earthworm optimization algorithm [25], elephant
herding optimization [26–28], moth search algorithm [29, 30], biogeography-based
optimization [31–33], firefly algorithm [34–36], krill herd [37–42], and MBO [43].
Except the theoretical researches, these swarm intelligence algorithms have been
successfully used to various complicated engineering problems, such as floorplanning
[44, 45], dynamic vehicle routing [46], data clustering [47], prediction of pupylation
sites [48], target assessment [49, 50], Knapsack [51], gesture segmentation [52],
test-sheet composition [53], economic load dispatch [54, 55], unit commitment [56],
IIR system identification [57], shape design [58], and path planning [59]. Among these
swarm intelligence algorithms (SIs), MBO [43] is one of the most promising SIs.

After studying the life habits of monarch butterflies in North America, Wang et al.
[43] developed a novel promising SI-based optimization approach, called Monarch
Butterfly Optimization (MBO). In MBO, all the butterflies are respectively located at
Land 1 and Land 2, and they independently update their positions through butterfly
adjusting operator and migration operator in a parallel manner. Subsequently, they will
share their information by combining these butterflies located at Land 1 and Land 2.

However, in MBO, the butterfly adjusting operator was implemented with the fixed
butterfly adjusting rate (BAR) [43]. This updating way failed to extract the information
from the optimization process, leading to slow convergence on certain difficult opti-
mization problems. In this paper, the butterfly adjusting rate (BAR) will be updated as
the optimization process of MBO evolves. As a critical component of evolutionary
algorithms (EAs), crossover operator, has a significant effect on the performance of
EAs. Also, in our current work, crossover operator will be introduced to further
improve the quality of butterfly individuals after implementing butterfly adjusting
operator. The self-adaptive strategy is used to update the crossover rate, and then a self-
adaptive crossover operator is proposed. After incorporating these optimization
strategies into the basic MBO algorithm, a new variant of MBO namely Self-adaptive
Monarch Butterfly Optimization (SaMBO), is proposed. Though many scholars pro-
posed several improved MBO algorithms, they are just tested by the unconstrained
functions. Different with most previous work, 21 CEC 2017 constrained functions are
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applied to verify the effectiveness of our proposed SaMBO algorithm. The experi-
mental results indicate that the proposed SaMBO approach has better performance than
the basic MBO algorithm and five other metaheuristic algorithms in most cases. This
also implies the self-adaptive strategy and crossover operator can efficiently improve
the performance of MBO when addressing constrained optimization problems.

The rest of this paper is structured as follows. Section 2 review the related work of
the basic MBO algorithm. Section 3 provides the framework of the basic MBO
method, followed by the description of the self-adaptive and crossover operator in
Sect. 4. Also, the main steps of SaMBO algorithm is given in Sect. 4. Subsequently,
SaMBO is benchmarked by 21 CEC 2017 constrained functions in Sect. 5. In Sect. 6,
some concluding remarks as well as scope for further work is provided.

2 Related Work

Though monarch butterfly optimization algorithm [43] has been proposed only three
years, many scholars have worked on MBO algorithm. In this section, some of the most
representative work regarding MBO are summarized and reviewed.

Yi et al. [60] proposed a quantum inspired MBO called QMBO, by incorporating
quantum computation into MBO. In QMBO, the worst butterflies are updated by
quantum operators. The UCAV path planning problem is modeled into an optimization
problem, and then its optimal path can be obtained by QMBO. Feng et al. [61]
presented a binary MBO (BMBO) method, which is to address the 0-1 knapsack
problem. In BMBO, each butterfly was represented as a two-tuple string. Several
individual allocation techniques and a novel repair operator were applied. Wang et al.
[62] put forward a variant of MBO method in combination with two optimization
strategies namely GCMBO. In GCMBO, self-adaptive crossover (SAC) operator and
greedy strategy are utilized to improve its search ability. Feng et al. [63] combined the
chaos theory with MBO, and then proposed a chaotic MBO (CMBO). In CMBO, in
order to tune two main operators, the best chaotic map is selected from 12 maps. Worst
individuals are improved by Gaussian mutation operator. Ghanem and Jantan [64]
combined ABC with elements from MBO, namely Hybrid ABC/MBO (HAM). HAM
used an updated butterfly adjusting operator that is considered as a mutation operator to
share information with the employee bees in ABC. Feng et al. [65] proposed a kind of
multi-strategy MBO for discounted 0-1 knapsack problem. In MMBO, neighborhood
mutation and Gaussian perturbation are utilized. Feng et al. [66] combined MBO with
7 kinds of DE mutation strategies based on intrinsic mechanism of MBO and the
character of DE operator. Migration operator is replaced by DE operator. DEMBO
solved 30 typical discounted 0-1 knapsack problem. Feng et al. [67] presented a
generalized opposition-based learning (OBL) [68] MBO with Gaussian perturbation
namely OMBO, in which OBL is used on half individuals. 15 large-scale 0-1 KP cases
from 800 to 2000 dimensions are used. Chen et al. [69] proposed a variant of MBO by
a greedy strategy to solve dynamic vehicle routing problems. The proposed algorithm
only accept better individuals than before. Also, a later perturbation is to make a
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trade-off between global and local search. Faris et al. [70] modified the position
updating strategy used in MBO, in which both the previous solutions and butterfly with
the best fitness up to now are utilized. Furthermore, it is applied to train neural
networks.

Though many scholars have made several in-depth studies of MBO from different
aspects. In MBO, the butterflies in Land 1 are updated by butterfly adjusting operator
with the fixed butterfly adjusting rate, leading to failing to find the final optima for
certain difficult functions, while here, the self-adaptive strategy is introduced to update
butterfly adjusting rate during the whole optimization process. Also, the crossover
operator and self-adaptive strategy are cooperatively to update the butterflies in Land 1.
The detailed description of the proposed algorithm will be provided as follows.

3 Monarch Butterfly Optimization

In MBO, the number of butterflies located at Land 1 and Land 2 are calculated
according to the parameter p, which are NP1 (ceil(p * NP)) and NP2 (NP − NP1),
respectively. The butterflies located at Land 1 and Land 2 can be called Subpopulation
1 (SP 1) and Subpopulation 2 (SP 2), respectively. NP is the population size while p is
the ratio of butterflies in SP 1. The butterfly individuals in SP 1 is updated by migration
operator, which can be given as [43]

xtþ 1
i;k ¼ xtr1;k ð1Þ

where xtr1;k is the kth element of xr1 . Butterfly r1 is randomly selected from SP 1. If

r� p, xtþ 1
i;k is generated by Eq. (1). If r[ p, xtr1;k is generated by

xtþ 1
i;k ¼ xtr2;k ð2Þ

where xtr2;k is the kth element of xr2 , and butterfly r2 is randomly selected from SP2.
For all the elements in butterfly j, if rand � p, it can be updated as [43]

xtþ 1
j;k ¼ xtbest;k ð3Þ

where xtþ 1
j;k indicates the kth element of xj at generation t + 1; xtbest;k indicates the kth

element of the fittest butterfly xbest. If rand > p, it can be updated as

xtþ 1
j;k ¼ xtr3;k ð4Þ

where xtr3;k is the kth element of xr3 . Here, r3 2 f1; 2; . . .;NP2g.
Under this condition, if rand > BAR, it can be further updated as follows [43].

xtþ 1
j;k ¼ xtþ 1

j;k þ a� dxk � 0:5ð Þ ð5Þ
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4 SaMBO Algorithm

Though MBO is one of the relatively newest swarm intelligence algorithms, which is
just proposed in 2015 [43], several scholars have carried out many in-depth studies.
Many improved MBO algorithms have been proposed, and they have been used to
successfully address various engineering problems. However, the butterflies in Land 1
is updated by butterfly adjusting operator with the fixed butterfly adjusting rate. In our
present work, self-adaptive strategy and crossover operator are introduced to improve
the performance of the basic MBO algorithm, and then a new variant of MBO algo-
rithm namely SaMBO will be proposed. The detailed description of SaMBO algorithm
will be given below.

4.1 Self-adaptive Strategy

As mentioned before, the butterfly adjusting operator is implemented with the fixed
butterfly adjusting rate (BAR). Here, BAR is updated as the MBO evolves by intro-
ducing a self-adaptive strategy, which can be updated as

BAR ¼ BAR0 þ 1� BAR0ð Þ � t=tmax ð6Þ

where BAR0 is initial butterfly adjusting rate; t and tmax are the current and maximum
generation, respectively.

From Eq. (6), we can see, BAR is changed during the whole optimization process in
the range [BAR0, 1]. This indicates that less and less butterflies will be updated by
Eq. (5), which has played smaller and smaller important role as MBO evolves.

4.2 Crossover Operator

As we aware, crossover operator and mutation operator are two of the most important
operators in EAs. In the current work, the crossover operator will be introduced to
further improve the quality of butterfly individuals generated by butterfly adjusting
operator. In order to provide a clear description, the butterfly generated by Eqs. (3)–(5)
is called xtþ 1

j1 . For the sake of fully exploiting the information of SP 2, an updated
crossover operator is designed and further used to generate another new butterfly
individual xtþ 1

j2 , which can be expressed as:

xtþ 1
j2 ¼ xtj � Crþ xtþ 1

j1 � ð1� CrÞ ð7Þ

where xtj is the original butterfly in SP 2, and Cr is crossover rate. Here, a self-adaptive
strategy is used to adjust Cr, which can be represented as follows:

Cr ¼ 0:8þ 0:2� f ðxtjÞ � f ðxbestÞ
f ðxworstÞ � f ðxbestÞ ð8Þ
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where f ðxtjÞ is the fitness of butterfly j in SP2; xbest and xworst are the best and the worst
butterfly in SP1 and SP2 with fitness of f(xbest) and f(xworst), respectively. From Eq. (8),
Cr is changed during the whole optimization process in the range of [0.2, 0.8].

Subsequently, the better butterfly individual will be considered as the newly-
generated butterfly individual xtþ 1

j;new for the next generation, which can be given as

xtþ 1
j;new ¼ xtþ 1

j1 ; f ðxtþ 1
j1 Þ\f ðxtþ 1

j2 Þ
xtþ 1
j2 ; f ðxtþ 1

j2 Þ\f ðxtþ 1
j1 Þ

(
ð9Þ

where f ðxtþ 1
j1 Þ and f ðxtþ 1

j2 Þ are fitness of the butterfly xtþ 1
j1 and xtþ 1

j2 , respectively.
After incorporating the self-adaptive strategy and crossover operator mentioned

above into the butterfly adjusting operator, an updated butterfly adjusting operator is
proposed. The main steps of the updated butterfly adjusting operator can be given in
Algorithm 1.

After incorporating the updated butterfly adjusting operator into MBO, SaMBO is
proposed, and its main description is given as Algorithm 2.
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5 Simulation Results

In this section, the effectiveness of the proposed SaMBO algorithm is fully investigated
on 21 constrained benchmark functions, as shown in Table 1. In Table 1, D is the
number of decision variables (D = 30), I is the number of inequality constraints, and
E is the number of equality constraints. More detailed information regarding 21 con-
strained benchmark functions can be found in [71]. In order to get a fair comparison, all
the implementations are carried out under the same conditions [11, 72]. For MBO and
SaMBO, the parameters are set below: Smax = 1.0, BAR0 ¼

ffiffiffi
2

p � 1
� �

=2, tmax = 50,
peri = 1.2, p = 5/12, and NP = 50. For others, their parameters are the same with [43].

In essence, all the metaheuristic algorithms are based on stochastic distribution,
therefore, in order to remove the influence of randomness, fifty independent runs are
performed. In the following experiments, the optimal solution for each test problem is
highlighted in bold font. After fifty implementations, the mean values obtained by
seven metaheuristic algorithms are recorded in Table 2.
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From Table 2, it can be observed that, for Mean function values, SaMBO has the
absolute advantage over MBO algorithm and other five metaheuristic algorithms on
seventeen benchmarks (C01–C06, C10–C16, and C18–C21). While for other meta-
heuristic algorithms, MBO performs the best on three constrained benchmark functions
(C07, C08, and C09), while BA can successfully get the best function value on only
one constrained function (C17). From Table 2, we can see, self-adaptive strategy and
crossover operator can improve significantly the search ability of the basic MBO
algorithm.

Table 1. Details of 21 constrained benchmark functions.

Search range Type of objective Number of constraints
E I

C01 [− 100, 100]D Non separable 0 1, Separable
C02 [− 100, 100]D Non separable, Rotated 0 1, Non separable, rotated
C03 [− 100, 100]D Non separable 1, Separable 1, Separable
C04 [− 10, 10]D Separable 0 2, Separable
C05 [− 10, 10]D Non separable 0 2, Non separable, rotated
C06 [− 100, 100]D Separable 2, Non separable 0
C07 [− 10, 10]D Separable 2, Non separable 0
C08 [− 100, 100]D Separable 2, Non separable 0
C09 [− 100, 100]D Separable 1, Non separable 1, Non separable
C10 [− 100, 100]D Separable 0 2, Separable
C11 [− 100, 100]D Non separable 0 3, Separable
C12 [− 100, 100]D Separable 1 1
C13 [− 100, 100]D Non separable 1, Non separable 1, Separable
C14 [− 100, 100]D Separable 1 2, Non separable
C15 [− 100, 100]D Rotated 0 2, Rotated
C16 [− 100, 100]D Rotated 0 3, Rotated
C17 [− 100, 100]D Rotated 1, Rotated 1, Rotated
C18 [− 100, 100]D Rotated 1, Rotated 1, Rotated
C19 [− 100, 100]D Rotated 1, Rotated 1, Rotated
C20 [− 100, 100]D Rotated 1, Rotated 1, Rotated
C21 [− 100, 100]D Rotated 1, Rotated 2, Rotated

Table 2. Mean function values obtained by SaMBO and other six metaheuristic algorithms.

BA ES HS MBO PBIL PSO SaMBO

C01 1.13E5 7.81E4 7.09E4 5.88E4 6.80E4 5.62E4 4.63E4
C02 1.24E5 8.04E4 6.75E4 6.76E4 6.79E4 5.61E4 4.02E4
C03 1.62E5 8.78E4 8.00E4 6.62E4 6.84E4 6.00E4 4.62E4
C04 795.00 970.90 804.30 459.40 827.20 576.30 291.00
C05 3.38E6 3.76E6 2.04E6 1.04E6 1.81E6 7.97E5 2.35E5

(continued)
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6 Discussion and Conclusions

After the studying the behavior of monarch butterflies in North America, in 2015,
Wang et al. designed a kind of swarm intelligence algorithm namely monarch butterfly
optimization (MBO) for global unstrained optimization problems. In MBO, the but-
terfly adjusting rate (BAR) is fixed and unchangeable during the whole optimization
process when implementing butterfly adjusting operator. In this paper, a self-adaptive
strategy is introduced to adjust the butterfly adjusting rate, which is changeable all the
time. Also, as most evolutionary algorithms, crossover operator is further used to
improve the utilization of information in butterfly population in order to enhance the
quality of the solutions. Crossover rate can be self-adaptively adjusted as the opti-
mization goes. At last, 21 constrained benchmark functions are used to verify the
effectiveness of the proposed SaMBO algorithm, and the experimental results indicate
that self-adaptive strategy and crossover operator can improve significantly the per-
formance of the basic MBO algorithm when addressing constrained functions.

Except the merits of SaMBO approach mentioned above, the following points
should be further clarified and focused. Firstly, though butterfly adjusting rate is
changed as MBO goes, its value is only related with the current generation and
maximum generation. More intelligent butterfly adjusting rate should be redesigned.
Secondly, migration operator is not updated in the current work, so in the future
research, migration operator should be redesigned in order to further improve the
performance of MBO algorithm. Thirdly, in the current work, only 21 standard con-
strained benchmark functions are solved by the proposed algorithms; in the future

Table 2. (continued)

BA ES HS MBO PBIL PSO SaMBO

C06 1.07E3 1.06E3 1.05E3 986.10 1.04E3 1.04E3 974.60
C07 9.55 8.18 7.19 1.12 4.56 6.72 1.88
C08 1.06E3 1.05E3 1.04E3 996.60 1.03E3 1.03E3 1.00E3
C09 8.01E3 8.28E3 8.87E3 7.44E3 7.95E3 8.82E3 7.47E3
C10 6.49E4 4.88E4 4.62E4 1.97E4 4.93E4 2.47E4 1.28E4
C11 2.92E10 1.86E10 1.71E10 5.46E9 1.70E10 5.27E9 2.21E9
C12 87.82 81.82 79.11 64.50 76.81 64.97 58.53
C13 18.59 12.95 13.07 7.18 13.34 7.66 3.78
C14 6.94E4 4.86E4 4.79E4 2.35E4 4.90E4 2.50E4 1.11E4
C15 2.33E5 1.65E5 1.58E5 1.08E5 1.62E5 9.04E4 5.18E4
C16 3.46E11 2.27E11 2.07E11 1.25E11 2.17E11 8.03E10 2.59E10
C17 20.96 21.15 21.15 21.16 21.17 21.16 21.11
C18 177.80 152.40 146.90 113.60 147.60 118.90 94.86
C19 2.03E3 1.78E3 1.73E3 1.22E3 1.76E3 1.34E3 927.80
C20 61.73 42.06 42.84 28.58 42.77 23.70 15.56
C21 2.37E5 1.60E5 1.55E5 9.25E4 1.63E5 8.95E4 5.32E4
Total 1 0 0 3 0 0 17
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research, more real world problems from engineering applications should be solved by
the proposed SaMBO algorithm. We believe, these researches will surely further
improve the effectiveness and efficiency of the proposed SaMBO algorithm.
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Abstract. Chemical reaction system, dynamic operation can significantly
increase the average rate of reaction, improve the time-average selectivity of
complex reactions and enhance the molecular weight distribution of certain
free-radical polymerization reactions, overcome the thermodynamic limitations
of reversible reactions. It even can be used as integrated means of exothermic/
endothermic reaction and catalytic reaction/catalyst regeneration, opens up new
ways to strengthen and control the reaction process, reduce waste emissions, and
increase economic and social benefits. Therefore, it has great significance to
model, simulate and calculate the process of chemical reaction. In this paper, a
cooperative firefly algorithm is proposed to solve the optimal dynamic model of
chemical reaction. The characteristics of the proposed algorithm are analyzed in
detailed and the simulation results of the algorithm are given. It provides a
feasible solution to solve such problems and the simulation results also show the
effectiveness of the proposed algorithm.

Keywords: Chemical reactor � Dynamic system optimal control
Firefly algorithm � Numerical solution

1 Introduction

The chemical reaction process is a dynamic process, and the optimal state of the system
can be achieved under optimal steady state in the process of chemical reaction.
Therefore, the task of process control is to suppress the influence of various disturbance
factors to make the system as stable as possible in the optimal stationary state. How-
ever, further studies have shown that, for some reaction systems, artificially changing
the operating conditions, the flow direction of the reaction mixture, or the position of
the feed to allow the system to perform under non-steady conditions can significantly
improve the time-averaged performance of the reaction. It can also improve the sta-
bility of the system and reduce the sensitivity of the parameters [1, 2]. For some
chemical reaction systems, dynamic operation can significantly increase the average
rate of reaction, improve the time-average selectivity of complex reactions, and
improve certain free-radical polymerizations. The molecular weight distribution breaks
through the thermodynamic limitations of reversible reactions and can even be used as
an integrated method for the integration of exothermic/endothermic reactions, catalytic
reactions/catalyst regeneration, and a new approach has been opened up for
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strengthening and control of reaction processes, reduction of waste emissions,
improvement of economic and social benefits. Therefore, it has great significance to
model, simulate and calculate the process of chemical reaction and have received
extensive attention.

2 2-Chlorophenol Supercritical Water Oxidation Kinetic
Equation

The chemical reaction process is a dynamic process. A dynamic process is usually a
differential system in mathematics; instead, the temperature, pressure, concentration,
feed rate, etc. can be controlled during the reaction to better achieve the desired
reaction. The purpose, in mathematics, is expressed as a control u(t), and the goal can
mathematically represent J. Therefore, a mathematical simulation of a chemical reac-
tion process can be expressed as:

max minð Þ JðuÞ ¼ U x tf
� �

; tf
� �þ R tf

t0
W xðtÞ; u tð Þð Þdt

s:t:
dx
dt

¼ f x tð Þ; u tð Þð Þ; x t0ð Þ ¼ x0
ð1Þ

In the formula, X is a control variable which is related substance involved in a
chemical reaction, u is the temperature, pressure, and flow rate, which are called control
variables (or manipulated variables).

This is a dynamic optimal control problem. At present, domestic and foreign
researches on the solution to the optimization of chemical process dynamics can be
divided into two categories: the solution of the analytical solution and the solution of the
numerical solution. The analytical method is further divided into a vibrational method
and a dynamic programming method based on the Bellman best principle [3, 4].
Compared with the analytical method, the numerical solution method is more favored by
the engineering community. The numerical solution approximates the control quantity
function by n piecewise functions and is a constant function on each segment. In this
way, the problem of solving the control quantity function is transformed into solving the
n-dimensional optimization problem. Numerical solutions can be directly applied to
process operation control from the perspective of computer control. Xiao and Zhou [5]
used numerical solution to control the beer fermentation process and achieved good
results; Xu and Luo [6] and others used numerical solutions to study the regenerator
margin analysis and control design of the catalytic cracking unit. The final design results
can meet the technical requirements. And it can achieve good automatic control; these
are fully explain the superiority of the numerical solution.

The Firefly Algorithm (FA) was a heuristic intelligent optimization method pro-
posed by the British Cambridge scholar Yang in 2008 [7, 8]. The basic idea of the
method is derived from the social behaviors of fireflies such as searching food, attract
mates and so on which based on the fact that the firefly adults use the biological
properties of luminescence. After the algorithm was put forward, it has received
attention and research from many scholars at home and abroad, and it has been suc-
cessfully applied in combinatorial optimization [9], path planning [10], image
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processing [11], and economic dispatch [12]. Similar to other optimization algorithms,
the basic FA algorithm has a large randomness, and there is a problem that the con-
vergence speed is slow and the solution accuracy is not high. In order to solve these
problems, this paper integrated some strategies to the basic firefly algorithm in order to
enhance its performance. The improved algorithm is used to solve the classical
dynamic optimization problems and apply to the dynamic model of chemical reactors,
the simulation results indicates that the proposed algorithms obtain ideal results

2.1 Basic Firefly Algorithm (FA)

In the natural world, there are about more than 2,000 kinds of fireflies, most species
emit their unique fluorescence. The actual purpose of the firefly is currently unknown.
It is generally believed that fireflies use flash signals to attract the opposite sex or to
attract potential prey and achieve courtship or foraging purposes. The firefly algorithm
is a stochastic optimization algorithm designed to simulate the social behavior of this
luminescent biological property. There are two key elements in the Firefly algorithm:
its own brightness and attractiveness. Self-illumination reflects the position of the
firefly. The firefly with low brightness is attracted by the brightness and moves toward
the bright firefly. The attraction affects the distance the firefly needs to move, and the
brightness of each individual is determined by the movement of the firefly. And the
degree of attraction has been continuously updated to achieve the goal of goal opti-
mization [8].

In the Firefly algorithm [7], the degree of attraction of the firefly is proportional to
the magnitude of the brightness, and the brightness is determined by the objective
function. A firefly is located at the coordinate X. Its brightness I can be taken as I
(X) = f(X). The better the position of X, the greater its brightness, and the attrac-
tiveness of other individuals along with them. As the distance increases, it becomes
smaller, and in the process of fluorescence transmission, it is absorbed by the propa-
gation medium. Therefore, the degree of attraction is also related to the medium
absorption factor. Therefore, the intensity I of a firefly pair from its r can be expressed
as relative brightness

I rð Þ ¼ I0e
�crij ð2Þ

where I0 is the fluorescence intensity at a distance from the firefly pair r ¼ 0, c is the
medium absorption factor, and rij is the Euclidean distance from firefly i to firefly j. The
degree of attraction of fireflies’ b is defined as:

b ¼ bmin þ b0 � bminð Þe�cr2 ð3Þ

where b0 is the attraction of the firefly to the distance, and bmin is the smallest
attraction, bmin ¼ 2. The mobile formula that the firefly i is attracted by the firefly j is:

xi ¼ xi þ b xj � xi
� �þ a rand � 1

2

� �
ð4Þ
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where xi; xj represents the location of firefly i and j, a is the step factor, and rand is the
random factor that obeys the uniform distribution in the interval [0, 1].

2.2 Collaborative Search Strategy

In the firefly algorithm, each firefly individual is a D-dimensional vector whose goal is
to produce the best solution. For a D-dimensional vector, one of its dimensions may
find the optimal value in an iteration, but the individual’s fitness value is calculated by
the D-dimensional vector, so it is very likely that the individual is not the optimal
result. The optimal value of the dimension found by this individual will also be dis-
carded. We hope to find the optimal value of each element in the vector through the
cooperation of each individual, and then obtain a better solution. In this paper, the
cooperative search strategy is applied to FA and a Cooperative Firefly Algorithm(CFA)
is proposed. All the individuals in the population find the optimal solution through the
exchange and cooperation of their own information. In CFA, the optimal position is
gbest and f(x) is the objective function. Respectively use the j (1, …, D) dimension of
each firefly individual instead of the corresponding element in gbest to become new-
gbest and substitute the target function to calculate the fitness value. If f(newgbest) is
better than f(gbest), then Replace gbest with newgbest to find the optimal value for the j
dimension.

2.3 Collaborative Firefly Algorithm for Solving Dynamic Optimization
Problems

The control period [t1, t2] is divided into m segments. Within each segment, all control
variables and state variables remain unchanged. The value of the control variables in
each segment composes the sequence u0, u1, …, un−1, then the dynamic control
problem is transformed into the m-dimensional optimization problem. In this regard,
the steps to apply various intelligent algorithms are:

Step1: A group of individuals is initialized to form an initial population of a certain
size. Each individual is a randomly generated sequence of control variables u0, u1,
…, um−1.
Step2: Apply the sequence of control variables of each individual to the controlled
object, obtain the corresponding state trajectory, and then calculate the performance
indicators of each group in the population according to the objective function,
including the numerical solution of differential equations.
Step3: Determine if the termination condition is satisfied. If it is satisfied, terminate
the calculation and output the optimal result; otherwise, proceed to the next step.
Step4: Calculate the next-generation group by each step of the firefly algorithm,
then perform a collaborative search for each individual, return to Step2, and con-
tinue to run.
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2.4 Performance Test of Algorithm

The Cooperative Firefly Algorithm was tested using the example of [3], as shown in
Eq. (5). The literature [5] uses the principle of minima to obtain the theoretical solution
of the optimal control variable. The corresponding target optimal value is 19.2910.

min J uð Þ ¼ 1=2
R 1
0 x2 þ u2ð Þdt

s:t:
dx
dt

¼ �xþ u; x 0ð Þ ¼ 10;�6� u� 2
ð5Þ

Apply FA and CFA respectively to solve, its parameters: Step length factor
a0 ¼ 0:9, maximum attraction, minimum attraction, medium absorption factor, The
step size a adopts an adaptive change that gradually decreases with the number of
iterations. The step size factor is a0 ¼ 0:9, the maximum attraction degree is b0 ¼ 0:1,
the minimum attraction degree is bmin ¼ 0:1, the medium absorption factor c ¼ 1, the
step length a is adaptive, and it decreases with the increase of iteration times. Its update
formula is:

a ¼ að10� �4ð Þ=a0Þ � 1=NGenð Þ ð6Þ

where a0 is 0.9, NGen is the maximum number of iterations. Feasible range of u from
[−6, 2]. to 10 portions of the feasible region, approximate step curve, state variables are
obtained by Runge-Kutta method. The calculation of the value of the objective function
with the trapezoidal method, two algorithms are run 10 times, the number of iterations is
100, and the population is 50, the optimal income value of the objective function
respectively. 20.6512 and 19.4528, the control curve as shown in Figs. 1, 2. From the
last best value, we can see that CFA is better than FA, but we must see that the solution
to the system is numerically solved. Therefore, there will be errors in the solution
process, and the error will also be diffused. But because the numerical method is
consistent and only depends on the effect of optimization, CFA is indeed better than FA.

2.5 Solution of Dynamic Model of Chemical Reaction Process in Tubular
Reactor

The performance of the algorithm is further analyzed by the application of the model of
tubular reactor in reference [13]. The mathematical model is as follows:

max J zf
� � ¼ 1� xA zf

� �� xB zf
� �

s:t:

dxA
dz

¼ u zð Þ 10xB zð Þ � xA zð Þ½ �
dxB
dz

¼ �u zð Þ 10xB zð Þ � xA zð Þ½ �

� 1� u zð Þ½ �xB zð Þ
0� u zð Þ� 1

xA 0ð Þ ¼ 1; xB 0ð Þ ¼ 0; zf ¼ 12

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ
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In the reactor, reaction of A occurs under the action of two kinds of catalysts. z is
the length of the tubular reactor. u zð Þ indicates the content of the first catalyst at the
midpoint of the tube Z. The optimization purpose is to the catalyst. The optimal
distribution is taken so that the concentration of the target product C is maximized at
the end of the reaction. The results obtained are compared with the relevant literature,
as shown in the following Table 1.

Fig. 1. The control curve obtained by the firefly algorithm.

Fig. 2. Control curve obtained by cooperative firefly algorithm.
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2.6 Analysis of Result

It is not easy to solve the dynamic optimization problem. From the results of the
algorithm, this paper proposes that the CFA algorithm is effective, and with the
increase of the sub-point, the result is better, which has a great relationship with the
algorithm’s collaborative local search. Some points of the method are not optimal, but
one of the components is already the optimal component. In other searches, this
component may be overlooked, and the collaborative search method is how to tap such
components and make full use of it in the search process. In the lead role, and because
it is an improvement on the single-dimensional progressive search. Therefore, this
search method is also more suitable for solving high-dimensional optimization prob-
lems, so when the sub-point reaches 100, the result is ideal. In general, the performance
of the algorithm is similar to that of other algorithms. However, considering that the
system gives the solution to the state differential equations using numerical methods to
solve the problem, the results of the algorithm have certain errors. But the results from
the algorithm and other algorithms comparing the results, the results are still relatively
satisfactory, which provides a feasible method for solving the problem.

3 Summary

The dynamic optimization of the chemical reaction process is a common problem in
chemical process optimization. However, it is difficult to solve the problem numeri-
cally. The solving includes solving dynamic system which is differential equations and
the integral calculation of the objective function, and has to control u(t) to achieve the
goal of optimization, however, the relationship between u(t) and the goal cannot be
obtained in general cases. Numerical simulation is a way of studying this kind of
problem. This paper presents an alternative method to solve the dynamic optimization
problem of chemical reactors, and the test results are good, but the research on this
issue is far from over, but it is constantly exploring and advancing.

Table 1. Calculation results.

Method or Ref. Discrete (N) Performance (index)

Ref. [13] 0.476946
ACA [14] 4 0.47615
IGA [15] 100 0.4768
GA [16] 100 0.47668
IKBCA [17] 20 0.4753

100 0.47768–0.47770
IKEA [16] 10 0.475

20 0.4757
100 0.47761–0.47768

CFA 10 0.473582 (NGen = 500)
20 0.475933 (NGen = 700)

100 0.4777903–0.47862 (NGen = 5000)
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Abstract. 2-Chlorophenol is a kind of representative organic waste water. With
the environmental pollution becoming increasingly serious, and the large
amount of waste discharged and the increasing difficulty of treatment, the
research on the kinetics of the oxidation of supercritical water of 2-chlorophenol
has important significant. Aiming at the phenomenon that the Glowworm
Swarm Optimization (GSO) algorithm has slow convergence, low precision and
easy to get trapped into local optimum, this paper presents an improved version
of the GSO based on the behavior of predator-prey and biological predator, and
we call it dual population Glowworm Swarm Optimization (GSOPP). The
algorithm accelerates the convergence speed by introducing strategies such as
chase and escape and variation among populations, and can obtain a more
accurate solution. Tested by three standard test functions, the results showed that
the improved GSOPP algorithm had better performance than the basic GSO
algorithm. Finally, the algorithm was applied to estimate the parameter esti-
mation of the supercritical water oxidation kinetics of 2-chlorophenol, and
satisfactory results were obtained.

Keywords: 2-chlorophenol � Reaction kinetics equation
Firefly algorithm (GSO) � Predator-prey behavior � Mutation strategy
Parameter estimation

1 Introduction

With the development of industrial and agricultural production, environmental pollu-
tion has become increasingly serious. The waste of the three wastes is large and the
processing difficulty is increasing day by day. Among them, organic wastewater is the
most difficult to handle. For most organic waste liquids, waste water and organic
sludge, the supercritical water oxidation method has a fast reaction rate, complete
oxidation, and a removal rate of 99.9% or more in a short residence time. Therefore,
supercritical water oxidation is a promising technology for the treatment of organic
pollution. The application of supercritical water oxidation technology to organic
wastewater treatment, removal rate is the most important indicator, it is affected by the
reaction temperature, reaction pressure, residence time, the amount of oxidant and the
presence or absence of catalysts and other factors. Accurately estimating the reaction
kinetic parameters can then accurately calculate the influence of the removal rate of
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each factor, thus laying the foundation for the design and optimization of industrial
devices. The artificial firefly swarm optimization algorithm is a new swarm intelligence
optimization algorithm. The algorithm is easy to fall into local extremum during the
optimization performance process. Therefore, aiming at the problem of parameter
estimation in this paper, it is proposed to use the predator-prey behavior to improve the
algorithm and improve the performance of the algorithm. It can also be used to estimate
the kinetic parameters of the supercritical water oxidation reaction of 2-chlorophenol.

2 2-Chlorophenol Supercritical Water Oxidation Kinetic
Equation

The application of supercritical water oxidation technology to organic wastewater
treatment is the most important indicator. The 2-chlorophenol is a representative
organic wastewater, and its global reaction kinetics equation [1] is:

rA ¼ A exp � Ea

RT

� �
2CP½ �a O2½ �b H2O½ �c ð1Þ

In the formula, A; Ea; a; b and c are the kinetic parameters to be determined. A is
the pre-factor, rA is the reaction speed of 2-chlorophenol, Ea is the activation energy, R
is the gas constant, T is the reaction temperature (°C), and 2CP½ � is the reaction rate of
2-chlorophenol in the reactor, O2½ � is the oxygen concentration in the reactor, H2O½ � is
the water concentration in the reactor, a is the 2-chlorophenol reaction order, and b is
the reaction order of oxygen, c is the reaction order of water. The dependent variable is
the 2-chlorophenol removal rate. Let the sample size be M and the measured value of
the 2-chlorophenol removal rate of the is ample be ri, the estimated value is r�i . The
principle of parameter estimation is to minimize the value of EQS in Eq. (2), which is
the objective function.

EQS ¼
XM
i¼1

ri � r�i
� �2 ð2Þ

3 Firefly Algorithm (GSO)

Glowworm Swarm Optimization (GSO) is a new swarm intelligence optimization
algorithm proposed by two Indian scholars Krishnanad and Ghose in 2005 [1, 2]. This
algorithm is a group intelligent behavior that simulates the use of fluorescein infor-
mation by fireflies. It has been successfully applied to sensor noise testing [3], simu-
lation robot [4], numerical integration [5] and knapsack problem [6]. This algorithm is
similar to other swarm intelligence algorithms. It has the advantages such as it doesn’t
require gradient information of the objective function, it is easy to implement and has
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strong robustness. However, it still has disadvantage with regard to slow convergence,
low precision and easy to fall into local optima.

In the basic firefly algorithm, each fireflies carries Lucifer in with the same initial
value and has its own decision domain. Each iteration consists of two phases, the
Lucifer in update phase and the firefly motion phase.

Lucifer in renewal phase: During this phase, each fireflies updates Lucifer in
according to the formula (3). The intensity of fluorescein is related to the corresponding
fitness value at the position of the firefly. With the higher of luciferin, the location of
the glowworm is better which means the fitness value is better.

liðtÞ ¼ ð1� qÞliðt � 1Þþ c JðxiðtÞÞ ð3Þ

In the formula, li tð Þ is the value of Lucifer for the i glowworm in t iteration,
q 2 0; 1ð Þ is the parameter for controlling the Lucifer in value, c is the parameter for
evaluating the function value, xi tð Þ is the position of the firefly i after the t iteration, and
J xð Þ is Fitness evaluation function.

Firefly movement phase: During this phase, fireflies i select neighbors with a
certain probability (fireflies j need to be neighbors of fireflies i, fireflies must satisfy j
within the decision domain of i and j have higher fluorochrome values than i). The
firefly j moves toward it, and the probability selection formula is shown in Eq. (4). The
position of firefly i is updated by Eq. (3), and the decision area is updated at the end of
the exercise phase according to Eq. (4). Through the constant movement of the fireflies,
more fireflies eventually gather around fireflies with higher fitness values. Path prob-
ability selection formula:

pij tð Þ ¼ lj tð Þ � li tð ÞP
k2Ni tð Þ lk tð Þ � li tð Þ ð4Þ

Location update formula:

xi tþ 1ð Þ ¼ xi tð Þþ s�
xj tð Þ � xi tð Þ
xj tð Þ � xi tð Þ
�� ���� ��

 !
ð5Þ

In the formula, xi tð Þ 2 Rm denotes the position of Firefly i in the real space of
m-dimension, �j jj j denotes the standard Euclidean distance operator, and s[ 0
denotes the moving step. Decision domain update formula:

rid tþ 1ð Þ ¼ min rs;max 0; rid tð Þþ b nt � Ni tð Þj jð Þ� �� � ð6Þ

In the formula, rs is the perceived radius of the firefly, b is a proportionality
constant, nt is a parameter that controls the number of neighboring fireflies in the
neighborhood, and Ni tð Þj j is the number of neighboring fireflies in the neighborhood of
the fireflies.
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4 GSO Algorithm Based on Predator-Prey Behavior

4.1 Biological Predator-Prey Behavior

The predator-prey behavior of biological populations is a common behavior in
ecosystems. Predation is a phenomenon in which a species captures another species and
consumes all or part of another species’ body to obtain nutrition directly to maintain its
own life. The former is called the predator, the latter is called the eater, also known as
bait. In the long-term predation process, organisms form a predation strategy for
hunting food, such as the exchange of pheromone among groups, the choice of
easy-to-prey species [7–9], sneak attack, chase, and collective predation [10]. However,
the prey species usually adopt three kinds of anti-hunting strategies such as conceal-
ment, avoidance and self-defense [11].

4.2 GSOPP Algorithm Model

Group intelligence algorithm is an algorithm designed to simulate biological behavior.
Fully mining the characteristics of the creature and embedding it in the algorithm will
help to improve the optimization performance of the algorithm and improve the ability
of the algorithm to jump out of the local extremism. Predator’s collective predation
strategy and prey escaping strategy are embedded into the GSO algorithm. Fireflies are
divided into two groups: predator and prey. A moving “nest” is set for each population.
The center of the optimal 10 fireflies is centered, with the radius of the algorithm’s
initial search range being the radius. The predator population approaches the firefly of
the prey population at a certain number of iterations. At this time, the prey population
of fireflies’ escapes from the individual of its closest predator group, thus being dis-
persed in a larger range, which is beneficial to the global search of the algorithm, called
the GSOPP algorithm. In the algorithm, it is assumed that the better the fitness value of
the prey population, the worse the physical quality, i.e., the poor ability to escape, can
be easily captured.

In the GSOPP algorithm, predator predation strategies are simulated in the fol-
lowing three aspects: First, set a search range for the predator group fireflies (take 5%
of the length of the search area). Second, the individuals of the predator group search
for prey fireflies whose pre-existing values are better than their own value as prey, and
select the prey object that has the best fitness value as the prey. Third, the predator’s
move to the prey is set to five times, if the predator finds a better position in the
movement and stops moving, the predator thinks that the predation was successful.
Otherwise, the predator fails. The formula for moving is shown in Eq. (7). If the
predator does not search for prey or prey fails, the predator moves one step to the “nest”
of the predator group. The length of the search range is moved to jump out of the area.
The equation for moving is shown in Eq. (8). Since each predator attacks the prey with
the best fitness value in the range, the prey can be the predation target of multiple
predators, which reflects the collective predation behavior of the organism.
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xkþ 1
i ¼ xki þ s�

pyj � xki
pyj � xki
�� ���� ��

 !
ð7Þ

xi tþ 1ð Þ ¼ xi tð Þþ d
X
Xj j ð8Þ

In the above formula, k is an integer from 0 to 4, xkþ 1
i is the position of the predator

i in the k + 1 th quarry, x0i is the position of the predator i before moving to the prey, s
is the step length, and pyj is the predator Prey position, j xð Þ is the fitness function, d is
the length of the predator search range, and X is the predator group nest.

The evasion strategy of the prey is manifested in the GSOPP: when the predator
attacks the prey, the prey will issue a warning to inform the prey of the firefly to leave
the predator’s search range; the prey’s fireflies are trying to avoid being preyed and try
to be closest to themselves. The predator fireflies escaped and each fireflies set to their
neighbors were approached once, in order from the highest fluorescein neighbor to the
lowest neighbor, the equation is shown in (9). If the prey finds a better position in the
process of flight, stops fleeing and thinks that it has escaped successfully, otherwise it
flees and fails, and the prey is killed by the predator and is eliminated. In order to
maintain the scale of the prey population, a new firefly is produced at the center of the
eliminated fireflies’ neighbors. If the fireflies are eliminated without neighbors, a new
firefly is randomly generated within the prey population ‘nest’.

xhþ 1
i ¼ xhi � s�

dxj � xhi
dxj � xhi
�� ���� �� þ xhþ 1

i � xhi
xhþ 1
i � xhi
�� ���� ��

" #
J xhj
	 


� J x0j
	 


ð9Þ

Among them, xhþ 1
i is the position of the firefly j in the prey population after the

h + 1th neighbor to the neighbor, x0j is the position of the prey firefly j before the
predator, s is the step length, and dxj is the firefly of the predator closest to the firefly j
in the current distance from the prey population. In the position, xh is the Lucifer in h
firefly position in the neighborhood of Firefly j, and J xð Þ is the fitness value function.

