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Foreword

Take the 1969 paper in the American Economic Review and the 1972 chapter in
the Decision and Organization book as two critical moments in the broadcasting of
Leo Hurwicz’s message to the economic profession (they were earlier ones, but to
many young researchers in those days, like myself, this is where we discovered his
work) and consider their intellectual context. The field then called “Mathematical
Economics” is booming and only a few years away from bursting into the main
stream of our profession.

This is happening around three main themes.
First, the successful formalization of the competitive equilibrium by Arrow and

Debreu (not to forget Allais and McKenzie) provides rock-solid logical foundations
to the central concept of economic analysis, going much beyond Walras’ ideas by
elucidating precisely which mathematical assumptions, on preferences and feasible
transactions, ensure its existence and stability, or not.

Second, von Neumann and Morgenstern’s early intuition that the behavior of
economic agents in the small, e.g., face-to-face, is logically related, perhaps even
isomorphic, to that of players in strategic games like chess or poker is slowly
developing into the next paradigm of economic modeling, through the pioneer work
of Shubik (Strategy and Market Structure, 1959), Debreu and Scarf (Equivalence of
the Core and Competitive Equilibrium, 1963), Shapley and Shubik (Market Games,
1969, and Assignment Games, 1971), and Gale and Shapley (Stable Matching, 1962:
still a mathematical curiosity at this point).

Third, the spectacular entrance of the axiomatic methodology in the social
sciences, in Arrow’s Social Choice Model (1951), states the first genuine mechanism
design question in the language of economics. It promptly initiates much research on
the meaning and design of “good” voting rules; a particularly challenging conjecture
is the nonexistence of reasonable and strongly incentive-compatible (strategyproof)
voting rules for more than two candidates (Dummett and Farquharson, 1961). It is
about to be proved by Gibbard (1973) and Satterthwaite (1974).

Thus, the key modeling tools for economics as we know it today are already
present in these critical two decades of the 1950s and 1960s. But they are
mostly developing, so to speak, in parallel universes. To my mind, Leo Hurwicz’s
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viii Foreword

fundamental contribution was to set for his fellow economists a goal of a higher
order, a “theory of everything” that has been the mechanism design program ever
since: we need to understand what high-level goals can be implemented in possibly
yet to be built economic institutions, once we take into account informational
constraints and strategic incentives (what Myerson aptly calls adverse selection and
moral hazard constraints).

This volume offers a contemporary snapshot of Leo Hurwicz’s influence,
captured in the work of a small set of scholars who may or may not have been
in personal contact with him, but all acknowledge their intellectual debt to him by
contributing to this Festschrift.

For the reader unfamiliar with Hurwicz’s specific contributions, I recommend
Postlewaite and Schmeidler’ effective review of his approach to the implementation
problem and the difficulties still ahead. Then Myerson explains Hurwicz’s own
inspiration in the historical debate on the feasibility of socialism and goes on to
develop a rich interpretation of his 1998 “But who will guard the guardians?” paper.
Finally, the reprinted 1995 chapter by Hurwicz, Maskin, and Postlewaite is not a
comment on his work but the real thing.

Classic implementation theory, the one that starts in a straight line from Hurwicz
to Maskin and beyond, accounts, appropriately, for one-third of the volume,
authored by some of the main actors in the field then and now. Edelman and
Weymark discuss an extension of Rochet’s theorem about implementation by cash
transfers. Dutta explains how the small twist of endowing agents with a costless
preference for honesty turns the theory upside down. Peleg and Peters find new
relations between implementation in strong equilibrium and elimination voting
procedures. D’Aspremont and Cremer explain why implementation in the Bayesian
context may or may not align incentives and full efficiency. Roy, Sadhukhan, and
Sen extend and qualify the results of Barbera, Sonnenschein, and Zhou on the
strategyproof formation of a committee when the voting rule is random. Barbera,
Berga, and Moreno explore the incentives of experts in Condorcet’s celebrated
jury problem and uncover relevant properties of the information structure. Finally,
Hammond, in the only nontechnical paper of this batch, reinterprets mechanism
design a la Hurwicz as a way to avoid “institutional externalities.”

The next third is a bouquet of mainstream research in economic theory. Ledyard
discusses an important informational aspect of the cap and trade mechanism for
the provision of a public bad. Kannai and Raimondo offer a very general existence
result for financial markets. Marschak and Wei show that in the simplest format
of the principal agent problem, the welfare consequences of an improvement of
the monitoring technology are not straightforward. Thomson deploys the axiomatic
methodology to evaluate a simple rationing rule between two agents. La Mura shows
that correlating strategies by quantum bits can improve cooperation in auctions. And
two papers report on experiments testing new mechanisms to solve traditional social
dilemmas: Van Essen and Walker for the public good provision problem and Saijo
for the prisoners’ dilemma.

Finally, three papers suggest new questions for the mechanism design of
tomorrow. Demange discusses common misinterpretations of the algorithms that



Foreword ix

surround us in the age of Internet and derives new challenges for the designer. Vega
Redondo proposes network design as a new research direction: e.g., the proactive
design of financial networks can insure banks optimally against both small frequent
shocks and large unfrequent ones. Chiu and Koeppl explain why blockchain systems
are not immune to tampering, a difficulty that mechanism design should work to
alleviate.

Glasgow, UK Hervé Moulin
May 2018
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In Lieu of an Introduction:
How I Remember Leonid Hurwicz

Walter Trockel

1 On This Volume

All essays in this volume have been contributed by co-laureates, co-authors,
colleagues, or former students of Leonid Hurwicz or by contributors to fields he
had founded, fundamentally contributed to, or just successfully worked on. I am
very grateful to all of them, a “star spangled list of contributors” as Robert Aumann
had remarked in a recent letter to me, that they by their accepting my invitation
and by their valuable contributions have made this exciting volume in memory of
Leonid Hurwicz possible.

The timing for this book project, that with the permanent invaluable editorial
support of Martina Bihn was started in 2017 and finished with the publication of the

anniversaries: the birth of Leonid Hurwicz on August 21, 1917, the award of the
Prize in Economic Science in Memory of Alfred Nobel to him on October 15, 2007,
and the day of his death on June 24, 2008.

My motivation for trying to realize this present book resulted from my admiration
for Leo Hurwicz as a great person and an outstanding scientist. It was my intention
to contribute to increase his own and his work’s popularity, in particular among
young people in our profession.

I feel that the abstracts of these essays make a topical introduction unnecessary.
Instead, I want to focus on the commemoration of Leo. Because information about
most aspects of his adventurous life and his outstanding scientific work is publicly
available, I will just describe how I remember some of my encounters with Leo and
with his work.

W. Trockel (�)
Center for Mathematical Economics (IMW), Bielefeld University, Bielefeld, Germany
e-mail: walter.trockel@uni-bielefeld.de

© Springer Nature Switzerland AG 2019
W. Trockel (ed.), Social Design, Studies in Economic Design,
https://doi.org/10.1007/978-3-319-93809-7_1

1

volume in 2019, has been selected in order to simultaneously commemorate three

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93809-7_1&domain=pdf
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2 W. Trockel

2 Leo Hurwicz

The first time I had met Leo Hurwicz was in 1981 when, during a stay in Berkeley,
I was invited for a seminar at the University of Minnesota. Leo came to my talk—
about 15 minutes late. After the talk when I introduced myself to him he revealed to
my surprise that he knew my dissertation from 1974. In the following years, I met
him several times at conferences. I became interested in mechanisms and implemen-
tation, read several of his articles, and was impressed, in particular, by his conceptual
clarity. It turned out that we shared many interests, and I enjoyed the opportunities to
listen to and learn from him, whether he talked on economic theory, politics, music,
or ancient civilizations, and became influenced by him. During the Conference on
Economic Design at Istanbul’s Boğaziçi University in 2000, Leo had suggested to
me to take the next opportunity to visit H

˘
attuša, the ancient capital of the Hittites,

in Anatolia. When I was visiting Bilkent University in 2001 I followed his advice.
On one evening in 2002, during the next Conference on Economic Design at the

NYU, Leo and I found ourselves to be the two last persons still in the hall of the
conference building. He proposed to join for dinner and asked, whether I would
mind to have that close to his hotel. Our dinner and intensive conversation till late in
the night became the starting point for friendly personal relations during the years
to follow.

When I started with the organization of the 12th European Workshop on General
Equilibrium Theory at Bielefeld University in December 2003, I thought about
enriching the usual program by adding a plenary lecture and asked Leo whether he
would accept an invitation to give such a lecture at the workshop. He accepted the
invitation and promised to come, even though I could not guarantee the financing
of a business class ticket. At that time Leo was 86 years old! After his arrival in
Bielefeld, he suggested to me to choose as the time for his lecture the last session
before lunch. “That gives me an incentive to finish in time” he remarked with a
smile. The workshop was a success and so were Leo’s presence and presentation.
The plenary lecture became institutionalized as Debreu Lecture at the next and for
every following European Workshop.

Many young researchers were impressed and attracted by Leo’s personality and
behavior. One young woman from a regional newspaper who had interviewed Leo
asked him, impressed by his vitality, for an advice how one could reach an age of 90
years. Leo smiled at her and answered: “First you have to make sure that you reach
the 89 and then you behave for one year very carefully.”

One year later, on December 3, 2004, Leo Hurwicz was awarded the academic
degree of a Doctor Rerum Politicarum Honoris Causa by the Faculty of Economics
and Management of Bielefeld University. In my laudatio I also stressed the
sufferings of Leo and his family from the Germans twice in his lifetime. In his
following acceptance speech, Leo remarked that in 1939 he never would have
expected that something so good could come to him from Germany.

Two days later when he left Bielefeld, I asked him why I had not observed any
bitterness in his conversations with the young German students. His answer was:
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“There was no bitterness.” Leo Hurwicz had impressed everybody by his warm-
hearted behavior and his charisma.

We stayed in contact in the following years but did not meet until 2007. When
coming home from a one month stay in California at end of March 2007, I found
a letter with an invitation to participate in the workshop Perspectives on Leo
Hurwicz—A Celebration of 90 Years at the University of Minnesota on April 14,
2007. In Minneapolis I found Leo lined with stress from the regular dialysis but
mentally crystal clear. During that Celebration several conversations centered on
a theme that somehow was wafting through the room: Why not a Nobel Prize for
Leo? Exactly half a year later he had been awarded, together with Eric Maskin and
Roger Myerson, the Sverige’s Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel 2007 for having laid the foundations of mechanism design theory.
Leo Hurwicz said at a news conference: “There were times when other people said
I was on the short list, but as time passed and nothing happened, I didn’t expect
the recognition would come because people who were familiar with my work were
slowly dying off, . . . ”

So, the recognition had come, and there is good reason to predict that the set
of people familiar with his work will not die off. In fact, Leo Hurwicz’s memorable
work is encompassing much more than mechanism theory. The impressive spectrum
of his relevant scientific contributions had been recognized in his Bielefeld honorary
doctoral document that in addition to his “foundation and economic application
of mechanism design theory” lists his “groundbreaking work on the allocation
of resources, his fundamental contributions to the analysis of the stability of
competitive equilibria, his pioneering work on decision theory, and the theory of
organization and of enterprises, the enrichment of economic theory by innovative
mathematical methods and important results in Econometrics and Optimization
theory, his early recognition of the importance of game theory for social sciences
and his innovative ideas on genuine implementation and the design of effective
institutions.”

Sometimes Nobel prizes had been awarded for outstanding past achievements
even when these had turned out to be not so fruitful and promising anymore. This
is definitely not the case with the theory of implementation and mechanism design
whose methods have recently been used in other fields like operations research,
computer science, engineering, artificial intelligence, medicine, and law.

The scientific work of Leonid Hurwicz had deeply impressed me. But, also his
conceptual clarity made him a role model. He never became tired to emphasize
the obvious, when necessary, like the difference between games and game forms. I
have learned from him in my own publications to insist on the differences between
solutions and social choice rules, between noncooperative support and implemen-
tation and to see the abundance of possibilities to factorize payoff functions into
outcome functions and utility functions in contrast to the problem of finding one
such factorization that would be consistent with a given outcome space (cf. Trockel
2000, 2002a, b; Haake and Trockel 2010).

Yet, what I admired most was Leo’s personality, and his just “being a ‘Mensch.’”
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3 Enforcement and Genuine Implementation

The broad relevance of the Theory of Mechanism Design for so many facets of
human society under various aspects together with the late Leo Hurwicz’s interest
in the roles of implementation and enforcement in institutional modeling, what he
described by the term genuine implementation, has motivated the title Social Design
for this volume.

When I am observing the world with wars and refugees everywhere, with more
and more autocrats and enormously increasing ideological “-isms” and pressure on
democratic structures, with growing pollution, racism, violence, selfishness, greed,
and disdaining science and facts, with big companies behaving unethically, or often
even illegally, developing high-tech cheating technologies, I feel that the only way
out to a more humane society may come from intelligent social design and effective
enforcement of suitable institutions as indispensable tools for almost all aspects of
organizing sustainable cooperative and fair structures on our planet.

It is this conviction that drives me to direct the readers’ attentions in particular
toward the late work of Leo Hurwicz, that concentrated on institutional modeling,
as, for instance, in Hurwicz (1987, 1993, 1994, 1996, 1998). Though the remaining
pages will be a little more technical, I will forgo a coherent detailed discussion
and instead refer to the excellent essay of Myerson (2009) that is reprinted in this
volume.

In Hurwicz (1998)—a revised version of which is his Nobel speech But who
will guard the Guardians published in Hurwicz (2008)—the problem of genuine
implementation is addressed and the question is asked “Are Nash equilibria self-
enforcing?” Then Hurwicz hints at the fact that in Nash equilibria there may be
advantageous unilateral deviations for players to physically feasible but illegal
strategies. That insight leads him first to the question of how to enforce legal
strategies and then to the distinction between a given “legal game” and a bigger
“true game,” in which the legal game is embedded. Hurwicz (1998, p. 9) introduces
two notions of “successful enforcement”: “To say that the legal game rules are
being successfully enforced means that the outcomes of the true game ensure that
illegal strategies are less attractive than legal strategies. A strong formulation of
successful enforcement might require that for every player, every illegal strategy is
dominated by (that is, is less attractive than) some legal strategy. A weak domination
would require only that a player at least be no worse off by staying within the law.
However, this may be asking too much: if everyone else is acting illegally, a player
may not find it possible to remain law-abiding. It seems, therefore, more reasonable
to adopt a somewhat weaker concept of successful enforcement of the rules of a
given mechanism . . . ”

This weaker concept defines successful enforcement of the legal game G in the
true game H by the postulate that the sets of Nash equilibria of G and of H coincide
and are nonempty. Myerson (2009) suggests a weakening of successful enforcement
of the legal game G in the true game H by requiring the set of strategy profiles of
G to be closed under rational behavior, making it a CURB set, as defined by Basu
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and Weibull (1991), in the set of strategy profiles of the game H. None of these two
weaker definitions does imply the validity of the other one.

Hurwicz (1998) concludes his section on Successful enforcement and imple-
mentation by answering his previous question: “A reason why Nash equilibria
cannot be considered self-implementing is that the assumption of the effectiveness
of the outcome function h (.) hides the need for institutional arrangements typically
required to accomplish this.”

When it comes to institutional design the distinction between the legal and
the true game is only the starting point. If players of a higher institutional layer
determine and control the rules of the true game on a lower level by acting as the
guardians for these rules, we are confronted with Hurwicz’s question: “But who will
guard the guardians?”

In his section Back to Juvenal Hurwicz (1998) comes to the conclusion that
“either there is no way to guard the guardians” or one needs also “guardians of
the second order” for guarding these guardians. So Hurwicz continues (1998, p.
11): “But then, if those are also subject to corruption, guardians of the third order
are also necessary, and so on. This conjures the image of an infinite regress of
guardians, with the guardian of order k needed to guard the guardian of order k,1

with k = 2, 3 . . . ad infinitum. If an infinity of guardians is not usually available, this
seems to preclude the possibility of enforcement.” Nevertheless, Hurwicz argues,
based on “casual empiricism”, that in many situations rules are in fact implemented
or enforced, “even if not perfectly” and continues: “Somewhere at a finite end in
the chain of guardians, there may be guardians (individual or collective) who are
in sympathy with the rule (game-form) that makes certain behavior illegal, e.g.,
whose ethical standards rule out corrupt behavior, and who have the ability (through
power, financial assets, personal charisma or status, combined with the population’s
respect for it), as well as the inclination to act so as to discourage improper behavior
of the guardians of lower order. In such a situation the rule is likely to be successfully
enforced. Well-functioning societies try to choose judges and rulers from among
such individuals”.

In several of his articles these special guardians are called intervenors. Hurwicz
(1993, p. 59) remarks: “Beyond modeling issues there is an interesting substantive
question. To what extent is the presence of intervenors essential for the achievement
of social goals when enforcement is necessary?”

Hurwicz (1998, pp. 12, 13) provides a (partial) answer when he writes: “But
we do not have to rely on the presence of intervenors. There are other structures
conducive to successful enforcement.” Then he suggests finitely many layers, say
k, of game forms where the citizens playing the legal game of the first layer are
simultaneously the guardians of k-th order controlling the game form on the last
layer. He concludes: “This type of structure is also closely related (but not identical
with) the notion of separation of powers.”

1This k is a typo and has in fact to be k − 1 (my correction).
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Myerson (2009) described and discussed in detail Hurwicz’s ideas and indicated
further potential developments. Unfortunately, there appears to be, apart from Myer-
son (2004, 2008, 2009), not much theoretical literature concerning enforcement,
genuine implementation, and their relation to a fundamental theory of institutions.
There is, however, the recent article by Myerson and Weibull (2015) where they
combine their CURB set approach to successful enforcement with Schelling’s
(1960) focal points.

Another promising new line of research has opened up recently relating Hur-
wicz’s model of successful enforcement to the notion of a Social System of
Debreu (1952). This concept, also known in the literature as abstract economy or
generalized game, turns out to be closely related to the Hurwicz approach based on
the distinction between legal and illegal strategies (cf. Trockel and Haake 2017).

I would be very happy to see this volume attract many young researchers to
the theory of mechanism design and convince them of its general importance
and, in particular, its relevance for a Hurwicz Program of developing a complete
fundamental theory of institutions and their genuine implementation.
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Part I
Institution Design



Technical Change
and the Decentralization Penalty

Thomas Marschak and Dong Wei

1 Introduction

Does the case for decentralizing a firm get stronger or weaker when the production
technology used by one or more of its divisions improves? Consider the Organizer
of the firm, who seeks a good balance between the cost of the divisions’ efforts and
the revenue which those efforts yield. One way to achieve a good balance may be
intrusive but perfect monitoring and policing, which fully reveals the chosen efforts
and guarantees that they are those the Organizer prefers.

Perfect monitoring/policing may be very costly. A better mode of organizing
might be “decentralization,” where the divisions are totally autonomous, though
their choices may be influenced by appropriate rewards and penalties. In the
decentralized mode that we shall study there is a Principal who treats each division
as an Agent. Each Agent freely chooses her effort and bears the effort’s cost.
The Principal observes the realized revenue and rewards the Agents. Each Agent’s
reward is a function of revenue, and her net earnings are her reward minus the cost
of her chosen effort. The reward functions the Principal chooses are acceptable to
the Agents and are preferred by the Principal to other possible reward functions that
are also acceptable to the Agents. The Principal pockets the residual revenue which
is left over after the rewards have been paid. When an Agent’s technology improves,
the cost of a given effort drops.

The Organizer compares the decentralized Principal/Agents mode with perfect
monitoring/policing. Many production technologies rapidly improve, but at the
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same time the costs of perfect monitoring may rapidly drop as well, because of
dramatic advances in monitoring techniques. So, the relative merit of the two modes
requires regular reassessment. We shall let the Organizer take a “welfare” point
of view in comparing the two modes. The Organizer’s focus is the firm’s surplus:
the revenue earned by the divisions’ efforts minus the cost of those efforts. Perfect
monitoring/policing guarantees maximal surplus. The Decentralization Penalty is
the welfare loss due to decentralizing. It is the gap between maximal surplus and
the surplus achieved in the decentralized Principal/Agents mode.

Our central question is whether the Decentralization Penalty grows or shrinks
when a technical advance lowers Agents’ effort costs. If the Penalty substantially
grows, then perfect monitoring may now be worth what it costs. (We will not
explicitly model the cost of monitoring). If the Penalty shrinks, then perfect
monitoring becomes less attractive even if the monitoring techniques have advanced.
Our central question is tricky for the following reason: when the Agents’ technology
improves, maximal surplus rises (under weak assumptions). Maximal surplus is a
“moving target.” Decentralized surplus also rises, under reasonable assumptions.
But, that does not mean, in general, that as technology improves, the rising
decentralized surplus gets closer to the moving surplus target. Our question appears
to be very rarely asked in the abundant Principal/Agent literature. The cost of an
Agent’s effort appears in many papers and so does the welfare loss due to Agents’
second-best choices. But, the effect of cost improvement on welfare loss seems to
be widely neglected.

2 The Model

We shall study a highly simplified model. There is a single effort variable x, chosen
from a set � ⊆ R+ of possible positive efforts. The set � may be finite or it may
be a continuum. There is no uncertainty about the consequences of a given effort.
The effort x generates a positive revenue R(x), where R is strictly increasing. The
effort x costs t ·C(x), where C is positive and strictly increasing. A drop in t occurs
when technology improves (or there is a fall in the price of the inputs which effort
requires). For a given t , we consider the surplus at the effort x, denote W̃ (x, t).
Thus,

W̃ (x, t) = R(x) − t · C(x).

In the centralized mode, perfect monitoring/policing guarantees that effort is
“first-best”: it maximizes surplus. In the decentralized mode, there is no direct
monitoring. Instead, there is a self-interested Principal and a single self-interested
Agent who freely chooses x ∈ � and bears the cost t ·C(x). The functions R and C,
and the technology parameter t , are known to both parties. The Principal observes
the revenue R(x). Since R is strictly increasing, that observation also reveals the
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Agent’s chosen x. The Principal rewards the Agent, using a reward which is a
function of the observed revenue. We study an extremely simple reward scheme,
namely linear revenue sharing. The Principal pays the Agent a share r ∈ (0, 1] of
the revenue. So, if the Agent chooses the effort x, she earns rR(x)− t ·C(x) and the
net amount received by the Principal is the residual (1 − r) · R(x). We will assume
that for every (r, t) there is an effort x ∈ � such that the Agent’s gain rR(t)− tC(x)

is nonnegative, and this is sufficient for the Agent to be willing to participate. The
Agent chooses to exert the effort x̂(r, t), the smallest maximizer of rR(x)− t ·C(x)

on the set �. We denote the surplus when the share is r by W(r, t). So,

W(r, t) ≡ W̃ (x̂(r, t), t) = R(x̂(r, t)) − t · C(x̂(r, t)).

Note that if r = 1, then the Agent’s effort choice x̂(1, t) is surplus-maximizing.
Thus,

W(1, t) = W̃(x̂(1, t), t) is the largest possible surplus.

In the centralized mode, perfect monitoring/policing insures that W(1, t) is
achieved.

In our study of the Decentralization Penalty, we consider two cases. In the
exogenous case, the reward share is determined outside the model. It might, for
example, be the result of previous bargaining between Principal and Agent, or
it might be prescribed by law. In the endogenous case, the Principal considers
all the shares in the open interval (0, 1) and chooses a share which maximizes
(1 − r) · R(x̂(r, t)), the residual when the Agent uses the best-effort function x̂ in
responding to a given share. We let r∗(t) denote the maximizer which the Principal
chooses. So, in the endogenous case the Agent’s effort is x̂(r∗(t), t) and surplus is
W̃ (x̂(r∗(t), t), t) = W(r∗(t), t).

3 The Main Results

The “moving target” remark that we made above suggests that the effect of a drop in
t on the Decentralization Penalty is subtle. On the other hand, it is hard to imagine
a model simpler than ours. So, one might hope that in our simple model there are
simple conditions on �,R,C under which the Penalty rises (falls) when t drops.
It turns out, however, that even in our model there is a striking diversity of results.
There are simple examples where the Penalty rises and simple examples where it
falls. That is the case in both the exogenous and endogenous settings.

There are, however, basic results that do not directly concern the Penalty and
hold for all examples, whether the effort set is finite or a continuum, and whether or
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not the functions R,C are differentiable. Exogenous-case basic results are given in
Theorem 1 and endogenous-case basic results in Theorem 2. The main findings of
Theorem 1 are that the Agent never works less hard when the share rises and when
technology improves (t drops); that surplus cannot fall when t drops and maximal
(“first-best”) surplus must rise; that a drop in t is never bad news for the Principal,
must be good news for the Agent, and is never bad news from the welfare point of
view. A final finding is that a rise in the share r is never bad from the welfare point
of view and is good if and only if the Agent’s effort changes. Thus, if r is determined
through Principal/Agent bargaining, then it is in the “social” interest to strengthen
the bargaining power of the Agent (who prefers larger values of r).

There are fewer basic results for the more difficult endogenous case, where the
share is r∗(t), a maximizer of (1 − r) · R(x̂(r, t)) on the interval (0, 1). Theorem 2

finds that when t drops, there cannot be a fall in the ratio
r∗(t)

t
or in the Agent’s

effort x̂(r∗(t), t). A drop in t , moreover, can never be bad news for the Principal and
must be good news from the welfare point of view.

In the examples which follow, we obtain very diverse results about the Decentral-
ization Penalty. To bring some order to this diversity, we divide examples (�,R,C)

into classes. To do so, we consider the effect of a drop in t on the example’s
best effort x̂ and on the example’s endogenous-case best share r∗. A higher share
stimulates the Agent to work harder, but the strength of the stimulus depends on t .
Consider any pair of shares (rL, rH ), where 0 < rL < rH < 1, and suppose that t

drops. In some examples, the effort increase x̂(rH , t) − x̂(rL, t) rises and in other
examples it falls. In some examples, moreover, the Principal’s best share r∗ rises
when t drops, and in other examples it falls. So, we have four classes of examples.

For each class, we examine the effort gap—the amount by which decentralized
effort falls short of the “first-best” effort. The effort gap is x̂(1, t) − x̂(r, t) when r

is exogenous and it is x̂(1, t) − x̂(r∗(t), t) in the endogenous case. The effect of a
drop in t on the effort gap is again tricky—just as it was for the Decentralization
Penalty, or “surplus gap.” Under broad conditions, both terms of the gap rise when
t drops, but the gap itself may rise or fall.

The effect of a drop in t on the effort gap is interesting in itself. There are
classes of examples, moreover, in which the effort gap tracks the surplus gap (the
Decentralization Penalty): when t drops, the two gaps move in the same direction.
Imagine that first-best effort x̂(1, t) has been studied for many triples (R,C, t).
Then for an impending new technology t , first-best effort is already known but
the welfare effects of decentralizing remain to be discovered. If we indeed have
tracking, then it suffices to observe the Agent’s work to see whether, with the new
technology, her effort has moved closer to first-best effort or further away from it.
In the former case, we know—if we indeed have tracking—that the new technology
has shrunk the Decentralization Penalty, so it has made perfect monitoring/policing
less attractive. In the latter case, it has increased the Penalty.
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Our first result about tracking is Theorem 4, which requires R and C to be
thrice differentiable. The theorem concerns the exogenous case. It considers the
effectiveness of a share increase in stimulating higher effort and classifies examples
according to the change in effectiveness when t drops, i.e., the sign of the cross
partial x̂rt (r, t). It finds that we indeed have tracking, provided that the following
monotonicity condition holds: either x̂rt (r, t) > 0 at all (r, t) or x̂rt (r, t) < 0 at
all (r, t). The theorem has a Corollary which directly addresses our central question
for the exogenous case. It finds conditions on the signs of C′′, R′′, C′′′, R′′′ under
which the Decentralization Penalty rises when technology improves (t drops) and
conditions under which the Penalty falls.

As one would expect, the tracking question is more difficult in the endogenous
case. Theorem 5 again classifies examples with regard to the effect of technical
improvement on effectiveness (the sign of x̂rt (r, t)) but also classifies them with
regard to the effect of technical improvement on the Principal’s endogenous-case
“generosity,” i.e., the sign of the derivative r∗′

(t). It finds that we have tracking if
either of the following conditions hold: (i) for every possible (r, t), x̂rt (r, t) < 0
and r∗′

(t) ≥ 0; and (ii) for every possible (r, t), x̂rt (r, t) > 0 and r∗′
(t) < 0. There

is now no Corollary, analogous to Theorem 4’s Corollary, in which the effect of
technical improvement on the Penalty is related to the signs of the second and third
derivatives of R and C.

Theorem 6 shows that we cannot have an example where marginal revenue is
declining (R′′ < 0), and a drop in t (weakly) increases both effectiveness and the
Principal’s generosity (i.e., at every possible (r, t) we have both x̂rt (r, t) ≥ 0 and
r∗′

(t) ≥ 0).
Finally, Theorem 7 addresses bargaining between Principal and Agent over

the share r . For a given t , consider the curve which shows the Principal’s gain
(1 − r) · R(x̂(r, t)) as a function of r ∈ (0, 1). Suppose the curve is single-peaked,
i.e., the gain rises to a peak at the principal’s preferred share r∗(t) and then falls
(perhaps after an interval where it is flat). In the interval (0, r∗(t)), where the gain
curve rises, both parties favor higher r . (That follows from the results in Theorem 1).
The negotiation set—where one party prefers higher r and the other lower r—is
the interval (r∗(t), 1). The final result in Theorem 1 showed that welfare increases
when the exogenous share increases. So—informally speaking, it is in the “social”
interest for the Agent’s bargaining strength to be high. Moreover, if r∗ is increasing
(decreasing) in t , then the negotiation interval (r∗(t), 1) shrinks (widens) when
technology improves. To conclude that this shrinkage (widening) raises or lowers
the share on which the bargainers finally agree would require a precise model of
the bargaining procedure. In any case, Theorem 7 provides conditions on R and C

under which the Principal’s gain curve is indeed single-peaked.

Plan of the Remainder of the Paper In Sect. 5, we examine six examples where
the set of possible efforts and the set of possible values of t are not finite and calculus
methods can be used. The examples will illustrate the theorems we informally
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sketched above. The examples, together with the preceding sketch of the main
results, provide an extensive preview of the theorems. It then remains to state each
of them formally. In Sect. 6, we formally state the exogenous-case Theorem 1 and
the endogenous-case Theorem 2 (which do not require differentiability) and we
comment on the proof techniques. Section 7 states two exogenous-case theorems
which require differentiability. The second of these is Theorem 4 which concerns
tracking and has a Corollary that relates directly to our central question—when
does a drop in t increase (decrease) the Decentralization Penalty? Section 8 presents
two endogenous-case theorems which again require differentiability: Theorem 5,
which again concerns tracking, and Theorem 6, which concerns the case where
marginal revenue is decreasing. Section 9 presents Theorem 7, about bargaining
and the shape of the Principal’s gain curve. Section 10 sketches several of the many
possible extensions and modifications of our model. An Appendix contains portions
of the proofs. The complete proofs are given in Liang, Marschak, and Wei (2017),
abbreviated henceforth as LMW.

4 Related Literature

A great many Principal/Agent papers, starting with the earliest ones, use a frame-
work that allows the Agent’s effort to have a cost. The Agent has a utility function
on her actions and rewards. In many papers, Agent utility for the action a and the
reward y takes the form V (y) − g(a). Among the early papers where this occurs
are Holmstrom (1979, 1982) and Grossman and Hart (1983). The action a might
be effort and g(a) could be its cost. Welfare loss also appears very early in the
literature. Ross (1973), for example, finds conditions under which the solution to
the Principal’s problem maximizes welfare (as measured by the sum of Agent’s
utility and Principal’s utility) and notes that these conditions are very strong. But,
Principal/Agent papers whose main concern is the relation between effort cost and
welfare loss are scarce.

The Principal/Agent papers closest to ours are Balmaceda et al. (2016) and Nasri
et al. (2015). They study an Agent who has m possible efforts. Each effort has a
cost, which the Agent pays. There are n possible revenues. For a given effort, the
probability of each of the possible revenues is common knowledge, but the revenue
actually realized only becomes known after the Agent’s effort choice has been made.
The Principal announces a vector of n nonnegative wages. For each of the n possible
revenues, the vector specifies a wage received by the Agent when that revenue is
realized. Both Principal and Agent are risk-neutral. Surplus for a given effort equals
expected revenue minus the effort’s cost. The socially preferred effort maximizes
surplus. In the decentralized (Principal/Agent) mode, on the other hand, surplus
is not maximal. Instead, it is the surplus when the effort is the one the Principal
chooses to induce. The papers study a fraction. Its numerator is maximal surplus
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and its denominator is “worst-case” Principal/Agent surplus. (When the Principal
is indifferent between several efforts, the denominator of the fraction selects the
one that is socially worst). The fraction is a measure of the welfare loss due to
decentralizing. It is shown, under standard assumptions on the probabilities and on
the possible (revenue,effort-cost) pairs, that the ratio cannot exceed m, the number
of efforts. That upper bound does not depend on the effort costs, so the papers are
silent on the effect of a drop in those costs on welfare loss.

Note that welfare loss is also defined as a fraction in a larger literature, initially
developed by computer scientists. Typically, the object of study is a game. The
fraction studied is often called “the price of anarchy.” Its numerator is the payoff
sum in the “socially worst” equilibrium of the game. Its denominator—attainable
when the players cooperate—is the largest possible payoff sum.1 In our setting, it is
natural to use the surplus gap rather than a ratio in defining the Penalty (welfare loss)
due to decentralizing. Perfect monitoring (centralization) would eliminate the gap,
but in reality it would be expensive. If its cost exceeds the gap then decentralization
is the preferred mode.

If we allow more than one Agent, then parts of the large literature on the
design of organizations become relevant. The designer has a goal, say surplus
(profit) maximization, and can choose between a structure where a single member
commands the choices made by all the others, and a structure where everyone
is autonomous. The latter structure might be modeled as a game. A rather small
piece of the design literature studies the communication and computation costs of
each structure and the trade-off between those costs and some measure of gross
performance (e.g., gross expected surplus, before the costs are subtracted). The
problem is far more complex than the one we consider here and the results remain
scarce and specialized.2

Finally, it seems appropriate to mention a paper co-authored by Leo Hurwicz,
whom this volume honors (Hurwicz and Shapiro, 1978). Here, the Principal is
a landlord and the Agent is a sharecropper who chooses how hard to work.
The landlord knows neither the sharecropper’s utility function nor her production
function but does observe the revenue that the sharecropper’s labor has achieved.
The landlord rewards the sharecropper with a share of the revenue. It is shown that
a fifty/fifty split is preferred by the Principal. If the reward function is required to
be linear, then that split is also socially optimal, where “optimal” means that the

1A variety of social situations are studied from this point of view. One of them concerns optimal
versus “selfish” routing in transportation (Roughgarden, 2005). Others are found in Nissan et al.
(2007). Many of these studies develop bounds on the price of anarchy. Several of them (e.g.,
Balbaieff et al. 2009) consider a Principal/Agent setting.
2Surveys of the design literature with communication and computation costs are found in Garicano
and Prat (2013) and Marschak (2006). A model in which revenue is shared by a group of game-
playing Agents is studied in Courtney and Marschak (2009). Each player chooses effort and bears
its cost. Equilibria of the game are compared with the welfare-maximizing efforts. The paper finds
conditions under which the welfare loss drops (rises) when effort costs shift down.



18 T. Marschak and D. Wei

largest possible social “regret” is minimized. One could study the welfare effect of
lowering the Agent’s cost for every effort, but the paper does not do so.

5 Examples

In each example, we specify a triple (�,R,C) and we also specify a set � of
possible pairs (r, t). The set � has the property that for each of its pairs (r, t):
(1) 0 < r < 1; and (2) there exists a positive effort x̂(r, t) which maximizes
R(x)− tC(x) on �. It will be convenient to use the symbol �̃ for the set of possible
values of t . Thus,

�̃ ≡ {t : (r, t) ∈ � for some r}.
In discussing our example, we will use the terms exogenous tracking and (exoge-
nous) “opposite directions”. Here is the definition:

Definition 1 An example (R,C,�,�), with R and C thrice differentiable, has the
exogenous tracking (exogenous “opposite directions”) property if

d

dt
[x̂(1, t) − x̂(r, t)] · d

dt
[W(1, t) − W(r, t)] > 0 (< 0) at all (r, t) ∈ �.

Each of our examples will be an interior example. In such an example, first-order
conditions suffice to identify both x̂(r, t) and the Principal’s endogenous-case share
r∗(t).

Definition 2 An example (�,R,C,�) is Interior if

• � ⊆ R+, and � ⊆ R2+
are open sets.

• R,C are thrice differentiable on � and R′ > 0, C′ > 0.
• There exists a twice differentiable function x̂ : (0, 1] × �̃ → � such that for

r ∈ (0, 1], x̂(r, t) satisfies the first-order condition 0 = rR′(x) − tC′(x) and is
the unique maximizer of rR(x) − tC(x) on �.

• For every t ∈ �̃, there exists a share r∗(t) ∈ (0, 1) which satisfies the first-
order condition 0 = d

dr
[(1 − r) · R(x̂(r, t))] and is the unique maximizer of

(1 − r) · R(x̂(r, t)) on (0, 1).

In discussing an interior example, we use the terms endogenous tracking and
endogenous “opposite directions.” The definitions are analogous to Definition 1.

Definition 3 An interior example (R,C,�,�) has the endogenous tracking
(endogenous “opposite directions”) property if

d

dt
[x̂(1, t) − x̂(r∗(t), t)] · d

dt
[W(1, t) − W(r∗(t), t)] > 0 (< 0) at all t ∈ �̃

= {t : (r, t) ∈ � for some r}.
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Example 1: A Classic Monopoly
For brevity, we shall call this the Classic example. The firm is a monopolist and the
effort x is product quantity. Price is A − Bx, where A > 0, B > 0, so revenue is
R(x) = Ax−Bx2. Cost is t ·C(x) = tx. Marginal revenue becomes negative at x =
A

2B
. To keep price and marginal revenue positive, our set of possible efforts will be

� =
(

0,
A

2B

)
.

In the decentralized mode, the monopolist acts as a Principal, lets an Agent
choose quantity, and announces a share r ∈ (0, 1). We consider the following set �

of possible pairs (r, t):

� ≡ {(r, t) : 0 < r < 1; 0 < t < Ar}.
Thus, the set of possible values of t is �̃ = (0, A). If (r, t) ∈ �, the Agent’s best
quantity is

x̂(r, t) = A

2B
− t

2Br
.

That belongs to � and is the unique maximizer of the Agent’s net gain R(x) − t ·
C(x).

Note that our � in this example is the interior of a triangle. In a diagram with r

on the horizontal axis and t on the vertical axis, the triangle has vertices at the points
(0, 0), (1, 0), and (1, A). In other examples, � might be a rectangle, as in Example 3
below. In still other examples, one of the boundaries of � might have curvature.

We now differentiate x̂ and obtain some exogenous-case statements. The subse-
quent theorems will generalize them.

• x̂r (r, t) = t

2Br2 , which is positive. For a given t , increasing the share evokes more
effort. It is easily shown, in Part (a) of Theorem 1, that in any example, finite or
nonfinite, increasing the share never evokes less effort.

• x̂t (r, t) = − 1
2Br

, which is negative. When r is fixed and technology improves,
the Agent works harder. Part (b) of Theorem 1 says that the Agent never works
less when t drops.

• x̂rt (r, t) = 1
2Br2 > 0. So, technology improvement (a drop in t) diminishes the

effectiveness of a small rise in the share as a stimulus to higher effort. We use
effectiveness (the sign of x̂rt (r, t)) in classifying examples. The classification will
be especially important in the endogenous case.

• When the Agent uses the best effort x̂(r, t), he receives r · R(x̂(r, t) − t · x̂(r, t).
The derivative of that expression with respect to t is negative.3 So, technology

3The derivative is x̂t (r, t) · [rR′(x̂(r, t)) − t · C′(x̂(r, t))] − C(x̂(r, t)). That is negative, since
0 < r < 1 and x̂(r, t) satisfies the first-order condition 0 = rR′ − tC′.
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improvement is good news for the Agent. Part (f) of Theorem 1 uses a simple
argument to show that this is always true in the exogenous case.

• We find that surplus is

W(r, t) = R(x̂(r, t))− t ·C(x̂(r, t)) = 1

4B2r2 · [(Ar − t) · (BAr +Bt − 2Brt)].

The derivative with respect to t of the expression in square brackets is

−2BAr2 − 2Bt + 4Brt.

Our requirement that t < Ar implies that this is negative.4 So, for a fixed r < 1,
decentralized exogenous-case surplus rises when technology improves (t drops).
Part (g) of Theorem 1 says that this always holds.

• For all t ∈ �̃, we have Wt(1, t) < 0. Maximal surplus rises when technology
improves (t drops). In Part (d) of Theorem 1, a trivial argument shows that this
always holds.

• Wrt (r, t) = (1 − r) · t
Br3 > 0. So, Wrt(r, t) and x̂rt (r, t) have the same

sign. Theorem 3 shows, using a very simple argument, that whenever

x̂rt (r, t) > 0 (< 0), we also have
d

dt
[x̂(1, t) − x̂(r, t)] > 0 (< 0). An

analogous argument shows that whenever Ŵrt (r, t) > 0 (< 0) we also

have
d

dt
[Ŵ (1, t) − W(r, t)] > 0 (< 0). So, in our example, the exogenous

Decentralization Penalty (surplus gap) W(1, t) − W(r, t) and the exogenous
effort gap x̂(1, t)−x̂(r, t) move in the same direction when technology improves,
i.e., the exogenous surplus gap tracks the exogenous effort gap. Theorem 4 shows
that this must be so as long as R and C are thrice differentiable.

We now turn to the endogenous case. In our example, we can verify that the
Principal’s gain (1 − r) · (R(x̂(r, t)) is positive for all r ∈ (0, 1) and is concave on
(0, 1). That implies—as Theorem 7 shows—that there is a share in (0, 1), denoted
r∗(t), which solves the first-order condition:

0 = d

dr
[(1 − r) · R(x̂(r, t)] = −R(x̂(r, t)) + (1 − r) · R′(x̂(r, t)) · x̂r (r, t)

and maximizes the Principal’s gain on the set (0, 1). In our example, the Principal’s
first-order condition turns out to be the cubic equation:

0 = A2r3 + rt2 − 2t2.

4The derivative is negative if Ar2 > t · (2r − 1). That is the case at r = 0 and at r = 1 (since
t < A). At all r ∈ (0, 1), our requirement t < Ar implies that 2Ar , the derivative of the left side
of the inequality with respect to r , exceeds 2t , the derivative of the right side. So, at all (r, t) ∈ �

the inequality holds.
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Fig. 1 The two gaps: surplus gap (W(1, t) − W(r∗(t), t)) and effort gap (x̂(1, t) − x̂(r∗(t), t))
for the Classic case, with A = 2, B = 3

When we graph the implicit function r∗(t), we find that for the case A = 2, B = 3,
r∗ is increasing in t . The share-choosing Principal becomes less generous when
technology improves. But without any graphing, Theorem 6 tells that r∗ cannot be
decreasing in t if x̂rt (r, t) > 0 (as in our example), and in addition R′′ < 0, which
holds in our example, since R′′ = −2B < 0.

Next, consider the endogenous effort x̂(r∗(t), t). If we graph this for our
example, we find that it rises when technology improves (t drops). Part (b) of
Theorem 2 shows that this must happen, for the endogenous case, in every example,
finite or nonfinite.

We now turn to the tracking question. Figure 1 shows both the Penalty (surplus
gap) and the effort gap x̂(1, t) − x̂(r∗(t), t). Figure 1 shows that when t increases
each gap first rises and then falls and for each t the gaps move in the same direction,
so we indeed have tracking.

But, it is not the case that endogenous tracking in our example is implied by
the fact that we have x̂rt (r, t) > 0 and r∗′

< 0. The next example has the same
inequalities but it does not exhibit endogenous tracking.

Example 2: A “Cubic-Revenue” Example
In this example: R(x) = x3 − x2, C(x) = x and the set of possible (r, t) pairs
is the triangle � = {(r, t) : r ∈ (0, 1); t ≤ r}, so the set of possible values of t

is �̃ = (0, 1). We find5 that—just as in the Classic Monopoly example—we have
x̂rt (r, t) > 0 for all (r, t) in � and r∗′

(t) < 0 for all t in �̃. But when we graph the
two endogenous-case gaps, we find that for t in the interval (0.48, 0.63), the effort
gap rises but the surplus gap falls.

5The details of this calculation, as well as a graph of effort gap and surplus gap, are given in LMW
(2017). Details for the remaining examples are given there as well.
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Example 3: A “Price-Taker” Example
The Principal takes the price of one as given and the cost function is quadratic. The
set of possible efforts is � = R+; R(x) = x; C(x) = 1

2 (x − 1)2. The set of
possible pairs (r, t) is the rectangle � = {(r, t) : 0 < r < 1; 0 < t < 1}. The
Agent’s exogenous-case effort choice is x̂(r, t) = r

t
+ 1. So, x̂rt (r, t) = −1

t2 < 0.

That contrasts with Examples 1 and 2. Surplus-maximizing (first-best) effort is 1
t
+1.

The exogenous effort gap is 1−r
t

, which has a negative derivative with respect to t .

Exogenous surplus is R(x̂(r, t))− t ·C(x̂(r, t)) = r
t
+1− r2

2t
and maximal surplus is

1 + 1
2t

. Hence, the exogenous surplus gap (the Penalty) is 1
2t

− r
t
+ r2

2t
. Its derivative

with respect to t is negative, just like the derivative of effort gap. So—as Theorem 4
tells us, the exogenous surplus gap tracks the exogenous effort gap.

We now turn to the endogenous case. The unique solution to the Principal’s first-
order condition 0 = d

dr
[R(x̂(r, t)) − t · C(x̂(r, t))] is r∗(t) = 1−t

2 . So, we have

r∗′
(t) < 0 at every possible t . (Recall that t < 1). That contrasts sharply with

Example 1 (Classic monopoly). Is a drop in t good news from the welfare point
of view in the endogenous case? That cannot be directly answered in Example 1,
where there is no closed form for welfare. But in the present example, it is easily
answered. We have

d

dt
[R(x̂(r∗(t), t)) − t · C(x̂(r∗(t), t))] = [x̂r · r∗′ + x̂t ] · (R′ − tC′) − C.

We have R′ − tC′ > 0 (because of the first-order condition rR′ − tC′ = 0, where
0 < r < 1). Since x̂t < 0 and r∗′ ≤ 0, we conclude that the derivative is negative, so
we indeed have “good news” from the welfare point of view. Part (d) of Theorem 2,
moreover, shows that this must be the case, with or without differentiability.

The endogenous Penalty (surplus gap) is 1
4 + 1

8t
+ t

8 . Its derivative with respect
to t is 1

8t2 · (t2 − 1), which is negative, since t < 1. The Penalty always rises when
technology improves. Note the contrast with Example 1 (Classic Monopoly), where
the Penalty drops when technology improves, once t has dropped below a critical
value. The endogenous effort gap is 1+t

t
− r∗(t)+t

t
= 1

2t
+ 1

2 . That also has a negative
derivative. So, the endogenous effort gap tracks the endogenous surplus gap. But
that is not implied, as we shall see, by the fact that x̂rt < 0 and r∗′

(t) < 0, just as
the endogenous tracking that we found in Example 1 was not implied by the fact
that x̂rt > 0 and r∗′

(t) > 0. We will find a sharply different pattern in our final two
examples (5 and 6); there we have endogenous tracking and that does follow from
the signs of x̂rt and r∗′

(t).

Example 4: A “Cubic-cost” Example
In this example,

R(x) = 1

2
x2
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and

C(x) = 1

3
x3 + a

2
x2 − εx,

where ε > 0 and a > 0. The numbers a, ε and the set � of possible efforts will be
chosen as we proceed. The triple (a, ε,�) will have the property that C(x) > 0 for
all x ∈ �.

The Agent’s first-order condition for given r, t is

rx = t · (x2 + ax − ε).

This is solved by:

x̂(r, t) =
√(

a − r
t

)2 + 4ε − (
a − r

t

)
2

> 0.

Our set � of possible (r, t) pairs will be

� =
{
(r, t) ; t ∈

(
1

a
,

2√
a2 + 4ε

)
; 0 < r < 1

}
.

Now, assume that

• t ≥ 1
a

• ε < 3
4a2.

Then,
1

a
<

2√
a2 + 4ε

, so � is not empty. Moreover, a − r/t ≥ 0 for all r ∈ (0, 1).

Under these assumptions, we can show6 that x̂rt (r, t) < 0 at all (r, t) in �.
Turning to the endogenous case, we find that the Principal’s chosen share r∗(t)

must satisfy

r∗(t) = 1 −
t

√(
a − r∗(t)

t

)2 + 4ε

2
. (+)

That allows us to show that for every t in our set �̃ =
(

1

a
,

2√
a2 + 4ε

)
of possible

values of t : there is a unique r∗(t) satisfying (+) and, moreover, r∗′
(t) < 0.

6Once again, the details are in LMW.
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Now, consider the case where a = 1 and ε = 0.6. That meets our requirement
ε < 3

4a2. Define our set of possible efforts to be

� = (1,∞].

Then, �̃ = (1, 1.084) and C(x) > 0 for every x ∈ �. If we graph the surplus and
effort gaps, we find that the surplus gap rises in that interval but the effort gap falls.
Instead of tracking, we have “opposite directions.” In the Price-taker example, we
also had x̂rt (r, t) < 0 and r∗′

(t) < 0, but there we had tracking.

Example 5: A “Rising-Marginals” Example
In this example, marginal revenue rises but marginal cost rises faster, so there is
an interior effort maximizing the Agent’s gain. The set of possible efforts is � =
R+; R(x) = xa; and C(x) = xb, where 0 < a < b. The set of possible pairs

(r, t) is � = {(r, t) : 0 < r < 1; t > 0}. We find that x̂(r, t) = (
tb
ra

) 1
a−b and

x̂rt (r, t) = − 1

(a − b)2 · t1/(a−b)−1 ·
(

b

a

)1/(a−b)

· r1/(b−a)−1, which is negative.

Turning to the endogenous case, we find that r∗(t) = a
b

. The Principal’ chosen
share is independent of t . Even though we have an explicit expression for r∗,
computing the derivative of endogenous effort gap (Penalty) with respect to t and
the derivative of endogenous surplus gap with respect to t is cumbersome. It turns
out that both are negative. So, the endogenous surplus gap tracks the endogenous
effort gap. Theorem 5 will show that this follows from the fact that we have both
x̂rt (r, t) < 0 and r∗′

(t) ≤ 0.

Example 6: An “Exploding-Marginals” Example
There remains one class, in our four-way classification of interior examples, which
we have not yet illustrated. This is the class where we have both x̂rt (r, t) > 0
and r∗′

(t) < 0. Theorem 6 will show us that in such an example we cannot have
R′′ ≤ 0. So, our search for an example is narrowed to the case R′′ > 0. Moreover,
preliminary exercises show that a modestly increasing marginal revenue (e.g., R′′ =
1) is not enough. Marginal revenue has to rise rapidly and marginal cost has to rise
even faster. In the following example, both marginals “explode.”

We have:

• � = (0, 1).
• � = {(r, t) : 0 < r < 1; r

t
∈ (e, ee)} (e is the base of the natural logarithms).

• R(x) = ex2
.

• C(x) = ∫ x

0

[
2eep · ep · p

]
dp.

Since x̂rt (r, t) > 0 and r∗′
(t) < 0, Part (b) of Theorem 5 tells us that in this example

we have endogenous tracking.
A summary of the six interior examples and their relation to our theorems is

provided in the table which follows.
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THE EFFECT OF IMPROVED TECHNOLOGY (A DROP IN t ) IN FOUR GROUPS OF INTERIOR EXAMPLES

WHEN t DROPS, EFFECTIVENESS OF A SHARE

INCREASE FALLS. HENCE, SO DOES THE

EXOGENOUS EFFORT GAP (SEE THEOREM 3).

x̂rt > 0 and hence
d
dt

[x̂(1, t) − x̂(r, t)] > 0

WHEN t DROPS, EFFECTIVENESS OF A

SHARE INCREASE RISES. HENCE, SO

DOES THE EXOGENOUS EFFORT GAP

(SEE THEOREM 3).

x̂rt < 0 and hence
d
dt

[x̂(1, t) − x̂(r, t)] < 0

WHEN t DROPS, PRINCIPAL BECOMES

LESS GENEROUS OR GENEROSITY

STAYS THE SAME.

r∗′ ≥ 0

1 SEE “CLASSIC” AND “CUBIC-REVENUE”

EXAMPLES. WE HAVE ENDOGENOUS TRACKING

IN THE CLASSIC EXAMPLE BUT IN THE

CUBIC-REVENUE EXAMPLE, WE HAVE

“OPPOSITE DIRECTIONS” (IF THE SET OF

POSSIBLE VALUES OF t IS PROPERLY CHOSEN).

2 SEE “RISING MARGINALS”

EXAMPLE. EVERY EXAMPLE THAT LIES

IN THIS BOX HAS THE TRACKING

PROPERTY. (See Theorem 5, Part (a)).

WHEN t DROPS, PRINCIPAL BECOMES

MORE GENEROUS.

r∗′
< 0

3 SEE “EXPLODING MARGINALS”

EXAMPLE. EVERY EXAMPLE THAT LIES IN THIS

BOX HAS THE ENDOGENOUS TRACKING

PROPERTY. (See Theorem 5, Part (b)). AN EXAMPLE

WITH R′′ < 0 CANNOT BE IN THIS BOX. (See

Theorem 6).

4 SEE THE “PRICE-TAKER”

EXAMPLE, WHERE WE HAVE

ENDOGENOUS TRACKING AND THE

“CUBIC-COST” EXAMPLE, WHERE WE

HAVE “OPPOSITE DIRECTIONS.”

6 Basic Results that Do Not Require Differentiability

Theorem 1 Let R and C be strictly increasing on �. Then:

(a) x̂(rH , t) ≥ x̂(rL, t) and R(x̂(rH , t)) − tC(x̂(rH , t)) > R(x̂(rL, t)) −
tC(x̂(rL, t)) whenever (rL, t) ∈ �, (rH , t) ∈ �, and 0 < rL < rH < 1.

(b) x̂(r, tL) ≥ x̂(r, tH ) whenever (r, tL) ∈ �, (r, tH ) ∈ �, and 0 < tL < tH .
(c) x̂(1, tL) ≥ x̂(1, tH ) whenever tL, tH ∈ �̃, and 0 < tL < tH .
(d) W(1, tL) > W(1, tH ) whenever tL, tH ∈ �̃ and 0 < tL < tH .
(e) (1 − r) · R(x̂(r, tL)) ≥ (1 − r) · R(x̂(r, tH )) whenever (r, tL) ∈ �, (r, tH ) ∈ �,

and 0 < tL < tH .
(f) rR(x̂(r, tL)) − tLC(x̂(r, tL)) > rR(x̂(r, tH )) − tHC(x̂(r, tH )) whenever

(r, tL) ∈ �, (r, tH ) ∈ �, and 0 < tL < tH .
(g) W(r, tL) > W(r, tH ) whenever (r, tL) ∈ �, (r, tH ) ∈ �, and 0 < tL < tH .
(h) W(rH , t) ≥ W(rL, t) whenever (rH , t) ∈ �, (rL, t) ∈ �, and 0 < rL < rH <

1s. The inequality is strict if and only if x̂(rH , t) �= x̂(rL, t).

In proving Parts (a), (b), (c), (d), we use a basic proposition from monotone
comparative statics. It concerns a function of two variables with strictly increasing
differences and describes the direction in which a maximizer moves when one of the
variables increases.7 For the other parts, we use the simple observation that when
t drops or r rises the Agent could continue to muse the same effort as before the

7See, for example, Sundaram (1996).
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change. To show the pattern of the first argument, the Appendix provides the proof
of part (a)). To show the second argument, it gives the proofs of (h) and (g).8

Theorem 2 concerns the endogenous case.

Theorem 2 Let R and C be strictly increasing on �. Let r∗(t) denote a maximizer
of (1 − r) · R(x̂(r, t)) on the interval (0, 1). Then,

(a) r∗(tL)
tL

≥ r∗(tH )
tH

whenever tL, tH ∈ �̃ and 0 < tL < tH .

