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1 Introduction

A social choice correspondence chooses alternatives based on the preferences of
the agents. Generally speaking, one looks for social choice correspondences with
desirable properties, such as anonymity, Pareto optimality, and many more. The
problem, as already studied in Hurwicz (1972), is that preferences may be private
knowledge or, more generally, agents are entitled to report any preferences they
wish, resulting in alternatives chosen on the basis of the wrong information, and
thus in the desired properties of the social choice correspondence being violated.
Requiring strategy-proofness of a social choice function, meaning that no agent can
ever benefit from not reporting truthfully, is in general too strong and results in
dictatorship (Gibbard, 1973; Satterthwaite, 1975).

Implementation theory is concerned with finding game forms (mechanisms,
decentralized systems) of which the equilibrium (Nash, strong, etc.) alternatives in
the game with the true preferences coincide with the alternatives assigned to those
preferences by the social choice correspondence under consideration. In particular
since the work of Hurwicz (1972) there is a large literature on necessary and/or
sufficient conditions for implementation of social choice correspondences under
various equilibrium concepts, with Maskin (1999) as one of the basic contributions.
For an overview of this literature up to the current millennium, see Jackson (2001).
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A well-recognized drawback of many of the game forms or mechanisms
employed in implementation theory is that they tend to be fairly complicated and
not easy to use in practice. For instance, they may require agents to report not
just preferences but complete preference profiles, to report integer numbers, etc.
In the present paper, we therefore ask what is still feasible by using what we call
‘self-implementation’: this means implementation by a game form that is simply
a selection (social choice function) from the correspondence under consideration
and, thus, requires the agents just to report their own preferences and nothing else.
Apart from the simplicity of such a mechanism its use is also defendable in the
sense that it is close to the social choice correspondence that is deemed desirable.
Specifically, we ask the following question: which social choice correspondences
are self-implementable in strong equilibrium (that is, strategy-profiles such that no
coalition can gain by deviating, as introduced in Aumann, 1959)?

It turns out that under some natural additional conditions we are able to give a
precise answer to this question: if the number of agents is not too small and the
social choice function that selects from the correspondence and implements it is
anonymous and satisfies ‘no veto power’, then the correspondence must result from
so-called feasible elimination, as already introduced in Peleg (1978). The number
of agents being not too small will be made precise and, together with the no veto
power property boils down to this number being at least as large as twice the number
of alternatives minus one—a condition satisfied in most (political) elections. No
veto power means that no agent on its own is able to exclude any alternative from
being chosen—again a natural condition in larger elections. This result is quite
involved: its proof can be based on a selection from existing results in the literature,
as we will indicate; nevertheless, for the convenience of the reader and in order to
avoid having to introduce many additional concepts, we present a completely self-
contained proof.

As already mentioned, the concept of feasible elimination was introduced by
Peleg (1978), in order to construct the so-called exactly and strongly consistent
social choice functions: for such social choice functions there is for every profile
of (true) preferences a strong equilibrium profile resulting in the truthful alternative.
What we explicitly add in the present paper is not only that social choice functions
that select from a feasible elimination social choice correspondence implement
this correspondence in strong equilibrium, but also that under the additional
conditions mentioned above, the feasible elimination correspondence is the unique
correspondence for which this can be done.

Section 2 introduces the main concepts and Sect. 3 presents the main result. Most
parts of the proof are shifted to the Appendix. Section 4 concludes.

Notations The following basic notations are used throughout. For a set D, |D|
denotes the cardinality of D, P(D) the power set, i.e., the set of all subsets of D,
and P0(D) the set of all nonempty subsets of D.
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2 Self-implementation in Strong Equilibrium

Let A be the set of m alternatives, m ≥ 2, and let N = {1, . . . , n}, n ≥ 2, be the
set of voters. Subsets of N are called coalitions. Let L be the set of all preferences,
i.e., complete, antisymmetric and transitive binary relations, on A. Then LN is the
set of all (preference) profiles. A social choice correspondence (SCC) is a function
H : LN → P0(A). A social choice function (SCF) is a function F : LN → A.
A social choice function F is a selection from a social choice correspondence H if
F(RN) ∈ H(RN) for every RN ∈ LN .

A game form is an (n + 1)-tuple g = (�1, . . . , �n, π), where �i is the strategy
set of player (voter) i ∈ N , and π : �n

i=1�
i → A is the outcome function. For every

RN ∈ LN the pair (g,RN ) is a(n ordinal) game. A strategy profile σ ∈ �n
i=1�

i is a
strong equilibrium (Aumann, 1959) in the game (g,RN ) if there are no S ∈ P0(N)

and σ̃ S ∈ �i∈S�i such that π(̃σS, σN\S) �= π(σ) and π(̃σS, σN\S)Riπ(σ) for all
i ∈ S.1

A social choice correspondence H is strong equilibrium implementable if there
is a game form g = (�1, . . . , �n, π) such that for every RN ∈ LN we have

H(RN) = {π(σ) : σ is a strong equilibrium in (g,RN )} .

In this case we also say that the game form g implements the SCC H in strong
equilibrium.