In order to improve the accuracy of the algorithm, this paper adopts a variable step
size. If the predatory behavior occurs, the optimal position of the two groups does not
change, and the step length is updated according to formula (10).

s ¼ 0:9w � s0 þ smin ð10Þ

In the above equations, s is the current step size, s0 is the initial step size, smin is the
lower limit of the step size, and w is the number of predation times where the optimal
position of the two groups does not change after the predation behavior occurs.

When the firefly in the prey population is in a stagnant state, the predator firefly
closest to it has no obvious effect of repelling it, and it cannot make it out of the local
optimum, which will affect the performance of the algorithm. In this paper, the position
variation method is used to increase the rejection effect. That is, if there is no change in
the optimal positions of the 20 consecutive generations of prey populations during the
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iteration process, a firefly of prey is selected at random, and the position of the
dimension in the dimension is selected randomly according to the formula (11).
Variation occurs. Since the positional variation of a firefly that randomly selects prey
does not disrupt the structure of the population, statistically speaking, each position of
each firefly of prey mutates at the same probability.

xikj tð Þ ¼ 2r � xikj tð Þ ð11Þ

In the above formula, 0\kj �m; xikj tð Þ is the position of firefly i in kj dimensions on
the t iteration, which is a random number distributed uniformly between [0, 1].

4.3 The Flow of GSOPP Algorithm

The flow of the GSOPP algorithm can be briefly described as:

Step1 : Initialization. Initialize each parameter, randomly initialize the positions of
the individuals of predator and prey within the target function search area;

Step2 : Calculate the optimal position of the population of two populations, update
the fluorescein value according to formula (1);

Step3 : Determine whether the two populations meet the condition of rejection, i.e. if
mod(t, K) = 0, execute Step4, and otherwise go to Step6;

Step4 : Calculate the position of the two nests, update the position of the predator
population according to formula (7) or (8), update the position of the prey
population according to formula (9), and generate a new firefly in the
neighbor’s center position or nest to replace the eliminated individual, Update
the decision radius of each firefly in the two populations and move to the next
step;

Step5 : Calculate the optimal position of the two groups. If there is no change, update
the step according to formula (10); otherwise, go to Step7;

Step6 : Update the firefly information of two populations according to the basic GSO
algorithm;

Step7 : Determine if the end condition is satisfied. If satisfied, the algorithm termi-
nates and outputs the optimal solution; otherwise, go to Step2.

4.4 The Performance Test of the GSOPP Algorithm

4.4.1 Basic Test Functions
Select three basic test functions to test the performance of the GSOPP algorithm.

f1 ¼
X10
i¼1

x2i ð12Þ

f2 ¼
X10
i¼1

x2i � 10 cos 2pxið Þþ 10
� � ð13Þ
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f3 ¼ 1
4000

X10
i¼1

x2i �
Y10
i¼1

cos
xiffiffi
i

p
� �

þ 1 ð14Þ

4.4.2 Algorithm Parameter Settings
In the GSO algorithm, the parameters use the common settings of the basic firefly
algorithm (see Table 1). The number of populations is 60, and the step size is 3. In the
GSOPP algorithm, the number of two populations is taken as 30, K is taken as 50, and
the remaining parameters are set the same as the basic GSO.

4.4.3 Test Results
Both GSOPP and GSO run independently 20 times. The results obtained are shown in
Table 2. Table 2 shows the best, worst, and average values of the two algorithms for
solving each function. Figures 1, 2 and 3 depicts the average optimal value of the two
algorithms in the process of solving each function.

Table 1. Parameter settings.

q c b nt l0
0.4 0.6 0.08 5 5

Table 2. Comparison of the results of 20 tests of two algorithm.

Function Algorithm Worst Average value The optimal value

f1 GSO 0.12356829 0.08951171 0.04300191
GSOPP 5.029459e−07 1.251858e−07 3.748987e−10

f1 GSO 21.62967483 11.56450137 5.24693823
GSOPP 5.453582e−07 1.549574e−07 1.882350e−09

f3 GSO 1.79858405 0.89537797 0.20542943
GSOPP 1.589373e−06 1.173826e−07 6.725298e−11

Fig. 1. The average optimal value change curve for Solution f1.
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From Table 2, it can be seen that the accuracy of the three basic test functions of the
GSOPP algorithm is far better than that of the GSO.

5 GSOPP Estimation of Kinetic Parameters
for the Supercritical Water Oxidation Reaction
of 2-Chlorophenol

GSOPP was used to estimate the kinetic parameters of Eq. (1). The experimental data
were taken from the literature [1]. The samples consisted of 62 groups including
temperature, pressure, residence time, 2CP½ �; O2½ �; H2O½ � and 2-chlorophenol.
Removal rate, GSOPP parameter settings are shown in Sect. 4.4.2. The optimal value
of GSOPP operation is EQS = 25.8875. The chaos genetic algorithm (CGA) is used in
the literature [13], and the classical non-classification is used in [1]. Linear regression
(NLR), literature [12] uses a hybrid genetic algorithm for parameter estimation. The
results are shown in Table 3.

Fig. 2. The average optimal value change curve for Solution f2.

Fig. 3. The average optimal value change curve for Solution f3.
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It can be seen from the table that the function value of the objective function is
insensitive to the variable. In the case of large variation of the independent variable, the
value of the function still changes very small, which is very difficult to find the optimal
value. The results of the three algorithms also illustrate this problem. The results of the
three algorithms are almost identical. The algorithm proposed in this paper has a greater
improvement than the previous three results in terms of optimal results.

The estimation of chemical kinetic parameters is a common optimization problem.
The form seems simple, its error response surface is often quite complex and has many
local extreme. The conventional optimization algorithm is easily trapped in the local
extreme region. The supercritical water oxidation kinetic parameters are estimated. The
results indicate that GSOPP has a strong global search capability and has its place in
parameter estimation.

6 Summary

The predator-prey behavior of organisms is embedded into the artificial firefly algo-
rithm, and the population of the algorithm is divided into two populations. When
searching, the number of iterations occur at intervals predatory behavior. At this point,
the firefly of the Predator group continuously chases the best prey in its search range.
Prey’s fireflies continue to flee their nearest Predator fireflies while approaching their
neighbors. This mechanism prey with better anti-predator behavior as a guide mech-
anism for the search, the algorithm has strong global search capability. And the
algorithm obtained more satisfactory results in estimating 2-chlorophenol supercritical
water oxidation reactor kinetic parameters.
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Abstract. As one of the most critical components in disaster relief oper-
ations, emergency transportation planning often involves huge amount of
relief goods, complex hybrid transportation networks, and complex con-
straints. In this paper, we present a new emergency transportation plan-
ning model which combines rail and road transportation and supports
transfer between the two modes. For solving the problem, we propose a
novel hybrid algorithm that integrates two meta-heuristics, water wave
optimization (WWO) and particle swarm optimization (PSO), whose
operators are elaborately adapted to effectively balance the exploration
and exploitation of the search space. Experimental results show that
the performance of our method is better than a number of well-known
heuristic algorithms on test instances.

Keywords: Emergency transportation planning
Water wave optimization (WWO) · Particle swarm optimization (PSO)
Hybrid algorithm

1 Introduction

Nowadays we are facing an increasing number of disasters, including floods,
earthquakes, communicable diseases, terrorist attacks, etc., which can cause
huge damages to people. Emergency transportation of disaster relief goods to
the affected areas plays a crucial role in controlling and mitigating the dam-
ages after disasters. But unlike commercial transportation operations, emergency
transportation operation planning has some special characteristics:

– There can be a huge amount of relief goods which are required to be delivered
with restricted transport capacities and within a very limited time.

– The cost of transportation is not considered as a primary factor.
– Emergency transportation plans often have much higher priority than com-

mercial ones.
– The environment can be dynamic, stochastic and hard to forecast.
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Emergency transportation planning problems are a special class of the general
transportation problems, most of which are known to be NP-hard [3]. Thus, it is
difficult for conventional mathematical optimization methods to solve medium-
and large-size problem instances. To overcome this difficulty, many studies have
been conducted on the use of evolutionary algorithms (EAs) to effectively solve
the problems. Ding [6] modeled an emergency logistics distribution routing opti-
mization problem to seek the shortest delivery time. They developed an improved
ant colony algorithm that adds swarming behavior of artificial fish swarm algo-
rithm (AFSA) [11] into ant colony optimization (ACO) [7] for path selection.
Berkoune et al. [1] formulated an emergency transportation problem for mini-
mizing the total transportation duration, and solved the problem using a genetic
algorithm (GA) [9] that uses much less computational time than the exact
CPLEX solver. Bozorgi et al. [2] introduced a new robust mixed-integer non-
linear programming (MINLP) model for disaster relief logistics problems. They
developed a modified particle swarm optimization (PSO) [10] that uses discrete-
continuous encoding method, and reinitializes several particles after running
predetermined iterations to keep the diversity. In [20] Zheng et al. proposed a
multi-objective fuzzy optimization problem of emergency transportation plan-
ning, where the uncertainty is tackled by three correlated fuzzy ranking criteria.
They developed a cooperative evolutionary algorithm that divides the integrated
problem into a set of subcomponents, evolves the sub-solutions concurrently, and
brings together the sub-solutions to construct complete solutions. In [23] Zhou
et al. presented another multi-objective optimization problem for multi-period
dynamic emergency resource scheduling, and proposed a multi-objective evolu-
tionary algorithm (MOEA) based on decomposition that uses simulated binary
crossover (SBX) [4] operator and real mutation operator to optimize two objec-
tives. However, most of the researches consider only one transportation mode
(typically, road transportation). Interested readers can refer to [18] for a survey
of meta-heuristic algorithms for emergency transportation problems.

In this paper, we consider a novel emergency transportation planning prob-
lem, where relief goods can be delivered not only via either road or rail, but
also via a path that transfers between the two transportation modes. We then
propose a hybrid optimization method that integrates two swarm intelligence
algorithms, water wave optimization (WWO) [19] and PSO, to efficiently solve
the problem. Experiments show that the hybrid algorithm outperforms a set of
well-known heuristic algorithms on the test set.

In the rest of the paper, Sect. 2 formulates the problem, Sect. 3 proposes our
algorithm, Sect. 4 gives the experimental results, and Sect. 5 concludes.

2 Problem Description

Our emergency transportation planning problem considers that there are a road
transportation network G = 〈N,E〉 and a rail transportation network G′ =
〈N ′, E′〉, where N and N ′ are nodes and E and E′ are edges of the networks.
We assume that N ′ ⊆ N , i.e., each rail node (station) is connected into the
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road network. For any two nodes i and j, we use dij and d′
ij to denote the road

distance and rail distance between i and j, respectively.
We have a set I of supply sources and a set J of receiving targets (I, J ⊆ N).

The quantity of relief goods required by each target j is rj , and the quantity
of relief goods that source i can provide is ai. We also identify a set of K ⊂
N ′ of intermediate rail stations, and thus consider the following four possible
transportation modes from each i ∈ I to each j ∈ J :

– Transportation from i to j directly by road.
– Transportation from i to j directly by rail, where i ∈ N ′ and j ∈ N ′.
– Transportation from i to an intermediate k ∈ K by road and then from k to

j by rail, where i ∈ N\N ′ and j ∈ N ′.
– Transportation from i to an intermediate k ∈ K by rail and then from k to j

by road, where i ∈ N ′ and j ∈ N\N ′.

For each i ∈ I or k ∈ K, we use Ci or Ck to denote the maximum amount of
goods that can be sent from i or k by road; for each i ∈ I ∩ N ′ or k ∈ K ∩ N ′,
we use C ′

i or C ′
k to denote the maximum amount of goods that can be sent from

i or k by rail.
The problem needs to determine the following decision variables:

– xij , the quantity of goods to be delivered from source i to destination j by
road directly.

– x′
ij , the quantity of goods to be delivered from source i to destination j by

rail directly.
– xijk, the quantity of goods to be delivered from source i through intermediate

station k to destination j, first by road and then by rail.
– x′

ijk, the quantity of goods to be delivered from source i through intermediate
station k to destination j, first by rail and then by road.

Time is the most critical factor in our emergency problem. The road and rail
transportation time between two nodes i and j are empirically estimated as:

tij = (xij)αdij (1)

t′ij = (x′
ij)

α′
d′

ij (2)

where α and α′ are two positive constants less than 1. And the time for the
transition from road mode to rail mode and that from rail to road are respectively
estimated as:

Δtijk = (xijk)βk (3)

Δt′ijk = (x′
ijk)β′

k (4)

where βk and β′
k are two positive constants less than 1 representing the load-

ing/unloading capability of station k. Thus, the road-rail tand rail-road trans-
portation time are respectively calculated as:

tijk = tik + Δtijk + t′kj (5)
t′ijk = t′ik + Δt′ijk + tkj (6)
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The objective of the problem is to minimize the quantity weighted arrival
time of all relief goods, and the problem is formulated as follows:

min f =
∑

i∈I

∑

j∈J

(
xijtij + x′

ijt
′
ij +

∑

k∈K

(xijktijk + x′
ijkt′ijk)

)
(7)

s.t. Eqs. (1)–(6)
∑

i∈I

(
xij + x′

ij +
∑

k∈K

(xijk + x′
ijk)

) ≥ rj , j ∈ J (8)

∑

j∈J

(
xij + x′

ij +
∑

k∈K

(xijk + x′
ijk)

) ≤ ai, i ∈ I (9)

∑

j∈J

(
xij +

∑

k∈K

xijk

) ≤ Ci, i ∈ I (10)

∑

j∈J

(
x′

ij +
∑

k∈K

x′
ijk

) ≤ C ′
i, i ∈ I ∩ N ′ (11)

∑

i∈I

∑

j∈J

xijk ≤ C ′
k, k ∈ K (12)

∑

i∈I

∑

j∈J

x′
ijk ≤ Ck, k ∈ K (13)

xij , x
′
ij , xijk, x′

ijk ∈ Z
+, i ∈ I, j ∈ J, k ∈ K (14)

To handle constraints (8)–(13), we define the following penalty functions:

P1(j) =

⎧
⎪⎨

⎪⎩

0, if
∑
i∈I

(
xij + x′

ij +
∑

k∈K

(xijk + x′
ijk)

) ≥ rj

rj − ∑
i∈I

(
xij + x′

ij +
∑

k∈K

(xijk + x′
ijk)

)
, else

(15)

P2(i) =

⎧
⎪⎨

⎪⎩

0, if
∑
j∈J

(
xij + x′

ij +
∑

k∈K

(xijk + x′
ijk)

) ≤ ai,

∑
i∈I

(
xij + x′

ij +
∑

k∈K

(xijk + x′
ijk)

) − ai, else
(16)

P3(i) =

⎧
⎪⎨

⎪⎩

0, if
∑
j∈J

(
xij − ∑

k∈K

xijk

) ≤ Ci

∑
j∈J

(
xij − ∑

k∈K

xijk

) − Ci, else
(17)

P4(i) =

⎧
⎪⎨

⎪⎩

0, if
∑
j∈J

(
x′

ij − ∑
k∈K

x′
ijk

) ≤ C ′
i

∑
j∈J

(
x′

ij − ∑
k∈K

x′
ijk

) − C ′
i, else

(18)
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P5(k) =

⎧
⎨

⎩

∑
i∈I

∑
j∈J

xijk − C ′
k, if

∑
i∈I

∑
j∈J

xijk > C ′
k

0, else
(19)

P6(k) =

⎧
⎨

⎩

∑
i∈I

∑
j∈J

x′
ijk − Ck, if

∑
i∈I

∑
j∈J

xijk > Ck

0, else
(20)

And thus the objective function is transformed to the following form (where
M is large positive constant):

min f =
∑

i∈I

∑

j∈J

(
xijtij + x′

ijt
′
ij +

∑

k∈K

(xijktijk + x′
ijkt′ijk)

)

+M
(∑

j∈J

P1(j)+
∑

i∈I

(P2(i)+P3(i))+
∑

i∈I∩N ′
P4(i)+

∑

k∈K

(P5(k)+P6(k))
)
. (21)

3 A Hybrid Evolutionary Algorithm for the Problem

We propose a hybrid EA combing WWO and PSO, denoted as CPS-WWO, to
efficiently explore in the solution space of the problem. WWO [19] is a rela-
tively new meta-heuristic, where each solution x is analogous to a wave, and
its wavelength λx is set inversely proportional to its fitness. At each generation,
WWO propagates each solution to a new position within the range proportional
to λx, such that better solutions can exploit smaller areas around them while
worse solutions explore wider areas in the search space. WWO also has a refrac-
tion operator for improving the diversity and a breaking operator for performing
intensive local search.

As most population-based EAs, our algorithm first randomly initializes a set
of solutions, each being encoded as a

(|I||J |+ |I ∩N ′||J ∩N ′|+ |I||K||J ∩N ′|+
|I ∩ N ′||K||J |)-dimensional vector like:

{x1,1, ..., xij , ...︸ ︷︷ ︸
|I||J|

;x′
1,1, ..., x

′
ij , ...︸ ︷︷ ︸

|I∩N ′||J∩N ′|

;x1,1,1, ..., xijk, ...
︸ ︷︷ ︸

|I||K||J∩N ′|

;x′
1,1,1, ..., x

′
ijk, ...

︸ ︷︷ ︸
|I∩N ′||K||J|

}

where each xij , x′
ij , xijk and x′

ijk are set as random values in [0,min(ai, Ci)],
[0,min(ai, C

′
i)], [0,min(ai, C

′
k)] and [0,min(ai, Ck)], respectively.

For this problem, in order to increase the convergence speed, we adapt the
WWO propagation operator by incorporating the PSO movement operator to
evolve each solution x as follows:

vx(d) = w · vx(d) + r1 · c · (
pbestfd(x)

(d) − x(d)
)

(22)

x′(d) = x(d) + vx(d) + r2 · λx · L(d) (23)
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where c is the PSO learning coefficient (set as 1.4944 as in [12]), r1 and r2 are
two random numbers in [0, 1], pbestx is the history personal best of x, L(d) is the
length of the dth dimension of the search range, and the inertial weight w linearly
decreases from an upper limit wmax to a lower limit wmin with generation [14].
Here, in (22) we use the comprehensive learning strategy of PSO [12], where at
each dimension d x learns from a different exemplar solution fd(x) (determined
as the winner of two randomly chosen solutions), which can avoid local optima
more effectively than learning from pbestx and gbest in the classical PSO [22].

After each generation, the wavelength of each x is updated as:

λx = λx · ξ−(f(worst)−f(x)+ε)/(f(worst)−f(gbest)+ε) (24)

where ξ is a constant 1.0026 [19] and ε is a small value to avoid divide-by-zero.
During evolution, if a solution x does not improve its fitness over hmax (typ-

ically set to 12) consecutive generations, the refraction operator resets it to a
new random solution to increase population diversity. When a new global best
is found by propagation, the breaking operator conducts a local search around
it by generating kmax (typically set to 12) neighboring solutions x′ as:

x′(d) = x(d) + N(0, 1) · γ · L(d) (25)

where γ is the breaking coefficient, and N(0, 1) denotes a Gaussian random
number with mean 0 and standard deviation 1. When producing a new solution,
any float value will be rounded to the nearest integer, and any value situates
outside the search range will be set to the nearest boundary value.

We also let the algorithm’s population size n linearly decreases from an upper
limit nmax to a lower limit nmin to better balance the exploration and exploitation
[17]. Algorithm 1 shows the framework of the hybrid algorithm.

4 Computational Experiment

We test the performance of our CPS-WWO algorithm on a set of nine problem
instances summarized in Table 1 (where D denotes the dimension of the problem,
and the penalty constant M is set to 10000 for all the instances). Instances
#1–#3 are derived from the 2010 Zhouqu mudslides, #4–#6 are from the 2008
Wenchuan earthquake, and the others are randomly generated.

The control parameters of CPS-WWO are tuned as γ = 0.25, nmax = 50,
nmin = 6, wmax = 0.5 and wmin = 0.1. For comparison, we also implement the
following seven algorithms (whose parameters are also fine-tuned):

– The PSO for integer programming [15]. The learning coefficients c1 = c2 = 2,
wmax = 0.9 and wmin = 0.4.

– The basic WWO [19] (adapted for integer programming by rounding floats
to the nearest integers), where γ = 0.25, kmax = 12, hmax = 12, and n = 50.

– The blended biogeography-based optimization (B-BBO) algorithm [13,16],
whose maximum emigration rate and emigration rate are both set to 1.
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Algorithm 1. The CPS-WWO algorithm for the considered problem.
1 Randomly initialize a population of n solutions;
2 while stop criterion is not satisfied do
3 for each solution x in the population do
4 Produce a new solution x′ according to Eqs. (22) and (23);
5 if f(x′) < f(x) then
6 if f(x′) < f(gbest) then
7 Break x′ into kmax neighboring solutions according to Eq. (25);
8 Update gbest with the best among x′ and the neighboring

solutions;

9 Replace x with x′;
10 else
11 if x has not been improved for hmax consecutive generations then
12 Replace x with a new randomly generated solution;

13 Update λx according to Eq. (24);

14 Update w and n;

15 return the best solution found so far.

– The integer encoding differential evolution (IEDE) [5], whose scaling factor
is 0.5 and crossover rate is 0.9.

– An improved integer coded genetic algorithm (ICGA) [8], whose crossover
rate is 0.8 and mutation rate is 0.2.

– The ecogeography-based optimization (EBO) algorithm [21], whose maxi-
mum emigration rate and emigration rate are both set to 1, and the initial
immaturity index is set to 0.8.

– The comprehensive learning PSO (CLPSO) [12], where c = 1.49445, wmax =
0.9 and wmin = 0.4.

The experiments are conducted on a computer of Intel Core i7-4510U pro-
cessor and 8 GB memory. Each algorithm is run 50 times with different random
seeds on each test instance, using the same termination condition that NFEs
reaches 50D to ensure a fair comparison.

Table 2 presents the experimental results obtained by the eight algorithms
on the instances, where “mean” denotes the average fitness value over the 50
runs, “std” is standard deviation, and “max” and “min” are the maximum and
minimum fitness values of each algorithm among the 50 runs. The values in
boldface indicate the best mean value and minimum value among the eight
algorithms on each instance. We also perform nonparametric Wilcoxon rank
sum tests between the results of CPS-WWO and each of the other algorithms
on each instance, where h value of 1+ indicates that the result of CPS-WWO
significantly better than the corresponding algorithm with 95% confidence, 0
implies no difference and 1− demonstrates worse.

On the smallest size instance #1, CPS-WWO, IEDE, CLPSO, and EBO
obtain the same best mean value and minimum value; on the second smallest
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Table 1. A summary of problem instances

Instance |I| |J | |K| D

#1 3 3 1 25

#2 4 3 3 58

#3 6 5 5 146

#4 8 6 7 396

#5 10 7 7 550

#6 12 7 9 840

#7 15 8 10 1325

#8 18 9 12 2106

#9 20 11 14 3300

instance #2, CPS-WWO obtains the best minimum value while EBO obtains
the best mean value. On the remaining instances, CPS-WWO always uniquely
obtains both the best mean value and best minimum values, which demonstrates
that the proposed algorithm is the best among the eight comparative algorithms.
Among the other seven algorithms, EBO exhibits the second best performance;
IEDE exhibits the third best performance on instances #3–#6, but it is outper-
formed by most of the others on instances #7–#9, showing that IEDE is not
suitable for large-size instances. In terms of statistical tests, the performance of
CPS-WWO is significantly better than ICGA, B-BBO, PSO, and WWO on all
the nine instances, better than EBO on eight instances, and better than IEDE
and CLPSO on seven instances. Comparatively speaking, the performance gap
between our CPS-WWO and the second best algorithm becomes more signifi-
cant with the increase of instance size, which indicates that CPS-WWO has not
only high efficiency but also good scalability for this problem.

The performance advantage of CLPSO over PSO is also significant, which
is the reason why we use the comprehensive learning strategy in CPS-WWO.
In general, the performance of WWO and CLPSO is not so superior to the
other comparative algorithms, but their combination outperforms not only the
two individual ones but also the others, which validates the effectiveness of the
evolutionary operators of CPS-WWO we designed for the problem.

Figure 1 presents the convergence curves of the algorithms on the nine
instances, where y-axis denotes the mean value and x-axis denotes the gener-
ations. As we can see, the convergence speed of CPS-WWO is not always the
fastest. In fact, CPS-WWO converges very slow in the very early phase (approx-
imately the first 10% or less of the whole running time, while B-BBO, PSO
and ICGA converge fast in this stage), but its speed soon becomes very fast
and overtakes all the others. The reason is that both the WWO propagation
and CLPSO learning operators are not very effective in locating optima or near-
optima very fast (as we can see that WWO and CLPSO also converge slow in
the very early phase); but with the progress of evolution, more and more better
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Table 2. The experimental results on the test instances

ID Metric ICGA IEDE PSO B-BBO WWO CLPSO EBO CPS-WWO

#1 mean 2.70E+03 2.20E+03 2.23E+03 2.72E+03 2.29E+03 2.20E+03 2.20E+03 2.20E+03

std 2.11E+02 0.00E+00 2.21E+03 6.26E+02 9.52E+01 0.00E+00 0.00E+00 0.00E+00

max 3.06E+03 2.20E+03 2.27E+03 4.43E+03 2.45E+03 2.20E+03 2.20E+03 2.20E+03

min 2.42E+03 2.20E+03 2.32E+03 2.27E+03 2.21E+03 2.20E+03 2.20E+03 2.20E+03

h 1+ 0 1+ 1+ 1+ 0 0

#2 mean 9.65E+03 4.65E+03 6.15E+03 6.85E+03 1.05E+04 4.46E+03 4.10E+03 4.16E+03

std 2.95E+03 1.20E+02 4.81E+02 9.93E+02 2.98E+03 1.21E+02 7.48E+01 1.09E+02

max 1.49E+04 4.77E+03 7.24E+03 9.32E+03 1.56E+04 4.67E+03 4.26E+03 4.38E+03

min 6.25E+03 4.43E+03 5.58E+03 5.88E+03 7.31E+03 4.31E+03 4.03E+03 4.01E+03

h 1+ 0 1+ 1+ 1+ 0 1−

#3 mean 2.87E+04 7.40E+03 1.06E+04 1.26E+04 4.02E+04 7.30E+03 6.93E+03 6.39E+03

std 1.16E+04 2.73E+02 5.36E+02 3.74E+03 1.22E+04 1.61E+02 2.21E+02 2.37E+02

max 5.26E+04 8.00E+03 1.14E+04 2.21E+04 6.41E+04 7.54E+03 7.25E+03 6.77E+03

min 1.09E+04 7.02E+03 9.77E+03 9.30E+03 2.74E+04 6.97E+03 6.69E+03 5.96E+03

h 1+ 1+ 1+ 1+ 1+ 1+ 1+

#4 mean 4.41E+04 7.05E+03 8.08E+03 1.46E+04 5.20E+04 7.41E+03 6.35E+03 5.32E+03

std 2.34E+04 3.34E+02 3.27E+02 4.80E+03 8.77E+03 6.84E+02 1.41E+02 2.36E+02

max 8.33E+04 7.70E+03 8.41E+03 2.29E+04 6.33E+04 8.44E+03 6.57E+03 5.71E+03

min 2.38E+04 6.59E+03 7.53E+03 1.10E+04 3.63E+04 6.60E+03 6.13E+03 4.94E+03

h 1+ 1+ 1+ 1+ 1+ 1+ 1+

#5 mean 8.56E+04 1.14E+04 1.83E+04 4.01E+04 1.17E+05 1.68E+04 1.13E+04 9.22E+03

std 1.79E+04 6.21E+02 2.06E+03 2.41E+04 3.75E+04 4.14E+03 4.30E+02 3.80E+02

max 1.08E+05 1.23E+04 2.14E+04 8.97E+04 1.82E+05 2.27E+04 1.20E+04 9.52E+03

min 5.40E+04 1.06E+04 1.49E+04 1.61E+04 7.68E+04 1.19E+04 1.08E+04 8.30E+03

h 1+ 1+ 1+ 1+ 1+ 1+ 1+

#6 mean 8.14E+04 1.96E+04 8.13E+03 3.46E+04 1.24E+05 7.16E+03 6.24E+03 6.06E+03

std 1.97E+04 1.01E+04 6.09E+02 1.52E+04 3.28E+04 3.38E+02 1.14E+02 1.90E+02

max 1.10E+05 4.26E+04 9.14E+03 6.70E+04 1.78E+05 7.54E+03 6.49E+03 6.39E+03

min 4.86E+04 8.47E+03 7.35E+03 1.79E+04 7.77E+04 6.74E+03 6.11E+03 5.75E+03

h 1+ 1+ 1+ 1+ 1+ 1+ 1+

#7 mean 7.86E+05 6.90E+05 2.23E+05 4.92E+05 1.07E+06 2.92E+04 1.88E+04 1.76E+04

std 1.71E+05 7.84E+05 1.53E+05 6.53E+04 2.17E+05 1.98E+03 8.19E+02 6.09E+02

max 1.15E+06 2.20E+06 5.89E+05 6.12E+05 1.41E+06 3.19E+04 2.05E+04 1.89E+04

min 6.04E+05 1.08E+05 3.85E+04 4.17E+05 7.83E+05 2.65E+04 1.77E+04 1.66E+04

h 1+ 1+ 1+ 1+ 1+ 1+ 1+

#8 mean 5.84E+05 1.04E+06 1.44E+05 5.89E+05 6.51E+05 5.56E+04 6.02E+04 3.42E+04

std 1.23E+05 9.06E+04 1.68E+05 9.68E+04 9.73E+04 4.70E+04 3.49E+03 5.86E+03

max 7.44E+05 1.15E+06 4.53E+05 7.75E+05 8.01E+05 1.88E+05 6.68E+04 4.93E+04

min 3.47E+05 8.53E+05 3.42E+04 4.46E+05 5.10E+05 3.52E+04 5.49E+04 2.95E+04

h 1+ 1+ 1+ 1+ 1+ 1+ 1+

#9 mean 2.29E+06 4.18E+06 7.70E+05 7.93E+05 3.01E+06 1.08E+05 5.28E+04 1.83E+04

std 3.19E+05 1.24E+05 6.17E+04 7.47E+04 3.76E+05 6.97E+04 5.86E+04 1.16E+03

max 2.84E+06 4.29E+06 9.04E+05 9.50E+05 3.45E+06 1.96E+05 1.66E+05 2.02E+04

min 1.81E+06 3.92E+06 6.93E+05 6.82E+05 2.35E+06 4.65E+04 2.24E+04 1.72E+04

h 1+ 1+ 1+ 1+ 1+ 1+ 1+
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solutions are found, and the combined propagation-movement operator together
with the breaking operator show good performance in not only producing more
promising solutions but also avoiding being trapped in local optima. In general,
the overall convergence speed of CPS-WWO is fast enough and is suitable for
most emergency conditions.

Fig. 1. Convergence curves of the algorithms on the nine instances.

5 Conclusion

The paper presents a new emergency transportation planning problem combin-
ing rail and road transportation, and proposes a hybrid algorithm integrating
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WWO with CLPSO to efficiently solve the problem. Experimental results demon-
strate the performance advantage of our hybrid algorithm over not only the two
individual ones but also the other popular meta-heuristics.

Air transportation is another important mode in relief delivery, and it is often
combined with road transportation but rarely combined with rail transportation.
Ongoing work will studies an extended problem integrating the three modes and
rail-road and air-road transfers. The algorithm is expected to be further improved
for the extended problem.
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Abstract. To tackle with the urgent scenario of significant green house
gas and air pollution emissions, it is pressing for modern power sys-
tem operators to consider environmental issues in conventional economic
based power system scheduling. Likewise, renewable generations and
plug-in electric vehicles are both leading contributors in reducing the
emission cost, however their integrations into the power grid remain to
be a remarkable challenging issue. In this paper, a dual-objective eco-
nomic/emission unit commitment problem is modelled considering the
renewable generations and plug-in electric vehicles. A novel fast hybrid
meta-heuristic algorithm is proposed combing a binary teaching-learning
based optimization and the self-adaptive differential evolution for solv-
ing the proposed mix-integer problem. Numerical studies illustrate the
competitive performance of the proposed method, and the economic and
environmental cost have both been remarkably reduced.

1 Introduction

Paris climate conference have set an ambitious goal for human beings: to limit
no more than 2 ◦C rise of temperature increase by the year 2050. The only way
to realise this goal is to significantly reduce the fossil fuel consumption and green
house gas emission. In this regard, power generation and transportation are both
the foremost contributors. A holistic approach is to intelligently integrate signif-
icant renewable energy resources and plug-in electric vehicles into the thermal
power generations [16]. Unit commitment (UC) is to minimize the economic
cost by determining the 24-h power plant generation agenda, while maintaining
several system constraints [1]. Current state-of-the-art methods for UC includ-
ing conventional mathematical approaches involving dynamic programming [5],
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Tan et al. (Eds.): ICSI 2018, LNCS 10941, pp. 477–486, 2018.
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Lagrangian relaxation [3] and priority list [4], as well as the meta-heuristic meth-
ods such as genetic algorithm [1], particle swarm optimization (PSO) [11] etc. In
addition to the real-valued optimization, binary optimization has also been uti-
lized such as binary PSO [10] and binary GSA [19] etc. Multi-objective problems
considering economic and emission have also been studied [2,13]. Though numer-
ous of methodologies have been proposed, the inadequate results in stability and
accuracy call for more powerful computational tools [15]. In addition, the signif-
icant integrations of new participants such as the renewable energy generations
(REGs) and plug-in electric vehicles (PEVs) propose remarkable challenges for
the operators.

The wind and solar power generations and the partly/fully coordinated plug-
in electric vehicles provide opportunities for both reducing the thermal plant fuel
costs and environmental emissions. However, the strong intermittent behaviours
of renewable generations and unpredicted charging behaviours may lead to sig-
nificant fluctuations, which call for a more intelligent and flexible scheduling
method. Some researchers have integrated REGs and PEVs into the unit com-
mitment to proposed intelligent method to analyse the economic factor [17] and
emission factor [7,11]. The results remain conservative and the convergence speed
is relatively slow. In this paper, an economic/environmental unit commitment
problem considering substantial REGs and PEVs is proposed namely EEU-
CRP. A fast hybrid meta-heuristic algorithm (FHMA) is proposed, combining
a binary teaching-learning based optimization, a self-adaptive differential evolu-
tion (SaDE) [6] and a lambda iteration method, for solving the novel EEUCRP
problem. The algorithm performance in regarding both economic and emission
sectors are evaluated and analyzed.

The rest of this paper is presented as follow: Sect. 2 formulates the EEUCRP
problem, followed by the FHMA method proposed in Sect. 3. Section 4 presents
the numerical study and analysis. Section 5 concludes the paper.

2 Problem Formulation

In this section, an EEUCRP problem is formulated considering two objectives
including economic and emission costs and several system constraints such as
power generation and power demand limits. The details of the EEUCRP problem
is illustrated as following parts.

2.1 Objective Function

The objectives considered in this paper include the economic and emission sector
respectively.

Fuel cost. Fuel cost occurs due to the burning of coal, gas and other fossil fuels
in heating up the water. The detailed equation of fuel cost is shown as follow:

F fuel
j,t (Pj,t) = aj + bjPj,t + cjP

2
j,t (1)
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where F fuel
j,t and Pj,t denote the cost of fuel and power output of the jth unit in

the t time interval. aj , bj and cj denote the cost coefficients.

Start-Up cost. Due to the complex psychical process of thermal plants, the
start-up operation of a unit sees two piece-wise cost SUj,t, denoted as cold start
cost SUC,j and hot start cost SUH,j . The hour of off-line duration TOFFj,t once
exceeds the cold hour Tcold,j , an extra cost should be accounted for specific unit
as shown below,

SUj,t =

{
SUH,j , if MDTj ≤ TOFFj,t ≤ MDTj + Tcold,j

SUC,j , if TOFFj,t > MDTj + Tcold,j

(2)

MDTj and MUTj are minimum down and up time. To accumulate the total
economic cost, the totally T time (normally 24 h in day ahead schedule) is taken
in to account as denoted below,

Ceco =
T∑

t=1

n∑
j=1

[F fuel
j,t (Pj,t)uj,t + SUj,t(1 − uj,t−1)uj,t] (3)

where Ceco denotes the total economic cost. uj,t is the the binary decision variable
of given units. Therefore, the decision variables are the real valued power output
Pj,t and binary uj,t, both requires the proposed algorithm to be determine.

Emission cost. The emission cost is also modelled in a quadratic formulation
denoted as below,

F emi
j,t (Pj,t) = αj + βjPj,t + γjP

2
j,t (4)

where F emi
j,t is the emission cost while αj βj and γj denote the emission cost

coefficients. The total emission cost Cemi is presented as below,

Cemi =
T∑

t=1

n∑
j=1

[F emi
j,t (Pj,t)uj,t] (5)

Total cost. In a result, a total cost Ctotal consists of the economic and emission
cost and is show below,

min Ctotal = Ceco + ωCemi (6)

In the total cost equation, a weighting factor ω is defined to normalize the
number scale of the proposed two objectives. Note that the units of the dual
objectives are completely different, similar converted method have been used in
the economic/emission load dispatch problem [7] to transfer the dual goals into
a single one.
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2.2 Constraints

Generation limit. Due to the power capacity of generators, the generation
limited is modelled as follow,

uj,tPj,min ≤ Pj,t ≤ uj,tPj,max (7)

where Pj,min and Pj,max are the minimum and maximum power output of jth.

Power demand limit. The demand limit equation is defined as follows,

n∑
j=1

Pj,tuj,t + Pwind,t + Psolar,t = PD,t + PPEV,t (8)

PD,t is the predicted power demand at time t and PPEV,t denotes the power con-
tribution of PEVs aggregator. Pwind,t and Psolar,t are wind and solar renewable
power contributions respectively.

Spinning reserve limit. The PD,t is a predicted power and may witness some
unexpected rise in the real application. In this regard, a spinning reserve limit is
in need to provide sufficient reserve for real-time power balance, which is shown
below,

n∑
j=1

Pj,maxuj,t + Pwind,t + Psolar,t ≥ PD,t + SRt + PPEV,t. (9)

where SRt is the spinning reserve at t time slot. The inequality illustrates that
the accumulated generations should exceed the proposed reserve capacity, ensur-
ing the adequate power to meet up the unpredicted load.

Minimum up/down time limit. Coal based thermal units require relatively
longer period to warm up and cool down when dispatched and therefore suffer
minimum off-line and on-line time constraints denoted as below,

uj,t =

⎧⎪⎨
⎪⎩

1, if 1 ≤ TONj,t−1 < MUTj

0, if 1 ≤ TOFFj,t−1 < MDTj

0 or 1, otherwise

(10)

where MUTj and MDTj denote the minimum up and down time. The binary
decision variable is forcedly adjusted when the given limit is violated.

PEVs power limit. The PEVs interaction with the power system is practically
aggregated acting as a flexible generator or controllable load. The PEVs power
PPEV,t is another important decision variable in the problem formulation. In
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the PEVs power limit, the aggregator is deemed to provide sufficient power for
PEVs users in daily use and the constraint is modelled as follow,

T∑
t=1

PPEV,t = PEV,total (11)

where the PEV,total is the total power that needs to be provided from the power
grid. In the proposed EEUCRP problem, the maximum charging and discharging
power boundary of PEVs aggregator is limited as follows:

PEVD,t,max ≥ PPEV,t ≥ PEV C,t,max (12)

In (12), the PEVD,t,max and PEV C,t,max denote the maximum charging and
discharging power from/to the power system.

3 Proposed Fast Hybrid Meta-Heuristic Algorithm

In this paper, we propose a fast hybrid meta-heuristic algorithm (MA) combing a
binary teaching-learning based optimization, a self adaptive differential evolution
and a lambda iteration method for solving the EEUCRP complex problem.

3.1 Binary Teaching-Learning Based Optimization

Teaching learning based optimization is a recent proposed popular MA and has
shown competitive performance in solving numerous engineering optimization
problem [8,18]. A binary TLBO method is proposed in [14] and adopted in this
research. Similar to the original TLBO, two phases are considered namely binary
teacher phase and binary learner phase respectively.

Binary teacher phase utilize a best performance binary solution Tbi to act as
a teacher to share his/her knowledge to the students as shown below,

V new
ij = rand1 × (Tbi − LFMbi) (13)

where the Mbi denotes the mean value of all the binary particles and V new
ij

denotes the new generated velocity. LF is a integer learning factor selected as
either 1 or 2. The novel velocity V new

ij is then used in a binary transfer function
to generate a new population of binary particles.