(b) x̂(r∗(tL), tL) ≥ x̂(r∗(tH ), tH ) whenever tL, tH ∈ �̃ and 0 < tL < tH .
(c) (1−r∗(tL))·R(x̂(r∗(tL), tL) ≥ (1−r∗(tH ))·R(x̂(r∗(tH ), tH ) whenever tL, tH ∈

�̃ and 0 < tL < tH .
(d) W(r∗(tL), tL) > W(r∗(tH ), tH ) whenever tL ∈ �̃, tH ∈ �̃, and 0 < tL < tH .

The Appendix provides the proofs of Parts (a) and (b). It is interesting to note
that while Part (c) of Theorem 2 tells us that in the endogenous case technical
improvement can never be bad news for the Principal, the situation is different for
the Agent. We can construct examples where a drop in t leads to smaller net gain
for the Agent. Informally: in the endogenous case, the Principal is never the enemy
of technical progress but the Agent might be.

7 Two Exogenous-Case Theorems Which Require
Differentiability

Theorem 3 Let � be an open set in R2+
. Suppose that the functions R and C are

thrice differentiable. Suppose that the following monotonicity condition is met:
we either have

x̂rt > 0 for all (r, t) ∈ �

or

x̂rt < 0 for all (r, t) ∈ �.

Suppose, in addition, x̂t is continuous with respect to r at all points in (0, 1].
Then, x̂rt (r, t) > 0 (< 0) at every (r, t) ∈ � if and only if

d

dt
[x̂(1, t) − x̂(r, t)] > (< 0) at every (r, t) ∈ �.

Note that the pair (r∗(t), t) belongs to �, so the theorem applies, in particular,
to x̂rt (r

∗(t), t) and the endogenous effort gap x̂(1, t) − x̂(r∗(t), t). The proof is
straightforward.

8As already noted, the proofs of the parts not shown are given in LMW.
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The next theorem concerns exogenous tracking in Interior examples.

Theorem 4 An interior example has the exogenous tracking property if the effort
set is � = (0, J ), where J > 0, and the monotonicity condition of Theorem 2 holds
(we either have x̂rt > 0 for all (r, t) ∈ � or x̂rt < 0 for all (r, t) ∈ �).

Straightforward calculation yields the following Corollary.

Corollary The following hold for an interior example in which the monotonicity
condition of Theorem 2 is satisfied, the effort set is � = (0, J ) (where J > 0), and
x̂r (r, t) > 0, x̂t (r, t) < 0 for all (r, t) ∈ �:

(i) the Decentralization Penalty (surplus gap) is decreasing in t (so the Penalty
grows when technology improves) if at every effort x ∈ (0, J ) we have R′′(x) ≥
0, R′′′(x) = C′′′(x) = 0.

(ii) the Decentralization Penalty (surplus gap) is increasing in t (so the Penalty
shrinks when technology improves) if at every effort x ∈ (0, J ) we have
R′′(x) < 0, C′′(x) = 0, R′′′(x) ≤ 0.

8 Endogenous-Case Results Which Require Differentiability

Theorem 5 Consider an interior example (�,�,R,C).
(a). Suppose the following holds:

for every t ∈ �̃ we have r∗′
(t) ≥ 0 and for every (r, t) ∈ � we have x̂rt (r, t) < 0.

Then, we have endogenous tracking.
(b). Suppose the following holds:

for every t ∈ �̃ we have r∗′
(t) < 0 and for every (r, t) ∈ � we have x̂rt (r, t) > 0.

Then, we have endogenous tracking.

The next theorem does not directly concern the two gaps. But, it implies that if
marginal revenue is decreasing or constant (R′′ ≤ 0) in an interior example and the
Principal has a unique best share, then the example cannot be in Box 3 of our table.

Theorem 6 Suppose that in the interior example (�,�,R,C) we have:

• R′′(x) ≤ 0 at every x ∈ �.
• x̂rt (r, t) ≥ 0, x̂t (r, t) < 0 and x̂r (r, t) > 0 at every (r, t) ∈ �.
• r∗(t) is the unique maximizer of (1 − r) · R(x̂(r, t)) on (0, 1),

Then, r∗′
(t) ≥ 0 for all t ∈ �.

It is difficult to give a clear intuition for Theorems 4 and 5. That is a little easier
for Theorem 6, which says that if marginal revenue is decreasing, and effectiveness
drops when technology improves, then when technology improves, the Principal
does not become more generous (r∗′

(t) ≥ 0), i.e., we cannot be in Box 3. Intuitively,
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one might say: when t drops, increasing the share above its previous level would
damage the Principal, because the extra revenue due to extra effort has dropped
(marginal revenue has declined) and at the same time the extra effort evoked by a
share increase has dropped as well.

9 Finding the Principal’s Best Share for a Given t: When
Is the Principal’s Gain a Concave Function of the Share?

For a fixed t , consider the Principal’s gain (1 − r) · R(x̂(r, t)) as a function of
r ∈ (0, 1). Our discussion in the “main results” section above argued that if we
want to study bargaining between Principal and Agent over the share r , then it is
very helpful if the graph of the gain curve is single-peaked. As long as the gain is
positive at some r ∈ (0, 1), the curve is single-peaked if it is concave on (0, 1). The
following theorem provides conditions under which the gain is indeed concave. The
theorem has two parts. The first part does not require differentiability with respect to
r , but the second part does. The second part says that we have concavity if marginal
revenue drops (R′′ < 0) and in addition the effectiveness of a share increase drops
when the share increases (x̂rr <,).

Theorem 7

(a) If, for a fixed t , R(x̂(r, t)) is concave on (0, 1), then the Principal’s gain
(1 − r) · R(x̂(r, t) is also concave on (0, 1).

(b) Consider an interior example (�,�,R,C) where � = (0, J ), with J > 0.
Then, R is concave on (0, J ) if for all x ∈ (0, J ) we have R′′(x) < 0, and for
all (r, t) ∈ � we have x̂rr (r, t) < 0. If R′′(x) < 0, then a sufficient condition
for x̂rr < 0 is

r · R′′′(x) − t · C′′′(x) ≤ 0.

10 Concluding Remarks

Recall our central question: does technical improvement strengthen the case for full
Agent autonomy or does it weaken it so much that perfect monitoring and policing
has now become attractive? One might have reasonably hoped for a straightforward
answer since our revenue-sharing Principal/Agent model is so simple. Specifically,
one might have hoped that a natural condition like rising marginal cost and falling
marginal revenue unambiguously implies that the Decentralization Penalty rises
(or falls) when technology improves. Instead, we have found that there is no easy
answer to our central question. On the other hand, we have found a rich array of
other results. One of them is that in both the exogenous case and the endogenous



Technical Change and the Decentralization Penalty 29

case, an advance in technology increases welfare. Another is that an advance in
technology causes the Agent to work harder. That is obvious in the exogenous case,
since the Agent benefits from the advance even if she continues to use her previous
effort. It is not obvious in the endogenous case.

Other interesting results for the challenging endogenous case concern the
tracking question. If the effort gap always moves in the same direction as the surplus
gap (the Penalty), then to see whether a technical advance has strengthened or
weakened the case for autonomy, it suffices to observe (but not police) the Agent’s
effort before and after the advance and to compare it with first-best effort. We
saw that two key properties of an example are the sign of r∗′

and the sign of
x̂rt . We must have tracking if r∗′ ≥ 0, x̂rt < 0 or r∗′

< 0, x̂rt > 0—if a drop
in t decreases generosity (or leaves it unchanged) and increases the effectiveness
of a share increase in eliciting higher effort, or the drop increases generosity and
decreases effectiveness. For the other combinations of the two signs, we may have
tracking but we may also have “opposite directions.”

Can we obtain an easier answer to our central question if we vary or complicate
the model? There are many possible variations.

We could, in particular, turn to the framework of Balmaceda et al. (2016),
described in the Related Literature section above. Both Agent and Principal are
risk-neutral. There are m possible efforts and n possible revenues. Consider the
case m = n = 2. The efforts are xL, xH where 0 < xL < xH . Letting the
subscripts L,H again denote “low” and “high,” the possible costs and revenues
are CL,CH ,RL,RH . The Agent’s cost for the effort xH (xL) is tCH (tCL), where t

is our technology parameter. For the effort xL, the probability of RH is p and 1 − p

is the probability of RL. For the effort xH , the probabilities are q, 1 − q , where
q > p. The Principal chooses a nonnegative wage pair before the Agent chooses
effort. If—for a given t—the Principal wants to induce xH , then he uses a pair
(wt

H ,wt
L), where the Agent is paid wt

H (wt
L) if revenue turns out to be RH (RL).

When xH is induced, the Agent’s expected net gain is qwt
H + (1 − q) · wt

L − tCH ,
and the Principal’s expected net gain is the remainder of the expected surplus, i.e.,
[qRH +(1−q)·RL]−[qwt

H +(1−q)·wt
L]. Another wage pair is used to induce xL.

The chosen wage pair, among those that induce a given effort, minimizes the average
wage paid by the Principal, subject to an Individual Rationality (IR) constraint (the
Agent’s expected net gain is nonnegative) and an Incentive Compatibility constraint
(the Agent’s expected net gain for the given effort is not lower than her expected net
gain for the other effort).

Do we again get one of the key results in our model: is it again true that the Agent
never works less when technology improves? If the Principal chooses to induce xt

H ,
then will he continue to do so if t drops? It turns out9 that if a wage pair solves the
Principal’s induce-xL problem, then the IR constraint for that pair must be binding.
If the IR and IC constraints are both binding for a wage pair that solves the induce-
xH problem, and if the Principal prefers to induce xH , then a drop in t cannot reverse

9The details are provided in LMW.
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that preference. Moreover, the Decentralization Penalty is then zero for every t . If
IR is slack in the induce-xH solution, then it remains true that a drop in t cannot
reverse the Principal’s preference for xH . But now, a drop in t may raise or lower
the Decentralization Penalty. A natural research path would consider all pairs (m, n)

and would examine analogs of other results that we obtained in our model. One
might then explore the same questions when we let the Agent be risk-averse. Does
increasing risk aversion (when t is fixed) raise or lower the Penalty?

In another research path, one could change the definition of “Decentralization
Penalty,” so that it becomes a fraction, as in Balmaceda et al. (2016). The Penalty
(in the endogenous case) would be W(r∗(t),t )

W(1,t )
, rather than the surplus gap we have

considered. Our central question becomes technically harder and again has no
simple answer. Moreover, there are examples where some of our results about the
effect of a drop in t on the Penalty are now reversed.

A third research path would let t be a random variable with common-knowledge
probabilities and would let one party have better information about the true t than
the other. Technical improvement lowers the expected value of t . Does it increase or
decrease the Decentralization Penalty?

It was natural to start with our stripped-down model, where we already saw the
unexpected challenges posed by our central question. The question of the effect
of improved technology on the merits of alternative modes of organizing is well
motivated but has seldom been the focus of previous research. The variations and
extensions that we have noted, and numerous others, merit further attention.

Appendix

Proofs of Parts (a), (g), and (h) of Theorem 1

Proof of Part (a)

The function r · R(x) − tC(x), where t is fixed, displays strictly increasing
differences in r, x if r · R(x) displays strictly increasing differences in r, x. But that
is the case, since R is nondecreasing. Since, for fixed t , the effort x̂(r, t) maximizes
r ·R(x)− tC(x) on the effort set �, it is indeed the case that x̂(rH , t) ≥ x̂(rL, t), as
(a) asserts. Part (a) also asserts that the Agent strictly prefers the higher share. That
is the case since x̂(rH , t) is a maximizer of rH · R(x) − t · C(x), so we have

rH · R(x̂(rH , t)) − t · C(x̂(rH , t)) ≥ rH · R(x̂(rL, t)) − t · C(x̂(rL, t))

> rH · R(x̂(rL, t)) − t · C(x̂(rL, t)).
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Proof of Part (g)

Part (g) says:

W(r, tL) > W(r, tH ) whenever tL, tH ∈ �̃and 0 < tL < tH .

The effort x̂(r, tL) is a maximizer of rR(x) − tH · C(x). Hence,

r · R(x̂(r, tL)) − tL · C(x̂(r, tL)) ≥ r · R(x̂(r, tH )) − tL · C(x̂(r, tH ))

or

r · [R(x̂(r, tL)) − R(x̂(r, tH ))] ≥ tL · [C(x̂(r, tL)) − C(x̂(r, tH ))].

That implies—since 0 < r < 1—that

R(x̂(r, tL)) − R(x̂(r, tH )) > tL · [C(x̂(r, tL)) − C(x̂(r, tH ))]

or

R(x̂(r, tL)) − tL · C(x̂(r, tL)) > R(x̂(r, tH )) − tL · C(x̂(r, tH ))

and hence (since tH > tL)

R(x̂(r, tL)) − tL · C(x̂(r, tL)) > R(x̂(r(tH ), tH )) − tH · C(x̂(r, tH ))

The term on the left of the inequality is W(r, tL) and the term on the right is
W(r, tH ). That completes the proof of Part (g).

Proof of Part (h)

When the Agent’s share is rH , he chooses an effort x̂(rH , t) which satisfies

rHR(x̂(rH , t)) − tC(x̂(rH , t)) ≥ rH R(x̂(rL, t)) − tC(x̂(rL, t)),

or equivalently

rH · [
R(x̂(rH , t)) − R(x̂(rL, t))

] ≥ t · [C(x̂(rH , t)) − C(x̂(rL, t))
]
. (1)

Part (a) of Theorem 1 tells us that x̂(rH , t) ≥ x̂(rL, t). Since R is strictly increasing,
that means that the left side of (1) is either positive or zero. First, suppose that it is
positive. Then, since rH < 1, (1) implies that

R(x̂(rH , t)) − R(x̂(rL, t)) > t · [C(x̂(rH , t)) − C(x̂(rL, t))
]
, (2)
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or equivalently

R(x̂(rH , t)) − t · C(x̂(rH , t)) > R(x̂(rL, t)) − t · C(x̂(rL, t)), (3)

i.e.,

W(rH , t) > W(rL, t). (4)

If x̂(rH , t) �= x̂(rL, t), then, since R is strictly increasing, the left side of (1)
is indeed positive, so (4) holds. If, on the other hand, x̂(rH , t) = x̂(rL, t), then
both sides of (1) equal zero and (2),(3),(4) become equalities. So, as claimed,
W(rH , t) ≥ W(rL, t) and the inequality is strict if and only if x̂(rH , t) �= x̂(rL, t).

Proofs of Parts (a) and (b) of Theorem 2

Proof of Part (a)

We note first that the Agent’s chosen effort x̂(r, t) depends only on the ratio r
t
,

which we shall call ρ. The set of possible values of ρ is
(

0, 1
t

]
. The Agent’s effort

is a value of x which maximizes t · (ρR(x) − C(x)) on the effort set � and is
therefore a maximizer of ρR(x) − C(x). We shall use a new symbol, namely φ(ρ)

to denote the Agent’s chosen effort when the ratio is ρ. So, φ(ρ) = x̂(r, t). The
function ρR(x) − C(x) displays strictly increasing differences with respect to ρ, x.
Hence, the maximizer φ(ρ) is nondecreasing in ρ, so we have

φ(ρH ) ≥ φ(ρL) whenever 0 < ρL < ρH . (+)

We can now reinterpret the Principal as the chooser of a ratio. For a given t , he
chooses the ratio ρ∗(t) = r∗(t)

t
, where

ρ∗(t) = min{argmaxρ∈(0,1/t) M(ρ,−t) },
and

M(ρ,−t) = (1 − tρ) · R(φ(ρ)) = R(φ(ρ)) − t · ρ · R(φ(ρ)).

The function M has strictly increasing differences in ρ,−t if the function −t · ρ ·
R(φ(ρ)) has strictly increasing differences in ρ,−t . But that is the case, since R

is nondecreasing, which implies (using (+)) that R(φ( · )) is also nondecreasing.
Since ρ∗(t) is a maximizer of M(ρ,−t), we conclude that

r∗(tL)

tL
= ρ∗(tL) ≥ ρ∗(tH ) = r∗(tH )

tH
whenever 0 < tL < tH ,

as Part (a) asserts.
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Proof of Part (b)

We use the terminology just used in the proof of Part (a). Since φ
(

r∗(t)
t

)
=

x̂(r∗(t), t), we have, using (+) in the proof of part (a), x̂(r∗(tL), tL) ≥
x̂(r∗(tH ), tH ), as (b) asserts.

References

Balbaieff, M., Feldman, M., & Nisan, N. (2009). Free riding and free labor in combinatorial agency.
In M. Mavronicolas & V. G. Papadopoulou (Eds.), SDAGT 2009: Vol. 5814. Lecture Notes in
Computer Science (pp. 109–121). Berlin: Springer.

Balmaceda, F., Balseiro, S., Correa, J., & Stier-Moses, N. (2016). Bounds on the welfare loss from
moral hazard with limited liability. Games and Economic Behavior, 95, 137–155.

Courtney, D., & Marschak, T. (2009). Inefficiency and complementarity in sharing games. Review
of Economic Design, 13, 7–43.

Garicano, L., & Prat, A. (2013). Organizational economics with cognitive costs. In Advances in
economics and econometrics: Theory and applications, proceedings of the tenth world congress
of the econometric society. Cambridge: Cambridge University Press.

Grossman, S., & Hart, O. (1983). An analysis of the principal-agent problem. Econometrica, 51,
7–45.

Holmstrom, B. (1979). Moral hazard and observability. The Bell Journal of Economics, 10, 74–91.
Holmstrom, B. (1982). Moral hazard in teams. The Bell Journal of Economics, 13, 324–340.
Hurwicz, L., & Shapiro, L. (1978). Incentive structures maximizing residual gain under incomplete

information. The Bell Journal of Economics, 9, 180–191.
Liang, R., Marschak, T., & Wei, D. (2017). Technological improvement and the decentralization

penalty in a simple principal/agent model, SSRN e-library, 2945702 [Abbreviated as LMW in
the text].

Marschak, T. (2006). Organization structure. In T. Hendershott (Ed.), Handbook of economics and
information systems (pp. 205–290). New York: Elsevier.

Nasri, M., Bastin, F., & Marcotte, P. (2015). Quantifying the social welfare loss in moral hazard
models. European Journal of Operations Research, 245, 226–235.

Nissan,N., Roughgarden, T., Tardos, E., & Vazirani, V. (2007). Algorithmic game theory. Cam-
bridge: Cambridge University Press.

Ross, S. (1973). The economic theory of agency: The principal’s problem. American Economic
Review, 63, 134–139.

Roughgarden, T. (2005). Selfish routing and the price of anarchy. Cambridge: MIT Press.
Sundaram, R. K. (1996). A first course in optimization theory. Cambridge: Cambridge University

Press.



Fundamental theory of institutions:
a lecture in honor of Leo Hurwicz

Roger B. Myerson

“The economic problem of society is not merely a problem of
how to allocate ‘given’ resources . . . It is rather a problem of
how to secure the best use of resources known to any of the
members of society, for ends whose relative importance only
these individuals know . . . it is a problem of the utilization of
knowledge not given to anyone in its totality. This character of
the fundamental problem has, I am afraid, been rather obscured
than illuminated by many of the recent refinements of economic
theory, particularly by many of the uses made of mathematics”.

F. A. Hayek, “The Use of Knowledge in Society” (1945).

1 Recognizing the need for a fundamental theory
of institutions

In the early twentieth century, economic theorists from left and right (Barone
1908; Lange 1938; Mises 1920; Hayek 1935) argued whether socialist reform
of economic institutions was possible without loss of economic efficiency. The
inconclusive nature of their debate showed that the existing framework of economic
analysis was not adequate to formalize the justifications for the strongly held
convictions on each side of this vital argument. To allow analytical comparison of
fundamentally different forms of economic organization, a new and more general
theoretical framework was needed. In an influential paper, Hayek (1945) argued
that a key to this new economic theory should be the recognition that economic

The Hurwicz Lecture, presented at the North American Meetings of the Econometric Society, at
the University of Minnesota, on June 22, 2006.
Myerson, R.B. Rev Econ Design (2009) 13: 59. https://doi.org/10.1007/s10058-008-0071-6
© Springer-Verlag 2009.

R. B. Myerson (�)
Economics Department, University of Chicago, Chicago, IL, USA
e-mail: myerson@uchicago.edu; http://home.uchicago.edu/~rmyerson/research/hurwicz.pdf

© Springer Nature Switzerland AG 2019
W. Trockel (ed.), Social Design, Studies in Economic Design,
https://doi.org/10.1007/978-3-319-93809-7_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93809-7_3&domain=pdf
http://dx.doi.org/10.1007/s10058-008-0071-6
mailto:myerson@uchicago.edu
mailto:http://home.uchicago.edu/~rmyerson/research/hurwicz.pdf
https://doi.org/10.1007/978-3-319-93809-7_3


36 R. B. Myerson

institutions of all kinds must serve an essential function of communicating widely
dispersed information about the desires and the resources of different individuals in
society. From this perspective, different economic institutions should be compared
as mechanisms for communication.

Hayek also alleged that the mathematical economists of his day were particularly
guilty of overlooking the importance of communication in market systems. But
questions about fundamental social reforms require fundamental social theory, and
in a search for new fundamental theories, the abstract generality of mathematics
should be particularly helpful. So the failure that Hayek perceived should not have
been attributed to mathematical modeling per se, but it was evidence of a need
for fundamentally new mathematical models. Among the mathematical economists
who accepted this challenge from Hayek, Leo Hurwicz has long been the leader.

Over many years and decades, Leo Hurwicz has worked to show how mathe-
matical economic models can provide a general framework for analyzing different
economic institutions, like those of capitalism and socialism, as mechanisms
for coordinating the individuals of society. Hurwicz (1973) noted that, in late
nineteenth-century economics, the institutionalists were economists who avoided
analytical modeling. Today, all this has changed, since Leo Hurwicz set the standard
for mathematical economists to study institutions as coordination mechanisms.

The pivotal moment occurred when Hurwicz (1972) introduced the concept of
incentive compatibility. In doing so, he took a long step beyond Hayek in advancing
our ability to analyze the fundamental problems of institutions. From that point on,
as Makowski and Ostroy (1993) have observed, “the issue of incentives surfaced
forcefully, as if a pair of blinders had been removed.” By learning to think more
deeply about the nature of incentives in institutions, we have gained better insights
into important social problems and policy debates. But as Hurwicz (1998) has
observed, there are still basic questions in the theory of institutions that we need
to understand better.

As one of many followers in this tradition, I feel privileged to have this
opportunity of presenting a Hurwicz lecture. In this lecture, I want to take a broad
perspective on the state of these questions and what we have learned about them.
First, I will re-examine how modern analysis of incentive constraints can help us to
see what was missing in the old socialist debates. Then I will follow Hurwicz (1998)
in proposing an abstract general model of how institutions are defined and enforced
in a broader social environment. Finally, I will consider more specific models of
incentive problems in establishing the fundamental political institutions of a society.
Throughout, I will suggest a shift away from Hayek’s focus on communication.
Although we should recognize the universal significance of informational (adverse-
selection) incentive problems in all social systems, I will suggest that strategic
(moral-hazard) incentive problems may be even more important for understanding
the foundations of social institutions.



Fundamental theory of institutions: a lecture in honor of Leo Hurwicz 37

2 An old debate and a new theoretical framework

In a polemic against naive dreams of a socialist paradise, Mises (1920) argued that
prices from a competitive market equilibrium are necessary for efficient allocation
of resources. Countering this argument, Barone (1908) and Lange (1938) saw no
reason why socialist managers could not be coordinated equally well by value
indexes set by a socialist Ministry of Planning. Mises (1920) and Hayek (1935)
expressed great skepticism about the feasibility of such central economic planning
without free competitive prices, but their argument on this point remained informal,
focusing largely on the intractable complexity of the resource allocation problem.
It is hard to be persuasive with such arguments of intractability. After all, if the
economy is too complex for our analysis, then how can we be sure that a competitive
market will find an efficient solution, or that a socialist planner will not find one? For
a convincing argument, they needed a simple economic model in which socialism
(suitably defined) could be proven to be less efficient than capitalism.

Of course, the later twentieth century provided much evidence of capitalist
economic success and socialist economic failure, but a theorist should not give up a
good question simply because there seems to be evidence to answer it empirically.
If our theories do not give an adequate answer, then we must continue working
to develop theories that can, because one can always propose new institutional
structures that do not exactly match those for which we have data. If we have no
general theory about why socialism should fail, then we have no way to say that
greater success could not be achieved by some new kind of socialism that is different
from the socialist systems that have been tried in the past.

Economic theorists today have a strong sense of what was missing from the old
debates. The old economists could model resource constraints, but not incentive
constraints. Hayek and others made verbal arguments that show a basic awareness of
incentive problems, but their arguments remained rhetoric without tight logical sup-
port in the absence of any general theoretical framework for analysis of incentives.

In particular, Samuelson (1954) argued that no feasible mechanism could
guarantee an efficient allocation of public goods, because asking a person to pay for
public goods according to his benefit creates an incentive for him to misrepresent his
benefit. This remark seemed consistent with the general view that efficiency is found
only in competitive private-good markets. But in trying to formalize this argument,
Hurwicz (1972) found that the same incentive problems arise in the allocation of
private goods, once we drop the assumptions required for perfect competition. He
showed that, with finitely many individuals, no incentive-compatible mechanism
can guarantee a Pareto-efficient allocation that is at least as good as autarky for
all combinations of individual preferences in a broad class. Thus, the concept of
incentive-compatibility was introduced.

The concept of incentive-compatibility developed rapidly after Hurwicz intro-
duced it (Myerson 1982). We have come to understand that there are really
two kinds of incentive constraints in the general social coordination problem:
informational incentive constraints that formalize adverse-selection problems of
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gathering decentralized information, and strategic incentive constraints that formal-
ize moral-hazard problems of controlling decentralized activity. As Hayek (1945)
emphasized, economic plans must make use of decentralized information that
different individuals have about their resources and desires. An individual could not
be expected to honestly reveal private information that would be used against his
interests, and such adverse-selection problems are formalized in economic models
by informational incentive constraints. But economic plans must be implemented by
decentralized actions of many different individuals, and there is a problem of getting
individuals to accept appropriate guidance and direction when they have conflicting
strategic incentives. An individual could not be expected to obediently refrain from
opportunistic behavior that would be more rewarding to him, and such moral-hazard
problems are formalized in economic models by strategic incentive constraints.

So, although the old socialist debates took place at a time when formal economic
models only took account of resource constraints, we have now expanded the
scope of economic analysis to take account of informational and strategic incentive
constraints. If there was any validity to the intuitive arguments of Hayek and Mises,
we should now be much better able to formulate them analytically in our new
incentivist framework. Thus, we should ask, what is the simplest model in which
we can support Mises’s and Hayek’s conclusions about socialism’s failure?

Mises (1920) saw the essential problem arising in socialist allocation of capital,
because state ownership of means of production implies the lack of any capital
market. Such questions about mechanisms for allocating capital are a topic of
corporate finance. Jean Tirole’s Theory of Corporate Finance (2006) is full of
models applying mechanism design to corporate finance, and we may naturally
look to these models for insights into the old debate on socialism. Tirole has many
models with many different features, but they are generally based on two simple
models: one of moral hazard (Sect. 3.2), one of adverse selection (Sect. 6.2). Each
model describes a simple world which we can transform by socialist reforms, and
we can see how the efficiency of capital allocation is affected. The result may tell us
something about what is truly fundamental in our models.

3 Advantages of socialism in a simple adverse-selection
model

In Tirole’s (2006, section 6.2) basic adverse-selection model, a manager has private
information about the probability of success for a unique investment opportunity.
The basic parameters of the model are (I, A, R, pH , pL, η). Here I denotes the capital
investment cost required for new project. The parameter A denotes the value of
assets that manager can pledge to forfeit if project fails. The parameter R denotes
the returns from the project if it succeeds, but the returns will be 0 if the project
fails. The probability of success depends on the manager’s type. If the manager’s
type is high then the project’s probability of success in the project is pH; but if
the manager’s type is low then the project’s probability of success is pL, where
pL < pH . The manager knows his own type, but it is uncertain to anyone else, and
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the manager can lie about his type. Let η denote the probability of the manager being
the high type. For simplicity here, let us assume risk neutrality and no discounting
of future returns (zero interest rate). We assume that

pHR > I > pLR and I > A

so that the project is worthwhile only if the manager’s type is high, but the manager
does not have enough wealth to undertake the project himself.

Under socialism, there is no problem getting the manager to reveal type honestly,
because he is willing to report his type honestly when we just pay him a flat wage
no matter what he reports. If we want to give him strict incentives to guide social
decision-making about the project, the state could pay the manager ε(R − I) if
the project succeeds, but make him pay εI if the project fails. For any ε > 0, this
payment plan would give the manager a positive incentive to recommend the project
only when its expected social profit is positive. Feasibility requires εI < A, but for
any endowment size A > 0, this liquidity constraint can be satisfied when ε > 0 is
sufficiently small.

This example is interesting for Tirole (2006) because he is assuming that
competition among investors in the financial market always lets the manager borrow
at an interest rate such that investors get expected profit equal to zero given their
information about the manager. With access to such competitive lenders, low-type
managers would want to imitate high-type managers to get their favorable terms of
credit. But under socialism, the monopolistic state lender can fully exploit the high-
type manager, and then the low type would not want to borrow at all. So we find
that socialism may actually have an advantage here, because socialism can flatten
the manager’s incentives to eliminate his temptation to lie about his chances of
success (for other advantages and disadvantages of a monopolistic supply of credit,
see Dewatripont and Maskin 1993).

4 Disadvantages of socialism in a simple moral-hazard model

In Tirole’s (2006, section 3.2) basic moral-hazard model, the probability of success
depends on the manager’s actions (instead of the manager’s hidden type). Most of
the parameters here (I, A, R, pH , pL, B) are as in the previous model: the parameter I
denotes the capital investment cost required for new project, A denotes the value of
assets that manager can pledge to forfeit if project fails, and R denotes the returns
from the project if it succeeds, but the returns will be 0 if the project fails. Now
pH is the probability of success if the manager behaves appropriately, but pL is the
probability of success if the manager misbehaves, where pL < pH , and B denotes
the value of private benefits that the manager gets by misbehaving. We assume that

pHR > I > pLR + B and I > A,
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so that the project is worthwhile only if manager behaves appropriately, but the
manager cannot undertake the project alone.

As individuals should have only modest wealth under an egalitarian socialist
system, let us suppose that the manager’s assets are bounded by the inequality

A < BpH /(pH − pL).

In a social investment plan, let w denote the wage that will be paid to the manager
if the project succeeds. Then a feasible plan must satisfy

pHw − (1 − pH )A ≥ 0
pHw − (1 − pH )A ≥ B + pLw − (1 − pL)A.

Here the first constraint is a participation constraint, that the manager should not
expect to lose by participating in the project. (We are assuming that the social
investment I includes a payment to the manager for the opportunity cost of his time
in managing the project). The second constraint is a strategic incentive constraint,
that the manager should not expect better rewards from opportunistic misbehavior.
The expected social profit, to be maximized, is

Y = pH (R − w) + (1 − pH )A − I.

The participation constraint implies w ≥ A/pH − A, and the moral-hazard constraint
implies w ≥ B/( pH − pL) − A. So with our modest-wealth assumption, the lowest
feasible wage is

w = B/(pH − pL) − A,

which yields expected social profit

Y = pH R + A − BpH /(pH − pL) − I.

(Because the manager is risk neutral, we could not increase Y by adding payments
to the manager when the project fails). Thus, the manager must be allowed to get a
moral-hazard rent that has expected value

pH w − (1 − pH)A = BpH /(pH − pL) − A.

Notice that the expected social profit Y is strictly increasing in the manager’s
collateral A.

Now let us add the possibility that managers can be punished, and let x denote the
punishment cost inflicted on manager if the project fails. Then a feasible mechanism
(w, x) must satisfy the participation constraint

pHw − (1 − pH)(A + x) ≥ 0,
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and the strategic incentive constraint

pHw − (1 − pH )(A + x) ≥ B + pLw − (1 − pL)(A + x).

The punishment x is not assumed to yield any social value to anyone else. So
expected social profit is still

Y = pH (R − w) + (1 − pH )A − I.

The participation and incentive constraints now imply

w ≥ (A + x)(1/pH − 1) and w ≥ B/(pH − pL) − (A + x).

With modest endowments A < BpH/(pH − pL), the wage cost is minimized by the
punishment

x = BpH /(pH − pL) − A,

which allows the wage

w = B(1 − pH )/(pH − pL)

and so yields the expected social profit

Y = pHR + (1 − pH )[A − BpH /(pH − pL)] − I.

Thus, punishment of failures can improve social profit. But increasing the manager’s
private collateral A still helps, even when punishment is allowed.

On the other hand, if there are rich agents who have assets A greater than
BpH/(pH − pL) then we could achieve the ideal social profit Y = pH R − I, by
letting the project be managed by such a rich agent for the wage w = A(1 − pH)/pH

to be paid if the project succeeds, but taking his collateral A if the project fails, with
no further punishment (x = 0). This wage makes the participation constraint binding
(pHw − (1 − pH) A = 0) and satisfies the moral-hazard constraint with w + A ≥
B/(pH − pL).

So there are two obvious ways for socialist reformers to achieve full efficiency
here. First, they could allow some individuals to hold more wealth, up to BpH/

(pH − pL). Perhaps such favored people could be heroes of the socialist revolution
(or of the Norman conquest). Second, they could drop the participation constraint
and force people to become managers without compensation for punishment risks.
Perhaps such disfavored people might be prisoners or enemies of the state. But
either way, socialism looks rather less appealing from the perspective of this moral-
hazard model, as it forces us to admit either inequality or coercion or productive
inefficiency into our imagined socialist paradise. Indeed, our simple model does not
do badly as a source of theoretical insights into the flaws of Soviet communism,
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and it formalizes some of Hayek’s informal intuitive arguments: “To assume that
it is possible to create conditions of full competition without making those who
are responsible for the decisions pay for their mistakes seems to be pure illusion”
(Hayek 1935, p. 237).

5 Comparing moral hazard and adverse selection

The comparison of these two models suggests that, when we probe the logical foun-
dations of social institutions, moral-hazard problems may be more fundamental than
adverse-selection problems. The problems of motivating hidden actions can explain
why efficient institutions give individuals property rights, as owners of property
are better motivated to maintain it. But property rights give people different vested
interests, which can make it more difficult to motivate them to share their private
information with each other. Thus, adverse selection might not be so problematic
if there were no moral hazard. Socialism differs from capitalism in allowing less
property rights for individuals, but moral hazard provides a fundamental economic
rationale for some property rights that must apply even under socialism. So adverse-
selection problems can be important under socialism, just as under capitalism.

For example, take Tirole’s basic moral-hazard model with no punishment (x = 0),
but now let us add a small probability ε that the manager is a bad type who cannot do
better than the pL probability of success (and cannot get the benefit B). With small
collateral A < pL B/(pH − pL), such a bad manager would imitate the good type, to
enjoy the positive expected benefits (pL B/(pH − pL) − A) from getting his project
financed. So in the presence of moral hazard, the socialist system loses its ability to
trivially solve informational adverse-selection problems.

On the other hand, if the uncertainty in the basic adverse-selection model were
about the required investment amount I (instead of the success probability p), the
socialist planner would have to allow informational rents to low-I type managers.
But nobody would even try to take these rents away if the manager were a capitalist
entrepreneur.

More generally, even if incentive analysis of other adverse-selection models does
not reveal actual disadvantages of socialism, it can help to show that the supposed
advantages of socialism may be less than its advocates would have suggested when
they failed to recognize the possibility of opportunistic misrepresentations under
systems other than capitalism. Analysis of mechanism design with informational
incentive constraints has taught us that individuals with unique private information
may have to be allowed informational rents in an efficient mechanism. But mech-
anism design as a conceptual framework can fit capitalist or socialist institutions,
and so it can help us to see that the manager of a socialist monopoly who has
private information about production costs (and can divert unaudited profits) may
extract informational rents that look essentially like the profits of a monopoly in
capitalism. Conversely, a capitalist monopoly’s profits could be regulated away if its
costs were publicly known, and it may be the monopolist’s private information about
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costs that enables him to fend off such regulation. Thus, mechanism design teaches
us that having multiple independent sources of supply may be just as important
under socialism as under capitalism, which traditional market models could not
show. Soviet planning may have suffered from failing to recognize such benefits
of informational decentralization.

6 General theory of institutions enforced in larger games

In recent work, Hurwicz (1998) has focused on questions of how institutions are
constructed and how institutional rules are enforced (see also Schotter 1981). Here
strategic incentive constraints are at the heart of the problem, so we can focus on
games in strategic form where N is the set of players, Ci denotes the set of strategies
of player i, and Ui (c) denotes the utility payoff to player i from strategy profile c in
C = × j∈N Cj.

To a game theorist, an institutional reform means changing the structure of the
game that people play in the institution. So it is common for game theorists to think
that institutions are games. But Hurwicz (1998) observes that what we normally
mean by institutions (or institutional arrangements) typically does not include the
specification of individuals’ preferences (nor does it typically include the beliefs that
we specify in Bayesian games). So an institution for Hurwicz is more properly to be
identified with a game-form of Gibbard (1973), specifying only the set of players N,
the sets of strategies Ci for each player i, and an outcome function 	 : C → Y that
defines how outcomes in some set Y would depend on the players’ strategies. Such
game-forms are mechanisms in Hurwicz’s sense. To analyze such a game-form or
mechanism, however, we must specify each player i’s preferences for outcomes by
a utility function ui : Y → R on the outcome set Y. With these outcome-based utility
functions, we can then define the strategy-based utility functions Ui(c) = ui(	(c))
that complete the structure of the strategic-form game which corresponds to the
institution once preferences are given.

When we ask how an institution is established, we must embed it somehow in
a larger game. For example, when two people play a game of chess, typically each
of them is physically able to grab the other’s king at any time, but is deterred from
chess-illegal moves by the damage such behavior could do to one’s reputation in the
larger game of life. So the chess game seems supported by some kind of reputational
equilibrium in a larger more fundamental game. But saying “games are equilibria of
larger games” cannot be right, because if chess were embedded as an equilibrium in
the game of life, then that equilibrium would specify each player’s strategy in the
chess game itself.

Hurwicz (1998) explains that, if our legal game G = (N, (Ci)i∈N , (Ui)i∈N) is
embedded in some true game H, the structural relationship must be that H = (N,
(Di)i∈N , (Ui)i∈N) has a larger strategy spaces

Di ⊃ Ci ∀i ∈ N
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and has utility functions that extend those of the legal game G to the larger domain
D = × j∈N Dj. Hurwicz (1998) then suggests that a strong formulation of successful
enforcement could require that, for each player i, each illegal strategy outside Ci

should be dominated by some legal strategy in Ci, so that a player’s best responses
always take him into the legal game, even if others deviate.

Hurwicz (2008) remarks, however, that a normally law-abiding player might not
want to remain law-abiding when others are acting illegally, and so a weaker concept
of enforcement may be appropriate. Thus, I would suggest that the definition of
institutional enforcement should be weakened, to say that G is enforceable in H
when

∀i ∈ N, ∀c−i ∈ ×j∈N−iCj , ∀di ∈ Di\Ci, ∃ci ∈ Ci

such that Ui(c−i , ci) > Ui(c−i , di),

so that each player’s optimal actions are in his legal strategy set when all others’
actions are expected to be in their legal sets. That is, G is enforceable when its
strategy sets form a curb set in H, as defined by Basu and Weibull (1991) (Curb sets
are closed under rational behavior).

This weaker definition of enforceability can admit a great multiplicity of
enforceable institutions for a given environment, because a big true game H can
contain many different minimal curb sets. This multiplicity may seem an annoying
indeterminacy, to theorists who believe in economic determinism. But I would argue
that the right mathematical model of institutions should admit such a multiplicity
of solutions, because real institutions are manifestly determined by cultural norms
and traditional concepts of legitimacy, which would have no scope for effect if the
economic structure of the true game H admitted only one dominant solution.

For example, legal rules of a political constitution that are written on a piece of
parchment in a museum may be enforced in a true game that involves millions of
people on a large land-mass. What would prevent anyone from writing another set
of rules (on a bigger piece of parchment) and acting according to them instead?
Under any political constitution, such an act should be punished as sedition or
treason by others who accept the given constitutional rules. But although treason
never prospers, the definition of what is treason depends on an arbitrary social
consensus. We all understand that a broad failure to agree about constitutional
rules and authority can create an anarchy in which everyone suffers. So the social
process of identifying what are the constitutional rules of politics and who are the
legitimate leaders of our society has the basic structure of a coordination game with
multiple equilibria, where the outcome must depend on culture and tradition through
Schelling’s (1960) focal-point effect.

The essential role of the focal-point effect in the foundations of our basic political
institutions has been emphasized by Hardin (1989) and Myerson (2004, 2008). The
new theoretical point here is that Schelling’s focal-point effect can be extended to
questions of selecting among multiple curb sets, just as among multiple equilibria.
Once everyone understands that everybody else will be restricting themselves to
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strategies in one particular constitutional curb set, it becomes rational for each
individual to stay in his or her respective portion of this curb set.

Although people may be symmetric in the true game H, this symmetry can
be broken in the curb set G. Indeed, the enforcement of a constitutional curb set
may depend crucially on a small group of specially designated individuals (called
law-enforcement officials) whose curb-set strategies stipulate that they would
punish any deviator who violated constitutional restrictions.

7 Moral hazard and privilege in sovereign political
institutions

The preceding model of how institutions are enforced in larger games is very
abstract. To move from broad abstractions to practical specifics, we need to think
more carefully about the officials who are the guardians of our institutions, as
Hurwicz (1998) has emphasized. Let me follow him now in examining the basic
question of who guards these guardians, that is, who forces the enforcers to enforce
our laws.

Consider again the problem of enforcing the fundamental political institution of a
nation, such as the Constitution of the United States. A constitution can be effective
only when there are agents who expect to be rewarded for implementing its rules.
In particular, it must designate officials who are expected to prosecute sedition and
other violations of the constitution, so as to deter the rest of the population from
such illegal moves. But what makes these officials do their official function? Of
course, a problem of getting people to do what they are supposed to do is what we
call a moral-hazard problem. So the basic problem of getting government officials
to enforce constitutional rules is a moral-hazard agency problem in the upper levels
of government.

Such an agency model has been analyzed by Becker and Stigler (1974). They
recognized that powerful officials have regular opportunities to profit from abuse
of power, and that such abuse of power can be difficult for others to detect. For
abuse of power to be deterred, the official must expect to do better by acting
to enforce the rules correctly, and so must expect substantial rewards that would
forfeited if evidence of abuse of power were discovered. Assuming risk-neutrality,
the magnitude of these rewards must be at least the potential profit that the official
could earn from abuse of power divided by the probability that such abuse of power
would be discovered. So when temptations are large and probabilities of detection
is small, powerful officials may need to be very well rewarded. Thus, we should
expect the leaders of fundamental political institutions to be a very well-rewarded
elite, highly motivated by the need to preserve their privileges, as Michels (1915)
observed even of socialist political parties.

So our concept of a constitution is incomplete if we ignore the essential role of
those who expect enjoy the privileges of high office under the constitution and are
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therefore well motivated to act to sustain it. From a purely structuralist perspective, it
might seem that a political constitution could be fully defined by specifying (1) a set
of political offices, (2) the powers, privileges, and responsibilities of these offices,
and (3) the procedures for selecting future holders of these offices. But to fully
characterize a political constitution as a self-enforcing dynamic system, embedded
in a true game where people are symmetric, one must also specify (4) the privileged
individuals who actually hold these offices at some initial time (or who expect to be
on the short list of serious candidates for these offices in the first elections). In this
sense, the specific identity of the small privileged group who are called “Founding
Fathers” of the American Republic may be considered an essential component of
the American Constitution, as essential as the words written on old parchment in
Philadelphia.

If moral-hazard opportunities imply that responsible officials must be well
rewarded, then people should be willing to pay for promotion to such offices. In
Becker and Stigler (1974) theory, an efficient organization would pass the cost of
an official’s incentive rewards back to the official ex ante, by charging a fee for
promotion to the office. In effect, a candidate for office would be asked to post a
bond, which would be returned to the official on retirement if there is no evidence of
malfeasance. Such a plan appears to be a simple efficient solution to the fundamental
agency problem of government. But it creates a new moral-hazard problem at
the highest level, because it implies that the leader who controls appointments to
high offices will have an incentive to convict officials of malfeasance and resell
their offices. The whole scheme depends on the promise that high officials will be
appropriately judged, so that they can expect to be rewarded for correct service
and punished for abuse of power, but there may be no neutral party to make such
judgments. An official must always be worried that others in the power structure
would be tempted to convict him of malfeasance and sell his position to someone
else.

Thus, the organizational problem of metering rewards, which Alchian and
Demsetz (1972) considered for economic producers, arises even more forcefully
for political organizations. Indeed the terms of the problem may be sharpened in the
political context, where there can be no question of looking to some higher court for
adjudication of contractual relationships.

Hurwicz (1998) recognized that the guardian officials of a sovereign political
institution must in some sense be organized into a circle of mutual monitoring and
judgment, where the actions of each individual are monitored and judged by others
in the circle. But when an individual i is called to monitor the actions of some
individual j in such a circle, the monitored actions may include j’s monitoring of yet
other individuals, which further broadens the scope of activity that individual i must
be prepared to observe. So some collective aspect of the fundamental adjudication
process seems unavoidable. Within a ruling political faction that admits no higher
court of appeal, membership in the faction may require an individual to keep
manifestly informed about the general status of other members, perhaps formally by
attending regular factional meetings, or informally by staying current in a factional
network of gossip.



Fundamental theory of institutions: a lecture in honor of Leo Hurwicz 47

So the survival of a political institution must depend on its being led by some
faction or core group of powerful officials who share a basic trust in each others’
judgments. In effect, the members of this group may form a court where they each
have a right to be tried before any punishment or loss of privilege. In such a court,
evidence of malfeasance against any of them would be commonly heard, so that all
members of the group should be able to evaluate whether resulting judgment was
reached appropriately. The collective sanction against wrongful judgments in this
court could be that the members of this ruling faction would lose trust in each other,
so that they would all switch to an equilibrium where each opportunistically abuses
his individual power. We may assume that, in a competitive world, a faction would
not long hold political power over a large society if members of the faction could
not solve free-rider problems in collective actions to defend their power against
challenges from other potential factions (Myerson 2008). With this assumption,
any one member of a ruling faction could feel protected by the expectation that
her colleagues could not mistreat her without risking a general loss of mutual trust
within the faction, which would jeopardize all of their privileged positions.

8 Leadership and moral hazard at the center

To be more specific about how such factions are formed, we must recognize the
role of leaders as entrepreneurs of institutions. Throughout history, governments
have been formed by political leaders whose path to power began by gathering a
trusted group of active supporters. When a faction has been organized in this way,
privileges of membership in the faction are allocated by the leader. Then the circle
of monitoring can be closed by a simple factional rule that the leader should never
remove a member’s privileges without a process of judgment that is collectively
witnessed by other members of the faction. Indeed, rulers throughout history have
generally maintained courts or councils, where high officials and others close to the
ruler were regularly gathered, and where the ruler’s treatment of any courtier could
be witnessed and scrutinized by other courtiers. Thus, each individual courtier could
feel confident of getting appropriate rewards from the leader, because of the leader’s
need to maintain a general reputation for appropriately rewarding all courtiers, who
are the primary agents of his power.

Popular books on leadership have filled shelves in bookstores, but their descrip-
tions of leadership are often focused on leadership as visionary strategic decision-
making (Maxwell 2002). Of course, when people need to coordinate, they may look
to a leader for strategic decisions about whether to attack at dawn, or at noon, or
not at all. But when we ask what is really the essential function of a leader, I would
suggest that the role of strategic planner may be generally less important than the
role of honest monitor and reliable paymaster that Alchian and Demsetz (1972)
identified. A leader makes a group into an effective team by his reputation for
actively monitoring the contributions of individuals in the group and appropriately
rewarding their efforts. Such a reputation with a group of supporters, small enough
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to be individually monitored but large enough to achieve competitive success by
their collective actions, is the essential asset that defines a leader. If a leader loses
this reputation for appropriately rewarding the members of his group, then the leader
must be replaced or the group will lose its ability to compete with other teams that
have better leadership.

This idea dates back at least to Xenophon, whose “Education of Cyrus”
(c. 360 BCE) depicts a great leader who establishes a great empire by cultivating a
reputation for honestly and generously rewarding captains who serve well in battle.
While other leaders think that their power depends on the assets in their treasury,
Cyrus understands that his power really depends on his credit with his captains, so
that it can be better to pay out generously than to keep anything for himself. In
another paper (Myerson 2008), I have analyzed a similar model of the foundations
of the state by leaders whose ability to hold power depends on their reputation for
reliably rewarding the captains who support them against their rivals in contests for
power.

An economic entrepreneur must be able to credibly promise future payments both
to the investors who supplied his initial capitalization and to the managers whose
moral-hazard opportunities require promises of large future rewards. Similarly,
a political leader must be able to credibly promise future rewards both to the
supporters or captains whose efforts put him in power and to the high officials or
governors through whom his power is exercised.

To further probe the difficulties of maintaining a reputation for appropriately
rewarding agents in political institutions, let me describe one more model of moral
hazard by high government officials, an extension of the Becker–Stigler model that
I have analyzed (Myerson 2015). In this model we consider a high official, whom
we may call a governor, in a state that is ruled by a single leader or monarch. At any
time, the governor can behave well (govern appropriately), or misbehave (govern
corruptly), or openly rebel. The leader cannot directly observe whether a governor
is behaving or misbehaving, but he can observe any costly crises that occur in the
governor’s province. Crises occur as a Poisson process with a low expected rate α

when governor behaves, but a high expected rate β when the governor misbehaves,
where β > α. Misbehavior also gives the governor a flow of additional hidden
benefits that are worth γ per unit time. The governor observes any crisis in her
province shortly before the leader does, but she can be called to court for a brief
visit during which rebellion is impossible. Let D denote the expected payoff to the
governor when she rebels (which is observable to the leader). Crises and rebellions
are very costly for the leader, so he wants his governors to always behave well,
that is, to never misbehave or rebel. Each individual is risk neutral and has discount
rate δ.

To be deterred from rebellion, a governor must always expect rewards that
are worth at least D. Candidates for governor can be asked to pay something for
promotion to the office, but any candidate’s ability to pay is limited by her wealth,
which we denote by A. We assume that a governor’s potential gains from rebellion
are greater than the private wealth of any candidate for office, so A < D. On the
other hand, the leader may feel tempted to free himself of his debts to a governor,
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by sacking the governor, and such moral hazard at the top is essential to the problem
of political leadership. To admit it into our model as simply as possible, we assume
an upper bound H on the debt that the leader can be trusted to owe a governor. These
parameters (α, β, γ , D, δ, A, H) characterize our model.

To minimize the leader’s expected cost of paying governors, the optimal
incentive plan (derived in Myerson 2015) can be characterized at any time by the
expected present discounted value of all future rewards to the incumbent governor,
which we may call the governor’s credit. To deter hidden misbehavior, any crisis
in the province must cause the governor’s credit to decrease by a penalty that has
expected value

τ = γ /(β − α).

Normally, the sanction for a crisis should be to reduce the governor’s credit by this
amount τ. But the governor would rebel if her credit ever went below D after a crisis,
and so the governor’s credit beforehand must never be less than D + τ. So if a crisis
occurs when the governor’s credit U is less than D + 2τ, then the governor should
be called to the leader’s court for a trial, where the outcome is either to reinstate the
governor at the credit D + τ with probability (U − τ )/(D + τ ), or else to dismiss the
governor (who thereafter gets 0) and instead appoint a new governor at the minimum
feasible credit level D + τ.

Thus, the need to deter both hidden misbehavior and open rebellion requires
the leader to make randomized decisions about whether to dismiss or forgive a
governor after a crisis. But the leader is not indifferent in such situations, because
dismissing the incumbent governor would create an opportunity to resell the office
to a new governor for the payment A > 0. So the process of deciding a governor’s
fate in such a situation must be actively monitored by others, because otherwise
the leader’s ex-post incentive would always be to dismiss the governor. That is, the
leader needs to institutionalize a formal trial procedure where others (whose trust he
needs to maintain) can observe that he has given the governor an appropriate chance
of reinstatement before any dismissal.

The expected discounted value of the leader’s cost, at any point in time, is equal
to the credit U that he owes to the current governor, plus the expected discounted
value of the leader’s net cost of promises to other governors who will be promoted
into the position after dismissals in the future (D + τ − A at each promotion). So
the optimal plan for the leader should minimize the expected frequency of future
dismissals, which can be achieved by keeping governors as far as possible from
the low credit range (below D + 2τ ) where dismissals occur. Thus, in the optimal
incentive plan, a governor should be paid only in credit, not in cash, until the credit
bound H is reached. To keep promises to a governor, her credit should increase
between crises at the rate U′ = δU + ατ until it reaches the bound H on what the
leader can be trusted to owe. When the credit owed equals H, the governor should
be paid δH + ατ until the next crisis causes her credit to drop to H − τ. In this
solution, increasing the trust bound H would strictly decrease the leader’s expected
discounted cost, as assessed ex ante when a new governor is first appointed. But
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with very high H, the leader will ultimately incur large expensive debts to governors
who become entrenched in their offices.

That is, even when the leader has the same discount rate as the high officials of
his government, the need to deter them from abuse of power creates a motivation
for the leader to become a debtor to these officials. Of course this conclusion is
just an extension of the results of Becker and Stigler (1974) analysis. Our extended
model has been designed only to show how problematic this debt relationship
can be, because (to deter corruption) the leader must sometimes actually dismiss
officials without paying them their promised rewards, but the circumstances of these
dismissals cannot be simply predictable (to avoid rebellions) and so can be verified
only by actively monitoring the judgment process, during which the leader’s natural
incentive is actually to dismiss rather than reinstate (because he can resell the office).

Thus, someone needs to actively monitor the leader’s judgments of his high
officials and constrain him to act according to an optimal random rule. But who
can have such power over the leader of a sovereign political institution? The other
high officials on whom his regime depends have such power, because they would
rationally misbehave or rebel if they lost trust in the leader’s promises of future
rewards. (In particular, the leader’s problem of deterring misbehavior and rebellion
would become infeasible if the amount H that they trust him to owe ever became
less than D + τ.) So a sovereign political leader needs a court or council where
high officials witness his appropriate treatment of other high officials. Such high
councils of government seem universal in political systems. In them, the chief
guardian’s reputation for rewarding his supporters is collectively guarded by his
chief supporters.

Thus, in our fundamental theory of institutions, we should recognize that political
institutions are established by political leaders, and political leaders need active
supporters. Like a banker, a leader’s promises of future credit must be trusted and
valued as rewards for current service. The leader’s relationship of trust with his
inner circle of high officials and supporters requires that they must act collectively
to monitor and verify his judgments against any of them. Such a relationship of
trust with a group of supporters, small enough for the leader to personally monitor
but large enough to effectively control the larger institutions of government, is a
political leader’s most valuable asset. Furthermore, the members of this group must
share a sense of identity, in that each must be confident that the leader’s wrongly
punishing any one of them could cause all others to lose trust in the leader.

So the establishment of fundamental institutions by political leaders may ulti-
mately rely on a sense of identity among members of a group that is small enough to
gather in a court of common judgment to hear a case against any one of them. From
this perspective, we can make sense of cases throughout history where powerful
political forces have been led by small groups of people who are connected by
narrower forms of identity, such as family relationships, or old school ties, or bonds
of personal loyalty to their leader, even though these personal connections may
seem to have no intrinsic relationship with anyone’s position on great questions
of national policy. Like the nineteenth century socialists, we may dream of great
utopian social reforms, but we should understand that the institutions of any such
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brave new world would be built on narrower factional foundations, organized by
political leaders whose first imperative is to maintain their reputation for rewarding
loyal supporters.
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The Hurwicz Program, Past
and Suggestions for the Future

Andrew Postlewaite and David Schmeidler

1 Mechanism Design

The modern neoclassical consumer model was formulated in Scandinavia between
the world wars, but modern theory started essentially with the publication by
Arrow and Debreu (1954) of the proof of existence of competitive (Walrasian or
price) equilibrium. The first conceptual contribution by Leo (Hurwicz 1972, and
to some extent, 1960a) was to separate the economic variables into two groups:
The environment, as he termed it, includes the characteristics of economic agents,
initial endowments, preferences, and production sets, and the allocation mechanism,
i.e., the methods or institutions by which the society organizes the exchange of
commodities and makes production and consumption decisions. Next (in the same
papers), he introduced and formally defined concepts like: performance corre-
spondence, implementation, incentive compatibility, informational decentralization,
equilibrium of a mechanism, etc. (and proved theorems relating these terms).1

Until about the end of the sixties, the theory, still named mathematical economics,
dealt mainly with the properties of competitive equilibria including stability and
convergence. See, for example, Arrow and Hahn (1971).