A social choice function F can be identified with the game form in which the
strategy set of each voter is the set L and the outcome function is F , i.e., to each
strategy profile (preference profile) QN ∈ LN the outcome (alternative) F(QN) is
assigned. We denote this game form simply by F . Then (F,RN) is a game for every
RN ∈ LN .

Let H be a social choice correspondence. We call H strong self-implementable
if there is a social choice function F such that

(i) F(RN) ∈ H(RN) for every RN ∈ LN , and
(ii) H(RN) = {F(QN) : QN is a strong equilibrium in (F,RN)}.
In words, the selection F from H implements H in strong equilibrium.

We assume that every SCC H (including every SCF, since this can be viewed
as a single-valued SCC) occurring in the rest of the paper is non-imposed, i.e., for
every x ∈ A there is an RN ∈ LN such that H(RN) = {x}.

A well-known necessary condition (Maskin, 1999; see also Jackson, 2001) for
H to be (self-)implementable is the following.

Maskin Monotonicity For all RN = (R1, . . . , Rn), QN = (Q1, . . . ,Qn) ∈ LN ,
and x ∈ H(QN), if xQiy implies xRiy for all y ∈ A and i ∈ N , then x ∈ H(RN).

1Here, σN\S denotes the restriction of σ to N \ S. Similar notation will be used throughout the
paper.
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3 Main Result

The purpose of this section is to characterize all social choice correspondences H

that are self-implementable in strong equilibrium if the number of voters is relatively
large and the selection that implements H satisfies two natural properties, namely
anonymity and no-veto power. The latter means that no voter on his own is able to
exclude any alternative from being chosen. We arrive at this theorem by combining
a number of existing results in the literature, but our proof will be self-contained.

We start with the following concept, introduced by Peleg (1978). A social choice
function F is exactly and strongly consistent (ESC) if for every RN ∈ LN the game
(F,RN) has a strong equilibrium QN ∈ LN such that F(QN) = F(RN). We now
immediately have the following result.

Lemma 3.1 Let the selection F from the social choice correspondence H imple-
ment H in strong equilibrium. Then F is ESC.

Proof Let RN ∈ LN and x = F(RN). Then x ∈ H(RN) and therefore there
is a strong equilibrium QN of the game (F,RN) such that F(QN) = x. Hence,
F(QN) = F(RN). ��

The SCCs of interest in this section are based on the so-called feasible elimi-
nation procedures, defined for the case where n + 1 ≥ m. Informally, first, assign
weights β(x) ∈ N to the alternatives x ∈ A such that the sum of these weights is
equal to n+ 1. Consider a preference profile and take an alternative x that is bottom
ranked at least β(x) times. Eliminate β(x) preferences where x is bottom ranked,
and next eliminate x everywhere in the remaining profile. Repeat this procedure
until one alternative remains.

Formally, we have the following definition. Let n+1 ≥ m. A function β : A → N

such that
∑

x∈A β(x) = n + 1 is called a weight function.

Definition 3.2 Let β be a weight function. Let RN ∈ LN . A (β-)feasible elimina-
tion procedure ((β-)f.e.p.) forRN is a sequence (x1, C1; . . . ; xm−1, Cm−1; xm) such
that

(a) A = {x1, . . . , xm},
(b) C1, . . . , Cm−1 are pairwise disjoint subsets of N and |Cj | = β(xj ) for all j =

1, . . . ,m − 1,
(c) xkR

ixj for all j = 1, . . . ,m − 1, k = j + 1, . . . ,m, and i ∈ Cj .

Thus, in a feasible elimination procedure2 (x1, C1; . . . ; xm−1, Cm−1; xm), by
condition (c) alternative x1 is bottom ranked for all voters inC1 and by condition (b),
|C1| = β(x1). Now eliminate the preferences of the voters in C1, and eliminate x1
from the preferences of the remaining voters. In the remaining profile, x2 is bottom
ranked for all voters in C2 by condition (c), and by condition (b), |C2| = β(x2), so

2Dependence on β is often not mentioned when confusion is unlikely.
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that the preferences of the voters in C2 can be eliminated and x2 can be eliminated
from the remaining profile. And so on and so forth. Observe that after eliminating x1
there are n−β(x1) voters left, after eliminating x2 there are n−β(x1)−β(x2) voters
left, and after eliminating xm−1 there are n−β(x1)−. . .−β(xm−1) = β(xm)−1 ≥ 0
voters left.

An important observation about f.e.p.s. is the following. Suppose an alternative
x is bottom ranked by (at least) the voters in some coalition S with |S| = β(x), in
a profile RN ∈ LN . Then x must be eliminated in every f.e.p. for RN . To see this
suppose there is an f.e.p. in which x is not eliminated and let y be the alternative
eliminated last, say via coalition T . Then the finally left voters form a coalition S′
containing S. We have β(y) + β(x) = |T | + |S′| + 1 by the foregoing, but also
|T | + |S′| ≥ β(y) + β(x), a contradiction.