In addition to the binary teacher phase, a binary learner phase is presented
to enable the interactions among students and shown as follow,

V new
ij = rand2 × (Vik − Vij) (14)

In the Eq. (14), Vij and Vik denote the current and another particles in the
velocity population. The new generated V new

ij from both phase will be used to
generate binary particles by transferring the probability in selecting the binary
variables Pr are defined in the transfer function shown as below,

Pr(V new
ij ) = |tanh(V new

ij )|; (15)
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Utilizing the proposed probability, the binary variable xij is denoted as below,

xij =

{
1 − xij , if rand3 < Pr(V new

ij )
xij , otherwise

(16)

The binary TLBO aims to fast determine the binary on/off status of power units
and provide fundamental binary solutions to the EEUCRP problem. Besides the
binary optimization, the PEVs power generation also remains to be optimized,
where we apply the popular self-adaptive differential evolution [6] for solving the
problem, which is not detailed in this paper.

3.2 Proposed Fast Hybrid Meta-Heuristic Algorithm for EEUCRP
Problem

The proposed EEUCRP problem is a mix-integer non-convex optimization prob-
lem bearing two types of real-valued variables and one type of binary variables.
The proposed FHMA is illustrated as the following procedures:

1. Initialization:
(a) Import power system data such as economic and environment coefficients

of the units generation capacity, minimum up/down time, as well as power
demand etc.;

(b) Import wind and solar generation data, PEVs data and relevant con-
straints;

(c) Initialize the number of particles Np, the maximum iteration number
Itermax and the crossover and probability parameters of FHMA;

(d) Generate a new population of particles for both Binary TLBO and SaDE,
determine the binary statues according to the initial velocity;

(e) Check the power system constraints (7)–(10) and PEVs constraints (11)–
(12), update uij and PPEV,t to comply with the constraints;

2. FHMA process:
(a) Calculate the objective function Ctotal, select the teacher for BTLBO;
(b) Generate the V new

ij according to the binary teaching phase (13);
(c) Generate PPEV,t according to SaDE process;
(d) Calculate the probability of each binary status Pr based on the Eq. (15);
(e) Generate a new population uij according to the (16);
(f) Check the power system constraints (7)–(10), PEVs constraints (11)–(12)

and update the population to prevent violating the constraints;
(g) Calculate the objective function Ctotal, and reserve the better particles;
(h) If the iteration is less than itermax, go back to 2-a, otherwise, go to the

end.

The detailed constraints handling method are referred to [17], where the lambda
iteration method is integrated for solving the economic load dispatch for online
units.
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4 Numerical Results and Analysis

The proposed FHMA method is designed for solving the EEUCRP problem,
which considers multiple power system participants and is therefore intractable
to be solved. We analyse two cases in the paper: the economic only case and the
economic and environmental case. The well adopted 10 unit benchmark system
[9] is employed to analyse the economic and environmental factor.

4.1 Case 1: Economic only UC

In this case, we only consider the economic factor in the EEUCRP analysis.
The number of particles Np of FHMA method is set as 20 and the maximum
iteration number itermax is as 100 due to the double function evaluations of
TLBO. To eliminate the randomness, 10 different trails are adopted in the test.
The mutation factor F and crossover rate CR for SaDE is set as 0.8 and 0.3
respectively. In regarding the plug-in electric vehicles, 50000 PEVs are supposed
to be online and joining in the coordinated charging and discharging aggregator
service. To demonstrate the significant optimization ability, we adopt the Case
1-1 to compare with the results in [12], where all the PEVs are supposed to be
the grid support one with 0 MW power required from the grid and no renewable
generations are integrated. Suppose 20% of PEVs users are willing to provide
the service and each PEV is equipped with a 15 kWh battery. An average of
50% state of charge are available for the PEVs to discharge. Also it should be
noted that the power electronics devices may suffer a 15% power cost and 85%
charging and discharging efficiency is assumed. In this case maximum charging
and discharging capacity of PEVs are +63.75 MW and −63.75 MW respectively.

On the other hand in Case 1–2, in order to compare the algorithm perfor-
mance, we adopt the data from [10], where the wind generation varies from 0
to 25.50 MW and the maximum solar generation is 38.06 MW along 24 h. The
results of the both cases have been presented in Table 1, where the best, worst
and average results are shown. The both sub-cases are tested in an Intel Core
i7-6700 CPU with 2.4 GHz and 8 GB RAM system.

Table 1. Case 1: Numerical results for EEUCRP problem with economic only factor

Scenario ($/day) GA-LR [12] FHMA

Cost ($/day) Cost ($/day)

Best Worst Mean Best Worst Mean

Case 1–1: No REG 561821 566281 564050 561527 566206 563750

Scenario ($/day) BPSO-IPSO [10] FHMA

Cost ($/day) Cost ($/day)

Best Worst Mean Best Worst Mean

Case 1–2: With REG 553172 - - 541501 545590 543678
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It could be observed from the Table 1 that the proposed FHMA out performs
the GA-LR [12] method in PEVs integration Case 1–1 test on all the best, worst
and average results. In addition, a more significant result improvement could be
found in Case 1–2 compared with BPSO-IPSO [10] method. In the both tests,
the proposed FHMA method has a 294 $/day saving in Case 1–1 and 11671
$/day cost reduction in Case 1–2. The result distributions of 10 trials achieve by
FHMA is shown in Fig. 1. In Fig. 1, the results of two sub-cases distributes evenly
within the range of a few thousands, which is lower than 2% in regarding the
deviations, showing strong stability of the proposed methods. The computational
time is averagely 9.03 s, which is significantly faster than the previous UC tests.

Fig. 1. Result distributions of 10 trials in Case 1 by FHMA method

4.2 Case 2: Economic and Emission UC

In Case 2, the proposed FHMA method is eventually applied for solving the
EEUCRP problem. The power system data including the emission coefficients
could be found in [2]. The renewable settings and PEVs relevant parameters are
the same with the Case 1. However, we assume that the PEVs, besides providing
power buffer service, request power to support the everyday use. The average
travelling distance is 32.88 miles [16], equivalent to 8.22 kWh power necessity per
day for a single PEV. Therefore, a total 411 MW power is required to support
the daily commute of PEVs. To investigate the impact of different selections
of weighting factor ω on the economic and emission performance, we choose
the weighting factor ω as 0.1, 0.2, 0.5, 1, 2, 5 and 10, and each test with 10
independent trials. The optimal results of economic, emission and total costs are
illustrated in Table 2.

It could be observed in Table 2 that the results are various under different
selections of weighting factor ω. The optimal economic cost among all the sce-
narios are 550313 $/day in ω = 5, while the minimum emission achieved is
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Table 2. Case 2: Result of different selection ω for EEUCRP problem

ω Ceco ($/day) Cemi (lb/day) Ctotal

Best Worst Best Worst Best Worst

0.1 550818 554245 72310 73360 558154 561476

0.2 551418 555809 71910 73146 565985 570235

0.5 550912 554341 72248 73118 587270 590575

1 550533 554367 72390 73381 623739 626852

2 552605 555752 72271 72862 697968 700578

5 550313 554259 72456 73066 915191 918945

10 551059 554574 72300 72972 1277303 1283231

71910 lb/day. Comparing with the results in Case 1, the results not only achieve
an optimal cost for both economic and emission, but also provide sufficient power
for PEVs daily use. This have shown the effectiveness of the proposed FHMA
method, which provides a useful tool for solving the complex power system
scheduling problem.

5 Conclusion

In this paper, a novel fast hybrid meta-heuristic method is proposed for solv-
ing the economic/emission unit commitment problem considering the renewable
energy generations and plug-in electric vehicles. The novel FHMA algorithm
combining a binary teaching-learning based optimization method, a self adap-
tive differential evolution method to solve the sub-problem of economic load dis-
patch. Numerical study have shown the competitive performance of the problem
comparing with the state-of-the-art method for solving integrated UC problem.
The both economic and emission cost are reduced by integrating the renewable
generations and flexible charging and discharging of plug-in electric vehicles.

Acknowledgment. This paper is financially supported by National Science Founda-
tion of China (No. 51607177, 61773252, 61673404).
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Abstract. A new hybrid algorithm, combining Particle Swarm Optimization
(PSO) and Differential Evolution (DE), is presented in this paper. In the pro-
posed algorithm, an alternative replication strategy is introduced to avoid the
individuals falling into the suboptimal. There are two groups at the initial
process. One is generated by the position updating method of PSO, and the other
is produced by the mutation strategy of DE. Based on the alternative replication
strategy, those two groups are updated. The poorer half of the population is
selected and replaced by the better half. A new group is composed and con-
ducted throughout the optimization process of DE to improve the population
diversity. Additionally, the scaling factor is used to enhance the search ability.
Numerous simulations on eight benchmark functions show the superior per-
formance of the proposed algorithm.

Keywords: Particle Swarm Optimization � Differential evolution algorithm
Alternative replication strategy

1 Introduction

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart [1], is a
well-known global intelligence optimization algorithm. On the basis of individual
perception and social perception, the particles of PSO are replaced to enhance the speed
of convergence and search accuracy in every iteration. Since then, many modifications
have been developed. A recent version of modification was to update the particle
positions by using two selected functions and combining individual experiences to
avoid getting into the local optimum [2]. A fitness function was defined in [3] to
identify the parameters of nonlinear dynamic hysteresis model. To a certain extent, the
algorithm improves the convergence of the progress. However, a common problem
occurring in the simulation experiments is still the premature clustering in the early part
of iteration procedure.

Differential Evolution (DE) [4] is a population-based method of function opti-
mization like Genetic algorithm (GA), including mutation, crossover, and selection.
In DE, new individuals are generated from the information of multiple previous
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individuals to get out of stagnation. Hence, some improved DE algorithms are pro-
posed for getting better consequents. An improvement of DE with Taguchi method of
sliding levers had the powerful ability of global search and obtained a better solution
[5]. The fuzzy selection operation was used in an improved DE to reduce the com-
plexity of multiple attribute decisions and enhance population diversity [6]. Though the
DE has some advantages in global optimization, there is a dependency on controlling
parameters which are not easy to decide when confronting high-dimensional complex
problems.

In view of the advantages and disadvantages of PSO and DE, many hybrid algo-
rithms of PSO and DE are described to combine the advantages of both and better solve
various practical problems. The hybrid PSO and DE with population size reduction
(HPSODEPSR) [7] can achieve optimal or near optimal solution faster than other
comparison algorithms. The Bacterial Foraging Optimization (BFO) hybridized [8]
with PSO and DE was introduced to effectively handle the dynamic economic dispatch
problem. In order to improve the diversity and make each subgroup achieve a different
optimal solution in the range of fitness values, Zuo and Xiao [9] used a hybrid operator
and multi-population strategy performing the PSO and DE operation in turn. A novel
hybrid algorithm PSO-DE [10] jumped out of stagnation, increased the speed of
convergence and improved the algorithm’s performance. A modified algorithm
hybridizing PSO and DE with an aging leader and challengers was advanced to find the
optimal parameters of PID controller quickly [11]. Though those hybrid algorithms
improve the performance of the original algorithms (i.e. PSO and DE), premature
stagnation is still a major problem.

This paper presents a novel hybrid algorithm of PSO and DE (DEPSO) with
alternative replication strategy to overcome the above-mentioned problems. In the
proposed algorithm, population is separated into two groups which are generated by
two different methods, i.e. velocity updating strategy of PSO and mutative strategy of
DE. A novel population are produced according to alternative replication strategy. The
poor half of the population is eliminated while the other half is reproduced for the new
evolution. In order to enhance the diversity of the population, the scaling factor of
DEPSO is adjusted according to the linear decreasing rule.

The remaining paper is organized as follows. A brief introduction of PSO algorithm
and DE algorithm is provided in Sect. 2. In Sect. 3, the hybrid algorithm of PSO and
DE with alternative and replication strategy is described in detail. Section 4 gives
experimental results of the Simulations on benchmark functions. Finally, the conclu-
sion is presented in Sect. 5.

2 Description of Algorithms

2.1 Particle Swarm Optimization

In standard PSO algorithm, a group of particles flies in the search space to find the
optimal location. The particles are given random positions x and velocities v in the
initiate progress. In each iteration, the best position of each particle pbestid and the best
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position of global gbestid are learnt, which leads the particle to the new position.
Equations (1)–(2) are the updated rule [1]:

vGþ 1
id ¼ xvGid þ c1randð0; 1ÞðpbestGid � xGidÞþ c2randð0; 1ÞðgbestGid � xGidÞ ð1Þ

xGþ 1
id ¼ xGid þ vGþ 1

id ; i ¼ 1; ::;N; d ¼ 1; . . .;D ð2Þ

x ¼ xmax � ðxmax � xminÞ � G=Gmax ð3Þ

where xid and vid are the position and velocity of the ith particle, respectively, N is the
number of particles, and D is the dimensions of search space, c1 and c2 are acceleration
factors. Finally, x is the inertia weight adjusted by Eq. (3) in [12], xmax and xmin are
the maximum and the minimum value of inertia weight, respectively. G and Gmax are
the current number of iteration and the maximum number of iteration, separately.

2.2 Differential Evolution Algorithm

DE, proposed by Storn and Price [4], has the significant effect on solving application
problems. The outline of DE can be described as follows:

Step 1: initialize individuals according to the upper and lower bounds of search
space, and evaluate the fitness of each individual.
Step 2: compare the fitness of every individual and record the best individual.
Step 3: generate new vectors through mutation process. The mutation rule is as
follows Eq. (4):

vi ¼ xr1 þFðxr2 � xr3Þ; i ¼ 1; ::;N ð4Þ

where N is the number of individuals, xi is the ith individual and vi is the updated ith

vector through mutating. F is the scaling factor, r1, r2 and r3 not equal to each other are
randomly selected from [1, N].

Step 4: cross populations and mutant vectors to get a trial vector. Equation (5) is the
crossover formula:

uij ¼
vij if ðrandjð0; 1Þ�CRÞ or j ¼ jrand

xij otherwise

(

; j ¼ 1. . .D ð5Þ

where D is the number of parameters, while uij represents the ith individual at the jth

search space after crossing operation. CR is the crossover probability, and jrand is a
randomly selected index in the range of [0, D].
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Step 5: The greedy algorithm (i.e. Eq. (6)) is used to select individuals for the next
iteration process.

xi ¼
ui if f ðuiÞ� f ðxiÞ
xi otherwise

(

ð6Þ

3 DEPSO Algorithm with Alternative Replication Strategy

Due to rapid information search, the suboptimal solutions might be more frequently
obtained by PSO. Different from the PSO, population of DE tends to be more diversity
as the number of iterations increases but consumes more computational complexity. To
take advantages of those two algorithms, in this paper, a new hybrid DEPSO method is
proposed to improve the search capability of particles with smaller computational time.

For the purpose of preventing individuals from sinking into suboptimal solution,
we use the following alternative replication strategy to optimize the initial particles of
each iteration.

At the beginning of each iteration, a new group P1 is generated by PSO algorithm
(i.e. Eqs. (1)–(2)). Considering the optimal value of every individual xpbest, another
group P2 is renewed by the mutation process of DE algorithm (i.e. Eq. (7)). Based on
the fitness value, we compare the updated groups (i.e. P1 and P2) with the initial group
P0 and preserve the better individuals to form new P1 and P2.

xi ¼ Fðxpbest � xiÞþFðxr4 � xr5Þ; i ¼ 1. . .N ð7Þ

where N is individuals’ number, xi is the i individuals, F is the scaling factor, and r4 and
r5 are indexes selected from [1, N].

Sort the individuals of new groups (i.e. P1 and P2) according to the fitness values,
and the sorted groups are also compared to retain the superior individuals constituting a
group P3. The new group P3 eliminates half of the individuals with poor fitness values,
and the rest of the individuals are reproduced to keep the number of individuals.

In order to overcome the shortcoming of population reduction, the mutation factor
decreases linearly with the number of iterations increasing in the mutation procedure.
The scaling factor is controlled in Eq. (8).

F ¼ Fmax � ðFmax � FminÞ � G=Gmax ð8Þ

where Fmax, Fmin, G, and Gmax are the maximum mutation factor, minimum mutation
factor, the current number of iteration and the maximum number of iteration,
respectively.
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Finally, DE algorithm is re-simulated based on the group which is obtained using
the alternative replication strategy. The scheme of DEPSO is described as follows in
detail:
Step 1: initialize the position and velocity of every individual, and generate initial

group P0.
Step 2: calculate the fitness of each individual, and evaluate the best solution of each

individual pbest and the best solution of all individuals gbest.
Step 3: update the position and velocity of individuals using Eqs. (1)–(2), and

generate new group P1.

Fig. 1. Flowchart of DEPSO
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Step 4: mutate the initial individuals (i.e. Eq. (7)) and introduce a new group P2.
Step 5: calculate the fitness of two groups (i.e. P1 and P2), and compare the fitness

with the initial group P0 to update the groups P1 and P2, respectively.
Step 6: P1 and P2 are sorted based on the fitness. A new group P3 is constituted of

the superb individuals in the comparison of the sorted groups. The group P3

is updated by alternative replication strategy.
Step 7: new vectors are formed by the group P3 in the light of mutation process (i.e.

Eq. (4)).
Step 8: Equation (5) is applied to get trial vectors through the crossover of

individuals and mutant vectors in DE algorithm.
Step 9: select the best individuals using Eq. (6) and new offspring P0 are introduced

to execute the iterative procedure. Figure 1 presents the flowchart of DEPSO.

4 Experiments and Analysis

4.1 Benchmark Functions and Algorithms

To verify the performance of the proposed DEPSO algorithm, eight benchmark
functions [13] (i.e. Sphere f1, SumPowers f2, Rosenbrock f3, Quartic f4, Rastrigin f5,
Griewank f6, Ackley f7, Schwefel2.22 f8) are applied to test the improved algorithm.
One important reason for choosing these eight functions is that they contain unimodal
functions (i.e. f1, f2, f3, and f4) and multimodal functions (i.e. f5, f6, f7, and f8). Addi-
tionally, these functions are minimum problems and the minimum value is known to be
zero. The performance of DEPSO is demonstrated through eight benchmark functions
and compared with some classic algorithms, i.e. PSO, DE, Genetic algorithm
(GA) [14], Artificial Bee Colony algorithm (ABC) [15, 16], and Bacterial Foraging
Optimization (BFO) [17]. All functions are tested on these optimization algorithms
through MATLAB R2014a software.

4.2 Experimental Parameters

The similar parameters of six optimization algorithms are set as follows: the size of the
population is 50, the maximum iterative number is set to 5000. Each function is run 30
times with the search space dimension 30, 50, and 80. The parameters of GA, ABC and
BFO are from [18] except the reproduction’s number of BFO is 25. More parameters
setting of PSO, DE and DEPSO are shown as follows: In PSO, c1 = c2 = 2, xmax = 0.9,
and xmin = 0.4; In DE, CR = 0.5, and F ranges from 0.4 to 0.9; In DEPSO, c1, c2, xmax

and xmin are the same as PSO. CR and F are the same as DE. The values are the results
of multiple simulations.
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Table 1. Experiment results on benchmark functions

Funs. D Ret. PSO DE GA ABC BFO DEPSO

f1 30 mean 4.73E−33 1.86E−40 2.76E−06 1.47E−17 3.98E−01 0.00E+00
std 1.43E−32 1.86E−40 2.07E−06 2.62E−17 8.93E−02 0.00E+00

50 mean 4.75E−14 2.03E−16 6.49E−04 2.02E−02 4.36E−01 0.00E+00
std 6.19E−14 6.72E−17 8.40E−06 2.49E−03 6.02E−01 0.00E+00

80 mean 5.83E−05 3.26E−05 4.12E−02 6.91E+03 1.01E+00 0.00E+00
std 6.91E−05 4.26E−07 1.01E−02 5.58E+02 1.42E+00 0.00E+00

f2 30 mean 3.34E−58 1.90E−81 3.43E−07 3.89E−01 1.54E−04 0.00E+00
std 4.39E−58 2.66E−81 2.37E−07 4.81E−01 2.17E−04 0.00E+00

50 mean 1.53E−12 4.18E−26 5.25E−07 5.31E+09 2.06E−04 0.00E+00
std 1.99E−12 5.86E−26 2.64E−09 5.03E+09 2.91E−04 0.00E+00

80 mean 1.92E+09 2.42E+00 4.25E−07 1.55E+28 1.08E−03 0.00E+00
std 2.64E+09 1.02E+00 3.64E−08 1.04E+28 1.52E−03 0.00E+00

f3 30 mean 6.15E+01 2.11E+01 7.79E+01 5.56E+01 4.92E+01 2.63E+01
std 4.87E+01 2.53E−01 7.07E+01 4.29E+01 2.78E+01 1.80E+00

50 mean 1.24E+02 4.60E+01 9.47E+01 5.28E+07 1.02E+02 4.53E+01
std 1.11E+02 3.62E−01 3.22E+01 1.08E+07 7.46E+01 1.79E−01

80 mean 3.36E+02 1.57E+02 2.37E+02 3.46E+09 1.84E+02 7.69E+01
std 4.59E+01 5.97E+00 1.07E+02 6.57E+08 1.48E+02 9.56E−01

f4 30 mean 4.79E−48 3.79E−61 7.06E−17 2.69E−17 1.25E−01 0.00E+00
std 6.20E−48 4.01E−61 1.43E−17 2.91E−17 1.77E−01 0.00E+00

50 mean 5.84E−20 1.07E−24 7.39E−12 3.46E−01 9.02E−01 0.00E+00
std 8.03E−20 9.60E−25 4.91E−13 2.38E−01 1.28E+00 0.00E+00

80 mean 1.63E−08 1.99E−09 7.48E−09 1.83E+01 3.34E+00 0.00E+00
std 1.69E−08 9.76E−10 2.52E−09 2.18E+00 4.73E+00 0.00E+00

f5 30 mean 4.90E+01 1.31E+03 1.76E+01 1.94E+03 3.66E+02 0.00E+00
std 2.59E+01 1.29E+02 6.53E−01 3.11E+01 5.17E+02 0.00E+00

50 mean 1.50E+02 3.76E+03 2.31E+02 5.41E+03 5.78E+02 0.00E+00
std 4.27E+01 4.86E+02 1.98E+02 3.31E+02 8.17E+02 0.00E+00

80 mean 4.02E+02 8.44E+03 1.72E+03 1.07E+04 1.39E+03 0.00E+00
std 3.02E+01 3.43E+02 4.60E+02 3.05E+02 1.96E+03 0.00E+00

f6 30 mean 0.00E+00 0.00E+00 7.75E−03 1.74E−11 1.04E−02 0.00E+00
std 0.00E+00 0.00E+00 1.07E−02 2.46E−11 1.41E−02 0.00E+00

50 mean 9.86E−03 0.00E+00 1.20E−02 1.73E−01 2.19E−02 0.00E+00
std 5.66E−14 0.00E+00 1.95E−03 1.03E−01 3.05E−02 0.00E+00

80 mean 9.77E−02 2.86E−05 1.68E−01 6.18E+01 2.55E−02 0.00E+00
std 1.24E−01 1.15E−05 2.54E−02 1.84E+00 3.57E−02 0.00E+00

(continued)
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4.3 Experiment Results and Discussion

To get experiment results, all benchmark functions are executed by coding these search
methods. The mean fitness value and the standard deviation obtained by six opti-
mization algorithms are displayed in Table 1. The bold type is used to underline the
best of all the numerical results attained by comparing six optimization algorithms.
Figure 2 lists the convergence curves of different test functions gotten by all the
algorithms with the dimension 50. In Fig. 2, in order to make the curves clear, the
results are the logarithm with base 10.

As shown in Table 1, DEPSO algorithm almost gets the optimal mean and standard
deviation among all the algorithms for the eight benchmark functions. It means that the
hybrid DEPSO algorithm is better than other algorithms in terms of search accuracy.
Additionally, the proposed algorithm obtains the minimum values (i.e. zero) on
functions of Sphere, SumPowers, Quartic, Rastrigin, Griewank, and Schwefel2.22. It
means that the convergence precision of the DEPSO algorithm is high in the selected
functions.

In terms of dimensionality, the DEPSO can perform better than other algorithms
when the dimension is increasing. From Fig. 2, we can conclude the convergent speed
of DEPSO algorithm is significantly faster than other algorithms and the convergent
results are closer to optimal values. Altogether, the performance of DEPSO algorithm
performs better whether in unimodal functions or in multimodal functions.

Table 1. (continued)

Funs. D Ret. PSO DE GA ABC BFO DEPSO

f7 30 mean 1.15E−14 4.44E−15 3.46E+00 3.74E−09 6.76E−01 8.88E−16
std 5.02E−15 0.00E+00 6.07E−01 2.38E−09 8.28E−01 0.00E+00

50 mean 5.77E−07 3.39E−09 5.58E+00 2.74E−01 7.49E−01 8.88E−16
std 7.10E−07 2.87E−10 7.20E−01 1.72E−01 9.64E−01 0.00E+00

80 mean 1.98E−02 1.13E−03 4.15E+00 1.14E+01 8.33E−01 4.44E−15
std 1.37E−02 1.75E−04 1.44E+00 8.78E−02 1.11E+00 0.00E+00

f8 30 mean 1.26E−21 3.59E−24 2.22E+00 3.42E−15 1.85E+00 0.00E+00
std 1.76E−21 1.92E−24 2.06E−01 1.25E−15 2.01E+00 0.00E+00

50 mean 8.29E−11 3.03E−10 2.10E+00 1.77E−04 3.59E+00 0.00E+00
std 3.55E−11 2.39E−11 2.47E−01 3.58E−06 4.27E+00 0.00E+00

80 mean 1.08E−04 1.09E−03 2.88E+00 9.71E+00 5.93E+00 0.00E+00
std 1.03E−04 4.51E−05 9.88E−01 9.38E−01 7.34E+00 0.00E+00
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Fig. 2. The iteration process of the algorithms when the dimensionality is 50
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5 Conclusion

A hybrid algorithm integrating the advantages of PSO and DE is proposed in this
paper. The results show that the DEPSO algorithm outperforms other algorithms in
terms of mean and standard deviation. Though DE with nonlinearly decreasing
mechanism of scaling factor can obtain the similar solutions on some benchmark
functions (e.g., Rosenbrock and Rastrigin), the convergence speed is not good than the
proposed DEPSO method. Thus, the proposed alternative replication strategy can
enhance the performance of the hybrid algorithm. Our future study will focus on the
application of the proposed algorithm to solve the real-world problems and more hybrid
methods will be developed to obtain better solutions.
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Abstract. The intermittency of wind remains the greatest challenge
to its large scale adoption and sustainability of wind farms. Accurate
wind power predictions therefore play a critical role for grid efficiency
where wind energy is integrated. In this paper, we investigate two hybrid
approaches based on the genetic algorithm (GA) and particle swarm opti-
misation (PSO). We use these techniques to optimise an Adaptive Neuro-
Fuzzy Inference system (ANFIS) in order to perform one-hour ahead
wind power prediction. The results show that the proposed techniques
display statistically significant out-performance relative to the traditional
backpropagation least-squares method. Furthermore, the hybrid tech-
niques also display statistically significant out-performance when com-
pared to the standard genetic algorithm.

Keywords: ANFIS · GA · PSO · Hybrid GA-PSO · Wind power
Prediction

1 Introduction

The main reservation around large scale adoption of wind energy is its inter-
mittency as energy production is directly dependent on uncertain future atmo-
spheric conditions [3]. Forecasting of short term wind energy production has thus
become critical to operations management and planning for electricity suppli-
ers [11]. Such forecasts can then be used for proactive reserve management and
energy market trading to ensure that electricity load demands are optimally met
[11,13].

Generally, statistical and machine learning methods have become increas-
ingly prominent in wind power forecasting. These are mainly based on using
historical wind power output to refine Numerical Weather Predictions (NWP)
c© Springer International Publishing AG, part of Springer Nature 2018
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into localised predictions for the wind farms in question. Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) have also been prominent in wind power prediction
literature. The authors in [4] propose a two stage ANFIS with the first stage
refining the NWP winds speeds and while the second uses the refined wind
speed estimate for wind power prediction. The authors in [9] compare ANFIS
and ANNs in power predictions. Other techniques have included Bayesian Neural
Networks [11], Classification and Regression Trees, Support Vector Regression
and Random Forests [5]. A comprehensive review of the current state-of-the-art
methods in wind power forecasting is given in [17].

There has also been work in creating hybrids between the genetic algorithm
(GA) and particle swarm optimisation (PSO). A hybrid algorithm is proposed
in [6], where randomly selected particles from the PSO are evolved using GA
and returned to the PSO for further optimisation. The authors in [19] propose
randomly partitioning the particle population into sections where PSO and GA
are applied independently, and the results are then combined then re-partitioned
after every iteration.

The objective of this paper is to investigate two hybrid GA-PSO algorithms,
we then apply these two algorithms for training an ANFIS model for one-hour
ahead wind power prediction. The rest of the paper is arranged as follows: Sect. 2
introduces our proposed hybrid GA-PSO algorithm and sets-out the ANFIS
optimisation problem. Section 3 gives the experiment setup. Section 4 provides
and discusses the results of the experiments. Section 5 gives the conclusions and
possible future work.

2 Methods

In this paper, two hybrid methods based on GA and PSO are investigated in
predicting one-hour ahead wind power production based on an ANFIS model.

2.1 Genetic Algorithm

The GA is inspired by the biological process of natural selection. In GA candi-
date solutions are individuals within the population. Each individual’s fitness is
evaluated on the basis of a cost function. At each iteration, three evolutionary
procedures, selection, crossover and mutation, are executed in order to obtain
a global minimum. First, certain individuals are sampled from the population
(the selection step) for a crossover where parts of the selected individuals are
randomly exchanged. Next, another set of randomly selected individuals are also
mutated. In this paper, a continuous GA is used to optimise the parameters of
the ANFIS model where the mutation is performed by adding a Gaussian noise
to randomly selected parts of the vector of the unknown parameters. The pro-
cess continues until the algorithm converge or a specified maximum number of
iterations is executed.



500 R. Mbuvha et al.

2.2 Particle Swarm Optimisation

The PSO is one of the most recognised meta-heuristic optimisation algorithms
which inspired by the natural process of flocking of birds in search for food. In
the PSO algorithm, each particle in a swarm is considered as a candidate solution
of the optimisation problem. In this algorithm, the position of each particle is
updated in each iteration using the following equation:

Pi+1 = Pi + Vi+1 (1)

Here Vi+1 the particle’s velocity which is updated by:

Vi+1 = w0Vi + c1r1(Pbest − Pi) + c2r2(Gbest − Pi) (2)

where w0 is the inertia weight which maintains the previous velocity. c1 is the
particle’s acceleration constant towards its personal best solution PBest, while c2
is the acceleration of the particle towards the best known position amongst all
particles. r1 and r2 are randomly selected from a uniform distribution U(0, 1) to
add randomness to the search space exploration. These updates continue until
the algorithm converges or a specified maximum number of iterations is executed.

2.3 Proposed Approach

Generally, the main issue in GA is the lack of memory since the information
contained by the candidate solution that has not been selected for crossover
(or mutation) may be lost to future generations [6]. In this paper, two hybrid
methods between GA and PSO are proposed such that the GA can be further
improved by the memory and social learning elements of the PSO.

1. GA with PSO Crossover (GA-PSO) Here we adapt the GA crossover by
probabilistically alternating between the standard GA crossover and the PSO
velocity updates. A random number R(i) is drawn from a U(0, 1) distribution.
If R(i) exceeds a threshold T PSO updates are performed instead of the GA
crossover. This algorithm is shown in Fig. 1.

2. GA with PSO initialisation (GAPSO-I) Here we run the PSO algorithm
for a limited number of iterations while the best particle obtained by the PSO
is used as one of the individuals that initialise the GA population. This most
similar to the algorithm proposed by [18]. However, we use only one particle
from the PSO rather than a all the M best particles in the GA initialisation.
We believe that using just best particle from the PSO with other random
population members increases the search space of the GA. While using M
particles could possibly localise the search.

2.4 Adaptive Neuro-Fuzzy Inference Systems

ANFIS are class of the fuzzy Inference Systems (FIS) that adaptively adjust
membership functions and consequent parameters based on training data.
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Fig. 1. Flowchart showing the GAPSO algorithm.

Fig. 2. Simple ANFIS architecture with two inputs and two rules.

Figure 2 shows an ANFIS architecture as proposed by [8]. ANFIS consists of
five consecutive layers that sequentially process the information from inputs
towards outputs. These five layers operate as follows:

Layer 1 is a fuzzification layer, where crisp inputs are converted into fuzzy
set membership values. This is done using membership functions (MFs) which
are bounded in range the [0, 1]. The output of the jth node in this layer will be
of the form:

O1
j = μAj

(x) j=1, 2 (3)

where μAj
(x) is the MF. In this paper, a Gaussian MF, as described in Eq. 4,

are selected for the modelling process.
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μAj
(x) = exp

(
− (x − pj)

αj

)
(4)

Layer 2 combines the incoming signals from the fuzzy sets in the previous
layer using a T-norm operator. The result of this operation is the combined firing
strength of each rule. If the chosen T-norm operator is multiplication then the
output of the jth node in this layer is:

O2
j = wj = μAj

(x) × μAj
(x) j=1, 2 (5)

Layer 3 is a normalisation node where the relative firing strength of each rule
is calculated as ratio of its firing strength wj to the sum of the firing strengths
of all rules. The normalised firing strength of the jth in this layer will be:

O3
j = w̄j =

wj

w1 + w2
j=1, 2 (6)

Layer 4 calculates the consequent part of a Tagaki-Sugeno type FIS. The
result is a linear combination of the inputs for each rule weighted by its respective
normalised firing strength w̄j . This weighted linear combination is of the form:

O4
j = w̄jfj = w̄j(ajx1 + bjx2 + cj) (7)

where aj , bj , cj are unknown consequent parameters
Layer 5 performs an aggregation of the consequent values evaluated in the

previous layer as an weighted average. The final output is therefore:

O5
j = w̄j =

∑
i

w̄jfi (8)

The unknown parameters of the MFs in layer 1 and the linear coefficients in
layer 4 need to be estimated from training data. Multiple optimisation techniques
have been used for tuning these parameters [15]. A two-step process is suggested
in [8] where the linear consequent parameters are optimised using Least Squares
Estimation(LSE) in the forward pass, while the MF parameters are optimised
using gradient decent in the backward pass. The authors in [14] use PSO for
the MF parameters and LSE for consequent parameters. PSO is used for both
the MF and consequent parameters in [16], while the genetic algorithm is used
for both sets of parameters in [2]. In this paper, two algorithms based on the
combination of GA and PSO are proposed for estimating these parameters.

3 Experiments

In this section, the relative performance of the proposed hybrid methods is inves-
tigated when training an ANFIS for predicting one-hour ahead wind power pro-
duction on the Norwegian wind farm dataset.
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3.1 Dataset

The Norwegian wind farm dataset consists of 7384 records covering the period
from January 2014 to December 2016 [11]. The dataset features include the
windfarm online capacity, one and two hour lagged historical power production
values as well as NWP estimates of humidity, temperature and wind speed.

We randomly split the data into 70% for training and 30% for testing. The
model performance is evaluated on the basis of Root Mean Square Error (RMSE)
as defined in Eq. 9 for observation series T and corresponding model prediction
series Y .

RMSE =

√√√√ 1
N

N∑
i=1

(
Ti − Yi

)2 (9)

3.2 Model Setup

An ANFIS with 3 Gaussian MFs for each input was trained using the following
methods:

1. Hybrid backpropagation least squares (BP-LS) method of [8]
2. The normal GA [2]
3. The proposed GAPSO
4. The GAPSO-I

Table 1. List of additional parameters

Parameter Value

GAPSO/GAPSO-I Inertia weight 1

Personal learning coefficient 1.6

Global learning coefficient 2

GAPSO random number Threshold (T) 0.75

In-order to allow for the stochastic effects of random initialisation we repeat
the training of each algorithm 30 times. This also allows us to perform statistical
significance tests on the results using a non-parametric Kruskal-Wallis(KW) [12]
and post-hoc bonferorni [7] test for pairwise comparisons. In all cases, the ANFIS
is first initialised using Fuzzy C-Means clustering [1]. Training iterations for each
of the algorithms is capped at a maximum of 1500 iterations. A population size
of 40 is used of the GA, GAPSO and GAPSO-I. Table 1 shows a list of the
additional parameters settings.

4 Results and Discussions

Figures 3 and 4 shows the results of the experiments described in Sect. 3.
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Fig. 3. Boxplot showing the distribution of testing RMSE from the 30 trials of each
method

Fig. 4. Left, Graph showing the mean predictions from the GAPSO and true targets
for each of the samples in testing set. Right, Graph showing the mean predictions from
the GAPSO-I and true targets for each of the samples in testing set.

The boxplot in Fig. 3 shows the distribution of testing RMSE from the dif-
ferent models. It can be seen from the plot that evolutionary techniques show
lower testing mean RMSE with the GAPSO-I showing the lowest mean RMSE
of 2919.60 kWh.

The results also show that the RMSE for the evolutionary techniques have
greater variation than the BP-LS as there are more stochastic elements in the
algorithms rather than just in the initialisation of the backpropagation in the
BP-LS.

We also see from Table 2 that while the BP-LS displays the lowest training
RMSE of 2955.34 kWh it displays the highest the testing mean RMSE of 2971.57
kWh. This indicates the common problem of over-fitting to the training data
displayed by gradient based methods [10].

A KW statistical test performed on the testing RMSE gives a p-value of
1.07e−12, indicating that the differences in model performance are statistically
significant. A further Bonferroni test for pair-wise differences shows that the
difference between the testing RMSE from the evolutionary techniques and the
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Table 2. Results showing the mean RMSE from 30 trails of ANFIS trained by the
various optimisation algorithms for one-hour ahead wind power prediction.

Model Mean training RMSE (kWh) Mean testing RMSE (kWh)

BP-LS 2955.34 2971.57

GA 3012.07 2959.54

GAPSO 2998.24 2941.02

GAPSO-I 2989.17 2919.60

BP-LS is statistically significant in all cases at an acceptance level of α = 0.05.
The Bonferroni test also showed that the GAPSO-I had a statistically significant
lower RMSE than all the other methods.

5 Conclusions and Future Work

In this paper, two hybrid GA-PSO techniques were proposed for optimising
ANFIS parameters. We applied these techniques in predicting one-hour ahead
wind power production on the Norwegian wind farm dataset. The results showed
that both hybrid methods produce statistically significant lower RMSE than the
traditional BP-LS. Furthermore, the GAPSO-I displayed statistically significant
out-performance when compared to the normal GA and the GAPSO.

Future improvements to this work could explore longer horizons in wind
power prediction such as 24 h [11]. An ANFIS version of the two stage modelling
wind power framework such as that in [20] could also be adopted. The effect of
different types of membership functions on the predictive performance can also
be explored.
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Abstract. Sparse reconstruction is an important method aiming at
obtaining an approximation to an original signal from observed data. It
can be deemed as a multiobjective optimization problem for the sparsity
and the observational error terms, which are considered as two conflicting
objectives in evolutionary algorithm. In this paper, a novel decomposi-
tion based multiobjective evolutionary algorithm is proposed to optimize
the two objectives and reconstruct the original signal more exactly. In our
algorithm, a sparse constraint specific differential evolution is designed
to guarantee that the solution remains sparse in the next generation.
In addition, a neighborhood-based local search approach is proposed to
obtain better solutions and improve the speed of convergence. Therefore,
a set of solutions is obtained efficiently and is able to closely approximate
the original signal.

Keywords: Sparse reconstruction · Multiobjective optimization
Evolutionary algorithm · Decomposition · Differential evolution

1 Introduction

Compressive sensing (CS) is a novel theoretical framework for information acqui-
sition and processing, proposed by Candes et al. [1,2,6,12]. It breaks through
this limit and dramatically reduces, under certain conditions, the amount of data
we need to sample. Therefore, it can be widely applied to mass data acquisition
and processing. As an essential step in compressive sensing, the performance of
sparse reconstruction directly affects whether the CS framework is practical.

According to CS theory, the high-dimensional original signal is projected to
obtain a set of measurement data with smaller dimensionality. Theoretically,
sparse reconstruction can recover the original signal from the measurement data
based on the prior knowledge that the signal could be transformed into a sparse
one. As a matter of fact, it is hard to completely eliminate the additive noise in a
true signal observation process, thus the ground-truth signal xtr is approximated
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by the solution in the problem with noise n. This problem could be formulated
as the following problem:

min
x

‖x‖0 s.t. ‖y − Ax‖22 ≤ σ, (1)

where x = (x1, ..., xm)T is a signal vector; y = (y1, ..., yd)T is a measurement
vector; A = (aij)d×m is a sensing matrix with d < m that is full-rank and
overcomplete; σ is a nonnegative parameter to estimate the degree of noisiness of
the data under the observation process and ‖x‖0 denotes the number of nonzero
elements in the vector x, which represents the sparsity of the signal.

Most of traditional algorithms consider the constrained formula as a single
objective function by introducing a Lagrange multiplier [9,16]. In order to find an
optimal solution, specific problems need specific multipliers, that always depend
on the weights of the two terms of the sparse reconstruction (the sparsity and
the measurement error). However, it is hard to choose the proper weights in
many practical situations. Usually it needs some experiments for finding best
value for correspond situation without any additional knowledge, which is time-
comsuming. For the purpose of avoiding this difficulties and finding interesting
solutions more easily, a more universal and robust algorithm is necessary for
sparse reconstruction. The population-based methods like multi-objective evolu-
tionary algorithms [4,7] are considered as a better alternative for this problem.