In Leo’s framework, the competitive mechanism is only one of many possible. In
the theoretical literature, alternatives to price equilibrium were mostly considered

1These ideas evolved from simplified models, virtually special cases of his general model. This is
evident from his papers before 1972 (Hurwicz 1951, 1955, 1960a,b, 1966, 1969, 1970, and 1971).
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in cases of market failure such as public goods, nonconvexities, etc.2 Mechanism
design has been also applied to allocations within firms and organization. However,
the main goal of the mechanism design research was not just to design mechanisms
but to investigate which combinations of desired properties of the performance
correspondence can be implemented by a mechanism with desired properties. We
should recall here that a mechanism is defined for a whole class of environments,
such as neoclassical environments with some fixed number of commodities. The
mapping that assigns equilibria outcomes (allocations) to environments is termed
the performance correspondence (of this mechanism). Any correspondence from
environments to outcomes is termed social choice correspondence (SCC). Thus, a
performance correspondence is an SCC implemented by the above mechanism.

The noncooperative game theory developed during the fifties and the sixties, and
in the seventies it entered the economic theory and partially or mostly replaced
competitive price equilibria as its principal tool of research. In the seventies, Leo,
and others who joined the mechanism design research program, replaced the abstract
concept of mechanism with game forms, and the abstract equilibria with equilibria
of strategic games like Nash equilibria, strong equilibria, dominant strategies
equilibria Bayesian equilibria, etc.3 Already by the late sixties, Shapley and Shubik
constructed a descriptive model of the market: a game form whose strategic
equilibria coincided asymptotically with competitive equilibria, but suggested more
realistic equilibria for oligopolistic markets. Many variants of this game form were
suggested and investigated.

A central feature of Leo’s contribution was to reverse the search for desirable
mechanisms. Instead of inquiring the properties of equilibria of a specific game
form, he started from the desired properties of an SCC: Does there exist a mech-
anism whose performance correspondence satisfies these desiderata? In addition,
some desired properties were sometimes prescribed, for example, the domain of the
environments, the informational requirements of the mechanisms including the type
of the equilibrium, etc.

An important related area where mechanism design extended and redefined the
scope of research is the voting\social choice theory. It started with Arrow’s cardinal
impossibility result (1952) and continued with the by now classical Gibbard (1973)
and Satterthwaite (1975) results showing the impossibility of a straightforward
(Farquharson 1969) voting rule. Concurrently, majority voting rules modelled
along the lines of those used in parliament were investigated. The mechanism
design approach asks whether there are mechanisms (voting rules) whose strategic
equilibria (i.e., the performance correspondences) satisfy certain desiderata.
Maskin (1999) showed that “monotonicity” of an SCC is a necessary and

2Historically, alternatives to the market mostly originated from socialist utopias starting with
utopian socialism, continuing with Marx and Engels’ socialism and communism, and the attempts
to implement them, from the USSR in 1917 to North Korea today (Jan 2018). In mainstream
economics, these utopias were relegated to economic history and the history of economic thought.
3Leo was not very keen of mixed strategies, vNM utility or Bayesian equilibrium.
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almost sufficient condition for it to be possible to implement the SCC via Nash
equilibria.

While these results about social choice mechanisms are of first-order importance,
the impetus for Leo’s first work on mechanism design was motivated by the Lange–
Lerner debates about the viability of socialism (Lange 1942, Lerner 1944, Hayek
1945). The debate was, to a large extent, whether a centralized system could uncover
information dispersed among many agents, and use that information to achieve
Pareto efficient outcomes. Formalizing this, Leo considered a set of pure exchange
economies consisting of a finite number of agents, each of whom was characterized
by a nonnegative initial endowment of the goods in an economy and a utility
function over possible consumption bundles. A performance function on this set
of pure exchange economies is then a function that maps each economy (a finite
collection of agents) into an equilibrium redistribution of the agents’ endowments.
In Hurwicz (1972), Leo showed the impossibility of a performance function that
lead to individually rational Pareto efficient allocations when the equilibrium notion
was dominant strategy. The literature turned the question of whether there were
performance functions with desirable properties when Nash equilibria was the
solution concept, where quite general characterizations were obtained.

Much of the literature motivated by Leo’s early work focused on the possibility
of implementing Pareto efficient performance functions, motivated by the debates
about planned economies. What performance functions can be implemented is
obviously important, but how a performance function is implemented is no less
important. Leo’s conceptual framework separates the performance correspondence
one might want to arise from the game form that governs individuals’ behavior,
allowing one to investigate the properties of the game form (the institutions that
provide incentives for behavior) separately from the properties of the performance
(the equilibria arising from the institutions).

There are two broad reasons to care about the properties of a game form that
implements a given performance function: The analyst may care about the game
form, and the agents participating in the game form may care.

The Analyst’s Concern As noted above, much of the mechanism design literature
asks whether a performance function can be implemented in Nash equilibrium, that
is, is there a game form for which the Nash equilibrium outcomes coincide with the
outcomes specified by the performance function. The reliance on Nash equilibrium
as the solution concept did not arise because it was particularly compelling, but
rather, because it seemed the “least flawed” solution concept that gave interesting
insights.4

Maskin’s (1999) seminal paper mentioned above illustrates potential conceptual
problems with Nash equilibrium as a solution concept. Roughly, the paper gives
sufficient and (nearly) necessary conditions on a performance function for it to be
implementable in Nash equilibria. Sufficiency is shown by constructing a game form

4See Jackson (1992) for an early paper along this line.
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whose equilibrium outcome is the outcome proposed by the performance function
satisfying the sufficient conditions. An agent’s strategy in the constructed game
form includes a precise description of all agents’ preferences, both other agents’
preferences and her own. If all agents’ agree on the profile of preferences, the
outcome is that prescribed by the performance function. The game form is cleverly
designed so that the only possible equilibrium is that the agents agree.

This works fine when (as implicitly assumed) the profile of preferences is com-
mon knowledge among the agents. But, the central idea is applied to pure exchange
economies, the game form is highly discontinuous, and the slightest deviation by
a single agent can lead to very bad outcomes.5 So, while the Nash equilibrium
solution captures the incentives among agents, it is unreasonable to think of it as
being plausible for this game form implementing, say, the (constrained)6 Walrasian
performance function.7,8

An analyst might well think that while Nash equilibrium is appropriate for some
game forms, but prefer a game form that was continuous as this would avoid
disastrous outcomes when small deviations from equilibrium play. Postlewaite and
Schmeidler (1978) analyze a continuous game form for pure exchange economies in
which there are Nash equilibria arbitrarily close to Walrasian equilibrium allocations
when the number of agents is sufficiently large.

One might rate this game form as preferable to a Maskin-type game form on this
basis, but less desirable on two counts. First, Nash outcomes are not fully Pareto
efficient.9 Second, while when there are many agents there is a Nash outcome that
is close to the Walrasian outcome, there are other equilibria that lead to no trade.
This is in contrast to the performance of a Maskin-type game form which does not
have such less desirable equilibrium outcomes.

There are other important characteristics of game forms besides continuity (or
lack thereof) and multiplicity of equilibria. As mentioned above, in Maskin-type
game forms an agent’s strategy includes announcing the vector of preferences
for the participating agents. As the number of agents gets large, the size of her
messages grows proportionately. In addition to the implausibility that she would
have this information, there is the sheer difficulty of acting upon it. In contrast, in

5See Hurwicz et al. (1995) for details.
6Constrained Walrasian equilibria are essentially price and allocations for which all agents are
maximizing subject to their budget sets and the feasibility of their demands. For simplicity, we will
drop the “constrained” and refer simply to the Walrasian correspondence.
7One might argue that if the problem is that agents may not, in fact, know precisely the preferences
of all agents in the economy, one should then include in the basic model agents’ beliefs about
the preferences. This, however, does not really solve the underlying problem. Postlewaite and
Schmeidler (1986) show that when following this path, one can accomplish the analogous Bayes
Nash implementation for exchange economies with asymmetric information using a similarly
discontinuous game form.
8See Eliaz (2002) for a discussion of this and related issues.
9Postlewaite and Wettstein (1989) demonstrate a continuous game form somewhat resembling
Maskin-type game forms whose outcomes are constrained Walrasian.
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the Postlewaite and Schmeidler (1978) paper mentioned above, an agent’s strategy
is a vector of amounts of goods she wishes to put up for sale and the amount she
is willing to spend for each good she wishes to buy. This is a vector of dimension
twice the number of goods independent of the number of agents.10

The discussion so far has outlined features of a game form under consideration
that an analyst might look at in evaluating the plausibility of Nash equilibrium as
a solution concept for the game form. Another feature is the information an agent
needs to determine her best response to other agents’ strategies. In Maskin-type
game forms an agent needs to know precisely the strategies of each and every agent
to determine her best response, while in the Postlewaite and Schmeidler (1978)
game form, agents need only predict the sum of other agents strategies. That, along
with the continuity, might give greater plausibility to the Nash outcome of the game
form.

Before turning to participants’ possible concerns about properties of the game
forms employed in the design of mechanisms, it is useful to mention how analysts
often derive optimal mechanisms. A common technique is to invoke the revelation
principle.11

A Participant’s Concern The discussion above dealt with the analyst’s concerns,
driven primarily on the suitability of Nash equilibrium as the solution concept. In
addition to those concerns, the participants of the game form might have concerns
that are separate from questions on Nash equilibrium. If I were an agent in a pure
exchange economy who had a choice of what game form I would like to govern
reallocation, I would care about many of the properties that the analyst cares about.
I would like the game form to be continuous so I did not need to worry about small
trembles on my part or by other agents; I would like a game form that would not
entail my needing to predict all other agents’ individual strategies in detail; I would
prefer a game form, where I would also care about how complex my strategies in
the game form, for example, am I to choose a finite-dimensional vector? Do I need
to choose from more complicated sets when there are more agents involved?

In addition to the properties of interest to the analyst, I would like to know how
“risky” the game form is that is, how badly off could I be in a worst-case event?
Suppose there is a given game form that implements the Walrasian outcome for
pure exchange economies. Suppose that I am an agent in a pure exchange economy
and I play my part of a Nash equilibrium for this economy. For the game form
in Hurwicz, Maskin, and Postlewaite, the outcome may be the worst possible—
my endowment is confiscated and I consume nothing. I would prefer an alternative
game form that implemented Walrasian outcomes, but in which I could guarantee an
outcome that was at least as good as my initial endowment even if other agents did
not play their Nash strategies (if such a mechanism existed). (Leo coined the term
non-confiscatory for game forms which guaranteed that agents were guaranteed not

10See Hurwicz and Reiter (2006) and Mount and Reiter (1974) for a discussion of related issues.
11See Wikipedia https://en.wikipedia.org/wiki/Revelation_principle.

https://en.wikipedia.org/wiki/Revelation_principle
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to be worse off than their initial endowment, but this constraint was on equilibrium
outcomes not, as suggested here, that this constraint hold should other agents choose
nonequilibrium strategies.)

There are (at least) three notions of how I might guarantee that I will not be worse
off than at my initial endowment: (1) for any strategy vector of other agents, I have
a strategy that guarantees an outcome at least as good as my initial endowment; (2)
a stronger notion, that I have a strategy that for any strategy choice of other agents I
will not be worse off than at my initial endowment; and (3) an even stronger notion,
that my equilibrium strategy guarantees I will not be worse off than at my initial
endowment.

The game form in Postlewaite and Schmeidler (1978) satisfies the stronger notion
that an agent has a strategy that uniformly across all possible strategies other agents
may choose leaves me as well off as with my initial endowment. Unfortunately
though, that strategy leaves me with my initial endowment regardless of others’
strategies. One would like a game form that has the desirable property (a strategy
that leads to an outcome at least as good as my initial endowment) but also (at
least sometimes) leads to gains relative to my endowment. One can imagine a
game form analogous to that in Postlewaite and Schmeidler (1978), but one in
which an agent chooses a demand function, and the outcome of the game form
is a Walrasian equilibrium for the vector of demand functions chosen.12 This has
many of the desirable properties of the game form in Postlewaite and Schmeidler
(1978)—the outcome function is (upper hemi) continuous, agents need only predict
the sum of other agents’ strategies to compute a best response, and the agent has a
(natural) strategy that assures an outcome at least as good as her initial endowment
(choose her honest demand function). But, unlike the strategy that guarantees an
outcome as good as the initial endowment in Postlewaite and Schmeidler (1978),
announcing my true demand function typically gives a gain relative to my initial
endowment. In fact, if all agents announce their true demand functions, the outcome
is the Walrasian outcome for the given exchange economy, and consequently Pareto
efficient. The game form in which agents choose demand functions has a serious
defect relative to the game form in Postlewaite and Schmeidler (1978), however.
While for large economies agents (usually) gain little by deviating, whatever the
other agents do, the Nash equilibrium outcome can be far from the Walrasian
outcome. To our knowledge, it is not known whether the Walrasian correspondence
can be implemented with a game form for which an agent who plays her equilibrium
strategy can be guaranteed an individually rational outcome.

While both the analyst and the participant might care about the aspects above
of a game form that implements a particular SCC, there are other aspects that
the analyst might less interested in than a participant. I would like institutions
that lead to efficient outcomes, but in addition I care about the process by which
outcomes arise. For example, I prefer to share as little information about myself as
possible, given the goal of implementing the Walrasian correspondence. An agent’s

12Roberts and Postlewaite (1976) analyze such a game.
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equilibrium strategy in the game form in Hurwicz, Maskin, and Postlewaite includes
the agent’s true preferences, while an agent’s equilibrium strategy in the game form
that also implements the Walrasian correspondence in Postlewaite and Wettstein
has the agent revealing only his net trade at that Walrasian price. There might be
instrumental reasons for wanting to reveal as little as possible in an implementing
game form, such as a fear that information I reveal might be used to my detriment in
the future. But separately from instrumental concerns, an agent might have a direct
preference to maintain as much privacy as possible.

A participant may also care about the range of outcomes that he can effectuate
when other agents play their part of a Nash equilibrium. By definition, at a Nash
equilibrium, the outcome I get is as good or better than any of the others available
to me given the play of others. But for two different game forms that give rise to
the same equilibria, when others play their part of a Nash equilibrium the range
of outcomes achievable as I choose different strategies in one may be larger than
the range in another. For example, in the game form implementing the Walrasian
correspondence in Hurwicz, Maskin, and Postlewaite, at a Nash equilibrium I can
achieve all feasible allocations that are no better than my Nash equilibrium outcome.
In the game form in Postlewaite and Wettstein that implements the Walrasian
correspondence, at a Nash equilibrium I can achieve only the feasible outcomes
that give me a bundle that cost less than my Walrasian equilibrium bundle (at the
Walrasian equilibrium price),a (typically) strictly smaller set of outcomes. Hence, I
would prefer the latter if I would like a smaller choice set available at equilibrium
and the former if I like a larger set.

Dealing with the Walrasian correspondence as we have above is relatively easy
for (at least) two reasons. First, an agent cares only about the bundle of goods that
he consumes, and is indifferent about other agents’ consumption. Second, agents’
choices and the outcomes that result from those choices are precisely defined. When
we move to interesting real-world mechanism design problems, we see limitations
of this framework.

The creation of the constitution of the United States is a leading example of a
real-world problem in which a set of agents met to design institutions for a new
country. The actors in the venture were very intelligent and knowledgeable, and
engaged in prolonged heated discussion about the institutions they were creating.
The power of the to-be-formed central government to levy taxes was one of the
most contested issues. It was imperative that taxes to support an army be included
if the system was to survive. Previous central authorities relied on voluntary
contributions of the independent states. Predictably, free riding crippled the central
authority. While this was universally recognized, many of the delegates charged
with designing the constitution were very apprehensive of granting the central
government too much power given the recent experience under British rule.

The conflicts among the delegates writing the new constitution illustrate two
problems in mechanism design that typically do not show up in the standard
academic mechanism design literature. First, while the constitutional delegates had
different preferences over the outcomes that would result from the new constitution,
much of the debate centered not so much on which outcomes were preferable,
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but instead on which outcomes were likely to arise from different sets of rules. It
was not possible to completely describe the actions available to various players,
or even what outcome would result from a given set of actions agents might take.
In our language, there was no general agreement about what would be the Nash
equilibrium outcomes from any proposed constitution.

This is not an issue in the academic mechanism design literature, as the “rules of
the game” for writing academic papers in this area more or less require that the game
form be specified precisely.13 A necessary step in transferring the mechanism design
methodology to many real-world problems is to formalize participating agents’
difficulty in predicting equilibrium outcomes for the proposed mechanism.14
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Social Networks from a Designer’s
Viewpoint

Fernando Vega-Redondo

1 Introduction

By way of motivation, let me start with three examples.
As a first example, consider a financial system consisting of a large number of

firms (call them “banks”), each of them holding some individual asset of identical
market value (e.g., an equally priced portfolio of mortgages). For simplicity, let us
assume that the induced returns for each bank are determined by random variables
that are both stochastically uncorrelated and identical. Their assets, therefore, can
be conceived as perfect substitutes from an ex ante perspective but typically exhibit
different realizations ex post. In particular, some of those banks can be hit by
individual-specific shocks of varying magnitude—which, if large, can lead to the
bankruptcy of the affected banks.

Let us suppose, however, that the most likely shocks—the “ordinary” ones—
are not very large in the following sense. If a bank diversifies its portfolio (by,
say, securitizing its mortgage portfolio and exchanging a significant part of it with
an equal portfolio share of some other bank), then no ordinary shock brings the
bank under the bankruptcy threshold. This is, in essence, what provides banks with
the incentive to conduct some risk-sharing asset exchange: it protects them from
bankruptcy in the face of the most frequent shocks.

But, the problem then is that, through such an asset exchange, banks become
also exposed to the risk of being indirectly affected by more large shocks. These
shocks are much less likely than ordinary ones but not impossible. Furthermore, if
one of them arrives and is indeed large, no asset exchange will work as an effective
risk-sharing mechanism for the bank directly hit. And, for the others, it could in
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fact be counterproductive, leading through “contagion” to bankruptcy in a much
wider scale than would have happened otherwise. Here is, therefore, an important
trade-off. On the one hand, some small degree of risk-sharing is always optimal for
individual banks because it helps them confront successfully their ordinary shocks.
On the other hand, it is precisely because of the connections underlying such risk
sharing that, if a truly big shock arrives, many banks can be severely affected, even
to the extent of forcing them to go bankrupt.

In general, the optimal handling of the trade-off outlined calls for an exercise in
network/mechanism design. Depending on the nature and magnitude of the shocks,
the characteristics of the banks, or their information asymmetries, the issue is how
to design the financial network so that it is as robust as possible. Often, this problem
is conceived as involving the minimization of systemic risk, a term that has been
commonly used in dealing with the latest world economic crisis. . . and in trying to
avert the next one!

The problem, however, is not as “simple” as designing the optimal network. For,
in a free-market economy, trade (naturally, also financial trade) is not imposed but
is chosen by agents in line with their individual interests. Thus, in the end, the
mechanism-design problem becomes one of setting the rules (the game-form, in
Hurwicz’s terminology) for the network-formation game played by the agents/banks
involved. These rules should be chosen so that, assuming that the strategic behavior
of the banks is correctly anticipated, the resulting network displays the desired
characteristics.

As a second example, consider a context where there is a population of
entrepreneurs whose main objective is to develop new products for a booming
market. All of them share the same objective—come up with the “next big thing”—
but they are otherwise very diverse. They operate in different markets (either
geographically or sectorally), have different areas of expertise, enjoy different
access to alternative resources (e.g., human, physical, or financial capital), or are
of different age and experience. Suppose that one wants to harness such a diversity
within the entrepreneur population to stimulate innovation. Thus, to this end, they
are divided into groups and given the opportunity to interact among themselves.
The following question then arises: What combination of individual (observable)
characteristics is most productive to make the entrepreneurs most innovative? In
other words, what are the dimensions in which diversity is beneficial for innovation
(possibly, being even detrimental in some others)?

This question again raises a mechanism-design issue—but one that, unlike in the
previous example, comes in two steps. First, there is the need to select the “right”
profile of characteristics for each group. Second, one must decide on the rules of
interaction and the incentives that shape agents’ networking, communication, and
cooperation decisions. The objective here is to arrive at a harmonized combination
of group characteristics, rules, and incentives—all “externally” set by the designer—
that in the end lead to an endogenous pattern of peer networking that promotes
innovation.

Of course, the hypothesis underlying this approach is that since innovation is
largely a social activity—be it in the arts or sciences, as much as in business or
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technology—it should profit substantially from diverse interaction, in particular
among peers. The task at hand is undoubtedly complex, its complexity deriving from
the fact that such peer interaction typically involves many different components:
diffusion (in spreading information), complementarities (due to specialization),
substitutabilities (as a result of competition), trust (underlying cooperation), or
bridging (that closes interaction gaps).

At present, we are far from having a satisfactory model of social-based innova-
tion that does justice to such richness and multidimensionality. The bulk of research
on this topic has been mostly empirical, with little theoretical guidance. This has
imposed significant limitations on our ability to better understand how innovation
is, and must be, embedded in the social structure. Of course, innovation has always
had an important social/network component to it. What is new in the current hyper-
connected age is that the potential benefit of leveraging the social network, thus
thinking of innovation as a genuinely distributed phenomenon, has become so much
greater.

My third example is also motivated by the dense and wide connectivity enjoyed
by modern societies. In this case, however, the focus is on how opinions and beliefs
form in large populations. Consider a situation where individuals hold sociopolitical
opinions that can be suitably represented along a left-right scale—say as a point in
a given interval. Each individual starts with some initial position, which reflects
some idiosyncratic information and previous experiences. Then, over time, all of
them adapt their positions by combining their former opinions with those held by
the peers (friends, relatives, and colleagues) with whom they usually interact. The
relative importance given to every peer in such an updating process defines the
prevailing (weighted) network of social (interagent) influence.

In this context, a natural question to ask is whether, through such a repeated
combination of their opinions, individuals will end up approaching a common
understanding of matters. This is important to the extent that some “common
ground” may be required if the population is to act effectively in addressing the
problems they face. Intuitively, such an opinion convergence could be expected if
the society is globally and densely connected. But, in a large community (e.g., a
country), a global and dense pattern of connection would be unfeasible. At best, one
can hope that there is some path in the network that allows almost everyone to learn
indirectly about the opinions of most others. But, this might be insufficient to bring
about a sufficient integration of opinions if the population is large and those paths
are long. Even worse, it is even possible that, in fact, the society is de facto split into
several groups (say left- and right-minded groups, or democrats and republicans)
with very little information and influence flowing across them. This would happen
if, for example, individuals tend to pay attention (and hence be influenced by) only
those who are quite similar to themselves—that is, if they display some so-called
homophily.

Such a problematic situation is largely a result of the prevailing social network,
and hence it is on this network that the solutions must be sought for. One natural
route to address the problem might be to establish some new bridging links that
could close gaps and thus favor integration. The establishment of these links,



66 F. Vega-Redondo

however, may not be easy nor cheap. For a large population, the number of new
links required to have a significant effect may be prohibitively costly, unless one
has a thorough understanding of the prevailing network, the social-learning process
operating on it, and who are the key agents. To be effective, therefore, again requires
the adoption of a sophisticated designer’s viewpoint.

The challenge, however, does not pertain only to the creation of links, conceived
as new channels of influence and information. For, even if additional links are
established, it is up to the agents to rely effectively on them, attributing to those
connections enough weight in the revision of their behavior and opinions. Influence
weights, in other words, are endogenous. Then, the designer’s task is to be viewed
as that of shaping up the social network (opening some “channels,” and perhaps
closing others) so that the induced codetermination of opinions and influences leads
to the desired outcome—say, a sufficiently cohesive society. In a world where social-
learning processes evolve so fluidly, this task is indeed a tall order for even a
powerful and sophisticated designer.

The remaining part of this chapter is motivated by, and structured along, the
three examples discussed above. In Sect. 2 I, consider risk-sharing networks, in
Sect. 3 social-innovation networks, and in Sect. 4 opinion-formation networks. The
approach is different in each case. For the first case and the third (Sects. 2 and 4) the
focus is theoretical, while in the second case (Sect. 3) it is empirical. I conclude in
Sect. 5 with some final comments. In the end, the main message will be that, even
though for some important contexts we have gained valuable insights, there is still
much to do in understanding how to tackle the design problems entailed in a truly
effective manner.

2 Risk-Sharing Networks

Risk is a key factor of socioeconomic environments. It impinges on trade, health,
travel, farming, or investment. In some cases, there are institutions that can
mitigate risk through explicit and formal insurance arrangements. But in many
other situations, formal contracts are not viable due to frictions of different sorts—
e.g., informational, legal, or/and strategic. Such frictions are particularly relevant in
developing countries, where institutions are weaker and narrower in scope. Under
these circumstances, informal ways to tackle the problem arise naturally, with social
networks playing an important role. They underlie the transfers in money or kind by
which the lucky help the unlucky when the latter are hit by individual shocks.

A rich literature, both theoretical and empirical, has been studying for long the
problem of risk-sharing in social networks when individuals are hit by individual
shocks and their aim is to smooth income and consumption—see, e.g., Townsend
(1982), Fafchamps and Lund (2003), Genicot and Ray (2003), Bramoullé and
Kranton (2007), Attanasio et al. (2012), or the recent Handbook chapter by Mobius
and Rosenblat (2016). Quite recently, another strand of literature has developed
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whose focus is on financial contexts, where risk sharing has another important twin
side to it: contagion.1

A natural way in which two financial institutions—I will call them banks—may
share risk is by trading financial assets. So doing, they diversify their exposure
away from individual shocks and hence can improve their situation from an ex ante
viewpoint. Such asset exchanges, however, will also typically increase the range of
shocks that can spread through the economy and in the end induce larger aggregate
effects than would have occurred otherwise. It raises, in other words, some tension
between

(a) risk sharing, which is generally beneficial at the local (individual) level, and
(b) contagion, which may induce large and very detrimental “systemic” effects.

Understandably, the study of financial networks from this network perspective
has been much stimulated by the financial crisis sparked in 2007–2008 by the
collapse of Bearn Stearns and the bankruptcy of Lehman Brothers—events that,
in a relatively short time span, spread havoc through much of the financial system.
The literature has advanced both on an empirical and a theoretical front. From the
empirical angle, the main concern has been to first “map” the relevant financial
networks, next turning to operationalize suitable measures of systemic risk, as well
as identifying those crucial “nodes” whose systemic effect is largest.2

On the other hand, in the theoretical realm, much of the effort has been devoted
to shedding light on the following three fundamental questions:

1. What is the optimal configuration of the network that best balances risk-sharing
and contagion?

2. If banks are heterogenous in some relevant respect, how does this bear on the
previous question?

3. Is social optimality consistent with agents’ individual incentives to “connect” (or
diversify)?

Naturally, the specific answers to these questions must depend on how optimality
is defined, the sort of interbank heterogeneity considered, and what incentives are
taken to drive individual behavior. In these three respects, the literature varies
widely—see, for example, the Handbook chapter by Cabrales et al. (2016), which
conducts a comparative study of the following recent papers on the topic: Elliott
et al. (2014), Acemoglu et al. (2015), Glasserman and Young (2015), and Cabrales
et al. (2017). In what follows, my discussion focuses on the latter paper, labelled
CGV for conciseness.

1In fact, there are many other cases where shocks affecting individual agents can spill over to
other agents with whom they are connected, directly or indirectly. This occurs, for example, in
production networks, as studied, e.g., by Acemoglu et al. (2012) and Baqaee (2016) within a static
general-equilibrium model. For a genuinely dynamic approach in a simpler context, see Brummitt
et al. (2017).
2See, for example, Battiston et al. (2012), Denbee et al. (2017), or Elsinger et al. (2006).
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Consider an environment with a set of n ex ante identical banks, N =
{1, 2, . . . , n}, every one of them initially associated to one individual-specific
project. Usually (i.e., with high probability), each of those projects yields a return
R > 0. Occasionally, however, it can be hit by a random shock that induces a loss
given by the random variable L̃. Suppose, for simplicity, that at most one bank is
hit by a shock at any given point in time. If the shock is large enough, the bank in
question would go bankrupt if it were to remain fully exposed to its own project.
Thus, to try to avoid that drastic (and irreversible) outcome, all banks diversify their
risk by exchanging shares on their asset/project for correspondingly equal shares of
assets of other banks. In the end, this leads to a situation where each bank i faces
a portfolio of exposures (aij )j �=i to the different assets of the other banks of the
system. These portfolios can all be compactly described by a matrix A = (aij )

n
i,j=1

where, along the main diagonal, each aii stands for the share that each bank i ∈ N

holds of its own original asset.
Given such a pattern of exposures, when a shock to asset k of magnitude L

arrives, the return ρi to bank i is given by:

ρi = (R − L) aik + R
∑
j �=k

aij − M (1)

where M > 0 represents some exogenous liabilities, assumed identical for every
bank. Then, if it turns out that ρi < 0 for some i, this bank goes bankrupt. The issue
is to understand how the nature/distribution of the shocks bear on optimality at the
social and individual level (cf. points (1)–(3) above). Here, optimality, both at the
individual and social level, is associated to survival: for a bank, it is identified with
minimizing its probability of bankruptcy; for society at large, with the minimization
of the expected number of defaults.

For simplicity, let us focus here on the case where shocks are distributed as
follows. On the one hand, with a very high probability, the shock is relatively small.
In this case, the bankruptcy of the affected bank can be averted by simply sharing
risk (i.e., exchanging a suitable share of one’s own asset) with at least one other
bank. On the other hand, with some small but positive probability, the shock lies
in the medium to large scale. In this second case, the magnitude of the shock is
distributed on the interval [L,∞) according to some probability mixture of power
laws (i.e., Pareto distributions) with a continuous density of the form:

φ(L) ∝ L−γ (2)

for some γ > 1 and a common L > 0.
Often, power laws of the sort specified in (2) are used to discuss in a stark

manner the classical dichotomy of “thin versus fat tails.” This distinction hinges
upon whether γ is, respectively, higher or smaller than 2, thus leading to a first-
order moment of the distribution that is finite or not.
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To fix ideas, suppose that all distributions under consideration are mixtures of two
given distributions—one with thin tails, and the other with fat tails—with respective
weights p and 1 − p. Then, the following statements bearing on questions (1)–(3)
apply:

(a) Consider the homogeneous case where all banks are ex ante identical. Then,
if p is large enough, the unique network configuration that is optimal at both
the individual and social level is a complete network with uniform exposure.
Instead, if p is sufficiently small, the optimal network (again, socially and
individually) involves the segmentation into n/2 separate pairs.

(b) Still in a homogeneous context, there is some middle range for p such that,
from the point of view of any individual bank, the optimal arrangement is to be
part of a component of intermediate size m ∈ [3, n − 1], uniformly connected.
Generally, however, this is not socially optimal.

(c) If agents set their connections through a coalitional strategic game, the network
configuration induced will usually not be socially optimal.

(d) When banks are heterogeneous in either their size or the risk conditions
they face, individual and social optimality both require that components be
homogeneous.

The intuition underlying (a)–(d) is not difficult to understand as follows:

(a′) First, one can make the general point that if shocks are likely to be small
or large, then individual and social optimality must respectively require that
either sharing risk or protection from contagion should be the more relevant
consideration. This, when the shock distribution is given by a power law, makes
everything drastically hinge upon what happens, asymptotically, in the tail
of the distribution. If the tail is thin, risk-sharing becomes preeminent and
the optimal network is a fully connected one; instead, if the tail is fat, the
overpowering consideration is the protection against contagion and the optimal
configuration is the minimally connected one that insures against small and
frequent shocks, i.e., maximal segmentation in dyadic pairs.

(b′) Instead, if both medium and large shocks are relatively likely for some
appropriate mixture of the two scenarios (fat- and thin-tail distributions), it
is individually optimal for banks to be part of components of intermediate
size. This, however, is not generally optimal at the social level. The reason
is that (using a standard convexity argument) one can show that social
optimality requires components of equal size. And, typically, this condition
is incompatible with the former condition for individual optimality.

(c′) The indicated inefficiency is also reflected by the equilibria of a suitably defined
coalitional network-formation game. In essence, the root of the problem is that
configurations that are individually optimal for some individuals (and hence
part of an equilibrium) impose a size externality on others, forcing them to
share risk within suboptimally small groups.

(d′) Finally, the reason why optimality requires homogeneity for every component
is simple: any heterogeneity within a given component would produce a
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mismatch between the optimal size for this component prescribed for the
different types included in it.

All of the above serves to underscore the general point that, in an uncertain
environment, the key issue of how to share/diversify risk needs to be studied
systemically. Inherent to this approach, of course, is the fact that externalities
abound, as a consequence of the connections (e.g., risk-sharing arrangements)
established by the agents (banks, in our example). This, in turn, can lead to large
global effects with severe overall implications.

How to address then the problem in practice? Clearly, once should do it by
influencing (restricting or encouraging) the connections that agents form. The
problem is that, in many real-world contexts, such bilateral agreements are often
kept private and unregulated—for example, by 2014, over-the-counter trading in the
US stocks reached 40% of all such trades. Attempting to regulate them, therefore,
is bound to be very challenging. What should a “Hurwicz designer” then do? He
should proceed indirectly, given the informational constraints and limited resources
at his disposal. That is, he should tackle a second-best design-optimization problem
that takes into account the sharp informational asymmetries and large monitoring
costs actually faced, not only by himself but also by the agents themselves. The
modern theory of mechanism design can contribute the methodological perspective
and some of the tools to address the problem. In doing so, however, it would seem
that relaxing the standard paradigm of full rationality—that is, allowing for some
extent of bounded rationality and behavioral assumptions—might well be in order.

3 Peer-Innovation Networks

Innovation is widely viewed as the main source of sustained economic growth. And,
in modern economies, much of the innovation has indeed an important social—
often peer—component. This is particularly true, for example, in some of the most
dynamic industries such as IT, pharmaceuticals, or aerospace where it is common
for firms to be involved in joint R&D collaboration—cf. Hagedoorn (2002). The
importance of such collaboration is also apparent in the abundance of networking
hubs and innovation parks, well epitomized by the “mother of them all,” Silicon
Valley, which attracts around one third of all venture capital investment in the USA.
As explained by Saxenian (1994) and Castilla et al. (2000), much of its success is
to attribute to the fluidity and pervasiveness of its peer networks as well as to their
rich diversity.

To understand what really underlies the performance of peer networks is indeed a
major challenge—only a few such networks succeed while many fail. The difficulty
derives from the fact that, a priori, there are quite a number of distinct dimensions
involved in how peer networks operate that could have a powerful effect on how
they breed innovation. Among these, one can list:
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• Diffusion: Peers represent a key channel through which information about new
technologies, or simply different ways of doing things, spread in connected
population.

• Learning: Relatedly, the performance of any novel technology or behavior has
to be learned, and this often relies on the experience/observation of peers who
have already taken the lead in adopting them.

• Trust: Transfer of information is often associated to the peer involvement in
some joint project. This requires cooperation and hence trust on the other party.

• Matching: In a diverse population, finding peers that are stable and complemen-
tary often requires undergoing a costly and possibly lengthy search for a good
match.

• Competition: Peers often collaborate but sometimes they can also be competitors
(say, in the same or a related market), which induces a tension between
cooperation and competition that may be hard to handle.

The above are inherent and essential components in many innovation networks.
In fact, all five of them have been amply studied by the economic and network
literature,3 but largely in a separate fashion. To integrate them into a unified
framework is a major challenge that must be faced by a suitable account and study
of the problem.

In principle, one would like to proceed by first building some theory, possibly
quite preliminary, then building upon it to design a well-founded empirical analysis
of the phenomenon. Given, however, the little we know on the complex interplay
among the different components listed above, proceeding in a reciprocal manner
seems more promising. That is, it appears advisable to start with an empirical
investigation that gathers systematically information on how real peer networks
operate. Then, on the basis of this information, a better-informed theory may be
developed that of course should feed back on subsequent empirical analysis. This
is the viewpoint that motivates the field research whose preliminary results are
reported in Vega-Redondo et al. (2018).

The research is based on a large random control trial including around 5000
entrepreneurs from all over Africa (45 different countries represented). To shed
light on how peer networking impinges on innovation, the treatment involved the
opportunity of interacting with other participants under different conditions (i.e.,
alternative treatment arms). More specifically, the treated participants were divided
into randomly formed groups of 60 individuals, with the individuals of each of these
groups then interacting among themselves in one of the following three different
types of treatment.

3For diffusion, the reader can see Jackson and Yariv (2005), López-Pintado (2008), Young
(2009), Lamberson (2016), Duernecker and Vega-Redondo (2018); for learning, Bala and Goyal
(1998), Golub and Jackson (2010), Golub and Sadler (2016); for cooperation and trust, Jackson,
Rodriguez-Barraquer and Tan (2012), Mobius and Rosenblat (2016), Fainmesser and Goldberg
(2018); for competition in networks, Fournier and Scarsini (2014), Heijnen and Soetevent (2018);
and for matching, Gale and Shapley (1962), Roth and Sotomayor (1990), Liu et al. (2014).
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• A face-to-face treatment, based in Uganda, where entrepreneurs met personally
at scheduled times to discuss their business ideas and plans.

• A virtual treatment, labelled virtual-within, where the interaction groups were
nationally homogeneous, i.e., consisted of individuals of the same country. In
this case, individuals communicated with others in their group through a chatting
platform that allowed a discretionary structure (organized by the individuals
themselves, in channels admitting selected peers or/and focused on different
topics) and versatile (e.g., could be modulated, also discretionarily, at desired
levels of privacy).

• Another virtual treatment, labelled virtual-across, where the interaction groups
used the same chatting platform as explained before but their composition was
nationally heterogeneous, i.e., included entrepreneurs originating in different
countries.

As usual, the population was randomly assigned to being part of the control
population or one of the three former treatment conditions. The treatment lasted
two and a half months. In parallel to it and with the same duration, all entrepreneurs
(treatment and control alike) followed an online business course specifically tailored
to the experiment.

At the end of the experiment, all entrepreneurs (again, control and treatment)
were asked to submit their business proposals for evaluation and possible funding.
The evaluation was conducted in two stages. First, the proposals went through a
first stage in which a 15-member panel of African professionals evaluated them
in a 1–5 scale according to a wide range of different criteria (innovativeness,
market potential, sales strategy, cost assessment, social impact, etc.). Based on this
evaluation, the proposals were ranked and the 600 best passed to the next stage. In
this second stage, the selected proposals were again evaluated and ranked by our 32
financial partners (VCs, angel investors and institutional ones), who also chose the
subset on which they wanted to conduct further discussion for possible funding. The
results from these nested rounds of evaluation constituted two of the key outcomes
used in the analysis of the experiment.

The RCT outlined has generated valuable information on two interrelated
fronts:

• First, the professional evaluation of the submitted business proposals permits
an econometric estimation of the size and significance of the treatment (peer-
networking) effect under different circumstances (more or less national diversity)
and alternative interaction mechanisms (face-to-face and virtual).

• Second, the exhaustive recording of the whole activity displayed in the vir-
tual treatment provides a rich collection of panel data on the following two
complementary dimensions: (a) the networking unfolding over time; (b) the
communication exchanged throughout.

The networking and communication undertaken by the treated entrepreneurs
in the two setups with virtual peer interaction are of course endogenous to the
experiment. They cannot be directly attributed, therefore, a causal impact on the



Social Networks from a Designer’s Viewpoint 73

entrepreneurial performance observed in this context. They can provide, however,
important insights on how and why the treatment has, or does not have, an effect
on that performance. I shall return to this point below, once the preliminary results
obtained so far have been summarized in what follows.

The results available at the time of writing show a positive and highly significant
treatment effect when peer interaction takes place virtually among groups of the
same nationality (i.e., what we have called the virtual-within treatment). The
effect, however, is not statistically significant when the treatment is face-to-face
or among individuals of mixed nationalities (the treatment labelled virtual-across).
This suggests that virtual interaction is effective when the groups are homogeneous
on the nationality dimension, in which case it is also better than face-to-face
interaction. Thus, to sum up, we may conclude that virtual interaction dominates
interaction that is conducted face-to-face, but its positive effects get blurred when
the virtual interaction occurs among individuals who are nationally diverse.

The results outlined raise at least two related questions. One is what sources
of peer diversity in networks fruitfully breed innovation rather than being coun-
terproductive. Clearly, an indispensable requirement for peer interaction to be a
source of innovation is that the set of individuals involved span sufficient, and
complementary, diversity. For it is the combination of different types of knowledge,
skills, personalities, and backgrounds that can render interaction valuable for this
purpose. Individuals who are very similar, quasi “clones” of each other, can hardly
generate much novelty through interaction.

The second question concerns the conclusion that intercountry diversity is
detrimental to innovation. Why is it? Does it have to do with how entrepreneurs
establish connections in this case? Or does it have to do with the type or amount of
communication that takes place? Our experiment gives the possibility of answering
these questions by looking into the black box of how peer interaction develops over
time in the different virtual contexts. A joint analysis of the networking dynamics
and the messages exchanged in each case has the potential of shedding much light
on this issue. Concerning the messages, for example, ongoing investigation that
relies on the powerful techniques customarily applied by the so-called NLP (natural
language processing) booming literature should be able to unveil whether, and
why, in the different treatments peer interaction leads to more or less cooperative,
focused, or substantive communication. In this respect, an interesting observation
is that, unlike what might have been anticipated, it is not true in our case that
entrepreneurs involved in the virtual-across treatment communicate less (in the
sense of number of messages exchanged) than those in the virtual-within scenario—
in fact, it is quite the opposite!

The previous discussion points into a direction that is at the heart of Hurwicz’s
research program, as applied here to the problem of entrepreneurship. The field
experiment described should contribute to it by identifying features of the mech-
anism to be designed that are most relevant for improved performance—e.g., the
extent and dimensions of individual diversity spanned, or the protocol and incentives
governing communication. A systematic study of the rich panel evidence gathered
on networking and communication should go a long way in meeting this objective.
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A final consideration—also very much in line with Hurwicz’s vision of economic
research—is the following. Whatever insights are gathered from the experiment
would not be useful only for the construction of a better-informed theory of the
problem, as suggested before. The experiment itself provides a “proof of concept”
that those insights and the improvements in design that may follow from it are
implementable in a feasible and cost-effective way at a potentially large scale. Thus,
in this sense, it would reflect as well the key motivation underlying Hurwicz’s long
academic career, namely, that economics be anchored in the objective of delivering
answers to practical (even if theoretically formulated) concerns.

4 Social-Learning Networks

In a social environment, opinions (or beliefs) and behavior are formed through
a variety of different channels, with social networks having always played an
important role. Nowadays, this role has become more prominent than ever. For,
by virtue of Internet and the social media, individuals can increase substantially the
range and density of their connections to others. Furthermore, they are also able
to change those connections very flexibly, by creating and destroying their links as
they search and learn, modifying as well their opinions and behavior over time.

The fact that our opinions and behavior are affected by those displayed by our
peers in the social network is hardly controversial. This is particularly true in
the political arena, as illustrated, for example, by Bond et al. (2012) and Algan
et al. (2015). The first paper involves a massive experiment conducted in Facebook
(61 million users) that shows, for the 2010 US congressional elections, that the
probability that any given individual decided to vote was strongly influenced
by her friends’ behavior. The second paper, on the other hand, focuses on how
social influence shapes the political opinions of students at Sciences Po, the elite
French school attended by many French politicians. It shows, specifically, that the
friendships established by students early on lead to a substantial convergence among
friends’ opinions in a range of social and political issues—in fact, it also affects the
probability that they join the same political party.

One important consideration, however, that bears on the issue is that, naturally,
the social network is itself endogenous. This raises delicate econometric problems in
the proper identification of the “true” peer-influence effect at work. For example, in
the French school studied by Algan et al. (2015), it is quite conceivable that having
similar political opinions should affect positively the probability that two students
become friends. This is what is known as homophily, which is well known to be an
inherent feature of human behavior.4 Algan et al. (2015) tackle this problem through

4See, for example, the seminal paper on this topic by Lazarsfeld and Merton (1954) and the modern
survey of recent literature provided by McPherson et al. (2001). On the other hand, for the question
of how homophily affects learning, a good example is provided by the model studied by Golub and
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an instrumental-variable approach that takes advantage of the fact that the initial
assignment of students in different classes is done exogenously at the beginning of
their studies.

Homophily, however, also raises a conceptual issue with important practical
implications. If the social network is endogenous, the interplay of opinion and link
adjustment can lead to an outcome (in particular, concerning the final opinions)
that could be very different from the one that would have taken place in a fixed
network. For example, it could produce acute segmentation on the population, in
which only individuals who end up sharing a similar opinion are connected. This, of
course, would perpetuate a partition of the population into essentially independent
“opinion groups,” thus leading to what has been called the “echo chamber effect.”
That is, a situation where every group only receives the echo of its own opinion.
The implications of this segmented state of affairs could be quite detrimental if
it is important that the population integrates to some extent the opinion of all its
members.

The empirical relevance of such an echo-chamber phenomenon has been dis-
cussed, among others, by Adamic and Glance (2005) and Boutyline and Willer
(2017). Both document the split of the US population along ideological lines. For
example, Adamic and Glance (2005) focus on the blogs active around the 2004
US Presidential Election and classifies them as belonging to either the liberal or
the conservative camp. The main point they make is that, in fact, they operate in
a largely disconnected manner. That is, they hardly refer to any content generated
in the other side, hence de facto preventing that cross-feedback may lead to any
exchange of views and some genuine aggregation of information.

In a recent paper, Polanski and Vega-Redondo (2018) study the problem in a
theoretical framework that generalizes one of the classical frameworks used to
study processes of learning in social networks: the model originally formulated by
DeGroot (1974), which has been revisited, among others, by DeMarzo et al. (2003)
and Golub and Jackson (2010). The setup involves a finite population of agents,
N = {1, 2, . . . , n}, who are connected by a given network of influence formalized
by a weighted adjacency matrix T = (tij )

n
i,j=1. Off the main diagonal, the entries

tij (i �= j ) specify the extent to which each individual i is influenced by her peers
j . Along the main diagonal, the entries tii reflect the persistence of i’s opinions,
i.e., how much weight i attributes to her own previous opinions. For simplicity, it is
assumed that the matrix T is row-stochastic, so that all influence weights impinging
on any agent i are normalized to add up to unity.

The learning dynamics operates in discrete time, s = 0, 1, 2, . . ., in a very simple
manner. At s = 0, each agent i starts with some initial opinions xi(0) = x0

i . Then,
over time, the opinion updating proceeds by every agent i ∈ N simply combining
own and others’ previous opinions according to the pattern influence embodied by

Jackson (2012), who focus on how homophily affects the speed of learning in the context of the
DeGroot’s model (see below for a description of this model).
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T . In matrix form, this can be concisely written as follows:

x(s) = T x(s − 1) (s = 1, 2, . . . , κ), (3)

where x(s) represents the column vector of opinions at s and κ is a parameter
determining the number of updating periods involved in each learning spell.

The model proposed by Polanski and Vega-Redondo (2018) differs from the
classical model of DeGroot (1974) in two respects: (a) the learning spell is finite;
(b) opinions are multidimensional. On the one hand, the finiteness of the learning
spell is motivated by the assumption that, as it indeed happens in the real world,
the underlying environment changes relatively fast and therefore asymptotic results
may not be very relevant. On the other hand, multidimensionality of opinions is
taken to reflect the fact that as, say in the economic sphere, agents have separate
opinions on a number of different dimensions, e.g., employment, inflation, public
deficit, subsidies to education, or clean energies. Thus, the opinions of an agent
i must be taken to be vectors of the form xi = [xi(ω)]ω∈� where � stands for
the set of different issues on which opinions are defined and each xi(ω) is the
opinion of agent i on issue ω ∈ �. Formally, it becomes convenient to think of
such multidimensional opinions as real random variables, xi : � → R, with the
set of issues playing a role analogous to a state space. The usefulness, however, of
such a random-variable specification is essentially formal: even though opinions are
conceived as deterministic (multidimensional) objects, the correlation between the
opinions of different agents can then be readily defined.

Besides the added realism reflected by features (a)–(b) above, their main
motivation is in terms of modelling strategy. To understand this point, consider the
particular case where opinions are one-dimensional (i.e., � is a singleton) and the
learning spell is unbounded (κ = ∞). Then, under mild regularity conditions on
the matrix T , it is well known that the learning process converges to a situation of
consensus where everyone holds the same (one-dimensional) opinion. Admittedly,
this conclusion may be largely conceived as a theoretical benchmark rather than a
prediction. However, the unfortunate consequence is that one can hardly build on
it to define some nontrivial notion of similarity across agents’ opinions. This, in
turn, stands in the way of the key objective of Polanski and Vega-Redondo (2018),
which is to rely on homophily to endogenize the influence network. Next, I turn to
explaining how this can be done.

Suppose that, across (finite) learning spells of duration κ , every agent i updates
from tij to t ′ij the weight/influence that she attributes to each of her peers j . Based
on a notion of homophily that is opinion-based, the postulated updating criterion
may be informally described as follows.

(H) The revised t ′ij is proportional to the correlation between the opinions of i

and j induced, after κ periods of learning, by the previous influence matrix
T = (tij )

n
i,j=1.

The motivation for the previous updating rule is based on the idea that the opinions
displayed by any two individuals provide a suitable basis to assess their similarity.
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This, in fact, is in line with the approach commonly used with considerable success
on the Internet, e.g., by Amazon.com, Booking.com, or Netflix.com.5 Based on such
measure of interagent similarity, (H) simply formalizes the idea that homophily
drives the revision of interagent influence. That is, agents are postulated to revise
the influence weights assigned to others so as to match (be proportional to) their
corresponding similarity.

In general, besides the weighted influence network T , it is interesting to
consider some separate observation network that restricts influence. For, naturally,
an individual can only be influenced by those whom she observes. Let this
observation network, exogenously given,6 be formalized by a binary adjacency
matrix L= (lij )

n
i,j=1 where each lij ∈ {0, 1}. The interpretation here is that, for every

pair of individuals i and j , lij = 1 if, and only if, i “observes” j . Then, formally,
the aforementioned observational restriction simply amounts to the following
implication:

∀i, j ∈ N, lij = 0 ⇒ tij = 0. (4)

Given (H) and (4), the equilibrium condition that endogenizes the influence
network can then be simply defined as embodying a fixed point in a process of
influence adjustment given by:

tij (r + 1) = lij ρij (T (r))∑
k∈N lik ρik(T (r))

(i, j = 1, 2, . . . , n; r = 0, 1, 2, . . .), (5)

where r = 0, 1, 2, . . . indexes influence-adjustment time, and ρij (T ) stands for
the Pearson correlation coefficient between the opinions of i and j under influence
matrix T at the end of a learning spell of given duration κ for fixed initial opinions
x0. Thus, if we denote by F(·) the vector field defined by the right-hand side of
(5), we may simply write in matrix form the equilibrium condition stated in (H) as
follows: T ∗ = F(T ∗).

It is relatively easy to show that an EIM always exists and to characterize
it for some extreme benchmark cases. In general, however, one has to face a
vast range of equilibrium multiplicity. For example, if the observation network is
complete and agents’ initial opinions are not correlated, then every arrangement
where the population is partitioned into any number of independent cliques7 defines
an EIM. This suggests directing the analysis into two different, and complementary
directions: on the one hand, moving beyond the unrealistic setups where the

5See, in particular, the so-called collaborative filtering ones as discussed, e.g., by Jannach et al.
(2010) and Ricci et al. (2011).
6For example, it could reflect considerations related to geography, language, or age that are fixed
and affect the relevant set of peers.
7A clique is defined as a completely connected subset of nodes that has no links to nodes outside
this subset.

Amazon.com
Booking.com
Netflix.com
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observation network is taken to be complete; on the other hand, discriminating
across equilibria on the basis of their dynamic robustness.

First, still remaining within a static (equilibrium) approach, one important result
relates the weight t∗ij of any observational link from i to j to the extent to which
both agents share many influential peers. This statement is quite intuitive. If the two
agents in question have a strong neighborhood overlap,8 they must receive common
(and hence perfectly correlated) influence from influential third parties. This indirect
route leads their opinion to be substantially correlated and hence, at equilibrium,
their link must carry a substantial weight as well. One concludes, therefore, that in
order for significant influence to flow through any given link it is essential that this
link be suitably supported by (or “well-embedded” into) the overall network.

The previous discussion has an important bearing on one of the central questions
that motivate the research, namely, when is it that the creation of some observation
links among previously disconnected groups may lead to an integrated overall
population—i.e., to a situation where all individual opinions have some influence
in the final outcome. Or, formulating matters reciprocally, we may ask when will it
be the case that the originally segmented configuration is robust enough to prevail
despite the creation of (possibly many) “observation bridges” among the different
groups.

First, let us stress that, as suggested before, in general one cannot discard the
possibility that a segmented influence matrix may prevail at equilibrium (i.e., define
an EIM), even after the creation of new observation links. So, the really interesting
questions here are the following:

(a) whether, still from an equilibrium/static viewpoint, there are also other different
EIMs that use effectively the new open channels to bring about social integra-
tion;

(b) whether, from a dynamic perspective, a segmented EIM is unstable for the
influence-adjustment dynamics outlined before, i.e., any small perturbation
leads to the breakdown of segmentation.

As it turns out, both questions largely hinge upon the notion of support introduced
before. That is, for a bridge to be effective in channeling influence, it must be
strongly embedded in the social (observation) network. Thus, it must have the
possibility of being suitably supported by other links. The problem, in fact, could
be posed in Hurwicz’s classical terms as follows. Assuming social integration is
the desired objective, what bridging links must be established (the analogue of a
revised game form) so that, under the correct anticipation of how agents will react
(either at equilibrium or as part of a dynamic adjustment process), social integration

8The measure of neighborhood overlap used here is akin to the notions of support that have
been used in the network literature—see, for example, Jackson et al. (2012), where it is used to
characterize conditions where cooperation can be sustained at equilibrium in binary networks. In
contrast, however, the present notion is defined for weighted networks and takes into account the
influence weight of the links that connect to common third parties.
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is attained. This means, therefore, that the “planner” creating the links must be
sophisticated enough to adopt the designer’s viewpoint.

Again, we close with a word of warning. In a world where the scale at
which social learning unfolds is truly global, one cannot ignore that fine-tuning
possibilities are typically not available. Thus, to be effective, the designer’s problem
must suitably take into account the actual constraints faced, stringent as they may
be in view of the underlying complexity. The planner must, in other words, solve
a second-best design problem where computational, informational, and monitorial
restrictions will typically abound.

5 Conclusion

The work of Leonid Hurwicz has had a wide and lasting impact on economics. As
I have stressed here, for him the mechanism was not a datum of the problem but
a variable of design. This methodological viewpoint, which is at the core of how
we think today about most economic problems, has become so pervasive in our
discipline that there is the risk that its revolutionary novelty at the time might be
downplayed or passed unnoticed. Somewhat paradoxically, this is indeed a telling
testimony to Hurwicz’s influence on the way in which we, modern economists,
conceive and advance our discipline.