It is not difficult to see that there exists always at least one f.e.p. under the
assumptions in the definition. If every alternative xj is bottom ranked less than
β(xj ) times, then the total number of voters is at most

∑m
j=1 β(xj ) − m, which

is equal to n + 1 − m and therefore strictly smaller than n. A similar argument can
be made after elimination of each alternative x1, . . . , xm−2.

Let β be a weight function. An alternative x is RN -maximal for β if there exists
a β-f.e.p. (x1, C1; . . . ; xm−1, Cm−1; x). We denote

Mβ(RN) = {x ∈ A : x is RN -maximal for β}.

The following lemma repeats the known result that Mβ is Maskin monotonic.
For completeness, a proof can be found in the appendix, where also references to
the literature are provided. For a weight function β as in Definition 3.2 we use the
notation β(B) = ∑

x∈B β(x) for B ⊆ A.

Lemma 3.3 Let β be a weight function. Then Mβ is Maskin monotonic.

Next, we provide a characterization of maximal alternatives. Again, see the
appendix for references and a proof.

Lemma 3.4 Let β be a weight function. Let x ∈ A and RN ∈ LN . The following
statements are equivalent.

(i) x ∈ Mβ(RN).
(ii) There are no S ∈ P0(N) and B ∈ P0(A) such that |S| ≥ β(A \ B), x ∈ A \ B,

and y Ri x for all i ∈ S and y ∈ B.

The following result says that Mβ is self-implementable in strong equilibrium by
any selection from it.

Proposition 3.5 Let β be a weight function and let F be a selection from Mβ . Then
F implements Mβ in strong equilibrium.
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Proof

(a) Let RN ∈ LN and x ∈ Mβ(RN). We show that there is a strong equilibrium
QN of (F,RN) such that F(QN) = x. Let (x1, C1; . . . ; xm−1, Cm−1; x) be an
f.e.p. for RN and consider the profile QN ∈ LN obtained from RN by lowering
xj to the last position in the preferences of the voters in Cj , j = 1, . . . ,m − 1,
leaving everything else in tact. Then Mβ(QN) = {x}, hence F(QN) = x. Also,
QN is a strong equilibrium of (F,RN). Indeed assume on the contrary that
there exist S ∈ P0(N) and PS ∈ LS such that F(PS,QN\S) = z �= x and
zRix for all i ∈ S. Then z = xj for some 1 ≤ j ≤ m − 1. By the definition of
an f.e.p., xRiz for all i ∈ Cj , hence S ∩Cj = ∅. Since |Cj | = β(z) and z is the
last ranked alternative of Q� for all � ∈ Cj , we have that z /∈ Mβ(PS,QN\S),
contradicting F(PS,QN\S) = z.

(b) Let QN be strong equilibrium of (F,RN) with F(QN) = x. We show that
x ∈ Mβ(RN). It is sufficient to show that (ii) of Lemma 3.4 holds for x. Suppose
not. Then there is an S ∈ P0(N) and B ∈ P0(A), x /∈ B, such that yRix for
all y ∈ B and i ∈ S, and |S| ≥ β(A \ B). Consider a profile PS ∈ LS with
A\B at bottom for all voters in S. Then by the remarks following Definition 3.2,
all elements of A \ B will be eliminated in any f.e.p. for (P S,QN\S), so that
Mβ(PS,QN\S) ⊆ B, hence S has an improvement, a contradiction to the
assumption that QN is strong equilibrium of (F,RN). ��

Before turning to a converse of Proposition 3.5 we introduce two additional
possible properties of a social choice correspondenceH . Of course, these properties
also apply for a social choice function F , since a social choice function can be
identified with a single-valued social choice correspondence.

Anonymity For all RN ∈ LN and for all permutations π of N , H(R1, . . . , Rn) =
H(Rπ(1), . . . , Rπ(n)).

No Veto Power For all x ∈ A and i ∈ N , there is no Ri ∈ L such that x /∈
H(Ri, RN\{i}) for all RN\{i} ∈ LN\{i}.

Proposition 3.6 Let social choice function F be ESC, anonymous, and satisfy No
Veto Power, and let n + 1 ≥ m. Then there is a weight function β such that F is a
selection from Mβ .

Also this proposition can be deduced from earlier results in the literature, but
for completeness we provide a self-contained proof in the appendix. The following
theorem is a corollary to Propositions 3.5 and 3.6 and the main result of this section.

Theorem 3.7 Let n+1 ≥ m and let the social choice function H be implementable
in strong equilibrium by a selection F which is anonymous and satisfies No Veto
Power. Then H = Mβ for some weight function β.



Self-implementation of Social Choice Correspondences in Strong Equilibrium 283

Proof By Lemma 3.1 and Proposition 3.6 it follows that there is a weight function
β such that F(RN) ∈ Mβ(RN) for all RN ∈ LN . By Proposition 3.5, F implements
Mβ in strong equilibrium. Hence,

H(RN) = {F(QN) : QN is a strong equilibrium in (F,RN)} = Mβ(RN)

for all RN ∈ LN , which completes the proof. ��
Theorem 3.7 says, roughly, that if the number of voters is relatively large, then the

only social choice correspondences which are self-implementable in a reasonable
way in strong equilibrium are the correspondences Mβ . Typically, in political
elections the constraint n + 1 ≥ m is satisfied and the conditions of Anonymity
and No Veto Power for a final selection of a candidate are natural if not compelling.