This paper proposes a decomposition-based multiobjective evolutionary algo-
rithm for sparse reconstruction (MOSR/D), which applies the multiobjective
evolutionary algorithm based on decomposition (MOEA/D) [11,17] to solve
the sparse reconstruction problem. The proposed algorithm decomposes sparse
reconstruction into several scalar subproblems, and then addresses them with
a differential evolution operator considering sparse constraint. Besides this, a
neighborhood-based local search approach is employed to improve the speed of
convergence and the performance of the solutions. Finally a group of Pareto
solutions, which are tradeoffs between the two terms of the SR, can be obtained
in a single run. The Pareto front (PF), i.e., the sets of objective victors of these
solutions, can be readily visualized in the objective space [10]. It is extremely
useful for decision makers to find the solution they want. It has been proved that
the best approximation to the original signal is always located in PF.

This paper is organized as follows. Section 2 describes the proposed algorithm
in detail. In Sect. 3, the MOSR/D is compared with other conventional algo-
rithms and the experimental results are shown. Section 4 concludes this paper.

2 Methodology

In this section the proposed decomposition-based multiobjective evolutionary
algorithm for sparse reconstruction is described. First, a multiobjective SR
model is given, and then the MOSR/D is described in detail. In this algorithm,
a differential evolution operator based on sparse constraint is designed and a
neighborhood-based local search is applied to obtain better solutions efficiently.
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2.1 Decomposition-Based Multiobjective Evolutionary Algorithm
for Sparse Reconstruction

In order to obtain a close approximation for sparse reconstruction, its sparsity
and observational error should be as small as possible. Traditional sparse recon-
struction algorithms transform the objective function into a single term using
weighting parameters, but this is sensitive to the specific datasets and result
in fluctuations in the reconstruction performance. To overcome this drawback,
sparse reconstruction can be expressed as a bi-objective optimization model while
minimizing the two terms

min
x

F (x) = min
x

(‖x‖0, ‖y − Ax‖22)
subject to x ∈ Ω,

(2)

where Ω is the variable space. This model is more robust than the conventional
ones, and its solutions can meet the various requirements of a decision maker in
that a group of different solutions are produced at the same time.

For the purpose of resolving the multi-objective sparse reconstruction model,
a multiobjective evolutionary algorithm MOSR/D based on MOEA/D is pro-
posed in this paper. This algorithm decomposes the sparse reconstruction prob-
lem into a certain number of scalar optimization problems, called subproblems,
by a weighted aggregation of the objectives. Then the subproblems are solved by
evolving a population of solutions. The current population consists of the best
solutions obtained so far for each subproblem. For each subproblem, a neighbor-
hood relationship is defined based on the distance between the corresponding
weight vectors. According to [17], the optimal solutions of the neighboring sub-
problems should be very similar and only the information from these neighboring
subproblems is used to optimize each solution.

The approach of decomposition makes a difference to the performance of
the algorithm. Tchebycheff approach is one of the most popular methods [13]. It
converts the problem of approximating the PF into a certain number of subprob-
lems, and could be used in our algorithm. In the sparse reconstruction problem
there are two objectives (the observational error and the sparsity) to be solved.
Suppose λ = (λ1, λ2)T is a weight vector, where λ1 ≥ 0, λ2 ≥ 0 and λ1+λ2 = 1.
Then the corresponding Pareto optimal solutions can be obtained from the sub-
objective functions as follows:

min
x

gte(x|λ,z∗) = max{λ1|f1(x) − z∗
1 |, λ2|f2(x) − z∗

2 |}
subject to x ∈ Ω,

(3)

where z∗ = (z∗
1 , z

∗
2)T denotes the ideal point, i.e., z∗

1 = min{f1(x)|x ∈ Ω} and
z∗
2 = min{f2(x)|x ∈ Ω}. Each subproblem is related to others. After the decom-

position steps, each subproblem will be optimized by a collaborative method
employing the information from other subproblems.

Combining all the Pareto optimal vectors in the objective space, an approxi-
mation to the Pareto front can be obtained. With the evolution of the population
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of solutions, the set of Pareto optimal vectors should be closer to the real Pareto
front. The procedure of our algorithm is given in Algorithm1. It contains both
the initialization and a loop.

Algorithm 1. MOSR/D
Input:

The objectives of MOSR/D f1(x), f2(x);
The number of weight vectors in the neighborhood of each weight vector T ;
The number of subproblems decomposed N ;
A termination criterion.

Output:
The ultimate population P = {x1, ..., xN };
The set of Pareto objective vectors PF = {FV 1, ..., FV N}.

1: Step 1) Initialization:
2: Generate a set of weight vectors λ1, ..., λN by a problem-specific method;
3: Calculate the Euclidean distances between each two weight vectors and pick the T

closest weight vectors to each weight vector out; For each i = 1, ..., N , set D(i) =
{i1, ..., iT }, where λi1, ..., λiT are the T closest weight vectors to λi ;

4: Randomly initialize a population P including the points x1, x2, ..., xN in the vari-
able space; Set FV i = F (xi);

5: Generate z = {z1, z2}T by a problem-specific method.
6: Step 2) Cycling:
7: repeat
8: for i = 1 to N do
9: A sparse constraint specific differential evolution operator is used on solution

xi to obtain v;
10: Apply a neighborhood-based local search approach on solution v to produce

v′;
11: Update of Neighboring Solutions:
12: for each index j ∈ D(i) do
13: while gte(v′|λ, z) ≤ gte(xj |λ, z) do
14: xj ← v′, FV j ← F (v′)
15: end while
16: end for
17: end for
18: until Termination condition is satisfied
19: return P and PF.

In the initialization, firstly we should set the weight vectors with an uniform
distribution in the objective space, i.e., ensure the same angle between each two
weight vectors. Then P , an initial population of the solutions to the subproblems,
is generated randomly in the specific domain. To ensure our search strategy is
useful for solutions with different sparsities, different sparsities from 1 to m
are assigned to the solutions in this initial population. The Euclidean distance
between the corresponding weight vectors of each subproblem is found, and then
be used to estimate the neighboring relationship among the subproblems. Based
on this we can select the T closest ones as the neighborhood of each subproblem.
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In the evolution step, a new genetic operator, called the sparse constraint
specific differential evolution (SpaDE) operator, and a neighborhood-based local
search method are employed on the current solution to search for a better one.
These two methods are described in the following subsections. The termination
condition could be set as a certain number of generations. When it is satisfied,
then the evolution is stopped and the ultimate population and PF are obtained.

2.2 A Sparse Constraint Specific Differential Evolution Operator

In MOSR/D, after decomposition of the SR problem, a sparse constraint specific
differential evolution operator is applied to the current generation population in
this algorithm, due to several advantages, e.g., it is an efficient scheme for global
optimization and it is simple to implement.

The procedure of SpaDE is described in Algorithm2 in detail. It contains
the following four steps: mutation, crossover, sparse constraint, and selection.
Mutation and crossover operations are used to search for a new solution around
the current one, and selection chooses the better one from two solutions. Due to
the decomposition of the whole MOP into scalar subproblems, the conventional
selection operator for scalar optimization can be directly used in our algorithm.
So we can compare the solutions after differential evolution with the original
solutions and pick the better one directly based on the values of the subobjective
function in (3). These operators lead the solutions to converge to the Pareto front
straightforwardly and rapidly.

Even though the DE operator has shown great performance on the SR prob-
lem, its use also gives rise to another difficulty. After a mutation using the DE
operator, the sparsity of the solutions has already increased to approximately
three times what it was before. In order to obtain a close approximation to
the ground-truth signal, it is necessary to execute a specific operator that will
enforce a sparsity of solution similar to that of the ground-truth one. Therefore,
we propose a method, referred to as sparse constraint, to maintain the sparsity
of the solutions. The process of sparse constraint is illustrated by an example in
Fig. 1, where C is a vector which include m elements and represent the solution
after a crossover operation, xi is the target solution vector, and S is the new
vector produced. Based on the elements of xi , we decide whether to pass the
nonzero elements of C to S. When the corresponding coefficients of xi and C
include a zero value and a non-zero one, the corresponding coefficients of S will
be assigned a zero with probability p.

Note that the setting of the probability p plays a significant role in this app-
roach. Some investigation has been done, as follows. Supposing k is the sparsity
of the original signal and m is its dimension, and ignoring the situation where
the value of the elements in the same index of the vectors xv and vector xl are
equal (a remote possibility), the sparsity of the difference between xv and xl

can be written as

ks = k + (m − k) × k

m
= 2k − k2

m
. (8)
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Algorithm 2. Sparse Constraint Specific Differential Evolution Operator
Input:

The target solution xi = (x1, ..., xk, ..., xm)T ;
The solutions to neighboring subproblems xi1, ..., xiT ;
The scale parameter F ; The crossover parameter CR;
The weight vector λi ; The reference point z.

Output:
A new solution to the target subproblem v = {v1, ..., vm}.

1: Mutation
Randomly select three neighboring solution vectors xu , xv and xl from the neigh-
borhood of the target solution.
Generate a individual B = (b1, ..., bk, ..., bm)T from

B = xu + F · (xv − xl ), (4)

2: Crossover
Generate a trial vector C = {c1, ..., cj , ...cm} through a binomial crossover as

cj =

{
bj if rand(0,1) < CR or j = jrand,
xi
j otherwise.

(5)

3: Sparse Constraint
Generate a new vector S = {s1, ..., sj , ...sm} by comparing C and the target solu-
tion xi :

sj =

{
0 cj = xi

j = 0 or rand(0,1) < p,
cj otherwise.

(6)

4: Selection
Apply the objective of the corresponding target subproblem to estimate the vectors:

v =

{
S gte(S|λi , z) < gte(xi |λi , z),

xi otherwise.
(7)

5: return v.

Then this difference is multiplied by a weight F and the product is added to the
vector Xu , so the sparsity of newpoint after mutation becomes

km = ks + (m − ks) × k

m
= 3k +

3k2

m
+

k3

m2
. (9)

Note that the sparsity of the solution after mutation km increases to about three
times what it was before, when m � k. In our approach of sparse constraint, we
should restore the sparsity of solutions to k by finding a reasonable probability
p. According to (8) and the situations above, the nonzero elements come from
three parts: ⎧

⎨

⎩

k1 = 0;
k2 = km × m−k

m + (m − km) × k
m ;

k3 = km × k
m .

(10)
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Fig. 1. The sparse constraint process

In the hope of obtaining a solution with sparsity k, the following equation can
be derived.

k1 + k2 × (1 − p) + k3 = p (11)

Finally, the optimal probability p is set to

p =
3m3 − 6km2 + 4k2m − k3

4m3 − 9km2 + 7k2m − 2k3
. (12)

Based on the condition that n � k, the optimal p is approximately 0.75. There-
fore, the probability p is set to 0.75 in the sparse constraint approach to improve
the performance of our algorithm.

2.3 Neighborhood-Based Local Search

In order to improve the performance of the algorithm and the speed of con-
vergence, a neighborhood-based local search approach proposed in this paper
is applied to the solutions after the genetic operator. For each solution v from
SpaDE, we obtain a new solution v′ through searching with the information of
the target solution and other solutions in its neighboring subproblems. As seen in
Fig. 2, the arrows represent different weight vectors, black points are the current
optimal solutions we have found so far, the area under shadow is neighborhood
of the current weight vector, i.e., the red one. Our method use only the solutions
in the neighborhood of current subproblem to search its actual optimal solution.

Suppose that f(x) = 1
2‖Ax − y‖22 and c(x) = ‖x‖1. Obviously the c(x) is

separable. Then, an updated solution xk+1 can be calculated by minimizing the
linearized function of the previous solution xk with IST [3,8] in the SR problem

xk+1 = min
x

f(xk) + (x − xk)T ∇f(xk) +
1
2
(x − xk)T H(xk)(x − xk) + τc(x)

≈ min
x

(x − xk)T ∇f(xk) +
αk

2
‖Ax − y‖22 + τ‖x‖1
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Fig. 2. Neighborhood-based local search

=
1
2
‖x − uk‖22 +

τ

αk
‖x‖1

= soft(uk,
τ

αk
) (13)

where soft(b, τ
2 ) is the soft-thresholding function [5]. The parameter αk is set by

a Barzilai–Borwein (Spectral) Method in [14]. The diagonal matrix αkE denotes
an estimate of the Hessian matrix H(xk) = ∇2f(xk) and

uk = xk − 1
αk

∇ f(xk). (14)

In order to incorporate the soft-threshold function into our algorithm, it is
important to choose appropriate values for xk and xk−1. After several genera-
tions of our algorithm, the current solutions of the population should be close
to the optimal solutions. Due to the similarity between the optimal solutions to
two neighboring subproblems, it is considered a feasible method to select two
of the present solutions to the neighboring subproblems as xk and xk−1. After
these steps, we can find better solutions that are close to the Pareto front, and
then get a close approximation to the original signal.

3 Experimental Study

In this section we describe an simulation experiment to demonstrate the supe-
riority of the MOSR/D by comparing this algorithm against another six pop-
ular traditional approaches for sparse reconstruction. These six approaches are
OMP, basis pursuit (BP), homotopy methods, sparse reconstruction by sepa-
rable approximation (SpaRSA), the fast iterative shrinkage thresholding algo-
rithm (FISTA), and the alternating direction method (ADM). Toolboxes for
these methods can be found in [15].
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Algorithm 3. Neighborhood-based local search
Input:

The population after SpaDE operator v1, ..., vN ;
The number of subproblems N ; The weight vectors λ1, ..., λN ;
The number of neighboring subproblems T ; The reference point z.

Output:
The new solutions v′.

1: for i = 1 to N do
2: set D(i) = i1, ..., iT , where λi1, ..., λiT are the T closest weight vectors to λi;
3: select two indices ia, ib from D(i);
4: if gte(via |λi, z) ≤ gte(vib |λi, z) then
5: xk ← via , xk−1 ← vib ;
6: else
7: xk ← vib , xk−1 ← via ;
8: end if
9: Compute xk+1 by xk and xk−1;

10: v′ ← xk+1.
11: end for

In this experiment, the setting of the simulation experiment is set as follows.
The dimension of the ground-truth signal m is 2000. The observation vector y
is polluted by an additive white noise, in which the coefficients are distributed
with mean 0 and standard deviation δ = 0.01. The value of the tolerance σ is
set to 0.3 and λ is fixed at 0.02 for the compared algorithms.

Table 1. Average reconstruction error of the MOEA/D and other algorithms with
different projection dimensions

Projection dimension OMP BP Homotopy SpaRSA FISTA ADM MOSR/D

800 1.026 0.631 0.640 0.650 0.657 0.657 0.510

1000 0.793 0.603 0.565 0.568 0.564 0.558 0.437

1200 0.831 0.618 0.508 0.498 0.515 0.520 0.394

1400 0.978 0.721 0.485 0.473 0.475 0.472 0.382

1600 1.024 0.902 0.461 0.460 0.456 0.471 0.387

1800 1.316 1.329 0.446 0.439 0.440 0.441 0.371

In Table 1, the sparsity ratio k/m is set to 0.15, and the projection dimension
d of the observation matrix d varies from 800 to 1800, in intervals of 200. From
this table we can see how the reconstruction error changes with d in different
algorithms. Obviously MOEA/D has the lowest average reconstruction error,
meaning it outperforms the other algorithms.

In Table 2, the projection dimension is fixed at d = 1200 while the sparsity
ratio is varied over the range k/m = 0.1–0.4. As can be seen in this table, the
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Table 2. Average reconstruction error of the MOEA/D and other algorithms with
different sparsity ratios

Sparsity ratio OMP BP Homotopy SpaRSA FISTA ADM MOSR/D

0.10 0.296 0.561 0.394 0.397 0.392 0.407 0.364

0.15 0.801 0.631 0.524 0.526 0.524 0.522 0.397

0.20 0.948 0.686 0.611 0.619 0.603 0.613 0.447

0.25 1.081 0.715 0.688 0.681 0.672 0.689 0.495

0.30 1.209 0.760 0.740 0.727 0.730 0.735 0.530

0.35 1.296 0.802 0.767 0.771 0.766 0.773 0.554

0.40 1.339 0.831 0.795 0.796 0.792 0.792 0.589

MOEA/D has a better performance than the other algorithms for sparse recon-
struction, except for OMP with k/m = 0.1. However, considering that the OMP
method works worse when the sparsity varies from 0.15 to 0.4, MOSR/D is a
better choice for sparse reconstruction on the whole.

4 Conclusion

This paper has proposed a multi-objective model for sparse reconstruction, in
which the observational error and an enforced sparsity are employed as the two
objectives and minimized simultaneously. A novel algorithm named MOSR/D
has been designed to solve this model and obtain a set of tradeoffs between the
two objectives. These tradeoffs are useful for a decision maker to reconstruct the
original sparse signal exactly. In particular, a sparse constraint specific differen-
tial evolution operator is incorporated to obtain a closer approximation to the
original signal, and a neighborhood-based local search approach is used to speed
up the convergence of our algorithm. Results of simulation experiments have
demonstrated that our algorithm outperforms other conventional algorithms for
sparse reconstruction. Future work is going to focus on incorporating MOSR/D
into significant applications and designing effective methods for finding the best
tradeoff along the Pareto front.
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Abstract. In order to efficiently manage the diversity and convergence in
many-objective optimization, this paper proposes a novel multi-engine coop-
eration bacterial foraging algorithm (MCBFA) to enhance the selection pressure
towards Pareto front. The main framework of MCBFA is to handle the con-
vergence and diversity separately by evolving several search engines with dif-
ferent rules. In this algorithm, three engines are respectively endowed with three
different evolution principles (i.e., Pareto-based, decomposition-based and
indicator-based), and their archives are evolved according to comprehensive
learning. In the foraging operations, each bacterium is evolved by reinforcement
learning (RL). Specifically, each bacterium adaptively varies its own run-length
unit and exchange information to dynamically balance exploration and
exploitation during the search process. Empirical studies on DTLZ benchmarks
show MCBFA exhibits promising performance on complex many-objective
problems.

Keywords: Multi-engine � Reinforcement learning
Bacterial forging algorithm � Many-objective optimization

1 Introduction

Many real-world problems can be formulated mathematically as a many-objective
optimization problem (MaOP) [1], usually with more than three conflicting objectives.
Intuitively, the aim of an algorithm for MaOPs is to find a set of optimal trade-off
solutions between a numbers of objectives, which are also called the Pareto-optimal
solutions (PS). Obviously, these high-dimensional MaOPs are more difficult than those
with two or three objectives, because with the increasing number of objectives, the
percentage of nondominated solutions for MaOPs increases rapidly, which inevitably
causes the difficulty of estimating the solutions’ similarity. Evolutionary algorithms
(EAs) have been deeply investigated and treated in the literature [2]. Pareto optimality
is the popular paradigm, such as NSGA-II [3] and SPEA2 [4]. However, these algo-
rithms encounter severe degradation in performance on MaOPs, because they would
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lose the diminishing selection pressure over non-dominated solutions with the number
of objectives increasing.

In order to resolve this issue, a large number of approaches have been proposed
recently, such as decomposition-based approach [5], quality indicator-based approach
[6], and augmenting selection pressure approach [7]. Among those, several novel
paradigms exhibit large potential with excellent experimental results, such as NSGAIII
[8] and two-archive MOEA [9]. NSGAIII uses a set of reference points to guide the
selection process over nondominated solutions in the high-dimensional objective space.
The two-archive MOEA is to respectively assign Pareto-based and indicator-based
metrics to the two archives, in order to handle the convergence and diversity separately
[10]. Note that recently many bacterial swarm based algorithms are proposed to take
advantage of the success of bacterial intelligence. The main strength of bacterial for-
aging optimization (BFO) algorithms lies in its excellent exploitation ability, which
compares favorably with other EAs [11, 12]. However, compare to the in-depth
investigation of other algorithms on MaOPs, few affords are paid to use BFO and its
variants to resolve the MaOPs.

Inspired by above works, we proposed a new multi-engine cooperation bacterial
foraging algorithm (MCBFA). Specifically, in the colony-level interaction, the
decomposition-based engine (DE), the Pareto-based engine (PE) and the
indicator-based engine (IE) are concurrently evolved to maintain diversity and con-
vergence. In the individual-level searching, the bacterial foraging operations are
selected as the basic search rule. Then the Q-learning method is used to dynamically
balance exploration and exploitation during the search process. By integrating these
mechanisms, the single-population BFO has been extended to a multi-population
multi-level cooperation model for many-objective optimization.

The remainder of the paper is given as follows. Section 2 describes the main
framework of multi-engine Cooperation bacterial foraging paradigm. In Sect. 3, the
proposed algorithm is presented in detail. Section 4 presents a series of experiments on
a set of benchmarks to evaluate effectiveness of the proposed algorithm. Section 5
outlines the conclusions.

2 Proposed Framework

2.1 Basic Idea

The multi-engine cooperation framework is developed as shown in Fig. 1. In the
framework, three types of search engines are evolved independently with different
dominance relations, so as to tackle convergence and diversity separately. Each engine
is composed of a set of solutions with the same evolution strategy. Specifically, the
Pareto-based engine (PE) is to enhance the diversity of population, the indicator-based
engine (IE) attempts to guide the population to converge to the true PF quickly, and the
decomposition-based engine (DE) is responsible to further make up the loss of
selection pressure. In this approach, the DE, PE and IE work cooperatively with
different archive-updating rules and fitness-evaluation approaches. As shown in Fig. 1,
the general framework of MCFBA consists of multi-archive management mechanism,
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comprehensive learning, reinforcement learning, and basic foraging operators, which is
composed of chemotaxis, reproduction, elimination-dispersal and crossover. The
details are given below.

2.2 Multi-archive Maintenance

Figure 2 shows the hybrid multi-archive management mechanism, where three
heterogeneous archives are updated independently based on different dominance
relations, and then they are merged in the global archive EA by a specific selection
scheme. For the sake of simplification, we employ only one colony in each engine.

Initialize the diversity hives 
and convergence hives, each 
hive has M bacteria colonies

Stop criterion? STOP

execute operation based on 
Indicator and comprehensive 

learning

Calculate all the objectives and 
sort the bacteria colony to 

initialize external archive EA

Yes

No

Select optimum operation 
based on RL 

Indicator-based engine (IE) Pareto-based engine (PE)

Update achive 
IA

Update achive 
PA

Use elites in the archives to 
replace the best individuals in 
the randomly selected conlony

Update EA

Decomposition-based engine 
(DE)

Update achive 
DA

execute operation based on 
Pareto and comprehensive 

learning

Select optimum operation 
based on RL 

execute operation based on PBI 
and comprehensive learning

Select optimum operation 
based on RL 

Fig. 1. The basic flowchart of the proposed algorithm
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Archive for Decomposition-Based Engine. In DE, the penalty-based boundary
interception (PBI) is employed as fitness assignment, since its effectiveness has been
verified in [8]. Here an ideal point Z* is used as a reference point, and the diversity
function is defined as

PBI P; kð Þ = d1 þ hd2 ð1Þ

where d1 is the distance between the Z* and a point P, and d2 is the distance between
the point P and the weight vector k. Essentially, d1 is used to measure the closeness to
PF, while d2 is used to maintain the diversity of population. Then h is to combine d1
and d2 into a single value. Then, d1 and d2 are calculated as:

d1 ¼
ðP� Z�ÞTk�� ��

kk k ð2Þ

d2 ¼ P� Z� þ d1
k
kk k

� �����

���� ð3Þ

Archive for Indicator-Based Engine. The quality indicator Ie+ is used in IE and its
archive IA to improve the convergence. Suppose there are two solution sets A and B,
then Ie+ is defined as [13]:

IeþðA;BÞ ¼ minf8y 2 B 9x 2 A : fiðxÞ � e� fiðyÞ for i 2 f1; . . .;mgg ð4Þ

where x and y are solution vectors, m is the number of objectives. Intuitively, it
represents the minimum shift weight of each dimension of the objectives. Then it is
used to assign fitness to individuals in IE as

Colony1:Indicator-based engine
 (IE) 

Archive
IA

Archive
PA

Comprehensive
learning

Colony 2:Pareto-based engine
 (PE) 

Global Archive
EA

Comprehensive
learning

The elite in the global archive 
Ordinary individual 

The worst individual

Colony 3:Decomposition-based engine
 (DE) 

Archive
DA

Comprehensive
learning

Fig. 2. The schematic diagram of comprehensive learning and archive management in MCBFA
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FitIeþðxÞ ¼
X

y2Pnfxg
�e�Ieþ ðy;xÞ=0:05 ð5Þ

where P is the population. Essentially, FitIe+(x) can be directly employed as the
dominance relation.

Archive for Pareto-Based Engine. The Pareto-based PE aims at diversity promotion
over a set of non-dominated solutions by using its archive PA. Accordingly, only
non-dominated solutions in the population can be selected into PA. Although the
proportion of non-dominant solutions is increasing with the growth of generations, it is
still very effective in the initial phase. The redundant individual is deleted based on the
crowding distance when PA is overflowed.

Global Archive. As shown in Fig. 2, the newly solutions in DA, IA and PA are
merged together into EA in each generation. EA is maintained as Algorithm1. Due to
good performance and low complexity, the indicator Ie+ is used. In principle, the EA
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has the combinable merits of DA, PA and IA in the environmental selection.
Furthermore, the information exchange between individuals and populations can be
enhanced via comprehensive learning in parallel at each individual updating step. That
is, the bacterium xi in an engine uses one randomly selected neighbor xj in another
engine to generate a new one. Obviously, this can improve the efficiency of information
exchange among archives.

3 The MCBFA Algorithm

Based on the above framework, MCBFA contains four operations, namely chemotaxis,
swimming & tumbling, reproduction, and elimination-dispersal are adopted as basic
search rules. In order to select appropriate operation at each step, the Q-learning is used
in the algorithm [16]. Specifically, Q-learning selects an optimal action by observing
the current state and then enters next state, as shown in Fig. 3.

First, the operation space of bacterial foraging colony is designed as a 4 � 4 matrix
called Q-table, as illustrated in Table 1. Then, each individual implements it. Suppose
the state of the individual is Elimination-dispersal, the optimal operation is performed
as chemotaxis based on potential reward-maximization. Finally, the individual receives
a feedback based on the performance variation of population. The data item
(Elimination-dispersal, Chemotaxis) of Q-table is updated as

Qðsr; orÞ ¼ Qðsr; orÞþ @½lrþ 1 þ c maxa Qðstþ 1; aÞ � Qðst; atÞ� ð6Þ

@ðtÞ ¼ 1� ð0:9 � iter
maxCycle

Þ ð7Þ

Reinforcement
 Learning

Searching
space

    Elimination-dispersal

Exchange

Chemotaxis

Reproduction

Return

Select

Fig. 3. The proposed MCBFO structure
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where c represents a discount factor range of 0 to 1, lr+1 is the immediate reward in its
current state sr by executing a operation or, @ is the coefficient of learning in [0, 1].

In the operation-level process, the proposed algorithm is similar to the classical
algorithm.

4 Benchmark Test

4.1 Test Functions and Experimental Setup

DTLZ1, DTLZ2, DTLZ3 and DTLZ4 are employed to verify the performance of the
proposed algorithm. For each instance, 3, 5, 8, and 10 objectives are respectively
considered. In addition, the inverted generational distance (IGD) is employed to
evaluate the performance of the algorithms [3]. The compared algorithms include
MOEA/D, MOEA/DD, NSGA-III and KnEA and their parameters are set to the same
with their original references [5, 8, 14, 15]. For MCBFA, the population size of DE, PE
and IE is N/3, the size_DE, size_PE and size_IE are equal to N/3, size_AE = N/2.
In addition, each algorithm is implemented 20 times independently on each problem.

4.2 Computation Results and Analysis

The mean and standard deviation values of IGD are given in Table 1 where the best
items are highlighted in bold. From the table, it can be found that MCBFA performs
more powerfully than other peer algorithms, mainly due to its adopted multi-engine
cooperation and comprehensive learning strategies.

Specifically, MCBFA does best on 5-objective DTLZ1 instance, and ranks second
on 8-objective instance. Similar observations are obtained on DTLZ2, MOCBFA
performs best on 5-objective DTLZ2 instance, while MOEA/DD also obtains powerful
performance on 10-objective instance. MCBFA performs best on the DTLZ3 instances,
ranking first or second on most of the test instances. Note that the performance of
NSGA-III is approximately equivalent to those of MCBFA on DTLZ test instances. On
DTLZ4. MCBFA also obtains remarkable performance, while NSGAIII performs more
competitively than MCBFA on 8-objective instances. MCBFA are slightly better than
MOEA/D on 5-objective instances. Generally, MCBFA performs better than other
algorithms on most of test instances. For DTLZ2 and DTLZ4, MCBFA and
MOEA/DD performs very closely. Intuitively, MCBFA and MOEA/DD are better than

Table 1. A specific example of the Q-table

State Operation
Chemotaxis Reproduction Elimination-dispersal Crossover

Chemotaxis −0.3 0 0 −0.03
Reproduction 0 0 0 0
Elimination-dispersal 0.9 0 0 0
Crossover 1 0 0 0
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other algorithms. For DTLZ1 and DTLZ3, smaller IGD values are found by MCBFA,
which indicates the effeteness of MCBFA (Table 2).

4.3 Computation Complexity Analysis

Within one generation, the computation complexity of MCBFA mainly performs the
following operations: (1) the decomposition-based engine, (2) the Pareto-based engine,
(3) the indicator-based engine. For a population size N, an optimization problem of M
objectives, the computational complexity of the decomposition-based engine is O
(MNT), where T is the number of the reference vectors. The runtime of the
Pareto-based engine is O(MN2). And the indicators-based needs a runtime of O(MN2).
To sum up, the computation complexity of MCBFA is O(MN2).

5 Conclusions

This paper presents a new framework based on bacterial foraging paradigm called
MCBFA to solve MaOPs. MCBFA approximates an outstanding converged and
properly distributed PF by evolving three cooperative bacteria populations with dif-
ferent evolution regulation. Specifically, in the colony-to-colony interaction, the
decomposition-based engine, the Pareto-based engine and the indicator-based engine
communicate with each other based on the comprehensive learning mechanism, which
essentially enhance the population diversity. In the inter-colony evolution, the
Q-learning is incorporated into the framework to expedite its local search ability.
Experiments have been conducted on a set of many-objective benchmarks. Experi-
mental results show that MCBFA is significant superior or at least comparable to its
competitors in terms of IGD. For future research, it is interesting to investigate the
performance of MCBFA on more instances and further improve performance on
large-scale problems.
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Abstract. In order to efficiently reduce computational expense as well as
manage the diversity and convergence in many-objective optimization, this
paper proposes a novel multi-indicator bacterial foraging algorithm with Kriging
model (K-MBFA) to guide the search process toward the Pareto front. In the
proposed algorithm, a set of preferential individuals for the improved Kriging
model are appropriately selected according to the different indicators. Specifi-
cally, the stochastic ranking technique is adopted to avoid the search biases of
different indicators, which would lead the population to converge to local region
of the Pareto front. With several test instances from DTLZ sets with 3, 5, 8 and
10 objectives, K-MBFA is verified to be significantly superior to other com-
pared algorithms in terms of inverted generational distance (IGD).

Keywords: Multi-indicator � Bacterial forging algorithm
Many-objective optimization � Kriging model

1 Introduction

Many-objective optimization refers to optimization problems that involve a set of
conflicting objectives, often more than three objectives [1]. Intuitively, the main goal of
an optimization algorithm for MaOPs is to obtain a set of optimal compromises
between these objectives, which are also termed as Pareto-optimal solutions (PS). As
the number of objectives increases, these MaOPs become more difficult to be tackled
due to the inability of the nondominance or Pareto-based paradigms to approximate
Pareto front (PF). Due to their heuristic features and population-based paradigm,
evolutionary algorithms (EAs) exhibit strong search ability on multi-objective opti-
mization problems (MOPs). Among these, Pareto-based EAs are the commonly used
scheme, such as NSGA-II [2] and SPEA2 [3].

Compared with low-dimensional MOPs, the curse of dimensionality in MaOPs has
caused severe performance deterioration for MOEAs, because (1) The increasing
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number of objectives result in the loss of algorithmic selection pressure during the
search process and (2) the high-dimensional search space largely weakens the effi-
ciency of the algorithmic operator. Especially, the large search space makes the
algorithm more computationally expensive, even nearly stagnant during the evolu-
tionary process.

In order to address the first issue, a considerable number of methods have been
developed, such as aggregation-based algorithms [4], preference-based algorithms [5],
and relaxed dominance-based algorithms [6]. Among those, the indicator-based
approaches are rather simple because the final solutions are evaluated by using the
indicators [7]. However, a single indicator would mislead the population evolution
towards some local regions of PF [8, 9]. For examples, the Ie+ in IBEA prefers the
convergence to the diversity [10], and another indicator ISDE will prefer the diversity
instead [11]. Accordingly, multiple indicators with different biases, can work cooper-
atively for environmental selection, which is conductive to maintain the diversity and
convergence in the search process. As for the second issue, surrogate models are
usually beneficial to reduce the computation cost of algorithms. The Kriging model
[12] is especially utilized for the adaptive approximation of complex problems and it
further evaluates errors of the approximation by using the Gaussian function. This
approach is helpful for decision makers to locate additional sample points so as to
improve accuracy.

It is stressed that recently a number of bacterial foraging algorithms (BFAs) have
been developed based on intelligent bacterial behaviors to evolve towards optimal
regions. Compared with other EAs, the main merit of the BFA algorithm lies in its
more powerful exploitation ability in complex environments [13]. Motivated by the
above, a multi-indicator bacterial foraging algorithm with Kriging model called
K-MBFA is proposed. Specifically, a set of preferential points for the improved
Kriging model are selected according to multiple indicators. Furthermore, the
stochastic ranking technique is designed to manage the implementation sequence of the
inconsistent indicators. By incorporating these strategies, the BFA has been extended to
an effective optimizer for many-objective optimization.

The rest of the paper is given as follows. Section 2 describes the enhanced opti-
mization framework based on Kriging model. In Sect. 3, the proposed K-MBFA
algorithm is presented in detail. Section 4 presents comprehensive experiments on a set
of test instances to evaluate effectiveness of the proposed algorithm. Section 5 outlines
the conclusions.

2 Enhanced Global Optimization Based on Kriging Model

In the proposed model, a number of uniformly-distributed individuals are initialized by
the Latin hypercube sampling (LHS) method [14]. The Kriging model for each
objective function is constructed by interpolating these initial individuals. A set of
indicators including Ie+, ISDE and PBI are used to select the preferred solution from the
Kriging model by using the estimated objective functions, as shown in Fig. 1. The
binary addictive indicator Ie+ is maximized by the algorithm and then the candidates
for additional solutions are identified. Afterwards, the Kriging models are reconstructed
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by the initial and additional individuals. The procedures of K-MBFA are shown in
Fig. 2. A classic BFA is adopted by K-MABC to explore preferred solutions based on
indicators what is are properly selected.

The ordinary Kriging Model represents the unknown function ƒ(x), which is for-
mulated as

f ðxÞ ¼ aðxÞþ bðxÞ ð1Þ

where x is an m-dimensional decision vector, a(x) is a global model, and b(x) is a
Gaussian process with N(0, r2), which represents a local error with the global model.
The correlation between b(xi) and b(xj) is strongly correlated to the distance between xi
and xj. Here, we use the Gaussian function with a weighted distance to define the
correlation as

CorrðbðxiÞ; bðxjÞÞ ¼ expð�
Xm
k¼1

xkðxki � xkj Þ2Þ ð2Þ

where xkð0�xk\1Þ is the weight factor of the kth element of an m-dimensional
weight vector x. These weights maintain the anisotropy of the Kriging model and
improve its accuracy. The predictor and uncertainty of the Kriging are expressed as

~f ðxÞ ¼ ~bðxÞþ rðxÞTR�1ðf � ~bÞ ð3Þ

v2ðxÞ ¼ ~r2ð1� rðxÞTR�1rðxÞþ ð1� 1TR�1rðxÞÞ2
1TR�11

Þ ð4Þ

where ~b xð Þ is the approximated value of b(x), R express the n� n matrix whose (i, j)
element is Corr(b(xi),b(xj)), r(x) is an n-dimensional vector whose ith element is Corr
(b(xi),b(xj)), and then ƒ and ~b are formulized as follows when there are n solutions

the initial individuals

Non-dominant front 
on the Kriging models

f1

f 2

Fig. 1. Reference point definition using an ideal point of solutions on the Kriging models
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f ¼ ðf ðx1Þ. . .f ðxnÞÞT ð5Þ
~b ¼ ð~bðx1Þ. . .~bðxnÞÞT ð6Þ

x, ~b xð Þ and ~r2 (approximated r2) are the unknown parameters in the Kriging model.
By maximizing the likelihood function, the unknown parameters are obtained [15].

Based on the Kriging model, the EI value, which is the expected objective function
improvement from the current non-domination solution, is calculated according to the
improvement value I(x), expressed as

IðxÞ ¼ maxðfref � f ; 0Þ ð7Þ

EIðxÞ ¼
Z fref

�1
ðfref � f Þkðf Þdf ð8Þ

Start

Construction of the Kriging models for each objective function

Terminate?

Exploration of preferred solution of estimated objective function by BFA

The stochastic ranking procedure is executed by multiple indicators.

Additional  individuals are selected to carry out reproduction 

End

Generation of initial solutions

Yes

No

Evaluates the objective function values of the population.

Real value evaluated by objective function

Approximate value from surrogate model

Initialize the weight vector

Fig. 2. Flowchart of the K-MBFA.
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where k is the probability of ƒ, the density function is denoted by N ~f xð Þ; v2 xð Þ� �
, ƒref is

the reference value of ƒ, namely the minimum value of ƒ(x). Accordingly, EI(x) can be
treated as the approximate value of the objective function.

3 The K-MBFA Algorithm

In K-MBFA, a stochastic ranking is used to select preferred solution based on multiple
indicators. Assuming that that the population contains N individuals, while N/2 indi-
viduals need to be selected, the algorithm is to rank individuals for N/2 times. All pairs
of adjacent individuals are compared by the values of a randomly chosen indicator
during each sweep. The termination condition for the sweep is that there is no change
in the rank ordering. The parameter P(p1, p2) is the tradeoff between multiple indi-
cators. The first N/2 individuals are selected as additional solutions when the ranking
procedure terminates. The flowchart of the stochastic ranking is shown in Algorithm 1.

Algorithm 1: The stochastic ranking procedure

Input : Pt ={p1,…,pN}  ( The population) 

Output: Pt+1 (Sorted population that will be reproduced) 

1. for Counter=1 to |Pt|/2 do
2. for i=1 to |Pt|-1 do
3. I=random(I1,I2,I3)

4. if I(ui) is worse than I(ui+1) then
5．． Swap(ui,ui+1) 

6. end
7. end
8. if no swap done then
9. Break

10. end
11.end
12.Pt+1={u1,…, uN/2}

Accordingly, any suitable indicator can be applied in algorithm. Considering
convergence and diversity, the indicators PBI, Ie+ [10] and ISDE [11] are chosen for
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K-MBFA. These three indicators have been proved to be effective in terms of con-
vergence or diversity and are low computational expenditure.

The aggregation function I1(x) by the penalty-based boundary interception
(PBI) approach is defined as follows:

PBIðP; aÞ ¼ d1 þ dd2 ð9Þ

I1ðxÞ ¼ minðPBIðP; aÞÞ ð10Þ

where d1 is the distance between the origin and the certain point P, and d2 is the
perpendicular distance from the weight vector a. The main idea of PBI is shown in
Fig. 3 in a two-dimensional objective space. And then d is a preset parameter that
combines d1 and d2 into a single value that maintain the diversity and convergence of
individuals. The formula to measure d1 and d2 are given as:

d1 ¼ pTw
wk k ð11Þ

d2 ¼ P� d1ð w
wk kÞ

����
���� ð12Þ

The binary addictive e-indicator and the corresponding I2(x) can be defined as:

Ieþ ðx; yÞ ¼ mineðf iðxÞ � e� f i ðyÞ; i2f1; . . .;mgÞ ð13Þ

I2ðxÞ ¼
X

y2A;y 6¼x

�e�Ieþ ðx;yÞ=0:05 ð14Þ

where A is the population of all individuals. This indicator is employed to analysis
dominance relation in the multi-objective optimization. In addition, I2 is also used as
the fitness assignment for each bacterium.

f1

f2

Fig. 3. Illustration of the PBI function
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The ISDE and the corresponding I3(x) for measuring solutions are defined as:

ISDEðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

1� i�m
sdðfiðxÞ; fiðyÞÞ2

q
ð15Þ

I3ðxÞ ¼ minðy2A;y 6¼xÞfISDEðx, yÞg ð16Þ

where

sdðfiðxÞ; fiðyÞÞ ¼
fiðyÞ � fiðxÞ if fiðxÞ\fiðyÞ

0 otherwise

(
ð17Þ

4 Experiment Results

4.1 Test Functions and Experimental Setup

A suit of benchmark functions are employed namely DTLZ1–DTLZ4 with 3, 5, 8, and
10 objectives to evaluate the performance of the proposed algorithm. The Inverse
Generational Distance (IGD) metric is used to measure the performance of the involved
algorithms. The proposed algorithm is compared with four state-of-the-art algorithms,
namely MOEA/D, MOEA/DD, NSGA-III and KnEA. The compared algorithms are
adjusted to be the same as their original references. For the proposed K-MBFA, The
number of initial solutions generated by LHS is set to (11m − 1) suggested in [15] and
additional individuals are added until the total number of initial and additional indi-
viduals reaches 200. Other parameters for BFA are listed as: Step size C = 0.05, Ped =
0.25, the swimming & tumbling maximum step size Ns = 1, the number of repro-
duction Nre = 50 and number of elimination-dispersal Ned = 20. The number of fitness
evaluation is set to 10000 and the independent run times are set to 30.