In this brief piece, I have summarized how all this bears on three instances of
my recent research on socioeconomic networks. For each of the three kinds of
networks considered—risk-sharing networks, peer-innovation networks, and social-
influence networks, I have made the following point. A truly useful formulation of
the designer’s problem requires taking into account the limitations brought about
by the huge complexity of modern economies, which are relevant not only to the
agents but to the designer herself. What information the mechanism can really use,
what computational abilities it is reasonable to assume, or the extent of monitoring
that is feasible to implement are important “practical” concerns that the designer
cannot ignore. But, our economies and societies are not just very complex—they
also change at a fast pace. They often evolve too rapidly for a reactive strategy to
be successful. That is, the attempt to implement a fine-tuning strategy can prove
counterproductive, if it arrives too late and addresses the key problem of yesterday.
All these considerations delineate what in my view is one of the next important steps
that must be undertaken by Hurwicz’s research program: to meet the challenge of
fast-evolving complexity. Conceivably, to tackle this challenge effectively, a blend
of behavioral theory and empirical analysis might be one of the right ways to go.
Modestly, this is largely the approach explored, more or less directly, in the research
reviewed here.
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Part II
Design Under Uncertainties



Some Remarks on Bayesian Mechanism
Design

Claude d’Aspremont and Jacques Crémer

1 Introduction

Although the problem of revelation of preferences for public goods had already been
brought up in several instances, it was surely the merit of Leo Hurwicz to show that
providing incentives was a fundamental problem in the design of any institution for
collective decision based on decentralized information and control. In particular, the
introduction by Hurwicz (1972) of the concept of incentive compatibility for correct
revelation as the Nash equilibria of a family of noncooperative games with complete
information, and the difficulty to enforce Pareto-optimality in such a model,
suggested to view institutions as rules of a game with incomplete information, as
formally defined by Harsanyi (1967, 1968a,b) and to apply his concept of Bayesian
equilibrium.

Bayesian mechanism design highlights the importance of individual agents’
beliefs in environments where information is incomplete. The prior contribution of
Vickrey (1961) had already made this clear for auction design and, more generally
for market design, and had, as well, identified the budget balance problem that a
marketing agency would encounter in solving the demand revelation problem.

A resulting issue has been to look for the most general class of beliefs
allowing to solve the revelation problem without weakening the collective efficiency
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requirement. The objective is to identify the most general conditions on agents’
beliefs allowing for the implementation of collective decision rules. Many of these
conditions have been presented in their “dual” form, following some variant of the
theorem of the alternative. We shall concentrate on the two most general conditions
(each in some respect) and show that they can usefully be used in their “primal”
form, leading to more constructive arguments. We discuss the issue and analyze
some interesting cases.

In Sect. 2, we present the model and formulate both the incentive compatibility
problem à la Hurwicz and the Bayesian incentive compatibility problem as the
problem of solving a system of linear inequalities and look at the dual consistency
conditions. In Sect. 3, we adopt what may be called the “primal approach” showing
the prominence of two generic conditions that can be fruitfully imposed on the
beliefs. In Sect. 4, we indicate that these two conditions remain central for team
adverse selection with participation constraints. This is also true for team moral
hazard with stochastic outcome functions, as we mention in the concluding section,
where we point out some areas for further research.

2 The Model and the Basic System of Linear Inequalities

The public (or collective) decision-making for which a mechanism has to be
designed is very general. It may be a mechanism to provide public goods (or reduce
a public bad, such as pollution), or to allocate goods, as in auctions. It is just defined
by a set of agents N = {1, 2, · · · , i, · · · , n}, with n ≥ 2 (for some results we
will assume n ≥ 3) and a compact set X of outcomes. We assume incomplete
information about the characteristics of the agents. Adopting the Bayesian point of
view (Harsanyi, 1967, 1968a,b), to each agent i is associated a finite set of possible
types Ai as well as the beliefs of agent i concerning the types of the other agents.
For every αi ∈ Ai , these beliefs pi(α−i | αi) are defined on A−i = ∏

j �=i Aj . For
simplicity, we will assume that these individual beliefs are consistent, i.e., generated
from a common prior p (α) defined on the set of states of nature, A = ∏

j Aj ,
but many results do not require this assumption. We call (N,A, p) the information
structure.

We assume transferable utility: when the public decision is x and he receives a
transfer ti , the utility of agent i of type αi is ui (x; αi)+ ti . We will take some liberty
with the terminology and call ui the utility function of the agent. In general, the type
αi determines both the beliefs and the utility of agent i. We call (N,A, p,X, {ui})
the environment. It is composed of an information structure, a set of outcomes, and
the utility functions of the agents.
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We study direct (revelation) mechanisms, where agents are given incentives to
truthfully reveal their types. Formally, a mechanism is a pair (s, t), where s is an
outcome function from A ≡ ∏n

i=1 Ai to X and where t is a transfer function from
A to �N . The outcome function is ex post efficient if, for all α ∈ A,

n∑
i=1

ui(s(α); αi) = max
x∈X

n∑
i=1

ui(x; αi),

and Pareto-optimal if, in addition, the transfer function is balanced, that is if, for all
α ∈ A, the following budget balance condition holds:

n∑
i=1

ti (α) = 0.

A mechanism defines a game of incomplete information, namely a collection of
normal form games � (α), one for each vector of types, where the payoff function
of agent i is ui(s(·); αi) + ti(·) and his strategy space is Ai . For each agent i, we
can define a set of “normalized” strategies, i.e., functions ai (αi) from Ai to itself,
and focus on the “truth-telling strategy” : a∗

i (αi) = αi for all αi ∈ Ai .
A first way to introduce incentives, based on the seminal contribution of Hurwicz

(1972), is to require truth-telling to be what is now usually called an ex post
equilibrium,1 namely to require the vector

(
a∗

1 (α1) , . . . , a∗
n (αn)

)
to be a Nash

equilibrium of � (α) for α ∈ A. Since α can be any vector in A, a mechanism
(s, t) is incentive compatible (abbreviated IC) if, for all i ∈ N , all αi ∈ Ai , all
α̃i ∈ Ai , and all α−i ∈ A−i)

ui (s(αi , α−i ); αi) + ti(αi , α−i ) ≥ ui (s (α̃i , α−i ) ; αi) + ti(α̃i , α−i ).

In the present framework, where the utility function ui (x; αi) of agent i depends
only on type αi (the private value case), IC is equivalent to dominant strategy
incentive compatibility (i.e.,

(
a∗

1 (α1) , . . . , a∗
n (αn)

)
are dominant strategies in � (α)

for every α ∈ A) or strong incentive compatibility (SIC) to use the terminology
of Green and Laffont (1977). The focal2 class of efficient SIC mechanisms is the
class of Vickrey–Clarke–Groves (VCG) mechanisms where s is an efficient outcome

1An ex post equilibrium is called a uniform equilibrium in d’Aspremont and Gérard-Varet (1979a)
and incentive compatibility is called uniform incentive compatibility by Holmström and Myerson
(1983). See Bergemann and Morris (2005) for more discussion and references.
2If the set of types is large enough (i.e., connected), Groves mechanisms are the only efficient SIC
mechanisms. This result does not hold in our discrete types of framework. See Green and Laffont
(1977), Walker (1978), and Holmström (1979).
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function and the transfers are defined by:

ti (αi , α−i ) =
∑
j �=i

uj (s(αi , α−i ); αj ) + hi (α−i ) ,

with hi any real-valued function defined on A−i . However, as known since Green
and Laffont (1979) and Walker (1980), these transfers are in general not balanced,
so that Pareto-optimality is not obtained. Finding Pareto-optimal SIC mechanisms is
a difficult task even when utility functions are quasi-linear. In this framework, given
an efficient outcome function, finding balanced SIC transfers amounts to solving a
finite system of linear inequalities and we can apply theorems of the alternative to
characterize the consistency of such systems. Using such a method, d’Aspremont
et al. (1990) derive the following necessary and sufficient condition imposed on the
environment (without involving the beliefs) and the outcome function for an SIC
mechanism to exist: for all λ : A2

i × A−i → �+ and all μ : A → � which satisfy

∑
α̃i �=αi

λi(α̃i , αi , α−i ) −
∑

α̃i �=αi

λi(αi , α̃i , α−i ) = μ (α) for all i ∈ N and α ∈ A,

then

n∑
i=1

∑
(α̃i ,αi)∈A2

i

∑
α−i

λi(α̃i , αi , α−i )[ui(s(α̃i , α−i ); αi) − ui(s(αi , α−i ); αi)] ≤ 0.

The family of parameters λ and μ are the dual variables associated, respectively,
with the incentive inequalities and the budget balance condition. To illustrate the
usefulness of this duality result, that same article shows that a Pareto-optimal SIC
mechanism exists whatever the environment and the efficient outcome function,
provided that each agent has only two types (|Ai | = 2, for any i)3—this mechanism
may have to be chosen outside the class of VCG mechanisms. The fact that we
obtain such a strong result when all agents have only two types should at the
minimum make us cautious about the use of the two-type assumption in applied
theory.

A second way to introduce incentives for truth revelation in such environments
is to reverse the point of view. Instead of looking at incentive compatibility by
imposing conditions on the utilities valid whatever the beliefs, one can look at
incentive compatibility by imposing conditions on the beliefs valid whatever the
utilities. Given some information on structure, the payoff of player i of type
αi is evaluated, for every strategy vector (a1(·), · · · , an(·)), as the conditional

3This generalizes a result of Maskin (1986), proved in the case of two agents.
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expected utility

∑
α−i

[
ui(s(a1(α1), · · · , an(αn)); αi) + ti (a1(α1), · · · , an(αn))

]
pi(α−i | αi).

A mechanism (s, t) is Bayesian Incentive Compatible (BIC) if the truth-telling
strategy a∗ (.) is a Bayesian equilibrium in the sense of Harsanyi; it is characterized
by the following inequalities, for all i ∈ N and all (α̃i, αi ) ∈ A2

i ,

∑
α−i

[ui(s(αi , α−i ); αi) + ti (αi, α−i )] pi(α−i | αi)

≥
∑
α−i

[
ui(s(α̃i, α−i ); αi) + ti(α̃i , α−i )

]
pi(α−i | αi).

Comparing these inequalities with the inequalities for IC, we observe that BIC holds
for any information structure such that IC holds.

As above, given an environment and some efficient outcome function, finding
balanced BIC transfers amounts to solving a finite system of linear inequalities,
but in this case, they depend on the beliefs. Applying a theorem of Fan (1956),
d’Aspremont and Gérard-Varet (1979a) obtained a necessary and sufficient condi-
tion to be imposed on the environment and the outcome function for a balanced BIC
mechanism to exist: for all λ : A2

i → �+ and all μ : A → �, such that for all i ∈ N

and all α ∈ A,

pi(α−i | αi)
∑

α̃i �=αi

λi(α̃i , αi) −
∑

α̃i �=αi

λi(αi , α̃i )pi(α−i | α̃i) = μ (α)

we have

n∑
i=1

∑
(α̃i ,αi )∈A2

i

λi (α̃i , αi )×

⎡
⎣∑

α−i

[
ui(s(α̃i , α−i ); αi) − ui (s(αi , α−i ); αi)

]
pi(α−i | αi)

⎤
⎦ ≤ 0.

Again, the λs and μs are the dual variables associated, respectively, with the
incentive inequalities and the budget balance condition. The main application of this
result is to allow for a first formulation of a condition (that we will call condition
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C∗)4 imposed only on the information structure and sufficient to guarantee the
existence of Pareto-optimal BIC mechanism whatever the utility functions and the
efficient outcome function. As we will see below, this condition holds generically,
is necessary for ensuring the budget balance condition, and, as such, is weaker (or
equivalent) to the other conditions that have been proposed in the literature.

An information structure (N,A, p) satisfies Condition C∗ if whenever λ : A2
i →

�+ and μ : A → � satisfy

pi(α−i | αi)
∑

α̃i �=αi

λi(α̃i , αi) −
∑

α̃i �=αi

λi(αi , α̃i )pi(α−i | α̃i) = μ (α)

for all i ∈ N and all α ∈ A

then μ(α) = 0 for all α ∈ A.
That BIC and budget balance are ensured thanks to condition C is immediate

since by efficiency of the outcome function:

n∑
i=1

∑
(α̃i ,αi )∈A2

i

λi (α̃i , αi)
∑
α−i

[
ui(s(α̃i , α−i ); αi) − ui (s(αi , α−i ); αi)

]
pi(α−i | αi)

≤
n∑

i=1

∑
α

∑
j �=i

uj (s(α); αj )×
⎡
⎣pi(α−i | αi)

∑
α̃i �=αi

λi(α̃i , αi) −
∑

α̃i �=αi

λi(αi , α̃i )pi(α−i | α̃i )

⎤
⎦

= 0.

Note that, as can be easily verified, Condition C∗ is satisfied as soon as one agent
i has “free beliefs,” i.e., as soon as p(· | α̃i ) ≡ p(· | αi), for some i and all pairs
(αi , α̃i ), and includes, among many others, the so-called independent case where all
agents have free beliefs.

3 The “Primal” Approach

As shown by d’Aspremont et al. (2003), Condition C∗ has an equivalent “primal”
version, Condition C, which turns out to be very useful. An information structure
(N,A, p) satisfies Condition C if and only if for every function R : A → �, there

4“C” for “Compatibility condition” the name given by d’Aspremont and Gérard-Varet (1979a) and
the star in C* to indicate that it is the “dual” version of the condition. The “primal” version is
studied in the next section.
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exists a transfer rule tC such that

∑
i∈N

tCi (α) = R(α) for all α ∈ A,

and

∑
α−i∈A−i

tCi (αi , α−i ) p(α−i | αi) ≥
∑

α−i∈A−i

tCi (̃αi , α−i ) p(α−i | αi)

for all i ∈ N and all (αi , α̃i ) ∈ A2
i .

Using the same theorem of the alternative as above, one can show that this condition
is satisfied if and only if, for every R : A → �, whenever, for λ : A2

i → �+ and
μ : A → �

pi(α−i | αi)
∑

α̃i �=αi

λi(α̃i , αi) −
∑

α̃i �=αi

λi(αi , α̃i )pi(α−i | α̃i) = μ (α)

for all i ∈ N and for all α ∈ A.

then

∑
α∈A

μ(α)R(α) ≤ 0.

This implies that μ must be identically equal to zero, and therefore C is equivalent
to C∗.

There is a nice story developed in d’Aspremont et al. (2003) to explain why
Condition C guarantees the existence of a Pareto-optimal BIC mechanism whatever
the utility functions and the efficient outcome function. Imagine a planner consulting
two bureaus, the “preference bureau” and the “beliefs bureau.” The preference
bureau uses a VCG mechanism tV CG

i (αi , α−i ) = ∑
j �=i uj (s(αi , α−i ); αj ) so that

SIC (or IC) is satisfied thanks to efficiency of the outcome function s. But, this leads
to a deficit R(α) = − ∑

i∈N tV CG
i (α), for every α. Under condition C, the beliefs

bureau can recommend a transfer tC to cover this deficit while preserving incentives,
so that the transfer function t = tV CG + tC is balanced and ensures BIC and Pareto-
optimality. This argument shows more. It shows that, under condition C, it is always
possible to supplement transfers ensuring BIC by transfers to balance the budget,
while keeping BIC. And, conversely, an information structure guarantees budget
balance in that sense only if condition C holds.5 Using this property of Condition C,

5For the proof, see d’Aspremont et al. (2004). Forges et al. (2002) call this property “automatic
balance.”
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d’Aspremont et al. (2004) show that condition C is the weakest among all conditions
that have been proposed6 to implement efficient mechanisms.

Now, in some contexts, one might be interested in implementing mechanisms
that are not Pareto-optimal (the outcome function is not efficient). From a normative
viewpoint, this would be justified if the decision generates externalities beyond the
set of agents who participate in the mechanism. From a positive viewpoint, this
would be the case if the principal is at the same time budget constrained (so that
he cannot transfer funds to the agents) but had his own, state of nature dependent,
preferences over outcomes. In these cases, the mechanism (s, t) should satisfy BIC
and the transfer function should be balanced. Assuming n ≥ 3, Condition B, defined
as follows, can be used for that purpose.7 An information structure (N,A, p)

satisfies Condition B if and only if there exists a transfer rule tB such that for
all α ∈ A,

∑
i∈N

tBi (α) = 0,

and, for all i ∈ A and all α̃i ∈ Ai ,

∑
α−i∈A−i

tBi (αi , α−i ) p (α−i | αi) >
∑

α−i∈A−i

tBi (̃αi , α−i ) p(α−i | αi).

By applying the same kind of duality argument as above d’Aspremont and Gérard-
Varet (1982) (see lemma 3), B is equivalent to the dual condition B∗ which states
that there exist no λ : A2

i → �+, λ �= 0, and no μ : A → � which satisfy

pi(α−i | αi)
∑

α̃i �=αi

λi(α̃i , αi) −
∑

α̃i �=αi

λi(αi , α̃i )pi(α−i | α̃i) = μ (α)

for all i ∈ N and for all α ∈ A.

This immediately shows that B∗ implies C∗, hence that C holds whenever B holds.
Moreover, for any environment with an information structure satisfying B, and any
outcome function, the BIC constraints can be (strictly) satisfied. It suffices to pre-
multiply the (balanced) transfer function tB by some large positive number. But,
the converse is also true: for any environment, the BIC constraints can be (strictly)
satisfied for any outcome function only if the information structure satisfies B
(d’Aspremont et al., 2003).

6It is strictly weaker than Chung (1999) weak regularity (hence than Matsushima (1991) regularity
condition) and Fudenberg et al. (1994) pairwise identifiability. It is equivalent to Johnson et al.
(1990) condition called LINK.
7Condition B was first defined by d’Aspremont and Gérard-Varet (1982). When n = 2, condition
C is equivalent to independence of types, and condition B never holds.
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The relationship between conditions C and B can be further clarified since
condition B implies “No-Freeness”: it cannot be the case that two types of an
agent generate the same probability distribution over the types of the other agents.
Formally, for all i ∈ N and any two types αi and α̃i , we have p(· | αi) �= p(· | α̃i ).
Furthermore, it can be shown that condition B is equivalent to C plus No-Freeness:
an information structure (N,A, p) satisfies condition B if and only if it satisfies
condition C and No-Freeness. Because for n = 2, condition C is equivalent to
independence of types, that is freeness for any two types of any agent, condition B
never holds with n = 2. Because, as we will see shortly, B holds generically with
n ≥ 3, this reinforces our words of caution about the generality of results obtained
from models with only two types for each agent.

Last, but not least, in “nearly all” environments, we can construct explicitly the
transfer function tB used in the definition of condition B. Consider an information
structure such that for all i �= j , all αi ∈ Ai , and all αj ∈ Aj , p(αj | αi) ≡∑{

α′−i |α′
j =αj

} p
(
α′−i | αi

)
> 0 . Define addition and subtraction on the indices of

the agent modulo n, so that n + 1 ≡ 1 and 1 − 1 ≡ n. We let

tBi (α) = log p (αi+1 | αi) − log p (αi+2 | αi+1) .

The negative term is constant in αi and does not influence the incentives of agent i,
but will ensure budget balance. The strict concavity of the function log implies that
for all i and all (αi , α̃),

∑
α−i

[
log p (αi+1 | α̃i ) − log p (αi+1 | αi)

]
pi (α−i | αi)

=
∑
αi+1

[
log

p (αi+1 | α̃i)

p (αi+1 | αi)

]
p (αi+1 | αi)

< log
∑
αi+1

p (αi+1 | α̃i )

p (αi+1 | αi)
p (αi+1 | αi) = 0,

whenever p(αi+1 | α̃i ) �= p(αi+1 | αi), for some αi+1. Hence, in these cases,
condition B holds, which proves that it holds generically. This also implies that
condition C holds generically when n ≥ 3.

4 Individual Rationality

This short review shows that, for Bayesian incentive compatibility and budget
balance to hold whatever the utility functions, two conditions on the information
structure seem to emerge. One, condition C (or equivalently C∗) requires that the
outcome function be efficient and is necessary and sufficient to ensure budget
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balance. The other, condition B (or equivalently condition B∗) is stronger and is
necessary and sufficient to implement any outcome function. Both the dual and
primal approaches are useful in deriving the results.

We have not, in this note, explicitly introduced individual participation con-
straints, that is constraints which ensure that the agents are willing to participate
in the mechanism. There are two types of individual rationality constraints that
correspond to different extensive form games:

• ex ante participation constraints correspond to a game in which: (1) the mecha-
nism is announced; (2) the agents decide whether they are willing to participate;
(3) the agents learn their types; and (4) the agents play according to the rules of
the mechanism. In this case, the participation constraints are written8

∑
α∈A

[
ui(s(α); αi) + ti (α)

]
p(α) ≥ 0 for all i ∈ N .

• interim participation constraints correspond to the same game with stages 2 and 3
switched. The participation constraints are written

∑
α−i∈A−i

[
ui(s(α); αi) + ti(α)

]
p(α−i | αi) ≥ 0 for all i ∈ N and αi ∈ Ai .

In the case of ex ante participation constraints, the agents learn their types only after
having accepted to participate in the mechanism, whereas in the case of interim
constraints, they learn their types before accepting to participate.

Both types of participation constraint require an ex ante nonnegative aggregate
expected surplus condition:

∑
i∈N

∑
α∈A

[
ui(s(α); αi)

]
p(α) ≥ 0. (1)

Actually, this condition is also sufficient, along with either condition C or condi-
tion B, for implementation if we impose ex ante individual rationality (d’Aspremont
et al., 2003).

In the context of a bargaining problem (where the public decision is the final
owner of the good) with two agents and independent types, Myerson and Satterth-
waite (1983) showed their justly celebrated impossibility result: there exists no
Bayesian incentive compatible, efficient, interim individually rational mechanism.

Despite the importance of this justly celebrated result, it is important to note
that it only holds when there are two agents. In an important paper, Makowski and
Mezzetti (1994) assume that there are at least three agents, that each agent has an
infinite connected set of types and that types are independent, so that the following

8We are assuming that the reservation utilities are equal to 0, both in the case of ex ante and interim
participation constraints. It is quite easy to prove that this does not entail any loss of generality.
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result9 holds: all efficient mechanisms are VCG in expectation, i.e., s is an efficient
outcome function and the transfers are defined by:10

ti (αi , α−i ) =
∑

α−i∈A−i

[∑
j �=i

uj (s(αi , α−i ); αj )

]
p(α−i ) + hi(α),

where
∑

α−i
h(αi , α−i )p(α−i ) does not depend on αi ; therefore, it does not affect

the incentives of agent i. Then, they show that an efficient interim individually
rational mechanism holds if, translated in our finite sets of types notation, the
following condition holds (with s an efficient outcome function)11,12:

(n − 1)
∑
α∈A

[∑
i∈N

ui(s(α); αi)

]
p(α)

≤
∑
i∈N

∑
αi∈Ai

pi(αi)×

min
α′

i∈Ai

∑
α−i

[
ui(s(α

′
i , α−i ); α′

i ) +
∑
j �=i

uj (s(α
′
i , α−i ); αj )

]
pi (α−i ) .

We refer the reader to Makowski and Mezzetti (1994) and d’Aspremont and Crémer
(2018) for more details.

Matsushima (2007) and Kosenok and Severinov (2008) have studied the exis-
tence of interim incentive compatibility for not necessarily efficient decision
functions. Both papers produce conditions on the information structure which guar-
antee implementation when condition (1) is satisfied, with Kosenok and Severinov’s
being necessary and sufficient and therefore less restrictive than Matsushima’s. Both
conditions are strictly more restrictive than condition B.

More discussion of these conditions, showing how conditions B and C are still
prominent, as well as exploration of the case where independence of types does
not hold, but where there is still some freeness, can be found in d’Aspremont and
Crémer (2018).

It may be useful to point out that the auction literature presents other examples of
mechanisms where interim participation constraints are at the core of the problem.
There, the types of the agents are their willingness to pay for the object. At the time
at which they decide to participate in the auction, the potential buyers know their

9This result was first proved in d’Aspremont and Gérard-Varet (1979b) and generalized in
Holmström (1977, 1979).
10Because of the independence of types, we can write p(α−i ) instead of p (α−i | αi).
11Note that with independence, we can write p(α−i ) without ambiguity as p(α−i | αi) = p(α−i |
α̃i ) for all αi, α̃i , α−i .
12To be totally clear, this condition is not necessary in the case of finite sets of types. We are writing
it in this way to avoid introducing more notation.
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types. One issue that the literature has tackled is the identification of information
structures that guarantee that the seller can do as well as if he had full information.
He can do so only if he sells the good to the agent with the highest valuation, hence
the final allocation is efficient. However, the fact that he desires to extract the whole
surplus rather than simply balance the budget is incompatible with free beliefs. See
Crémer and McLean (1985, 1988). Interestingly, if Kosenok and Severinov’s (2008)
condition holds, the condition of Theorem 2 of Crémer and McLean (1988) must
hold.

5 Concluding Remarks

The methods used to study “team adverse selection” can also be used to study
“team moral hazard,” say the sharing of an output (measured in money) depending
on individual actions that are not perfectly observable (or controllable). This
generates a noncooperative game and the collectively optimal level of output may be
unenforceable whatever the proposed sharing rule.13 A context, where this negative
conclusion can be avoided, is when the outcome function is stochastic. We then get a
system of linear inequalities in the transfers similar to the ones above, and conditions
C (or C∗) and B (or B∗) are transposed as conditions on the stochastic outcome
function to allow for a collective optimum to be noncooperatively enforceable (see
d’Aspremont and Gérard-Varet, 1998).

Finally, we should point out that in many cases agents are not provided with
information exogenously—they need to spend resources in order to acquire infor-
mation and may choose either to do so or not to do so. There has been a substantial
and still increasing body of work on this issue in the principal agent framework (see
Crémer and Khalil, 1992; Crémer, Khalil, and Rochet, 1998a,b; Szalay, 2008, and
the subsequent literature). It would be of great interest to understand better how the
fact that the acquisition of information is endogenous affects the design of multi-
agent Bayesian mechanisms.
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Leo Hurwicz quite literally changed my life. I was a math major at Harvard and had

only a vague idea of what economics is all about. Then, one term I wandered almost

by accident into course on information taught by Leo’s old friend, Kenneth Arrow.

A major part of the course was devoted to Leo’s work on mechanism design.

This was the early 1970s, and mechanism design was just getting started and still

on the periphery of economics. But it was soon apparent to me that this was great

stuff. It had the precision and power and sometimes even the beauty of mathemat-

ics. And it could be used to answer some of the big questions of the economic

world: What does decentralization mean? When does a free market perform better

than a planned one? Which economic system uses information most efficiently?

Leo was even able to show in a now famous theorem that in a 2-person economy it
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would change directions and try to do mechanism design myself.

This paper is a revised, shortened version of a book contribution originally published together with

the late Leonid Hurwicz in a festschrift for Stan Reiter.

Hurwicz L., Maskin E., Postlewaite A. (1995) Feasible Nash Implementation of Social Choice:

Rules When the Designer Does not Know Endowments or Production Sets.

In: Ledyard J.O. (ed) The Economics of Informational Decentralization: Complexity, Efficiency,

and Stability. Springer, Boston, MA © Springer Science+Business Media New York 1995.

The preface for this version was added by Eric Maskin.

L. Hurwicz

University of Minnesota, Minnesota, MN, USA

E. Maskin (*)

Harvard University, Cambridge, MA, USA

e-mail: emaskin@fas.harvard.edu

A. Postlewaite

University of Pennsylvania, Philadelphia, PA, USA

e-mail: apostlew@econ.upenn.edu

© Springer Nature Switzerland AG 2019

W. Trockel (ed.), Social Design, Studies in Economic Design,

https://doi.org/10.1007/978-3-319-93809-7_7

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93809-7_7&domain=pdf
mailto:emaskin@fas.harvard.edu
mailto:apostlew@econ.upenn.edu
https://doi.org/10.1007/978-3-319-93809-7_7


A couple of years later, Ken introduced me to Leo in person at the theory

workshop then held every summer at Stanford, and I learned that mechanism design

had a sense of humor—although a peculiar one. “Why do most economists prefer

French fries to hash browns?”, Leo asked me. It’s because fries are potato optimal.

Andy Postlewaite was also at Stanford that summer, and he had discovered a

puzzling phenomenon: it appeared that Walrasian outcomes on the boundary of the

feasible set are not implementable in Nash equilibrium—contrary to what people

had previously thought. Well, Leo, Andy and I thought about that for a while

and soon got to the bottom of it. And we wrote up a short manuscript of 8 pages or

so—suitable for publication as a note in the Journal of Economic Theory.
But would Leo actually submit the paper to the journal? “Let me put it this way,”

said Leo. “Wouldn’t you first like to know what happens if agents can destroy their

endowments?” And of course we did want to know.

So, a year later, we had answered that question and now had a manuscript of 30

pages, appropriate for a regular article in Econometrica. But was Leo now ready to

actually send it in? “Let me put it this way,” he said. “Before publishing the paper

we ought to find out what happens if production can occur.” And we had to admit he

was right.

Six years later, when we had actually done the finding out, we had a gargantuan

manuscript of 80 pages that was too long for any journal. So we thought we should

turn the paper into a monograph. But was Leo prepared to do this? “Let me put it

this way: No. After all, the proofs and exposition still need refinement.” So over the

next 11 years, at erratic intervals, Leo would send Andy and me updated versions of

the manuscript in which a lemma here or a definition there would be improved.

I’m pretty sure things would have continued that way indefinitely if Stan Reiter

had not been gracious enough to reach the age when it became appropriate to

present him with a festschrift. And so—a full 21 years after we had started work on

it—the paper was finally published in Stan’s festschrift. But Leo was able to put all
this in perspective. It just goes to show, he said, that when writing a paper, the first

20 years are always the hardest.

I am happy that this volume in honor of Leo will contain a somewhat abridged

version of our three-way paper.

1 Introduction

The aim of the present paper is to analyze the problem of assuring the feasibility1

of a mechanism (game form), implementing in Nash equilibrium2 a given social

choice rule abbreviated as (SCR) when the mechanism is constrained as to the way

1Earlier models of tatonnement and of proposed mechanisms designed to implement social choice

rules (e.g., Walras or Lindahl) were criticized for not guaranteeing the feasibility at disequilibrium

points. Some, like the Walrasian auctioneer, were not balanced (1), others failed to assure

individual feasibility. (See Wilson 1976.)
2From now on “implementation” is to be understood in the sense of Nash non-cooperative

equilibria. Let n be the number of players, Z the outcome space (the space of allocations), S the

joint strategy space, i.e., S = S1� . . .� Sn, where Si is the strategy domain of the ith player, and
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in which it is permitted to depend on endowments. A social choice rule is a

correspondence specifying outcomes considered to be desirable in a given economy

(environment). A mechanism is defined by (a) an outcome function and (b) a

strategy domain prescribed for each player. Our outcome functions are not permit-

ted to depend at all on the initial endowments. As to strategy domains, the ith
agent’s strategy domain Si is only permitted to depend on that agent’s endowment,

but not on the endowments of other agents. (For earlier results concerning

endoment manipulation, see Postlewaite (1979) and Sertel (1994).)

A possible (but not necessary) interpretation is that those formulating the rules3

of the game have no knowledge of the endowments; they may have no way of

preventing the players from either understating or even destroying their own

endowments, but they may formulate rules making an overstatement of their own

endowments impossible, for instance, by requiring the players to “place the claimed

endowments on the table.” In that case, an agent’s strategy domain is limited by

his/her (true) endowment. As for the final allocations, these are determined by a

formula based only on the agents’ claims and hence are not directly dependent on

the true values of the endowments.4

In a pure exchange economy, whether or not the designer knows the individual

endowments (as well as the traders’ admissible consumption sets), suppose it is

required that the outcome function be informationally decentralized, in the sense

defined in Sect. 2. It is then seen, from Proposition 1 in Sect. 2, that feasibility out

of equilibrium makes it unavoidable that each unit’s strategic domain would depend

on its initial endowment. It is furthermore to be noted that this result applies to all

informationally decentralized mechanisms, regardless of the equilibrium concept5

used. A stronger conclusion, at the expense of a stronger assumption is obtained in

let h: S!Z be the outcome function. An SCR, denoted by F, is a correspondence from the space

E of environments into Z, specifying for each environment (economy) e in E a nonempty set

in the outcome space Z. An environment (economy) is defined as an n-tuple of characteristics

ei= (Ci,ωi,Ri), where, for the ith agent, Ci is the admissible consumption set, wi the initial

endowment, and Ri the (weak) preference relation. I.e, e = (e1, . . . , en) and E is the class of a

priori admissible environments. A possible interpretation is that the designer believes (correctly)

that an environment (economy) outside of E will not occur.

We say that a mechanism (S, h) Nash implements an SCR F over a class of environments E if it

is the case that, for every e in E, (1) the set of Nash equilibrium outcomes NS,h(e) generated by the
mechanism (S, h) is nonempty, and (2) this set NS,h(e) is a subset of F(e). (The term sometimes

used in the literature for this concept is “weakly implements.”) The mechanism (S, h) is said to

fully implement F over E if, for every e in E, NS,h(e) =F(e). In most of the present paper we

actually deal with a singleton-valued correspondence F, i.e., one equivalent to a function. In that

case the two concepts of implementation coincide and we simply say that (S, h) implements the

social choice function f, abbreviated SCF, the function equivalent to the singleton-valued corre-

spondence F. (A method for extending our results to correspondences is illustrated in the Appendix

to Sect. II.A.1, in Hurwicz et al. 1995.)
3Those formulating the rules are often collectively referred to as “the designer.” Hence the title of

this paper.
4Of course, because of the non-exaggeration requirement, an agent’s claim as to his/her own

endowment provides partial information as to the true endowment, namely that the true endow-

ment is at least as high as that claimed.
5For example, maximin, Nash, etc.
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Proposition 2 of Sect. 2. We obtain: (i) certain conditions on the nature of game forms

necessary for the implementability of SCRs; (ii) certain conditions thatmust be satisfied

by an SCR in order that it be implementable; (iii) sufficient conditions for the

implementability of an SCR, established by constructing an implementing game form.

When a mechanism is said to be feasible, all values of the outcome function,

rather than only the equilibrium values, lie in the set of feasible outcomes. We shall

denote by A(e) the set of outcomes feasible in the environment e. This defines a
correspondence A(�) from the space of environments (economies) into the space Z
of outcomes (allocations).

Let us illustrate this in the situation of pure exchange private goods economies

without free disposal with n traders. (Section 3 of the paper is devoted to this case.)
Here, the ith trader’s characteristic ei is defined by his/her consumption

set Ci, initial endowment ωi, and preference relation Ri, written ei= (Ci, ωi, Ri).6

The environment e is defined as the list of characteristics, i.e., e= (e1, . . . , en).
The space of feasible outcomes in this economy consists of all net trade lists

x= (x1, . . . , xn), each xi an element of the commodity space Rm, satisfying the

following two conditions: (a) Individual feasibility—every agent remains within

his/her consumption set, i.e., ωi – xi ∈Ci; (b) compatibility or balance—the sum of

all net trades is the null vector of the commodity space, written Σxi= 0.
In earlier mechanism design literature, the balance condition was observed, but

not the individual feasibility. This contrasts with the conventional Walrasian

auctioneer scenario where the reverse is the case. In the present paper, the emphasis

is on mechanisms satisfying both conditions.

Looking at the problem of constructing a feasible game form implementing

a given SCR over a class E of environments, we must distinguish situations in

which the designer knows the feasible set A(e) for each e in E, i.e., the feasibility
correspondence A(�), from those in which the designer has no such information.

Maskin’s algorithm7 (1977) for constructing a mechanism implementing a given

SCR postulates a class E of environments with a common set A of feasible out-

comes known to the designer.8 In this paper we are interested in the situation where

the feasible set is not known to the designer. Since the balance condition does not

contain any unknown parameters, we are dealing in our illustrative example with a

situation where the designer does not know the traders’ initial endowments.

Section 3 is devoted to pure exchange economies without public goods. In

Sect. 3, to gain insight into the problem, we start with the case where the designer

does know preferences, but not the endowments. We then construct two types

of endowment revelation games (involving, respectively, the withholding and

destruction of endowments), each analogous to Maskin’s algorithm for unknown

preferences. The strategy space for each trader consists of n-tuples of claimed

6Preferences do not affect feasibility.
7Maskin’s construction is an algorithm in the sense that it is a ‘recipe’ for constructing

implementing mechanisms for a class of SCR’s (by inserting the SCR F in an outcome function

schema), rather than a single mechanism.
8On the other hand, the designer does not know which preference profile (from a known family of

profiles) will prevail.
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endowments. Thus, the ith trader claims that the vector of players’ endowments is

wi = (wi
1, . . . ,w

i
n) where wi

j is j’s endowment according to i’s claim. It is assumed

that i knows his/her true endowment ωi. An important restriction imposed on the

nature of the strategy space is that a trader cannot exaggerate his/her own endow-

ment; i.e., wi
i ⩽ωi. This means that the individual strategy domains depend on the

true endowments. In Sect. 2 of the paper, it is shown that some such restriction is

unavoidable.9

Two variants of an endowment game are considered: withholding (Sect. 3.1), and

destruction (Sect. 3.2). When a trader is withholding a part of the endowment, he/she

(falsely) claims somewi
i ⩽ωi (so thatwi

i ≠ ω
i) as own endowment, but—in addition to

the commodity bundle allocated by the outcome function—he/she can also consume

the differenceωi�wi
i. By contrast, when a trader is destroying the partω

i�wi
i of the

endowment, this part is not available for consumption. In Sect. II.C of Hurwicz

et al. (1995), we consider a mixture of withholding and destruction. Implementation

under withholding is called W-implementation, that under destruction as D-imple-

mentation. When preferences are assumed known to the designer, they are dealt with

respectively in Theorem 1 (Sect. 3.1.1) and Theorem 3 (Sect. 3.2). Under withhold-

ing, we assume individual rationality, under destruction, “non-confiscatoriness” of

the social choice function.

The more interesting case is, of course, when the designer knows neither endow-

ments nor preferences. Under withholding, this is referred to as W-R-implementation

and is dealt with in Theorem 2, Sect. 3.1.2. It is shown there, for the case of withhold-

ing, how to deal with this situation. The proof involves combining the game form

for the withholding game, for known preferences constructed in Sect. 3.1.1, with a

Maskin type game form, for situations where endowments but not preferences are

assumed known to the designer (see Maskin 1977; Saijo 1988; Hurwicz 1986).

As in the Groves–Ledyard (1977) treatment of public goods and in Maskin’s
1977 algorithm, all our constructions assume that there are at least three agents

(n>2). Subsequent to the circulation of earlier versions of this paper, feasible game

forms have been constructed for exchange economies with two agents in economies

with free disposal10 (see, in particular, Nakamura 1989, 1990).

The mechanisms used in our existence proofs are far from informationally

efficient. In fact, Page (1989) and Hong and Page (1994) show how the size of the

message space can be substantially reduced. In the next section of this introduction,

we provide a few additional comments concerning the contents of this paper.

While Theorem 1 only deals with social choice functions, it is indicated in the

appendix to Sect. II.A.1 of Hurwicz et al. (1995) how, for the endowment withholding

game with preferences known to the designer, the result can be extended to the

implementation of social choice correspondences. Analogous extensions from SCF’s
to SCR’s (correspondences) seem to be possible for our other cases, but are not dealt

with in the paper.

9When the goods are physical their existence (and ownership) might have to be shown. Similarly,

proof might be required for claimed rights or entitlements, or ever claimed skills. See discussion in

Hong and Page (1994).
10I.e., where the balance condition is in the form of a weak inequality rather than equality (called

“weak balance”).
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2 The Dependence of Strategy Domains on Initial

Endowments

In what follows, we show that, when the outcome function is privacy preserving

with respect to endowments (but possibly “parametric” in the sense of Hurwicz

(1972, pp. 310–313), the strategy domain of each person in a pure exchange

economy must vary with that person’s initial endowment. These results apply to

noncooperative games in general and not merely to Nash equilibria. Proposition 1

and the corollary are valid whether or not the designer knows the initial

endowments.

We consider a class E of pure exchange economies with the set of goods

L={1, . . . , l}. The set of agents is denoted by N= {1, . . . , n}. The ith person’s
true initial endowment is �ωi, but sometimes the circle above ω is omitted. We

write ω
~
= (ω1, . . . ,ωn) and ωi = (ω i

1, . . . ,ω
i
l ) for each i in N. Each person’s con-

sumption set is contained in the nonnegative orthant Rl
+.

Let E =E1� . . .�En, with the generic element of Ei denoted by ei = (ωi,Ri),

ωi ∈Rl
+0; here R

i denotes the ith agent’s (weak) preference relation, assumed to be

reflexive, transitive, and total.

Assumption 1 We assume that for every i in N, every r in L, and every positive

number ε, there is ei ∈Ei, ei = (ωi,Ri), such that 0<ωi
r< ε.

Restricting ourselves, for the sake of simplicity, to single-valued social choice rules

(performance correspondences), we denote a social choice function (performance

function) by f: E!Rln. The values of f specify net trades. Feasibility requirements

are: for all e ∈E and all r ∈ L,

balance: ∑
i ∈N

f ir(e)= 0 ð1Þ

individual feasibility: f ir(e)⩾�ωi
r for all i ∈ N: ð2Þ

where f ir denotes the net allocation of the rth good to the ith person, and ω i
r the

initial endowment of the ith person in the rth good.

To avoid triviality, we assume that there is at least one person i ∈N, a good r ∈ L,
and an economy -e ∈E, such that, for a social choice rule f implementable on -e,

f ir(
-e)≠ 0: ð3∗Þ

From feasibility, it follows that there is at least one person j ∈ N, a good r ∈ L, and an
economy -e ∈ E, such that

f jr(
-e)< 0: ð3Þ

We shall write

f jr(
-e)=�a, a> 0: ð30Þ
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We now define a noncooperative game with the ith strategy domain denoted by

Si. Since the question is whether, or in what way, this domain depends on the initial

endowments, we write Si = Si(e
i) = Si(ω

i, Ri). (That is, the Si may be “parametric,”

but must not depend on the characteristics of other agents.) This, of course, does

not a priori preclude the possibility that Si(�) is constant, i.e., that, for any two

environments -e, --e, we would have Si(-e
i) = Si(

--ei). However, the following propo-

sition shows that, in fact, at least some persons’ domains do vary with their own

endowments.

Write S= S(e) = S1(e
1)� . . .� Sn(e

n).

We shall permit the outcome functions to be “parametric,” i.e., to depend on the

initial endowments, but in a privacy-preserving way. That is, the ith individual’s net
allocation zi is given by

zi = hi(s, ei), s ∈ S(e), i ∈ N:

One could, of course, confine oneself to “nonparametric” outcome functions

where zi= hi(s). By permitting the dependence of hi on �ωi (perhaps even on ei),
however, we strengthen the result.

We impose on the outcome functions the following feasibility restrictions for all

r ∈ L, all s ∈ S, and all e ∈E:

balance: ∑
i ∈N

hir(s, e
i) = 0 ð1∗Þ

individual feasibility: hir(s, e
i)⩾� �ωi

r for all i ∈ N: ð2∗Þ

We assume that the game form (h, S(�)) implements f on E. By definition, this

implies that for every e in E, there exists s∗ in S(e), such that for every i in N, and for
every r in L, hir(s

∗, ei) = f ir(e).

Proposition 1 Assume Assumption 1 holds, let e∗ ∈E and let f satisfying (3∗) be
implementable on e∗. Let further j, r, e∗ and a be those specified in (30), with
e∗= (ω∗i, R∗i)i ∈N. Then there exists a strategy n-tuple s= (si)i ∈N and an economy

e∗∗ = (w∗∗i, R∗∗i)i ∈N, with ω∗∗j
r =ω∗j

r , while ω∗∗k =ω∗k for all k ∈N/{j}, such that

sj ∈ Sj(e∗j) but sj ∉ Sj(e∗∗j).

Proof Since (h, S(�)) implements f on E, there exists s in S(e∗), s= (s1, . . . , sn),
si ∈ Si(e∗i) for all i in N, and such that, for some j,

h j
r(s, e

∗j) = f jr(e
∗) =�a, a>0

and sj ∈ Sj(e∗j). By Assumption (1), there is an environment e∗∗ in E, such that

0<ω∗∗j
r < a,

while

ω∗∗k =ω∗k for all k ∈ N\ jf g:

Feasible Nash Implementation of Social Choice Rules When the Designer. . . 105



By showing that sj ∉ Sj(e∗∗j), we shall complete the proof. Suppose, to the contrary,

that sj does belong to Sj(e
∗∗j). Since the characteristics of others remain unchanged,

it follows that s ∈ S(e∗∗). Using the individual feasibility requirement (2∗) and

previously established relations we obtain

h j
r(s, e

∗∗j)⫺�ω∗∗ j
r >�a = h j

r(s, e
∗
j ),

while

Σk ≠ jh
k
r(s, e

∗∗k)= Σk ≠ jh
k
r(s, e

∗k):

Adding, we find that

Σi ∈Nh
i
r(s, e

∗∗i)>Σi ∈Nh
i
r(s, e

∗i),

which contradicts the balance requirement in (1∗). Q.E.D.

Remark 1 Thus sj depends on e j. sj need not depend on ω j, but if it does not vary

with ω j, then it must vary with Rj.

Corollary 1 If for every person j ∈N, there exists a good r ∈ L and an economy
-e ∈E, such that

f jr(
-e) ≠ 0,

then, for every j∈N, the domain correspondence Sj(e j) is non-constant; more specif-
ically, there exists s∗ = (s∗i )i ∈N and an economy --e = (QQωi

,
QQ
Ri)i ∈N0 with QQω j

r ≠
Qω j
r while

QQωk = Qωk for all k ∈ N\ jf g, such that s∗j ∈ Sj( -ej) but s∗j ∉ Sj(
--ej).

Proof Follows immediately from the preceding proposition.

Assume now that an agent’s strategy is independent of preferences but

may depend on his/her endowment, so that i’s strategy domain can be written as

Si(ω
i). We shall next show that, under Assumption 2 on the social choice function

(stated below), if, in environment e∗ agent i has a greater endowment of a particular

good than in environment e∗∗, while the other agents’ endowments of all goods are

the same, then i’s strategy domain Si(ω
∗i) must contain elements not present in

Si(ω
∗∗i).

To state (2), we first introduce a class of environments. We shall denote by E/Qω
~

the class of all environments in E whose endowment profile equals Qω
~
, while

preferences vary.

Hence, f ir(E/
Qω
~
) is the set of net allocations in the rth good to the ith agent

produced by the performance function f, as environments trace out the class E/Qω
~
.

The additional assumption is as follows:
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Assumption 2

8i ∈ N, r ∈ L, Qω i
r ⩾ 0,

inf f ir(E/
Qω
~
) =�Qω i

r:

Remark 2 It appears that, when the postulated class of environments is sufficiently

rich, Assumption 2 is satisfied for social choice functions which always yield

allocations that are Pareto optimal and individually rational.

Proposition 2 Assume Assumption 2 holds, and let e∗, e∗∗ be two environments

such that, for some agent i and a good r, ω∗i
r > ω∗∗i

r, while w∗j=w∗∗j for all j not
equal to i. Then there exists a strategy available to i in e∗ but not in e∗∗.

Proof By Assumption 2, there is a sequence {e∗k}, k = 1, 2, . . . of environments11

such that each e∗k belongs to the class E/ω∗, so that for each e∗k the endow-

ment profile is ω∗, by individual feasibility f ir(e
∗k)⫺ �ω∗i

r, and, by Assumption 2,

lim f ir(e
∗k) = � ω∗i

k as k tends to infinity.

Write c=ω∗i
r � ω∗∗i

r. By hypothesis, c>0. Then there exists a number c0, with
0 ⫹ c0 < c, such that, for a sufficiently large integer K, we have

f ir(e
K) = �ω∗i

r + c
0:

Write )i( = (1, . . . , i – 1, i+ 1, . . . , n). Since h implements f, there exists a strategy
n-tuple s∗K=<s∗Ki, s∗K,)i(> such that (supressing in our notation the possible depen-

dence of hi on ei) h(s∗K) = f(e∗K), and hence

hir(s
∗Ki, s∗K, )i() =�ω∗i

r + c0:

Hence,

s∗Ki ∈ Si(ω
∗i):

But, since c0 < c, it follows from the definition of c that

�ω∗i
r + c

0<�ω∗∗i
r,

and hence hi
r(s

∗K)<�ω i
r , which violates the individual feasibility requirement for

agent i in the environment e∗∗. Since s∗K, )i( was available members of )i( in e∗, and
Sj(ω

∗∗j) = Sj(ω
∗j) for j in )i( (since, by hypothesis, ω∗∗j=ω∗j for j not equal to i), we

conclude that

11The environments eik has the endowment profile Qω but may differ with respect to preferences.
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s∗Ki ∉ Si(ω
∗∗i):

Q.E.D.

In what follows we, sketch the construction used in Theorem 1 (where endow-

ments may be withheld, but preference profiles are known).

3 Pure Exchange in Private Goods

3.1 Withholding

3.1.1 The Endowment Game (with Endowments Unknown but

Preferences Known)

Notation and Assumptions

(i) Vectors

Let m be a positive integer. Then

Rm= {xjx= (x1, . . . , xm), xr a real number for all 1⫹ r⫹m}.

Let x, y ∈Rm. Then x⫺ y means xr⫺ yr for all 1⫹ r⫹m; x⩾ y means x ⫺ y,
but x ≠ y; and x>y means xr>yr for all 1⫹ r⫹m. Rm

+ = x ∈Rmjx⫺ 0f g;
Rm
++ = x ∈Rmjx> 0f g; Rl

+0 =R
l
+ \ 0f g, so that x ∈Rl

+0 means x⩾ 0; Rln
+0 =R

l
+0

� . . .� Rl
+0 (n times). For a, b ∈Rm, [a, b] = {x ∈Rmja⫹ x⫹ b}, (a, b] = {x ∈

Rmja⫹ x⫹ b, x ≠ a}.

(ii) Environment

N = {1, . . . , n} = the set of agents; n⫺3.

L = {1, . . . , l) = the set of goods.
�ωi = the true endowment of agent i; �ω

~
i ∈R

l
+0 for all i.�ω

~
= ( �ω1, . . . ,

�ωn) = the endowment profile.

R
?

l
+ is assumed to be the individually feasible consumption set for every agent.

�
Ri = the true preference relation of agent i on Rl

+�Rl
+.�

Pi = the true strict preference of agent i (i.e., x
�
Piy iff x

�
Riy but not y

�
Rix).�

Ri is reflexive, transitive, and convex onR
l
+�Rl

+ (i.e., preferences are selfish);
�
Ri

is assumed strictly increasing in all goods for all agents (i.e., x⩾ y implies x
�
Piy).
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(iii) Performance

Z = fz
~
∈Rlnjz

~
= (z1, . . . , zn); zi ∈Rl, 8i ∈ N; Σi ∈Nzi = 0g = the set of balanced net

trades12. Given a configuration z= (z1, . . . , zn) of net trades, agent i’s final (total)
holdings are �ωi + zi:

f= the performance function13 (social choice rule).

f : Rln
+0?Z.

Let v
~
= (v1, . . . , vn) ∈Rln

+0; v
i ∈Rl

+0,8i ∈ N:
f= ( f1, . . . , fn); if z= (z1, . . . , zn) = f(v

~
), then zi = fi(v~

); so, fi: R
ln
+0?Rl.

f( �ω
~
) is interpreted as the optimal14 net trade configuration when the true endowment

profile is �ω
~
; fi(

�ω
~
) is agent i’s optimal net trade for the profile �ω

~
.

It is assumed that vi + fi(v~
)⫺ 0, for all i and all v

~
∈Rln

+0.

(iv) Strategies and Outcome Functions

For each i ∈ N, let Ti be an arbitrary nonempty set. It is assumed that the strategy

space Si of agent i is of the form

Si = (0,
�ωi��Ti,

where Ti is independent of
�ω
~
.

We also define S= S1 � . . . � Sn.
Generically, we write for the corresponding elements

si = (w
i
i , ti), s = (s1, . . . , sn), and

15 s = (si; s)i(),

where ti ∈ Ti, 0⩽wi
i ⫹

�ωi, si ∈ Si, s)i( ∈
Y
j ≠ i

Sj
16, s ∈ S.

If we interpret the componentwi
i of si = (w

i
i , ti) as a profession of agent i’s endow-

ment, the inequality 0⩽ wi
i ⫹

�ωi means that the agent cannot overstate his own

endowment; on the other hand, the endowment can be understated (in one or more

commodity components), but the claimed endowment wi
i (like the true endowment

12The amount received by i is a positive component zi.
13To simplify exposition, we confine ourselves in this section to single-valued social choice rules;

subsequently, we shall extend our treatment to correspondences.
14The term “optimal” is always used in the sense of the given performance function f.
15We use, here and elsewhere, the somewhat imprecise notation which identifies (Si, S1, . . . , Si�1,

Si+1, . . . , Sn) with (S1, . . . , Si�1, Si, Si+1, . . . , Sn).
16∏j ≠ iSj= S1 � . . . � Si�1 � Si+1 � . . . � Sn.
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�ωi) must be semi-positive (i.e., different from the null vector and nonnegative in all

commodity components).17

h= the outcome function (game form).

h: S ! Z.
h= (h1, . . . , hn); if z= (z1, . . . , zn) = h(s), then hi(s) = zi; so, hi: S ! Rl.

h(s)= then net trade configuration resulting from the strategic configuration s.
hi(s)= agent i’s net trade resulting from the strategic configuration s.

Given s, agent i’s final (total) holdings are

�ωi + hi(s):

For net trades z0i, z
00
i ∈ z, we shall sometimes write z0i

�
Riz

00
i to mean ( �ωi + z

0
i)

�
Ri(

�ωi + z
00
i ),

etc.

It will be assumed that, for all i, s = (si, s)i(), si = (w
i
i , ti),

wi
i + hi(s)⫺ 0:

That is, the outcome function will never deprive the agent of goods in excess of

his claimed endowment.

Sincewi
i ⫹

�ωi,a fortiori, the outcome function will never require the agent to give

up more of any good than there was in the true initial endowment. Thus, individual

feasibility is assured.

Furthermore, since h takes its values in Z, we have Σi∈Nhi(s) = 0 for all s ∈ S;
hence, balance is also assured. Thus, feasibility is preserved at all points of the

strategy space, out of equilibrium as well as at equilibrium.

On the other hand, sincewi
i⩽

�ωi is permitted, the agent is able towithhold a part of
the true endowment. Complete withholding is ruled out by the requirement wi

i⩾0.

We shall say that the outcome function h W-implements18 (in Nash equilibrium

(NE)) the performance function f for
�
R
~
of true preference profiles, if: for any true

endowment profile �ω
~
, (1) an NE exists, and, further, (2) for any NE configuration s∗

of strategies, �ω
~
+ h(s∗) = �ω

~
+ f( �ω

~
); i.e., every Nash outcome is f-optimal.

17It would be possible to relax our assumptions by replacing the requirement �ωi⩾0 by �ωi ⫺ 0 and,

at the same time weaken wi
i ⩾ 0 to: wi

i ⩾ 0 if �ωi⩾0. But we cannot permit an agent to claim wi
i = 0

when �ωi⩾0. For let all agents claim zero endowments while in fact Σ
i∈N

�ωi⩾0. Then, since the

possibility of withholding means thatwi
i+ hi(s)⫺ 0 for all i ∈ N, the net Nash allocation would have

to be 0 for everyone, and this might be non-optimal.

If the assumptions were relaxed along the indicated lines, a minor modification would have to

be made in the outcome function.
18Here W- is mnemonic for withholding, as distinct from strategies to be labeled D-, in which an

agent may not withhold but only destroy his endowment, and from those labeled WD-, where the

agent may do both.
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Definition 1 f is individually rational (IR) if, for all i in N, and all �ω
~
∈Rln

+0,

( �ωi + fi(
�ω
~
))

�
Ri

�ωi:

Proposition 3 If preferences
�
R
~
are continuous and nondecreasing, and if f is

W-implementable (in NE) for
�
R
~
, then f is individually rational (IR). (“W-

implementable” stands for “withholding-implementable.”)