The conditions of Anonymity and No Veto Power in the theorem are on the
selection F . In general we can make the following observations. It is possible that
H is anonymous but F is not: let H assign to every profile the set of all top-ranked
alternatives, and let F select from that set the top-ranked alternative of agent 1.
Also, F can be anonymous but H not: fix an alternative a ∈ A and let H assign all
top-ranked alternatives, but leave out a if this is top-ranked by agent 1 alone, and
let F select from H the alternative that is ranked maximally according to a fixed
preference Q which has a last. Further, if F satisfies No Veto Power, then also H

does, but the converse is not necessarily true: fix an alternative a, let H assign all
top-ranked alternatives, and let F select from that according to a fixed ordering Q,
but leave out a as a possible choice if it is last ranked by agent 1. Then H satisfies
No Veto Power but F does not.

Since, by the preceding remarks, Mβ in the theorem satisfies No Veto Power, it
follows by the definition of a β-f.e.p. that β(x) ≥ 2 for all x ∈ A and, thus, that the
number of agents is at least as large as twice the number of alternatives minus one.

4 Concluding Remarks

Clearly, the approach in this paper leaves many open questions. We mention two of
these. First, which social choice correspondences are self-implementable in strong
equilibrium if the number of agents is relatively small—for instance, a small group
of people in a restaurant has to make some common choices from a large menu of
dishes? Second, what can be said about self-implementation in Nash equilibrium?
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Appendix: Remaining Proofs

Proofs of Lemmas 3.3 and 3.4

Proof of Lemma 3.33 Let QN and RN be as in the definition of Maskin mono-
tonicity, and x ∈ Mβ(QN). Without loss of generality we assume that there is a
voter v such that QN\{v} = RN\{v}. Let f ∗ = (x1, C1; . . . ; xm−1, Cm−1; x) be an
f.e.p. for QN , where A = {x1, . . . , xm−1, x}. If v /∈ C1 ∪ . . . ∪ Cm−1, then it is
easy to see that f ∗ is still an f.e.p. for RN , so that x ∈ Mβ(RN). Now assume
v ∈ C1 ∪ . . . ∪ Cm−1. If v ∈ Cj with j > 1, then we may eliminate x1, . . . , xj−1
and all voters in C1 ∪ . . . ∪ Cj−1 first, and next continue the argument with the
remaining profile, where now all voters in Cj have xj bottom ranked according to
QCj . So, without loss of generality, let v ∈ C1.

The rest of the proof is based on a three-step algorithm.

Step 1 If the bottom alternative of Rv is equal to x1, then f ∗ is still an f.e.p. for RN

and we are done. Otherwise, go to Step 2.
Step 2 Let the bottom alternative of Rv be x� �= x1, so � ∈ {2, . . . ,m − 1}. If all

voters in C� have x� as bottom alternative in RN , then we can first eliminate x�

via C� and go back to Step 1 for the reduced profile. Otherwise, go to Step 3.
Step 3 Take v̂ ∈ C� with x� not as bottom alternative and note that the bottom

alternative of Rv̂ = Qv̂ is some xj with j < � (since xj must be eliminated
before x� in f ∗). Then modify C� to Ĉ� = (C� ∪ {v}) \ {v̂} and modify C1 to
Ĉ1 = (C1 ∪ {v̂}) \ {v}. (In words, we switch v and v̂.) Go back to Step 1.

Repeat this procedure until the final substitute of v in the modified C1 has x1 at
bottom. Then we can apply an f.e.p. resulting in x, so that x ∈ Mβ(RN). ��
Proof of Lemma 3.44 For the implication (i) ⇒ (ii), let x ∈ Mβ(RN) and let
(x1, C1; . . . ; xm−1, Cm−1; x) be an f.e.p. for RN . Suppose there were S and B as

in (ii). Write B = {xi1, . . . , xi|B| } ⊆ {x1, . . . , xm−1}, then
(

∪|B|
j=1Cij

)

∩ S = ∅
by definition of an f.e.p., and | ∪|B|

j=1 Cij | = β(B). Hence |S| + | ∪|B|
j=1 Cij | ≥

β(A \ B) + β(B) = n + 1, a contradiction.
We prove the implication (ii) ⇒ (i) by induction on the number of alternatives

m. Let x ∈ A and assume that (ii) holds.
If m = 2, say A = {x, y}, then there is no S ∈ P0(N) such that |S| ≥ β(x) and

yRix for all i ∈ S, so that Mβ(RN) = {x}.