4.2 Computation Results and Analysis

The mean and standard deviation values of IGD by the five algorithms over 20
independent runs are reported in Table 1 where the best items are highlighted in bold.
From the table, it is clearly observed that K-MBFA performs more powerfully than
other peer algorithms, mainly due to its adopted Kriging model and multi-indicator
cooperation strategies.

To be specific, K-MBFA obtains the first ranks on 5- and 10-objective DTLZ2
instances, and achieves the first ranks on 10-objective DTLZ3 instance, while KnEA
also obtains competent performance on 8-objective DTLZ4 instance. On DTL1,
K-MBFA performs a little worse than NSGAIII, still better than MOEA/D, MOEA/DD
and KnEA. Especially, for the more complex DTLZ4 instances where the distribution
of the points on PF is strongly nonuniform, K-MBFA obtains a significantly better
approximation than that of NSGAIII and MOEA/DD. Generally, K-MBFA obtains
better performance than that of other algorithms on most test instances. For DTLZ3 and
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DTLZ4, the performance of K-MBFA is relatively close to that of MOEA/DD. Gen-
erally, K-MBFA and MOEA/DD perform more powerfully than other algorithms,
which indicates K-MBFA has great potential to handle complex multi-objective
problems.

4.3 Computation Complexity Analysis

Given an MaOP with m objectives and a population size of N, the computation
complexity of each generation of K-MBFA is given as: first, constructing Kriging
models for each objective requires O(mN). Second, determining preferred solution by
using estimated objective function needs O(mN2). Third, the computation complexity
of the stochastic ranking process is O(mN2). In summary, the computational com-
plexity of K-MBFA is O(mN2) better than MOEA/DD, at the same level of NSGA-III,
MOEA/D and KnEA. Due to fitness evaluation by Kriging model, the former is less
time-consuming than the latter in practice.

5 Conclusions

This paper presents a new evolutionary optimization algorithm based on bacterial
foraging paradigm called K-MBFA to solve MaOPs. K-MBFA uses the Kriging model
to reduce computational expense during the search process, and adopts the stochastic
ranking technique to manage the implementation of multiple indicators. These mech-
anisms can guide the search process of the algorithm toward the Pareto front quickly.

To be specific, in K-MBFA, a set of preferential individuals for the improved
Kriging model are determined based on the specific indicators. Meanwhile, the
stochastic ranking technique is designed deliberately to balance the search of different
indicators. Extensive experiments have been conducted on a set of well-known test
functions. Computation results verify that K-MBFA is significant superior or at least
comparable to its competitors in terms of IGD. In the future, it is worthwhile to further
investigate the performance of K-MBFA in more problems by accurate statistical tests.
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Abstract. In this paper, an improved bacterial foraging optimization
algorithm (BFO), which is inspired by the foraging and chemotactic phe-
nomenon of bacteria, named high dimensional multi-objective bacterial
foraging optimization (HMBFO) is introduced for solving high dimen-
sional multi-objective optimization (MO) problems. The high-dimension
update strategy is presented in this paper to solve the problem that the
global Pareto solutions can be hardly obtained by traditional MBFO in
high-dimension MO problems. According to this strategy, the position of
bacteria not only can be rapidly updated to the optimal solution, but also
can enhance the searching precision and reduce chemotaxis dependency
remarkably. Moreover, the penalty mechanism is considered for solving
the inequality constraints MO problems, and three different performance
metrics (Hypervolume, Convergence metric, Spacing metric) are intro-
duced to evaluate the performances of algorithms. Compared with the
other four evolutionary MO algorithms (MBFO, MOCLPSO, MOPSO,
PESA2), the simulation result shows that in most cases, the proposed
algorithm carries out better than the other existing algorithms, it has
high efficiency, rapid speed of convergence and strong search capability
of global Pareto solutions.

1 Introduction

Many real-world optimization problems have two or more objectives [1], and
these objectives in multi-objective optimization (MO) problems are mutual con-
tradiction and competition. Without the objectives evaluating information, those
optimization problems will be solved by a set of optimal solutions (Pareto-
optimal solutions). Thus how to obtain the global Pareto-optimal solutions is
the hottest spot of recent research.

In the past few decades, there are some novel ways to solve the MO prob-
lems. Many algorithms are classics and landmark which include vector evaluated
genetic algorithm (VEGA), nondominated sorting genetic algorithm II (NSGA-
II) [2], the Pareto envelope-based selection algorithm (PESA), PESA-II [3], the
c© Springer International Publishing AG, part of Springer Nature 2018
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Pareto evolutionary algorithm (SPEA), SPEA-2 [4]. Many algorithms are innova-
tive computing and popular in recent years which include multi-objective particle
swarm optimization (MOPSO) [5], multi-objective comprehensive learning par-
ticle swarm optimization (MOCLPSO) [6], the nondominated neighbor immune
algorithm (NNIA) [7], model-based multi-objective estimation of distribution
algorithm (RM-MEDA) [8], bee optimization algorithm (BOA) [9]. Different
algorithms have its own unique features as well as using different ways to solve
the MO problems.

There are many popular swarm intelligence algorithms especially the Bacteria
Foraging Optimization (BFO) [10]. In recent years, BFO has been used in many
important areas [11,12]. With the research fervorization of MO problems, BFO
algorithm has been introduced to solve those problems [13], and then it was
applied rapidly [14,15].

With the complexity of MO problems, the dimension of those problems are
getting higher and higher. In the paper [13], it is clear and detailed explana-
tion that the performance of MBFO is hardly to obtain the Pareto solution
in the high-dimension MO problems, therefore, this paper proposes a BFO
Algorithm to improve the performance based on those problems. In the High-
dimension multi-objective bacteria foraging optimization (HMBFO), we create a
high-dimension update strategy for improving the performance of BFO in high-
dimension MO problems.

This paper is organized as follows. Section 2 introduces the basic concept of
MO problems. In Sect. 3, there are some brief introduction about BFO algorithm
and the extend of MBFO algorithm. The high-dimension update strategy and
its theoretical proof are showed in Sect. 4. The simulation is given in Sect. 5.
Finally, in Sect. 6, we conclude this paper.

2 MO Problems and Three Evaluation Indices

Unlike the single objective optimization problems, in MO problems, the improve-
ment of one objective is at the cost of deteriorating the others, and it must obtain
a solution set for compromising all of the objectives [14]. A set of decision vec-
tors are considered in this study which represent global Pareto-optimal sets. All
vectors in the true Pareto-optimal sets are non-dominated by any vectors in the
breathing spaces.

There are three usual evaluation indices, Hypervolume, Convergence metric
and Spacing metric [16].

Hypervolume: Hypervolume is used to calculate the covered volume in the
global Pareto-optimal sets. As the minimize multi-objective problem, the dash
area, which is created by Pareto points and reference point, is the hypervolume.
And the smaller value of objectives or the larger the number of Pareto points,
the bigger the hypervolume. The hypervolume can be calculated as follow

VH((x0, ..., xm)) =
m∑

i=1

(xi+1 − xi)(f(x0) − f(xi)) (1)
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Thus, the function of hypervolume is extended as follow

VH = volume(
|Q|⋃

i=1

vi) (2)

Convergence Metric: Convergence metric which also named Generational dis-
tance (GD) is used to describe the distance between searched non-dominated
solutions and the actual Pareto-optimal front.

The Sg =
{
Sg1, Sg2, ..., SgM

}
denote the global Pareto-optimal solutions,

and the current Pareto-optimal solutions Sp =
{
Sp1, Sp2, ..., SpM

}
are calcu-

lated by the proposed algorithm, and the function of convergence metric as
follow

Cm(Sp) =
∑|Sp|

i=1 di

|Sp| (3)

where

di =
|Sg|
min
j=1

√√√√
D∑

k=1

(
fk(Spi) − fk(Sgj)

fmax
k − fmin

k

)
(4)

fmin
k and fmax

k denote the minimum and maximum values of the in the kth
objective respectively.

Spacing Metric: The current Pareto-optimal solutions are also used in calcu-
lating,

S =

√√√√ 1
|A| − 1

|A|∑

i=1

(L̄ − Li)2 (5)

where

Li = minj

{∑D
k=1 |fk(Spi) − fk(Spj)|

}
, i, j = 1, 2, ..., |Sp| (6)

L̄ is the average value for all Li. It is denoted that the distribute of Pareto solu-
tions are equidistant, if S = 0 . It is clearly described that these three indices
evaluate the performance of different aspects of the algorithm in [16]. Hypervol-
ume considers the Convergence and diversity, Convergence metric calculates the
convergence, and Spacing metric concentrate on the distribution of the solutions.

3 Bacteria Foraging Optimization Algorithm

In BFO [10], firstly, the positions of all bacteria are initialized. The chemotaxis
operation is performed through tumbling and swimming. But before each the
bacteria tumbling, the group behavior of E.coli is executed, which intricate
and stable spatio-temporal patterns are formed in semisolid nutrient medium.
Through the cell-to-cell signaling released, the current bacterium is influenced
by attractant signal and repellent signal produced by the others bacteria which
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helps current bacteria to aggregate into groups as well as move to concentric
patterns of swarms with high bacterial density.

G(Sl, Sε,κ,o) =
D∑

ı

G(Sl, Sı
ε,κ,o)

=
D∑

ı=1

[
−datt · exp

(
−watt ·

∑N
i=1(s

ı.i − sl,i)2
)]

+
D∑

ı=1

[
−hrep · exp

(
−wrep · ∑N

i=1(s
ı.i − sl,i)2

)]

(7)

where G(Sl, Sε,κ,o) is the cost function which denote the information cost from
changed the population distribution, when the cost value of G(Sl) is dominated
by the cost value G(Sl, Sε,κ,o), the lth bacterium will move to the concentric of
the population, datt and watt are the depth and width of the released attractant
signal, hrep and wrep are the height and width of repellant signal respectively;
Sı

ε,κ,o represent the position of ıth bacterium at εth chemotactic step, κth repro-
ductive step and oth elimination/dispersal steps. The tumbling operation which
generated a random direction vector is executed after executing group behavior.

ϕ(l) =
Δ(l)√

ΔT (l) · Δ(l)
(8)

Where ϕ(l) is the random direction; Δ(l) represents a D-dimension vector whose
all elements lie in of lth bacterium. In this tumbling direction, if the current
bacterium is not dominated by the next bacterium, it tumbles again. If it is
dominated, the swim behavior is executed, and the way can be described as
follow

Sl
ε+1,κ,o = Sl

ε,κ,o + C(l) · ϕ(l) (9)

Where C(l) denotes the certain step. When times of swimming steps equal Ns,
the chemotaxis operation will be terminated. According the natural law of sur-
vival of the fittest, the reproduction behavior is introduced. The less healthy
bacteria die, and the other healthier bacteria division, which are placed in the
same location.

The elimination/dispersal step is the way to help the population jumping
out the local optimum. In this step, some bacteria will be initialized, and the
initialization probability is Pb.

4 High-Dimension Update Strategy

The strengths and weaknesses of the MBFO can be thoroughly studied by test
problems with different characteristics. MBFO performs well either in diversity
or general distance in test problems, which have lower dimensional variables. But
comparatively high values of converge and diversity metric were showed in test
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problems which have higher dimensional variables [13]. Therefore, in this paper,
a high-dimension update strategy is introduced to improve the performance of
MBFO.

As the progress of optimizing, it is supposed that obtaining the best solution
can spend n times optimization in one dimension, however, in thirty dimensions,
it will be spend n30 times. Thus the performance of simple exploration and
optimization unable to meet the needs for dimension growth, it is imperative
to increase information interaction. It is simple but important theory that each
two or more vectors which are not parallel with each other can donate every
vectors, and using specific strategy can obtain the specific connection between
new created vectors with basic vectors. The Pareto solutions are nondominated
with each other, thus the probability of parallel each other in Pareto solutions
almost are zero. The new solutions which are created by algorithm based on
Pareto solutions must be in the feasible region, therefore the optimal space area
must be the simply connected space [14].

M donates the number of basic Pareto solution, D represents the dimension
number of the solution’s space area. Firstly, the probability which decision the
distribution of new solution randomly in specific area.

Pi =
ρ

M
· rand[−1, 1] i = 1, 2, ...,M (10)

where ρ is the constant quantity which control the range of specific area.

γk
j =

M∑

i=1
i�=j

Pi · Spk
i + (1 −

M∑

i=1
i�=j

Pi) · Spk
j j = 1, 2, ...,M k = 1, 2, ...,D (11)

where γk
j denote the kth dimension of the jth new solution and Sp is the solution

in Pareto solutions. After updating strategy, the jth new bacteria can be describe
as follow

Sj =
{
γ1

j , ..., γk
j , ..., γD

j

}
(12)

This updating strategy can be simplified as follow

γk
j =

M∑

i=1

Pi · (Spk
i − Spk

j ) + Spk
j (13)

Thus in (14), we can see the new bacteria Sj is generated around Spj according
to the others Spi.

Range Limited: According to (12) (13), in Sj , there are D formulas, and
combined the polynomial, we can obtain the function

D∑

k=1

γk
j =

M∑

i=1

Pi · (
D∑

k=1

Spk
i −

D∑

k=1

Spk
j ) +

D∑

k=1

Spk
j (14)
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In (14), the value of Sp are known in the Pareto solutions, therefore the range of
new bacterial Sj is a space area which is surrounded by many hyperplanes and
decided by the probability P . And the max and min hyperplanes respectively
are

D∑

k=1

γk
j =

M∑

i=1

∣∣∣∣∣
ρ

M
· (

D∑

k=1

Spk
i −

D∑

k=1

Spk
j )

∣∣∣∣∣ +
D∑

k=1

Spk
j (15)

D∑

k=1

γk
j = −

M∑

i=1

∣∣∣∣∣
ρ

M
· (

D∑

k=1

Spk
i −

D∑

k=1

Spk
j )

∣∣∣∣∣ +
D∑

k=1

Spk
j (16)

Thus ρ is the key variable for controlling the range of specific area.

5 Simulation

In this paper, MBFO, MOCLPSO, MOPSO, PESA2 are introduced to compare
the performance of the HMBFO algorithm. And the number of populations is
30, and the iterate number is 50. In HMBFO, Nc = 50, Ns = 10, Nre = 4,
Ned = 2, C = 0.1, M = 4, ρ = 0.5.

In this study, Zitzler-Deb-Thiele’s function N.1 (ZDT1), ZDT2, ZDT3, ZDT4,
ZDT6 [17], Osyczka and Kundu function (OAK) [18], those function are two
objectives; Deb-L Thiele-M Laumanns-E Zitzler function N.1 (DTLZ1), DTLZ2,
DTLZ3, DTLZ4, DTLZ5, DTLZ7 [19], those function are three objectives. Those
all benchmark problems are used to evaluate the performance of the algorithms.

In ZDT1-ZDT3 and DTLZ1-DTLZ5, they are set that D = 30, and in
ZDT4,OAK and ZDT6, D = 6. In those classical MO problems, the constraints
of OAK and DTLZ7 are the inequality constraints. In the process of solving
the equality constraints problems, the variable equality constraints can be sub-
stituted into objective equations, but inequality constraints can not. Thus it is
the best way that those inequality constraints functions are transformed to the
approach of penalty functions [20].

f∗
j (x̄) = fj(x̄) + τ ·

m∑

i=1

(emax(gi(x̄),0) − 1)2 j = 1, 2, ...,M (17)

where τ is the penalty factor, max{} denotes outputting the maximum value.
The Hypervolume considers the convergence and diversity, thus it is the best

choice to evaluate the performance of algorithms, but, the calculated amount
shows exponential growth as the number of objections grows. Thus, in this paper,
for two objective problems, the Hypervolume index is used to evaluate the con-
vergence and diversity of algorithm. And for three objective problems, it will use
the Convergence metric calculates the convergence, and Spacing metric concen-
trate on the distribution of the solution.

Thus, the hypervolume simulation results of five algorithms for 30 times
based on ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, OAK are showed form Fig. 1.

Firstly, in OAK, 51% of PESA2 are the penalty value, thus PESA2 is not
participated in comparison in this MO problem. In Fig. 1, the hypervolume of
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Hypervolume

HMBFO in ZDT1, ZDT3, OAK are superior to the MBFO’s, and we can see
that HMBFO obtain the best value in five problems.

In ZDT2, ZDT4 and ZDT6, the performance of two algorithm are difficult
to distinguish. Therefore, the hypervolume value in every iteration are showed
in the Fig. 2.

(a) (b) (c)

Fig. 2. Iterative curve of hypervolume

In Fig. 2, it is clear that the convergence rates of HMBFO are faster than
MBFO’s. And the robust of HMBFO is the best. Thus, it is proved that this
improvement is effective for introducing the high-dimension update strategy.

In DTLZ7, 95% values of PESA2 are the penalty values, thus in this problem,
its also not participated in comparison.

In Fig. 3, it is showed that the Convergence metric five algorithms in
DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5 and DTLZ7, where in DTLZ1,
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Convergence metric

DTLZ3, DTLZ4, DTLZ5 and DTLZ7, the convergence of HMBFO is better
than MBFO’s. In DTLZ2, DTLZ3, DTLZ4 and DTLZ7, those are regarded as
getting to the Pareto optimization surface because the convergence value is less
than 10−1.

Then, the distribution of the algorithms are showed in Fig. 4.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Spacing metric
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In Fig. 4, all the spacing of HMBFO are superior to the MBFO’s, thus it is
also proved that this improvement is effective for introducing the high-dimension
update strategy.

6 Conclusion

In this paper, High Dimensional Multi-objective Bacterial Foraging Optimization
(HMBFO) based on Multi-objective Bacterial Foraging Optimization (MBFO)
is proposed. The theory of high-dimension update strategy is introduced in
HMBFO, which can veritably accelerate the convergence promptly and have
strong capability of global Pareto solutions searching and robust. Penalty func-
tion is also a better choice for solving the inequality constraints MO problems.
Three performance metrics: Hypervolume, Convergence metric, Spacing metric
are used to evaluate and compare the performance of the algorithms in this
paper. The simulation results have testified the ability of HMBFO in finding
Pareto-optimal solutions. Through comparing with four other multi-objective
optimization evolutionary algorithms in Figs. 1, 2, 3 and 4, HMBFO distinctly
outperforms MBFO, MOCLPSO and MOPSO, and in most cases transcend the
PESA2. In the future, the strengths and weaknesses of the proposed algorithm
can be showed in the in-depth study. For instance in Fig. 2, it is clearly showed
that if the number of iteration is increased, the hypervolume of MBFO will bet-
ter than HMBFO, Thus, although the high-dimension update strategy improved
the convergence, the ability of deep exploration is limited. Therefore, more pow-
erful and complicated HMBFO variants are possible to appear in the future, if
we enhance the ability of high-dimension update strategy in the earlier iteration,
and weaken or omit it in the later.
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Abstract. To solve the multimodal multi-objective optimization problems
which may have two or more Pareto-optimal solutions with the same fitness
value, a new multi-objective particle swarm optimizer with a self-organizing
mechanism (SMPSO-MM) is proposed in this paper. First, the self-organizing
map network is used to find the distribution structure of the population and build
the neighborhood in the decision space. Second, the leaders are selected from
the corresponding neighborhood. Meanwhile, the elite learning strategy is
adopted to avoid premature convergence. Third, a non-dominated-sort method
with special crowding distance is adopted to update the external archive. With
the help of self-organizing mechanism, the solutions which are similar to each
other can be mapped into the same neighborhood. In addition, the special
crowding distance enables the algorithm to maintain multiple solutions in the
decision space which may be very close in the objective space. SMPSO-MM is
compared with other four multi-objective optimization algorithms. The experi-
mental results show that the proposed algorithm is superior to the other four
algorithms.

Keywords: Self-organizing � Multimodal multi-objective problems
Multi-objective particle swarm optimizer � Elite learning strategy

1 Introduction

In real world, many problems have two or more conflicting objectives to be optimized.
For these problems, an improvement of one objective may lead to degradation in
others. Multi-objective optimization algorithms provide a best tradeoff solution set
instead of a single solution. The solution set is known as the Pareto solution set (PS) in
the search space and the set of all the vectors in the objective space corresponding to
the PS is called Pareto front (PF).
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There are some problems which have more than one solution corresponding to the
same point in the objective space. The literature [1] identified the existence of problems
with multiple PSs. Liang referred to this class of problems as multimodal multi-objective
problems [2]. Niching methods are applied to locate the multiple optimal solutions and
keep them from being deleted. However, classic niching methods such as fitness
sharing, crowding, and speciation are sensitive to the value of niching parameters [3].
Yue adopted an index-based ring topology [4] to form stable niches without any niching
parameters and proposed non-dominated-sort method with special crowding distance
(Non-dominated-scd-sort) to maintain multiple solutions [5].

For most multi-objective problems, under mild conditions, both the PS and the PF
are (m–1) dimensional piecewise continuous manifolds [6]. Based on the regularity,
many multi-objective evolutionary algorithms have been proposed. MOEA/D
decomposed a multi-objective problem into a set of subproblems by a set of prede-
fined weight vectors [7]. RM-MEDA clustered the PS by using the local principal
component analysis and sampled new solutions from the built model [8]. Zhou used
self-organizing map (SOM) to establish the neighborhood relationship and to generate
offspring with the neighboring solutions [9].

Particle swarm optimization algorithm is a simple and robust algorithm [10]. The
fast convergence of particle swarm optimization leads to the loss of diversity to some
extent. Some mechanisms have been proposed to address this issue. Decomposition
strategy maintains diversity by ensuring each sub-region has a solution in the objective
space [11–13]. Mutation operator helps the algorithm to jump out of local optimal
location [14, 15]. Different neighbor relationships of particles have been introduced to
select neighbor best and sharing information [16, 17].

When solving multimodal multi-objective problems, the neighbor leaders play an
important role in local search. Inspired by the characteristics of multi-objective opti-
mization problems and the neighbor property of SOM, a self-organizing multi-objective
particle swarm optimization algorithm for solving multimodal multi-objective problems
(SMPSO-MM) is proposed in this paper. Self-organizing map network is used to gather
good and similar solutions together in hidden layers in MOPSO and to build neigh-
boring relationship in decision space.

The rest of this paper is organized as follows: Sect. 2 briefly describes the
multi-objective problems and multi-objective particle swarm optimization algorithm.
Section 3 presents the self-organizing multi-objective particle swarm algorithm in
detail. Experimental results and analysis are shown in Sect. 4. Finally, conclusions are
drawn in Sect. 5.
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2 Related Works

2.1 Multi-objective Problems (MOPs)

A continuous multi-objective optimization problem can be formulated as follows:

MinFðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ s:t: x¼ ðx1; x2; . . .; xnÞ 2 X ð1Þ

where X¼ ½ai; bi�n is feasible region of the search space; x is a n-dimensional decision
vector bounded in X; m is the number of objective functions. F: X ! Rm consists of
m objective functions to be optimized and Rm denotes the objective space. In the
following texts, some important definitions for multi-objective problems are given.

Definition 1 (Pareto Dominance). A decision vector x is said to dominate decision
vector y (denoted as x � y). If and only if

ð8i 2 f1; 2; . . .;mg : fiðxÞ� fiðyÞÞ ^ ð9j 2 f1; 2; . . .;mg : fiðxÞ\fiðyÞÞ ð2Þ

Definition 2 (Pareto Optimal Solution). A decision vector x is said to be Pareto
optimal solution with respect to X if

:9y 2 X : y � x ð3Þ

Definition 3 (Pareto Optimal Set, PS). is defined as:

PS ¼ fx 2 Xj:9y 2 X : y � xg ð4Þ

Definition 4 (Pareto Front, PF). is defined as:

PF ¼ fFðxÞjx 2 PSg ð5Þ

2.2 Multi-objective Particle Swarm Optimization Algorithm (MOPSO)

In MOPSO, each particle represents a potential solution. Assuming there are N particles
in the swarm and the searching space is n-dimensional hyperspace. The position and
velocity of particle i are represented as xi ¼ ðxi1; xi2; . . .; xinÞ and vi ¼ ðvi1; vi2; . . .; vinÞ
respectively. They are updated according to the following equations:

viðtþ 1Þ ¼ w � viðtÞþ c1r1ðxpbesti � xiðtÞÞþ c2r2ðxnbesti � xiðtÞÞ ð6Þ

xiðtþ 1Þ¼xiðtÞþ viðtþ 1Þ ð7Þ

where t is the iteration; w is inertia factor; c1 and c2 are two constants which affect
acceleration; r1 and r2 are two random variables in the range (0,1); pbest and nbest
represent personal best and neighbor best position of the ith particle, respectively.
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3 The Details of SMPSO-MM

3.1 Leaders Selection in Neighborhood

The proposed SMPSO-MM algorithm uses SOM to find the distribution of current
population (POP) and external archive (EXA). Newly generated non-dominated
solutions are training sets (TS) for updating SOM model. SOM clusters similar solu-
tions into same neighborhood. Non-dominated-scd-sort method [5] is used to selected
nbest from neighborhood. Algorithm 1 presents the details of selecting nbest.

The process of composing nbest pool is illustrated in Fig. 1. The solutions assigned
to neighboring neurons of winning neuron u compose the nbest pool. The advantages
of this selection method are presented as: (1) the weights are constantly updated by new
non-dominated solutions, so SOM can reflect the distribution of PS more accurately;
(2) the nbest is close to particle in the decision space; (3) different leaders can promote
the diversity and locate more multimodal solutions.

Algorithm 1: The procedure of selecting nbest
1. Find the index of neighboring neurons

Calculate the geographical distance '

2
zu uz− , u

kΙ is the index of the thk nearest

neuron to neuron u in the representation layer.
2. Update SOM model

2.1. Update learning rate 0 * (1 )t
maxT

η η= − , learning radius 0 * (1 )t
maxT

σ σ= −  / t is 

the current iteration, maxT is maximum iteration.
2.2. Find the winning neuron of ∈TSx :

21
' arg  min u

u N
u

≤ ≤
= −x w

2.3. Locate the neighborhood neurons to be updated: '

2
U {1 }u uu N z z σ= ≤ ≤ ∧ − <

2.4. Update the weights in U. '
1 2

( ) *exp( )( )u u u u u
t t tt z zη+ = + − −w w x w

3. POP and EXA partition  
3.1. Map i ∈ POPx to SOM and find the winning neuron u. Each unit is assigned to

one particle; 
3.2. Map i ∈EXAx to SOM and unit2nbest records the index of particles assigned to 

each neuron. The number of particles assigned to each unit is unlimited. 
4. Select nbest for particles
4.1. nPool= unit2nbest{ u

kΙ };/ nPool records the nbest pool of particle i; 
4.2. Select the first one as nbest according to Non-dominated-scd-sort method.

3.2 The Elite Learning Strategy

The elite learning strategy is applied to offspring generation. Operating mutation on the
best location can enhance global search ability and help the algorithm to jump out of
local optimal location.
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xj ¼ nbestj þGauss 0; pr2
� �� bj � aj

� �
if rand\pr ð8Þ

where aj and bj are the upper and lower bounds of jth dimension. The Gaussð0; pr2Þ is a
random number of a Gaussian distribution with a zero mean and a stand deviation pr.
The pr decreases linearly with the iteration increases. According to the Gaussian dis-
tribution, the greater value of pr can make the position have a larger variation range,
which is beneficial for global search in the early stage. In the later stage of evolution,
variation range is small which is beneficial for local search.

3.3 Procedure of SMPSO-MM

The procedure of SMPSO-MM is described in Algorithm 2. The weights of SOM are
initialized as POP. The nbest selected from the neighborhood leads the particles flying
to promising locations. The elite learning strategy is applied in generating offspring
operator to increase the diversity of population. And Non-dominated-scd-sort method
[5] is adopted to update EXA and keep diversity both in decision and objective space.
The Non-dominated-scd-sort method firstly sorts the particles according to dominance
relationship. Then the crowding distance in decision space and objective space are
calculated. The particles with larger crowding distance are preferred. Details of the
method can be referred to the literature [5].

Algorithm 2:The procedure of SMPSO-MM
1. Initialize population and self-organizing map
1.1 Initialize 1 2{ , ,..., }N=POP x x x , 1 2{ , ,..., }N=v v v v ; EXA=POP; Pbest=POP. 
1.2 Initialize SOM model: 1 2{ , ,..., }=N POPw w w ; TS=POP; learning rate 0η , learning 

radius 0σ .
2. Optimization loop
2.1. Select nbest according to Algorithm 1. 
2.2. Generate offspring according to equation (6-7) and elite learning strategy.
2.3. Update the EXA and TS

( ) ( 1)t t= ∪ +tmpEXA EXA POP ; /t is the current iteration
EXA(t+1)=non-dominated particles in tmpEXA; 
TS=EXA(t+1)\ EXA(t); 

3. Stop if a stop criterion is satisfied, otherwise repeat the Optimization loop. 

u

SOM
are neighboring neuronsis wining neuron are particles in  assigned on

i

u

Fig. 1. The process of composing nbest pool
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4 Experimental Results

The multimodal multi-objective test functions used in this paper include MMF1–
MMF8 [5] and three other functions named SYM-PART simple [18], SYM-PART
rotated [18] and Omni-test function [19] with n = 3.

The Pareto set proximity (PSP) [5] and inverted generational distance in the
objective space (IGDf) are adopted as metrics to evaluate the performance of the
algorithms. The big value of PSP means the convergence and diversity of obtained
solutions in decision space are good. The small value of IGDf means the obtained
solutions in objective space are well distributed.

SMPSO-MM is compared with other four algorithms including MOPSO/D [11],
Omni-optimizer [19], DN-NSGAII [2] and MO-Ring-PSO-SCD [5]. The parameters of
algorithms are the same to the corresponding literature.

For SMPSO-MM, the parameters of PSO are same as literature [5]: c1 ¼ c2 ¼ 2:05,
w ¼ 0:7298; the parameters of SOM are same as literature [9]: topological structure
1� 100, g0 ¼ 0:7, r0 ¼ sqrtð12 þ 1002Þ=2; the value of pr in elite learning decreases
linearly from 0.2 to 0.05 with the iteration increases, the value of pr is set according to
the experimental results. For all algorithms, the population size N is 100; the EXA size
is 800; Maximum evaluation number is 60000. All experiments are carried out 25 times
independently.

4.1 The Rationality of Neighborhood Built by SOM

To verify the rationality of the neighborhood relationship, the distribution of nbest
candidates in the evolutionary process for MMF2 are shown in Fig. 2. The figure
shows that the nbest candidates selected based on the neighboring relationship are close
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(a)  nbest candidates of particles at 200 iteration
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(b)  nbest candidates of particles at 400 iteration
is solution in EXA; is particle i, is nbest candidate of particle i; 

is particle j, is nbest candidate of particle j;

Fig. 2. nbest candidates of particles in the process of evolution
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to particle both in the decision space and objective space. It verifies the rationality of
the neighborhood relationship as the particle can fly to the near position by learning
from neighboring leader to promote local search.

4.2 Results of Compared Algorithms

In Fig. 3, MOPSO/D, Omni-optimizer, DN-NSGAII, MO-Ring-PSO-SCD and
SMPSO-MM are numbered 1, 2, 3, 4 and 5 respectively. The results show that mean
PSP values of SMPSO-MM are the highest for all test functions. MO-Ring-PSO-SCD
ranks second. The IGDf and rank shown in Table 1 reveal that SMPSO-MM is the
second best and Omni-optimizer obtains the best distribution in decision space. The
rank value is the mean rank on all test functions. In fact, the performances of compared
algorithms are close to each other except MOPSO/D. The reason is that the four
algorithms all consider the distribution in the objective space.
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Fig. 3. The box-plots of PSP values of different algorithms. The numbers on the horizontal axis of
each plot indicate the following algorithms: 1 = MOPSO/D, 2 = Omni-optimizer, 3 = DN-NSGAII,
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556 J. Liang et al.



T
ab

le
1.

T
he

IG
D
f
va
lu
es

of
di
ff
er
en
t
al
go

ri
th
m
s

Fu
nc
tio

ns
M
O
PS

O
/D

O
m
ni
-o
pt
im

iz
er

D
N
-N

SG
A
II

M
O
-R
in
g-
PS

O
-S
C
D

SM
PS

O
-M

M

M
M
F1

2.
30

E
–
03

[5
]

6.
69

E
–
04

[2
]

8.
46

E
–
04

[4
]

7.
95

E
–
04

[3
]

6.
61

E
–
04

[1
]

(2
.7
7E

–
04

)
(3
.0
8E

–
05

)
(5
.7
3E

–
05

)
(4
.2
5E

–
05

)
(2
.9
8E

–
05

)
M
M
F2

3.
62

E
–
03

[4
]

2.
86

E
–
03

[2
]

1.
84

E
–
03

[1
]

5.
22

E
–
03

[5
]

2.
89

E
–
03

[3
]

(4
.8
7E

–
04

)
(7
.3
7E

–
03

)
(3
.8
7E

–
03

)
(6
.4
5E

–
04

)
(2
.0
4E

–
04

)
M
M
F3

3.
38

E
–
03

[4
]

6.
29

E
–
04

[1
]

1.
04

E
–
03

[2
]

4.
04

E
–
03

[5
]

2.
33

E
–
03

[3
]

(2
.0
5E

–
04

)
(2
.0
0E

–
05

)
(8
.4
3E

–
04

)
(5
.1
0E

–
04

)
(1
.1
9E

–
04

)
M
M
F4

1.
65

E
–
03

[5
]

6.
40

E
–
04

[2
]

7.
79

E
–
04

[4
]

6.
62

E
–
04

[3
]

6.
29

E
–
04

[1
]

(1
.2
1E

–
04

)
(4
.7
2E

–
05

)
(6
.0
4E

–
05

)
(7
.0
9E

–
05

)
(4
.1
5E

–
05

)
M
M
F5

2.
34

E
–
03

[5
]

6.
51

E
–
04

[2
]

8.
03

E
–
04

[4
]

7.
36

E
–
04

[3
]

6.
50

E
–
04

[1
]

(2
.5
8E

–
04

)
(1
.4
3E

–
05

)
(3
.9
3E

–
05

)
(1
.6
3E

–
05

)
(2
.6
4E

–
05

)
M
M
F6

2.
00

E
–
03

[5
]

6.
44

E
–
04

[2
]

7.
84

E
–
04

[4
]

6.
81

E
–
04

[3
]

6.
27

E
–
04

[1
]

(1
.2
2E

–
04

)
(2
.2
4E

–
05

)
(3
.5
8E

–
05

)
(2
.0
4E

–
05

)
(2
.8
8E

–
05

)
M
M
F7

2.
06

E
–
03

[5
]

6.
69

E
–
04

[2
]

9.
19

E
–
04

[4
]

6.
71

E
–
04

[3
]

6.
44

E
–
04

[1
]

(2
.5
2E

–
04

)
(2
.0
1E

–
05

)
(4
.1
9E

–
05

)
(2
.4
6E

–
05

)
(2
.1
4E

–
05

)
M
M
F8

1.
46

E
–
03

[4
]

7.
23

E
–
04

[1
]

8.
47

E
–
04

[3
]

1.
16

E
–
03

[5
]

8.
42

E
–
04

[2
]

(1
.0
7E

–
04

)
(2
.2
8E

–
05

)
(3
.1
8E

–
05

)
(6
.3
6E

–
05

)
(1
.9
1E

–
05

)
SY

M
-P
A
R
T
si
m
pl
e

7.
55

E
–
03

[4
]

2.
89

E
–
03

[1
]

2.
94

E
–
03

[2
]

9.
15

E
–
03

[5
]

3.
96

E
–
03

[3
]

(1
.7
6E

–
03

)
(2
.9
3E

–
04

)
(3
.2
2E

–
04

)
(1
.4
0E

–
03

)
(5
.8
5E

–
04

)
SY

M
-P
A
R
T
ro
ta
te
d

1.
67
E
–
02

[5
]

3.
12

E
–
03

[1
]

3.
67

E
–
03

[2
]

1.
39

E
–
02

[4
]

1.
15

E
–
02

[3
]

(3
.5
2E

–
03

)
(3
.8
8E

–
04

)
(3
.1
2E

–
04

)
(2
.6
0E

–
03

)
(1
.5
6E

–
03

)
O
m
ni
-t
es
t

9.
98

E
–
01

[5
]

9.
97

E
–
01

[3
]

9.
97

E
–
01

[4
]

9.
79

E
–
01

[1
]

9.
82

E
–
01

[2
]

(2
.2
8E

–
04

)
(2
.3
2E

–
04

)
(3
.4
0E

–
04

)
(1
.8
1E

–
03

)
(1
.6
9E

–
03

)
R
an

k
4.
64

1.
73

3.
09

3.
63

1.
91

A Self-organizing Multi-objective Particle Swarm Optimization Algorithm 557



4.3 The Effect of the Size of External Archive

Different external archive (EXA) sizes affect the performance of the algorithm espe-
cially for multimodal multi-objective problems. Figure 4 shows the result of PSP
values with different external sizes. The test functions are MMF1, MMF4, MMF8 and
SYM-PART simple. PSP values increase as the EXA size grows for most test func-
tions. The large size of EXA allows more non-dominated solutions to locate more
solutions. And the small size increases the challenge to maintain solutions uniformly.

In order to study how the performances of the algorithm are affected by the EXA
size, different EXA sizes of all algorithms are applied on MMF3, MMF8, SYM-PART
simple and SYM-PART rotated test functions. The results reported in Fig. 5 confirm
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Fig. 5. The PSP values with different external size of different algorithms.
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that the performances of the algorithms are affected by varying EXA sizes.
SMPSO-MM is superior to other algorithms for most sizes of EXA.

5 Conclusion

In this paper, we proposed a new multi-objective particle swarm algorithm with
self-organizing mechanism to solve multimodal multi-objective problems. A new
strategy to build the neighborhood and select neighborhood leaders is applied in
MOPSO. The SOM network can reflect the distributions of current particles and
non-dominated solutions in the decision space. The elite learning strategy promotes the
diversity and avoids the premature of algorithm. Experimental results show that the
proposed algorithm can locate the multiple solutions in the decision space and have a
good distribution on Pareto front in the objective space for multimodal multi-objective
problems.
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Abstract. Evolutionary algorithms (EAs) based on decomposition have
shown to be promising in solving many-objective optimization problems
(MaOPs). First, the population (or objective space) is divided into K
subpopulations (or subregions) by a group of uniform distribution ref-
erence vectors. Later, subpopulations are optimized simultaneously. In
this paper, we propose a new decomposition based evolutionary algo-
rithm with angle penalty selection strategy for MaOPs (MOEA-APS).
In the environmental selection process, in order to prevent the solutions
located around the boundary of the subregion from being simultane-
ously selected into the next generation which will affect negatively on
the performance of the algorithm, a new angle similarity measure (AS)
is calculated and used to punish the dense solutions. More precisely, after
selecting a good solution x for a sub population, the solutions whose angle
similarity with x exceeding η or pareto dominated by x will be directly
punished. Moreover, The threshold η is not fixed, but decided by the dis-
tribution of the solutions around x. This mechanism allows to improve
diversity of population. The experimental results on DTLZ benchmark
test problems show that the results of the proposed algorithm are very
competitive comparing with four other state-of-the-art EAs for MaOPs.

Keywords: Many-objective optimization · Decomposition
Evolutionary algorithm

1 Introduction

The multi-objective optimization problems (MOPs) are defined as the problems
that involve more than one conflicting objective to be optimized simultaneously,
MOPs can be formulated as follows:
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min F (x) = (f1(x), f1(x), ..., fm(x))

subject to x ∈
D∏

i=1

[ai, bi],
(1)

where
∏D

i=1 [ai, bi] is the decision space with x = {x|x = (x1, x2, ..., xD)}, aj <
xj < bj , j = 1, 2, ...,D, being the decision vector, D is the dimension, aj and bj

are constants, and m is the number of objectives. For any two decision vectors,

x, y ∈
D∏

i=1

[ai, bi], we say x is pareto dominate y(x ≺ y), if

∀i ∈ {1, 2, ...,m} : fi(x) ≤ fi(y)
∃i ∈ {1, 2, ...,m} : fi(x) < fi(y). (2)

When no solution x ∈ ∏D
i=1 [ai, bi] exists such that F (x) dominates F (x∗), x∗ is

called a pareto optimal solution.
Although the multi-objective evolutionary algorithms (MOEAs) have been

successfully applied for MOPs, they unfortunately encounter severe difficulties on
solving the optimization problems that have more than three objectives, which
are often called the many-objective optimization problems (MaOPs)[1]. The
major reason behind these difficulties is the exponentially increase of the number
of nondominant solutions when the number of objectives increases. Moreover, the
traditional MOEAs lack the selection pressure toward pareto front (PF).

Over the last decades, many-objective optimization has become a really hot
issue because of its wide applications and great importance. Accordingly, a num-
ber of MOEAs have been especially designed for MaOPs. Globally, the proposed
MOEAs can be classified on four categories:

– Convergence enhancement based approaches. These methods modify the dom-
ination relationship to increase the selection pressure on the PF, such as grid-
dominance [2], Ranking-Dominance [3] and Fuzzy-Based Pareto Optimality
[4]. However, one or more parameters have a significant effect on the perfor-
mances of these methods.

– Performance indicator based approaches. In these approaches, such as fast
HV-based EA (HypE) [5], the ε-metric based EAs [6], and stochastic ranking
EA [7], the notion of pareto dominance is not used and the selection pressure
is enhanced, but high computational complexity is needed.