Proof Suppose f is implementable by h: S ! Rln, but is not IR. Then there exist
�ω
~
∈Rln

+0 and i ∈N such that19 0
�
Pi fi(

�ω
~
): Since h implements f, there exists an

NE s∗ = (s∗1, . . . , s
∗
n) ∈ S for ( �ω

~
,

�
R
~
), such that hi(s

∗) = fi(
�ω
~
). Hence 0

�
Pihi(s

∗).
Then, by the assumed continuity of Ri, the semi-positivity of �ωi, and the non-

decreasing preferences, there exists a real number ε> 0 and an i-feasible net trade
b= (b1, . . . , bl), where

20 b ⩽ 0, k b k = ∈, and, furthermore,

b
�
Pihi(s

∗):

But, for any ti∈Ti and21 si= (�b, ti), we havehi(si, s
∗
)i()⫺ b, sincewi

i + hi(s
0)⫺ 0 for

all s0. Hence, hi(si, s∗)i()
�
Rib

�
Pihi(s

∗), which contradicts the supposition that s∗i is an NE
strategy.

Q.E.D.

Definition 222 f is non-confiscatory (NC) if 8i ∈N, 8 �ω
~

∈Rln
+0,

�ωi + fi(
�ω
~
)⩾ 0.

Remark 3 It may be noted that, when �ωi⩾ 0 and preferences are strictly increasing,

IR implies NC. Clearly, however, f may be NC and not IR.

Theorem 1 (1) If f is IR, and if the assumptions (including strictly increasing23

preferences) preceding the above proposition are satisfied, then f is W-implementable
(in NE). (“W-implementable” stands for “withholding-implementable.”)

(2) If preferences are continuous24 and strictly increasing, f is W-implementable
if and only if it is IR (individually rational).

Proof The proof of (2) follows from (1) and the preceding proposition. To establish

(1), we construct an outcome function h, which W-implements f.

For i ∈ N, let the strategy space of the ith agent be

Si = f(wi
i , . . . ,w

n
i ) ∈R

ln
+0jwj

i ∈Rl
+0, 0⩽wi

i ⫹
�ωi , i, j ∈ Ng:

19Here 0 is a net trade (the l-dimensional null vector), strictly preferred by i to the net trade fi(
�ω
~
).

20With k x k denoting the norm of the vector x; any norm can be used.
21That is, wi

i =�b.
22When the requirement �ωi ∈Rl

+0 is relaxed to �ωi ∈Rl
+, the above definition is generalized as

follows: f is non-confiscatory (NC) if 8i ∈ N, 8 �ω
~
∈Rln

+,
�ωi⩾ 0 implies �ωi + fi (

�ω
~
)⩾ 0.

23But not necessarily continuous.
24Note that the continuity of preferences is only needed for the necessity part of Theorm 1.2.
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For si ∈ Si, we shall sometimes write

si =wi = (w
i
i ,w

)i(
i ),

where

w)i(
i = (w1

i , . . . ,w
i+1
i ,wi+1

i , . . . ,wn
i )

and

wk = (w
1
k , . . . ,w

n
k ), with wr

k ∈R
l
+0 for all k ∈ N, r ∈ N:

We interpret wj
i as agent i’s statement about j’s endowment. For all i, j ∈ N, it is

assumed thatwj
i ⩾ 0; i.e., each agents’s statement attributes to everybody, including

himself, positive holdings of some commodity. In the spirit of informational

decentralization (privacy-preserving property of the mechanism), it is assumed

that an agent has no useable information about the other agents’ endowments.

Therefore, for j ≠ i, there is no upper bound on w j
i . By contrast, an agent is

assumed to know his own endowment. While he may conceal or destroy a part

of it, he is not permitted to exaggerate it; hence, the requirement that wi
i ⫹

�ωi for all

i ∈N. (We might, for instance, imagine that the rules of the game require that the

agent “put on the table” the reported amount wi
i :)

Notice that this Si has the structure of the strategy space Si = (0,
�ωi � � Ti, introduced

in the previous section. In si = (w
i
i ,w

)i(
i ), the component w)i(

i corresponds to ti in
si = (w

i
i , ti).

We will define the outcome function h(w1, . . . ,wn), withwi ∈Rln
+0 for each i ∈N,

by the following rules:

(a) (The case of unanimity)

If, for some v
~
∈Rln

+0, s= (s1, . . . , sn) ∈ S, si = v
~
for all i ∈ N, then

h(s) = f(v
~
):

To state rules (b) and (c), we use the following notation.

Let s= (s1, . . . , sn) ∈ S, sj =wj = (w
1
j , . . . ,w

n
j ), w

k
j ∈R

l
+0, k, j ∈N: We define

M(s) = fi ∈Njwi
i ⩾wi

j,8j ≠ i, j ∈Ng;

w(s) = ∑
i ∈N

wi
i ;

βi(s) = ∑
j ∈N
j ≠ i

∑
k ∈N
k ≠ i

kw j
j � wj

k k, i ∈N:
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(When there is no danger of confusion, we suppress the argument s and write,

respectively M, w, βi.)
The second rule is then as follows:

(b) IfM(s)=Ø, but there is no v
~
such that si = v

~
for all i ∈N, then Σ j ∈Nβj (s)>0, and

we set

hi(s) =

"
βi(s)

∑
j ∈N

βj(s)

#
w(s)�wi

i, i ∈ N:

The third rule is:

(c) If M(s) ≠ Ø, we set

hi(s) =

(
1

#M(s)
w(s)� wi

i for i ∈M(s)

�wi
i for i ∉M(s):

We shall now prove three claims which together imply that this outcome

function h does W-implement (in NE) the performance function f.
These claims are: (1) the unanimous announcement of the true endowment

profile by all agents is a Nash equilibrium; (2) the unanimous announcement of

a false endowment profile is not a Nash equilibrium; and (3) in the absence of

unanimity, there is no Nash equilibrium.

Claim 1 The unanimous announcement of the true endowment profile by all agents

is an NE. That is,

if si =
�ω
~
, 8i ∈N,

then s = (s1, . . . , sn) is a NE for �ω
~
:

Proof of Claim 1 For such a unanimous announcement s of the true endowment

profile �ω
~
, by rule (a),

h(s) = f( �ω
~
):

Suppose s is not an NE. Then there is an agent j and some ~sj, such that

(+ + +) hj(~sj, s)j()
�
Pjhj(sj, s)j()

where (sj, s)j() = s. Necessarily, ~sj ≠
�ω
~
, and also, for ~sj = (ew j

j , ew)j(), by the non-
exaggeration rule,
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ewj
j ⫹ ωj:

�

Writing ~s = (~sj,~s)j()= (~sj, s)j(), so that ~sr = sr for all r ≠ j, it follows
25 that

j ∉M(~s):

Let k be any agent other than j; i.e., k ≠ j. Since26 n⫺ 3, there exists a third agent

m, with m ≠ j and m ≠ k.
Now ~sr = sr =

�ω
~
for all r ≠ j. Hence,

~sm = �ω
~

and ~sk =
�ω
~
:

Since ~sr = (
�ω1, . . . ,

�ωn) = (w
1
r , . . . ,w

n
r ), 8 r ≠ j, we have

wk
k = wk

m,

and hence,

k ∉M(~s):

Since k was an arbitrary agent other than j, it follows that no agent other than j is
in M(~s), and we have seen above that j is not in M(~s). So,

M(~s) =Ø:

Thus, M(~s) = Ø but ~s is not unanimous, so rule (b) applies to ~s.

Since si =~si for all i ≠ j, we have

βj(~s) = ∑
k ≠ j

∑
i ≠ j

wk
k � wk

i

�� �� = 0,
and so

hj(~s) = 0 � w(~s)� ew j
j = � ewj

j :

Since f is IR,

hj(s) = hj(
�ω
~
, . . . , �ω

~
) = fj(

�ω
~
)
�
Rj0:

25Because ew j
i =w

j
i = ωj

�
for all i ≠ j.

26By assumption, #N= n⫺ 3.
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Because preferences are strictly increasing and ew j
j ⩾ 0,

0
�
Pj(�ew j

j ):

Therefore,

hj(s)
�
Pj(�ewj

j ),

and so

hj(s)
�
Pjhj(~s),

which contradicts the above supposition that hj(~s)
�
Pjhj(s). Hence s is an NE.

Q.E.D.

Claim 2 The unanimous announcement of a false endowment profile is not an NE.

That is, if s= (v
~
, . . . , v

~
), v

~
∈Rln

+0 with v
~
≠ �ω

~
, then s is not an NE.

Proof of Claim 2 Since s is unaminous, rule (a) again applies, and so

h(s) = f(v
~
):

Suppose s is a Nash equilibrium.

Since v
~
is not the true endowment profile, and agents cannot overstate their endow-

ments, then there must be an agent i such that

wi
r ⩽

�ωi , 8r ∈N:

(We have v
~
= (v1, . . . , vn), vk =wk

r , 8k, r ∈N:Since v~ ≠ �ω
~
, it must be that, for some

i, vi ≠ �ωi: ∴wi
i ≠

�ωi , ∴wi
i ⩽

�ωi. But w
i
r = v

i =wi
i , 8r ∈N. Therefore, wi

r ⩽
�ωi ,8r ∈N:)

Consider ~s = (~si,~s)i() such that

~s)i( = s)i(,

~ski = ski for all k ≠ i

while

~sii =
�ωi :

(That is, ~sii ≠ s
i
i since s

i
i =w

i
i ⩽

�ωi:)

Then

M(~s) = if g,

and, by rule (c)
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hi(~s) =w(~s)� ewi
i = ∑

k ≠ i

wk
k = ∑

j ≠ i

v j

We shall show below that

(+) hi(~s)⩾ hi(s):

Since preferences are strictly increasing, the inequality (+) implies

hi(~s)
�
Pihi(s):

Therefore, when (+) holds, agent i has an incentive to deviate from si, and so s is not
an NE. That is, Claim 2 follows.

To establish (+), we note that, since, for our outcome function h(�),
hj(s

0)⫺�w j
j ,8j, and Σ k∈Nhk(s

0) = 0, 8 s0 ∈ S,27 we have28

hi(s
0)⫹ ∑

j ≠ i

w j
j, 8 s0 ∈ S:

But s = (v
~
, v
~
, . . . , v

~
), v

~
= (v1, . . . , vn) implies vk =wk

k for all k ∈ N; hence

hi(s)⫹ ∑
j ≠ i

v j:

Suppose

(+ +) hi(s) =∑
j ≠ i

v j:

We shall show that (++) cannot be true. Then, from the inequality in the preceding

line, it will follow that

hi(s)⩽∑
j ≠ i

v j:

But we have already shown above that hi(~s) =Σ j ≠ iv
j: Hence, hi(s)⩽hi(~s), which is

the inequality (+) above. It remains to show that (++) yields a contradiction.

27These properties of h(�) can be verified directly.
28Proof: (omitting reference to s0):

hj⫺�w j
j implies ∑

j ≠ i

hj ⫺�∑
j ≠ i

w j
j :

But balance implies Σj ≠ i hj =�hi. Hence, the previous inequality can be written as

�hi⫺�Σj ≠ iw
j
j which is equivalent to hi⫹Σj ≠ iw

j
j .
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Writing

hj(s) = xj, j ≠ i,

the balance requirement then yields

∑
j ≠ i

xj +∑
j ≠ i

v j = 0:

But, xj ⫺ �v j, so that

xj =�v j+ εj j ≠ i
εj⫺ 0:

Hence, the balance equation can be written as

∑
j ≠ i

(�v j + εj) + ∑
j ≠ i

v j = 0,

and this implies εj= 0, 8j ≠ i; hence,

xj =�v j, ⩝ j ≠ i:

That is, if hi(s) = ∑
j ≠ i

v j,

then

(∗) hj(s) =�v j, ⩝ j ≠ i.

As noted in Remark 3, before Theorem 1, under our assumption, IR (individual

rationality) implies NC (non-confiscatority), so that

v j+ fj(v~
)⩾ 0:

But here

hj(s) = fj(v~
):

Hence

v j+ hj(s)⩾ 0

which contradicts (∗).
Q.E.D.

Feasible Nash Implementation of Social Choice Rules When the Designer. . . 117



Claim 3 In the absence of unanimity there is no NE. That is, if for some i, j ∈N,
si ≠ sj, then s= (s1, . . . , sn) is not an NE.

Proof of Claim 3 Let s= (s1, . . . , sn) = (w1, . . . ,wn) with si ≠ sj for some i, j ∈N.We

consider three cases: (i) M(s)=N; (ii) M(s) ≠Ø, M(s) ≠N; (iii) M(s) =Ø.

(i) Suppose first that M(s) =N. Then consider ~s with

~sk = sk for all k ≠1,
~sq1 = s

q
q for all q ∈ N:

(We shall sometimes write ~sp = ewp, p ∈N:)
For any agent r ≠ 1,

r∉M(~s),

since ~sr1 =~s
r
r:

On the other hand, we shall show that

1∈M(~s):

Notice that 1 ∈M(s), since N =M(s) by hypothesis. Hence, by definition of M(�),

s11⩾ s1r , 8r ≠1:

Thus, by the construction of ~s,

~s11⩾~s1r ,

and so

1∈M(~s);

therefore, rule (c) applies to ~s.
Since it was shown previously that nobody else belongs to M(~s), we have now

established that

M(~s) = 1f g:

Rule (c) implies therefore

h1(~s)=1�w(~s)� ew1
1=w(s)�w1

1= ∑
k ≠ 1

wk
k:

But h1(s)⩽ Σk ≠ 1w
k
k because M(s) =N, so that, under s, part of Σk ≠ 1w

k
k was

allocated to persons other than 1. [That is, βk(s)>0, 8k ≠ 1.]
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Therefore,

h1(~s)⩾h1(s)

and consequently, because of strictly increasing preferences,

h1(~s)
�
P1h1(s):

Hence, in case (i), s is not an NE.

(ii) Suppose now that M(s) ≠Ø, M(s) ≠N. Since M(s) ≠Ø, rule (c) applies to s.
Because M(s) ≠N, there is an agent j =2M(s) who, by rule (c), gets

hj(s) = �wj
j:

Now consider ~s where, for all k and all i ≠ j,

~ski = s
k
i ,

~s jj = s
j
j,

and

~skj = s
k
k:

For any r ≠ j, we have

~srj =~s
r
r,

and so, by definition of M(�),

r ∉M(~s) for all r ≠ j:

Furthermore, since (by construction) j =2M(s) and ewj
i =w

j
i for all i ≠ j, we have

j ∉M(~s).
Thus,

M(~s) =Ø,

and so either rule (a) or rule (b) applies to ~s. But rule (a) cannot be applicable

because unanimity in ~s is impossible: since n⫺ 3 and M(s) ≠Ø, there is a person

k ∈M(s), k ≠ j, and a person i ≠ j, i ≠ k such that,

wk
k ⩾wk

i ;
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hence sk ≠ si. But, w
k
k and wk

i are unchanged in ~s, and so ~sk ≠ ~si. Hence, there is no
unanimity in ~s and rule (a) does not apply to ~s. Hence, rule (b) applies to ~s.

For agents j, k, and i just referred to, we have

βj(~s)⫺ wk
k � wk

i

�� ��> 0:

Since w(s)⩾ 0, it follows that

hj(~s)⩾ �wj
j = hj(s),

and so, by the assumption of strictly increasing preferences,

hj(~s)
�
Pjhj(s):

Hence, in case (ii), s is not an NE.

(iii) Finally, suppose thatM(s) =Ø and s is not unanimous. Since, by the hypothesis
of Claim 3, not all announced profiles are the same, there exist agents i and j,
i ≠ j, with

wi
i ≠ wi

j,

We now distinguish two subcases, according to whether βj(s) = 0 or βj(s)>0.

Subcase (iii.1) βj(s) = 0.
Consider

&
s defined by

&
sk = sk for all k ≠ j

&
w j

j =
1

2
wj

j

&
wr

j =w
r
j for all r ≠ j:

We note that, since s is not unanimous andM(s) is empty, Rule (b) applies to s, and
hence

hj(s) = �wj
j:

But, also,
&
s is not unanimous, because

&
wi
i =w

i
i ,

&
wi
j =w

i
j by construction,29 and

wi
i ≠ wi

j by the above hypothesis.

29Since i ≠ j.
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Also, M(
&
s) is empty because M(s) is empty, and the change from w j

j to
&
wj
j =

1
2
w j
j

(while
&
w j

r =w
j
r for r ≠ j) does not enlarge the setM.Hence, Rule (b) also applies to

&
s :

Now, since
&
sk = sk for k ≠ j, βj(s) = 0 implies βj(

&
s) = 0. Therefore,

hj(
&
s) = �&

wj
j:

But,

�&
wj

j = � 1
2
wj

j ⩾ �w j
j,

because, by assumptions on messages, w j
j⩾ 0. Hence, by the assumption of strictly

increasing preferences,

hj(
&
s)

�
Pjhj(s):

So,
&
s is better than s for agent j, and hence s is not a Nash equilibrium.

Subcase (iii.2) βj(s)>0.

In this situation, consider ~s, such that

~sk = sk for all k ≠ j

and

~srj = s
r
r for all r:

By construction, βj(~s) = βj(s)>0 and Σk ≠ j βk(~s)<Σk ≠ j βk(s). Also, M(~s) =

M(s) = �0, so Rule (b) applies to both ~s and s. Therefore, hj(~s)⩾hj(s). And so,

again by the assumption of strictly increasing preferences, s is not a Nash

equilibrium.

Q.E.D.

3.1.2 The Game with Both Preferences and Endowments Unknown

to the Designer

Notation and Assumptions

Here the performance correspondence (SCR) f associates elements of Rln (net

trades) with ordered pairs (ω
~
,R
~
) consisting of endowment and preference profiles.

The set of these elements is denoted by f(ω
~
,R
~
). It is assumed that f(ω

~
,R
~
) is non-

empty for all (ω
~
,R
~
) in its domain.

For the sake of simplicity, we shall assume in what follows that this correspon-

dence is single-valued, i.e., a function. Subsequently, we shall indicate the modi-

fications required to extend the results to the general case of correspondences.
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We shall consider two games. The main game, in which both the endowments

and preferences are unknown, and withholding (but not destruction) is permitted, is

called the W-R game. In such a game, for any i ∈N, a generic element of the ith
strategy space Si is denoted by si, with

si = (wi, di):

wi ∈Rln
+0 as before,30 wi = (w

1
i , . . . ,w

n
i ), w

j
i ∈R

l
+0: di ∈Di where Di is an arbitrary

set (the ith domain). The outcome function of this game is h: S1 � . . . � Sn ! Rln.

We shall also consider an auxiliary game, designed for situations where the

endowment is given (though perhaps incorrectly) while preferences are unknown.

Let the given endowment profile be v= (v1, . . . , vn), vi ∈Rl
+0, i ∈N. We denote by

A(v) the set of feasible net allocations in a pure exchange economy when v is the

initial endowment profile and each consumption set is the nonegative orthant; i.e.,

A(v) = {(z1, . . . , zn) ∈Rln: zi ∈Rl,Σi∈Nz
i= 0, zi⫺�vi, i ∈N}.

We denote by gv an outcome function, gv: D1� . . .�Dn!Rln, for an auxiliary

game when the set of feasible allocations is A(v) and the strategic domains are

Di, i ∈N. The mapping associating the outcome function gv with the profile v is

called the auxiliary game form g.
The set of Nash equilibria of this game (a subset of D1� . . .�Dn) for the

preference profile R
~

is denoted by υgv(R
~
), and the corresponding set of Nash all-

ocations (a subset of Rln
+0) by Ngv(R

~
).

Definition 3 f is R-implementable through the auxiliary game form g if, for every

v ∈Rln
+0, there exist domains D1, . . . ,Dn and an auxiliary outcome function

gv: D1� . . .�Dn!Rln, such that

Ngv(R
~
) = f(v, R

~
) for all (v, R

~
):

(That is, every Nash allocation generated by the auxiliary game is f-optimal for

v and R
~
, and every f-optimal allocation for v and R

~
is attainable as a Nash allocation

of the auxiliary game.)

Definition 4 For each i ∈N, let the ith person’s strategy set be of the form

Si = Si(
�ωi)ÌRl

+0�Ti,

where Ti is an arbitrary set. A generic element of Si is denoted by si = (w
i
i , ti).

31

Write S= S( �ω
~
) = S1 � . . .� Sn, and

32

30Rm
+0 = x ∈Rm: x⫺ 0, x ≠ 0f g:

31The wi
i component can be interpreted as the i-th agent’s claim concerning his own initial

endowment.
32That is, A(w1

1, . . . ,w
n
n ) would be the set of feasible net allocations if (w1

1, . . . ,w
n
n ) were the true

endowment profile.
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A(w1
1, . . . ,w

n
n ) = f(z1, . . . , zn) ∈Rln: zi ∈Rl, ∑

i ∈N
zi = 0,

zi ⫺ �wi
i , 8i ∈Ng:

An outcome function h: S!Rln is said to be �ω
~
-feasible if

h(s) ∈A( �ω1, . . . ,
�ωn) for all s ∈ S,

where s= (wi
i , ti)i ∈N .

Definition 5 A SCR (performance correspondence) f is W-R-implementable (in

NE) if, for every �ω
~
∈Rln

+0, and for every i ∈N, there exist strategic domains

Si = Si (
�ωi)ÌRl

+0�Ti,

where Ti is an arbitrary set, and an �ω
~
-feasible outcome function

h:
Y
i ∈N

Si?Rln,

such that:

8 �
R
~
∈R,

there is an NE s for �ω
~
and

�
R
~
(i:e:, s ∈ υh( �ω

~
,

�
R
~
))

such that

h(s) ∈ f( �ω
~
,

�
R
~
):

Remark 4 In our applications, Si(
�ωi) = (0,

�ωi)�Ti and Ti =R
l(n�1)
+0 �Di where Di is

an arbitrary set.

Theorem 2.A Let f be an IR social choice rule (performance function) which
is R-implementable (in NE) through an auxiliary form g: v! gv. Then f is
W-R-implementable in NE (by a “combination” of g with the endowment game of
Sect. 3.1.1).

Proof We will construct an outcome function h as follows.

Let �ωi and the corresponding strategy spaces Si(
�ωi), i ∈N, be given. By con-

struction, si = (wi, di), wi = (w
1
i , . . . ,w

i
i, . . . ,w

n
i ), and wi

i ⫹
�ωi.

Now we distinguish two types of situations according as to whether there exists

v
~
∈Rln

+0 such that v
~
=wi for all i ∈N.

Feasible Nash Implementation of Social Choice Rules When the Designer. . . 123



If such v
~
does not exist, we follow rules (b) and (c) above and conclude that s is

not an NE (see Claim 30).
On the other hand, suppose that v

~
does exist. Then the outcome is dictated by the

outcome function gv~ generated through the mapping g for this v
~
. It then turns out (see

Claims 10 and 20) that an NE obtains only if v
~
coincides with the true endowment

profile �ω
~
. But then, by the assumption on g, it follows that Nh(

�ω
~
,

�
R
~
) = f( �ω

~
,R
�
).

Formally, the rule (a) of the endowment game (W-game) described in the

previous section is replaced by the following Rule (a0): if for some v
~

such that,

for all i ∈N,

si = (v
~
, di)

for some (d1, . . . , dn) � d
~
, then, for s= (s1, . . . , Sn), we set

h(s) = gv~(d
~
):

The rules governing cases where there is no unanimity as to endowments are

unchanged. The right hand sides of the definitions ofM(s) andw(s) remain the same as

in the W-game, although now si= (wi, di) rather than si=wi. The two other rules ((b
0)

and (c0)) are the same as rules (b) and (c) for the W-game, again with si= (wi, di).

Theorem 2.B.B33 Let n⫺ 3, let endowments be semi-positive (ωi⩾ 0), and pref-
erences continuous and strictly increasing. Then, a social choice function f is
W-R-implementable in NE if and only if it is monotone and individually rational (IR).

Proof (i) Sufficiency. For n⫺ 3 and monotone f, Theorem 5 in Maskin (1977)34

shows that there exists a function g which R-implements f in NE.35 Hence, by

Theorem 2.A, the individually rational social choice function f is W-R-

implementable.

(ii) Necessity. If f is R-implementable, it is monotone by Theorem 2 of Maskin

(1977). If f is W-implementable, it is IR by Proposition 3 in Sect. 3.1.1.

Claim 10 Correct unanimity with regard to endowments yields an NE.

Let s∗ = (s∗l , . . . , s
∗
n), and, for all i ∈ n, s∗i = (

�ω
~
, d∗i ), such that d∗ = (d∗l , . . . , d

∗
n)

is an NE for g
�ω
~ given

�
R
~
, i.e., d∗ ∈ vg �ω

~

(
�
R
~
). Then s∗ is an NE for h given ( �ω

~
,

�
R
~
); i.e.,

s∗∈vh( �ω
~
,

�
R
~
).

33Note that the continuity of preference is only needed for the necessity part of this theorem.
34See also the theorem in Saijo (1988, p. 698), and theorem M1 in Hurwicz (1986, p. 86); in the

latter the assumptions of transitivity and completeness are dispensed with. The latter paper follows

Maskin’s original schema, with Lemmas 1 (p. 88) and 2 (p. 90) corresponding to Maskin’s
Theorems 4 and 5, respectively.
35This is so because, for n⫺ 3, in a pure exchange economy with strictly increasing preferences,

the “no veto power” (NVP) requirement in Maskin’s Theorem 5 is necessarily satisfied.
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Proof Suppose s∗ is not an NE. By the assumption concerning d∗, for any agent i, it
would not help to depart from d∗i while retaining wi =

�ω
~
.

Consider therefore ~s = (~sl, . . . ,~sn), such that ~sj = s
∗
j for all j≠ i, while ~si = (ewi, ~di)

with ewi ≠
�ω
~
. (~d i may or may not equal d∗i .) Since, by the outcome rules, ew i

i ⫹
�ωi , it

follows that M(~s) =Ø and so rule (b0) applies.

But

βi(~s) = 0,

since other agents remain unanimous with regard to endowments. Hence, rule (b0)
prescribes

hi(~s) = �ewi
i :

By our assumptions on the auxiliary game form g and d∗,

h(s∗) = f( �ω
~
,

�
R
~
):

Since f is assumed to be IR,

fi(
�ω
~
,

�
R
~
)
�
Ri0,

hence

hi(s
∗)

�
Ri0,

and therefore

�ew i
i

�
Pi0,

which contradicts the requirement of semi-positivity for endowment messages and

strictly increasing preferences. Hence s∗ is an NE for ( �ω
~
,

�
R
~
).

Claim 20 Incorrect unanimity concerning endowments does not yield an NE.

Let s=(sl, . . . , sn), si =(v
~
, di)8i∈N, v

~
= (vl, . . . ,vn), vi ∈Rln

+0, v
~
≠ �ω

~
. Then s is

not an NE for ( �ω
~
,

�
R
~
).

Proof Suppose that s is an NE for ( �ω
~
,

�
R
~
).

By the outcome rules, v
~
⫹ �ω

~
, and (since v

~
≠ �ω

~
by hypothesis), vi⩽ �ωi for some i

by virtue of the non-exaggeration requirement.
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Then, by reasoning exactly like that in the proof of Claim 2, we show

that Claim 20 will have been established if [with ~si = (ewi , di), ewi = (ewi
i, w)i(), ewi

i =
�ωi,

and ~sj = sj 8 j ≠ i]

(+) hi(~s)⩾ hi(s),

and that if (+) fails then

(0) hi(s) = ∑
j ≠ i

v j

and

(∗) hj(s) =�v j 8 j ≠ i.

It will therefore suffice to show that the last two equalities yield a contradiction.

To get this contradiction, we shall first prove the following:

Auxiliary Proposition If s is an NE for ( �ω
~
,

�
R
~
), then s is also an NE for (v

~
,

�
R
~
).

Proof (1) Consider agent i. We know that our rules never give to an agent more

than the others have “put on the table.” That is, for all s0i,

hi(s
0
i, s)i()⫹ ∑

j ≠ i

w j
j = ∑

j ≠ i

v j:

But, by (0) above,

hi(s) = ∑
j ≠ i

v j:

Hence

hi(s
0
i, s)i()⫹ hi(s) for all s0i,

and so, by the monotonicity of preferences, si is a Nash equilibrium strategy for

agent i.
(2) Now consider any agent j other than i. Suppose sj is not a Nash equilibrium

strategy for j in the economy(v
~
,

�
R
~
).

Then there must exist a strategy s0j for j with the characteristic (v j,
�
Rj) such that

(α) hj(s
0
j, s)j()

�
Pjhj(s):
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Now, since by the rules of the game hj(s
∗)⫺�wj

j always, we have in particular

(β) hj(s
0
j, s)j()⫺�v j = hj(s)

where the last equality follows from (∗) above.
Since replacing ⫺ by= in (β) would contradict (α), if follows that ⫺ in (β) can

be replaced by⩾, and (β) becomes

hj(s
0
j, s)j()⩾ hj(s):

In view of the assumed strict monotonicity of preferences, the latter inequality

implies

hj(s
0
j, s)j()

�
Pjhj(s)

where j’s characteristics are ( �ω
~
j,

�
R
~
j), and so s is not an NE in the economy( �ω

~
,

�
R
~
).

This contradiction of our initial hypothesis completes the proof of the Auxiliary

Proposition.

We now return to the proof of Claim 20. By Rule (a0), since s is unanimous as to

endowments, we have

h(s) = gv~(d
~
),

and

(γ) hj(s) = g
v
~
j (d~

) 8j ∈N:

Now, by the Auxiliary Proposition,d
~
constitutes an NE in the gamegv~ for

�
R
~
, and,

by hypothesis, gv R-implements f. Therefore

gv~(d
~
) = f(v

~
,

�
R
~
),

and so

(δ) gv~j (d~
) = f j(v~

,
�
R
~
):

Using in turn (δ), (γ), and (∗), we obtain

fj(v~
,

�
R
~
) = gv~j (d~

) = hj(s) = �v j, 8j ≠ i;

hence,
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fj(v~
,

�
R
~
) = �v j, 8j ≠ i:

But this contradicts the hypothesis that f is NC, i.e., that

fj(v~
,

�
R
~
)⩾�v j, 8j ∈N:

This contradiction implies that (+) holds, and hence that, by the strict monoto-

nicity of preferences,

hi(~s)
�
Pihi(s):

So s is not an NE for ( �ω
~
,

�
R
~
). This completes the proof of Claim 20.

Claim 30 If there is no unanimity as to endowments, then there is no NE.

Proof We proceed as in the proof of Claim 3 except for (iii), which is replaced by

the following:

(iii)0 Finally, suppose that s is not unanimous as to endowments and M(s) =Ø.
Since, by the hypothesis of Claim 30, not all announcements in s are the same, there

exist agents i and j, i ≠ j, with

wi
i ≠ wi

j,

We now distinguish two subcases according to whether βj(s) = 0 or βj(s)>0.

Subcase (iii.1)0 βj(s) = 0.
Consider

&
s defined by

&
sk = sk for all k ≠ j
&
wj
j =

1
2
wi
j

&
wr
j =

&
wr
j for all r ≠ j,

and the second component of
&
sj arbitrary (e.g.,

&

dj = dj).
We note that since s is not unanimous as to endowments andM(s) is empty, rule

(b)0 applies to s, and hence

hj(s) =�w j
j:

But, also,
&
s is not unanimous as to endowments because

&
wi
i =w

i
i,

&
wi
j =w

i
j by

construction,36 and wi
i ≠ wi

j by hypothesis.

36Since i ≠ j.
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Also,M(
&
s ) is empty because M(s) is empty, and the change from wj

j to
&
wj
j =

1
2
wj
j

(while
&
wj
r =w

j
r for r ≠ j) does not enlarge the setM. Hence Rule (b)0 also applies to &

s .
Now, since

&
sk = sk for k ≠ j, βj(s) = 0 implies βj(

&
s ) = 0. Therefore,

hj(
&
s ) =�&

w j
j:

But,

�&
wj

j =�1
2
wj

j ⩾�wj
j,

because, by assumptions on messages, wj
j⩾ 0. Hence, by the assumption of strictly

increasing preferences,

hj(
&
s )

�
Pjhj(s):

So,
&
s is better than s for agent j, and hence s is not a Nash equilibrium.

Q. E. D.

Subcase (iii.2)0 βj(s)>0.

In this situation consider ~s, such that

~sk = sk for all k ≠ j

and

~srj = srr for all r:

By construction, βj(~s) = βj(s)>0 and Σk ≠ j βk(~s)<Σk ≠ j βk(s). Also, M(~s) =

M(s) =Ø, so rule (b)0 applies to both ~s and s. Therefore, hj(~s)⩾ hj(s). And so,

again by the assumption of strictly increasing preferences, s is not a Nash

equilibrium.

Q.E.D.

3.2 Destruction of Endowments

In this section, we consider an alternative game, in which the agents may destroy

a part of their endowment but are not able to withhold (conceal) any of it.

D-implementability is defined analogously toW-implementability, with destruction

replacing the withholding of endowments. We again assume pure exchange, with

semi-positive initial endowments ( �ωi⩾ 0) and strictly increasing preferences.
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It then turns out that the outcome function introduced in Sect. 3.1.1, with the

modification indicated under Claim 3,37 D-implements any non-confiscatory

(NC)38 performance function when preferences are known to the designer.39 Sim-

ilarly, when f is monotone as well as NC, outcome functions of the type considered

in Sect. 3.1.2 implement f when neither endowments nor preferences are known to

the designer.

In what follows we state the result for the case of known preferences and

indicate the modifications in the proof for W-implementation needed to make it

valid for D-implementation. The theorem on D-implementability when both

endowments and preferences are unknown is the same as part (1) of the theorem

on W-implementability, with NC replacing IR.

The notation for strategies remains the same as in Sect. 3.1 but the interpretation

differs. In particular, given s, agent i’s final (total) holdings Hi(s) equal wi
i+ hi(s)

where wi
i denotes i’s (true) endowment after destruction. Similarly, for i ≠ j, wj

i

denotes i’s estimate of j’s endowment after destruction. It is still assumed that

wk
i ⩾ 0 (i.e., wk

i ∈R
l
+0) for all i, k in N. Hence, an agent cannot destroy all of his

endowment.

The result for the case of known preferences is given by the following:

Theorem 3 f is D-implementable (in NE) for
�
R
~

if it is non-confiscatory (NC).

Proof The proof is very much the same as that for W-implementability. In partic-

ular, in the former proof we used the fact (see Remark 3 in Sect. 3.1.1 that IR

implies NC, while here only NC is assumed. We shall therefore only spell out

those parts of the proof of D-implementability which differ significantly from the

proof of W-implementability, with page references to the former proof.40

First, for the destruction game, we replace rule (b) by the following rule (b∗),

consisting of two parts, (b∗1) and (b∗2).
41

In order to state these rules we must define numbers ti (i= 1, . . . , n) as follows.
Consider s = (s1, . . . , sn) where si = (s

1
i , . . . , s

n
i ) = (w

1
i , . . . ,w

n
i ), with w

j
i—as before—

denoting the value of j’s endowment claimed by i (called i’s estimate of j’s
endowment). Denote by ti(s) the number of distinct commodity space points

among the elements wi
1, . . . ,w

i
n, to be called the number of estimates (in s) of i’s

endowment, and define t(s) = max{t1(s), . . . , tn(s)}. We shall call t(s) the number of
estimates in s.

37It may be that this same modification would also work in Sect. 3.1.1.
38f is non-confiscatory (NC) if 8i ∈ N, 8 �ω

~
∈ Rln

+0,
�ωi + fi(

�ω
~
)⩾ 0.

39NC is however, not a necessary condition for D-implementability.
40Note, however, that for purposes of this section z0i Ri z

00
i should be interpreted as

(wi
i+ z

0
i) Ri (w

i
i+ z

00
i ):

41I.e., the formula of rule (b) for W-implementation applies.
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The rule (b∗) then reads as follows

If M(s) =Ø, and t(s) = 2, then (b∗1)

hi(s) = [βi(s)/Σj ∈N βj(s)] � w(s)� wi
i, i ∈ N: (#)

If M(s) =Ø, and t(s)>2, then (b∗2)

hi(s) = [β
∗
i(s)/Σj ∈Nβ

∗
j(s)] � w(s)� wi

i, i ∈ N, (##)

where

β∗k(s) = 1 + βk(s), k ∈ N:

The changes in the proof of the three claims, here labeled respectively with

double primes, are indicated below.

Claim 100 Here we must replace the part of the W-proof using the IR property of f
by an argument using the NC property only. We therefore substitute for the last ten

lines of the proof of Theorem 142,43 the following paragraph:

Since f is NC, and preferences are strictly increasing,

�ωj + fj(
�ω
~
)
�
Pj0:

But here

�ωj + hj(s) =
�ωj + fj(

�ω
~
)

and

ewi
j + hj(~sj, s)j() = ew j

j � ewj
j = 0:

Hence,

( �ωj + hj(s))
�
Pj(ewj

j + hj(~sj, s)j())

which contradicts our supposition (+ + +) in the proof of Claim 1 and in the proof of

Theorem 1.

Remark 5 This argument would not be valid for withholding where, under ~s, the

total final holdings equal �ωj� ew j
j rather than 0.

42The paragraph starting with the words “Since f is IR . . .”
43Ending with “Hence s is an NE.”
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Claim 200 Replace the sentence after (+) in the proof of Claim 2 in the proof of

Theorem 1 with:

Since preferences are strictly increasing and ewi
i ⩾wi

i, the inequality (+) implies

(ewi
i + hi(~s))

�
Pi(w

i
i + hi(s)):

Claim 300 In the absence of unanimity there is no NE.

Proof We consider three cases:

(i)00 M(s)=N; (ii)00 M(s) ≠Ø, M(s) ≠N; (iii)00 M(s) =Ø.

(i)00 Suppose first that M(s)=N. Then consider ~s with

~sk = sk for all k ≠ 1,

~sq1 = s
q
q for all q ∈ N:

(That is, agent one accepts everyone’s self-evaluation.)
Then

M(~s) = 1f g:

(This is proved exactly as in Theorem 1, Claim 3(i).)
Since M(~s) ≠Ø, rule (c) applies. Therefore,

h1(~s) = 1 � w(~s)� ew1
1 =w(s)� w1

1 = ∑
n

i=1

wi
i � w1

1:

On the other hand, since M(s) =N, rule (c) also applies to s and yields

h1(s) =
1

n
∑
n

i=1

wi
i � w1

1:

Since ∑
n

i=1

wi
i ⩾ 0 (by the rule wi⩾ 0), and n>1, it follows that

h1(~s)⩾ h1(s):

Hence, since ew1
1 =w

1
1,

H1(~s)⩾H1(s),

and, by strictly increasing preferences, H1(~s)
�
P1H1(s). So s is not an NE in case (i)00.
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(ii)00 M(s) ≠Ø, M(s) ≠N.

SinceM(s) ≠Ø and there is no unanimity, rule (c) applies to s. BecauseM(s) ≠N,
there is an agent j =2M(s) who, by rule (c), gets

hj(s) =�w j
j:

(Since this is the case of destruction, Hj(s) =w
j
j + hj(s) =w

j
j � wj

j = 0.)

Now suppose that agent j accepts everyone’s self-evaluation. Thus

~sr = sr for all r ≠ j

and

~sqj = s
q
q for all q:

Then (by the argument in Theorem 1)

M(~s) = Ø:

Hence rule (c) does not apply. But neither does rule (a) because ~s is not unanimous.

(This is seen as follows: since n⫺ 3 and M(s) ≠Ø, there is a person k ∈M(s), k ≠ j,
and a person i, with i ≠ j, i ≠ k, such that

wk
k ⩾wk

i ;
44

hence sk ≠ si. But since k ≠ j and i ≠ j, we have ~sk = sk and ~si = si by construction.

Hence ~sk ≠ ~si, and so ~s is not unanimous.)

Since ~s is not unanimous and M(~s) ≠ Ø, rule (b∗) applies to ~s.
For agents j, k, and i referred to above, we have

βj(~s)⫺ wk
k � wk

i

�� ��> 0,

since wk
k ⩾wk

i .

From w(~s) =w(s)⩾ 0, it follows that hj(~s) =
βj(~s)

Σβr(~s)
w(~s)⩾0. On the other

hand, β∗q(~s)> 0 by construction for all q ∈N and all ~s ∈ s, so that
β∗j (~s)

Σβ∗r (~s)
w(~s)⩾ 0.

Hence, whether rule (b∗1) or rule (b∗2) applies, we have

44In fact k ∈M(s) means that wk
k ⩾wk

r for all r in N/{k}.
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hj(~s)⩾ �wj
j = hj(s):

(The last equality was exhibited above.)

But ew j
j =w

j
j, soHj(~s)⩾Hj(s), and, by strictly increasing preferences,Hj(~s)

�
PjHj(s).

Therefore, s is not an NE.

(iii)00 Finally, suppose there is no unanimity in s; hence the number of estimates t(s)
is at least 2, andM(s) =Ø. We distinguish two cases: case 1: The number t(s)
of estimates is 2; case 2: the number of estimates is at least three.

Consider first case 1 where the number of estimates is two, i.e., t(s) = 2. In this

case, we distinguish two subcases, 1a, where all βk(s)>0, k ∈N, and 1b, where not

all βk(s) are positive (i.e., some are zero).

Subcase 1a Here t(s) = 2, and βk(s)>0 for all k in N. Since there is no unanimity,

there are agents i and j such that, in s,wj
i ≠ wj

j. Let i change his strategy from si to~si,

so that, in ~si, ewj
i = wj

j, while other components of ~si are the same as in si. Then

βi(~s) = βi(s)>0, where the equality follows from the definition of βi(.) and the

inequality holds by the hypothesis of case A. Also, βj(~s) = βj(s). But, since our

theorem assumes n>2, there is at least one agent r other than i or j, and for all such

agents βr(~s)< βr(s). Clearly, t(~s) = t(s) = 2, so rule (b∗1) applies. It follows from the

above properties of the β’s that hi(~s)>hi(s), and hence s is not an NE.

Subcase 1b Here, still, t(s) = 2, but there exists some agent i such that βi(s) = 0.
Here the argument depends on whether i has a strategy ~si such that t(~s)>2, with ~s
non-unanimous and leaving the set M(~s) empty.

Consider first the sub-subcase 1b0 where such a strategy ~s is available to

agent i. The situation with ~s qualifies then under rule (b∗2). Now since βi(s) = 0, it
follows from (#) that Hi(s) = 0. On the other hand, since β

∗
i(~s)> 0 by construction, it

follows from (##) that Hi(~s)⩾ 0. Again, s is not an NE.

But suppose (sub-subcase 1b), that i has no strategy ~si qualifying under rule (b
∗
2).

This can only happen if, under s, all agents other than i (“the crowd”) are announc-
ing identifical profiles but different from that announced by i (the only

“dissident”).45

Here again there are two possibilities:

(i) The dissident and the crowd agree about i’s endowment; i.e.,wi
i =w

i
j for all j ≠ i.

Then i can adopt the strategy~si with ewi
i =w

i
i and ew j

i =w
j
j for all j ≠ i.With others

retaining their strategies from s, this will result in a unanimous ~s, so that

45For suppose that among agents other than i there are present at least two distinct profiles, say for
agents j and k. If j and k disagree as to i’s endowment, so that wi

j ≠ w
i
k , then i can choose ewi

i ⩾ 0, so

that ewi
i is simultaneously different fromwi

j andw
i
k and not higher than ω

i. On the other hand if j and
k agree about i’s endowment, then they must disagree about the endowment of some agent r other
than i (since, by hypothesis, they are in disagreement). In that case agent i can choose ewr

i that is

different both from wr
j and wr

k (without removing any existing disagreements). In either case, the

result is that (~s)>2, contrary to the hypothesis of 1.B”.
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hj(~s) = f(~s). Since f is, by assumption in the Theorem, NC (non-confiscatory), it

follows that ew + hi(~s)⩾ 0. On the other hand, since t(s) = 2, so that (b∗1) applies,

and βi(s)= 0, formula (#) yields wi
i + hi(s) =w

i
i + (�wi

i ) = 0. Hence ~s yields to

agent i a bigger outcome, i.e., ew i
i + hi(~s)⩾ 0 =wi

i + hi(s), so—by the assumed

monotonicity of preferences—s is not an NE.

(ii) The dissident and the crowd disagree about i’s endowment; i.e., wi
i ≠ wi

j for all

j ≠ i. For any j in the crowd, βj(s)>0, j ≠ i. Then any member of the crowd r

(with r ≠ i) can change from sr to ~sr such that ew i
r =w

i
i , while other components

of si remain unchanged. This does not change the number of disagreements, so

t(~s) = 2, continues to hold, ~s is not unanimous, and M(~s) is still empty. Hence

formula (#) in (b∗1) applies. Now βi(~s) = βi(s) = 0 and βr(~s) = βr(s)>0.46 But

for any agent k other than i or r (i.e., any member of the crowd other than r)

βk(~s)<βk(s). Thus for agent r, in the expression for hr(~s) in (#) the numerator

is positive and the same as in hr(s) while the denominator is smaller; also,

w(~s) =w(s). Hence hr(~s)> hr(s) and so s is not an NE.

We now proceed to case 2, with t(s)> 2, i.e., where the number of estimates in s

is three or more. Hence formula (##) in rule (b∗2) defines the outcomes under s.
Since t(s) =max{t1(s), . . . , tn(s)}>2, there exist three agents i, j, and k such

that among the three estimates wi
i ,w

i
j , and wi

k no two are equal. Let now agent j

change the endowment estimate profile from sj to~sj so that ew p
j = wp

j for all p ≠ i, andew i
j such that ew i

j is closer (in norm) towi
i thanw

i
j was, while still ew i

j ≠ wi
i , and ew i

j ≠ w
i
k.

Hence formula (##) in rule (b∗2) applies to ~s as well as to s. (All components of

~s = (~s1, . . . ,~sn), except ~sj, are the same as those of s.)
Note that, since the components of ~s other than ~sj are unchanged, we have

βj(~s) = βj(s). Also, βi(~s) = βi(s). However, for r other than i or j, it is the case that

βr(~s)<βr(s) . The same relations hold respectively for the β∗’s. Hence in the

quotient of formula (##) forhj(~s), the numerator is the same as for hj(s) and positive,
while the denominator is smaller. It follows that hj(~s)> hj(s), and therefore s is not

an NE. This completes the proof of Theorem 3.

Remark 6 If rule (b∗) had not been substituted for rule (b), Claim 300 section (iii)00,
would no longer be true (when M(s) =Ø). This is shown by the following

counterexample:

n= 3; l= 1; s =
s1
s2
s3

0@ 1A =

w1
1 w2

1 w3
1

w1
2 w2

2 w3
2

w1
3 w2

3 w3
3

0@ 1A =

1 5 4

2 3 4

1 3 4

0@ 1A:
Assume that �ω1 =1,

�ω2 = 3,
�ω3 = 4. (So wi

i =
�ωi, for i= 1, 2, 3.)

46βr(~s) = βr(s) because βr(�) does not depend on r’s statements concerning the others’ endowments.
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This s is not unanimous, and M(s)=Ø. If the mechanism were generally rules

(a), (b), and (c), then rule (b) would apply here to s. Contrary to Claim 300, this s is a
Nash equilibrium.

Proof

(1) No ~s can be unanimous (because if one player changes, the other two still

disagree). So rule (a) will not apply to ~s.
(2) For every ~s, we haveM(~s) =Ø. This is so because, by hypothesis, every agent is

already telling the truth about himself (i.e., he is destroying nothing), so he

cannot raise his wi
i ; therefore M(s) =Ø implies M(~s) =Ø, So rule (c) will not

apply to ~s.
(3) Hence rule (b) applies to any ~s (as well as to s).
(4) We have β1(s) =β2(s) = 0 and β3(s)>0. By rule (b), agent 3 gets everything (i.e.,

H3(s) =w
1
1 + w2

2 + w3
3),while the other two agents get nothing (i.e.,H1(s) =H2(s) =0).

Certainly, therefore, agent 3 cannot do any better under any change of his strategy~s3.

As for agent 2, H2(~s)= 0 for any change of his strategy ~s2, because ~s2 does not
enter β2(�), so that β2(s1,~s2, s3) = 0 for all ~s2. Hence, agent 2 cannot do any better

under any change of his strategy ~s2.
Agent 1 is in exactly the same situation as agent 2.

So, no agent can do any better by unilateral strategy change, and hence s is a
Nash equilibrium.

It is of some interest to see why and how the situation differs in the withholding

game, in contrast to the destruction game being considered here.

In the withholding game, comments (1), (2), and (3) of the above proof remain

valid. It also remains true that β1(s) = β2(s) = 0 and β3(s)>0. It is still true that

agent 3 cannot improve his situation, but either of the other two agents can.

Thus, in the W-game, let agent 2 choose ew2
2 =

1
2
w2
2. (Recall that w

2
2 =

�ω2:) Then
47

HW
2 (~s) =

�ω2� ew2
2 =

�ω2� 1
2
�ω2 = 1

2
�ω2⩾ 0, which is better thanHW

2 (s) = 0. On the other

hand, HD
2 (~s) = ew2

2 � ew2
2 = 0, which is no improvement.

Remark 7 If rule (b) must be modified (as seen in Remark 1), it is natural to ask

why it cannot be replaced by rule (b∗2), rather than the more complex rule (b∗),

which distinguishes between disagreement situations depending on whether there

are more than two distinct strategy profiles. The answer is that rule (b∗2) would be

inappropriate in the proof of Claim 100, while rule (b∗1) does work.

Remark 8 We may note that we need not distinguish the cases βj(s) = 0 from

βj(s)>0 when rule (b∗2) applies, since in both cases β∗j (s) > 0, and the derived

conclusion is due to changes in the denominator of β∗j (s) /Σ β∗j (s), while the positive

numerator remains constant. On the other hand, as in Theorems 1 and 2, we must

distinguish these two cases when rule (b∗1), which is identical with rule (b), does

apply.

47The superscript refers to the game (W or D).
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Design of Tradable Permit Programs
Under Imprecise Measurement

John O. Ledyard

1 Introduction

The formal approach to mechanism design began with Hurwicz’s 1960 paper. He
recognized that the information about the economic environment, such as techno-
logical possibilities, preferences, and endowments, is dispersed among economic
agents and that the “informational tasks entailed by the mechanism imply costs in
real resources used to operate the mechanism” (Hurwicz and Reiter, 2006, p.1).
He then focused on those informational tasks and searched for mechanisms that
produced an efficient resource allocation and were informationally efficient in the
sense that the messages were smaller than those of other possible mechanisms
that produced an efficient resource allocation. In Hurwicz’s 1972 paper, he took
mechanism design to the next level by introducing the concept of incentive
compatibility. Soon after, in 1973, Gibbard introduced the Revelation Principle
which led theorists to focus on direct mechanisms, mechanisms whose messages are
everything an agent knows about the environment, and to ignore the “informational
tasks” entailed by such a mechanism. I believe more attention needs to be put on
the costs of acquiring the information necessary to attain a measure of resource
efficiency and the trade-off between the two types of efficiency. In this paper, I take
a very small step in that direction.

I look at one of the informational tasks involved in cap and trade programs. Such
programs possess a degree of informationally efficiency since they employ the price
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mechanism to communicate needed information about the environment.1 But there
is another, usually ignored, part of the problem—identifying the size of the output
decisions of producers in a commons. In order to enforce the rules of a cap and
trade program, it is necessary to compare that output to the permits held by the
agents. But it is often the case in practice that it is difficult or impossible to achieve
valid measurement of that output. Instead imprecise measurement is possible and
less expensive. In this paper I pursue what is lost, if anything, by relying on that
imprecise measurement when using cap and trade to manage a commons.

The tragedy of the commons is well-known: an unmanaged, common resource
will be over used and the benefits from its use will be lower than would be possible
under a benevolent dictator. It is also well-known that, if use can be accurately and
precisely measured, it is possible to design a tradable permit program such that,
under a fairly general set of conditions, the permit market equilibrium allocation
is efficient for the given aggregate permit level and everyone is better off after the
permit program than before. I will refer to such a program as satisfactory.

In practice the implementation of a tradable permit program is often postponed
or never undertaken because there does not exist an inexpensive technology able
to measure violations accurately and precisely. However, sometimes there is an
inexpensive technology available that can measure violations imprecisely. That
is, there is random measurement error. Examples of imprecise measurement in
commons problems are easy to find. I look at only two: fisheries and ground water.

In the management of fisheries, it is the catch that is often permitted. The easiest
and most direct way to measure the catch is at the landing where the catch is
unloaded and can easily be weighed. But that is actually only an inaccurate and
imprecise measure of what has really been caught. For example, high grading,
keeping the best and tossing the rest, would mean more fish are caught than
measured. The best place to measure the actual catch is at the point of catch, but
that is remote. Nevertheless, a variety of methods have been employed to try to get
such measurements. Remote sensing through satellites, onboard human observers,
and/or surveillance cameras are some of the technologies used. While these seem to
improve measurement, there are still errors. The measurement is imprecise.

In the management of ground water, it is important to know the amount of
water pumped from an aquifer. The obvious way to measure it is to place a
meter at the pump. But in many situations, meters do not exist. Meters are costly
and the manpower to read them is expensive. There have been several alternative
measurement schemes proposed to be used in place of direct metering. One is
to measure the electricity used by the pumps. The Turlock Irrigation District in
California uses this method.2 Another method is to use remote sensing by satellite
or unmanned drones, using evapotranspiration as an indirect measure of water use.3

1I will side-step adverse selection incentive problems by assuming competitive behavior on the
part of the economic agents.
2See also Zekri (2009) for a deeper discussion of this method.
3See Water Education Foundation (2015) for a discussion of this method.
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Of course, both these technologies have errors in measurement. The measurement
is imprecise.

To the best of my knowledge, the implications of imprecise measurement for
permit markets have not been studied before. In the literature, measurement is
always perfect—precise and accurate. Some studies have considered the case when,
although the measurement is perfect, it is only done with some probability—thereby
lowering the costs. This is often called random or imperfect monitoring.4 The main
conclusion of this research is that, with risk neutral producers, if the penalty rate
per unit violation is high enough then the equilibrium allocations in a competitive
permit market will be exactly the same as under perfect measurement. As long as the
expected cost of a violation is high enough, producers in a commons will chose to
hold permits exactly equal to their planned output. Because of that, the combination
of perfect measurement and random monitoring can lead to a satisfactory program.

In this paper, I study whether imprecise measurement could be the basis for a
satisfactory permit program. Unfortunately and perhaps not surprisingly, the answer
is no. It is useful to understand why. With imprecise measurement, producers will
buy more permits than their actual output in order to insure against the potential
that measurement will indicate higher production than is actually the case. This
leads to two types of resource inefficiency. One occurs because aggregate output
will be less than the aggregate amount of permits. The second occurs if the errors in
measurement are biased. If errors are not proportional to production, then aggregate
output will not be efficiently allocated. Imprecise measurement can also make it
difficult or impossible to guarantee that all producers will be at least as well off
as they were before the program was put into place. This is because the aggregate
cost of holding permits to insure against mis-measurement can be greater than the
increase in aggregate benefits from better management of the commons. This can
cause political problems.

In spite of these negative findings, there are some positive results. First, if
measurement errors are proportional to use, then it is possible to design a tradable
permit program with imprecise measurement such that the equilibrium aggregate
output is efficiently allocated. Second, there are easily calculated subsidies that
allow the design of a tradable permit program that guarantees that producers will
be better off than they were before the program. Third, as the precision of the
measurement approaches perfect accuracy, the equilibrium of the market with
imprecise measurement approaches what it would be with perfect measurement and
the size of the subsidies necessary to guarantee a Pareto-improvement decline to
zero.

4See Malik (1990), Malik (1992), Stranlund and Dhanda (1999), Stranlund (2007), Murphy and
Stranlund (2007), and Stranlund et al. (2008).
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2 The Commons

A collection of producers, named i = 1, . . . , N, are involved in a commons. Each
chooses a level of production, qi.5 A producer’s economic profits are bi(qi,Q)
where Q = ∑

i qi . The fact that aggregate output affects an individual’s profits
creates the externality that is at the heart of the commons problem. There is a set of
standard assumptions that guarantees this model of the commons is well-behaved.

Assumption 1 (Regular Commons)

(i) bi(qi,Q) is strictly concave and increasing in qi , decreasing in Q, and
continuously differentiable in qi andQ.

(ii) limx→0 biq(x,Q) = ∞.6

(iii) biqQ ≤ 0,∀i.
Assumption 1(i) is standard. Assumption 1(ii) ensures that no producer will ever
want to drop out. This is not necessary for many of the results in this paper but
does make them a little cleaner. Assumption 1(iii) is similar to a single crossing
condition. It ensures that aggregate demand is downward sloping.