3See Lemma 5.3.5 in Peleg (1984); or Remark 9.3.7 in Peleg and Peters (2010), based on Theorem
9.3.6 in the same source. In turn, the latter result goes back to Polishchuk (1978). More generally,
Lemma 3.7 in Peleg and Peters (2017b) shows Maskin monotonicity of an extension of Mβ .
4Also this result can be deduced from Theorem 9.3.6 in Peleg and Peters (2010). It is included as
Lemma 3.5 in Peleg and Peters (2017a).
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Now suppose that m > 2 and that the implication (ii) ⇒ (i) holds if there
are less than m alternatives. For every B ∈ P0(A \ {x}) denote SB = {i ∈ N :
yRix for all y ∈ B}. Then (ii) is equivalent to

|SB | < β(A \ B) for all B ∈ P0(A \ {x}) (1)

hence to

|N \ SB | ≥ β(B) for all B ∈ P0(A \ {x}). (2)

We consider two cases.

Case 1 There exists ˜B ∈ P0(A \ {x}) with |˜B| ≤ m − 2 and |N \ S
˜B | = β(˜B).

For this case we consider the two following subproblems:

• N1 = N \ S
˜B , A1 = ˜B ∪ {x}, β1(y) = β(y) for all y ∈ ˜B, β1(x) = 1, and

Ri
1 = Ri|A1

for all i ∈ N1.5

• N2 = S
˜B , A2 = A \ ˜B, β2(y) = β(y) for all y ∈ A2, and Ri

2 = Ri|A2
for all

i ∈ N2.

We next show that (1) holds for the first subproblem. If not, then there is a B ∈
P0(˜B) such that |T | ≥ β1(A1 \B), where T = {i ∈ N1 : yRi

1x for all y ∈ B}. Then
|T ∪ S

˜B | = |T | + |S
˜B | ≥ [β1(x) + β(˜B) − β(B)] + [n − β(˜B)] = β(A \ B), hence

|SB | ≥ β(A \B), which is a violation of (1) for the original problem. Therefore, (1)
must hold for the first subproblem, implying that x ∈ Mβ1(R

N1
1 ) by induction.

Similarly, suppose that (1) does not hold for the second subproblem. Then there
is a B ∈ P0(A \ (˜B ∪ {x})) such that |T | ≥ β2(A2 \ B), where now T = {i ∈
S

˜B : yRi
2x for all y ∈ B}. Then |T ∪ (N \ S

˜B)| = |T | + |N \ S
˜B | ≥ [β(A) −

β(B) − β(˜B)] + β(˜B) = β(A \ B), which is a violation of (1) for the original
problem. We conclude that (1) must hold for the second subproblem as well, so that
x ∈ Mβ2(R

N2
2 ) by induction.

Now let (z1, C1; . . . ; z|˜B|, C|˜B|; x) be an f.e.p. for the first subproblem and let
(u1,D1; . . . ; um−1−|˜B|,Dm−1−|˜B|; x) be an f.e.p. for the second subproblem. Since,

in particular, yRix for all y ∈ ˜B and i ∈ N2 = S
˜B , it follows that

(u1,D1; . . . ; um−1−|˜B|,Dm−1−|˜B|; z1, C1; . . . ; z|˜B|, C|˜B|; x)

is an f.e.p. for the original problem, implying that in this case we have x ∈ Mβ(RN).

Case 2 For all ˜B ∈ P0(A \ {x}) with |˜B| ≤ m − 2 we have |N \ S
˜B | > β(˜B).

Suppose there is an � ∈ N such that x is not ranked at the last or second last
position in R�, and let ŷ be the alternative ranked right below x. We switch x and ŷ

in voter �’s preference to obtain a new preference ̂R� and a new preference profile

5Ri
|B denotes the restriction of Ri to B.
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̂RN = (R1, . . . , R�−1, ̂R�,R�+1, . . . , RN ) that still satisfies (2): for any set B with
|B| ≤ m−2 this holds because of the strict inequality in Case 2, and forB = A\{x}
this holds since x is not ranked last in ̂R�.

If Case 1 applies to ̂RN , then x ∈ Mβ(̂RN). Thus, by Lemma 3.3, x ∈ Mβ(RN).
If Case 1 does not apply to ̂RN , then we repeat this step for some voter �′ ∈ N with
x not ranked last or second last at ̂R�′

, and so on, until either Case 1 applies or there
is no voter left with x not ranked at the last or second last position.

In the latter case, we have a profile, say ˜RN , for which still (2) holds and with
x ranked last or second last for each voter i ∈ N . Observe that y is last ranked
for all voters in N \ S{y} for all y ∈ A \ {x}. Also, by (2), |N \ S{y}| ≥ β(y) for
all y ∈ A \ {x}. It follows that in any f.e.p. for ˜RN every y ∈ A \ {x} is bottom
ranked by at least β(y) voters and therefore eliminated, so that Mβ(˜RN) = {x}. By
Lemma 3.3 again, x ∈ M(RN).

By (2), Cases 1 and 2 are exhaustive, which completes the proof of the
lemma. ��

Proof of Proposition 3.6

We now turn to the proof of Proposition 3.6.6 It will be convenient to introduce some
terminology related to effectivity functions.7 Let F be a social choice function and
let S ⊆ N and B ⊆ A. Then S is (F -)effective for B is there is RS ∈ LS such that
F(RS,QN\S) ∈ B for all QN\S ∈ LN\S . For every x ∈ A define the integer b(x)

(the ‘blocking coefficient’ of x) by

b(x) = min{|S| : S ⊆ N is effective for A \ {x} } .