– Objective reduction based approaches. These algorithms are based on the
application of certain dimensionality reduction techniques to deal with the
hardness of the MaOPs, such as principal component analysis (PCA) [8] and
unsupervised feature selection [9].

– The decomposition-based approaches. Generally, these approaches include
two techniques, namely weight aggregation-based techniques [10] and refer-
ence vector-based techniques [11–13]. Besides, Penalty Boundary Intersection
(PBI) [14], weight sum [15] and Tchebycheff [15] are the most commonly used
decomposition methods.
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Among the above methods, decomposition based MOEAs are very promis-
ing for many-objective optimization. In fact, decomposition based selection
can not only overcome the disadvantage of indistinguishable solutions in high-
dimensional objective space, but also, maintain population diversity on coarse
granularity. Additionally, decomposition based approaches has an acceptable
computational effort comparing with other methods. However, most of the cur-
rent reference vector-based MOEAs only consider the convergence or diversity
of solutions in each subregion while ignore the diversity of the solutions between
subregions. Therefore, in this paper we propose a decomposition based evolution-
ary algorithm with angle penalty selection strategy for MaOPs (MOEA-APS).
Besides, The population (or objective space) is divided into K subpopulations
(or subregions) by a group of uniform distribution reference vectors which are
optimized simultaneously. Moreover, in order to obtain pareto solution set with
better convergence and distribution, The angle similarity AS between any two
solutions is calculated and used to punish the dense solutions which are located
near the boundary of the subspace. The main contributions of this paper are
summarized as follows:

(1) AS is defined by calculating the acute angle of any two solutions objective
vector, which is very suitable to represent the similarity of two solutions.
The more consistent their direction is, the more similar the two solutions
are. Notice that, in the positive real spaces, the angle range of any two
solutions is in [0, π/2] which is convenient to calculate.

(2) In our proposed angle penalty selection strategy (APS), after selecting a
good solution x for a sub population, the solutions whose angle similarity
with x exceeding η or pareto dominated by x will be punished. This mecha-
nism allows to effectively prevent the dense solutions from entering the next
generation of population.

(3) The threshold η is not fixed. Whether the solution is punished or not is
decided by the distribution of solutions around x.

The rest of the paper is organized as follows: Sect. 2 is devoted to the descrip-
tion of the proposed algorithm MOEA-APS. In Sect. 3 we present and discuss
the experimental results. Finally, Sects. 4 concludes the paper.

2 Proposed Algorithm

MOEA-APS algorithm belongs to the reference vector-based MOEAs. Besides,
the population of MaOPs is divided into several subpopulations by a set of
uniformly distributed reference vectors and each subpopulation evolves indepen-
dently in parallel with others. In the environmental selection, a fixed number
of solutions is chosen for each subregion. As shown in Fig. 1(a), solution B is
slightly better than C in terms of PBI value. Thus, solutions A and B will be
selected for subregions 2 and 3 respectively. However, we can remark that it is
better to choose the solution A and C and ignore B because this solution is very
close to A in its neighborhood subregion 2. Instead of taking on consideration
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Fig. 1. Distribution of solutions and reference points generation

the quality of the solution only in the subregion itself to the detriment of the
density of solutions in the adjacent subregions, which will affect negatively on
the diversity of the whole population. The APS strategy is proposed which allows
us to overcome the above mentioned problem. The pseudocode of MOEA-APS
is presented in Algorithm 1.

Algorithm 1. Framework of MOEA-APS
Input:

1) the maximal number of generation tmax;
2) a set of uniformly distributed unit reference vectors V = {v1, ...vK};

Output:
Ptmax

1: P0 = Initialization(P )
2: Compute the acute angle between any two reference vectors and then work out the closest

mreference vectors to each reference vector. For each i = 1, ..., Kset B(i) = {i1, ...im}, where
vi1 , ..., vim are the closest m reference vectors to vi

3: while t < tmax do
4: Pt

′=offspring − creation(Pt);
5: Qt = Pt

′ ∪ Pt;
6: Pt+1=Angle Penalty Selection Strategy(Qt, Vt, B);
7: t=t+1;
8: end while
9: return Ptmax

2.1 Reference Vectors Generation

In MOEA-APS algorithm, the Das and Dennisos systematic method [16] is used
to generate a set of uniformly distributed reference vectors vi = (v1

i , ..., vm
i ), i =

{1, ...,K}, the generated reference vectors allows to decompose the objective
space into K subregions. More precisely, K points are generated on the hyper-
plane with a uniform spacing of δ = 1/H, where H(H > 0) is the number of
divisions in each objective coordinate. The size of reference points (K) is given
by K = Cm−1

H+m−1, where m is the number of objectives. When m > 8, the refer-
ence points are generated via a two-layer sampling scheme [12] with two values of
H. Figure 1(b) shows a simple example of the generated reference vectors when
m = 3 and H = 4.
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2.2 Angle Similarity Calculation and Population Decomposition

The angle similarity AS between a solution xi and other solution xj is given as
by Eq. 3:

ASj(xi) = arccos(θi,j), j = 1, .., |Q|
cos(θi,j) =

∑m
k=1 fk

′(xi)×fk
′(xj)√∑m

k=1 fk
′(xi)

2×
√∑m

k=1 fk
′(xj)

2 , (3)

where m is the number of objectives, f ′(x) = f(x) − Z∗, Z∗ = (fmin
1 , ..., fmin

m ).
AS is very suitable for the representation of the similarity between the two
vectors. The smaller the acute angle between solutions xi and xj , the greater
the similarity is. If ASj(xi) < η, j = 1, ...|Q| and η is the angle similarity penalty
threshold, we say that xi and xj are similar solutions.

Reference vectors can explicitly divide the objective space into K subregions
{Ω1, Ω2, ..., ΩK}:

Ωi = {f ′(x) ∈ Rm
+ | arg min

vi∈V
{ASvi

(x)}, (4)

where f(x) is in Ωi if and only if vi has the smallest acute angle to f(x) among
all the K reference vectors. Population decomposition is described in lines 3 to
9 of Algorithm 2.

Algorithm 2. Angle Penalty Selection Strategy(Qt, Vt, B)
Input:

1) generation index t;
2) population Qt;
3) reference vectors V = {v1, ...vK};
4) B : the index of closest M reference vectors to each reference vector.

Output:
the next generation population Pt+1

1: Compute ASj(xi), i = 1, ... |Qt| , j = 1, ... |Qt|, the acute angle similarity between any two
objective vectors

2: % objective space decomposition %
3: for x ∈ Qt do
4: for v ∈ Vt do
5: calculate the acute angle: ASv(x) = arccos(x, v)
6: end for
7: index(x) = v : argminv∈V {ASv(x)}
8: end for
9: According to index, Qt is divided to K Sub populations, subP = {p1, ...pK}
10: % Angle penalty strategy %
11: for k = 1 : K do
12: if all solutions in pk are punished then
13: select solution xi = arg min

xi∈pk
PBI(xi)

14: else
15: select solution xi = (arg min

xi∈pk
PBI(xi)) ∧ (xi /∈ ψpunished)

16: end if
17: punishing individuals(x, Qt, B(i), ψpunished, AS, subP );
18: end for
19: return Pt+1
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2.3 Angle Penalty Selection Strategy

As shown in Fig. 1(a), the solutions that are located around the boundary of
subregions (namely subregion boundary solutions) are more likely to be very
close. These solutions are very similar and dense in objective space. Therefore,
when updating any subregion, the subregion boundary solutions should be pun-
ished. More precisely, once a good solution in a subregion is selected, the similar
solutions will not be considered temporarily when updating its subregions which
allows us to avoid the similar solutions to be selected simultaneously. If all the
solutions in a subregion are punished, the solution x with minimum PBI value
will be directly selected as the next generation solution. Otherwise, the x with
the minimum PBI value is selected from the solutions that are not punished (see
line 12 to 16 of Algorithm 2).

2.4 Punishing Individuals Process

After the selection of a solution x, the solutions that have a large angle similarity
with x or the solutions that are dominated by x will be directly punished. Given
a solution xi ∈ subx, the angle similarity penalty threshold η of xi is defined by:

η = min ASj
j∈subn

(xb)

xb = arg min ASb
b∈subn

(xi),
(5)

where subn is one of the neighborhood subregions of subx, xb represents the
solution that has the greatest angle similarity with xi in subn. In other words,
xb is the subregion boundary solution in subn. η represents the minimum acute
angle between xb and the other solutions located in subn. If the angle similarity
ASp(xi) between the solutions in subn and xi satisfies ASp(xi) < η, then the
solution xp will be punished and added to the punished solutions set ψpunished:

ψpunished = {xp|ASp(xi) < η}, p = 1, ... |subn| (6)

It is worth mentioning that the proposed threshold η not only considers the den-
sity between the selected solution x and the other solutions in its neighborhood
subregions, but it also takes into consideration the density of all solutions in the
neighborhood subregions. By this way, the diversity of the whole population will
be further improved. Algorithm3 describes the punishment process individuals.
Besides, lines 1 to 3 show that each solution pareto dominated by the solution
xi will be punished.

3 Experimental Results

In order to asses the performance of the proposed algorithm MOEA-APS, empir-
ical experiments are conducted on the widely used benchmark test suites named
DTLZ [17] and MOEA-APS is compared with four other state-of-the-art MOEAs
for MaOPs, namely NSGAIII [12], MOEA/D-PBI [10], GrEA [2], and RVEA [13].
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Algorithm 3. punishing individuals(xi, Qt, indexB,ψpunished, AS, subP )
Input:

1) the selected solution xi;
2) the merged population Qt;
3) indexB : the index of the closest m reference vectors to the vector which x associates to;
4) AS : the acute angle similarity between any two objective vectors;
5) subP = {p1, ...pK} : K Sub populations

Output:
the punished solutions ψpunished

1: for all xi : x ≺ xi, xi ∈ Qt do
2: ψpunished = ψpunished ∪ {xi}
3: end for
4: for i = 1 : length(indexB) do
5: subn = pindexB(i)

6: if (∼ isempty(subn)) then
7: %find the closest solution xb to xi from subn%
8: xb = argmin ASb

b∈subn
(xi)

9: η = min ASj
j∈subn

(xb)

10: end if
11: for all xj : ASj(xi) < η, xj ∈ subn do
12: ψpunished = ψpunished ∪ {xj}
13: end for
14: end for
15: return ψpunished

The widely used IGD [18] metric and HV metric [19] are both used as a
performance indicators during the comparisons. IGD measures the average dis-
tance from a set of reference points P ∗ in the PF to the approximation set P
that can measure the convergence of the obtained solutions. On the other hand,
HV metric [19] can simultaneously measure the convergence and diversity of the
obtained solutions. Notice that, The lower the IGD value is (or the larger the
HV value is), the better the obtained solution set P quality is.

3.1 General Parameter Settings

The general parameters settings of MOEA-APS as well as the other state-of-
the-art MOEAs are summarized as follows:

(1) Population size N and divisions H for generating reference vectors are
shown in Table 1. (2) The settings of div in GrEA are the same as in RVEA.
(3) The SBX crossover is pc = 1 and its distribution index is ηc = 30. Polynomial
mutation pm = 1/n and its distribution index is ηm = 20. Neighborhood size
T in MOEA/D is 20, the probability of selecting in the neighborhood is 0.9.
(4) Penalty parameter θ in PBI is 5. (5) The reference points P ∗ is composed by
uniformly sampling 10000 points over the true PF. Setting of reference points for
HV computation for DTLZ1 and DTLZ2-4 are (1.0, ..., 1.0)T and (2.0, ..., 2.0)T

respectively. (6) The number of decision variables is set as D = m + k − 1, and
k = 5 for DTLZ1, k = 10 for DTLZ2-4. During experiments, for each problem,
we independently run each algorithm 10 times.
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Table 1. The general settings of divisions, reference points and population sizes

No. of objectives (m) Divisions (H) Reference vectors Popsize

3 H = 12 91 91

5 H = 6 210 210

8 H1 = 3, H2 = 2 156 156

10 H1 = 3, H2 = 2 275 275

15 H1 = 2, H2 = 1 135 135

3.2 Simulation Results and Analysis

As mentioned above, we compare the performance of the proposed MOEA-APS
with four state-of-the-art MOEAs. Table 2 shows the IGD metric values of the
four compared algorithms for each DTLZ test instance with 3, 5, 8, 10 and
15-objective in 10 independent runs. The best values for each test instance
are highlighted in bold. Similarly, Table 3 shows the statistical results of the
HV metric. Although the results presented in Table 2 show that the proposed
MOEA-APS performs slightly better or similarly comparing to other algorithms
in term of convergence. The experimental results in Table 3 confirm the effec-
tiveness of the proposed APS strategy. Indeed, the devoted APS strategy allows
improving further the diversity of the population under the premise of ensuring
the convergence. In short, the proposed MOEA-APS algorithm is competitive in
comparison with four state-of-the-art MOEAs.

In addition to the previous results and in order to visually observe the perfor-
mance of the compared algorithms, the parallel coordinates of the non dominated
front obtained by the five algorithms on DTLZ1 with 15-objective are depicted in
Fig. 2. We can remark that MOEA-APS, NSGAIII, MOEAD-PBI and RVEA can
obtain a solution set with good convergence and wide distribution. The proposed
MOEA-APS has a slightly better performance comparing with the three other
algorithms, whereas GrEA completely fails to reach the true PF of this instance.
The distributions of the nondominated solutions obtained by the five compared
algorithms on DTLZ4 with 3 objectives are depicted in Fig. 3. We can see that,
MOEA-APS, NSGAIII and RVEA algorithms are able to generate evenly dis-
tributed solutions with an advantage to our proposed MOEA-APS comparing
to NSGAIII and RVEA, additionally, unlike the three precedent algorithms, it
is clear that MOEAD-PBI fails to generate evenly distributed solutions.
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Table 2. Statistical results (mean and standard deviation) of the IGD values obtained
by the five algorithms on DTLZ1-4. The best results are in bold type.

Problem m FEs MOEA-APS NSGAIII MOEAD-PBI GrEA RVEA

DTLZ1

3 36400 6.2150e-4 (1.04e-4) 7.2039e-4 (3.55e-4) 1.5666e-3 (1.36e-3) 1.0310e-1 (8.45e-2) 1.3553e-3 (5.45e-4)
5 126000 4.1284e-4 (9.15e-5) 4.3546e-4 (8.76e-5) 6.4928e-4 (3.42e-4) 2.1603e-1 (4.12e-2) 5.2237e-4 (3.22e-5)
8 117000 1.8787e-3 (4.29e-4) 4.4107e-2 (6.46e-2) 5.4237e-3 (3.76e-4) 3.5028e-1 (1.08e-1) 2.9376e-3 (2.77e-4)
10 275000 1.9228e-3 (2.15e-4) 5.2499e-3 (2.56e-3) 2.3955e-3 (3.29e-4) 3.4937e-1 (1.47e-1) 3.1337e-3 (1.38e-4)
15 202500 2.5236e-3 (7.20e-4) 8.5352e-2 (1.43e-1) 2.3630e-2 (7.45e-4) 4.4555e-1 (3.34e-2) 2.8436e-3 (1.84e-4)

DTLZ2

3 22750 9.1960e-4 (1.19e-4) 1.0753e-3 (5.35e-5) 5.4442e-4 (8.74e-5) 7.3594e-2 (8.88e-4) 8.1682e-4 (1.91e-4)
5 73500 1.8030e-3 (1.65e-4) 2.6807e-3 (3.94e-4) 8.6769e-4 (1.09e-4) 1.4512e-1 (2.09e-3) 1.5616e-3 (9.41e-5)
8 78000 5.8219e-3 (4.13e-4) 1.9876e-1 (3.29e-1) 2.3041e-3 (1.59e-4) 3.0421e-1 (1.99e-3) 5.6278e-3 (3.62e-4)
10 206250 5.0041e-3 (1.52e-4) 3.2408e-1 (2.75e-1) 2.0810e-3 (5.05e-5) 3.4515e-1 (9.59e-4) 5.4928e-3 (1.35e-4)
15 135000 6.0961e-3 (1.19e-3) 6.9244e-1 (6.97e-2) 1.0783e-2 (5.95e-3) 4.7746e-1 (3.33e-3) 9.2489e-3 (1.16e-3)

DTLZ3

3 91000 2.3041e-3 (2.41e-3) 4.3101e-3 (2.52e-3) 5.3214e-3 (1.07e-3) 1.5781e-1 (1.44e-1) 1.4041e-3 (8.09e-4)
5 210000 1.1162e-3 (2.43e-4) 3.4290e-3 (7.68e-4) 5.1683e-3 (1.98e-3) 6.0240e-1 (3.88e-1) 1.4306e-3 (4.08e-4)
8 156000 1.0520e-2 (2.43e-3) 1.1390e+0 (1.03e+0) 1.0826e-2 (6.08e-3) 1.3460e+0 (5.33e-1) 8.9336e-3 (3.97e-3)
10 412500 5.4878e-3 (2.68e-4) 6.6158e-1 (6.72e-1) 4.0694e-1 (5.57e-1) 1.2649e+0 (4.90e-4) 4.8921e-3 (4.52e-4)
15 270000 9.0106e-3 (1.14e-3) 2.0973e+1 (1.32e+1) 8.4953e-1 (6.86e-1) 2.6922e+2 (2.82e+1) 8.7292e-3 (1.86e-3)

DTLZ4

3 54600 1.8935e-4 (1.51e-5) 5.4067e-4 (1.96e-5) 3.5375e-1 (3.06e-1) 7.2661e-2 (1.22e-3) 2.0120e-4 (2.27e-5)
5 210000 2.5140e-4 (3.62e-5) 1.3790e-3 (3.02e-4) 1.1450e-1 (1.98e-1) 1.4696e-1 (7.47e-3) 3.3253e-4 (6.58e-5)
8 195000 7.5698e-2 (1.26e-1) 1.7674e-1 (2.99e-1) 2.7210e-1 (2.35e-1) 3.0645e-1 (1.75e-3) 7.3847e-3 (8.46e-3)
10 550000 3.5794e-3 (1.37e-4) 4.1622e-3 (7.34e-4) 2.3126e-1 (8.90e-2) 3.4374e-1 (1.16e-3) 3.3423e-3 (2.28e-4)
15 405000 6.1523e-3 (2.67e-4) 4.2515e-1 (3.67e-1) 2.7229e-1 (1.49e-1) 4.6349e-1 (3.15e-3) 5.2482e-3 (3.84e-4)

Table 3. Statistical results (mean and standard deviation) of the HV values obtained
by the five algorithms on DTLZ1-4. The best results are in bold type.

Problem m FEs MOEA-APS NSGAIII MOEAD-PBI GrEA RVEA

DTLZ1

3 36400 1.3979e-1 (1.17e-4) 1.3958e-1 (4.54e-4) 1.3965e-1 (3.24e-4) 9.7840e-2 (1.60e-2) 1.3990e-1 (4.99e-5)
5 126000 4.9318e-2 (7.24e-6) 4.9297e-2 (4.62e-6) 4.9310e-2 (9.48e-6) 3.6608e-2 (8.87e-3) 4.9308e-2 (2.10e-6)
8 117000 8.3537e-3 (5.06e-7) 8.3457e-3 (1.47e-5) 8.3504e-3 (5.84e-7) 3.6013e-3 (8.41e-4) 8.3532e-3 (3.98e-7)
10 275000 2.5322e-3 (2.17e-8) 2.5320e-3 (3.44e-7) 2.5320e-3 (6.45e-8) 1.0633e-3 (5.80e-4) 2.5322e-3 (6.61e-8)
15 202500 1.2749e-4 (1.66e-9) 1.2380e-4 (3.52e-6) 1.2743e-4 (1.37e-8) 6.2752e-5 (2.82e-5) 1.2747e-4 (1.83e-9)

DTLZ2

3 22750 7.4399e-1 (3.41e-4) 7.4442e-1 (9.00e-5) 7.4430e-1 (8.08e-5) 7.2483e-1 (6.66e-4) 7.4414e-1 (2.11e-4)
5 73500 1.3077e+0 (6.00e-4) 1.3074e+0 (6.65e-4) 1.3079e+0 (5.97e-4) 1.3075e+0 (1.07e-3) 1.3080e+0 (9.46e-4)
8 78000 1.9824e+0 (5.25e-4) 1.9784e+0 (4.68e-4) 1.9800e+0 (7.55e-4) 1.9868e+0 (1.55e-3) 1.9803e+0 (2.47e-4)
10 206250 2.5167e+0 (4.66e-4) 2.4430e+0 (9.75e-2) 2.5154e+0 (3.97e-4) 2.4994e+0 (3.94e-3) 2.5154e+0 (3.55e-4)
15 135000 4.1388e+0 (2.67e-4) 3.5157e+0 (4.94e-1) 4.1379e+0 (5.18e-4) 4.0510e+0 (6.02e-3) 4.1356e+0 (5.00e-3)

DTLZ3

3 91000 7.4220e-1 (1.15e-3) 7.3797e-1 (4.20e-3) 7.3895e-1 (3.73e-3) 6.1769e-1 (1.46e-1) 7.4057e-1 (1.59e-3)
5 210000 1.3085e+0 (1.18e-3) 1.3062e+0 (1.47e-3) 1.3040e+0 (2.52e-3) 2.9860e-1 (2.68e-1) 1.3073e+0 (1.01e-3)
8 156000 1.9368e+0 (5.97e-2) 1.5172e+0 (8.57e-1) 1.6265e+0 (7.75e-1) 1.1763e-1 (1.08e-1) 1.9763e+0 (2.77e-3)
10 412500 2.3453e+0 (3.49e-2) 2.5139e+0 (8.98e-4) 2.5137e+0 (5.04e-4) 2.9299e-1 (8.12e-2) 2.5152e+0 (3.95e-4)
15 270000 4.1380e+0 (6.19e-4) 0.0000e+0 (0.00e+0) 4.1249e+0 (2.88e-2) 0.0000e+0 (0.00e+0) 4.1379e+0 (6.01e-4)

DTLZ4

3 54600 7.4483e-1 (1.61e-5) 7.4464e-1 (1.17e-4) 4.3718e-1 (3.12e-1) 6.0312e-1 (2.70e-1) 7.4481e-1 (2.99e-5)
5 210000 1.3088e+0 (4.89e-4) 1.3080e+0 (9.37e-4) 1.2453e+0 (8.67e-2) 1.3081e+0 (2.07e-3) 1.3087e+0 (8.81e-4)
8 195000 1.9830e+0 (8.56e-4) 1.9231e+0 (1.25e-1) 1.8512e+0 (1.27e-1) 1.9877e+0 (2.34e-3) 1.9806e+0 (4.08e-4)
10 550000 2.5168e+0 (3.30e-4) 2.4347e+0 (1.11e-1) 2.4130e+0 (4.22e-2) 2.5047e+0 (2.52e-3) 2.5154e+0 (6.17e-4)
15 405000 4.1400e+0 (4.10e-4) 3.6055e+0 (2.72e-1) 4.0930e+0 (3.74e-2) 4.0616e+0 (5.19e-3) 4.1345e+0 (8.56e-3)
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Fig. 2. Parallel coordinates of the nondominated front obtained by each algorithm on
15-objective DTLZ1 for the run associated with the median HV value. (a) MOEA-APS.
(b) NSGAIII. (c) MOEAD-PBI. (d) GrEA. (e) RVEA
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Fig. 3. Nondominated solutions obtained by each algorithm on 3-objective DTLZ4
in the run associated with the median HV value. (a) MOEA-APS. (b) NSGAIII. (c)
MOEAD-PBI. (d) GrEA. (e) RVEA.
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4 Conclusion

In this paper, a new evolutionary algorithm called MOEA-APS is developed for
MaOPs. Besides, a new proposed APS is used as the main selection criterion,
the proposed APS allows to effectively prevent the dense solutions being selected
simultaneously as well as it allows to greatly improve the diversity of the popu-
lation. Moreover, a non fixed penalty threshold η varies according to the density
of the solution is used.

The performance of MOEA-APS is validated through a series comparative
experiments with four other well-known MOEAs. The results obtained by our
proposed MOEA-APS are very competitive.
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ence Foundation of China (No.61672215, U1613209).
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Abstract. As a technology based on statistics and knowledge discov-
ery, recommendation system can automatically provide appropriate rec-
ommendations to users, which is considered as a very effective tool for
reducing information load. The accuracy and diversity of recommenda-
tion are important objectives of evaluating an algorithm. In order to
improve the diversity of recommendation, a personalized recommendation
algorithm Multi-Objective Evolutionary Algorithm with Probabilistic-
spreading and Genetic Mutation Adaptation (MOEA-PGMA) based on
Personalized Recommendation based on Multi-Objective Evolutionary
Optimization (MOEA-ProbS) is proposed in this paper. Low-grade and
unpurchased items are preprocessed before predicting the scores to avoid
recommending low-grade items to users and improve recommendation
accuracy. By introducing adaptive mutation, the better individuals will
survive in the evolution with a smaller mutation rate, and worse individu-
als will eliminate. The experimental results show that MOEA-PMGA has
a higher population search ability compared to MOEA-ProbS, and has
improved the accuracy and diversity on the optimal solution set.

1 Introduction

Faced with a huge amount of data, it becomes very difficult for users to find
the goods or information they are interested in [1]. As a technology based on
statistics and knowledge discovery, recommendation system takes advantage of
e-commerce sites to provide commodity information and advice, helping users
decide what products to buy and complete the purchase process like the sales
staff [2].

With the rapid development of the times, the types of data have become
more and more abundant and only considering recommendation accuracy is not
enough. In order to meet the personalized needs of users, introducing some other
performance indexes such as diversity and novelty is necessary. Since diversity
and high accuracy are contradictory of a recommendation system, recommending
a variety of products to users may reduce the recommendation accuracy [3].
Therefore, a challenge the recommendation system faces is how to develop a
recommendation technology that can achieve high accuracy and diversity at the
same time.

c© Springer International Publishing AG, part of Springer Nature 2018
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Personalized algorithms based on multi-objective evolution continue to
emerge. Zang and Hurley [4] proposed a recommendation technique. The tech-
nique considered the balance of accuracy and diversity into a quadratic pro-
gramming problem and developed multiple strategies to solve the optimization
problem. Zhou [5] introduced the hybrid algorithm combining HeatS with proba-
bility distribution algorithm. Heats algorithm is used to increase diversity, while
ProbS algorithm is used to improve the accuracy. The basis of this hybrid algo-
rithm is a basic method of weighted linear set. Therefore, the weights should
be appropriately adjusted to make accurate and diverse recommendations.
Adomavicius and Kwon [6] proposed a series of commodity ranking technolo-
gies that can achieve relatively accurate recommendation and diversity. Zuo et
al. [7] proposed a multi-objective recommendation algorithm combining MOEA
and ProbS to improve the diversity with high accuracy. However, with the num-
ber of population iterations increasing, the crowding degree between the optimal
solution set is getting higher and higher, and the population shows premature
convergence.

In this paper, the MOEA-ProbS algorithm is analyzed, and it is modified in
the application of recommendation problem to improve the accuracy and diver-
sity of the optimal solution set. In the module of predicting grade, because the
MOEA-ProbS algorithm does not distinguish between items that users have
purchased with low scores and those that are not purchased, the algorithm
may repeatedly recommend low grade products to users. MOEA-PGMA makes
improvements according to this. The grade will be set to −1 if the items are
not purchased. The grade will be set to 0 if the items get low evaluating scores.
The grade is 1 if the items get high evaluating scores. In the process of evolu-
tion, with the increase of the iteration number, the premature convergence of
the population leads to the decrease of diversity. MOEA-PGMA uses adaptive
mutation rate so that the better individuals will participate in the evolution
with a smaller mutation rate, and the worse individuals are the opposite. The
experimental results show that the improved algorithm can have more reliable
searching ability with the same population size, and the optimal solution can be
improved greatly in diversity and accuracy.

2 Background

2.1 Definition of Recommendation Problem

In general, the recommendation problem is defined as follows. Suppose the C set
contains all the users in the system, and the S set contains all the recommended
items in the system. The matrix R contains users’ rating data for products, so
R is used to indicate the users’ degree of preference for the items. For example,
i is an element of the C set, and the commodity α is an element of the S set.
The user’s rating level for the product is 0–5. It defines that if the user’s rating
level is equal to or greater than 3, it means that they like the item. For example,
R(i, α) which represents the degree of user i’s preference for item α is equal to
4, then user i likes the item α. In general, the number of products evaluated
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by one user is small, so the first step of product recommendation is to predict
the user’s preference for unknown products through a certain recommendation
method. Usually, items with high ratings will be recommended to users [9], as
Eq. (1).

∀i ∈ C,α = argmaxR (i, α) α ∈ S (1)

2.2 Multi-objective Optimization

Multi-objective optimization is designed to optimize the function as Eq. (2),
where x = [x1, x1..., xd] ∈ Ω. x is the decision vector and Ω is the decision space
of D dimensions.

minF (x) = (f1 (x) , f2 (x) , ..., fm (x))T (2)

Since the maximum problem can be converted into a minimum problem, we
consider the minimum problem as shown in Eq. (2). XA and XB the decision
vector sets are given. If f(XA) ≤ f(XB) for all f(XA) and f(XB), then XA >
XB , namely XA dominates XB . If there isn’t another group of vector X∗, where
X∗ > X, then vector X is the optimal solution. The set of all the optimal
solutions is the optimal set (3).

PS = {x ∈ Ω|¬x∗ ∈ Ω, x∗ > x} (3)

The image of pareto set in the target function space becomes the pareto front,
which is defined as (4). The goal of MOEA is to figure out how to approximate
the real pareto front.

PF = {F (x)|x ∈ PS} (4)

2.3 MOEA-ProbS

In order to ensure that the recommended set has a high diversity with high
accuracy, Zuo et al. [7] proposes the MOEA-ProbS algorithm. The algorithm
starts with the users commodity evaluation record, and the users with similar
preference are divided into the same group. The Probs algorithm is used to
predict the evaluation score of unpurchased products in the group. A group of
recommendation for each user in the group is built in the predictive scoring
system to initialize the population chromosome. The optimal solution set is
produced and recommended to the user through the operation of evolution.

3 MOEA-PGMA

3.1 Improved ProbS Algorithm

ProbS is suitable for the recommendation system without definite rating, and
R(i, α) is 0 or 1 in the evaluation matrix R, where 0 means that the user does
not collect the commodity α, and 1 indicates that the user has collected the
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commodity α. In MOEA-ProbS, commodities with a score of 3 and above are
set to 1, and commodities with a score lower than 3 or not collected are set
to 0. Then, when recommending commodities with higher score to users, it is
possible to recommend the products with lower evaluation score to users since
the algorithm does not distinguish between the commodities with low evaluation
score and the uncollected commodities.

In general, users are less likely to buy low-scoring commodities twice. There-
fore, in the improved ProbS algorithm, uncollected commodities rating will be
set to −1, and low-scoring commodities rating will be set to 0 and high-scoring
commodities rating will be set to 1. The commodities with high score will be
recommended according to the rating list of the commodities that the user has
not purchased.

3.2 Adaptive Mutation Rate for Multi-objective

The mutation operator is designed to maintain a certain diversity of population,
so that the genetic algorithm has the ability to jump out of local optimum before
convergence. In general genetic algorithms, the population uses a fixed global
mutation rate. When the mutation rate is very small, the mutation will hardly
affect the population, which is not conducive to the introduction of new genes.
When the mutation rate is too high, it is possible to destroy the good genes of
the population, which is not conducive to the convergence of the algorithm.

Therefore, different mutation rates can be applied to different individuals in
the population. The better individuals in the population have a smaller muta-
tion rate, which can get better retention and the accumulation of good mod-
els through cross-recombination, while worse individuals in the population can
enhance their ability to explore with a larger mutation rate.

In order to adjust the individual mutation rate in the population smoothly,
Xiong [8] proposes the Sigmoid function as (5), where pim is the mutation rate of
the ith individual in the descending order of moderate value of the population.

pim =

{
0.5

1+e−α1(i−NS) , i ≤ Ns
0.5

1+e−α2(i−NS) , i ≥ Ns
(5)

The curve shape of pim is controlled by two parameters. αi is the shape factor
and NS is the demarcation point of the population. NS is used to control the
division of fine and poor individuals. Figure 1 shows the curve after normalization
of the population, where the parameters α1, α2 and NS are set to 0.2, 0.1, 0.5.

Since the adaptive mutation rate proposed by Xiong is only applicable to
single-objective genetic algorithm, this method is improved to apply to multi-
objective genetic application. Before adjusting mutation rate dynamically, the
dominance hierarchy and crowding degree of individual population are calcu-
lated. Sort the individuals according to the individual dominance hierarchy and
crowding degree. The individual mutation rate is adjusted dynamically accord-
ing to the sorting result. The principle is that with different dominance hierar-
chies, individuals with lower dominance hierarchies have smaller mutation rates.
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Fig. 1. Adjustment of mutation rate

With the same dominance hierarchy, individuals with higher crowding degree
have a smaller mutation rate.

3.3 The Proposed Algorithm

The steps of the proposed algorithm combining improved Probs and adaptive
mutation rate are as follows.

(1) Predicting the evaluation score with Probs according to the score record.
(2) Initializing population T , the number of individuals is N0.
(3) Generating EPOP by selecting operator and crossover operator.
(4) Calculating the individual accuracy and diversity of EPOP, performing the

mutation operation on the same individual with different mutation rate
according to the Pm curve, generating the next generation population.

(5) Juding whether or not to meet the stop condition, yes to step 6 or to step
3 to continue.

(6) Outputing the current optimal solution as the results.

4 Experiment

4.1 Parameters Settings

In order to test the improvement effect of the adaptive mutation rate, the same
experiment parameters as the MOEA-Probs are used in this paper except muta-
tion rate. The mutation rate used by MOEA-Probs is 0.8, and this article uses
the mutation rate as Eq. (5). The parameters are set as shown in Table 1.

4.2 Results and Analysis

To test the performance of the improved algorithm, this paper takes the same
data set Movielens [9] as MOEA-Probs. The data set contains 943 users and
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Table 1. Parameters setting

Parameters Setting

Length of recommendation list 10

Population size 100

Number of iteration 3000

Crossover probability 0.8

Mutation probability pim =

{
0.5

1+e−α1(i−NS) , i ≤ Ns

0.5

1+e−α2(i−NS) , i ≥ Ns

1,682 films. By using the k-means clustering method, the data set is divided into
four groups. Since the Probs algorithm is applicable to the 0–1 rating system,
an item grade will be rated as 1 if its score is equal or greater than 3. An items
grade will be set to 0 if their scores are less than 3 or the item isn’t collected.
At the same time, 80% of the data is randomly selected as training set, and the
remaining data is used as test set.

Hypervolume is one of the most important indexes in the field of multi-
objective optimization. It can simultaneously measure the convergence and diver-
sity of the algorithm. The larger the hypervolume value is, the better the solution
is. Therefore, in order to test the performance of MOEA-PMGA, the hypervol-
ume is used as the performance index. MOEA-PMGA and MOEA-ProbS are
compared using the same data set. The experimental results are as Fig. 2 and
Table 2.

Table 2. Compare the hypervolume value of the two algorithms

Algorithm Movielens1 Movielens2 Movielens3 Movielens4

MOEA-ProbS 0.0802 0.1394 0.0941 0.1636

MOEA-PMGA 0.1073 0.1568 0.1110 0.2274

The experimental results show that the MOEA-PGMA improves a lot in
diversity and accuracy than MOEA-Probs. MOEA-PGMA has a higher accu-
racy than MOEA-Probs since it avoids recommending low-scoring movies. In
addition, the improved algorithm adopts adaptive mutation rate after pareto
ranking, top-ranking chromosome participating in mutation with a relatively
lower probability, low-ranking chromosome participating in mutation with a rel-
atively higher probability. Therefore, taking the method of adaptive mutation
rate has achieved both elite retention and recommendation diversity improve-
ment. The hypervolume value of MOEA-PGMA is higher than MOEA-Probs,
which indicates that MOEA-PMGA has better convergence and higher diversity
than MOEA-Probs.
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(Movielens1) (Movielens2)

(Movielens3) (Movielens4)

Fig. 2. Results comparison of MOEA-ProbS and MOEA-PGMA

5 Conclusions

In this paper, a general improved multi-objective recommendation algorithm is
proposed to optimize the recommendation accuracy and diversity. The improved
ProbS algorithm is used to improve the accuracy and the diversity is improved
with adaptive mutation rate. The experimental results show that the improved
MOEA-ProbS algorithm can make multiple recommendations to the same user
more efficiently.
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Abstract. In recent years many real-world optimization problems have had to
deal with growing dimensionality. Optimization problems with many hundreds
or thousands of variables are called large-scale global optimization (LSGO)
problems. Many well-known real-world LSGO problems are not separable and
are complex for detailed analysis, thus they are viewed as the black-box opti-
mization problems. The most advanced algorithms for LSGO are based on
cooperative coevolution with problem decomposition using grouping methods,
which form low-dimensional non-overlapping subcomponents of a high-
dimensional objective vector. The standard random grouping can be applied
to the wide range of separable and non-separable LSGO problems, but it does
not use any feedback from the search process for creating more efficient vari-
ables combinations. Many learning-based dynamic grouping methods are able to
identify interacting variables and to group them into the same subcomponent. At
the same time, the majority of the proposed learning-based methods demonstrate
greedy search and perform well only with separable problems. In this study, we
proposed a new adaptive random grouping approach that create and adaptively
change a probability distribution for assigning variables to subcomponents. The
approach is able to form subcomponents of different size or can be used with
predefined fix-sized subcomponents. The results of numerical experiments for
benchmark problems are presented and discussed. The experiments show that
the proposed approach outperforms the standard random grouping method.

Keywords: Cooperative co-evolution � Random grouping
Large-scale global optimization

1 Introduction

Optimization problems with many hundreds or thousands of objective variables are
called large-scale global optimization (LSGO) problems. LSGO is still a challenging
problem for mathematical and evolutionary optimization techniques. Moreover, many
real-world LSGO problems are usually complex and not well-studied, so they are
viewed as black-box optimization problems even the objective has analytical repre-
sentation (using mathematical formula). Evolutionary algorithms (EAs) have proved
their efficiency at solving many complex real-world optimization problems. However,
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their performance usually decreases when the dimensionality of the search space
increases. Black-box LSGO problems have become a great challenge even for EAs as
we have no information about the search space to include it into a certain algorithm.
Another challenge is nonseparability that excludes a straightforward variable-based
decomposition. Nevertheless, some assumptions about the continuous search space can
be done, and there exist many efficient LSGO techniques.

The most advanced algorithms for LSGO are based on cooperative coevolution
(CC) with problem decomposition using grouping methods. The decomposition
methods are based on divide-and-conquer strategy, which decomposes LSGO problems
into multiple low-dimensional non-overlapping subcomponents. The standard random
grouping can be applied to the wide range of separable and non-separable LSGO
problems, but it does not use any feedback from the search process for creating more
efficient variables combinations. There is a lack of efficient learning-based approaches
for dynamic grouping, which are able to identify interacting variables and to group
them into the same subcomponent. The majority of the proposed learning-based
methods perform well only with separable LSGO problems and fail in solving non-
separable problems and problems with overlapping variables. Many dynamic grouping
techniques use greedy approaches for identifying interacting variables (for example,
weighted and differential grouping [1, 2]). As known, EAs realize a combination of
exploration and exploitation strategies on different stages of the search process. And, it
is obvious that different stages may need different problem decomposition for better
performance.

In this study, we proposed a new adaptive random grouping approach. The idea
behind the approach is based on the Population-Level Dynamic Probabilities
(PDP) adaptation strategy that applies EA’s operations using probabilities based the
success rates of the operations [3]. The proposed approach create and adaptively
change a probability distribution for assigning variables to subcomponents. The
approach is able to form subcomponents of different size or can be used with prede-
fined fix-sized subcomponents. The CMA-ES algorithm [4] is used as the core EA in
the CC scheme.

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 describes the proposed approach. In Sect. 4 the results of numerical exper-
iments are discussed. In the Conclusion the results and further research are discussed.

2 Related Work

There exist a great variety of different LSGO techniques that can be combined in two
main groups: non-decomposition methods and cooperative coevolution (CC) algo-
rithms. The first group of methods are mostly based on improving standard evolu-
tionary and genetic operations. But the best results and the majority of approaches are
presented by the second group. The CC methods decompose LSGO problems into low
dimensional sub-problems by grouping the problem subcomponents. CC consists of
three general steps: problem decomposition, subcomponent optimization and sub-
component coadaptation (merging solutions of all subcomponents to construct the
complete solution). The problem decomposition is a critical step. There are many
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subcomponent grouping methods, including: static grouping [5], random dynamic
grouping [2] and learning dynamic grouping [1, 6].

The learning dynamic grouping seems to be the most perspective approach as it
collects and uses feedback information for improving the decomposition stage. There
were proposed a CC Algorithm based on the correlation matrix [7], a CC with Variable
Interaction Learning (CCVIL) [8], an automated decomposition approach (DECC-DG)
with differential grouping [1] and many others. A good survey on LSGO and methods
is proposed in [9].

The majority of the learning dynamic grouping techniques demonstrates too greedy
adaptation, thus performs well only with separable LSGO problems. For example,
DECC-DG is based on the mathematic definition of separability and uses this infor-
mation for the grouping. At the same time, there exist many approaches in the field of
EAs for solving self-adaption and self-configuration problems that use a stochastic
adaptation strategy. One of the most popular and efficient techniques is called
Population-Level Dynamic Probabilities (or PDP) [3]. The PDP implements EAs’
actions using some distribution of probabilities. The probabilities are adapted based on
the success rates of the previously applied actions. In this study we will combine ideas
of the random grouping and the PDP.