I assume throughout that producers behave competitively in the commons. That
is, each producer acts as if their individual choice of production level will not affect
aggregate production.

In the absence of collective management, autarky reigns.

Definition 1 (Autarkic Equilibrium) An Autarkic Equilibrium is (qa,Qa)where
(i) qai solves maxq bi(q,Qa),∀i and (ii) Qa =∑

i q
a
i .

Economic efficiency is a standard benchmark and a desirable target for public
policy.

Definition 2 (Efficient Allocation) An allocation q̃ is Efficient if and only if
(q̃, Q̃) solves maxq,Q

∑
i bi(qi,Q) subject toQ =∑

i qi .

It is well known that Autarkic equilibria are generally not efficient. Thus, there
is the opportunity to design a policy that will guide the producers on the commons
to higher aggregate profits. A tradable permit program can be one such policy.

In Sect. 3, I provide some basic results for a permit market with accurate
measurement. This material is reasonably well known and is provided to introduce
the reader to the notation, concepts and prior results that I will later refer to.
Section 4 contains the main results of this paper.

5The model would be essentially the same if the producers were choosing an input.
6I use the following notation for derivatives of functions: fx = ∂f (x, y, z)/∂x and fxy =
∂2f (x, y, z)/∂x∂y. The index i is the name of a producer and is not a variable.
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3 Tradable Permits with Valid Measurement

A tradable permit program specifies an aggregate level of permits, L, allocates it to
the producers, requires the producers to keep their production level to no more than
the permits that they hold, and allows trading of those permits. The initial allocation
of permits is lo, where

∑
loi = L.

A valid measurement technology is both accurate and precise. With valid
measurement of q, a tradable permit program can be enforced by monitoring and
imposing a penalty for producing more than the permits held. I assume that the
penalty is a function only of the level of violation vi = qi − li . This is standard in
the literature.7 The penalty to be paid by i is indicated by P(vi ). One typical and
simple form of the penalty function has P(vi ) = max{0, avi} where a is a positive
constant. I allow a wider range of possibilities.

I assume producers behave competitively in the permit market.8 Let p be the
market price of permits.

Definition 3 (Market Equilibrium under Valid Measurement) A Permit Mar-
ket Equilibrium under Valid Measurement is (q∗, v∗, p∗,Q∗) such that

(i) each producer i chooses (q∗i , v∗i ) to solve

max
(qi ,vi )

bi(qi,Q
∗)− p∗(qi − vi − loi )− P(vi ),

(ii) Q∗ =∑
i q
∗
i , and

(iii)
∑
i (q

∗
i − v∗i ) = L.

In Definition 3, (q,Q) and v can be solved for independently since they are
separable. We use this fact to define a supply of output and a demand for violations.

Definition 4 (Supply and Demand under Valid Measurement)

(a) Supply under valid measurement is [qV (p),QV (p)] where
qVi (p) ∈ arg maxqi bi(qi,Q

V (p))− pqi andQV (p) =∑N
i=1 q

V
i (p).

(b) Demand under valid measurement is [vV (p), V V (p)] where
vVi (p) ∈ arg maxv pvi − P(vi) and V V (p) =∑N

i=1 v
V
i (p).

The market equilibrium price satisfiesQV (p∗)−V V (p∗) = L. To ensure the market
is well-behaved, I impose a regularity assumption.

7Of course, P could depend on more than just vi . For example, P could depend on the percentage
violation so that the penalty is P (qi/ li). But when ∂P/∂qi+∂P/∂li �= 0, permit market equilibria
will generally not be efficient. Thus, the design choice is usually P (vi).
8This is rarely true in practice. Even if there is a large number of producers, most extant
permit markets are disorganized and thinly traded. They tend to violate the Law of One Price
and, therefore, traders’ behaviors are not really competitive. There are ways to design a trading
mechanism to avoid this, but that rarely happens. I leave the design of those markets to another
paper.
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Assumption 2 (Regular Accurate Measurement)

(i) P(vi )= 0 on vi ≤ 0. P (vi ) is convex, increasing, and continuously differen-
tiable on vi ≥ 0.

(ii) L > QV (Pv(0+)).9

Assumption 2 (i) is a slight generalization of the linear penalty, max{0, avi}.
Assumption 2 (ii) is needed to ensure that the penalty is strong enough so that

producers do not want violations in equilibrium.

Result 1 Under Assumptions 1 and 2,QVp (p) < 0 and V Vp (p) ≥ 0.10

The geometry of this market is displayed in Fig. 1 in Sect. 6.1.

3.1 Efficiency and Political Viability

Permit markets mimic competitive markets which, under the appropriate conditions,
produce allocations that are efficient. But permit markets do not necessarily produce
efficient allocations unless the supply of permits, L, is exactly right. Instead, permit
markets produce allocations that are efficient given the total amount of permits, L.

Definition 5 (Efficiency Given X) The allocation q̃ is Efficient given X if and
only if q̃ solves maxq

∑
i bi(qi,X) subject to

∑
i qi = X.

If the total number of permits, L, is chosen appropriately, aggregate profits
after the program is implemented will be higher than before. But producers won’t
receive those increases unless the program is actually adopted and implemented. A
satisfactory program must be politically viable.

If the permit program can be designed in a way that all producers are better off
after the introduction of the permit program than they are in the autarkic equilibrium,
then the program will be more likely to be adopted. In the language of mechanism
design, such a property of the design is called voluntary participation or individual
rationality. The well-known result is that all producers will be better off at the permit
market equilibrium than in autarky as long as the distribution of the initial permits,
lo, is such that all producers are at least as well off at loi as they are in autarky.11

9Pv(0+) = limx→0+Pv(x).
10The proofs are omitted since they are standard and straightforward. For details see, e.g., Ledyard
(2018).
11Since it is rare that such a distribution is unique, there may still be serious political bargaining
over the allocation of L.
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Result 2 Let (q∗, v∗, p∗,Q∗) be a permit market equilibrium. Under Assump-
tions 1 and 2:

A) Efficiency

(i) q∗ is efficient given L, Q∗ = L, and v∗ = 0.12

(ii) The permit market equilibrium is independent of the initial distribution, lo,
and only depends on L.

B) Voluntary Participation

(i) For any initial allocation of permits, lo, such that bi(loi , L)> bi(q
a,Qa),∀i,

it will be true that bi(q∗i ,Q∗)−p∗(q∗i −v∗i − loi )−P(v∗i ) > bi(qai ,Qa),∀i.
(ii) Let qe be efficient given L and Qe = ∑

i q
e
i . There exists an lo satisfying

(i) if and only if
∑
i bi(q

e
i ,Q

e) >
∑
i bi(q

a
i ,Q

a).

The proofs are omitted since they are standard and straightforward.13

Result B(i) holds because the producer has been put into an initial position at
least as good as autarky and, by choosing qi = loi , she can protect that position.
Anything she then decides to do will be at least as good. If the commons effect of
Q is large enough, as in fisheries, then letting lo be based on autarkic output, so that

loi = qai
Qa
L, will often be sufficient.

Result B(ii) holds because of the quasi-linearity of profits. Locally, if L < Qa ,
there exists an lo satisfying (i).

To summarize, with a valid measurement technology it is possible to design
a tradable permit program such that, under a fairly general set of conditions, the
market equilibrium is efficient for the given permit total and everyone is better off
than with autarky.

4 Tradable Permits with Imprecise Measurement

As shown in the previous section, under ideal conditions, the benefits of using a
tradable permit system to manage an over-used commons are increased aggregate
profits and political viability. But, often implementation of such a system is
postponed or never undertaken because the conditions are not ideal. One reason
for this can be the absence of an inexpensive technology able to provide valid
measurements of violations. However, there often is an inexpensive technology
which is approximately valid. In this section, I study the possibilities for the design

12If the penalty is weak so that L < QV (Pv(0+)), then v∗i > 0 andQ∗ > L. In this case, q∗ is not
efficient given L. But q∗ will be efficient given Q∗. See, e.g., Malik (1990).
13For details, see, e.g., Ledyard (2018).



146 J. O. Ledyard

of a tradable permit system when the measurement technology involves an indirect
measure of qi that contains statistical uncertainty. Such a measurement is imprecise.

I model imprecise measurement technologies as follows. The indirect measure
of producer i’s output is wi = qi + ε where ε is the measurement error. I assume
ε is a random variable with density f (ε, qi)dε. Further, I assume that E(ε|qi) =∫
εf (ε, qi)dε = 0; that is, the measurement technology is accurate. This is

pretty much without loss of generality since, if E(ε|qi) is not accurate but is a
known function of qi, then one can adjust the penalty function to account for the
inaccuracy.14 Finally, I assume that the measurement error is the same for every
producer. This is not entirely without loss of generality.15

The measured violation is wi − li = ε + qi = vi + ε. The penalty to be paid
by the producer, based on the measured violation, is ρ(wi − li).When the producer
chooses her output, she faces an expected penalty payment of P(vi, qi) =

∫
ρ(vi +

ε)f (ε, qi)dε.
With imprecise measurement, the definition of market equilibrium in Sect. 3

needs to be slightly altered to allow for the fact that the expected penalty now
depends on qi .

Definition 6 (Market Equilibrium Under Imprecise Measurement) A permit
market equilibrium under imprecise measurement is (q∗, v∗, p∗,Q∗) such that

(i) each producer i, chooses (q∗i , v∗i ) to solve

max
(qi ,vi )

bi(qi,Q
∗)− p∗(qi − vi − loi )− P(vi, qi)

(ii) Q∗ =∑
i q
∗
i ,

and
(iii)

∑
i q
∗
i −

∑
i v
∗
i = L.

(q,Q) and v are no longer independent as they were under valid measurement.
But we can still define demand and supply functions.

Definition 7 (Supply and Demand Under Imprecise Measurement) Supply
under imprecise measurement is [qI (p),QI (p)] and Demand under imprecise

14See Ledyard (2018).
15Differences across producers might occur in water markets for different crops or different
irrigation technologies, and in fishing markets for different gear types. These differences would
affect the efficiency results below to some extent. I leave it to the reader to work out those
implications.
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measurement is [vI (p), V I (p)] where

qIi (p) ∈ arg max
qi
bi(qi,Q

I (p))− pqi − P(vIi (p), qi) andQI(p) =
N∑
i=1

qIi (p).

vIi (p) ∈ arg max
vi
pvi − P(vi, qIi (p)) and V I (p) =

N∑
i=1

vIi (p).

The market equilibrium price satisfiesQI (p∗)− V I (p∗) = L.
To ensure the market is well-behaved, I impose a regularity assumption.

Assumption 3 (Regular Imprecise Measurement)

A. Errors

(i) The indirect measure of output iswi = qi+δh(qi),∀i, where δ is a random
variable with density g(δ) and E[δ] = ∫

δg(δ)dδ = 0.
(ii) There is a δ > 0 such that δ ≥ −δ and q

h(q)
≥ δ for all q ≥ 0.16

(iii) The size of the errors, h(q), is positive, non-decreasing, continuously differ-
entiable, and convex in q . That is, h(qi)> 0, hq(qi)≥ 0 and hqq(qi) ≥ 0,
for all qi > 0. Also h(0) = 0.

B. Enforcement

(i) ρ(mi) = max{0, ami} with a > 0, where mi = wi − li is the measured
violation.

(ii) L > QI (Pv(0+)) = QI [a(1−G(0))].
Assumption 3A provides a structure that is like a single crossing property. It

keeps the densities of the errors under control when q changes. Increasing h(q) is
then like applying a mean-preserving spread to the error.

Assumption 3B is similar to Assumption 2. Assumption 3B(ii) ensures that
penalties are strong enough that producers will not want violations in equilibrium.

Under Assumption 3, the expected penalty function becomes

P(vi, qi) = a
∫
− vi
h(qi )

[vi + δh(qi)]g(δ)dδ. (1)

The geometry of a permit market under imprecise measurement satisfying
Assumption 3 is illustrated in Fig. 2 in Sect. 6.2. The crucial fact is that QI (p) is
downward sloping.

16This ensures that wi ≥ 0. If errors are proportional to output with h(q) = τq for some τ > 0,
then this will be true if τδ ≤ 1.
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Result 3 Under Assumptions 1 and 3,QIp(p) < 0.

Proof Let ki = − vi
h(qi)

, and R(ki) =
∫
ki
δg(δ)dδ. The first order conditions for a

solution to Definition 6(i) and (ii) for a given p are:

biq(qi,Q)− p − hq(qi)aR(k) = 0 (2)

p − a(1−G(k)) = 0 (3)

vi + h(qi)k = 0 (4)∑
i

qi −Q = 0 (5)

∑
i

qi −
∑
i

vi = L (6)

To solve for the partial equilibrium comparative statics, differentiate (2)–(5) with
respect to p to get:

biqqq
I
ip + biqQQIp − 1− hqqaRqIip − hqaRkkIp = 0 (7)

1+ agkIp = 0 (8)

vIip + hqkqIip + hkIp = 0 (9)

[
∑
i

qIip] −QIp = 0. (10)

From (8), kIp(p) = − 1
ag(k)

< 0. By definition Rk = −kIg. Since vIi < 0, kI > 0.

Solving (7) for qIip yields

qIip =
1+ hqk − biqQQIp
biqq − hqqaR = αi(p)− βi(p)QIp(p).

From (10)

QIp =
∑
i

αi − (
∑
i

βi)Qp.

Solving gives

QIp =
∑
i αi

1+∑
i βi
.

Since αi < 0 and βi ≥ 0, the result follows. ��
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4.1 Efficiency and Political Viability: Impossibility

Although the equilibrium equations for valid measurement and imprecise measure-
ment look very similar, the latter create serious problems for both the efficiency and
the political viability of permit programs.

4.1.1 Efficiency

Efficiency given L requires that, at a permit market equilibrium (q∗, v∗, p∗,Q∗),
v∗i = 0 for all producers. With imprecise measurement, under Assumptions 1 and 3,
this will not be true. Instead, v∗i < 0 for all i and, therefore,Q∗ < L in equilibrium.

Result 4 Under Assumptions 1 and 3, at a permit market equilibrium
(q∗, v∗, p∗,Q∗), 0 < p∗ < a[1−G(0)], v∗i < 0,∀i, andQ∗ < L.

Proof (p∗ < a[1 − G(0)]) Assume the contrary. Then v∗i > 0 and, so, Q∗ > L.
ButQ(p∗) ≤ Q(a[1−G(0)]) < L which is a contradiction.
(v∗i < 0) From profit maximization v∗i ∈ arg maxvi p

∗vi −
∫
−vi
h(qi)

a(vi +
δh(qi))g(δ)dδ. The first order condition for this is p∗ = a

∫
− vi
h(qi )

g(δ)dδ =
a[1 − G(− vi

h(qi)
)]. Since p∗ < a[1 − G(0)], it follows that v∗i < 0. This implies

Q∗ < L. ��
With imprecise measurement, producers will pay a penalty even if q = l. They

can reduce that expected penalty cost by producing less than the permits they hold.
Because of this, if regulators issue a total of permitsL equal to the desired aggregate
output target, Q, actual output will be less than Q and, therefore, not efficient
givenQ.

Knowing that equilibrium output is less than L, one might ask whether regulators
could changeL to some other L̂ so as to moveQI (p∗) to L. For the regular case, the
answer is yes. Consider Fig. 2. The amount of permits that works is L̂ = QI(pV )−
V I (pV ) > L, where pV is the equilibrium price under perfect measurement. There
must be enough permits to allow the producer to use the extras to insure herself
against a faulty measurement. That is, an additional amount L̂ − L∗ = −V I (pV )
must be added to L∗. Of course, to compute L̂ the regulator must know, prior to the
implementation of the program, the functions QI(p) and V I (p) and the price pV ,
which they do not.

4.1.2 Political Viability

With valid measurement, by Result 2B, there are distributions of the initial permit,
lo, such that all producers will be at least as well off in the permit market equilibrium
as they would have been without the program. With imprecise measurement, this
may not be true because a producer’s expected penalties are positive even if she
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chooses to buy licenses equal in number to her production levels. That is, P(0, qi) =
ah(qi)

∫
0 δg(δ)dδ > 0.

To see the effect of imprecise measurement on political viability, consider the
following result which adapts Result 2B to imprecise measurement.

Result 5 Under Assumptions 1 and 3,

(i) for any initial allocation of permits, lo, such that bi(loi , L) − P(0, loi ) >
bi(q

a
i ,Q

a), at the market equilibrium (q∗, v∗, p∗,Q∗)

bi(q
∗
i ,Q

∗)− p∗(q∗i − v∗i − loi )− P(v∗i , q∗i ) > bi(qai ,Qa),∀i,

and
(ii) there exists an lo satisfying (i) if and only if there is a q̂ such that

∑
i q̂ = L

and
∑
i bi(q̂, L)−

∑
i bi(q

a,Qa) >
∑
i P(0, q̂i).

Proof (i) Let (q∗, v∗, p∗,Q∗) be the permit market equilibrium. Then bi(q∗i ,Q∗)−
p∗(q∗i −v∗i −loi )−P(v∗i , q∗i ) ≥ bi(loi ,Q∗)−p∗(loi −0−loi )−P(0, loi ) ≥ bi(loi , L)−
P(0, loi ) > bi(qai ,Qa). The first inequality follows from profit maximization. The
second follows because L > Q(a[1 − G(0)]) implies Q∗ ≤ L. The last follows
from the assumption on lo. ��

Comparing this to Result 2 under valid measurement, it is easy to see that
imprecise measurement introduces a potential barrier to voluntary participation. If
either the penalty rate or the errors are large, the expected penalty with no violations,
ah(qi)

∫
0 δg(δ)dδ, is large. Then, if the gains from improving the management

of the commons are not very large, it may be difficult or impossible to find an
appropriate loi .

4.2 Efficiency and Political Viability: Possibility

In spite of the difficulties described in the previous section, some positive results
can be found.

4.2.1 Efficiency

Although there is no general efficiency result when measurement is imprecise, if
measurement errors are proportional to output, then even though q∗ is not efficient
given L, q∗ is efficient given Q∗. That is, production will be organized efficiently
given the aggregate output level.

Assumption 4 (Errors Are Proportional to Output)

hqq(qi) = 0,∀q,∀i.
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This assumption along with Assumption 3 A(iii) imply that h(q) = τq for some
τ > 0.

Result 6 Under Assumptions 1, 3, and 4, q∗ is efficient givenQ∗.

Proof Under Assumptions 1 and 3, the FOC for a permit market equilibrium are
found in (2)–(6). From (3) it follows that k∗ is the same for all i. Therefore, from (2)
and (4), q∗ is efficient given Q∗ if and only if the hq(q∗i ) are equal for each i. This
is true under Assumption 4 since hqq(qi) = 0. ��

Without Assumption 4, the equilibrium will not be efficient given Q∗. It is easy

to see why. If hqq > 0, then hq(q̂) > hq(q̃) iff q̂ > q̃. Let h̄q =
∑
hq (q

∗
i )

N
be

the average value of hq in equilibrium. If hq(q∗i ) > h̄q , then in equilibrium q∗i is
relatively smaller than desired for efficiency. If hq(q∗i ) < h̄q , then in equilibrium
q∗i is relatively larger than desired for efficiency. The fact that the imprecise
measurement errors are getting worse as q gets larger means that those who produce
a large amount will have more incentive to cut back on their output to avoid the
penalties from mis-measurement. Non-proportional measurement errors interfere
with efficiency givenQ∗.

4.2.2 Political Viability

There is a way to design around this problem by using the same insights employed
for valid measurement. Put the producer in an initial position that is at least as good
as autarky and that she can protect. If the regulator gives each producer an initial
subsidy of Poi = P(0, loi ), and if the producer then chooses (qi, vi) = (loi , 0), she
can guarantee that her expected penalty less the subsidy will be zero. That plus the
appropriate initial permit allocation guarantees voluntary participation.

Result 7 Under Assumptions 1 and 3, for any initial allocation of permit, lo, such
that bi(loi , L) > bi(q

a
i ,Q

a) for all i, there are lump-sum payments Poi = P(0, loi )
such that the market equilibrium (q∗, v∗, p∗,Q∗) satisfies

bi(q
∗
i ,Q

∗)− p∗(q∗i − v∗i − loi )− P(v∗i , q∗i )+ Poi > bi(qai ,Qa),∀i.

Proof Let (q∗, v∗, p∗,Q∗) be the permit market equilibrium. Then bi(q∗i ,Q∗) −
p∗(q∗i −v∗i − loi )−P(v∗i , q∗i )+Poi ≥ bi(loi ,Q∗)−p∗(loi −0− loi )−P(0, loi )+Poi ≥
bi(l

o
i , L) > bi(q

a
i ,Q

a). The first inequality follows from profit maximization. The
second follows because L > Q(a[1 − G(0)]) implies Q∗ ≤ L. The last follows
from the assumption on lo and the fact that P(0, loi ) = Poi . ��

If the measurement technology is well understood, then Poi = ah(loi )
∫

0 δg(δ)dδ

is easy to calculate.
Although the subsidies in Result 7 help solve the problem of generating voluntary

participation, they create a new problem for the designers. If the subsidies are
deployed and equilibrium output is less than or equal to L, then producers will
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be receiving a positive net aggregate subsidy. The permit program will not be self-
financing in expected value.

Result 8 Under Assumptions 1, 3, and 4 ,
∑
i P(0, loi ) >

∑
i P(v∗i , q∗i ).

Proof Under Assumptions 3 and 4, in equilibrium
∑
i[P(0, loi ) − P(v∗i , q∗i )] =

aτ loi

∫
0 δg(δ)dδ − aτq∗i

∫
−v∗
h(q∗
i
)

δg(δ)dδ. By (3),
∫
−v∗
h(q∗
i
)

δg(δ)dδ = p∗
a

is the same for

every i. Therefore the aggregate net subsidy is S = ∑
i [P(0, loi ) − P(v∗i , q∗i )] =

aτ [∑i l
o
i ]

∫
0 δg(δ)dδ− aτ [

∑
i q
∗
i ]

∫
−v∗
h(q∗
i
)

δg(δ)dδ = aτ [L ∫
0 δg(δ)dδ − Q∗

∫
−v∗
h(q∗
i
)

δg(δ)dδ].
Under Assumption 3, v∗i < 0 which implies that

∫
0 δg(δ)dδ >

∫
−v∗
h(q∗
i
)

δg(δ)dδ.

Also L > Q∗. Therefore, S > 0. ��
The voluntary participation of the producers has been bought with funding from

outside of the market—presumably from taxpayers. This creates a new friction
against adoption. Nevertheless, such subsidies may be justified. The rationalization
of the management of the commons can lead to gains, not only for producers, but
also for the consumers of the products of the commons. This is certainly true for
fisheries, and probably true for many other situations. Using some of these gains to
ease the transition to permit markets might be a very good bargain for all concerned.

4.3 Precision

In this section, I explore what happens to efficiency and political viability as the
measurements become more precise. The easiest way to do that is to introduce a
precision parameter, η and replace h(qi) with ηh(qi) in the measurement model.
Thus, wi = qi + ηh(qi)δ. I will assume η ≤ 1. With this small change, the
measurement error is wi − qi = zh(qi) where z = δη. The expected value of z
is 0 and the variance of z is ηV ar(δ). As η decreases, precision increases.

The penalty that a producer now faces, given output qi and actual violation vi =
qi − li , is

Pη(vi, qi) = a
∫
− vi
ηh(qi)

[vi + δh(qi)η]g(δ)dδ. (11)

As one might expect, increased precision improves efficiency and eases political
viability. In the limit as η → 0, the equilibrium under imprecise measurement
approaches the equilibrium under valid measurement. The permit market equi-
librium becomes efficient given L and no subsidies are required for voluntary
participation.

Result 9 Let (q(η), v(η), p(η),Q(η)) be the market equilibrium under imprecise
measurement with the expected penalty Pη(vi , qi) = a

∫
− vi
ηh(qi)

[vi+δh(qi)η]g(δ)dδ
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and let (q∗, v∗, p∗,Q∗) be the market equilibrium under valid measurement with
the penalty P(vi ) = max{av, 0}. Under Assumptions 1 and 3,

(i) limη→0(q(η), v(η), p(η),Q(η)) = (q∗, v∗, p∗,Q∗) and
(ii) limη→0 Pη(0, loi ) = 0.

Proof First note that, as precision increases, the penalty function under imprecise
measurement approaches the penalty function under valid measurement. For any qi
such that 0 < qi <∞,

lim
η→0

Pη(vi, qi) = av if v≥ 0 (12)

lim
η→0

Pη(vi , qi) = 0 if v≤ 0. (13)

The first order conditions for a market equilibrium under imprecise measurement
are:

biq(qi,Q)− p − Pηqi (vi, qi) = 0 (14)

p − Pηvi (vi, qi) = 0 (15)
∑
i

qi −Q = 0 (16)

∑
i

qi −
∑
i

vi = L (17)

It is easy to show that Pηqi (vi , qi)→ 0 as η→ 0. Also Pηvi (vi , qi)→ a as η→ 0 if
v > 0 and Pηvi (vi, qi)→ 0 as η→ 0 if vi < 0. Result 9(i) follows from the implicit
function theorem.

Pη(0, loi ) =
∫

0 δh(l
o
i )ηg(δ)dδ = ηh(loi )

∫
0 δg(δ)dδ = ηP(0, loi ). Result 9(ii)

follows. ��

5 Final Comments

In this paper I have explored the geometry, efficiency, and political viability of
permit market equilibria when enforcement can only use imprecise measurement.
I provide a set of conditions (Assumption 3) such that the geometry corresponds to
most economists’ intuitions. These conditions are similar in spirit to those needed
under accurate measurement (Assumption 2).

Unlike the standard results when there is accurate and precise measurement of
use, when measurement is imprecise permits will not be efficiently allocated. There
are two sources of the inefficiency: aggregate output is less than the number of
permits as producers overbuy to insure against mis-measurement and there can be
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bias in the efficient allocation of output as mis-measurement can have different
marginal effects on producers depending on their size. Further, when measurement
is imprecise, it may not be possible to find an initial allocation of permits such that
all firms are better off than they were before implementation of the program. The
reason is that all firms will face positive expected penalty payments, even if they
have negative actual violations. This could seriously affect the political viability of
the program, even if measurement were free.

But there are also some positive results. First, if the errors are proportional to
output, then aggregate output will be efficiently allocated among firms. The only
inefficiency will be that aggregate output is less than the target, the number of
permits. This can be compensated for by issuing more permits than the target output.
Second, there are easily calculated individual subsidies that will make it possible to
find an initial allocation of permits to guarantee voluntary participation. This will
mean that taxpayers must subsidize the implementation of the program. But if the
benefits from the program are large enough and some of these benefits accrue to
consumers, then the program may still be politically viable.

Finally, if the measurement errors are small, inefficiencies will be small and the
subsidies required for voluntary participation will be small. In this case, it may well
be reasonable to proceed with the inexpensive, imprecise measurement system as if
it were accurate.

6 Figures and Comments

6.1 Valid Measurement

Fig. 1 Market equilibrium with valid measurement
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Figure 1 displays the standard situation for a permit market equilibrium
under valid measurement. The equilibrium under autarky is Qa . Pv(0+) =
limv→0+ dP(v)/dv, the right-hand derivative of the penalty function, is the
intercept of V V (p).

The dashed red line, denotedQV (p), is the partial equilibrium aggregate supply
of output of the commons. The dashed blue line, denoted V V (p) = NP−1

v (p), is
the partial equilibrium aggregate demand for violations.

The equilibrium price of the permit market is p∗. Since L ≥ QV (Pv(0+)),
equilibrium demand is V ∗ = V V (p∗) = 0 and equilibrium supply is Q∗ =
QV (p∗) = L.

6.2 Imprecise Measurement

Fig. 2 Market equilibrium with imprecise measurement

The dashed red line, QV (p), comes from Fig. 1 and is the aggregate supply
under valid measurement.pV is the equilibrium price under valid measurement. The
dashed blue line, V 1(p), is the partial equilibrium aggregate demand for violations
if measurement errors are independent of qi . That is V 1(p) = ∑

i v
1
i (p) where

v1
i (p) = arg maxvi pvi − a

∫
−vi (vi + δ)g(δ)dδ.

The solid blue and red lines, QI(p) and V I (p), are the partial equilibrium
supply and demand from Definition 7. Because a penalty is assessed for measured
violations larger than actual violations, QI(p) lies to the left of aggregate demand
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under accurate measurement. Because V I (p) = −[∑i h(qi)]G−1(1 − p
a
), V I (p)

rotates clockwise from V 1(p).17

p∗ is the equilibrium price under imprecise measurement. The equilibrium
aggregate supply of output is Q∗ = QI(p∗) < L. The equilibrium aggregate
demand for violations is V ∗ = V I (p∗) < 0 because excess permits are held in
equilibrium. V ∗ + L∗ = Q∗.
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Second Thoughts of Social Dilemma
in Mechanism Design

Tatsuyoshi Saijo

1 Introduction

Why have we been using second thoughts? The second thoughts here refer to giving
a player a chance to change the strategy in decision-making after observing the
strategies of others in a sequential game. We will show that second thoughts are not
an innocent device in our daily life but are human wisdom that plays an important
role in resolving problems such as social dilemmas.

Consider a social dilemma game such as a prisoner’s dilemma game. Saijo
et al. (2018) designed a two stage mechanism called the approval mechanism to
implement Pareto efficient outcome when the number of players is two.1 After
having played a usual prisoner’s dilemma, players can approve or reject the other’s
choice of cooperation (C) or defection (D) in the next approval stage. If both
players approve the other’s choice, the outcome is the result of the chosen strategies.
However, if either rejects the other’s choice, the outcome is the same as if they
had mutually defected from the prisoner’s dilemma. In theory, such an approval
mechanism implements cooperation in elimination of weakly dominated strategies
(EWDS), although this is not the case in the subgame perfect Nash equilibrium. They
then showed that it works well even from early periods experimentally. They also

1Saijo and Shen (2018) showed that the approval (or mate choice) mechanism works well in a class
of quasi-dilemma games including prisoner’s dilemma games. See also Masuda et al. (2014) for
public good provision problems.
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found that subjects understood the subgame perfection part well and used EWDS
instead of Nash equilibria at each subgame.

In implementation literature such as Hurwicz and Schmeidler (1978), Hurwicz
(1979) and Maskin (1999), they used Nash equilibria as the basic equilibrium
concept, and then Moore and Repullo (1988), in their path breaking and influential
paper, constructed mechanisms and found conditions on social goals to implement
them in subgame perfect Nash equilibrium. However, as Fehr et al. (2015) recently
show, the experimental performance of mechanisms implementing social goals with
subgame perfect Nash equilibria is rather limited. On the other hand, Saijo et al.
(2018) found an affinity among the mechanism, subgame perfection, and EWDS,
but not Nash.2 A basic question is whether this affinity works well beyond two
players.

Huang et al. (2017) extended the idea of the approval mechanism to include the
cases with more than two players in a social dilemma game. In the first stage, each
player chooses either C or D. Knowing the choices in the first stage, all C players can
change from C to D in the second stage unless all choose C. If a player chooses D in
the first stage, then the other C players will change to D in the second stage. Once
players understand this logic, no player would take D in the first stage, and hence
the mechanism implements cooperation. They conducted a series of experiments
and found that the performance of the mechanism is limited in early rounds if the
number of players is at least three. In order to overcome this problem, we introduce
second thoughts, as a new tool in implementation theory, avoiding complication of
the mechanism.

Although second thoughts, allowing players to reconsider their decisions after
observing them, have been widely used in our daily life, no theoretic analysis has
been done. In the Huang et al. mechanism, we add one stage called the second
thought stage between the social dilemma stage and the approval stage. All D
players have a chance to change from D to C in the second thought stage unless all
choose D in the first stage. After a player chose D in the first stage, the player notices
that the other C players will change to D later. Understanding this logic, the D player
changes to C in the second thought stage. What we find is that second thoughts
in social dilemma work very well theoretically. First, second thoughts change the
payoff structure of the game in favor of cooperation. Second, second thoughts make
mechanisms robust even when players deviate from EWDS.

In the following, we show the two-player case in Sect. 2, the three-player case in
Sect. 2, and then the general case in Sect. 3. Section 4 is for further research.

2Varian (1994) constructed a simple mechanism called the compensation mechanism that imple-
ments a social goal in subgame perfect Nash equilibrium, but the experimental performance is
limited as Andreoni and Varian (1999) showed.
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2 The Simplified Approval Mechanism with Second
Thoughts for n = 2

Let n ≥ 2 be the number of players, and each player has endowment w > 0. Each
player must choose to contribute either the entire w for the production of a public
good y or nothing. The production function of y is linear, namely, y = αmw where
1 > α > 1/n and m is the number of players who choose cooperation (C) (i.e.,
those that contribute the entire w). Hence, the payoff of a player who chooses no
contribution (defection or D) is αmw + w = (αm + 1)w, while the contributor’s
payoff is αmw. We term a player who chooses C (D) as a C (D) player, respectively.

We consider a mechanism that has a new stage after the PD game, due to
Huang et al. (2017). If all participants are either C players or D players, the game
ends. The payoff of a player in the former case is αnw and that in the latter case
is w. If the number of C players is at least one and at most n − 1, then only
C players can proceed to the second stage, in which they have the opportunity
to change their decisions from C to D. This mechanism is called the simplified
approval mechanism or the SAM in short. A natural behavioral procedure found
in previous experiments on approval mechanisms is subgame perfect elimination
of weakly dominated strategies (SPEWDS), which is also adopted, for example, in
Kalai (1981). This requires two properties: (1) subgame perfection and (2) that
players do not choose weakly dominated strategies in each subgame and in the
reduced normal form game.

Figure 1 illustrates the case of n = 2, α = 0.7, and w = 10. Players 1 and 2 face
a prisoner’s dilemma game in the first stage. Knowing that player 2 chose D in the
first stage in subgame a, player 1 proceeds to the second stage and faces a choice
between C and D. Player 1 chooses D in subgame a since 10 dominates 7, or 10 > 7.
Similarly, player 2 chooses D in subgame b. Then, as the reduced normal form
game on the right-hand side of Fig. 1 shows, player 1 chooses C after eliminating
weakly dominated strategy D. Similarly, player 2 also chooses C in the first stage
and hence, (C,C) is the outcome. Hereafter, a strategy profile with parentheses, such
as (C,C), represents the choice in the reduced normal form game, and a sequence

21

First
(Prisoner's
Dilemma)
Stage

Second
(Approval)
Stage

1

2
C D C D

D

(14,14) C D C D

(7,17) (10,10) (17,7)
< <1 2

C

(10,10)

(10,10)
a b

1-q q

1-q q

1-q q

1-q

1-q q

q

2
C D

1 C 14,14 10,10
D 10,10 10,10

Fig. 1 The SAM and its reduced normal form game when n = 2
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of choices, such as CDC, shows a strategy path. Huang et al. (2017) showed the
following properties of the SAM.

Proposition 1 (i) The simplified approval mechanism implements cooperation in
SPEWDS, and (ii) the simplified approval mechanism cannot implement coopera-
tion in subgame perfect equilibrium (SPE).

“Cooperation” in Proposition 1 indicates that all players choose C in the reduced
normal form game. As the reduced normal form game in Fig. 1 shows, (D,D) is
also a subgame perfect equilibrium (SPE) outcome, and hence, the SAM cannot
implement cooperation in SPE.

Thus far, we have supposed that every player chooses the alternative under
SPEWDS, but we consider the cases where some player might deviate from it.
For simplicity, we assume that every player deviates with a probability of q, with
0 < q < 1 at each node. As shown in Fig. 1, the success probability achieving
(14,14) that follows path CC is (1 − q)2. Let CSAM(n,q) be the success probability
function of the SAM, where n is the number of players. Then, CSAM(n,q)= (1− q)n.
Figure 2 shows the case of n = 2. The horizontal axis displays the probability
of deviation and the vertical axis the probability of all players cooperating. Since
∂CSAM(2,0)/∂q = −2 and ∂CSAMST(2,0,1)/∂q = 0, the success probability of the
SAM decreases as q rises around zero, whereas the success probability of the SAMST
stays at a probability of one as q increases around zero. Next, fix any q. Since
CSAMST(2,q,·) is always higher than CSAM(2,q) because of 2q(1 − q)2 except for
q = 0 or 1, the success probability of the SAMST is always better than that of the
SAM excluding the end points. That is, the SAMST is relatively robust enough to
handle deviation by players.

Huang et al. (2017) conducted experiments of the SAM with each group
consisting of three subjects. In total, 63 subjects played the SAM for 15 periods.
The groups were formed randomly in each period. The cooperation rates for the
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Fig. 2 Success probability functions when n = 2
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Fig. 3 The SAMST and its reduced normal form game when n = 2

first four to seven periods were between 64.9% and 77.7%, and they rose above
90% thereafter.3 In order to improve the low cooperation rates in the early rounds
in the experiment of Huang et al. (2017), we introduce the one more stage called
the second thought stage in the following manner. Every player chooses either C
or D in the first stage simultaneously. If all players choose either C or D, the game
ends. If the number of D players is at least one and at most n − 1, then D players
have the chance to change from D to C sequentially, knowing all the choices made
in the first stage. The order of the choices of D players is determined exogenously,
for example, based on the numbering assigned to players. By observing the choices
of all D players in the second thought stage, C players can change their choices
from C to D simultaneously except for the case when all D players change their
choices in the second thought stage. This stage is called the third stage although the
second thought stage might have several stages. When all D players change their
choices, the game ends, and the outcome is that all players choose C. We call this
the simplified approval mechanism with second thoughts (SAMST).

Figure 3 shows an example with n = 2, α = 0.7, and w = 10. Consider subgame
a. By observing player 1’s choice C, player 2 (who has the chance to change his
or her choice) must consider player 1’s choice in subgame c. Since 10 > 7, namely,
C is dominated by D, player 1 will choose D in subgame c. By understanding this
fact, player 2 in subgame a thus chooses C since 14 > 10. Therefore, the outcome
in subgame a is (14,14), which differs from the outcome of the SAM. By applying
the same argument, we have (14,14) in subgame b. That is, the outcomes except for
that at (D,D) are (14,14), although (14,14) is achieved at (C,C) only in the SAM.

When the number of players is two, each player chooses C in the second thought
stage, and thus the payoff outcome at (C,D) and (D,C) in the reduced normal form

3Huang et al. (2017) used the ex post cooperation rate. For example, even though a player chose
C in the first stage, this was not counted in the cooperation rate if that player changed his or her
decision from C to D in the second stage.
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game is (2αw,2αw). Since the payoff outcomes at (C,C) and (D,D) are (2αw,2αw)
and (w,w), respectively, and 2αw > w, the SPE strategy profiles are (C,C), (C,D),
and (D,C). That is, the SAMST implements cooperation in SPE if n = 2.

Consider that players deviate from SPEWDS. In contrast, as Fig. 3 shows, three
paths, namely, CC, CDC, and DCC, achieve (14,14) when we use the SAMST.
The probability of the paths CDC and DCC is (1 − q)q(1 − q) and q(1 − q)
(1 − q), respectively. Hence, CSAMST(2,q) = (1 − q)2 + 2q(1 − q)2. Since
∂CSAMST(2,0)/∂q = 0, the success probability of the SAM does not decreases as
q rises around zero. As Fig. 2 shows, CSAMST(2,q) > CSAM(2,q) for all q ∈ (0, 1).

3 The Simplified Approval Mechanism with Second
Thoughts for n = 3

This section illustrates the three player case that basically contains problems that
should be handled for the general case. Figure 4 illustrates the SAMST with n = 3,
α = 0.7 (0.4 or 0.5), and w = 10. The bold face numbers show the payoffs with
α = 0.7, the numbers in braces show the payoffs with α = 0.4, and the numbers in
parentheses in the braces show them with α = 0.5. Since the entire tree is relatively
large, we only show the subgames with CCC, CCD, CDD, and DDD, which are
sufficient to understand the entire tree. Consider first the case of α = 0.7. Look at
subgame a where players 1 and 2 chose C, but player 3 chose D. Player 3, who faces
the second thought stage, must consider what would happen in subgame c. Players
who chose C in the first stage face a PD game in subgame c, and hence, both choose
D. In this sense, players who chose C in the first stage can burden players who chose
D in the second thought stage, although this hurts every player. By understanding
this fact, player 3 compares 21 with C and 10 with D. Since C dominates D, player
3 chooses C in subgame a. That is, player 3, who chose C at node a, can obtain the
bonus from players 1 and 2, who chose C in the first stage. Therefore, the outcome
of subgame CCD is (21,21,21).
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Consider the next subgame b where player 1 chose C but players 2 and 3 chose D.
Players 2 and 3 face the second thought stage sequentially. Pay attention to the last
nodes or the third stage where player 1 faces the choice between C and D. Although
the number of players is one, players who arrive at the nodes face PD games, and
hence, they always choose D at each node.

Moreover, consider subgame e where player 2 did not change his or her choice in
subgame b. Since player 1 chooses D in the following subgames, player 3 chooses D
in subgame e, and the payoff is 10. Consider subgame d. In contrast, player 3, who
can take advantage of the bonus effect in subgame d, chooses C since player 1 in the
following subgame will choose D if player 3 chooses D. That is, 21 > 17. Knowing
this process, player 2 chooses C since 21 > 10. Therefore, all payoff outcomes
other than (D,D,D) are (21,21,21), and hence, the final outcome is (C,C,C) under
SPEWDS, as the reduced normal form game in Fig. 5a shows. In contrast, as Fig. 4b
shows, (21,21,21) appears only in subgame CCC under the SAM.

The sequentiality of D players is important to implement cooperation.4 If nodes
d and e were in the same information set, the payoff of player 3 from choosing C
in the information set would be (21,7), and the payoff from choosing D would be
(17,10); hence, both would survive by using the elimination of weakly dominated
strategies.

Let us next look at the case of α = 0.4. Consider node f where player 1 chooses
D. Then, player 3 at node d chooses D since 14 > 12. Knowing this fact, player 2
chooses D since 10 > 4. That is, the payoff in subgame b becomes (10,10,10). From
the viewpoint of player 3, since α is too small, the player cannot take advantage of
the bonus effect at node d.

As the reduced normal form game in Fig. 5c shows, the payoff outcome with
subgames where two players choose C and one player chooses D is (12,12,12), and
the payoff outcome with subgames where one player chooses C and two players
choose D is (10,10,10), but the final outcome is still (C,C,C) under SPEWDS. In
contrast, as Fig. 5d shows, (12,12,12) appears only in subgame CCC under the SAM.

Consider the case when α = 0.5. The payoff outcomes at paths CDDCDD and
CDDCC in Fig. 3 are (15,5,15) and (15,15,15), respectively. If this were the case,
player 3 at node d would be indifferent between C and D. That is, both C and D
survive by using the elimination of weakly dominated strategies at node d. This
influences the decision of player 2 at node b. Figure 6 shows the reduced normal
form game at node b excluding player 1.

Note that the payoff at (D,C) in Fig. 6 should be (10,10) when player 2 chooses
D. That is, player 3’s choice does not matter, and hence, both C and D survive
by using the elimination of weakly dominated strategies for player 2. To sum up,
the payoff outcome in subgame b or CDD is (15,15,15), (15,5,15), or (10,10,10). At
(15,5,15), player 1 changes from C to D at the third stage knowing that player 3 kept
the choice at D. That is, only player who chose C is player 2. Similarly, the payoff
outcome in subgame DCD or DDC is (15,15,15), (5,15,15), or (10,10,10). Since the

4We thank Xiaochuan Huang for indicating this fact.
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Fig. 5 The reduced normal form games of the SAMST and SAM when n = 3. (a) α = 0.7 with the
SAMST. (b) α = 0.7 with the SAM. (c) α = 0.4 with the SAMST. (d) α = 0.4 with the SAM. (e)
α = 0.5 with the SAMST
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Fig. 6 Subgame b and its reduced normal form game at node b

first D player in the second thought stage at DCD and DDC is player 1, the payoff
outcome should be (5,15,15) when player 1 changes from D to C at the second
thought stage and the rest choose D. That is, there are 33 = 27 reduced normal
form games when α = 0.5. Look at Fig. 5e. Since there are three possible payoff
outcomes, for example, at CDD, we write these payoff outcomes under CDD. Since
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one of them should be chosen at a reduced normal form game, we chose (10,10,10)
in Fig. 5e. Similarly, there are three possible payoff outcomes at the left-hand side
of DCD and at the right-hand side of DDC.

Consider player 1. There is a case where both C and D survive by using the
elimination of weakly dominated strategies for player 1: (10,10,10) at CDD and
(15,15,15) at DCD and DDC. Then, both players 2 and 3 choose C, and hence, the
SPEWDS strategy profile of the reduced normal form game is (C,C,C) or (D,C,C).
Although player 1 chooses D at (D,C,C), the player will change from D to C in the
second thought stage; hence, the payoff outcome is (15,15,15). The real problem is
that player 1 cannot tell which reduced normal form game player 1 faces, and hence,
both C and D survive when player 1 must make a decision in the first stage.

Note also that the payoff at C and the payoff at D of player 1 are the same
for all possible choices of players 2 and 3 in Fig. 5e. In other words, player 1
cannot distinguish between C and D. We say that strategies A and B of a player
are indistinguishable if the payoffs at A and B are the same for all possible choices
of the other players.

Consider all possible reduced normal form games at each node. Strategy A
weakly rules strategy B if A weakly dominates B in some reduced normal form
game and strategies A and B are indistinguishable in the remainder of the reduced
normal form games. Then, we can define a refinement of SPEWDS by using the
weak rule instead of the weak dominance in the definition of SPEWDS, which we
denote it backward elimination of weakly ruled strategies (SPEWRS).

Look at (c) in Fig. 5 and consider (D,D,D). This is also an SPE strategy profile,
and hence, the SAMST cannot implement cooperation in SPE if n = 3. If n > 3, it is
easy to find similar examples by choosing α to satisfy 1/(n − 1) > α.

4 The Simplified Approval Mechanism with Second
Thoughts

The following proposition shows that the SAMST implements cooperation in
SPEWDS or SPEWRS.

Proposition 2 (i) If α �∈{1/(n − 1),1/(n − 2), . . . ,1/2}, the SAMST implements
cooperation in SPEWDS, and (ii) the SAMST implements cooperation in SPEWRS.

Proof See Appendix 1.

Consider the meaning of inequality α > 1/(m+ 1), i.e., m > (1/α)− 1. If α = 0.7,
(1/α) – 1 = 3/7. That is, the minimum numberm– of the C players in the first stage

where the “bonus” effect is activated is at least one. If α = 0.4, m– (α) = 2, which

shows that the cooperative outcome in subgame b in Fig. 3 cannot be realized since
only one C player is in the first stage. In contrast, l(α) = n−m– (α) is the maximum
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number of D players in the first stage, thus leading to the cooperative outcome. The
proof of Proposition 2 shows the following corollary.

Corollary 1 If there is an indistinguishable player in a reduced normal form game
at the beginning node, no other players are indistinguishable.

Suppose that (1/α)− 1 is an integer. Then, there are l+1 possible payoff outcome
profiles in a subgame in the second thought stage. The total number of subgames
in the second thought stage where the number of D players is l is nCm– , and hence,

the total number of all possible reduced normal form games at the beginning node

is (l + 1)
nCm- , where nCk is the number of k combinations from n players. Among

these subgames, each player faces just one reduced form game in which C and D
are indifferent. As Fig. 5e shows, the total number of all possible reduced normal
form games at the node is (2 + 1)3 = 27 when n = 3 and m– = 1. If n = 5 and

m– = 2, it is 410. If this were the case, α must be 1/3, and the chance of a player

being indistinguishable would be 1/410.
Consider the case of n = 3. Although CSAMST with n = 2 does not depend

on l, CSAMST with at least three players depends on l, which is determined
by α. That is, CSAMST is a function of n, q, and l, and thus, we write it as
CSAMST(n, q, l). Consider the case of α = 0.4. Then, l(0.4)= 1, and there are two
types of success paths. The first one is the success paths up to l. These are CCC,
CCDC, CDCC, and DCCC, and their probabilities are (1 − q)3, (1 − q)2q(1 − q),
(1 − q)q(1 − q)2, and q(1 − q)3, respectively. The second one is the success
paths beyond l. Look at node b in Fig. 4. Although player 2 should choose D
when α = 0.4, the player might choose C because of deviation. If player 3 also
chooses C after player 2’s choice induced by deviation, the path CDDCC is also a
success path that has a probability of (1 − q)q4. Since there are two other paths
of this kind, CSAMST(3,q,1) = (1 − q)3(1 + 3q) + 3(1 − q)q4. In contrast, if
α = 0.7, the probability of CDDCC is (1 − q)3q2. That is, since l(0.7) = 2,
deviation in the second thought stage must lead players to choose D. Therefore,
CSAMST(3,q,2) = (1 − q)3 (1 + 3q + 3q2). Figure 7 shows this case. In order to
avoid the indeterminacy case, let us assume α �∈ {1/(n − 1), 1/(n − 2), . . . , 1/2}.
Then, by summarizing the above argument, we have CSAM(n,q) = (1 − q)n, and

CSAMST(n, q, l) = (1− q)n∑l
k=0 nCkq

k +∑n−1
k=l+1n

Ck(1− q)n−kq2k.

Proposition 3 (i) ∂CSAM(n,0)/∂q=−n and ∂CSAMST(n, 0, l)/∂q = 0 for all l; and
(ii) for any 1 ≤ l ≤ n − 1, CSAMST(n,q,l) > CSAM(n,q) on (0,1).

Proof See Appendix 2.

The fact that CSAMST(n, q, l) > CSAM(n,q) on in (0,1) shows that the SAMST is
always better than the SAM with respect to the success probability of cooperation.
Since l (α) is a non-decreasing function, roughly speaking, the success probability
increases as α rises.
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Fig. 7 Success probability functions when n = 3

5 Concluding Remarks

Second thoughts are a powerful tool in implementation theory. They change the
payoff structure of the game in favor of cooperation. Furthermore, the mechanism
with second thoughts is robust even when players deviate from EWDS.

Our approach is different from the trend in implementation theory where finding
some conditions on social goals such as social choice correspondences is a major
research goal. Instead, we fix the social goal as Pareto efficiency in social dilemma,
then construct a mechanism incorporating social dilemma. That is, introducing
second thoughts in mechanisms implementing a social goal in some equilibrium
concept is still an open question.

The validity of second thoughts should be confirmed in experiments. Although
it is still an early stage, we started confirming that second thoughts make subjects
cooperative in even early rounds in experiments.
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Appendix 1: The Proof of Proposition 2

(i) Let m and l be the numbers of C and D players in the first stage, respectively. If
m = n, the outcome is (αnw,αnw, . . . ,αnw). If l = n, the outcome is (w,w, . . . ,w).

Suppose 1 ≤ l < n. Consider the choice of players who chose C in the first stage
after observing the choices of D players in the second thought stage. Let 0 ≤ l′ < l
be the number of D players who change their choices from D to C in the second
thought stage. Since α(m′ + l′ + 1)w < α(m′ + l′)w + w for all 1 ≤ m′ ≤ m − 1,
where m′ is the number of C players in the first stage who remains to choose C in
the subgame after the second thought stage, D is better than C for any C player in
the third stage after observing the choices in the second thought stage. That is, all
players who chose C in the first stage choose D after the second thought stage.

Consider any strategy path on which at least one D player chose D again in the
second thought stage. If this were the case, every C player after the second thought
stage would choose D. Keeping this fact in mind, let us choose the youngest D player
(e.g., by names or numbers assigned to players) who chose D in the second thought
stage. Then, the subgame after the choice of the youngest D player is a sequential
social dilemma game, and hence, every D player after the choice chooses D.

We now identify the payoff outcome of every subgame constructed by the end
nodes in the first stage. Choose any subgame except for the cases where all players
chose C or all players chose D in the first stage. Suppose that every D player except
for the last one changed his or her choice from D to C in the second thought stage.
Consider next the choice of the last D player. If the player chooses C, the payoff
is αnw, whereas if the player chooses D, the payoff is α(l − 1)w + w. Since
αnw − α(l − 1)w – w = α{n − (l − 1)}w − w and n − (l − 1) = m + 1:

If α > 1/(m + 1), then the last D player chooses C.
If α = 1/(m + 1), then the last D player is indifferent between C and D.
If α < 1/(m + 1), then the last D player chooses D.

Suppose α > 1/(m + 1). If the penultimate player chooses D, then the payoff
is α(l − 2)w + w since the last D player chooses D in the second thought
stage and every C player in the first stage chooses D in the third stage. If
the player chooses C, then it is αnw since the last player chooses C. Since
αnw − {α(l − 2)w + w} = {α(n – l + 2) − 1}w = {α(m + 2) − 1)}w > 0, the
player chooses C. Since αnw − {α(l − 2)w + w} > 0, αnw − {α(l − k)w + w} > 0
for all 2 ≤ k ≤ l. That is, the k-th player to last chooses C, and hence, all D players
choose C in the second thought stage, and the payoff outcome is (αnw, . . . ,αnw).

Suppose α < 1/(m + 1). Then, the last D player chooses D, and hence, the
payoff of the penultimate player is α(l − 1)w if the player chooses C. If the
player chooses D, then the payoff is α(l − 2)w + w. Since α(l − 2)w + w –
α(l − 1)w = (1 − α)w > 0, the player chooses D. Since α(l − k)w + w – α(l –
k + 1)w = (1 − α)w > 0 for all 2 ≤ k ≤ l, the k-th player to last chooses D, and
hence, no D players in the first stage change their decisions in the second thought
stage, and the payoff outcome is (w, . . . ,w).
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Take any α satisfying 1/n < α < 1 and α �∈ {1/(n − 1),1/(n − 2), . . . ,1/2}.
Consider the case of α > 1/2. Then, α > 1/2 ≥ 1/(m + 1) for all m ≥ 1, and hence,
the payoff outcome of every subgame other than (D,D, . . . ,D) is (αnw, . . . ,αnw):
without loss of generality, consider player 1. The payoff in subgame (C,D,D, . . . ,D)
is αnw and that in subgame (D,D, . . . ,D) is w. Since αnw > w, C is better than
D. Since α > 1/(m + 1) for all m ≥ 1, the outcome of the two subgames (C,·)
and (D,·) is (C,C, . . . ,C) where “·” shows that at least one player’s choice is C.
That is, player 1 is indifferent between the outcomes of subgames (C,·) and (D,·).
Therefore, C weakly dominates D for all players, and hence, (C,C, . . . ,C) is the
SPEWDS outcome.

Consider next the case of 1/2≥ 1/(k+ 1) > α > 1/(k+ 2)≥ 1/n. Consider player
1. Let “·” indicate that the number of C is k. Then, the payoff in subgame (C,·) is
αnw since α > 1/{(k + 1)+ 1}, and that in subgame (D,·) is w since 1/(k + 1) > α.
That is, C is better than D. Since the outcome of the two subgames (C,·) and (D,·) is
the same where “·” indicates that the number of C is not k, C weakly dominates D
for all players, and hence, (C,C, . . . ,C) is the SPEWDS outcome.

Thus, if α �∈ {1/(n− 1),1/(n− 2), . . . ,1/2}, the SAMST implements cooperation
in SPEWDS.

(ii) Suppose α = 1/(m + 1). Then, the last D player is indifferent between C
and D since αnw = α(l − 1)w + w. Suppose that the penultimate player chooses
C. Then, the payoff of the penultimate player is αnw if the last D player chooses C
and is α(l − 1)w if the last D player chooses D. If the penultimate player chooses
D, then the payoff is α(l − 2)w + w. Since αnw – {α(l − 2)w + w} = αw > 0,
αnw > α(l− 2)w+w > α(l− 1)w. That is, both C and D survive by using the elimi-
nation of weakly dominated strategies. Since αnw > α(l− k− 1)w+w > α(l− k)w
for all k = 1, . . . , l − 1, both C and D survive by using the elimination of weakly
dominated strategies for all D players.