By non-imposition of F , we have 1 ≤ b(x) ≤ n for all x ∈ A. We write b(B) for
∑

x∈B b(x), B ⊆ A. Of course, b(·) depends on F but this will be suppressed from
notation if confusion is unlikely.

We start with three useful observations.8

Lemma A.1 Let the SCF F be anonymous. Let S ⊆ N and B ⊆ A such that
|S| ≥ b(A \ B). Then S is effective for B.

6Alternatively, a proof can be deduced from Theorem 5.5.3 in Peleg (1984), which in turn is
based on Holzman (1986). We include a proof here for completeness, and additionally to avoid
introduction of more definitions and concepts.
7These functions have been first formally introduced in Moulin and Peleg (1982). Here we just use
some of the associated terminology.
8Many of the arguments in this part are based on Chapter 10 in Peleg and Peters (2010) and the
references therein, in particular Holzman (1986).
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Proof Write A \ B = {x1, . . . , xk}, where k ≥ 0. Let S1, . . . , Sk be a partition
of S such that |Sj | ≥ b(xj ) for each j = 1, . . . , k, and let RSj ∈ LSj such that
F(RSj ,QN\Sj ) ∈ A \ {xj } for each j = 1, . . . , k and QN\Sj ∈ LN\Sj . Then
F(RS,QN\S) ∈ B for all QN\S ∈ LN\S . So S is effective for B. ��
Lemma A.2 Let the SCF F be ESC and let S ⊆ N be effective for B ⊆ A. Let
RN ∈ LN and x ∈ A\B such that yRix for all y ∈ B and i ∈ S. Then F(RN) �= x.

Proof Suppose on the contrary that F(RN) = x and let QN be a strong equilibrium
in (F,RN ) with F(QN) = x. Since S is effective for B, there is PS ∈ LS such that
F(PS,QN\S) ∈ B, contradicting that QN is a strong equilibrium in (F,RN). ��
Lemma A.3 Let the SCF F be ESC and anonymous, and assume that b(A) = n+1.
Then F is a selection from Mb.

Proof Let RN ∈ LN and x = F(RN). Let B ⊆ A, S ⊆ N , |S| ≥ b(A \ B), and
x ∈ A \ B. In order to prove that x ∈ Mb(R

N), it is by Lemma 3.4 sufficient to
prove that we do not have yRix for all y ∈ B and i ∈ S.

On the contrary, suppose that yRix for all y ∈ B and i ∈ S. Since |S| ≥ b(A \
B), Lemma A.1 implies that S is effective for B. Then Lemma A.2 implies that
F(RN) �= x, a contradiction. ��

Notice that in order to obtain Proposition 3.6 we may try and derive the condition
b(A) = n + 1 in Lemma A.3. This is, essentially, what is done in the remainder of
the proof.

Lemma A.4 Let the SCF F be ESC, S ⊆ N , B ⊆ A, and suppose that for every
QN\S ∈ LN\S there is PS ∈ LS such that F(PS,QN\S) ∈ B. Then S is effective
for B.9

Proof On the contrary, suppose that for everyQS ∈ LS there is PN\S ∈ LN\S such
that F(QS, PN\S ) ∈ A \ B. Consider a profile RN ∈ LN such that xRiy and yRjx

for every i ∈ S, j ∈ N \ S, x ∈ B, and y ∈ A \ B. Let z = F(RN) and let QN be a
strong equilibrium of (F,RN) with F(QN) = z. If z ∈ A \ B, then S can improve
by a profile PS as in the statement of the lemma. If z ∈ B, then N \ S can improve
by a profile PN\S as above. ��

In what follows we will use the notion of a generalized partition or g-partition of
a set, which is a partition in which some elements may be empty.

Lemma A.5 Let the SCF F be ESC. Then there are no p ≥ 2, partition
B1, . . . , Bp of A and g-partition S1, . . . , Sp of N such that N \ Si is effective for
Bi , for every i = 1, . . . , p.

9This lemma states that the effectivity function associated with F is ‘maximal’. See Moulin and
Peleg (1982) or Peleg (1984).
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Proof Suppose not, so (g-)partitions as in the lemma exist. Consider a profile RN

as in the following table:

S1 S2 · · · Sp

B2 B3 · · · B1
...

...
...

Bp B1 · · · Bp−1

B1 B2 · · · Bp

(meaning that every member of coalition S1 prefers all alternatives of B2 over all
alternatives of B3, all alternatives of B3 over all alternatives of B4, and so on and so
forth). Now by Lemma A.2, F(RN) /∈ Bi for every i = 1, . . . , p. Since ∪p

i=1Bi =
A, this is a contradiction. ��
Lemma A.6 Let the SCF F be ESC and satisfy NVP. Then there are no partition
{x}, B1, B2 of A and g-partition S, T1, T2 of N such that |S| = b(x) and N \ Tj is
effective for Bj for j = 1, 2.