3 Proposed Approach

The following optimization problem is considered:

f Xð Þ ! min
X2Rn

; ð1Þ

where X ¼ x1; . . .; xi; . . .; xnð Þ and xi 2 xmini ; xmaxi

� �
; i ¼ 1; n.

We will use the following notations:

– cycle is a period than the optimization problem is being solved using the certain
decomposition, t denotes a cycle number (t ¼ 0 is used for the initialization step);

– numCycles is the maximum number of cycles;
– maxFEs is a maximum number of function evaluations for the optimization

problem;
– sj is a low-dimensional subcomponent of a candidate-solution X;
– EAsj is the EA that optimizes the i-th subcomponent;
– popSize is a size of population for EAs;
– fitness Xð Þ is a fitness function for a candidate-solution X, which is based on an

objective function for the given optimization problem, the fitness function is
maximized;

– bestFound is the fitness value of the best-found solution and bestFoundj tð Þ is the
fitness value of the best-found solution obtained by the EAsj within the t-th cycle;

– popAverageFitnessj tð Þ denotes average performance of the EAsj , and it is mean
value of the average fitness in the EAsj ’s populations over generations within the t-th
cycle.
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The general scheme for the proposed adaptive variable-size random grouping
algorithm (AVS-RG CC) contains the following steps:

1. Initialization.
2. Set t ¼ 1 to start a new cycle.
3. Perform the adaptive random grouping and decompose the n-dimensional problem

into k subcomponents. The sizes of the groups are s1; . . .; sj; . . .; sk
� �

and
Pk

j¼1
sj ¼ n.

Set j ¼ 1.

4. Optimize the j-th subcomponent with a certain EA (EAsj ) for a predefined number of
Fitness Evaluations (FE). If T is a predefined number of generations within a cycle
for EAs with a fixed size of population then FE ¼ T � popSize.

5. If j\k then set j ¼ jþ 1 and go to Step 4 else go to Step 6.
6. If t\numCycles then set t ¼ tþ 1 and go to Step 3 for the next cycle else Stop.

We will discuss some steps of the AVS-RG CC in details.
At the grouping stage (step 3), we need to combine all components of the X into k

groups. The sizes of the groups are: s1; . . .; si; . . .; sk and
Pk

j¼1
sj ¼ n.

In many well-studied techniques, the sizes are equal, s1 ¼ . . . ¼ si ¼ . . . ¼ sk ¼ s
and s � k ¼ n. In the random grouping method, the sizes are also equal and the groups
are filled with variables at random without repetition. This means that we do not use
any feedback information about the success of the grouping.

We will introduce a probability distribution P(t) that defines a chance for each
variable to be assigned to a specific group:

P tð Þ ¼ p1 tð Þ; . . .; pi tð Þ; . . .; pn tð Þð Þ: ð2Þ

Here each component of P(t) is a vector that represent a distribution:

pi tð Þ ¼ p1i tð Þ; p2i tð Þ; . . .; pki tð Þ� �
; p j

i tð Þ ¼ P xi 2 sj
� �

and
Xk

j¼1

p j
i tð Þ ¼ 1 ð3Þ

On the initialization step, if any a priori information about component grouping is
absent, random uniform distribution is used. The groups are filled without repetition
using the probability: p j

i t ¼ 0ð Þ ¼ 1
k. The grouping based on the random uniform dis-

tribution will be equivalent to the random grouping method.
In this study, we propose a novel approach that introduces the feedback based on

the performance of a search algorithm on the previous cycles, which was obtained with
the given grouping. The approach adaptively changes the probability distribution P(t)
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and defines the chance to each component of candidate-solutions to be assigned to a
specific group.

There exist at least three strategies of applying the probability distribution for the
component grouping:

1. Let s1 ¼ . . . ¼ si ¼ . . . ¼ sk ¼ s ¼ const.
At the grouping stage, we start from x1, calculate the corresponding probability and
assign the component to a chosen group until the group is filled up. Then we go to
x2, x3 and so on.

2. Let si 2 smin; smax½ �, 8i and Pk

j¼1
sj ¼ n.

In this case, sizes of groups can be different in the given range, but the number of
groups is still equal to k.

3. Let si 2 0; n½ �, 8i and Pk

j¼1
sj ¼ n.

In this case, sizes of groups can be different and the number of the groups may vary
between 1 and k.

It is obvious that the third case is more flexible and universal, and we will use it in
this study.

After each cycle, we need to estimate the performance for the search algorithm for
adapting the distribution P in order to increase probabilities for successful variable-
subcomponent links. The performance metric can be used as a feedback for estimating
the current component grouping. As we use the PDP-like adaption, we will divide of
subcomponents’ EAs into two subsets: EAs with successful grouping (denoted as bEA)
and all the rest EAs (wEA). Variable-subcomponent links that correspond to sub-
components of the bEA set will increase their probabilities in the distribution P by
decreasing probabilities of links corresponding to the wEA set.

We will include in the bEA set all EAs that have improved the best-found solution
obtained within the previous cycle. If a new best-found solution was not found, we will
estimate the average performance of EAs over the last cycle and will rank EAs.
A predefined percentage of EAs with high ranks (denoted as a) will be included into the
bEA set, the rest - into the wEA set.

Finally, we can use the following algorithm for adapting the probability distribution
based on the feedback information:
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Here Dp defines amount of changes in probabilities and h is a threshold that
guarantees some non-zero probability for each variable-subcomponent link. We can
define these two parameters using the predefined number of cycles (numCycle):

Dp ¼ c � 1
numCycle

; c[ 0; ð4Þ

h ¼ 1
numCycle

; ð5Þ
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where c is a learning rate, and values higher than 1 will lead to greedy adaptation. If the
given optimization problem is fully separable problem and c ¼ 1, then we will need
exactly numCycle cycles to redistribute all linkage probabilities.

4 Experimental Settings and Results

To estimate the proposed approach performance, we have used benchmark problems
from the CEC 2013 Special Session and Competition on Large-Scale Global Opti-
mization [10]. These problems represent a wider range of real-world large-scale opti-
mization problems and provide convenience and flexibility for comparing various
evolutionary algorithms specifically designed for large-scale global optimization. The
benchmark contains LSGO problems of 4 types: fully-separable problems, partially
separable problems, problems with overlapping subcomponents and non-separable
problems. As known, collecting and analyzing statistics on LSGO problem solving
need essential computational costs. In this study, we have chosen only one problem of
each type for estimating performance of the AVS-RG CC algorithm. These problems
are f2 - Shifted Rastrigin’s Function (fully-separable), f6 - Shifted and Rotated Ack-
ley’s Function (partially separable, contains 7-nonseparable and 1-separable subcom-
ponents), f12 - Shifted Rosenbrock’s Function (overlapping subcomponents) and f15 -
Shifted Schwefel’s Function (fully non-separable).

The experimental results are compared with some state-of-the-art decomposition
methods. We have chosen the differential evolution based cooperative coevolution with
random dynamic grouping (DECC-G) [1] and Covariance Matrix Adaptation Evolution
Strategy using Cooperative Coevolution (CC-CMA-ES) [6], because these algorithms
represent the general CC decomposition ideas and are in Top-4 of CEC’13 and CEC’15
Competitions on Large-Scale Global Optimization. We have also included the Coop-
erative Co-evolution with Differential Grouping algorithm (DECC-DG) [1], because it
implements an automatic decomposition approach.

All experimental settings are as proposed in [10]. The settings are:

– Dimensions for all problem are D = 1000;
– For each problem the best, worst, median, mean, and standard deviation of the 25

independent runs are evaluated;
– Maximum number of fitness evaluations is MaxFE = 3.0e+6.

The AVS-RG CC algorithm settings are:

– Number of cycles is numCycles = 50;
– Maximum number of subcomponents k = 5, 10 and 20;
– CMA-ES algorithm is used for optimizing each subcomponents;
– Population sizes and number of generations for each CMA-ES are popSize = 200,

T = 60 for k = 5, popSize = 100, T = 60 for k = 10 and popSize = 50, T = 60 for
k = 20;

– c ¼ 1;
– a ¼ 20%.

The experimental results are presented in Tables 1, 2, 3 and 4.
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As we can see from Tables, the proposed approach has demonstrated the perfor-
mance comparable with the state-of-art techniques. The AVS-RG CC outperforms the
DECC-DG algorithm on the f2, f6 and f12 problems, but yields to it on the f15
problem. At the same time, the performance of the AVS-RG CC algorithm is stable
over all types of LSGO problems.

Table 1. Experimental results on the f2 problem from CEC 2013 LSGO competition.

CC-CMA-ES DECC-G DECC-DG AVS-RG
(k = 5)

AVS-RG
(k = 10)

AVS-RG
(k = 20)

Best 1.09e+03 9.90e+02 1.24e+04 5.65e+03 5.21e+03 3.17e+03
Median 1.33e+03 1.03e+03 1.42e+04 5.87e+03 5.59e+03 4.15e+03
Worst 1.56e+03 1.07e+03 1.66e+04 6.27e+03 5.98e+03 5.11e+03
Mean 1.33e+03 1.03e+03 1.44e+04 5.93e+03 5.60e+03 4.15e+03
StDev 1.11e+02 2.26e+01 1.36e+04 1.29e+02 1.08e+03 4.45e+02

Table 2. Experimental results on the f6 problem from CEC 2013 LSGO competition.

CC-CMA-ES DECC-G DECC-DG AVS-RG
(k = 5)

AVS-RG
(k = 10)

AVS-RG
(k = 20)

Best 5.61e+03 6.96e−08 7.51e+04 6.72e+03 5.87e+03 2.03e+03
Median 9.93e+05 6.08e+04 1.27e+05 5.82e+05 3.73e+05 4.44e+05
Worst 1.01e+06 1.10e+05 1.81e+05 1.19e+06 7.42e+05 8.65e+05
Mean 5.83e+05 4.85e+04 1.23e+05 5.98e+05 3.73e+05 4.44e+05
StDev 4.79e+05 3.98e+04 3.29e+04 2.73e+05 1.69e+05 1.96e+05

Table 3. Experimental results on the f12 problem from CEC 2013 LSGO competition.

CC-CMA-ES DECC-G DECC-DG AVS-RG
(k = 5)

AVS-RG
(k = 10)

AVS-RG
(k = 20)

Best 9.77e+02 9.80e+02 1.01e+11 9.80e+02 1.15e+03 1.90e+03
Median 9.85e+02 1.03e+03 1.42e+11 2.20e+03 3.15e+03 8.30e+03
Worst 2.43e+03 1.20e+03 1.78e+11 3.59e+03 5.15e+03 1.47e+04
Mean 1.27e+03 1.04e+03 1.43e+11 2.28e+03 3.16e+03 8.30e+03
StDev 4.26e+02 5.76e+01 1.89e+10 6.01e+02 9.30e+02 2.96e+03

Table 4. Experimental results on the f15 problem from CEC 2013 LSGO competition.

CC-CMA-ES DECC-G DECC-DG AVS-RG
(k = 5)

AVS-RG
(k = 10)

AVS-RG
(k = 20)

Best 2.31e+07 4.63e+07 3.19e+06 5.91e+07 4.88e+07 1.03e+08
Median 2.85e+07 6.01e+07 5.01e+06 8.47e+07 6.09e+07 2.52e+08
Worst 4.89e+07 7.15e+07 7.94e+06 1.12e+08 7.92e+07 4.33e+08
Mean 3.03e+07 6.05e+07 5.19e+06 8.55e+07 6.40e+07 2.68e+08
StDev 6.08e+06 6.45e+06 1.13e+06 1.22e+7 7.03e+06 7.64e+07
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The experimental results shows that the efficient maximum number of subcom-
ponents k depends on the type of the given LSGO problem. Smaller values of k are
preferable for non-separable problems and problems with overlapping subcomponents,
bigger values are preferable for separable problems.

5 Conclusions

In this paper a novel technique for LSGO based on the adaptive random grouping
approach that create and adaptively change a probability distribution for assigning
variables to subcomponents. The AVS-RG CC algorithm uses feedback information on
the performance of the search process with the certain grouping and increases proba-
bilities for successful variable-subcomponent links. One of the advantages on the
approach is the possibility of generating subcomponents of different size. The exper-
imental results has demonstrated that the performance of the AVR-RG algorithm is
comparable with the state-of art techniques.

In further work, we will implement the proposed approach the CUDA parallel
computation framework for carrying out more experiments. We will estimate the
performance of the approach with all remained benchmark problems from the CEC’13
and will provide more detailed analysis of the algorithm’ parameters.
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Abstract. Cooperative Co-evolution (CC) framework is an important
method to tackle Large Scale Black-Box Optimization (LSBO) problem.
One of the main step in CC is grouping for the decision variables, which
affects the optimization performance. An ideal grouping result is that
the relationship of decision variables in intra-group is stronger as possi-
ble and those in inter-groups is weaker as possible. Global Differential
Grouping (GDG) is an efficient grouping method based on the idea of
partial derivatives of multivariate functions, and it can automatically
resolve the problem by maintaining the global information among vari-
ables. However, once the grouping result by GDG is determined, it will no
longer be updated and will not be automatically adjusted with the evolu-
tion of the algorithm, which may affect the optimization performance of
the algorithm. Therefore, based on GDG, a Dynamic Global Differential
Grouping (DGDG) strategy is proposed for grouping the decision vari-
ables in this paper, which can update the grouping results with the evolu-
tion processing. DGDG works with Particle Swarm Optimization (PSO)
algorithm in this paper, which is termed as CC-DGDG-PSO. The exper-
imental results based on the LSBO benchmark functions from CEC’2010
show that DGDG algorithm can improve the performance of GDG.

Keywords: Large-Scale Black-Box Optimization
Cooperative Co-evolution · Dynamic · Differential Grouping

1 Introduction

Large Scale Global Optimization (LSGO) problems refer to the problems with
a large number of decision variables to be optimized, usually thousands or even
more [1]. In LSGO problems, there is a case where the objective function does not
have an explicit analytical formula [3], which is usually called Large Scale Black-
Box Optimization (LSBO) problem [4]. LSBO problems are often encountered
in research and industrial fields [5]. For instance, in the optimization problem
of fluid-based airplane wing shapes, there are more than 2500 variables need
to be optimized [6,7]. The optimization of LSBO problems is encountered two
main issues: (1) the characteristics of black-boxes and the problem often have
c© Springer International Publishing AG, part of Springer Nature 2018
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complex features such as nonlinear, non-convex and non-differentiable; (2) large-
scale decision variables.

Cooperative Co-evolution (CC) [8], which is based on the idea of divide-and-
conquer, is an algorithmic framework for solving LSBO problems by decomposing
the problem into some sub-problems. Since the CC framework can decompose
the LSBO problem into some sub-problems that the optimization algorithm can
process, it has become an important method to solve the LSBO problem in recent
years [1,2]. But one of the key issues is how to divide the problem effectively
with high accuracy [2,9].

The research on the grouping strategy can divide into three categories: fixed
grouping, stochastic grouping and grouping based on learning mechanism. Divid-
ing the problem into some sub-problems with the pre-fixed groups is called fixed
grouping strategy, i.e., the problem with n variables can divide into m sub-
problems with s variables (n = m·s, 1 ≤ s ≤ n

2 ) [10]. The fixed grouping strategy
performed better on separable problems. However, the size of sub-problems and
the composition of variables are all pre-determined, and the correlation between
variables is not considered. Therefore, it usually shows weak optimization ability
in nonseparable problems. In order to study the correlation between variables
and place the associated variables as much as possible in the same sub-problem,
the researchers proposed a stochastic grouping method in which variables in
sub-problems are assigned in a random way and variables change with the evo-
lution process. In [11,12], Yang et al., designed a decomposition strategy that
randomly assigned variables to a fixed number of groups to increase the prob-
ability of the associated variables entering the same group. However, when the
number of associated variables exceeds 5 in a group, the effect of this strategy
becomes weak [13]. Later, Yang et al. proposed a multi-level co-evolutionary app-
roach (MLCC) to solve the problem that the optimal number of groups in [12] is
determined difficultly [14,15], but the size of each group is still equal. Grouping
based on learning mechanism, that is, before or during the implementation of
the optimization algorithm, through the analysis of certain features to learn the
relationship between variables so that grouping the variables clearly. Ray and
Yao proposed a method of grouping variables according to the best fitness of the
first 50% of individuals [16]. Later, Singh and Ray improved this method [17].
In order to improve the variable grouping method of MLCC [14,18] proposed
a new method of adaptively obtaining the size of variable groupings. Liu and
Tang have implemented problem decomposition based on the features of evolu-
tionary algorithms [19,20]. In [21], a grouping method based on the idea of partial
derivative of multivariate functions is proposed to realize the automatic decom-
position of the problem. This method obtains very accurate grouping results in
most of the test functions of CEC’2010 [22]. However, to some extent, it depends
on the pre-defined threshold, and the accuracy of problem decomposition will
decrease with the increasing of the complexity of the problem (unevenness of
sub-problems, large difference contribution of sub-problems, and the increase
of the correlation between variables) [23]. In [5], Mei proposed a GDG app-
roach to reduce the dependency of the pre-defined threshold and addressed the
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missing relationship among variables [21]. However, there are some drawbacks
in the decomposition of complex optimization problems and the judgment of
the complexity of correlation between variables. And once the results of variable
grouping are determined, they are no longer updated, which can not reflected
the influence of evolution process on the correlation between variables.

In this paper, we propose a new GDG method named Dynamic GDG (D-
GDG) to address the lack of GDG method, which can dynamically adjust the
grouping of variables with process.

The rest of the paper is organised as follows: The definition of LSBO prob-
lem and CC framework are introduced in Sect. 2. Then, the introduction of
GDG method and the proposed algorithm, named Dynamic GDG (D-GDG), is
described in Sect. 3. The experimental studies are presented in Sect. 4. Finally,
conclusions is described in Sect. 5.

2 The Definition of LSBO Problem and CC Framework

2.1 The Definition of LSBO Problem

Without loss of generality, a LSBO problem can be stated as follows:

min f(x) (1)

where x = (x1, x2, . . . , xD) is a D-dimensional decision vector, and each xi(i =
1, . . . , D) is called a decision variable. D, the number of decision variables, is
the dimension of search space. The real value of D is generally relatively large,
usually in the hundreds to thousands. f(x) is the objective function to be mini-
mized.

2.2 CC Framework

The main step of CC framework can be stated as follows:

Step 1 variables grouping: Divide the original problem into multiple sub-
problems. The method of dividing is more important. The bad dividing method
will lead to strong coupling between groups and affect the optimization perfor-
mance of the whole algorithm. Therefore, the design of the divide and conquer
strategy is the most crucial step to improve the algorithm’s performance.

Step 2 the optimization of sub-problems: To solve each sub-problem inde-
pendently, this step should select the optimizer with significant performance. It
can optimize the sub-problems in a round-robin fashion or independently opti-
mize with the parallel program.

Step 3 the merge of sub-problems: Use the solution of the current sub-
problem and the best solution of other sub-problems to synthesize a complete
solution vector and evaluate the fitness of this solution vector.
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The pseudocode of CC framework is stated as follows:

Algorithm 1. CC(f,lb,ub,D)
1: /* (Phase 1): Decomposition */
2: groups ← grouping(f,lb,ub,D);
3: /* (Phase 2): Optimization */
4: /* Initialization */
5: pop ← rand(popsize, D);
6: (best,bestval) ← min f(pop) ;
7: for i ← 1 to Cycle do
8: for j ← 1 to size(groups) do
9: indices ← groups[j];

10: subpop ← pop[:,indices];
11: /* Use sub-optimizer*/
12: subpop ← optimizer(best, subpop, FE);
13: pop[:, indicies]← subpop;
14: (best, bestval) ← min(f(pop);
15: end for
16: end for

3 Dynamic Global Differential Grouping

No matter what kind of decomposition method is adopted, the main goal of vari-
able decomposition is to place the interrelated variables in the same group and
separate the unrelated variables. Therefore, the core idea of variable decomposi-
tion is to find the correlation between variables. There are some related features
such as completely separable, completely nonseparable, partially separable, over-
lapping between variables in LSBO problem. In a black-box environment, the
information related to the problem what we have only know is the number of
variables and its domain with the output of the objective function correspond-
ing to different inputs. The relationship between the variables are completely
unknown. Therefore, analyse the relationship between variables by evaluating
the fitness of objective function is a viable option.

3.1 Global Differential Grouping

The GDG method is extended from the Differential Grouping (DG) method.
Assume that there are optimization problems as follows:

F (x1, x2, x3, x4) = x2
1 + x2x

−3
3 + x3x4 + x2

4 (2)

First, when the DG method detects the codependency of x2 and x3, the two
variables are grouped together and the variables x2 and x3 are eliminated from
the variable pool. Next, it is detected that x3 and x4 are interdependent and put
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in another group. So the interdependence between x2 and x4 can not be detected.
Therefore, there are some drawback like this, missing some correlation variables
which should have divided into a same group in some optimization problem. Mei
proposed a GDG method based on DG method. Instead of the step of variable
elimination in DG method, Mei calculated all the difference of objective function
fitness in the algorithm and obtained a complete difference matrix. Then every
element of difference matrix compared with a sufficiently small threshold ε to
get a correlation matrix containing only 0 and 1. Finally, the decomposition of
the variables can be modelled as the computation of the connected components
of the graph with the node adjacency matrix, which can be easily solved using
breadth-first search or depth-first search [5]. The GDG method greatly improve
the accuracy of grouping.

3.2 Dynamic GDG (D-GDG)

The GDG method is the same as the DG method in that all of them deter-
mine the variable grouping before algorithm is ran and the grouping result
runs through the whole optimization process. Both methods do not consider
the appropriate adjustment of the grouping of variables as the optimization pro-
cess advances, which may not adapt to the current distribution of solutions. In
this paper, based on the basic idea of GDG method, the original data matrix
that reflects the connection between two variables is derived from the general
idea of partial derivation of multivariate functions. Through the standardization
of the original data matrix and the establishment of the fuzzy relation matrix,
the fuzzy clustering method is used to realize the dynamic clustering of vari-
ables. And through limiting the size of each variable group by setting the upper
and lower bounds of the variable grouping scale, according to the state of the
algorithm during operation, the grouping of variables is adaptively adjusted to
promote the optimization of the problem.

The pseudocode of DGDG is described in Algorithm 2. An example of
DGDG is given blow to explain DGDG algorithm. Firstly, the original differ-
ence matrix Λ obtained by DGDG algorithm using the method to compute the
original difference matrix described in GDG algorithm. Assumed we have got
the Lambda matrix shown in Eq. (3). Then, the Candidate threshold vector
ε vec = (0, 1, 2, 4, 5) are obtained by sorting and de-duplicating each element
in the Λ matrix. DGDG introduces a hyperparameter, α, which represents the
number of fuzzy clustering, i.e., the times of variables grouping in whole algo-
rithm ran process. Assumed α is equal to 2 in our example. So the distance
between two adjacent selected thresholds, step is equal to 2, the floor of the size
of ε vec divided by α. And all selected thresholds is vector (5, 2, 0). Finally, the
GDG method is used for each threshold one by one. For instance, assumed the
threshold currently to be processed is 2. Then, a matrix Θ is obtained from Λ
and ε(ε ∈ ε vec). The entry Θij takes 1 if Λij > ε, and 0 otherwise. The Θ matrix
is shown in Eq. (4). Considering Θ matrix as the adjacency matrix of a graph,
we got two groups, {x1, x5} and {x2, x3, x4}.
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Λ =

⎛
⎜⎜⎜⎜⎝

0 1 2 1 4
1 0 4 5 2
2 4 0 2 2
1 5 2 0 2
4 2 2 2 0

⎞
⎟⎟⎟⎟⎠

(3)

Θ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

(4)

Algorithm 2. DGDG(f,lb,ub,D,α)
1: Λ ← calcDiffMat(f, D, lb, ub) //computing the original difference matrix using

the method described in paper [5]
2: ε vec ← unique(sort(diff(:))) //obtaining the candidate threshold vector
3: idx ← size(ε vec)
4: step ← floor(size(ε vec)/α)
5: Initialize the best solution, bestx, bestval
6: while idx > 0 do
7: ε ← ε vec(idx)
8: Θ ← Λ > ε
9: groups ← grouping(Θ)

10: (bestx,bestval) ← sub optimizer(f, lb, ub, D, groups, bestx, bestval) //using
sub-optimizer to find the best solution according to the current solution and
current groups

11: idx ← idx - step
12: end while

4 Experimental Results and Discussions

4.1 Experimental Settings

In order to show the effect of the proposed DGDG method for solving the LSBO
problem, the proposed DGDG algorithm is evaluated on the CEC’2010 LSGO
benchmark functions and use PSO optimal algorithm as sub-optimizer. The final
results obtained by CC-DGDG-PSO are compared with CC-GDG-PSO proposed
by Mei et al. The stop criterion maxFEs = 3× 106 is a commonly-used setting.
Besides this parameter, there is only one parameter related to DGDG (Algorithm
(2))- α. Three different values (3, 6, 9) for α are took to experiment on DGDG
algorithm. All the compared algorithms were run 25 times independently to
reduce the randomness of experiment.
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The CEC’2010 LSGO benchmark functions which consist of 20 1000 −
dimensional benchmark function (f1 to f20) can be divided into three cate-
gories, fully separable (f1−f3), partially separable (f4−f18), fully non-separable
(f19 − f20).

4.2 Results and Discussions

Tables 1, 2, 3 respectively shows the minimal, median, mean and standard devi-
ation of fitness values obtained by the 25 independent runs of the compared
algorithms on fully separable functions (f1 − f3), partially separable functions
(f4 − f18), fully non-separable functions (f19 − f20) of the CEC’2010 LSGO
benchmark functions. CC-GDG-PSO indicates the GDG grouping method is
adopted. CC-DGDG-PSO3, CC-DGDG-PSO6, CC-DGDG-PSO9, respectively
indicate the DGDG grouping method with different α value (3, 6, 9) is adopted.

Overall, it is seen that CC-DGDG-PSO6 performs much better than CC-
DGDG-PSO3 and CC-DGDG-PSO9 over 20 benchmark functions from all
tables. The three algorithm obtained the same magnitude global optimal solu-
tion over most of functions respectively, while CC-DGDG-PSO6 has a rather
small global optimal solution over the three functions f7, f8, and f12 belonged
to partially separable functions, which is orders of magnitude lower than CC-
DGDG-PSO3 and CC-DGDG-PSO9.

From Tables 1 and 3, which respectively consist of fully separable functions
and fully non-separable functions, it is obviously that CC-DGDG-PSO performs
much better than CC-GDG-PSO algorithm. CC-GDG-PSO performs better than
CC-DGDG-PSO only on functions f5, f6, f10, f11, f15, f16 and f18, from Table 2.
But the global optimal solutions they obtained are the same in magnitude. How-
ever, CC-DGDG-PSO performs much better than CC-GDG-PSO in most of this

Table 1. Minimal, median, mean standard deviation of the fitness values obtained by
the 25 independent runs of the compared algorithms on fully separable functions of the
CEC’2010 benchmark functions (f1 − f3)

Function CC-fGDG-PSO CC-DGDG-PSO3 CC-DGDG-PSO6 CC-DGDG-PSO9

f1 Min 4.27E−01 8.00E−02 5.30E−02 1.30E−01

Median 1.36E+03 1.74E+00 1.82E−01 4.65E−01

Mean 1.06E+05 4.93E+00 2.43E−01 5.51E−01

Std 4.72E+05 8.05E+00 2.18E−01 3.66E−01

f2 Min 7.36E+03 7.44E+03 7.27E+03 7.12E+03

Median 7.85E+03 7.74E+03 7.66E+03 7.54E+03

Mean 7.86E+03 7.74E+03 7.62E+03 7.56E+03

Std 2.30E+02 1.52E+02 1.85E+02 2.15E+02

f3 Min 1.20E+01 6.01E+00 4.35E+00 3.63E+00

Median 1.30E+01 6.60E+00 5.10E+00 4.14E+00

Mean 1.30E+01 6.75E+00 5.11E+00 4.09E+00

Std 8.00E−01 4.50E−01 4.17E−01 2.59E−01
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Table 2. Minimal, median, mean standard deviation of the fitness values obtained by
the 25 independent runs of the compared algorithms on partially separable functions
of the CEC’2010 benchmark functions (f4 − f18)

Function CC-fGDG-PSO CC-DGDG-PSO3 CC-DGDG-PSO6 CC-DGDG-PSO9

f4 Min 4.69E+11 1.72E+11 2.84E+11 2.53E+11

Median 1.06E+12 3.44E+11 5.19E+11 6.23E+11

Mean 1.14E+12 3.78E+11 5.61E+11 6.54E+11

Std 4.56E+11 1.23E+11 1.94E+11 2.02E+11

f5 Min 2.71E+08 2.85E+08 3.62E+08 3.13E+08

Median 3.47E+08 5.32E+08 4.56E+08 4.80E+08

Mean 3.46E+08 5.09E+08 4.71E+08 4.91E+08

Std 3.57E+07 1.12E+08 7.13E+07 1.13E+08

f6 Min 2.43E+06 3.54E+06 2.73E+06 2.20E+06

Median 3.47E+06 4.98E+06 4.05E+06 4.35E+06

Mean 3.58E+06 8.78E+06 5.95E+06 8.04E+06

Std 1.00E+06 6.66E+06 5.17E+06 6.42E+06

f7 Min 5.73E+03 4.40E−01 9.01E−04 3.80E−03

Median 5.95E+05 3.26E+00 2.92E−02 1.02E−01

Mean 1.21E+05 5.60E+00 8.48E−02 2.11E−01

Std 1.61E+05 6.79E+00 1.96E−01 2.58E−01

f8 Min 1.63E+02 1.04E+02 5.26E−04 3.01E+02

Median 3.43E+07 1.15E+07 1.10E−02 2.08E+06

Mean 4.63E+07 1.53E+07 9.50E+03 1.77E+07

Std 4.02E+07 2.04E+07 4.70E+04 3.36E+07

f9 Min 4.97E+06 5.61E+06 4.70E+06 4.33E+06

Median 7.84E+06 7.52E+06 6.11E+06 5.78E+06

Mean 7.86E+06 7.37E+06 6.23E+06 5.89E+06

Std 1.31E+06 9.96E+05 7.79E+05 8.96E+05

f10 Min 7.44E+03 8.95E+03 8.31E+03 8.50E+03

Median 7.81E+03 9.73E+03 9.40E+03 9.43E+03

Mean 7.81E+03 9.82E+03 9.50E+03 9.44E+03

Std 1.94E+02 5.05E+02 4.93E+02 4.50E+02

f11 Min 7.70E+01 1.11E+02 1.02E+02 1.07E+02

Median 8.60E+01 1.32E+02 1.20E+02 1.24E+02

Mean 8.60E+01 1.34E+02 1.21E+02 1.25E+02

Std 4.62E+00 1.70E+01 8.61E+00 8.45E+00

f12 Min 4.60E+01 1.00E+01 9.80E−01 4.43E−01

Median 4.57E+02 1.80E+01 1.83E+00 9.36E−01

Mean 9.22E+02 2.10E+01 2.00E+00 9.15E−01

Std 1.47E+03 1.20E+01 7.70E−01 2.41E−01

(Continued)
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Table 2. (Continued)

Function CC-fGDG-PSO CC-DGDG-PSO3 CC-DGDG-PSO6 CC-DGDG-PSO9

f13 Min 5.04E+02 3.96E+02 1.15E+02 1.50E+03

Median 9.61E+02 1.06E+03 1.91E+03 2.86E+03

Mean 1.01E+03 1.22E+03 2.05E+03 3.03E+03

Std 3.99E+02 5.25E+02 8.25E+02 1.38E+03

f14 Min 1.55E+07 1.61E+07 1.59E+07 1.30E+07

Median 1.81E+07 2.08E+07 1.82E+07 1.70E+07

Mean 1.83E+07 2.12E+07 1.89E+07 1.66E+07

Std 1.78E+06 2.48E+06 2.26E+06 1.67E+06

f15 Min 7.30E+03 1.03E+04 9.92E+03 9.96E+03

Median 7.80E+03 1.09E+04 1.08E+04 1.11E+04

Mean 7.76E+03 1.10E+04 1.09E+04 1.10E+04

Std 2.67E+02 4.92E+02 6.00E+02 5.10E+02

f16 Min 1.34E+02 2.44E+02 2.17E+02 2.18E+02

Median 1.44E+02 2.57E+02 2.42E+02 2.31E+02

Mean 1.45E+02 2.60E+02 2.42E+02 2.33E+02

Std 5.78E+00 1.10E+01 1.00E+01 1.40E+01

f17 Min 1.18E+03 3.18E+02 2.10E+02 2.85E+02

Median 2.51E+03 4.36E+02 3.23E+02 4.19E+02

Mean 2.73E+03 4.52E+02 3.27E+02 4.22E+02

Std 1.26E+03 1.04E+02 7.30E+01 7.70E+01

f18 Min 1.32E+03 1.71E+03 4.70E+03 3.00E+03

Median 2.23E+03 3.76E+03 1.05E+04 7.42E+03

Mean 2.47E+03 4.84E+03 1.12E+04 9.42E+03

Std 9.17E+02 2.51E+03 4.83E+03 6.32E+03

Table 3. Minimal, median, mean standard deviation of the fitness values obtained by
the 25 independent runs of the compared algorithms on fully non separable functions
of the CEC’2010 benchmark functions (f19 − f20)

Function CC-fGDG-PSO CC-DGDG-PSO3 CC-DGDG-PSO6 CC-DGDG-PSO9

f19 Min 3.28E+05 8.31E+04 7.63E+04 8.31E+04

Median 4.95E+05 1.14E+05 1.14E+05 1.08E+05

Mean 4.85E+05 1.20E+05 1.13E+05 1.11E+05

Std 8.61E+04 2.18E+04 2.15E+04 2.13E+04

f20 Min 5.09E+07 2.02E+03 2.13E+03 1.89E+03

Median 2.63E+08 2.43E+03 2.30E+03 2.22E+03

Mean 3.19E+08 2.43E+03 2.35E+03 2.22E+03

Std 2.01E+08 1.83E+02 1.68E+02 2.56E+02
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functions. This may be caused by the fact that the CC-GDG-PSO is grouped
before the algorithm runs and the algorithm reaches convergence early on some
functions e.g. f7, f8. However, the CC-DGDG-PSO will be regrouped during the
operation of the algorithm so that the originally converged state diverge again to
get better results.

5 Conclusions

This paper proposed a Dynamic-GDG method for variable decomposition, which
addresses the issue that the GDG method can not be dynamically adjusted with
the evolution of the algorithm in the variable decomposition of LSBO problems.
By solving 20 test functions of CEC’2010 LSGO benchmark functions, it is
known that the optimization result of the algorithm can be improved by the
DGDG method. Next, we will continue to study the strategy of dynamic variable
decomposition to further improve the optimal effect of LSBO problems.
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Abstract. Most of the optimization problems are dynamic in real world. When
dealing with the dynamic optimization problems, the evolutionary algorithms
always suffer from low accuracy and diversity loss. One of the main reasons of
low accuracy is that the population cannot convergent to the optima in limit
computational cost. And one of the main reasons of diversity loss is that some
areas are searched repeatedly while leave the others unsearched deal to the
unbalanced attraction from local optima. To cope with the deficiency, two
strategies are proposed in this paper. One is called Searching Gbest, which
searches for a better solution along each dimension of the best one in the pop-
ulation to accelerate the convergence, and the other is predicting convergence,
which deletes the population if it has the trend of converge to the searched area to
avoid the repeatedly search. The proposed methods are tested on PSO with
multiple populations. The experiments on the Moving Peaks Benchmark show
that the methods can improve optima tracking ability, avoid repeatedly search
and save the computing resources effectively.

Keywords: Dynamic optimization � Particle swarm optimization algorithm
Predictive mechanism � Moving Peaks Benchmark

1 Introduction

Dynamic Optimization Problems (DOPs) exists extensively in real life. To solve these
problems, swarm intelligence algorithms, such as ant colony optimization (ACO),
particle swarm optimization (PSO), and so on are widely employed [1]. Generally, a
dynamic optimization problem can be summarized as follows.

Optimize f X; tð Þ ¼ f x1;x2;x3;. . .xn;t
� � ð1Þ

Where X ¼ ðx1; x2; x3; . . .xnÞ is the decision vector in the range of R and each
dimension of the search space is defined between xlbj \xj\xubj for j = 1, 2…. n. xlbj and

xubj are the lower boundary and the upper boundary for each dimension. f is the
objective function to be optimized, which will change over the time, t [2].
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In the past years, some researchers have done a lot of research on dynamic opti-
mization by using swarm intelligence. Many strategies aim for handling the dynamics
[3, 4] are proposed. For example, the methods of increasing diversity after a change,
determining the moment to react to change, the methods of searching and tracking the
optimal solution [3]. To effectively maintain the balance of population diversity and
convergence and track the optimal solution after the environmental changed, some
algorithms divide the population into multiple sub-populations and search for each
independent sub-areas simultaneously [5, 7, 8]. In this situation, the convergence
ability of the subpopulation has big influence to the precision of the final results. To
improve the searching precision, a strategy call searching Gbest is proposed. Moreover,
repeat search to the same area could lead to the computational resource wastes. To
avoid repeated search, predicting convergence is presented.

2 Related Work

Evolutionary algorithms always suffer from diversity loss when dealing with opti-
mization in dynamic environment. The converged population in the process of
searching optima is hard to redistribute after environmental change and lead to the poor
performance. To maintain the diversity of population, many methods have been pro-
posed [3, 4]. Among them, multi-population method is mostly adopted. In addition, the
memory based method and prediction method are also widely used as assistance.

2.1 Multi-population Methods

Multi-populations method divides a population into many subpopulations in a certain
way. Each subpopulation simultaneously searches for an optimal solution in an inde-
pendent sub-region [3, 5]. Li and Yang proposed an algorithm called CPSO, which the
number of populations is dynamic. If the overlap range of two subpopulations is greater
than a certain threshold, the two subpopulations merge into one and it will have more
opportunities to search for the best solution [5]. Shams and Salwani proposed an
algorithm called Multi-pop-ABC, which divides the population into multiple sub-
populations to exploit and explore the search process, and it used artificial bee colony
algorithm and obtained a good result compared to others algorithms in MPB [8].

2.2 Memory-Based Methods

When fitness landscape shows up repeatedly or has some kind of relations. The reuse of
the acquired historical information could be benefit for the performance. Historical
information can guide us to search for a better solution with purpose [3, 7]. Halder and
Das proposed a method called external archive (Ar) based on memory [7]. If a cluster
or a subpopulation is converge, the cluster will be delete and its best solution is
preserved in Ar. B Nasiri proposed a new method, which uses a BSP tree to store
important information in the iteration process [9, 10].
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2.3 Prediction and Optima Tracking

Prediction and optima tracking are the other useful methods when the fitness landscape
has some kind of relations between environmental changes. Prediction mechanism can
save a lot of computing resources and improve the performance of the algorithm.
Yazdani and Nasiri proposed an algorithm called FTMPSO [6], in order to explore a
better solution, it searches for a better solution near the current optimal solution at the
end of each iteration. Wang and Xiong proposed a method to predicted the location of
the new solution, where is based on the idea that it create the prediction areas before
the changes occur [11].

To accelerate the convergence and save computational resource, this paper pro-
poses two methods named searching Gbest and predicting convergence for moving
peaks problem.

3 The Methods

The proposed method is based on the basic particle swarm optimization, it uses
clustering to divides the population into multiple subpopulations and each subpopu-
lation search for an optimal solution in an independent sub-area simultaneously, and
the Gbest is the best one in the whole population.

3.1 Searching Gbest

In order to search a better solution, the best solution of the population noted as Gbest is
selected. Then a better solution within the range of radius R of Gbest along each
dimension is searched. It is worth noticed that this approach is used at the beginning of
each generation. It is equivalent to searching for a better solution around Gbest
throughout the iteration rather than search a better solution around the Gbest when
subpopulations have converged. The pseudocode of Searching Gbest is presented in
Algorithm 1.

Algorithm 1. Searching Gbest
1 if  i<=SearchNum do
2 Temp_gbest=gbest
3 for each dimension d of gbest do
4 Temp_gbest[d]=gbest[d]+rand(-R,R); 
5 if f(Temp_gbest)>f(gbest) do
6 gbest[d]=Temp_gbest[d];
7 end 
8 End
9 End
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Note that rand(-R, R) means generate a random number within the range of –R to
R. gbest stands for the best solution at present and Temp_gbest is temporary variable.

3.2 Predicting Convergence

Two subpopulations may converge to the same peak in the process of optima
searching. To save computational resource, one subpopulation should be deleted to
ensure that a peak can only be tracked by a single population [6, 7]. It is very important
to determine whether the population converges in multi-population methods. In this
paper, we proposed a new method called predicting convergence and have adopted a
predictable way to avoid two peaks in one peak and reduce the waste of computing
resources. The proposed method is shown in Algorithm 2 as follows.