Let m– (α) = �(1/α)− 1� where �a� is the smallest integer not less than a. Since

1/n < α < 1, 1 ≤ m– (α) ≤ n − 2. Suppose that (1/α) − 1 is an integer. Then,

m– = (1/α)−1.The following case shows that there exists a player who is indifferent

between C and D when the number of C players is m– orm– − 1. Consider two cases:

Case 1: Suppose that the number of C players is m– . Choose any player who is not

a member of the C players. If the player chooses C, the payoff outcome is αnw.
If the player chooses D, the maximum possible payoff is that all D players other
than the player change from D to C and the player is the last D player since all
C players change from C to D after the second thought stage. Then, the payoff is
α(l− 1)w+w, and hence, αnw− {

α(l − 1)w +w} = {αn− α(l− 1)− 1}w =
{α(m– + 1)− 1}w = 0, where l = n−m– and l ≥ 2 since n ≥ m– + 2. That is, the

payoff of C is the same as the payoff of D for the player.
Case 2: Suppose that the number of C players is m– − 1. Choose any player who is

not a member of the C players. If the player chooses C in the first stage, we show
that the payoff outcome should be at least w. Since l ≥ 2, there must be at least
one D player. If all D players change from D to C in the second thought stage, the
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C player obtains αnw. If at least one D player chooses D in the second thought
stage, the C player obtains at least w by changing from C to D after the second
thought stage. If the player chooses D, the payoff is w. That is, the payoff of C
can be the same as the payoff of D for the player.

Thus, there is a possibility that C and D are indistinguishable for some players.
Let player 1 be such a player and suppose that the first m– players choose C. Then,

since C and D are indistinguishable,

the payoff outcome of subgame (C,C, . . . , C︸ ︷︷ ︸
m–

;D, . . . ,D︸ ︷︷ ︸
l

)

= the payoff outcome of subgame (D,C, . . . , C︸ ︷︷ ︸
m–−1

;D, . . . ,D︸ ︷︷ ︸
l

).

Since the payoff outcome of the latter should be (w,w, . . . ,w), each of the last l
players in the former can obtain αnw by changing from D to C. That is, C weakly
dominates D for the last l players.

In contrast, compare the payoff outcome of subgame (D,C, . . . , C︸ ︷︷ ︸
m–

;D, . . . ,D︸ ︷︷ ︸
l−1

)

with the payoff outcome of subgame (C,C, . . . , C︸ ︷︷ ︸
m–+1

;D, . . . ,D︸ ︷︷ ︸
l−1

). The latter payoff

outcome should be (αnw, . . . ,αnw), and hence, the payoff of player 1 should be
αnw. Since player 1 in the former should obtain αnw, which is more than w, at
least one player changes from D to C in the second thought stage, and hence, all
C players who change from C to D after the second thought stage should obtain
strictly more than w. Then, each of the same m– players obtains w by changing

from C to D. That is, C weakly dominates D for the m– players. Thus, C and D are

indistinguishable for player 1, and C weakly dominates D for the rest.
Suppose that C and D are indistinguishable for player 1. Then, there exists

another reduced normal form game in the first stage where C weakly dominates D
for player 1. Since C and D are indistinguishable for player 1, the payoff of player 1
in subgame (C,C, . . . ,C;D, . . . ,D) is either αnw or w. Since the payoff outcome in
this subgame can be either (αnw, . . . ,αnw) or (w, . . . ,w), there is another reduced
normal form game where C weakly dominates D for player 1.

Since the choice of a player who faces indistinguishability is arbitrary, C
weakly rules D for all players. That is, the SAMST implements cooperation in
SPEWRS.
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Appendix 2: The Proof of Proposition 35

(i) Letf (q) = (1− q)n, g(q) =∑l
k=0 nCkq

k and h(q) =∑n−1
k=l+1 n

Ck(1− q)n−k
q2k. Then, f (0) = 1. Since f ′(q)= −n(1 − q)n−1, f ′(0)= − n. Since

l ∈ {1, . . . , n− 1} and g(q)= nC0q
0 + nC1q

1 + ∑l
k=2 nCkq

k = 1 +
nq + ∑l

k=2 nCkq
k, g(0) = 1 and g′(0)=n. Since h(q) = q2r(q), where

r(q)=∑n−1
k=l+1 nCk(1− q)n−kq2(k−1), h′(0)= 0. Since CSAMST(n, q, l)= f (q)

g(q)+ h(q),

∂CSAMST(n, 0, l)

∂q
= f ′(0)g(0)+ f (0)g′(0)+ h′(0) = −n+ n+ 0 = 0.

(ii) By definition, since CSAMST(n, q, l) has a positive part in addition to
CSAM(n,q) on (0,1), we have the result.
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Allocation Mechanisms, Incentives,
and Endemic Institutional Externalities

Peter J. Hammond

1 Introduction

1.1 Hurwicz on Mechanism Design

Much of Leo Hurwicz’s long and distinguished career was devoted toward discov-
ering how market and other economic institutions could be designed in order to
improve the effect of individual agents’ economic decisions on the well-being of
society.

Leo’s early work on this topic appeared as Hurwicz (1960, 1972), much of
which was synthesized in Hurwicz (1986)—see also Arrow and Hurwicz (1977).
Late enough in his life for him to have been invited to deliver the Richard T. Ely
Lecture to the American Economic Association, Hurwicz (1973) did a great deal to
promote the systematic exploration of incentive compatible allocation mechanisms
for resource allocation. This was very useful to me when working on Hammond
(1979), especially the typical incentive incompatibility of lump-sum redistribution
of the kind needed to support typical first-best Pareto efficient allocations. This
and the earlier articles by Hurwicz were a source of inspiration for many of the
other contributions to the Review of Economic Studies “Symposium on Incentive
Compatibility” that I edited, including inter alia Hurwicz (1979) and Dasgupta et al.
(1979).1

1A confession may be in order. As the deadline for sending the papers for the symposium to the
production editor loomed, there was only a still incomplete version of Leo’s contribution sitting
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1.2 Hurwicz on Institutions and Externalities

Several years later, Leo Hurwicz (1995, 1999) wrote specifically about externalities,
including the Coase theorem. In Hurwicz (1996), he wrote about “institutions as
families of game forms,” and in Hurwicz (1998) on “the design of mechanisms
and institutions,” which appeared in a volume with the title “designing institutions
for environmental and resource management.” In his Nobel Memorial Prize lecture,
Hurwicz (2008), he revisited this idea of the link between institutions and game
forms.

I take this background as inspiration for using this opportunity to write about
externalities and mechanism design, though from a perspective that is no doubt very
different.

1.3 Outline

The purpose of this paper is to relate different concepts of externality to the
economic institutions which determine, or at least influence, what outcome to the
participating agents emerges.

As argued in Sect. 2, classical externalities come about as a departure from
the standard “neoclassical” institutional framework, with complete and perfectly
competitive markets for private goods.

Next, Sect. 3 considers pecuniary externalities. As Laffont (2008) correctly
observes, unlike classical externalities, they do nothing to upset the usual efficiency
properties of equilibrium allocations in competitive markets. They do, however,
have a significant influence on gains from trade results.

Section 4 introduces the concept of an institutional externality. Like classical and
pecuniary externalities, it captures the idea that one agent’s actions can influence
the possibilities open to other agents. With institutional externalities, however,
the influence is more subtle. The idea is that, except when the institution can be
modelled as a game form in which agents can choose dominant strategies, one
agent’s strategy choice can influence what other agents will want to choose. This
is what we call an “institutional externality.”

Hurwicz, of course, demonstrated that such strategy-proof mechanisms fail to
exist in many economic environments. In this sense, institutional externalities
are endemic. Nevertheless, Sect. 4 concludes with some prominent examples of
economic environments in which institutional externalities can be avoided.

The final Sect. 5 attempts to put these results in a general perspective.

on my editorial desk. In particular, there was no introduction, though fortunately a first footnote
provided most of what was needed. So, in an era when even transatlantic phone calls remained rare
and expensive, Leo’s paper appeared without his formal approval of this last minute change. I have
heard that Leo, as one might have expected, was amused rather than offended by this course of
action.
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2 Classical Externalities as Constraints

2.1 Defining Classical Externalities

In what has become the standard textbook for graduate courses in microeconomic
theory, Mas-Colell, Whinston and Green (1995, p. 351) write:

Surprisingly, perhaps, a fully satisfying definition of an externality has proved somewhat
elusive.

As a “serviceable departure,” they offer this as a definition:

An externality is present whenever the well-being of a consumer or the production
possibilities of a firm are directly affected by the actions of another agent in the economy.

They also offer this additional “subtle point”:

When we say “directly,” we mean to exclude any effects that are mediated by prices.

This use of the keyword “directly” contrasts markedly with the word “indirect”
that is used in the definition provided at the head of Laffont’s (2008) entry in the
New Palgrave Dictionary of Economics:

Externalities are indirect effects of consumption or production activity, that is, effects on
agents other than the originator of such activity which do not work through the price system.

In a private competitive economy, equilibria will not be in general Pareto optimal since
they will reflect only private (direct) effects and not social (direct plus indirect) effects of
economic activity.

2.2 Externalities and Constrained Efficiency

Laffont (2008) goes on to write:

In a private competitive economy, equilibria will not be in general Pareto optimal since
they will reflect only private (direct) effects and not social (direct plus indirect) effects of
economic activity.

Indeed, there is the well-known relation between perfectly competitive markets
for private goods, with or without lump-sum wealth redistribution, and the Pareto
efficient allocation of private goods. On this topic, this is not the occasion to try
to add to the survey chapter Hammond (2011). In the presence of externalities or
public goods, however, given any competitive market allocation of private goods,
there will usually be Pareto superior reallocations of private goods and externalities
together. Thus, even perfect markets for private goods achieve at best a constrained
notion of Pareto efficiency, along the lines of Hammond (1995) or Hammond and
Sempere (2009).
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2.3 Additional Markets for Externalities

It is commonly suggested that, even in the presence of externalities, unconstrained
Pareto efficiency could be achieved by creating new markets for those externalities,
with prices (positive or negative) that correspond to the appropriate Pigou subsidy
or tax. This suggestion loses much of its persuasive power once one realizes that, as
Starrett (1972) observes, negative externalities typically give rise to “fundamental
non-convexities,” which prevent existence of competitive equilibrium in a system of
markets that allows externalities to be priced.

Nevertheless, the suggestion leads one to realize that the distinction between
private goods and externalities, or public goods, really depends on the institutions
that determine which goods are traded, and which are not. This, of course,
introduces some ambiguity into the closely related definitions presented in Sect. 2.1.
Looked at this way, it is institutions rather than tastes and technology that create
externalities.

3 Pecuniary Externalities

3.1 Definition

In the first paragraph of his short subsection on pecuniary externalities, Laffont
(2008) wrote as follows:

During the 1930s, a confused debate occurred between economists on the relevance of
pecuniary externalities, that is, on externalities which work through the price system.
A quite general consensus was that pecuniary externalities are irrelevant for welfare
economics: the fact that by increasing my consumption of whisky I affect your welfare
through the consequent increase in price does not jeopardize the Pareto optimality of
competitive equilibria.

In the penultimate sentence of the subsection, he wrote:

When agents affect prices, they affect the welfare of the other agents by altering their
feasible consumption sets or their information structures. Pecuniary externalities matter for
welfare economics.

3.2 Limits to Gains from Liberalization

As an example of how pecuniary externalities can matter, it is worth considering
gains from trade in international economics, notably the literature inspired by the
classical results due to Samuelson (1939, 1962) and Kemp (1962). In general, moves
toward freer trade are particular instances of economic liberalization or supply
side policy reforms where, given a status quo allocation which would result in the
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absence of any liberalizing reform, there are moves away toward a more extensive
market system—see, for example, Hammond and Sempere (1995).

Any such liberalizing reform typically changes the prices of goods, including
the wages of workers. Such price changes will typically make some agents better
off, and others worse off. To that extent, they are pecuniary externalities. The early
literature often applied the Kaldor–Hicks compensation test, claiming that a reform
would be beneficial provided that the gainers could compensate the losers in a
way that would make all agents better off. Such compensation tests are not only
ethically indefensible because they do nothing to ensure that losers actually get
compensated. As Scitovsky (1941) and Gorman (1955) pointed out, they can also
be logically inconsistent—see also Chipman’s (2008) survey. Instead of relying on
any compensation test, the real issue is whether a liberalizing reform can be made
“credible” by linking it to suitably chosen policy instruments intended to limit the
damage arising from negative pecuniary externalities—see Hammond (1993).

3.3 No Adverse Pecuniary Externalities

In order to ensure that there are no adverse pecuniary externalities, the classical
literature on the gains from trade due to Samuelson and Kemp largely confines itself
to two special cases.

In the first of these, there is a finite collection of trading nations, in each of
which there is a single representative consumer. Moreover, the status quo allocation
is taken to be autarkic, without any international trade. This ensures that whatever
equilibrium prices result from free international trade in world markets, there can
be no deterioration in any country’s terms of trade. So, no nation’s representative
consumer can be made worse off by trade; moreover, except in the special case
when the status quo allocation is already Pareto efficient, at least one nation’s
representative consumer will be strictly better off.

The second special case occurs when a single nation with just one representative
consumer is a “small country,” in the technical sense that its trade policy has
no effect on prevailing world market prices. In this case, there are no pecuniary
externalities at all because if the small nation liberalizes by moving to free trade
at world prices, by definition this has no effect on world prices. So, except in the
special case when the status quo is already a competitive equilibrium at world prices,
the small nation’s lone representative consumer will gain.

3.4 Mitigating Pecuniary Externalities

Though negative pecuniary externalities may be inevitable outside the two special
cases just discussed, there are three particular kinds of mitigating policy that have
received attention in the theoretic literature on economic liberalization. All of
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these mitigating policies work, moreover, without the need to assume any kind of
representative consumer.

Following the work of Grandmont and McFadden (1972) in particular, the first
kind of mitigating policy involves using lump-sum wealth redistribution. The idea
is first to compensate each consumer for any adverse price movement, and then
to share among all consumers any surplus generated by moving to a perfectly
competitive allocation. Unless the status quo is already a Pareto efficient allocation,
standard assumptions ensure that this surplus will be positive. So, the allocation
after the reform, including this redistribution, makes every consumer strictly better
off provided that they all have monotone preferences.

This kind of lump-sum redistribution, however, is typically incentive incompat-
ible because it encourages agents to exaggerate the minimum compensation they
need to ensure that they are no worse off than in the status quo, where there has
been no reform. Following the ideas of Diamond and Mirrlees (1971) on optimal
commodity taxation, Dixit and Norman (1986) discussed a second way to mitigate
price changes. This involved fixing consumer prices at their status quo levels, while
letting commodity tax rates and associated producer prices adjust to clear markets.
This would then allow any surplus due to efficiency gains to be spent on a uniform
lump-sum subsidy that is the same for all individuals. For details, see for example
Hammond and Sempere (1995).

A third way of mitigating pecuniary externalities arises when the status quo
has publicly known fixed quantities, as might be the case in a command economy
such as China during the Maoist era. Such a status quo offers the scope for
“dual-track liberalization” of the kind discussed by Lau, Qian, and Roland (1997,
2000) and by Che and Facchini (2007). The first track is the specified status quo
allocation in the command economy; the second track is a competitive market
economy. The two tracks are combined by first insisting that each agent receives
the consumption goods and also supplies whatever is specified under the status
quo. Agents, however, are also allowed to trade freely at market prices in order to
determine whatever additional supply vector they want to offer in exchange for any
additional consumption, etc. In effect, this dual-track policy determines a particular
version of the lump-sum wealth redistribution rule considered by Grandmont and
McFadden (1972), where each agent’s wealth endowment equals the net value at
the liberalized market prices of the fixed status quo allocation specified for them in
the command economy.

4 Institutional Externalities

4.1 Strategy-Proof Allocation Mechanisms

An economic environment can be defined as a collection of economic agents,
each of whom has a specified individual characteristic in the form of preferences
and an endowment—possibly in the form of a production set—within a given
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finite-dimensional commodity space. Then, an allocation rule can be defined as
a mapping from a given domain of possible economic environments to a codomain
of allocations that are feasible in the relevant environment.

Hurwicz (1960, 1972, 1973) did much to initiate the systematic study of such
allocation rules, and the information that would be needed to reach a satisfactory
allocation—especially an allocation that is Pareto efficient—in each relevant envi-
ronment. He considered a principal or mechanism designer who is granted the
power to construct a game form or allocation mechanism in which each agent is
required to send a signal from a suitably specified signal space, whereupon each
possible profile of agents’ signals is mapped into a feasible economic allocation.
Notice that, when combined with agents’ preferences for the economic allocation,
and assuming these take the form of an expected utility function, the game form
defines a game of incomplete information where each agent’s payoff function is
replaced by their expected utility.

A special case of particular interest is when every agent in every permissible
economic environment has a dominant strategy which depends only on their own
characteristic. In this case, one has a dominant strategy game form. The almost
trivial theorem 4.4.1 of Dasgupta et al. (1979) proves that, in this case, there is an
equivalent direct mechanism in which each agent’s message is a direct signal of their
individual characteristic; moreover, this direct mechanism is strategyproof in the
sense that a dominant strategy for each agent is to announce their true characteristic.

4.2 Why Strategyproofness?

During the 1970s, Gibbard (1973) and Satterthwaite (1975) proved the general
impossibility of constructing a strategy-proof social decision mechanism. Leo
Hurwicz helped reinforce these negative results by considering when they held in
specific economic environments, with or without public goods. Along with Groves
and Ledyard (1977), Maskin (1999), and many others, he initiated the search for
mechanisms whose Nash equilibria would yield Pareto efficient allocations.

Implementation in Nash equilibrium, however, can be criticized on methodo-
logical grounds. Let us exclude the very special case when a principal who is
designing a mechanism lacks information which is common knowledge to all the
agents who participate in the mechanism. Outside this case, it would seem that
the relevant game form should involve incomplete information, thus suggesting
Bayesian Nash equilibrium as a solution concept. Furthermore, it follows from
Theorem 5.1 of Dasgupta et al. (1979) that, if a mechanism is not strategyproof, then
the outcome it generates will be sensitive to agents’ beliefs about each other—see
also Ledyard (1978). Hence, except in rare cases, a mechanism that is implemented
in Nash equilibrium rather than in dominant strategies generates allocations that
depend not just on agents’ tastes and endowments but also on their beliefs. These
beliefs, moreover, concern not just other agents’ tastes and endowments but also
their beliefs about how these other agents will play the game form.
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4.3 Strategy-Proof Exchange: When Is It Possible?

For the case of an exchange economy with two individuals, Hurwicz (1972) proved
that any strategy-proof allocation rule yielding Pareto efficient outcomes must
be dictatorial. Satterthwaite and Sonnenschein (1981) explored the difficulties in
extending this result beyond two individuals. Serizawa (2002), along with Serizawa
and Weymark (2003), showed that, even if they do not have to be dictatorial,
nonetheless Pareto efficient strategy-proof rules always involve allocations that
are close to being extreme—i.e., close to dictatorial. Finally, Barberà and Jackson
(1995) characterized strategyproofness in general exchange economies with finite
numbers of agents and goods and showed how limited they must be even if one
does not insist on Pareto efficient outcomes.

Even so, there are some particular economic environments where strategy-proof
exchange is possible. Apart from trivial cases, these environments have the key
property that changes in agents’ characteristics have no influence on the competitive
equilibrium price, at least if the changes are small. It follows that institutional
externalities are merely endemic, rather than universal.

4.4 Strategy-Proof Mechanism 1: An Islands Model

The first example is a static microeconomic version of the islands model, which
is well known to macroeconomists following the work of Lucas (1972). There is a
finite set of islands, each with a lone representative consumer. There is no possibility
of trade between the islands, so each island has its own distinct commodity space
of located goods specific to that island. Nor are the preferences or welfare of the
representative consumer in any one island affected at all by the allocation in any
other island. In this case, an obvious mechanism is to select an isolated optimal
allocation separately within each island. This mechanism is clearly strategyproof
because no agent’s incentives are affected at all by the allocation that is chosen in
any other island.

This example shows that the institutional externality that prevents strategy-proof
exchange can be ascribed to the resource balance constraints that arise in a general
exchange economy. In the special case of the islands model, agents are so separated
that these constraints have force only within each island, so strategyproofness is
possible.

4.5 Strategy-Proof Mechanism 2: Local Independence

The first case where the independence property mentioned in Sect. 4.3 holds, at
least locally, is discussed by Makowski et al. (1999). They assume that at least
one agent has a flat indifference surface in some neighbourhood of a Walrasian
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equilibrium allocation. While the economy has a Walrasian equilibrium allocation
which remains in this neighbourhood, price ratios in this particular equilibrium are
determined by the normal to this flat surface. Provided that this is the equilibrium
chosen by the mechanism, individual agents cannot manipulate prices except by
distorting their desired trades so much that they become worse off.

Section 7.5.2 of Hammond (2011) describes a second case of local independence,
which holds if there is a linear technology. A particular example is when the
“non-substitution theorem” holds. In its simplest form, this theorem relies on
the assumptions that the economy’s production possibilities are described by a
finite collection of activities exhibiting constant returns to scale, a single common
primary factor of production, and no joint production. These assumptions imply that
equilibrium prices are independent of demand as long as demand does not change
so much as to alter the pattern of goods that are inputs and goods that are outputs in
any activity.

4.6 Strategy-Proof Mechanism 3: Infinitely Many Agents

The main case when strategy-proof exchange is possible, however, is when there
are infinitely many agents. As acknowledged in Hammond (1979), it was Hurwicz
(1972) himself who observed that the competitive mechanism is incentive compat-
ible in a large economy. Sections 14 and 15 of Hammond (2011) are devoted to
a survey of the results that hold in such environments. There is a broad class of
environments in which strategy-proof exchange is possible, even in the presence of
tax mechanisms such as those studied in Guesnerie (1995). Since that survey was
written, the paper Hammond (2017) has appeared. It considers the complications
involved in devising mechanisms that remain strategyproof even when not only
are agents privately informed of their endowments but also any contracts to supply
goods fail to be self-enforcing.

5 Concluding Remarks

The first part of this paper focused on both classical and pecuniary externalities,
emphasizing their links to institutional features of the economic system in which
they arise. Later, the paper went on to explore some implications of viewing any
institution that is modelled by a game form that is not strategyproof as giving
rise to institutional externalities. Specifically, as with both classical and pecuniary
externalities, they arise when an agent’s choice of action in the game form affects
other agents’ incentives.

Leo Hurwicz’s early work on the difficulties of constructing strategy-proof mech-
anisms shows that institutional externalities, understood in this way, are endemic.
The paper also explores a few very special cases where there will be no institutional
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externalities. Typically, these involve purely static economic environments with only
private goods and either many economic agents, as Hurwicz (1972) himself had
suggested; or other special environments where no individual agent has an influence
over prices, such as when the non-substitution theorem holds.

Acknowledgements I had the privilege and pleasure of meeting Leo Hurwicz on several
occasions, notably at summer workshops organized by the economics section of the Institute
of Mathematical Studies in the Social Sciences at Stanford University. My last conversation
with him, however, took place during the summer 2000 meeting of APET (The Association for
Public Economic Theory) at the University of Warwick. During that meeting, Leo gave a talk on
externalities which seems related to Hurwicz (1999). Thoughts provoked by his presentation may
have helped me prepare an after dinner talk entitled “What isn’t an Externality?” for a conference
on “Modelling public goods and public policy: Past, present and future prospects” organized
by Monique Florenzano and Sylvie Thoron at C.I.R.M. (Centre International de Rencontres
Mathématiques) in Marseille-Luminy. This was held almost immediately after I took up my current
position at Warwick on 1st April 2007. My thanks to the audience in Luminy for encouraging me
to share more widely a significantly revised version of my remarks on that occasion, and also to
Walter Trockel for providing a suitable outlet.
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The Role of (Quasi) Analyticity
in Establishing Completeness of Financial
Markets Equilibria

Yakar Kannai and Roberto C. Raimondo

1 Introduction

It is well-known that there is a sharp difference between an Arrow-Debreu market
and a securities market. In the former, agents are allowed to trade a complete
set of Arrow-Debreu contingent claims. In the case of a binary tree with T
periods, one deals with 2T Arrow-Debreu contingent claims, whereas in a securities
market where one is allowed to trade in every time period, two commodities
suffice. Passing to a continuous time model, one notes that there are too many
(infinitely many) Arrow-Debreu contingent claims, and there is reason to con-
jecture that under suitable assumptions a finite number of instruments traded
continuously would do. A market is said to be dynamically complete if agents
can, by trading the given set of securities, achieve all the consumption alloca-
tions that they could achieve in an Arrow-Debreu market (see Duffie, 1986 and
Duffie and Huang, 1985). A necessary condition for dynamic completeness is
that the market is potentially dynamically complete. This means, if the uncer-
tainty is driven by a multi-dimensional Brownian motion, that the number of
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independent securities is at least one more than the dimension of this Brownian
motion.

There are two important reasons for establishing completeness of financial
markets. One is that with completeness one may aggregate and therefore fully
justify the representative agent model so common in macroeconomics (see, e.g.,
Browning et al., 1999). The other major application of completeness is in derivative
pricing. Only when the price processes form a dynamically complete market,
options and other derivatives can be uniquely priced by arbitrage arguments and
can be replicated by trading the underlying securities. If we do not have dynamic
completeness, then replication is not possible, so that a unique pricing of derivatives
is impossible.

In many studies of completeness the prices are introduced as given. It is
desirable to let securities prices be determined endogenously as equilibrium prices,
determined by market forces. But securities are not consumed. One considers a
market in which there exists at least one consumption good from which agents derive
utility and which can be bought by income generated by trade in securities and by
dividends.

Existence of equilibrium in a continuous-time securities market in which the
securities are endogenously dynamically complete has been proved for the first
time under rather restrictive assumptions by Anderson and Raimondo (2008);
their approach was, broadly speaking, followed by subsequent work. Given the
fundamental importance of completeness for pricing and for aggregation (see,
e.g., Browning et al., 1999) various extensions of this result have been proposed
(Hugonnier et al., 2012; Kramkov and Predoiu, 2014; Riedel and Herzberg, 2013).
However, as suggested already in the discussion of Anderson and Raimondo (2008),
in all of these attempts a crucial role was played by assuming analyticity1 of the
basic economic ingredients, in particular agents utility functions, endowments, and
dividends.

In all of the above-mentioned papers the role of analyticity is crucial for
showing that if a market is incomplete in an open set then it must be incomplete
everywhere including the terminal date. This, from the point of view of theory
of complete markets and optimality, is the most important property, since opti-
mality is lost even with a local loss of completeness. Hence the really crucial
issue it is to determine exactly when local collapse brings about the global one.
To achieve such a goal we show that the right notion is not analyticity but a
much weaker one, known as quasi-analyticity. The relevance of this property
was not recognized in the previous literature; analyticity was used instead. Let
us stress that as in Anderson and Raimondo (2008) our existence result is uni-
versal rather than generic. Moreover, our result is robust w.r.t. a general class

1Some of the results in Kramkov and Predoiu (2014) and in the supplement of Hugonnier et al.
(2012) are obtained using only time analyticity. However, as stated in Kramkov and Predoiu (2014),
their assumption on the terminal condition is stronger. Such extensions are treated with our method
in a forthcoming paper.
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of reasonable mis-specifications, a fundamental property lacking in the analytic
models.

A class of functions is said to be quasi-analytic if the local collapse of a
function in the class implies global vanishing; formally, no non-zero function in
the class has a zero of infinite order. It is well-known (Hörmander, 1990) that
this is equivalent for the class to be determined by certain growth conditions
on the derivatives. In particular, the class of analytic functions is a very special
case of such classes. The existence of functions which are quasi-analytic but not
analytic was established more than a century ago (see Borel, 1901; we reproduce
his example in appendix 1). Properties of quasi-analytic functions have been treated
recently in Bierstone and Milman (2004). It follows from Bierstone and Milman
(2004) that quasi-analytic functions of several variables cannot vanish on a set of
positive measure without being identically zero. Quasi-analyticity of solutions of
parabolic partial differential equations such as those that appear in Finance Theory
has been established recently by the authors of this paper (Kannai and Raimondo,
2013).

As is common in establishing existence of equilibrium price processes, we
first construct a candidate equilibrium process. Then we prove that the candidate
equilibrium price process is actually dynamically complete, and that the candidate
equilibrium is in fact an equilibrium. In our case the dynamic completeness of
the candidate equilibrium price process and existence of equilibrium follow from
the way information is revealed by a general Ito process, and from an exogenous
nondegeneracy condition on the terminal security dividends. This nondegeneracy
condition is the customary one, see Anderson and Raimondo (2008) where the
condition is motivated and discussed.

The model is introduced in Sect. 2. Note that we diverge from Anderson and
Raimondo (2008) by allowing a much more general underlying stochastic processes
and from Hugonnier et al. (2012), Kramkov and Predoiu (2014), Riedel and
Herzberg (2013) by making the bare minimum assumptions, namely we assume
only quasi-analyticity of the basic economic ingredients. In Sect. 3 we illustrate the
effectiveness of our approach by exhibiting several economic examples. The results
are discussed in Sect. 4. Properties of quasi-analytic functions of several variables
and related regularity results for solutions of parabolic partial differential equations
are described in Appendix 1. Proofs of the main theorems are sketched in Appendix
2. Let us point out that our results may be extended, similarly to Hugonnier
et al. (2012), to the non-finite horizon framework, and that it is possible to relax
the quasi-analyticity assumption w.r.t. space variables (compare Hugonnier et al.,
2012 and Kramkov and Predoiu, 2014); we leave the details of these extensions
as well as the detailed proofs of the results presented in the present paper to a
subsequent publication. Finally we stress that in all our proofs and theorems non-
standard analysis is not used, hence they should sound and look more familiar to
economists.
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2 The Model and Main Results

In this section we present the essentials of a standard continuous-time model with
consumption and equilibrium, as described fully in Anderson and Raimondo (2008),
and we highlight the main points where we differ. Here we allow for much more
general dividend processes and handle more general utilities, endowments, and
payoffs as well.

There is a single consumption good. Trade and consumption occur over a
compact time interval [0, T ], endowed with a measure ν which agrees with
Lebesgue measure on [0, T ) and such that ν({T }) = 1. Consumption and dividends
on [0, T ) are flows; consumption at the terminal date T is a lump. A nondegeneracy
assumption will be imposed on the lump dividend at the terminal date T .

The uncertainty in the model is described by a standardK-dimensional Brownian
Motion {Bt }t≥0 on a probability space �. Let Xt be the strong solution of the
following SDE

dXt = b(t,Xt)dt + σ(t,Xt )dB. (1)

Then the primitives of the economy—dividends, endowments, and utility
functions—will be described as functions of (t,Xt ). We assume that the functions
b(t, x) and σ(t, x) are quasi-analytic functions of (t, x) ∈ (0, T )×RK and
continuous on the closure. (We are abusing terminology slightly; in this section, we
say that a function is quasi-analytic if it belongs to a certain quasi-analytic class
D(X, {Mk}), where X is an open subset of Rn, see Appendix 1 for the precise
definition.) It is important to notice that this assumption is considerably weaker
than that of real analyticity.2

Eventually, prices are going to satisfy the partial differential equation.

∂pAj

∂t
= −A(t, x,D)pAj − pC(t, x)gj (t, x). (2)

As usual, we assume that the operator

A(t, x,D) =
K∑
j=1

bj (t, x)
∂

∂xj
+ 1

2

K∑
i,j,�=1

σi�(t, x)σ�j (t, x)
∂2

∂xi∂xj
(3)

is uniformly elliptic in (0, T )×RK and the first and the second derivatives of all
coefficients with respect to all of the variables are uniformly bounded and quasi-
analytic.

2Actually, to pass from separate analyticity in space and time variables one needs a stronger form
of real analyticity, involving, e.g., suitable local extendibility such as in Hugonnier et al. (2012).
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We are given a right-continuous filtration {Ft : t ∈ [0, T ]} on (�,F , μ) such that
F0 contains all null sets and B is adapted to {Ft }, i.e. for all t , B(t, ·) is measurable
with respect to Ft .

There areK+1 securitiesA0, A1, . . . , AK . Security j pays dividends (measured
in consumption units) at a flow rate

Dj (t, ω) = gj (t,Xt )

at times t ∈ [0, T ), and a lump dividendDj(T , ω) = Gj(XT ) at time T . We assume
that g : [0, T ] ×RK → RK+ is quasi-analytic on (0, T )×RK and thatGj is locally
in L2.

There are I agents i = 1, . . . , I . Agent i has a flow rate of endowment ei(t, ω) =
fi(t,Xt,ω) at times t ∈ [0, T ), and a lump endowment ei(T , ω) = Fi(XT (ω)),
where fi is quasi-analytic on (0, T )× RK and Fi is continuous almost everywhere
on RK . Agent i is initially endowed with deterministic security holdings eiA =
(eiA0, . . . , eiAJ ) ∈ RJ+1 satisfying

I∑
i=1

eiAj = ηj

where the security j = 0, . . . ,K is assumed to be in net supply ηj ∈ [0, 1]. We
impose the same condition on the initial holdings as in Anderson and Raimondo
(2008). Let e(t, ω) =∑I

i=1 ei(t, ω) denote the aggregate endowment.
We assume the endowments and dividends satisfy the following mild growth

conditions: for every ε > 0

∫
RK
|u0(x)| exp

(
−ε

K∑
i=1

|xi |2
)
dx <∞, (4)

and

∫
RK
|v(t, x)| exp

(
−ε

K∑
i=1

|xi |2
)
dx <∞ (5)

uniformly in [0, T ] , where u0(x) is either of the functions Fi(T , x) or Gj(T , x),

and v(t, x) is either of the functions fi(T , x) or gj (T , x),
∂fi (t,x)
∂x

,
∂gj (t,x)

∂x
.Actually,

we need some technical growth conditions on high time derivatives of the function
v as well (see Theorem 7). Observe that these growth conditions are weaker than
the ones implicitly assumed in Anderson and Raimondo (2008). Note that we do
not requireGj to be even continuous. Standard option payoffs are not differentiable
at the strike price, and other derivatives need not be continuous.

The utility functions are von-Neumann Morgenstern utility functions, expecta-
tions of functions of the consumption and the process X which are quasi-analytic
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on (0, T ) × RK . More formally, given a measurable consumption function ci :
[0, T ] ×�→ R++, the utility function of the agent is

Ui(c) = Eμ
[∫ T

0
hi(ci(t, ·),X(t, ·))dt +Hi(ci(T , ·),X(T , ·))

]
(6)

where the functions hi : R++ ×
([0, T )× RK

) → R ∪ {−∞} and Hi : R++ ×({T } ×RK
)→ R ∪ {−∞} are quasi-analytic on R++ ×

(
(0, T )×RK

)
and C2 on

R++ ×
({T } × RK

)
, respectively, and satisfy the standard Inada conditions as well

as standard monotonicity and concavity assumptions as elaborated in Anderson and
Raimondo (2008). As usual we assume that the space of consumption processes is
in L2

([0, T ] × RK, dv ⊗ dμ) . We also impose joint growth assumptions on the
utility functions and the social consumption in order to avoid imposing that the
consumption is bounded away from zero. Namely, we assume that there exists r ∈
RK such that the functions ∂Hi

∂c c(T ,x)/I
and ∂hi

∂c c(t,x)/I
are bounded by r+er |x| where

c(t, x) =
{ ∑I

i=1 fi(t, x)+
∑J
j=0 ηjgj (t, x) if t < T∑I

i=1 Fi(t, x)+
∑J
j=0 ηjGj (t, x) if t = T .

and we assume ∂Hi
∂c ei (T ,x)

, ∂hi
∂c ei(t,x)

∈ L2
([0, T ] × RK, dv ⊗ dμ) . As customarily

in continuous-time models we assume that the zeroth security is a money-market
account, in other words, it is instantaneously risk-free.

We make the following non-degeneracy assumption: there is an open set V ⊂ RK

such thatG0(T , x) > 0 for all x ∈ V and for j = 1, . . . , J and i = 1, . . . , I

Gj , Fi ∈ C1(V ) and ∀x ∈ V rank

⎛
⎜⎜⎜⎝

∂(G1/G0)
∂X

∣∣∣
(T ,x)

...
∂(GJ /G0)
∂X

∣∣∣
(T ,x)

⎞
⎟⎟⎟⎠ = K (7)

Note that if the zeroth security is a bond, the rank condition is equivalent to assuming
that the K ×K matrix

⎛
⎜⎜⎜⎝

∂G1
∂X

∣∣∣
(T ,x)
...

∂GJ
∂X

∣∣∣
(T ,x)

⎞
⎟⎟⎟⎠

is nonsingular. This simply says that there is some possible terminal value of the
process whose differential is dXt = b(t,Xt)dt + σ(t,Xt )dB so that the dividends
of securities A1, . . . , AJ are locally linearly independent.
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The definitions of budget constraints, trading strategies and equilibrium are the
standard ones for models where the securities are priced cum dividend. In order to
define the budget set of an agent, we need to have a way of calculating the capital
gain the agent receives from a given trading strategy. In other words, we need to
impose conditions on prices and strategies that ensure that the stochastic integral of a
trading strategy with respect to a price process is defined. The essential requirements
are that the trading strategy at time t does not depend on information which has not
been revealed by time t , and the trading strategy times the variation in the price
yields a finite integral. Specifically, a consumption price process is an Itô process
pC(t, ω). A securities price process is an Itô process pA = (pA0, . . . , pAJ ) : � ×
[0, T ] → RJ+1 such that the associated cumulative gains process

Gj(t, ω) = pAj (t, ω)+
∫ t

0
pC(s, ω)Aj (s, ω) ds

is a martingale. Given a securities price process pA, an admissible trading strategy
for agent i is a process zi which is Itô integrable with respect to G and such that∫
zi dG is a martingale. Given a securities price process pA and a consumption

price process pC , the budget set for agent i is the set of all consumption plans ci
such that there exists an admissible trading strategy so that ci and ti satisfy the
budget constraint

pA(t, ω) · zi(t, ω)

= pA(0, ω) · eiA(ω)+
∫ t

0
zi dG+

∫ t

0
pC(s, ω)(ei(s, ω) − ci(s, ω))ds

for almost all ω and all t ∈ [0, T )

0 = pA(0, ω) · eiA(0, ω)+
∫ T

0
zi dG+

∫ T

0
pC(s, ω)(ei(s, ω)− ci(s, ω))ds

+pC(T , ω)(ei(T , ω)− ci(T , ω)))
for almost all ω

Given a price process p, the demand of the agent is a consumption plan and an
admissible trading strategy which satisfy the budget constraint and such that the
consumption plan maximizes utility over the budget set.

Of course, we also use the following standard

Definition 1 A Radner equilibrium (Radner, 1972) is a set of price processes
(pC, pA0 , pA1 , . . . , pAK ), a consumption allocation (ci)Ii=1, and a set of strategies((
ziA0, . . . , ziAK

))I
i=1 such that

(a) The plan ci maximizes Ui over the budget set and is financed by(
ziA0, . . . , ziAK

)
,

(b) All markets clear.
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The following is a considerable extension of the main results of the previous
literature, establishing existence of an effectively dynamically complete equilibrium
pricing process. (This means that derivatives can be uniquely priced by arbitrage
arguments and can be replicated by trading the underlying securities.) Namely,
previous work applies to the special cases where dXt = b(t,Xt)dt + σ(t,Xt )dB
with b(t,Xt ) = 0 and σ(t,Xt ) is the identity matrix in R

K (Anderson and
Raimondo, 2008) or when b(t, x) and σ(t, x) are analytic functions (Hugonnier
et al., 2012; Riedel and Herzberg, 2013); in Kramkov and Predoiu (2014) only
time-analyticity is assumed, however the rank condition (7) has to hold almost
everywhere in RK .

Our main result is the following

Theorem 2 The continuous-time finance model just described has an equilibrium,
which is Pareto optimal. The equilibrium pricing process is effectively dynamically
complete, and the admissible replicating strategies are unique. Moreover the prices
for assets and goods are quasi-analytic.

Note that (besides following the Negishi method Negishi, 1960 , standard for
infinitely many commodities, see, e.g., Dana and Jeanblanc, 2002) the two main
ingredients of the proof of Anderson and Raimondo (2008) and subsequent work are
the implicit function theorem for real analytic functions and the fact that a nonzero
real analytic function of several variables cannot vanish on a set of positive measure.
It turns out that both ingredients continue to be valid for quasi-analytic classes of
functions (see Appendix 1).

We emphasize that in our model, as in Anderson and Raimondo (2008), the prices
are given by

pA(t,X) = Et,X
(
pC(T ,XT )A(T ,XT )+

∫ T

t

pC(s,X(s))A(s,X(s)) ds

)
, (8)

where pC(s,X(s)) is the relative price of consumption at equilibrium. As in
Anderson and Raimondo (2008) this price is determined by the implicit function
theorem. Applying now the implicit function theorem for quasi-analytic classes
(Bierstone and Milman, 2004; see Theorem 5 in Appendix 1) we find that the
function pC(t, x) is (jointly) quasi-analytic in (t, x). The asset prices determined
by (8) satisfy the partial differential equation (2)

∂pAj

∂t
= −A(t, x,D)pAj − pC(t, x)gj (t, x) (9)

with the boundary condition

pAj (T , x) = Gj(T ,X(T ))pC(T , x) (10)
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where

A(t, x,D) =
K∑
j=1

bj (t, x)
∂

∂xj
+ 1

2

K∑
i,j,�=1

σi�(t, x)σ�j (t, x)
∂2

∂xi∂xj
. (11)

The transitions probabilities are just the fundamental solutions of (11). We use these
representations to show that the prices are quasi-analytic. This is the main technical
point and, as specified in the introduction, it is addressed in Appendices 1 and 2. We
stress that quasi-analyticity of prices in both space and time is established from the
assumptions on the basic underlying economic ingredients.

3 Examples

In our model and examples securities are described by their dividend processes,
rather than by their price processes. Similar models and examples already appear
in the literature but they all hold under special assumptions on the dividends,
in particular either analyticity is assumed or, worse, completeness is postulated.
In the following all functions (drift, instantaneous volatility, utilities, dividends,
endowments) are assumed just to be quasi-analytic (more general and much more
natural than analytic).

In all examples below there are I agents and each agent i is endowed with a flow
rate of endowment ei for t ∈ [0, T ) , and a lump endowment ei(T ) at time T . There
are K + 1 securities, which pay dividends at times t ∈ [0, T ) and which pay lump
dividends at time T . The zeroth security is a zero coupon bond which pays a lump
dividend of one unit of consumption at time T . The zeroth security is in zero net
supply, while the remaining securities are in net supply one. At time zero, agent
i has an initial holding of δi ∈ RK+1 units of the securities so that the δis with
δ = (δ1, . . . , δI ) are in

Hδ =
{
(δ1, . . . , δI ) ∈ R

(K+1)I

∣∣∣∣∣
I∑
i=1

δi = (0, 1, . . . , 1)
}
.

Our examples are presented in parametric form in order to account for possible
mis-specification when the theory is used in applications. We get robustness even
if analyticity of the functional form is itself mis-specified. For example, even if the
assumed functional form is analytic, it may well cease to be so if mis-specified.

Example 3 This example is very close to the ones used already in this context
(see Merton, 1973 and Merton, 1990). Each agent i is endowed with a flow rate
of endowment ei for t ∈ [0, T )

ei(t, ω) = fi(X(t, ω))+ ε1,i f̃i (X(t, ω))
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where the first term denotes a fixed process which is perturbed by the second
term, and a lump endowment ei(T ) at time T . Agent i’s utility for a stream of
consumption ci is

Ui(ci) = E
(∫ T

0
ci(s)

αi ds + ci(T )αi
)

where cαi is a state-independent CRRA utility function with coefficient of relative
risk aversion αi (one could use any CRRA). There are K + 1 securities, which
pay dividends at times t ∈ [0, T ) and which pay lump dividends at time T . The
dividends of the risky securities are given as follows if t ∈ [0, T )

Dj (t, ω) = gj (X(t, ω))+ ε2,j g̃j (X(t, ω))

where once again the first term denotes a fixed process which is perturbed by
the second term. If t = T , then the dividend is given by eσB(T ), where σ =[
σj�

]
i,j=1...k

is constant K ×K matrix such that

det
[
σj�

]
i,j=1...k

�= 0

i.e., it is nonsingular so that the dividends are terminal values of a K-dimensional
geometric Brownian Motion. Of course, the main question is for what set of
parameters does this securities market have an equilibrium. If an equilibrium exists,
is it dynamically complete? At this level of generality there is no known result
that could give us an answer even for a single value of the parameters, unless
all of the α′i s are equal, but this means that we have just one agent! Our main
result, Theorem 2, implies that if σ is nonsingular, then for every value of the other
parameters, i.e. every (ε1, ε2, α, δ1, . . . ., δI , T ) in the space

RI++ ×RK++ × (0, 1)I ×Hδ ×R++

an equilibrium exists and is dynamically complete.

In the next example we do not make any special assumptions on utilities, instead
we let the agents be as heterogeneous as possible. The importance of heterogeneity
is by now widely accepted in the literature. It seems that this very simple illustration
of our result is widely applicable.

Example 4 Each agent i is endowed with a flow rate of endowment ei for t ∈ [0, T )

ei(t, ω) = fi(X(t, ω))
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and a lump endowment ei at time T . Agent i’s utility for a stream of consumption
ci is

E

(∫ T

0
ui(ci(s), ω) ds + ui(ci(T ), ω)

)

where each ui is an arbitrary quasi-analytic utility function. (We emphasize that
there is no relation whatsoever between the various u′is.) There are K + 1
securities, which pay dividends at times t ∈ [0, T ) and which pay lump dividends
at time T . The dividends of the risky securities are given by

Dj (t, ω) = gj (X(t, ω))

if t ∈ [0, T ), and at t = T by eσB(T ), where σ =
[
σj�(T , ω)

]
i,j=1...k

is a random

K ×K matrix such that

det
[
σj�(T , ω)

]
i,j=1...k

�= 0

i.e., it is nonsingular almost surely. Of course, given our (arbitrary) level of
heterogeneity, the main question is for what set of primitives does this securities
market have a dynamically complete equilibrium. There is no known result that
could give us an answer. Once again, our main result implies that if σ is nonsingular,
then for every choice of value of the other parameters, i.e. every profile of utilities
(ui, . . . , uI ) there exists a dynamically complete equilibrium.

These examples are only indicative. One could consider more general perturba-
tions, in particular it is possible to perturb the utility functions. Moreover, with extra
effort we could consider much more general examples by noting that the results of
Kannai and Raimondo (2013) are stable under sufficiently small perturbations of a
certain kind.

4 Existence, Completeness, and Optimality of Financial
Equilibrium

Our existence proof deals with the case where the market is potentially dynamically
complete. The hardest part of this proof is to guarantee the dynamic completeness
of the model at equilibrium. In order to explain why our approach is the proper one
we need to recast the Anderson and Raimondo’s work in a different way. In fact, we
can say that Anderson and Raimondo studied a model where the local collapse of
completeness would force a global collapse. This, from the point of view of theory
of complete markets and optimality, is the most important case, since optimality
is lost even with a local loss of completeness. Hence the really crucial issue is to
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determine exactly when local collapse brings the global one. Of course, this comes
at a cost since we are not looking for a sufficient condition (such as analyticity) but
for the necessary and sufficient condition (quasi-analyticity).

In order to achieve the correct satisfactory level of generality we had to create the
proper mathematical setup, departing from the previous analytic setup. In the first
step we apply a new result in the theory of partial differential equations, developed
by the authors Kannai and Raimondo (2013), that allows us to prove that prices
have a much greater regularity than previously expected. In Appendix 1 we present
the relevant results, and discuss other tools we use in order to prove our theorem;
tools that are technical in nature. We stress the fact that this approach leads to a
much more general and natural formulation of the problem. Moreover, we are able
to recover all previous results without making any extraneous assumptions.

In Appendix 2 we present the existence proof. This makes essential use of the
tools presented in Appendix 1 and of course of the nondegeneracy condition at
terminal time.

The result we prove about existence of a contigent Arrow-Debreu equilibrium
allows us to derive, in a standard way, the existence of the Radner equilibrium.

Observe that analyticity of a function means that locally the function is really
a restriction of a holomorphic function of complex variables. This is clearly too
strong assumption with no clear economic content, unsuitable as a requirement for
the basic economic data. On the other hand, quasi-analyticity has nothing to do
with complex extendability and is the precise framework for passing from local to a
global collapse.

In light of this, statements such as the requirement that the candidate prices be
real analytic in time cannot be relaxed are somewhat misleading.

A crucial technical point in (most of) previous work was to establish joint space-
time analyticity. This was achieved essentially by working with complex variables.
In our method no ad hoc considerations are involved.

Acknowledgements Raimondo’s work was supported by grant DP0558187 from the Australian
Research Council.

Parts of the research reported on in this paper were performed while Y. K. was visiting the
University of Melbourne.

Appendix 1: Quasi-Analytic Functions of Several Variables

In this Appendix, we summarize the results on quasi-analytic functions of several
variables used in our proofs.

Let the sequence of positive numbers {Mk}∞k=0 satisfy the following conditions
(see Tanabe, 1979): there exist positive numbers d0, d1, and d2 such that
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1. {Mk}∞k=0 is logarithmically convex (Q1),

2. Mk+1 ≤ dk0Mk for all k ≥ 0 (Q2),

3.

(
k

j

)
Mk−jMj ≤ d1Mk for 0 ≤ j ≤ k (Q3),

4. Mk ≤ Mk+1 for all k ≥ 0 (Q4),

5. Mk+j ≤ dk+j2 MkMj for all k, j ≥ 0 (Q5).

Let� be an open subset of Rn. We denote by D(�, {Mk}) the set of all infinitely
differentiable functions u defined on � such that for each compact set K ⊂ �

there exist positive constants C0 and C so that for every multi-index α we have the
inequality

max
x∈K

∣∣Dαu(x)∣∣ ≤ C0C
|α|M|α|. (12)

The class D(�, {k!}) coincides with the class of real analytic functions on�.A class
D of functions defined on� is said to be quasi-analytic if the only function u in the
class D such that Dαu(x0) = 0 for all α for a fixed x0 ∈ � is the identically zero
function, u ≡ 0. It is well-known (Carleman-Denjoy Theorem) (see Hörmander,
1990 and Tanabe, 1979) that the class D(�, {Mk}) is quasi-analytic if and only if∑∞
k=0 (Mk)

− 1
k =∞. The sequenceMk = (k log k)k determines a non-real analytic,

but a quasi-analytic, class and satisfies Q1 −Q5. The following class of functions
which are nowhere real analytic in the real line but are nevertheless determined
uniquely by the values of all the derivatives at one point was given by Borel (1901):

g(x) =
∞∑
q=1

∞∑
p=−∞

∞∑
p′=−∞

ϕ(p, p′, q ′)
x + i√2− p+ip′

q

with

∣∣ϕ(p, p′, q ′)∣∣ < e−ep8+p′8+q8

and the coefficients ϕ(p, p′, q ′)′s are nowhere zero (for real functions consider the
class f (x) = |g(x)|2).

Note the well-known facts that if f ∈ D(�, {Mk}) thenDαf ∈ D(�, {Mk}) for
any α, and if f, g ∈ D(�, {Mk}) then the product f · g ∈ D(�, {Mk}). We are
going to make a constant use of these facts.

Quasi-analytic functions of several variables have been studied extensively in
Bierstone and Milman (2004). They prove an implicit function theorem for quasi-
analytic functions.
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Theorem 5 (The Quasi-Analytic Implicit Function Theorem) Suppose that U
is open in Rn × Rp (with product coordinates (x, y) = (x1, . . . , xn, y1, . . . , yp)).
Suppose that f1, . . . , fp are quasi-analytic, (a, b) ∈ U , f (a, b) = 0 and

(∂f/∂y)(a, b)

is invertible, where f = (f 1, . . . , fp). Then there is a product neighborhoodV×W
of (a, b) in U and a quasi–analytic mapping g : V → W such that g(a) = b and

f (x, g(x)) = 0 ∀x ∈ V.

The main subject of Bierstone and Milman (2004) is proving the possibility of
resolution of singularities for quasi-analytic functions. As observed in Bierstone
and Milman (2004, Corollary 5.13), if U is an open set in Rn and f : U → R is
quasi-analytic, then for every x0 ∈ U , there exists a neighborhood Vx0 of x0 such
that either F(x) = 0 for all x ∈ Vx0 or {x ∈ Vx0 : F(x) = 0} is a finite union of
quasi-analytic varieties of dimension< n. From this follows the following

Corollary 6 Let O ⊂ Rn be open and convex, f : O → R is quasi-analytic. If
{x ∈ O : f (x) = 0} has positive Lebesgue measure, then f is identically zero
on O.

Proof If f (x) = 0 for all x ∈ Vx0 and y ∈ O, there is a ray that passes through
Vx0 then the function f has to vanish identically on the connected set O. On the
other hand, if {x ∈ Vx0 : f (x) = 0} is a finite union of quasi-analytic varieties
of dimension < n, {x ∈ Vx0 : f (x) = 0} has Lebesgue measure zero. There is a
countable collection {xn : n ∈ N} such that ∪n∈NVxn ⊃ U , so {x ∈ U : f (x) = 0}
has Lebesgue measure zero. �

Quasi-analyticity of solutions of parabolic partial differential equations such as
those that are satisfied by securities prices has been obtained recently in Kannai and
Raimondo (2013) in a form sufficient for establishing dynamic completeness. The
relevant definitions and assumptions are stated explicitly in the cited paper.

Theorem 7 Let f (t, x) ∈ D(Rn × (0, T ) , {Mk}), u0(x) ∈ L1
loc(R

n) be such that
for every δ > 0

∫
|u0(x)| exp

(
−δ

n∑
i=1

|xi| mm−1

)
dx <∞, (13)

and there exist constants C0, C such that

∫ ∣∣∣∣∣
(
∂

∂t

)k
f (t, x)

∣∣∣∣∣ exp

(
−δ

n∑
i=1

|xi | mm−1

)
dx < C0C

kMk (14)
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uniformly in [0, T ] , for every non-negative integer k. Let A satisfy the assumptions
of Lemma 3 of Kannai and Raimondo (2013). Then the solution u(t, x) of the
differential equation

∂u

∂t
+ Au = f (15)

with the initial condition

u(x, 0) = u0 (16)

given by the formula

u(x, t) =
∫
Rn

U(x, t, y, 0)u0(y)dy +
∫ t

0

∫
Rn

U(x, t, y, s)f (s, y)dyds (17)

is quasi-analytic in R
n × (0, T ).

Observe that in our case m = 2.

Appendix 2: Sketch of Proof of Main Theorem

Proof Here we only sketch the proof, as it follows the one in Anderson and
Raimondo (2008), emphasizing only the points where we differ. In order to prove
existence we observe that (see Dana, 1993) the consumption is given by the solution
of the social planner’s problem

max∑
i=1,..,I ci≤e

I∑
i=1

λiUi(ci),

where the parameters λi are Negishi weights. Since we have von Neumann-
Morgenstern utility functions the solution is equivalent to the solutions of the
problem state-by-state. Therefore the solution is given by

u(λ1, . . . , λI , t, x) = max∑
i=1,..,I xi≤x

I∑
i=1

λihi(t, xi)

and this is equivalent to the solution of the following (Lagrange multipliers) system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ1
∂h1
∂c

= μ̃
λ2
∂h2
∂c

= μ̃
...

λI
∂hI
∂c

= μ̃∑
i=1,..,I xi = x
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The Implicit Function Theorem of Bierstone and Milman (2004, see theorem 5 in
Appendix 1) implies that there exist quasi-analytic functions x1, . . . , xI , μ̃ which
are solutions of the system and this implies, by a well-known result (Dana, 1993),
that

(c1, . . . , cI , pC) = (x1(t, e), . . . , cI (t, e), μ̃(t, e))

is a contingent Arrow Debreu equilibrium with quasi-analytic data, in particular the
relative price of consumption at equilibrium pC(t, x) is quasi-analytic. It follows
that the securities prices pA(t,X) =

(
pA0(t,X), . . . , pAK (t,X)

)
are given by

the expectations (8) and satisfy the partial differential equation (2) with the final
condition

pAj (T , x) = Dj (T ,X(T ))pC(T , x) (18)

and Theorem 7 of Appendix 1 applies. Hence the security prices are quasi-analytic.
Finally quasi-analyticity and non-degeneracy of the dispersion of the final

lump dividend (7), together with corollary (6), imply the non-degeneracy of the
price dispersion matrix. Hence (see Karatzas and Shreve, 1998) the equilibrium is
dynamically complete. �
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Are We There Yet? Mechanism Design
Beyond Equilibrium

Matthew Van Essen and Mark Walker

In mechanism design, Leo Hurwicz created a new field of economics. He used
the theory to bring informational and incentive issues to the fore, and to address
two fundamental questions in economics: in classical allocation problems, what
can economic institutions achieve, and what can’t they achieve? (Hurwicz, 1979;
Hurwicz and Walker, 1990). The tool he used, and the one everyone has used ever
since, is game theoretic equilibrium.