Proof Suppose not, so (g-)partitions as in the lemma exist.
First, suppose S = N . Then for every i ∈ N , |N \ {i}| < |S| = b(x). Therefore,

for every QN\{i} ∈ LN\{i} there is P i ∈ L such that F(P i,QN\{i}) = x, so that
by Lemma A.4, {i} is effective for x. Since |A| ≥ 2 this violates NVP of F . Thus,
S �= N and b(x) < n. By NVP, also b(x) > 1. So |S| ≥ 2 and T1 ∪ T2 �= ∅.

Let now S1, S2 be a partition of S and consider a profile RN as in the following
table:

S1 S2 T1 T2

B2 B1 {x} {x}
B1 B2 B2 B1

{x} {x} B1 B2

Since S = S1 ∪ S2 is effective for A \ {x} = B1 ∪ B2 we have by Lemma A.2 that
F(RN) �= x. Without loss of generality we assume that F(RN) ∈ B1. Let QN be a
strong equilibrium in (F,RN) with F(QN) = F(RN), hence F(QN) �= x.

Case 1 xQiy for some i ∈ S, without loss of generality i ∈ S1, and y ∈ A \ {x}.
In this case consider the partition {x}, {y}, A \ {x, y} of A and the g-partition

S \ {i}, {i}, T1 ∪ T2 of N . Since |S \ {i}| < b(x) we have that N \ (S \ {i}) is
effective for {x} by Lemma A.4. By NVP and Lemma A.4, N \ {i} is effective for
{y}. Hence, by LemmaA.5,N \(T1 ∪ T2) is not effective forA\{x, y}. In turn, again
by Lemma A.4, this implies that T1 ∪ T2 is effective for {x, y}. Consider a profile
PT1∪T2 ∈ LT1∪T2 such that xP j yP jz for all j ∈ T1 ∪ T2 and z ∈ A \ {x, y}. Then
by Lemma A.2, F(PT1∪T2,QS) ∈ {x, y}. Since xQiy and since T1 ∪ T2 ∪ {i} =
N \ (S \ {i}) is effective for {x}, again by Lemma A.2, F(PT1∪T2,QS) �= y. Hence,
F(PT1∪T2,QS) = x. This contradicts that QN is a strong equilibrium in (F,RN).
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Case 2 yQix for all i ∈ S and y ∈ A \ {x}.
In this case, consider the partition {x}, B1, B2 of A and the g-partition S2, S1 ∪

T1, T2 of N . Since |S2| < b(x) we have by Lemma A.4 that N \ S2 is effective for
{x}. By assumption, N \ T2 is effective for B2. Hence by Lemma A.5, N \ (S1 ∪ T1)

is not effective for B1, which in turn by Lemma A.4 implies that S1 ∪ T1 is effective
for A \ B1. Consider a profile PS1∪T1 ∈ LS1∪T1 such that yP jxP j z for all j ∈
S1 ∪ T1, y ∈ B2, and z ∈ B1. By Lemma A.2, F(PS1∪T1,QS2∪T2) /∈ B1. Since by
assumption S1 ∪ S2 ∪ T1 is effective for B2, by Case 2 yQix for all y ∈ B2 and i ∈
S, and N \T2 is effective for B2, we have by Lemma A.2 that F(PS1∪T1 ,QS2∪T2) �=
x. Hence F(PS1∪T1,QS2∪T2) ∈ B2. Since F(QN) = F(RN) ∈ B1, S1 ∪ T1 has an
improvement, contradicting that QN is a strong equilibrium of (F,RN). ��
Lemma A.7 Let the SCF F be ESC and satisfy NVP, and 1 ≤ k ≤ m − 2. Then
there are no partition {x1}, . . . , {xk}, B1, B2 of A and g-partition S1, . . . , Sk, T1, T2
of N such that |Si | = b(xi) for each i = 1, . . . , k, N \ T1 is effective for B1, and
N \ T2 is effective for B2.

Proof The proof is by induction on k. For k = 1 this is Lemma A.6. Let 2 ≤ k ≤
m − 2 and suppose that the statement in the lemma holds for k − 1. Suppose, on the
contrary, that the statement does not hold for k, and let {x1}, . . . , {xk}, B1, B2 and
S1, . . . , Sk, T1, T2 be as in the lemma. Since Si �= ∅ for every i = 1, . . . , k, we have
∅ �= Sk ∪ T1 �= N . By Lemma A.4, either Sk ∪ T1 is effective for A \ ({xk} ∪ B1)

or N \ (Sk ∪ T1) is effective for {xk} ∪ B1. In the first case, Lemma A.6 is violated
for the partition {xk}, B1, A \ ({xk} ∪ B1) of A and the g-partition Sk, T1, N \ (Sk ∪
T1) of N . In the second case, the induction hypothesis is violated for the partition
{x1}, . . . , {xk−1}, {xk} ∪ B1, B2 of A and the g-partition S1, . . . , Sk−1, Sk ∪ T1, T2
of N . ��

The next lemma says that an ESC social choice function is ‘subadditive’.10

Lemma A.8 Let the SCF F be ESC, let S1 ⊆ N be effective for B1 ⊆ A and let
S2 ⊆ N be effective for B2 ⊆ A, such that B1 ∩ B2 = ∅. Then S1 ∩ S2 is effective
for B1 ∪ B2.