Algorithm 2. Predicting Convergence
1 for each subpopulation sub(i) do
2 for each convergence subpopulation csub(j) do
3       Num=0;
4       for each dimension n do
5            if |sub(i,n)-csub(j,n)|<m do
6                Num=Num+1;
7           end
8        end
9 end
10 if Num= Dimension do
11 subpopulation sub(i) and convergence subpopulation csub(j)is considered in 

the same peak;
12      Delete subpopulation sub(i); 
13   end
14 end

In Algorithm 2, sub(i, n) represents the n-th dimension of the individual with
highest fitness in i-th subpopulation at present and csub(j, n) represents the n-th
dimension of the individual with highest fitness in the j-th convergence subpopulation.
If each dimension of the i-th subpopulation is in the radius m of each dimension of the
j-th convergent subpopulation, it considers the i-th subpopulation is moving toward the
j-th convergent subpopulation and two subpopulations may converge to the same peak
in the next evolutionary process. In this case, one of them will be deleted.
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4 Experiment and Discussion

4.1 Moving Peaks Benchmark

Moving Peaks Benchmark (MPB) is a classic benchmark for dynamic optimization
problems and it is widely used in DOPs. Individuals track the highest peaks which
height, width and location change in new environment [1, 5]. For the D dimensional
landscape, the problem is defined as follows.

F x; tð Þ ¼ max
i¼1...p

HðiÞt
1þWðiÞt

PD
j¼1ðx jð Þt�Xði; jÞtÞ2

ð2Þ

where HðiÞt and WðiÞt are the height and width of the i-th peak at time t respectively.
Xði; jÞt is j-th dimension of the location of the i-th peak at time t. p represents the
number of peaks and calculating the maximum value by the max function [2, 5]. The
position of each peak is shifted in a random direction. The parameter shift length s
controls the severity of the problem dynamics. For more details about MPB, please
refer to the paper [1]. Note that standard setting is adopted in the paper and the default
settings and definition of MPB is presented at Table 1.

Each experiment runs 30 times independently.

4.2 SearchGbest Effect

Searching Gbest works for accelerate convergence. To show the effect of the proposed
method, the Searching Gbest is added to PSO with multiple population. We also hired
two other methods to compare with it. One is No SearchGbest, in which nothing is
added. The other is Ndim SearchGbest, in which a set of five individuals within a radius
of R is generated around Gbest. The experimental results are shown in Fig. 1.

From Fig. 1 we can observe that the proposed method called Searching Gbest
could improve the searching precision. The method accelerates population convergence
and has more opportunities to search for a better solution. It’s equivalent to enhance a
local search around the current solution. Note that it only searches once for each
dimension within the radius R range in each generation.

Table 1. Default settings for the MPB

Parameter Value Parameter Value

Number of peaks, p 5, 10, 20, 50, 100 Shift length, s 1.0
Change frequency 5000 Number of dimension, D 5
Height severity 7.0 Correlation coefficient 0
Width severity 1.0 Height range [30, 70]
Peak shape Cone Width range [1.0, 12.0]
Basic function No Initial height 50
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Fig. 1. Comparison of searching Gbest, No SearchGbest and Ndim SearchGbest on MPB with
5, 10, 20, 50, 100 peaks, respectively. X-axis represents the number of environmental changed
with p peaks and Y-axis represents the offline error
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4.3 The Effect of Predicting Convergence

We test the Predicting Convergence on MPB with 20 peaks. The distribution of the
population in 2D of before and after environmental changed, and with and without
Predicting Convergence are shown in Fig. 2.

Figure 2(a) shows the initial random population distribution. After the population
evolves for a certain time, the population will converge to some of the certain optimal
area. Figure 2(b) and (c) show the population distribution of converged population with
and without proposed Predicting Convergence respectively before change happens. We
can observe that the proposed method can effectively avoid more than one subpopu-
lations converge to one peak. In order to maintain population diversity, some random
particles are introduced after environmental changed which is shown in Fig. 2(d).
Figure 2(e) and (f) presents the population distribution with and without prediction
convergence method before and after the environmental changed, respectively. Due to
the preserved individuals from last environment, the populations can quickly converge.
The prediction convergence method maintains the good distribution of the population
through comparing Fig. 2(e) and (f). It can be observed that the method is effective for
avoiding subpopulations repeatedly searching for a certain area.

Fig. 2. Population distribution on MPB with 20 peaks: (a) the initial population (b) population
distribution before environmental change with Predicting Convergence (c) population distribu-
tion before environmental change without Predicting Convergence (d) population distribution
after environmental change, random individuals are introduced (e) the converged population with
Predicting Convergence (f) the converged population distribution without Predicting
Convergence
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5 Conclusions and Future Work

In the paper, searching Gbest is proposed to enhance local search ability and accelerate
convergence of the population. Moreover, Predicting Convergence is proposed to avoid
repeatedly search and save computing resources. Experiments on MPB show that the
proposed methods could improve the performance of the algorithm.
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Abstract. This paper proposes to optimise the steering linkage including an
effect of McPherson strut front suspension. Usually, the suspension is exerted
with an impact force due to uneven road, which dynamically changes to per-
formance of a steering linkage. The present work proposes to study an effect of
suspension to performance of steering mechanism with comparative study of
steering mechanism with and without suspension system, which is included in
optimization problem. The performance is minimised in both turning radius and
steering error, that is called multi-objective optimisation problems. The model of
McPherson strut front suspension is simplified model but it is sufficient accu-
racy. The results show that the suspension is an important effect on the opti-
misation design and the optimisation results show that the design concept leads
to effective design of rack and pinion steering linkages satisfying both steering
error and turning radius criteria.

Keywords: Rack-and-pinion steering linkage � Steering error
Turning radius � Multi-objective optimization
Population-based incremental learning: McPherson strut

1 Introduction

Steering linkages can categorise in two groups for passenger car or personal car,
sometime it is group as four-bar and six-bar linkages. The former is widely used for the
old passenger car, which used rigid axle. The last group is presently popular for
personal car or modern cars. Both group still in used at the present due to two reasons
that are eases of construction and operation [1]. The optimum synthesis of the planar
four-bar linkage fulfilling the Ackermann principle has been proposed by many
researcher [1–14] by using gradient based [1, 4, 14] and non-gradient based [2, 3, 5, 13]
optimizer with an objective function perform in single objective or multi-objective
optimization. At the present we know that the six-bar linkage can design to accord with
the Ackerman principal than the old one, so it makes the mechanism is popular in
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studying the performance enhancement. Very recent work by Sleesongsom and
Bureerat [15] proposed minimise steering error and turning radius to find the steering
linkage layout with can compromise in both objectives. Steering error (dhO) is the
different angle between the outer front wheel axle made by the actual steering linkage
(hO) and Ackermann principle (hOA) as shown in Fig. 1.

To protect the wheel from wear and skidding, the steering linkages should keep
minimum steering error. The steering error equation is shown in the following equation

dhOðhIÞ ¼ hOðhIÞ � hOAðhIÞj j ð1Þ

where hO is the actual angle made by the outer front wheel during turning and hOA is
the correct angle for the same wheel based on the Ackermann principle. The formu-
lation of the actual angle and the correct angle can see in reference [15]. For the turning
radius, it makes the car more nimble driving in the narrow way and traffic jam. The
smallest turning radius Rmin at the full turn is shown as

Rmin ¼ D þ C ¼ D þ Wb= sin hO;max ð2Þ

where D is a kingpin length, C is the distance from the instantaneous centre of turning
to the kingpin, and hO,max is the actual maximum angle made by the outer front wheel
during full turning [15].

From our review of literature, it is found a few research did about dimensional
design of steering linkage including the McPherson strut suspension effect except the
work by Felzien and Cronin [11], they considered combining the McPherson sus-
pension and steering linkage models in the minimization of steering error. Later, Zhou
et al. [13] proposed the optimization of the steering error included the effect of toe-in
angle changing due to wheel jumping. Furthermore, this combination of steering
linkage and McPherson suspension has been used to study the steering kickback
performance [16]. In this study proposed a simplified planar model of steering system
is used to minimize the vibration of the steering wheel. The most of the past researches

O 

Wb

I OA

OOA

O

Wt

RD

C

Fig. 1. Steering error [15].
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focus on modeling accuracy of the McPherson strut suspension in both two and three
dimensions rather than considering the effect on steering system [17–21].

The purpose of this research is to optimise the dimension of a six-bar steering
mechanism that including the effect of McPherson strut suspension when exerting with
the impulse load. The optimizers are used in this study is the best scheme from our
previous work [15], which is an adaptation of the hybrid multi-objective real-code
population-based incremental learning and differential evolution (RPBIL-DE). The
previous result is used to comparative performance with the present work to study the
effect of the McPherson strut suspension in designing the steering linkage. The model
of the McPherson strut front suspension is composed of lump mass of wheel and its
support and strut suspension. The system has sixth degree of freedom exert with
impulse load due to uneven road. The design problem is set to minimize the steering
error and turning radius that are conflicting objectives. The optimization problems are
assigned as minimization of the maximum steering error and the turning radius.

The rest of this paper is organised as follows. Simplified model of steering linkage
and McPherson strut front suspension are presented in Sect. 2. The optimisation
problem and RPBIL-DE are detailed in Sect. 3. The design results are given in Sect. 4,
while the conclusions of this study are drawn in Sect. 5.

2 Simplified Model of the System

To include the effect of suspension system into dimensional synthesis problem of the
steering linkage, the model of McPherson suspension system should be sufficient
accuracy to simulate the change of toe in angle cause by uneven road. This angle knows
as changing due to uneven road act with the suspension [13]. The system is showed in
Fig. 2 is composed of the suspension system and steering system. The wheel and
supporting equipment is modelled with six degrees of freedom as shown in Fig. 2(b).
The whole wheel is modelled as a single object with appropriate inertial properties. This
model is adapted from [16]. Flexible lower arm is modelled by spring line in the x-
direction, while the flexible tie rod is modelled by a spring line in x-y plane has an angle
h3 respect to a steering rack axis as shown in Fig. 3. Usually tie rod is built as part of
supporting kingpin as a result it can neglect to consider the flexible of this member.

The equation of motion for this model can be derived by considering the centre of
mass C displaces from its original position due to a car moves pass an uneven road. The
wheel with supporting is idealized as a rigid body of mass m attached to lower arm, tie
rod and McPherson strut that model with three degree of linear spring, except the strut
is modelled with stiffness and damping constant. These elements are independence in
each direction. Considering impulse forces due to uneven road exert on wheel at the
centre of mass. The origin G of the fixed global coordinate system G �X�Y�Z is located at
the centre of mass C at static equilibrium. Under working condition the displacement of
the centre of mass C will be measured by xc; yc; zc; hx; hy; hz.
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Linear spring behaviour is expressed with the following relation:

F ¼ kðr� r0Þ ¼ kdr ð3Þ

where k is spring stiffness, r0 is the position of the un-stretched spring, r is the position
vector of the spring under the force F, and dr is a spring translational vector.

A rigid body of the whole wheel attached with a linear equivalent springs due to a
strut suspension, lower arm and tie rod is given in Fig. 4. From the figure, the position
vector of the i-th spring can be expressed with respect to the centroid position as

ri ¼ rc þ rci ð4Þ

where ri is the position vector of spring i, rc is the position vector of the mass centre, rci
is the potion vector of spring i with respect to the mass centre.

Fig. 2. (a) Model of the steering system [17] (b) simplified model of the suspension system
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Fig. 3. Six-bar planar rack-and-pinion steering linkage configuration [15].

Optimization of Steering Linkage Including the Effect 615



When the body is in motion due to uneven road supplied force to wheel, the
derivation of the vectors in Eq. (4) can be written as

dri ¼ drc þ drci ð5Þ

As the centroid and the i-th point are at the same body, we can have

dri ¼ drc þ dh� rci ð6Þ

where dh is the vector of rotation displacements of the body. The translation and
rotation vectors can be defined as

drc ¼
ux
uy
uz

2
4

3
5; dh ¼

hx
hy
hz

2
4

3
5 ð7Þ

where ui is the translation in i-th direction and hi is the angular displacement in the i-th
axis. The rigid body has 6 degrees of freedom. By substituting (7) into (6), we have

dri ¼
ux þ hyrci;z � hzrci;y
uy þ hzrci;x � hxrci;z
uz þ hxrci;y � hyrci;x

2
4

3
5 ¼

1 0 0 0 rci;z �rci;y
0 1 0 �rci;z 0 rci;x
0 0 1 rci;y �rci;x 0

2
4

3
5

ux
uy
uz
hx
hy
hz

2
6666664

3
7777775

¼ Tid

ð8Þ
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Fig. 4. Vector position of spring position relative with center of mass.
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where Ti is called a transformation matrix for the i-th spring and d is the displacement
vector of the body. As a result, elastic potential energy of the i-th spring is

Ui ¼ 1
2
kidrTi dr ¼

1
2
dTðkiTT

i TiÞd ¼ 1
2
dTKid ð9Þ

If the spring-mass system has n linear springs, the total elastic potential energy can
be computed as:

U ¼ 1
2
dT

Xn
i¼1

Ki

 !
d ¼ 1

2
dTKd ð10Þ

where K is the stiffness matrix of the system. The kinetic energy or the work due to
inertial forces can be computed as

T ¼ 1
2
md _rTc d _rc þ

1
2
d _h

T
Id _h ¼ 1

2
_d
T
M _d ð11Þ

where

M ¼ m 0
0 I

� �
¼

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx �Ixy �Ixz
0 0 0 �Iyx Iyy �Iyz
0 0 0 �Izx �Izy Izz

2
6666664

3
7777775

ð12Þ

m is body mass, and I is the matrix of moments of inertia. Due to axis symmetrical
of wheel mass moment I is a diagonal matrix.

Viscous damping due to McPherson strut, which is used to dissipate kinetic energy
is a nonconservative force that may considered by using the Rayleigh dissipation
function. This function assumes that the damping forces are proportional to the
velocities, which can adapt from (11) as shown as follow.

F ¼ 1
2
_d
T
C _d ð13Þ

Equation of motion can be derive by performing Lagrange’s equation as result as
follow

M€dþC_dþKd ¼ FðtÞ ð14Þ

F(t) is impulse force due to uneven road can directly add to Eq. (14) in form of
initial conditions are x0 ¼ 0 and v0 ¼ F̂=m. In this work, numerical solutions of the
system of differential equations in (14) can be carried out by using the Newmarks
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integration technique. Vibration due to uneven road can cause changing of toe angle a
[13] it can approximate a = hz. The change of toe angle is

da ¼ a0 � aij j ¼ hz0 � hzij j ð15Þ

The computation of the steering error and turning radius of the six-bar linkage as
shown in Eqs. (1–2) is detailed in our previous work [15]. The model of the six-bar
linkage is shown in Fig. 3. The interference of steering linkage and McPherson sus-
pension pass the design variables are La, Lt, and H can affect to steering error, so the
steering error in Eq. (2) can be derive to:

dhO ¼ hO þ da� hOAj j ð16Þ

where da can increasing or decreasing the steering error. The purpose of this research is
to minimise the steering error that effect by changing of toe angle, such that the
measuring this angle signal should be measure in maximum in a time interval T.

3 Optimisation Problem and RPBIL-dE

3.1 Optimisation Problem

The multi-objective optimization problem is assigned to minimize the steering error
and turning radius, is shown as:

Minimize
f1ðxÞ ¼ max dhOðhIÞj j ; hI 2 ½0�

; 40
� �

f2ðxÞ ¼ Rmin

( )

Subject to h6;max � h60 � 40
�

f1 � 0:75
�

f1 � 5m
0.1; 0; 0f gT � x� 0.3; 0.3; 0.3f gTm

ð17Þ

where x ¼ La; Lt;Hf gT , dhO ¼ hO þ da� hOAj j, and da ¼ hz, and x ¼ La; Lt;Hf gT

3.2 RPBIL-dE

From our previous studies [15, 22–25], MHs are the most popular optimisers for
solving dimensional design problems. Population based incremental learning (PBIL) is
one optimizer in group of an estimation distribution algorithm (EDA), which is still
popular due to its easy to apply for a single- and multi-objective optimization problem
[15, 24, 25]. Furthermore, this technique is hybrid with the most en efficient technique
that is called Differential Evolutionary (DE), so it is undisputed the performance of this
hybridization as showed in the previous studied [15, 26]. The hybridization of
real-code population-based incremental learning and differential evolution (RPBIL-DE)
for multi-objective optimization has been proposed by Pholdee and Bureerat [24, 26] to
solve a truss structure problem. It is found is one of the top performers for constrained
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truss optimization and later it has an adaptation for solving several practical multiob-
jective optimization problem [15]. The later study found the best optimizer is
RPBIL-DE using DE/best/2/bin operators and the constraint relaxation scheme 3,
where the second best is RPBIL-DE using an opposition-based DE/best/2/bin mutation
operator and the constraint relaxation scheme 3. The present work we propose to use
this technique in this study. For the detail of these optimisers can see in [15].

4 Design Results

The first objective of this research is to find the optimal dimensions of a
rack-and-pinion steering linkage while minimizing the steering error and the minimum
turning radius, which is considered the effect of vibration of suspension system exerted
with impulse force duet to an uneven road. All important dimensions of the car are
from [1] and other parameters of suspension system are given in Table 1. Some of them
are collected from the experiment in our laboratory i.e. the mass moment of inertia,
whole mass, length of member etc.

The PBIL-DE that chooses for this study is applied to solve the problem with the
population size of 50 and the number of iterations being 80. The external Pareto archive
size is set to be 100. Other parameters are assigned as nI = 40 where each probability
tray produces five design solutions. The crossover rate and the probability of choosing
an element from an offspring in the binary DE crossover are set as pc = 0.7 and
CR = 0.5 respectively. Two variant of RPBIL-DE is used to examine in this study can
be detailed as:

RPBIL-DE2: using DE/best/2/bin mutation operator and the mutated offspring c
can be calculated as

c ¼ pþFðq1 � r1ÞþFðq2 � r2Þ ð18Þ

Table 1. Dimensions of a small car and other parameters

Initial dimension (mm)

Wheel base, Wb 2175
Wheel track, Wt 1215
Rack length, Lr 678
Kingpin length, D 300
Whole wheel mass 17.15 kg
IXX, IYY, IZZ 11.57, 11.78, 11.78 kg/m2

Modulus of rigidity of spring 80 GPa
Diameter of coil spring 0.01203 m
Number of round spring 6
Outside diameter of spring 0.14
Diameter of tie rod and lower arm 0.0129 m
Young’s modulus of tie rod 207 GPa
Diameter of lower arm 0.0285 m
Lower arm length 0.36 m
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where F is a uniform random number sampling a new in the interval [0.25, 0.75]. q1, r1,
q2, and r2 are chosen from the current real code population at random. From the
previous studied this technique is the best technique.

RPBIL-DE3: using the opposition-based DE/best/2/bin mutation operator where
the mutated offspring c can be calculated using (18) with F being in the interval [−0.75,
0.75]. Both of variant of the optimiser still use with relaxation scheme [15]. The
constraints in (17) are handled by using the non-dominated sorting for MOEAs can see
more in [15].

The comparative results of two optimisers of the multiobjective design problem
with 30 runs for each algorithm, the obtained results are reported in Table 2. The
values in the table is the hypervolume (HV) of a Pareto front explored by the algo-
rithms where is the reference point used for computing the hypervolume indicator is
same with the previous study [15] at {f1, f2} = {1°, 5.0 m}. The higher hypervolume
means the better result. Other descriptive statistics are showed in the same table that use
to descript the results. For the present design result, the best optimizer is RPBIL-DE23
using DE/best/2/bin operators and the constraint relaxation 3 outperforms the second
one as show with highlight colour in Table 2. It means that the technique has been
proposed in the previous study is undisputed in the performance enhancement to the
optimizers. The performance enhancement technique is composed of both the variant of
mutation and the constraint handling scheme. From the same table the best standard
deviation or minimum standard deviation is the RPBIL-DE23 that means this technique
also more consistency than other technique.

Furthermore, the comparative result of the optimization problem with and without
consider the effect of suspension system exert with force due to an uneven road as
shown in Table 2. The last two columns are the optimum data from our previous work
in [15], which is design without consideration of the effect of suspension system. The
results show the best hypervolume of the design result with considering the suspension
system is lower than the design result without considering the suspension system. It
means that the effect of suspension system is degraded the optimum design result of the
design problem without considered the suspension system.

Some configuration of the design solutions are selected from Fig. 5 where the
corresponding linkages are displayed in Fig. 6(a). A method used to select some design

Table 2. Comparative results for Case-1–4 with a new technique

With Suspension Without Suspension
RPBIL- DE23 RPBIL-DE33 RPBIL- DE23 RPBIL-DE33

mean 0.26148 0.256908 0.3585 0.3532
min 0.078219 0.082133 0.2968 0.3120
max 0.365626 0.367476 0.3651 0.3650
Std 0.111091 0.113763 0.0143 0.0148
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solution set is an even Pareto filter technique [27]. The distribution of the design
variable of Fig. 5 displays in box-plots as shown in Fig. 6(b). The figure shows those
solutions have slightly different dimensions than the previous study especially the
design variable H is increased in distribution, while the other parameter are decreased.
The changing is caused by the effect of suspension system, which is occurred to sustain
the effect of toe angle.
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5 Conclusions

This paper presents technique to find the optimum parameters of steering linkage
included an effect of McPherson strut front suspension. The simplified model of
McPherson strut suspension system is proposed in this study. The effect of interference
mechanism is a cause of undesired effect on optimum design result. This is a reason
why the suspension is included in optimisation design, which guarantees that the
proposed design concept leads to effective design of rack and pinion steering linkages
that can use the linkage in practicability.

For future study, the reliability design approach will develop to handle uncertainties
that take place due to an interference mechanism.
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Abstract. Multi-scale quantum harmonic oscillator algorithm (MQH-
OA) is a novel global optimization algorithm inspired by wave function of
quantum mechanics. In this paper, a MQHOA with individual stabiliza-
tion strategy (IS-MQHOA) is proposed utilizing the individual steady
criterion instead of the group statistics. The proposed strategy is more
rigorous for the particles in the energy level stabilization process. A more
efficient search takes place in the search space made by the particles and
improves the exploration ability and the robustness of the algorithm. To
verify its performance, numerical experiments are conducted to compare
the proposed algorithm with the state-of-the-art SPSO2011 and QPSO.
The experimental results show the superiority of the proposed approach
on benchmark functions.

Keywords: Multi-scale quantum harmonic oscillator algorithm
Optimization algorithm · Individual stabilization · Wave function

1 Introduction

Optimal problems always encountered in scientific, engineering or management
fields. It takes too much time to solve real world problems with traditional
optimization methods, and they cannot be solved effectively. In the past decades,
researchers have developed hundreds of optimization techniques to tackle these
problems inspired from biological evolution or physical world, such as Simulated
annealing (SA) [1], Genetic algorithm (GA) [2], Ant colony optimization (ACO)
[3], Particle swarm optimization (PSO) [4], Fireworks algorithm (FWA) [5,6]
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and Brain storm optimization algorithm (BSO) [7]. These algorithms are proved
to be effective and efficient in real-life optimization problems.

In recent years, inspired from quantum mechanics, many new quantum opti-
mization algorithms have emerged. In [8], Deutsch-Jozsa quantum algorithm
(DQA) is successfully applied in a quantum computer to solve a purely mathe-
matical problem with fewer steps than classical computer. Quantum annealing
algorithm (QAA) [9] uses the tunnel effect of quantum transition mechanism
to minimize multidimensional functions. In [10], a quantum-inspired evolution-
ary algorithm (QEA) is proposed which is based on the concept and principles
of quantum computing, such as quantum bit and superposition of states. In
[11], a quantum genetic algorithm (QGA) is proposed which takes advantage
of quantum computing quantum parallelism, quantum entanglement properties.
[12] uses a Q-bit string as a representation, and proposes the quantum-inspired
differential evolution algorithm (QDE). Quantum particle swarm optimization
(QPSO) [13] employs delta potential well to solve the objective function. The
ground states wave function of the quantum system bounded by delta potential
well are employed as a sampling function to explore the global minimum. QPSO
outperforms the original PSO in search ability and has fewer parameters to con-
trol. But as many other PSOs, it is easy to fall into local optimum in solving
high-dimensional complex optimization problems.

Motivated by probability interpretation of quantum wave function, a novel
quantum meta-heuristic methodology named multi-scale quantum harmonic
oscillator algorithm (MQHOA) is proposed [14], which is used to solve opti-
mal problems such as integer programming, k-means clustering, multi-project
scheduling and so on. [15] uses limited Markov chain theoretics to analyze
the convergence characteristics of MQHOA. [16] proposes a partition algorithm
based on MQHOA for multimodal optimization. [17] demonstrates the uncer-
tainty relationship between global searching accuracy and local searching accu-
racy for the first time. [18] presents an optimized K-means clustering algo-
rithm based on the MQHOA. In [19], an application of MQHOA is applied in
assignment problem for multiple nodes with multiple targets. [20] improves the
MQHOA with energy level stabilizing process analogizing to quantum harmonic
oscillator’s wave function. All of the following work is based on [20].

The energy level stabilization process plays an important role in MQHOA.
This process determines whether the swarm have located the optimal solution
space. The group statistical properties reflect the global distribution of the par-
ticles and used to determine this process. This mechanism has a disadvantage of
only focus on the statistical properties of the swarm, ignoring individual char-
acteristics. If the particle gets trapped in a local optimum and then causes the
premature of the algorithm. A MQHOA with individual stabilization strategy
(IS-MQHOA) is proposed which focus more on individual stabilization. The
individual strategy is more critical to the particles and enables the algorithm
to execute sampling multiple times in solution space. It enhances the global
exploration ability of the algorithm.
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This paper is organized as follows. After the introduction, Sect. 2 reviews
the related work and discussed the theoretical of IS-MQHOA in details.
Experiment results and analysis are presented in Sect. 3. Finally, conclusion and
further discussion are given in Sect. 4.

2 Theoretical Analysis of IS-MQHOA

2.1 Theoretical Background

In quantum mechanical theory, every non-relativistic particle in an electric field
moves randomly in the space where there are different energy levels between
high potential energy states and the ground state. Particles move randomly in
the space where the higher the energy level of Ei(i = 1, 2..., n), the more active
and unstable. The Zero Energy State E0 is the most stable state, in which
particles just stay still to keep balance. The gradual transition of particles from
high energy to low energy levels can be seen as a gradual convergence process.

In the real world, the optimization problem f(x) is usually to find the opti-
mal solution from the solution space. The mathematical model established is
generally abstract, complex and difficult to solve. According to quantum theory
and quantum annealing method, the optimization problem can be transformed
into the problem of finding ground state under a potential well V (x). Mean-
while, the wave function reflects the probability of the optimal solution at each
energy level. The appearance probability of particles in the quantum space can be
demonstrated by time-independent Schrödinger equation. The time-independent
Schrödinger equation is written as:

Eψ(x) =
(

− �
2

2m

d2

dx2
+ V (x)

)
ψ(x) (1)

In linear algebra terminology, (1) is an eigenvalue equation, where E represents
the system energy of stationary state, ψ(x) represents the probability amplitude,
|ψ|2 represents the probability distribution of the particles in the electric field,
� = h/2π (h represents the Planck constant), V (x) indicates the potential energy
and bound condition which is too complicated to express analytically.

It is assumed in [21] that the objective function f(x) could be regarded as the
potential energy V (x) in Schrödinger equation. It is difficult to solve the f(x) and
V (x) in the real world. The transition of particles from high energy levels to the
ground state could be regarded as a convergence process in function evaluation.
According to this model, an objective function f(x) of an optimization problem
can be seen as the potential well of bound states V (x) in quantum system.
Accordingly, (1) can be rewritten as the following form:

Eψ(x) =
(

− �
2

2m

d2

dx2
+ f (x)

)
ψ(x) (2)

where the V (x) in (1) is replaced by f(x) in (2). According to Taylor’s theorem,
a function can be approximated by using a finite number of terms of its Tay-
lor series. The function f(x) in (2) is expanded by Taylor second-order as the
following equation:
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f(x) = f(x0) + f
′
(x0)(x − x0) +

f
′′
(x0)
2!

(x − x0)
2 + ... (3)

where x0 is an optimal solution. f(x0) is a constant. The derivative of the con-
stant term is zero, and the first derivative is zero at the optimal solution in (3).
Then, the function f(x) is transformed into the following equation:

f(x) ≈ f
′′
(x0)
2

(x − x0)2 (4)

where f
′′
(x0) can be seen as a spring constant k in a harmonic motion.

f(x) =
1
2
kx2 (5)

where f(x) is defined as the potential energy of a quantum harmonic oscillator,
k is the resilience coefficient. In quantum theory, the quadratic of wave function
probability amplitude ψ(x) in (2) reflects the probability distribution of particles.
Equation (5) is substituted into (2) to get the wave function ψ(x) as the following
formula:

ψ(x) =
n∑

i=1

ψi(x) =
n∑

i=1

1√
2πσ

exp(− (x − μi)2

2σ2
) (6)

where μ represents the mean value of the optimal solutions, σ denotes the stan-
dard deviation of the current optimal solutions. The smaller the σ, the narrower
the search space. It can be observed in (6) from high energy levels to the ground
state corresponding to process of the wave function of quantum harmonic oscil-
lator changes from an intertwined of n Gaussian functions to an overlapped
Gaussian function.

2.2 Framework of MQHOA

Inspired from laws of quantum motion, MQHOA’s basic idea is to map the
objective function to quantum harmonic oscillator constraint state through Tay-
lor second-order approximation, so as to the optimization problems can be con-
verted to solve the ground state wave function quantum harmonic oscillator
problem under different scales.

MQHOA is characterized by three principle components tightly connected
with each other: energy level stabilization phase, energy level transition phase
and scale decrease phase. In the energy level stable phase, particles explore the
adjacent space in order to locate a better optimal solution. When all of the
particles finish the exploration and exploitation for better solutions, the group
statistics (GS) is used to evaluate the status of the swarm. The difference of
variance is calculated before and after sampling. If the difference is less than the
current scale, the swarm is considered to be in stable status in current scale.
In the energy level transition phase, the main task is to eliminate the particle
with the worst fitness in the swarm. The strategy is to use the mean value of



628 P. Wang et al.

the swarm’s position to replace the particle with the worst fitness. This strategy
ensures the diversity of the swarm with generating a new particle every iteration.
In the third phase, the scale decrease phase adopts the strategy of reducing the
scale by half, so the algorithm repeats the energy level from high to low in a
smaller scale. The changing process from large scale to small scale corresponding
to the gradual transition from global search to local search algorithm.

2.3 Stabilization Strategy in Energy Level Stabilization

Two different strategies are depicted in Fig. 1. Figure 1(a) represents the group
stabilization strategy(GS). Figure 1(b) represents the individual stabilization
strategy(IS). X,X ′ are two vectors that consists of particles. X is consist of
x1, x2, ..., xi(i = 1, 2, 3, ..., k). X ′ is consist of x′

1, x
′
2, ..., x

′
i(i = 1, 2, 3, ..., k).

Where xi represents the potential optimal solution, x′
i is the corresponding par-

ticle generated by Gaussian distribution with center xi and variance σ. The two
expressions represent the stabilization condition.

(a) Group Stabilization strategy (b) Individual Stabilization strategy

Fig. 1. Different strategies in energy level stable phase

The process of GS is that algorithm generates a new sampling positions x′
i for

all sampling particles xi(i = 1, 2, 3, ..., k) in a normal distributions N(xi, σ
2). If

the new position corresponds to a smaller function value: f(x′
i) < f(xi), the xi is

replaced by x′
i until the |σX −σX′ | < σs. Figure 1(b) demonstrates the principle

of IS-MQHOA. IS-MQHOA concerns the stability of the individual particle. By
continuously sampling, particles move for the better optimal solution in the
solution space. The optimal position of particle updates if the particle makes
progress. The individual stabilization strategy makes each particle resampled
until current particle’s position is no longer replaced. The σmin determines the
location accuracy of the algorithm results. When the current scale is less than
the preset accuracy, the algorithm stops and outputs the optimal results.

The IS determines the stability of the swarm through the stability of the
individual. It is more critical with the energy stabilization than the GS. Strict
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constraints strategy makes the algorithm execute energy level stabilization sev-
eral times. It enhances the global exploration of the particle in the solution space.
Exploration is defined as searching for the new regions in the search space, while
exploitation is defined as visiting the regions within the neighborhood of pre-
viously visited individuals. The exploration task is accomplished mainly in the
energy level stabilization phase. And the exploitation task mainly achieved by
the energy level decreased phase. The judgement strategy of the energy sta-
ble phase determined how to keep a proper trade-off between exploration and
exploitation of optimal solutions. IS enables the algorithm to perform multiple
searches in the solution space, enhance the global optimization ability of the
algorithm.

2.4 IS-MQHOA Process

The pseudo code of IS-MQHOA is described as follows:

Algorithm 1. IS-MQHOA Pseudo code
initialize k, σmin, LB, UB, σs=UB − LB.
randomly generate xi, (i = 1, ..., k) in [LB, UB].
calculate the standard deviation σk for all xi.
while (σs > σmin) do

while (σk > σs) do
set F lagstable = 0.
while ( Flagstable == 0) do

Flagstable = 1.
∀ xi, generate x′

i ∼ N(xi, σ
2
s).

∀ xi and x′
i, if f(x′

i) < f(xi) then xi = x′
i, Flagstable = 0.

end
calculate the standard deviation σk for all xi.
update the worst solution: xworst = xmean.

end
σs = σs/2.

end

output xbest, f(xbest).

The initial search range is [LB, UB]. The number of particles is k. The σmin

is the accuracy of the optimal solution. σs = UB − LB. The xmean is the mean
value of xi: f(xmean) = mean(f(xi)). The xworst is the worst solution of xi:
f(xworst) = argmax(f(xi))

3 Experimental Results and Discussions

In this section, there are 6 benchmark functions used in the following exper-
iments. The benchmark functions, search ranges and optimums are listed in
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Table 1. The benchmark functions are divided into two categories: unimodal
function and multimodal function. Usually, unimodal function is used to test
the ability of local search algorithm, and multimodal function is used to test the
ability of the global search. Function f1–f3 are multimodal functions. Function
f4–f6 are unimodal functions. Two experiments are conducted. One is to com-
pare the performance of IS-MQHOA with MQHOA. The other one is to compare
the performance of IS-MQHOA with SPSO2011 and QPSO.

Table 1. Benchmark functions

Function name Benchmark function Range Optimum

Ackley
f1 = −20exp(−0.2

√
1
n

∑n
i=1 x2

i )

−exp( 1
n

∑n
i=1 cos(2πxi))[+20 + e]

[−32,32] 0

Dixon-Price f2 = (x1 − 1)2 +
n∑

i=2
i(2x2

i − xi−1)
2 [−10,10] 0

Griewank f3 = 1
4000

n∑
i=1

x2
i − ∏n

i=1 cos
( xi√

i

)
+ 1 [−100,100] 0

Sphere f4 =
n∑

i=1
x2
i [−100,100] 0

SumSqure f5 =
n−1∑
i=0

ix2
i [−10,10] 0

Zakharov f6 =
∑n

i=1 x2
i + (

∑n
i=1 0.5ixi)

2 + (
∑n

i=1 0.5ixi)
4 [−5,10] 0

The experiments are conducted in MATLAB 2014b (Windows7, Intel Core
i5-2600, 2.6 GHZ, 8G RAM). In the simulations, SPSO2011 is tested using the
population size of 20 and maximum iterations number of 1e5. The scope of
inertia weight is set as [0.4, 0.9]. As for QPSO, the simulation parameters are:
w = 1/(2ln2), c1 = 1/2 + ln(2), c2 = 1/2 + ln(2), maximum iterations number
of 2000, the number of population is 20. For IS-MQHOA, the number of par-
ticles k = 20, σmin=1e−6. Each algorithm runs 50 independent trials on every
benchmark function.

To validate the performance of studied algorithm, the following evaluation
criterions are calculated: the optimal solutions, mean values, standard devia-
tions(Std), and SR(success rate). The optimal solution indicates the exploita-
tion ability of the algorithm, the mean value indicates the solution quality of the
algorithm, and the standard deviation represents the stability of the algorithm.
The SR represents the robust of the algorithm and it’s value equals to the num-
ber of finding the optimal solutions divided by the number of runs. When the
accuracy of the optimal solution is less than 1e − 5, it is considered that the
optimal solution is located.

3.1 Compared with the MQHOA

In the first experiment, IS-MQHOA is compared with MQHOA in dimension
20. The average results are obtained after 50 independent runs of the algorithm.
Table 2 shows the experimental results.
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Table 2. Comparison of results for IS-MQHOA, MQHOA in dimension 20

f1 f2 f3 f4 f5 f6

IS-MQHOA Best 3.27E−06 6.67E−01 1.70E−11 7.42E−12 2.48E−10 1.45E−10

Mean 5.01E−06 6.67E−01 1.53E−10 1.96E−11 1.38E−09 3.42E−10

Std 1.07E−06 3.61E−09 4.04E−11 7.90E−12 1.08E−09 1.23E−10

SR 100% 0% 100% 100% 100% 100%

MQHOA Best 6.66E−06 6.67E−01 3.93E−12 2.08E−11 5.91E−10 2.99E−10

Mean 2.94E−01 6.67E−01 5.47E−03 5.04E−11 2.38E−09 6.80E−10

Std 6.16E−01 7.75E−09 9.04E−03 1.47E−11 1.15E−09 2.95E−10

SR 78% 0% 62% 100% 100% 100%

From Table 2, it can be observed that IS-MQHOA successfully finds the global
optimal solution with 100% success rate on all of the test functions except for
f2(0%) for multimodal function. MQHOA fails to find the global optimal solu-
tion. The success rates are f1(78%), f2(0%), f3(62%). IS-MQHOA enables the
particles of the swarm take a close search of the solution space and improves the
robust ability of the algorithm. IS-MQHOA and MQHOA get stuck in the local
minima and fails to locate the optimal solution on f2 in 50 runs. The Dixon-
Price(f2) is shaped like a valley and the global minimum is inside a long, narrow,
parabolic shaped flat valley. To converge to the global minimum is difficult. For
the unimodal functions f4–f6, IS-MQHOA and MQHOA can find the best opti-
mal solution in 50 runs. But IS-MQHOA can get a higher accuracy of optimal
solutions. From the mean value and standard deviation criterions, the results
are on an order of magnitude, but the IS-MQHOA gets smaller values. Through
the analysis of experimental results, the performance of the proposed algorithm
has been improved in both global search ability and local search ability due to
the more sufficient energy level stabilization process.

3.2 Compared with SPSO2011, QPSO

In this experiment, the performance of the IS-MQHOA is compared with the
recently developed SPSO2011 and QPSO in dimension 50. The average results
are obtained after 50 independent runs of the algorithm. Table 3 shows the exper-
imental results.

For the multimodal functions, none of the compared algorithms find the
optimal solution with probability 1 in 50 runs and trapped into local optimum
with a larger probability. The success rates of SPSO, QPSO for f1, f2 equal
to 0 in all 50 runs. Ackley(f1) function is characterized by a nearly flat outer
region, and a large hole at the centre. The results of the compared algorithm
on f3 are relatively good. The success rates are over 50%. For the unimodal
functions, IS-MQHOA finds the optimal solution with a 100% success rate on
f4–f6. It verifies that IS shows excellent global search capability and the ability
to locate the optimal solution. SPSO2011 can find the optimal solution with a
100% success rate except f5(4%), f6(0%). QPSO is trapped in local optimum on
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Table 3. Comparison of results for IS-MQHOA, SPSO2011,QPSO in dimension 50

f1 f2 f3 f4 f5 f6

IS-MQHOA Best 8.67E−06 6.67E−01 2.03E−11 1.16E−10 5.20E−08 3.77E−09

Mean 1.12E+00 6.67E−01 2.02E−03 2.27E−10 8.86E−08 8.26E−09

Std 9.50E−01 9.62E−08 4.84E−03 9.71E−11 2.07E−08 3.10E−09

SR 10% 0% 82% 100% 100% 100%

SPSO2011 Best 1.65E+00 6.67E−01 9.28E−07 8.63E−07 1.22E−06 1.02E−02

Mean 2.36E+00 8.16E−01 4.14E−03 9.53E−07 6.78E−03 9.24E−02

Std 3.95E−01 3.31E−01 5.48E−03 3.30E−08 1.00E−02 7.71E−02

SR 0% 0% 60% 100% 4% 0%

QPSO Best 4.38E−04 6.67E−01 4.09E−07 9.77E −06 1.21E−06 5.19E+01

Mean 9.86E−03 3.07E+00 3.30E−03 3.76E−04 6.34E−05 1.16E+02

Std 2.93E−02 2.27E+00 6.40E−03 6.53E−04 9.15E−05 3.92E+01

SR 0% 0% 56.7% 33% 20% 0%

the unimodal function. The success rates are f4(33%), f5(20%), f6(0%). QPSO
employs a quantum delta potential well model, which is relatively flat at both
end and a sharp convergence process in the center position. This makes the algo-
rithm premature. The experimental results also prove the theory. From the mean
value, standard deviation respective, the results of IS-MQHOA are better than
SPSO2011 and QPSO. The optimal solutions of IS-MQHOA are more accurate
less than 1e−8.

4 Conclusion

In this paper, a novel multi-scale quantum harmonic oscillator algorithm with
individual stabilization strategy (IS-MQHOA) is proposed. The proposed strat-
egy improves the exploration performance of MQHOA while maintaining its
exploitation performance. IS strategy enables the algorithm to execute energy
level stabilization process several times which increases the exploration capa-
bility of the particle in the solution space. The experimental results show that
IS-MQHOA improves the performance of the original MQHOA and outperforms
SPSO2011 and QPSO on 6 benchmark functions in a statistically meaningful
way. As a future work, it is important for quickly solving practical applications
that we can gain more knowledge on how to improve our algorithm.
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