Proof

(a) Say that coalition S is s-effective for a set of alternatives B if there is a partition
B1, . . . , Bk of B and there are coalitions S1, . . . , Sk such that Sj is effective for
Bj , j = 1, . . . , k, and S = ∩k

j=1Sj . Clearly, if S is effective for B, then S is
also s-effective for B by taking k = 1, S1 = S, B1 = B. We will prove the
converse, which will imply the lemma.

(b) We first prove that if S is s-effective for B, then N \ S is not s-effective for
A \ B. Suppose the latter were not the case, i.e., both S is s-effective for B

and N \ S is s-effective for A \ B. Let B1, . . . , Bk and C1, . . . , C� be the
associated partitions of B and A \ B, and let S1, . . . , Sk and T1, . . . , T� be

10Cf. Moulin (1983).
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the associated coalitions, hence S = ∩k
j=1Sj and N \ S = ∩�

h=1Th. List
S1, . . . , Sk, T1, . . . , T� as V1, . . . , Vp and list the associated sets of alternatives
as D1, . . . ,Dp (where p = k+�). Then for every i ∈ N there is q ∈ {1, . . . , p}
such that i /∈ Vq . Consider a preference profile RN such that for every i ∈ N ,
Dq+1R

iDq+2R
i . . . RiDpRiD1R

i . . . RiDq . Let x ∈ A. If x ∈ Dq for some
q > 1, then Dq−1R

ix for all i ∈ Vq−1, so that by Lemma A.2 we have
F(RN) �= x. If x ∈ D1, then DpRix for all i ∈ Vp, so that again by LemmaA.2
we have F(RN) �= x. This is not possible, hence we have that if S is s-effective
for B, then N \ S is not s-effective for A \ B.

(c) Now, finally, assume that S is s-effective for B. Then by part (b), N \ S is not
s-effective for A \ B, hence by part (a), N \ S is not effective for A \ B. By
Lemma A.4, S is effective for B. This concludes the proof of the lemma. ��

The final lemma we need is the following.

Lemma A.9 Let the SCF F be ESC and satisfy NVP. Let 0 ≤ k ≤ m − 2. Then
there are no partition {x1}, . . . , {xm} of A and g-partition S1, . . . , Sm ofN such that
|Sj | = b(xj ) for j = 1, . . . , k and |N \Sj | is effective for {xj } for j = k+1, . . . ,m.

Proof For k = 0 this follows from Lemma A.5. Now let k > 0. Suppose on the
contrary that we had {x1}, . . . , {xm} and S1, . . . , Sm as in the lemma. By repeated
application of Lemma A.8 we have that N \ (Sk+1 ∪ . . . ∪ Sm−1) is effective for
{xk+1, . . . , xm−1}. Now the partition {x1}, . . . , {xk}, {xk+1, . . . , xm−1}, {xm} and g-
partition S1, . . . , Sk, T1, T2 with T1 = Sk+1 ∪ . . . ∪ Sm−1 and T2 = Sm violate
Lemma A.7. ��
Proof of Proposition 3.6 In view of LemmaA.3, it is sufficient to prove that b(A) =
n + 1. Clearly, b(A) ≥ n + 1, otherwise N would have some profile RN such that
F(RN) /∈ A, which is clearly impossible. Write A = {x1, . . . , xm}. We distinguish
two cases.

Case 1 b(A) ≥ n + m. Then n ≤ b(A) − m = ∑m
j=1(b(xj) − 1), so that there is a

g-partition S1, . . . , Sm of N with |Sj | ≤ b(xj ) − 1 for every j = 1, . . . ,m, which
by using Lemma A.4 violates Lemma A.9 for k = 0.

Case 2 b(A) = n + (m − k) for some k ∈ {1, . . . ,m − 2}. In this case, let Sj ,
j = 1, . . . , k, be coalitions with |Sj | = b(xj ). Since

k
∑

j=1

|Sj | = b(A) − (b(xk+1 + . . . + b(xm))

= n + (m − k) − (b(xk+1 + . . . + b(xm))

≤ n + (m − k) − (m − k)

= n
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the Sj can be chosen disjoint. Also,

n −
k

∑

j=1

|Sj | = n − (b(A) −
m

∑

j=k+1

b(xj))

= n − n − (m − k) +
m

∑

j=k+1

b(xj ))

=
m

∑

j=k+1

(b(xj ) − 1)

so that we can find disjoint Sk+1, . . . , Sm with |Sj | = b(xj) − 1 for all j =
k + 1, . . . ,m, hence, by Lemma A.4, N \ Sj is effective for {xj }. This is again a
violation of Lemma A.9.

Thus, b(A) = n + 1, which concludes the proof. ��
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