The two classical allocation problems that Leo addressed were price formation in
the pure exchange problem, and the “free rider problem” with public goods. In both
problems it’s noteworthy that we often implement outcomes in real time, as our
institutions produce them, rather than waiting to attain an equilibrium and asking
along the way “Are we there yet?”

Realistically, we are probably never really at an equilibrium. Equilibrium
predictions are useful when we think we will at least be “close to” an equilibrium,
reasonably quickly, or when our interest is primarily in a system’s long-run state.

But if outcomes are going to be implemented in or out of equilibrium, then clearly
we need to know something about disequilibrium outcomes. Knowing only about
equilibrium outcomes is not good enough.

We view this as a variation on Wilson’s argument for “robust” mechanism design
(Wilson, 1987). Wilson’s emphasis was on the theory’s assumption of common
knowledge of the participants’ preferences and information. Milgrom subsequently
went further, maintaining that “the behavior of [a mechanism’s participants] cannot
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be regarded as perfectly predictable” (Milgrom, 2004). Milgrom’s larger point was
that when mechanism design is required to actually perform well on the ground,
“mechanisms that are optimized to perform well when the assumptions are exactly
true may still fail miserably in the much more frequent cases when the assumptions
are untrue.”

We take this view a step further, treating the idea that the players in a game
will play equilibrium strategies as an additional assumption. In some cases the
equilibrium assumption is fruitful: the equilibrium prediction is close enough to the
choices the players actually make, and this tells us with some degree of accuracy
what the welfare implications will be and what will happen if we change the rules
of the game or if some features of the environment change. But this requires either
that we determine, for any given mechanism, whether actual participants will play
“close enough” to equilibrium, or else that we design the mechanism in the first
place to be “robust” to non-equilibrium play.

This is the approach we have taken in some recent research we describe here
on public-good mechanisms. In a paper with Lazzati, we conducted an experiment
with three well-known Lindahl mechanisms, mechanisms whose equilibria produce
Lindahl allocations and prices. Over the course of many plays, by many subjects,
equilibrium play was never observed in the experiment. Worse, the play that was
observed often produced infeasible outcomes and outcomes with welfare properties
that were much worse than the welfare properties of equilibrium outcomes. There
are reasons to believe that the performance of these three mechanisms would be
at least roughly representative of other public-goods mechanisms that economists
have proposed. In order to provide the necessary incentives, the mechanisms
use unintuitive outcome functions that do not seem to lead participants to the
mechanisms’ equilibria. Moreover, the features that provide these incentives also
have the potential to create infeasible and otherwise undesirable outcomes when not
in equilibrium.

These experimental results led us to devise a mechanism that would be intuitive,
and if not necessarily optimal, at least satisfactory, whether in or out of equilib-
rium. The approach we adopted was to emulate simple mechanisms for attaining
a Walrasian equilibrium, such as the mechanism introduced by Dubey (1982).
The motivation here was that when there are only two persons, the problem of
selecting an amount of a public good, together with the allocation of its cost, is
exactly equivalent to the standard Edgeworth box two-person two-good exchange
economy. (To see this geometrically, compare the Edgeworth box and the Kolm
triangle.) Mechanisms such as Dubey’s are transparent, relying on price and quantity
proposals, so participants might be expected to play an equilibrium, or at least
close to an equilibrium; the mechanisms also have desirable equilibria; and their
outcomes are well-defined when not in equilibrium. Following this idea, we first
defined a price-quantity mechanism for the two-person Edgeworth box problem,
then reinterpreted it for the two-person public-good problem, and then generalized
the public-good version of the mechanism to an arbitrary number of participants.

Does the new price-quantity mechanism perform any better than existing public-
good mechanisms? Or, since it has many equilibria, most of which are not Pareto
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optimal, does it actually perform worse? We devised and conducted an experiment
to answer that question.

We begin with a brief description of our experiment with three Lindahl mecha-
nisms. We follow that with a description of the price-quantity mechanism. And we
follow that in turn with a description of our experiment using the new price-quantity
mechanism, and a comparison of its performance to the performance of the three
Lindahl mechanisms.

1 An Experiment: Three Lindahl Mechanisms

In Van Essen, Lazzati, and Walker (2012; henceforth VLW) we conducted an
experiment to evaluate the performance of three mechanisms designed to achieve
Lindahl allocations at their equilibria, the mechanisms introduced by Walker (1981),
Kim (1993), and Chen (2002). The mechanisms were applied to the following
simple public-good allocation problem: three participants must choose the quantity
q of a public good and also how to allocate among themselves the cost of providing
the q units.

Each of the three mechanisms requires each participant to choose an action,
or message, mi , and produces an outcome (q, t1, t2, t3) ∈ R+ × R

3, where ti
denotes the tax to be paid by participant i; if ti < 0, then i is paid |ti | dollars.
The particular mechanism is defined by the domain from which participants may
choose their messagesmi and by the outcome function ϕ that maps message profiles
(m1,m2,m3) into outcomes (q, t1, t2, t3).

The subjects in the experiment were divided into groups of three and each three-
person group used one of the three mechanisms repeatedly, forty times, to determine
an outcome (q, t1, t2, t3) in each of the 40 periods. Each group used the same
mechanism for all 40 periods; each subject played the same role, i = 1, 2, or 3,
at each of the 40 periods; and the subjects were paid for all 40 outcomes at the end
of the experimental session.

The public good cost the group twelve experimental dollars (E$) per unit. Each
group member i = 1, 2, 3 received a benefit of vi(q) = aiq − q2 E$ when q units
were provided, where a1 = 22, a2 = 16, a3 = 28. The Pareto allocations are the
ones that maximize the economic surplus S(q) =∑3

1 vi(q)− 12q, viz. q̂ = 9 and
S(̂q) = 243. The Lindahl outcome is unique and independent of the mechanism:
the Lindahl quantity is q = 9, the unique Pareto public good level, and the Lindahl
taxes are t1 = 36, t2 = −18, t3 = 90.

A total of 81 subjects participated in the experiment: nine three-subject groups
for each mechanism. This provided, for each mechanism, 360 “plays” (9 groups
times 40 periods) and 1080 individual decisions and outcomes (3 times 360).
Altogether, for the three mechanisms, there were 1080 plays and 3240 individual
decisions and outcomes.
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Table 1 Means and standard
deviations of the economic
surplus S(q) attained by each
mechanism (360 plays in
each mechanism)

Mean Std dev

Kim 164.4 34.0

Chen 162.7 69.0

Walker 79.4 71.8

Fig. 1 Distributions of economic surplus in three Lindahl mechanisms

We provide a brief summary of the results:

Equilibrium, Lindahl, and Pareto In 1080 plays, Nash equilibrium and the
Lindahl outcome were never observed; all outcomes were disequilibrium outcomes.
The frequencies of the Pareto outcome q = 9 were 25 plays in the Chen mechanism
(6.9% of the 360 plays); 19 plays in the Kim mechanism (5.3%); and 13 plays in the
Walker mechanism (3.6%).

Economic Surplus Figure 1 and Table 1 describe the distributions of the economic
surplus S(q) earned by the groups: the Kim and Chen mechanisms produced
very similar means, much larger than the Walker mechanism’s mean; and the
Kim mechanism produced much less variability across groups than the other two
mechanisms.

Budget Imbalances and Infeasible Outcomes While the economic surplus the
Chen and Kim mechanisms produced was, on average, only about 30% below the
optimal level of E$ 243, the mechanisms experienced a much more serious failure:
the budget was balanced in only five of the 360 plays in the Chen mechanism, and
only twelve times out of 360 plays in the Kim mechanism. About half the time (54%
and 51%, respectively) there was a budget surplus: the participants were required
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to pay more in taxes than the cost of the public good. Since these excess taxes
cannot be rebated to the participants without altering the mechanism, we must count
them as an additional cost of the mechanism, thereby reducing the economic surplus
the mechanism generates for its participants. Conversely, in the case of a budget
deficit (the remaining 44% and 46% of plays, respectively), implementation of the
mechanism’s outcome requires an infusion of resources from external sources—
again, an additional cost of implementing the mechanism.

Taking these additional costs into account, the economic surplus produced by
the Kim mechanism was reduced, on average, by 38%, from E$ 164 to E$ 101. The
magnitudes of the budget imbalances were far more serious in the Chen mechanism:
in more than 90% of the 360 plays the budget imbalance was greater than E$ 100;
it was more than E$ 1,000 in one-third of the plays; and it was occasionally more
than E$ 10,000. Deducting the budget imbalances from the (direct) economic surplus
S(q) reduced the Chen mechanism’s average (net) economic surplus to a negative
E$ 1,051 (163–1214).

The budget is identically balanced in the Walker mechanism, but that mecha-
nism’s average economic surplus was still well below the Kim mechanism’s average
net economic surplus of E$ 101.

Individual Rationality We say that an outcome is acceptable to a participant if
it leaves him at least as well off as he would be at the status quo outcome in
which q = 0 and there are no taxes or transfers. When there is a natural status
quo outcome like this, or where there is a need to guarantee participation in a
mechanism, outcomes are often called individually rational if they are acceptable to
every participant. Lindahl allocations are always individually rational, so each of the
mechanisms in our experiment always produces an individually rational outcome at
a Nash equilibrium.

But we’ve seen that these mechanisms never produced a Nash equilibrium.
And in each of the mechanisms, out-of-equilibrium profiles (m1,m2,m3) of
messages may yield outcomes that are not individually rational. This occurred with
considerable frequency in our experiment: 39% of the 1080 individual outcomes in
the Chen mechanism were unacceptable to a participant, 11% were unacceptable in
the Kim mechanism, and 29% were unacceptable in the Walker mechanism.

Summarizing These three mechanisms all yield the Lindahl outcome at their
equilibria, but in our experiment none of the mechanisms was ever in equilibrium.
Disequilibrium is certainly not bad per se: if outcomes are not far from equilibrium,
and if welfare is not far from what it would be in a good equilibrium, that would
generally be considered a success. But the three Lindahl mechanisms we included
in our experiment mostly failed, rather badly, to satisfy several criteria that we
would generally regard as essential when designing an allocation mechanism.
As we describe in the following section, we used these failures as a guide to
design a mechanism that would be more robust to out-of-equilibrium behavior—a
mechanism that would be relatively successful even if typically out of equilibrium.



210 M. Van Essen and M. Walker

2 The PQ Mechanism

In Van Essen and Walker (2017) we defined a mechanism, which we call the
price-quantity or PQ mechanism, in which participants make quantity-and-price
proposals (qi, πi). These proposals are the arguments of an outcome function ϕ
that determines the level q at which a public good will be provided, as well as the
amount ti each participant i will pay to finance the public good. The price proposal
πi and the tax ti may be any real numbers; if πi is negative, |πi | is a proposed
per-unit subsidy to be paid to i; if ti is negative, |ti | is a proposed total payment to i.

We assume that each participant’s maximum ability to pay (for example, his
income or wealth) is observable and we denote it by ẙi . The mechanism restricts
participant i to proposals that satisfy πiqi � ẙi . For any ẙ ∈ R+ we denote the set
of all such proposals by ψ(̊y):

ψ(̊y) = {(q, π) ∈ R
2 | q � 0 and πq�ẙ},

and the set of all profiles of admissible proposals as �:

� = ×ni=1ψ(̊yi).

We assume that the cost of providing q units of the public good1 is C(q) = cq .
The PQ mechanism’s outcome function ϕ : � → R

N+1 is defined as follows:

q =
{

min{q1, . . . , qN }, if
∑
i πi � c

0, otherwise;

ti = piq, where pi = 1

N
c + πi − 1

N

n∑
j=i
πj (i = 1, . . . , N).

Thus, if the participants’ price proposals πi cover the cost of production (i.e.,∑
i πi � c), then the mechanism produces the smallest quantity anyone has

proposed. If the price proposals don’t cover the cost, the mechanism produces zero.
Consequently, if q > 0, then pi � πi , and if q = 0, then ti = 0. Therefore each
participant never pays more than the amount πiqi he has proposed.

2.1 The PQ Mechanism’s Properties

We denote profiles
(
(q1, π1), . . . , (qN, πN)

)
of proposals by ξ . For every profile ξ

of proposals, whether it’s an equilibrium or not, the mechanism’s outcome (q, t) =
(q, t1, . . . , tN ) = ϕ(ξ) has the following properties:

1For a more general cost function C(q), c is replaced by C(q)/min{q1, . . . , qN } in the equations
defining the outcome function. Some of the properties described below do not hold for a nonlinear
cost function.
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(P1) The budget is balanced—i.e.,
∑N
i=1 ti = C(q)—because

∑N
i=1 pi ≡ c.

(P2) No participant pays more than his proposed price πi per unit of the public
good.

(P3) As a consequence of (P1) and (P2) and the fact that πiqi � ẙi , the outcome
is both individually feasible and collectively feasible—i.e., ti � ẙi for each
i = 1, . . . , N , and C(q) �

∑N
1 ẙi .

Assume that each participant’s preference over outcomes is represented by a utility
function ui(q, ti) which is strictly quasiconcave, strictly increasing in q , and strictly
decreasing in ti . (Note that this is equivalent to saying the participant has a strictly
quasiconcave, strictly increasing utility function over pairs (q, y) ∈ R

2+, where yi is
his after-tax dollar holdings, ẙi − ti .)

As noted above, we say that an outcome (q, t) = (q, t1, . . . , tN ) is acceptable
to i if ui(q, ti) � ui(0, 0)—i.e., if participant i is at least as well off at the outcome
(q, t) as he is at the status quo outcome—and a proposal ξi = (q, πi) is acceptable
to i if ui(q, πiq) � ui(0, 0). For each i and each ξi = (q, πi) ∈ ψ(̊yi), let ϕi(ξi)
denote the set of all outcomes that can occur if i chooses the proposal ξi :

ϕi(ξi) := {(q, t) ∈ R
N+1 | (q, t) = ϕ(̃ξ) for some ξ̃ ∈ �s.t.̃ξi = ξi }.

We say that a proposal ξi ∈ ψ(̊yi) is uniformly acceptable to i if every outcome in
ϕi(ξi) is acceptable to i.

(P4) If preferences are quasiconcave, then under the outcome function ϕ every
proposal ξi = (qi, πi) that satisfies ui(qi, πiqi) � ui(0, 0) is uniformly
acceptable to player i. In other words, any proposal that’s acceptable to a
participant is uniformly acceptable to him. If he makes only proposals that are
acceptable to him, then the outcome under ϕ (whether in equilibrium or not)
will always be acceptable to him.

The properties (P1)–(P4) hold for all profiles of proposals and therefore for all
outcomes of the mechanism, not merely for the equilibrium outcomes. This is in
contrast to the three Lindahl mechanisms in the VLW experiment: although (P1)
and (P3) hold for equilibrium outcomes in those mechanisms, (P1)–(P4) fail to hold
in general. And indeed, in the VLW experiment the mechanisms’ outcomes often
violated these properties, generally by large amounts.

The PQ mechanism’s equilibria also have several properties worth noting. Recall
that an outcome is individually rational if it is acceptable to every participant i =
1, . . . ., n.

(P5) It follows from (P4) that a Nash equilibrium of the PQ mechanism is
individually rational.

(P6) The Lindahl outcome is an equilibrium outcome.

The PQ mechanism has many Nash equilibria, in fact a continuum of them. (These
are described in some detail in Van Essen and Walker (2017)). In particular, there are
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equilibria in which the public good level is zero. In order to gain some insight into
the outcomes that participants in the mechanism will actually attain, we conducted
an experiment.

3 An Experiment: The PQ Mechanism

In Van Essen and Walker (2018) we report on an experiment we conducted to
compare the performance of the PQ mechanism with the results in the VLW
experiment. In order to generate results that can be directly compared to the results
in the VLW experiment, we used the same public-good problem: three participants,
with the same valuation functions vi(x) for each i = 1, 2, 3 and the same cost
function, C(x) = 12x. Therefore the unique Pareto level of the public good is the
same, x̂ = 9; the maximum possible economic surplus is S(̂x) = E$ 243; and the
Lindahl taxes are t1 = 36, t2 = −18, t3 = 90. Each participant’s surplus vi (̂x)− ti
at the Lindahl outcome is E$ 81. The experiment had 81 subjects, divided into 27
three-person groups.

We describe the results of this experiment along several dimensions, in each case
comparing the results to those described above in the VLW experiment.

3.1 Equilibrium

The PQ mechanism’s participants played equilibrium profiles in 282 of the 1080
plays (26%), and in 44% of the 270 later-period plays, from period 31 to period 40.
Recall that the participants in the Lindahl mechanisms never played an equilibrium,
out of 360 plays in each mechanism. The numbers are perhaps misleading, however,
because the PQ mechanism has many equilibria while each of the other three
mechanisms has only one equilibrium. The high frequency of equilibrium play in
the PQ mechanism might be mostly due to nothing more than the presence of so
many equilibria.

Nine of the twenty-seven groups attained one of the equilibria and continued to
play that equilibrium in nearly every subsequent period. Each of these instances of
equilibrium play produced public good levels of either 6 or 7 units, with E$216 or
E$231 of economic surplus, somewhat less than the Pareto level of E$243. Clearly,
none of these observed equilibria was the PQ mechanism’s Lindahl equilibrium,
since the public good levels they achieved were smaller than the Pareto public good
level of 9 units.
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Fig. 2 Observed distributions of economic surplus

3.2 Economic Surplus

Figure 2 depicts the average surplus attained, over all 40 periods, by each of the 27
groups in our experiment, as well as by each of the 9 groups in each of the three
Lindahl mechanisms in the VLW experiment. Each of the graphs orders the 27 or 9
observed levels of surplus from smallest to largest, left to right—so the graphs are
the empirical cdf’s of the observed levels of surplus, with the cumulative frequencies
(or percentiles) on the horizontal axis.

It’s clear from the graphs in Fig. 1 that the groups who did the worst in the Chen
mechanism did much worse than the corresponding worst-performing groups in the
PQ mechanism, and the groups who did the best in the Chen mechanism did slightly
better than the corresponding best-performing groups in the PQ mechanism. The
welfare distributions generated by the Kim and the PQ mechanisms were quite close,
and the distribution of welfare produced by the Walker mechanism was significantly
dominated by the PQ distribution. The mean surplus achieved by the PQ mechanism
was E$ 175 and the standard deviation of the distribution is 28.8. The mean is not
statistically different from the means for the Chen and Kim mechanisms that appear
in Table 1. The standard deviation is lower than the standard deviation of 69 for the
Chen mechanism at the 5% significance level, and is not statistically different than
the Kim distribution’s standard deviation of 34.

Measured by the direct economic surplus the mechanisms produced, the PQ
mechanism seems to have performed at least as well as the Chen and Kim
mechanisms, and clearly better than the Walker mechanism.
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Budget Balance and Feasibility Recall that the issues of budget imbalance and
infeasibility of outcomes were a serious problem in the Chen and Kim mechanisms:
the budget was almost never balanced in either mechanism, and when we took these
costs into account in measuring the economic surplus the mechanisms produced, the
reduction in surplus was significant for the Kim mechanism (reducing the surplus
from E$ 164 to E$ 101, and overwhelming in the Chen mechanism (reducing the
surplus from E$ 163 to negative E$ 1,051).

The property (P1) of the PQ mechanism—that the budget is always balanced,
whether in or out of equilibrium—therefore appears to be an important advantage.
The economic surplus the PQ mechanism produced was as large as, and no more
variable than, the surplus produced by the Chen and Kim mechanisms directly. And
when we take account of the additional costs imposed on mechanisms by budget
imbalances, the net surplus of the other two mechanisms falls well below the E$ 175
surplus produced by the PQ mechanism.

Individual Rationality Recall that in the Chen and Kim mechanisms many of
the outcomes were not individually rational. Because the PQ mechanism has the
uniform acceptability property (P4) and each participant’s valuation function is
concave, a participant in the PQ mechanism, by always choosing a proposal that’s
acceptable to him, can ensure that the outcome will always make him at least as well
off as the status quo. Only 32 of the 3240 proposals made by the 81 subjects in our
experiment were not acceptable (less than one percent), and only one of the 1080
outcomes failed to be individually rational, by failing to be acceptable to only one
participant (less than one-tenth of one percent).

Summarizing Ignoring budget imbalances and infeasibility of outcomes in the
Lindahl mechanisms, and in spite of the multiple non-optimal equilibria of the
PQ mechanism, the PQ-mechanism performed at least as well as the Lindahl
mechanisms we had examined in our earlier experiment. If we then take account
of unbalanced budgets—and include their costs as reductions in welfare—the PQ
mechanism clearly outperformed the Lindahl mechanisms.

4 Concluding Remarks

In the theory of mechanism design, equilibrium analysis has paid enormous
dividends, illuminating myriad issues, from the possibility of providing economic
agents with differing incentives, to the important roles of information and beliefs—
all of which were anticipated by Hurwicz in the earliest stages of his development
of the theory.

In Putting Auction Theory to Work, Milgrom almost exclusively puts mechanism
design’s equilibrium theory to work. But at the outset he points out that “the
equilibrium analysis of game theory is an abstraction based on a sensible idea”
which “relies on stark and exaggerated assumptions to reach theoretical conclusions
that can sometimes be fragile.” He lists assumptions about players perfectly
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maximizing, about players’ information, and about their beliefs about other players’
maximization, information, and beliefs, and points out that “these assumptions are
extreme.”

To Milgrom’s list of assumptions we would add the “assumption” of equilibrium.
Without denying the power and influence of the equilibrium assumption (like all
of us, the authors have made careers from a reliance on it), we suggest that it
would be fruitful to incorporate disequilibrium analysis into the theory as well.
We mean not merely that we should ask whether disequilibria will converge over
time, or how long convergence will take—i.e., “Are we there yet?” Rather, we
should recognize that we’re never actually going to get there—it’s the journey that
matters, not the destination. As we’ve suggested above, we regard this idea as an
extension of the “Wilson doctrine” that mechanisms should be “robust.” The notion
of universal acceptability that we introduced here, and which we applied to all
behavior, disequilibrium as well as equilibrium, in the PQ mechanism for a public
good, is a first attempt at this approach.
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Formation of Committees Through
Random Voting Rules

Souvik Roy, Soumyarup Sadhukhan, and Arunava Sen

1 Introduction

A classic paper in the theory of mechanism design is Hurwicz (1972). It considered
an exchange economy with at least two agents and demonstrated the impossibility
of constructing an allocation rule that satisfied strategy-proofness, efficiency, and
individual rationality. The paper inspired an enormous and rapidly expanding
literature that analyzes socially desirable goals that can be achieved in the presence
of private information and strategic agents, in a wide variety of models. The present
paper contributes to that literature by investigating the structure of rules that permit
randomization in the well-known model of committee formation.

The committee formation model is due to Barberà et al. (1991). The problem
is one of choosing a committee from a set of available candidates based on the
preferences of agents who have the responsibility of selecting the committee. The
preferences of each agent are assumed to be separable, i.e. if the agent “likes” a
candidate, she strictly prefers a committee where this candidate is included to one
where she is excluded, the status of all other candidates remaining unchanged. A
committee formation rule or a social choice function is a map that associates every
collection of (separable) agent preferences with a committee. Agent preferences
are private information—a fact that necessitates the elicitation of these preferences
via voting. A social choice function is strategy-proof if truth-telling is an optimal
strategy for each agent irrespective of her beliefs about how other agents may
vote. The main result of Barberà et al. (1991) is that strategy-proof social choice
functions (that additionally satisfy a weak efficiency property called unanimity)
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must be decomposable. In other words, the decision on each candidate’s inclusion
must be taken independently of the decisions on others and must be based only
on preferences that agents have over the candidate (called marginal preferences).
The decomposability condition on social choice function rules out many plausible
rules. For instance, if there are two candidates, we could start with candidate 1 and
consider candidate 2 only if 1 is not selected. Breton and Sen (1999) show that the
decomposability property of strategy-proof social choice functions is very general—
it holds for all multi-dimensional models with separable preferences.

In our paper we consider the same model as in Barberà et al. (1991) but analyze
committee formation rules that permit randomization. A random social choice
functions is a map that associates a collection of (separable) agent preferences with a
probability distribution over committees. Randomization is a natural way to resolve
conflicts of interest amongst agents especially in models where compensation via
monetary transfers is not feasible. The analysis of randomized mechanisms in
voting models was initiated in Gibbard (1977). Once randomization is allowed,
the evaluation of truth-telling versus misrepresentation involves the comparison of
lotteries. This evaluation typically involves domain restrictions on preferences over
lotteries (i.e., all preferences over lotteries are not allowed) as a result of which the
class of strategy-proof social choice functions expands (see Chatterji et al., 2014).1

According to our characterization result, a random social choice function is
strategy proof and satisfies unanimity2 if and only if it satisfies the properties of
monotonicity and marginal decomposability. Monotonicity is a familiar property in
mechanism design theory. In our model, it requires the probability of the inclusion
of a candidate in every possible committee to be non-decreasing as more agents
approve the candidate. Furthermore, if no agent approves a candidate, the candidate
is never selected; on the other hand, if all agents approve a candidate, she is always
selected.

Consider an arbitrary subset of candidates and two preference profiles where all
agents agree in their opinions over this subset of candidates (they may differ in their
opinion of other candidates). Marginal decomposability is satisfied if the marginal
probability distribution over the subset of candidates is the same in the two profiles.
Suppose there are three agents and five candidates. Consider the set of the first three
candidates and two preference profiles where all agents agree in their opinions over
the first three candidates. Pick any subset of the first three candidates, say candidates
one and three. If marginal decomposability is satisfied, the probability of candidates
one and three being selected in the committee at the two profiles must be the same.
Note that marginal decomposability only guarantees that marginal probabilities will
be uniquely determined by marginal preferences, but does not say anything about
the joint probability distribution. Thus decomposability in the sense of Breton and

1There are several ways in which this can be done. Here we follow the standard stochastic
dominance approach developed in Gibbard (1977).
2A random social choice function satisfies unanimity if it picks a committee that is first-ranked by
all agents, with probability one.
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Sen (1999) is not guaranteed. However, marginal decomposability is equivalent to
decomposability when we restrict attention to deterministic social choice functions
thus getting back the decomposability result of Breton and Sen (1999) in our model.

Finally we consider the special problem of forming a committee with a number
of members. A random social choice function is onto if every committee of the
required size is selected with probability one at some preference profile. We show
that every onto and strategy-proof RSCF in this case is a random dictatorship in
an appropriate sense. This result follows from an application of applying the main
result of Gibbard (1977).

2 The Model

LetM = {1, . . . ,m} be a finite set of m components. For each component k, Ak =
{0, 1} is the set of alternatives available in component k. For any K ⊆ M , AK =∏
k∈K Ak denotes the set of alternatives available in components in K . The set of

(multi-dimensional) alternatives is given by AM . For ease of presentation, we write
A instead of AM . Note that the number of alternatives in A is 2m. Throughout this
paper, we do not use braces for singleton sets.

In the model M denotes the set of possible candidates from which a committee
has to be formed. Thus each component refers to a possible candidate for a
committee, where the numbers 0 and 1 for a component refer to the social states
where the corresponding member is excluded and included in the committee,
respectively. Similarly, every alternative a = (a1, . . . , am) ∈ A refers to a
committee in which the member k is present if and only if ak = 1.

Let N = {1, . . . , n} be a set of finite set of n agents. Each agent i has a strict
preference orderingPi over the elements ofA. We assume that all Pi ’s are separable,
i.e. for all a−k, b−k ∈ AM−k and all xk, yk ∈ Ak , (xk, a−k)Pi(yk, a−k) holds if and
only if (xk, b−k)Pi(yk, b−k). We denote by Pki the marginal preference induced by
Pi over component k. The existence of marginal preference orderings is guaranteed
by separability. We let τ (Pi) and τ (P ki ) denote the top-ranked alternative in Pi and
the top-ranked alternative in the kth component according to the marginal ordering
P ik . In general, rt (Pi) the t-th ranked alternative in Pi where t ∈ {1, 2, . . . , 2m}.
The upper contour set of an alternative a at preference Pi denoted by U(a, Pi) is
defined as follows: U(a, Pi) = {b | bPia} ∪ a. Let D denote the set of all separable
preferences over A. An element PN of Dn is called a (preference) profile.

A random social choice function (RSCF) ϕ is a mapping ϕ : Dn → �A where
�A denotes the set of probability distributions over A. We define some important
properties of an RSCF most of which are familiar from the literature.

Definition 2.1 An RSCF ϕ : Dn → �A is unanimous if for all PN and all a ∈ A,

[τ (Pi) = a for all i ∈ N] =⇒ [ϕa(PN) = 1].
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If all agents have a common top-ranked committee at a profile, a unanimous
RCSF picks that committee at that profile. It is clearly a weak form of efficiency.

Definition 2.2 An RSCF ϕ : Dn → �A is strategy-proof if for all i ∈ N , all
Pi, P

′
i ∈ D, and all P−i ∈ Dn−1, ϕ(Pi, P−i ) first order stochastically dominates

ϕ(P ′i , P−i ) according to Pi , that is,

j∑
t=1

ϕrt (Pi)(Pi, P−i ) ≥
j∑
t=1

ϕrt (Pi)(P
′
i , P−i ) for all j = 1, . . . , 2m.

Our notion of strategy-proofness for RSCFs is the standard one of first-order
stochastic dominance introduced in Gibbard (1977). No agent can strictly increase
the aggregate probability over any upper contour set according to her true prefer-
ences. If it were possible to do, there would exist a utility representation of her
true preferences with the property that the expected utility from misrepresentation
strictly exceeds that from truth-telling.

3 Formation of Arbitrary Committees

In this section, we consider the problem of forming a committee by random voting
rules. We assume that there are no restrictions on the committee that is to be
formed.3 A few additional concepts are required for the analysis.

Let N denote the set of all subsets (power set) of N . For any K ⊆ M , SK

denotes a collection (Sk)k∈K , where Sk ⊆ N for all k ∈ K . Also NK denotes the
set of all such collections. Note that the cardinality of NK is (2n)|K |. We illustrate
these notions by means of an example.

Example 3.1 SupposeN = {1, 2, 3, 4},M = {1, 2, 3} andK = {2, 3}. An example
of S{2,3} is (S2, S3) where S2 = {1, 2, 4} and S3 = {2, 3}. Also, N {2,3} is the
collection of all (S2, S3) where S2 and S3 are arbitrary subsets of {1, 2, 3, 4}.

Consider an arbitrary K ⊆ M and profile PN ∈ Dn. Then SK(PN) denotes an
element (Sk)k∈K of NK such that for all k ∈ K , we have i ∈ Sk if and only if
τ (P ki ) = 1. In other words Sk consists of the agents who have 1 as the top-ranked
element in component k at the profile PN . Hence Sk consists of exactly those agents
who approve candidate k for the committee at the profile PN .

Example 3.2 Suppose N = {1, 2, 3, 4} and M = {1, 2, 3}. Consider the
profile PN where the top-ranked alternatives of the agents are as follows:
((1, 0, 1), (0, 0, 1), (1, 1, 0)). Let K = {1, 3} or {1, 2, 3} Then, S{1,3}(PN ) =
({1, 3}, {1, 2}) and S{1,2,3}(PN) = ({1, 3}, {3}, {1, 2}).

3We will consider one such problem in the next section.
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For K ⊆ M , aK ∈ AK and PN ∈ Dn, we define ϕaK (PN) =∑
{b∈A|bK=aK} ϕb(PN ). Thus ϕaK (PN) is the total probability of realizing outcomes

whose kth component agrees with the kth component of aK for all k ∈ K , in the
probability distribution ϕ(PN).

3.1 Characterization

In this section, we identify properties that characterize unanimous and strategy-
proof RSCFs in our model. The first property is marginal decomposability. Roughly
speaking, it says that the marginal probability distribution generated by the RSCF
over an arbitrary set of components depends only on the preferences of the agents
over those components. In particular, it does not change if agents change their
preferences over the other components.

Definition 3.1 An RSCF ϕ : Dn → �A is marginally decomposable if for all
K ⊆ M , PN, P̄N ∈ Dn with SK(PN) = SK(P̄N ), and all aK ∈ AK , we have

ϕaK (PN) = ϕaK (P̄N ).

Marginal decomposability is weaker than decomposability as defined in Breton
and Sen (1999). As mentioned earlier, marginal decomposability requires the
marginal probability distribution over a set of components at a profile to be
completely determined by the marginal preference profile over those components.
Importantly, it does not say anything about the joint probability distribution.
Clearly, a marginally decomposable RSCF is decomposable if the joint probability
distribution is given by the product of marginal probability distributions, i.e. if
the joint probability distribution is independent over components. In our model,
unanimity and strategy-proofness imply marginal decomposability; however, they
do not imply independence over components.

We illustrate the notion of marginal decomposability by means of the following
example.

Example 3.3 Let N = {1, 2} and M = {1, 2}. Consider the RSCF ϕ : Dn → �A

given in Table 1. Here, rows are indexed by the S1(PN) and columns are by
S2(PN). The matrix, say X, corresponding to row Ŝ1 and column Ŝ2 gives the

Table 1 Outcomes of ϕ 1\2 Ø {1} {2} {1, 2}
Ø

(
1 0
0 0

) (
0.3 0.7
0 0

) (
0.5 0.5
0 0

) (
0 1
0 0

)
{1} (

0.4 0
0.6 0

) (
0.2 0.2
0.1 0.5

) (
0.3 0.1
0.2 0.4

) (
0 0.4
0 0.6

)
{2} (

0.7 0
0.3 0

) (
0.15 0.55
0.15 0.15

) (
0.25 0.45
0.25 0.05

) (
0 0.7
0 0.3

)
{1, 2} (

0 0
1 0

) (
0 0

0.3 0.7

) (
0 0

0.5 0.5

) (
0 0
0 1

)
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Table 2 Outcomes of ϕ1
1 1 ϕ1

1

Ø 0

{1} 0.6

{2} 0.3

{1, 2} 1

Table 3 Outcomes of ϕ2
1 2 Ø {1} {2} {1, 2}

ϕ2
1 0 0.7 0.5 1

value of ϕ(PN), where S1(PN) = Ŝ1, S2(PN) = Ŝ2, and ϕ(0,0)(PN) = X11,
ϕ(0,1)(PN) = X12, ϕ(1,0)(PN) = X21, and ϕ(1,1)(PN) = X22. For instance,
ϕ(0,1)((0, 1), (1, 0)) = 0.55, where ((0, 1), (1, 0)) denotes the profile PN with
r1(P1) = (0, 1) and r1(P2) = (1, 0).

We argue that ϕ satisfies marginal decomposability. Consider, for instance, the
row corresponding to the set {2}. Note that for each matrix X in this row, X21 +
X22 = 0.3, that is, the marginal probability that candidate 1 is elected is 0.3, as
required by marginal decomposability. It can be readily verified that ϕ satisfies this
constant marginal property for other rows and columns. Consequently the RSCF is
marginally decomposable.

We now argue that the ϕ is not decomposable in the sense of Breton and Sen
(1999). For k ∈ {1, 2}, let ϕk be the marginal RSCF on the k-th component that is
induced by ϕ by means of marginal decomposability. In Tables 2 and 3, we present
ϕ1 and ϕ2, respectively.

Consider a profile PN with r1(P1) = (0, 1) and r1(P2) = (1, 0), that is,
S1(PN) = {2} and S2(PN) = {1}. If ϕ were decomposable, then ϕ(1,0)(PN) must
be 0.3×0.3 = 0.09. However, as given in Table 1, ϕ(1,0)(PN ) = 0.15, which means
ϕ is not decomposable.

Next, we define a monotonicity property for an RSCF. This is a standard property
in the literature on strategy-proof social choice functions which says that the
likelihood of an outcome increases as agents become more “favorable” to that
outcome.

Definition 3.2 An RSCF ϕ : Dn → �A satisfies the monotonicity property if for
all k ∈ M , all a−k ∈ AM−k and all PN, P̄N ∈ Dn such that Sl(PN) = Sl(P̄N ) for
all l ∈ M \ k and Sk(PN) ⊆ Sk(P̄N ), we have

(i) ϕ(1,a−k)(PN) ≤ ϕ(1,a−k)(P̄N ), and
(ii) if Sk(PN) = Ø and Sk(P̄N ) = N , then ϕ(1,a−k)(PN) = 0 and ϕ(1,a−k)(P̄N ) = 1.

Suppose that some agents change preferences in favor of some candidate
while maintaining their position on all other candidates. According to (i) of the
monotonicity property,the probability of each committee including that candidate
must increase. According to (ii) a candidate not approved by any agent is not
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selected with certainty and a candidate approved by all agents is selected with
probability one. The monotonicity property is illustrated below.

Example 3.4 Consider the RSCF ϕ given in Table 1. We argue that it satisfies
monotonicity properties. To see this, take, for instance, the profiles indexed by
({1}, {2}) and ({1, 2}, {2}). Note that agent 2 has joined agent 1 in approving
candidate 1 from the former profile to the latter, while keeping his/her stand
unchanged for candidate 2. By monotonicity, the probability of each committee that
includes candidate 1 must increase (weakly). This is indeed the case here since
ϕ(1,0)({1}, {2}) = 0.2 < ϕ(1,0)({1, 2}, {2}) = 0.5 and ϕ(1,1)({1}, {2}) = 0.4 <
ϕ(1,1)({1, 2}, {2}) = 0.5. It can be directly verified that ϕ satisfies this condition for
other relevant cases. Hence it is monotonic.

Now, we present our characterization result for unanimous and strategy-proof
RSCFs.

Theorem 3.1 An RSCF ϕ : Dn → �A is unanimous and strategy-proof if and only
if it is monotone and marginally decomposable.

Proof (If part) Let ϕ : Dn → �A be monotone and marginally decomposable. We
show ϕ is unanimous and strategy-proof. Unanimity follows from (ii) in Definition
3.2. We proceed to show that ϕ is strategy-proof.

Take b ∈ A and let Pi and P̄i be two arbitrary preferences of some agent i. It is
enough to show that

ϕU(b,Pi)(PN) ≥ ϕU(b,Pi)(P̄i , P−i ). (1)

We assume without loss of generality that there exists m̂ < m such that r1(P ki ) =
1 and r1(P̄ ki ) = 0 for all k ∈ {1, . . . , m̂} and r1(P ki ) = r1(P̄ ki ) for all k ∈ {m̂ +
1, . . . ,m}. For t = 0, 1, . . . , m̂, let Pi(t) ∈ D be such that r1(P li (t)) = 1 if l ≤ t ,
r1(P

l
i (t)) = 0 if t < l ≤ m̂, and r1(P li (t)) = r1(Pi) = r1(P̄i) if m̂ < l. Note that

Pi(m̂) = Pi and Pi(0) = P̄i .
Claim 3.1 ϕU(b,Pi)(Pi(k), P−i ) ≥ ϕU(b,Pi)(Pi(k − 1), P−i ) for all k = 1, . . . , m̂.

For all a−k ∈ A−k , marginal decomposability implies

ϕa−k (Pi(k), P−i ) = ϕa−k (Pi(k − 1), P−i ), (2)

while monotonicity implies

ϕ(1,a−k)(Pi(k), P−i ) ≥ ϕ(1,a−k)(Pi(k − 1), P−i ). (3)

Pick k ∈ {1, . . . , m̂}. Since r1(P li ) = 1 for all l ∈ {1, . . . , m̂}, it must be true
that (1, a−k)Pi(0, a−k) for all a−k ∈ A−k . This means (0, a−k) ∈ U(b, Pi) implies
(1, a−k) ∈ U(b, Pi). In view of this, we can write U(b, Pi) = B ∪ C, where
B consists of a collection of pairs of alternatives of the form (1, a−k), (0, a−k) for
some a−k ∈ A−k and C consists of alternatives of the form (1, a−k) for some a−k ∈
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A−k such that (0, a−k) is not in U(b, Pi). More formally, B = {(0, a−k), (1, a−k) |
(0, a−k) ∈ U(b, Pi)} and C = {(1, a−k) ∈ U(b, Pi) | (0, a−k) /∈ U(b, Pi)}.

By (2),

ϕB(Pi(k), P−i ) = ϕB(Pi(k − 1), P−i ).

Further, by (3),

ϕC(Pi(k), P−i ) ≥ ϕC(Pi(k − 1), P−i ).

Combining, we have

ϕU(b,Pi)(Pi(k), P−i ) ≥ ϕU(b,Pi)(Pi(k − 1), P−i ).

This completes the proof of Claim 3.1.
By applying Claim 3.1 sequentially for k = m̂, m̂− 1, . . . , 1, we get

ϕU(a,Pi)(Pi(m̂), P−i ) ≥ ϕU(b,Pi)(Pi(m̂− 1), P−i ) ≥ . . . ≥ ϕU(b,Pi)(Pi(0), P−i ),

which shows (1).
(Only-if part) Let ϕ : Dn → �A be a unanimous and strategy-proof RSCF.

It follows from Chatterji and Zeng (2018) Theorem 1 and Proposition 3 that ϕ is
tops-only, that is, ϕ(PN) = ϕ(P̄N) for all PN , P̄N ∈ Dn with r1(Pi) = r1(P̄i ) for
all i ∈ N .

The following claim establishes a crucial property of ϕ.

Claim 3.2 Let k ∈ {1, . . . ,m} and let PN, P̄N ∈ Dn be such that Sl(PN) = Sl(P̄N )
for all l ∈ M \ k and Sk(PN) ⊆ Sk(P̄N ). Then, for all a−k ∈ AM−k , we have

(i) ϕa−k (PN) = ϕa−k (P̄N ), and
(ii) ϕ(1,a−k)(P̄N ) ≥ ϕ(1,a−k)(PN ).
Proof Let k ∈ {1, . . . ,m}. Take PN, P̄N ∈ Dn such that Sl(PN ) = Sl(P̄N ) for all
l ∈ M \ k and Sk(PN) ⊆ Sk(P̄N ). It is enough to prove the claim for the case where
Sk(P̄N ) = Sk(PN) ∪ i for some i ∈ N . Since ϕ is tops-only, we can further assume
that

(i) P−i = P̄−i , and
(ii) for all b−k ∈ AM−k ,

(a) (1, b−k) and (0, b−k) are consecutively ranked in both Pi, P̄i , and
(b) (0, b−k)Pi(1, b−k) and (1, b−k)P̄i (0, b−k).4

4To see that it is possible to construct such a preference ordering, consider a lexicographic (and
hence separable) preference over A where k is the lexicographic worst component (details may be
found in Chatterji et al., 2012).
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It is easy to verify that Pi and P̄i satisfy separability. Take a−k ∈ A−k. By our
assumption on Pi and P̄i ,

U((0, a−k), Pi) \ (0, a−k) = U((1, a−k), P̄i ) \ (1, a−k).

By applying strategy-proofness at (Pi, P−i ) via P̄i and at (P̄i , P−i ) via Pi , this
means

ϕU((0,a−k),Pi)\(0,a−k)(Pi , P−i ) = ϕU((1,a−k),P̄i )\(1,a−k)(P̄i , P−i ). (4)

Using a similar argument, we have

ϕU((1,a−k),Pi)(Pi , P−i ) = ϕU((0,a−k),P̄i )(P̄i , P−i ). (5)

Subtracting (4) from (5), we get

ϕa−k (PN ) = ϕa−k (P̄i , P−i ),

which proves (i) of Claim 3.2.
Since ϕ(0,a−k)(PN) + ϕ(1,a−k)(PN) = ϕ(0,a−k)(P̄i , P−i ) + ϕ(1,a−k)(P̄i, P−i )

and (1, a−k)P̄i (0, a−k), it follows by an application of strategy-proofness that
ϕ(1,b−k)(P̄N ) ≥ ϕ(1,b−k)(PN), which proves (ii) of Claim 3.2. �

We return to the proof that ϕ satisfies monotonicity and marginally decompos-
ability. Condition (i) in the definition of monotonicity (Definition 3.2) follows from
Claim 3.2. In what follows, we prove condition (ii) in Definition 3.2.

It suffices to show
∑
a−1∈A−1 ϕ(0,a−1)(PN) = 0 for all PN ∈ Dn with Sk(PN) =

Ø. Take PN such that Sk(PN) = Ø. Without loss of generality, assume k = 1. Let
P̄N be the profile such that S2(P̄N ) = Ø and Sl(P̄N ) = Sl(PN) for all l �= 2. By
Claim 3.2, ϕa−2(PN) = ϕa−2(P̄N ) for all a−2 ∈ A−2. Note that

∑
a−1∈A−1

ϕ(0,a−1)(PN) =
∑

a−{1,2}∈A−{1,2}
ϕ(0,0,a−{1,2})(PN)+ ϕ(0,1,a−{1,2})(PN). (6)

Take a−2 = (0, a−{1,2}) ∈ A−2. By applying Claim 3.2, we have

ϕ(0,a−2)(PN)+ ϕ(1,a−2)(PN ) = ϕ(0,a−2)(P̄N )+ ϕ(1,a−2)(P̄N ), (7)

Combining (6) and (7), we have
∑
a−1∈A−1 ϕ(0,a−1)(PN ) =

∑
a−1∈A−1 ϕ(0,a−1)(P̄N ).

Continuing in this manner, it follows that

∑
a−1∈A−1

ϕ(0,a−1)(PN ) =
∑

a−1∈A−1

ϕ(0,a−1)(P̂N ), (8)
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where Sl(P̂N ) = Ø for all l ∈ {1, . . . ,m}. By unanimity, ϕ(0,a−1)(P̂N ) = 0 for
all a−1 ∈ A−1. This, together with (8) implies

∑
a−1∈A−1 ϕ(0,a−1)(PN) = 0, which

shows (ii) in Definition 3.2.
Finally we show that ϕ is marginally decomposable. Let K ⊆ M and let PN and

P̄N be such that SK(PN) = SK(P̄N). Assume without loss of generality that K =
{k + 1, . . . ,m} for some k < m. Take aK ∈ AK . Consider a sequence of profiles
{P lN }kl=0 such that P 0

N = PN , PkN = P̄N , and for all 1 ≤ l ≤ k, S{1,...,l}(P lN ) =
S{1,...,l}(P̄N ) and S{l+1,...,m}(P lN ) = S{l+1,...,m}(PN). By (i) of Claim 3.2, for all
1 ≤ l ≤ k, ϕb−l (P l−1

N ) = ϕb−l (P lN ) for all b−l ∈ A−l . Since l /∈ K = {k, . . . ,m},
an argument similar to the one used in the derivation of (6), implies ϕaK (P

l−1
N ) =

ϕaK (P
l
N ). Therefore,ϕaK (PN) = ϕaK (P̄N ), completing the proof of the only-if part.

�
Theorem 3.1 suggests a procedure for constructing all unanimous and strategy-

proof RSCF on Dn. We can start with marginal probability distributions over all
subsets of components that satisfy monotonicity. We can then arbitrarily specify the
appropriate joint probabilities of each alternative that generate the chosen marginal
distributions.

A question that has received attention in the literature is whether a domain of
preferences satisfies the deterministic extreme point property, i.e. whether every
unanimous and strategy-proof RSCF on Dn can be written as a convex combination
of deterministic social choice functions (DSCFs) satisfying those properties (see,
for instance, Peters et al., 2014; Chatterji et al., 2012; Picot and Sen, 2012; Pycia
and Unver, 2015). Unfortunately, we are unable to provide such a characterization
in our model, though we suspect it does hold. We note that there are significant
technical difficulties involved in proving such a decomposability result. The set
of deterministic rules is extremely large (the number of DSCFs when there are 3
agents and m components is 17m). Furthermore the DSCFs have a complicated
structure based on minimal winning coalitions. In any case, we believe that our
direct characterization is both simple and intuitive.

Consider the application of our result in the simplest case where there is exactly
one component (or candidate). Marginal decomposability is vacuously true in
this case. Therefore, an RSCF is unanimous and strategy-proof if and only if it
is monotonic, i.e. (1) whenever nobody approves the candidate, he/she is never
selected (i.e., selected with zero probability), (2) whenever everybody approves
the candidate, he/she is always selected (i.e., selected with probability 1), and (3)
whenever the set of agents who approve the candidate increases, the probability
that the candidate is selected also increases. As we have remarked earlier, this
description of an RSCF is perhaps simpler to understand than expressing it as a
convex combination of deterministic rules.
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4 Formation of Committees of Fixed Size

In this section, we consider the problem of forming a committee with a predeter-
mined number of members. The size of a committee is defined as the number of
members in it. Formally, the size of an alternative a ∈ A is |a| = |{k | ak = 1}|. For
l < m, A(l) is the set of all committees with size l, i.e. A(l) = {a ∈ A | |a| = l}. In
this section, we consider RSCFs ϕ : Dn → �A(l) for some l < m. By definition,
these RSCFs give positive probabilities only to the elements of A(l).

Clearly unanimity is incompatible with this range restriction. We therefore need
to replace unanimity by the onto property.

Definition 4.1 An RSCF ϕ : Dn → �A(l) is onto if for all a ∈ A(l), there is
PN ∈ Dn such that ϕa(PN ) = 1.

Our next theorem characterizes the set of onto strategy-proof RSCFs for selecting
a committee with a predetermined size. It says that every such rule is random
dictatorial restricted to A(l).

Definition 4.2 A DSCF f : Dn → A(l) is A(l)-restricted dictatorial if there exists
i ∈ N such that f (PN) chooses the most preferred alternative of agent i from
the set A(l). An RSCF is called random A(l)-restricted dictatorial if it is a convex
combination of A(l)-restricted dictatorial DSCFs.

Theorem 4.1 Let l < m. Then, an RSCF ϕ : Dn → �A(l) is onto and strategy-
proof if and only if it is randomA(l)-restricted dictatorial.

Proof First we prove a claim.

Claim 4.1 Let PN , P̄N be such that Pi |A(l) = P̄i |A(l) for all i ∈ N . Then ϕ(PN) =
ϕ(P̄N).

Proof We show that ϕ(PN) = ϕ(P̄i , P−i ) where Pi |A(l) = P̄i |A(l). Suppose not.
Let b ∈ A(l) be such that ϕb(PN) �= ϕb(P̄i , P−i ) and ϕa(PN) = ϕa(P̄i , P−i ) for
all a ∈ A(l) with aPib. In other words, b is the maximal element of A(l) according
to Pi that violates the assertion of the claim. Without loss of generality, assume
that ϕb(PN ) < ϕb(P̄i , P−i ). However, since ϕa(PN ) = ϕa(P̄i , P−i ) for all a /∈
A(l) with aPib, we have ϕU(b,Pi)(PN) < ϕU(b,Pi)(P̄i , P−i ). This means agent i
manipulates at PN via P̄i , which is a contradiction. This completes the proof of the
claim. �

Consider an RSCF ϕ : Dn → �A(l). For P ∈ D, define P |A(l) ∈ L(A(l)) as
follows: for all a, b ∈ A(l), aP |A(l)b if and only if aPb. Let D|A(l) = {P |A(l) | P ∈
D}. Construct the RSCF ϕ̂ : (D|A(l))n → �A(l) as follows: for all P̂N ∈ D|A(l),
ϕ̂(P̂N ) = ϕ(PN) where PN ∈ Dn is such that Pi |A(l) = P̂i for all i ∈ N . This
is well-defined by Claim 4.1. Because ϕ is strategy-proof, ϕ̂ is also strategy-proof.
Moreover, since ϕ is onto with range A(l), strategy-proofness of ϕ implies ϕ̂ is
unanimous. In what follows, we show D|A(l) is an unrestricted domain.
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Claim 4.2 The domain D|A(l) is unrestricted.

Proof Take P ∈ D such that r1(P l) = 1 for all l ∈ M . Consider arbitrary a, b ∈
A(l) such that a �= b. For x ∈ {a, b}, let I (x) = {k ∈ M | xk = 1}. By definition,
|I (x)| = l for all x ∈ {a, b}. Moreover, since a and b are distinct, it must be that
I (a) and I (b) are also distinct. This, together with the fact that |I (a)| = |I (b)| = l,
implies there must be k, k̂ ∈ M such that k ∈ I (a) \ I (b) and k̂ ∈ I (b) \ I (a). This

means ak = r1(P k) but ak̂ = r1(P k̂) and bk = r1(P k) but bk̂ = r1(P k̂). Therefore,
responsive does not put any restriction on the relative ordering of a and b at P , and
consequently, every preference in D|A(l) can be achieved by considering a suitable
preference with the alternative (1, . . . , 1) as the top-ranked element. This completes
the proof of the claim. �

Since D|A(l) is unrestricted and ϕ̂ is unanimous and strategy-proof, it follows
from Gibbard (1977) that ϕ̂ is random dictatorial. By the construction of ϕ̂, this
means ϕ is random dictatorial restricted to A(l). This completes the proof of
Theorem 4.1. �

It is known that strategy-proof and onto DSCFs on A(l)-restricted domains are
dictatorial (for a general version of this result, see Barberà et al., 2005 and Aswal
et al., 2003). Unfortunately, there is no escape from this negative result if we
consider random rather than deterministic rules.

5 Conclusion

In this paper, we have provided a characterization of random unanimous and
strategy-proof rules in the well-known committee formation model in terms of
two properties: marginal decomposability and monotonicity. We also show that if
committees of a predetermined size have to be chosen, an onto and strategy-proof
rule must be an appropriate random dictatorship.
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Equal Area Rule to Adjudicate
Conflicting Claims

William Thomson

1 Introduction

When a firm goes bankrupt, how should its liquidation value be divided among its
creditors? A “rule” is a mapping that specifies, for each situation of this kind, which
we call a “claims problem,” a division of this value. Alternatively, the problem may
be that of specifying the contributions that a group of taxpayers should make to
the cost of a public project as a function of their incomes. The formal literature on
the subject, whose goal is to identify the most desirable rules, originates in O’Neill
(1982).1

In the search for rules to solve any type of resource allocation problems, it is a
common strategy to invoke concepts from the theory of cooperative games, bargain-
ing games or coalitional-form games. The allocation problems under consideration
are mapped into games, a solution defined on the class of games to which these
games belong is applied, and the allocations whose images are the resulting payoff
vectors are selected for the allocation problems.

For claims problems, this strategy has been followed by Dagan and Volij (1993),
who proposed a simple way of mapping claims problems into bargaining games
(Nash, 1950), and then focused on commonly used solutions to the bargaining
problem, the Nash solution and its weighted versions, and the Kalai-Smorodinsky
solution. Other solutions have been defined for bargaining games that are based on
measuring in some fashion the sacrifice imposed on each player at a proposed payoff
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vector, and in selecting a vector at which sacrifices are equal across players. The
“equal area” solution is a two-player solution of this type. Given a game, a player’s
sacrifice at a payoff vector is simply measured by the area of the set of feasible
vectors at which his payoff is larger (Anbarci, 1993; Anbarci and Bigelow, 1994;
Calvo and Peters, 2000; Thomson, 1996).2 As an argument why they are not getting
enough at a proposed compromise, people often point to the alternatives at which
they could get more, how numerous these alternatives are, how far the compromise
would place them from their most preferred alternative, as compared to how others
would be treated according to such criteria.

The equal area solution is not as central in the theory of bargaining, but it enjoys
a number of appealing properties. In particular, being quite sensitive to the shape
of the feasible set, it does not suffer from the occasional paradoxical behaviors of
other rules. This sensitivity is a disadvantage in other respects: applying the equal
area solution requires the knowledge of the entire feasible set. By the same token, it
prevents the solution from satisfying certain invariance properties that one may be
interested in. Thus, the rule provides another illustration of the familiar tradeoff in
the design of allocation rules between sensitivity and simplicity.

Here, following Ortells and Santos (2011), we apply the equal area solution to
solve two-claimant claims problems, obtaining a rule we call the equal area rule.
The complexity issue just discussed does not arise in the context of claims problems
because the boundary of the feasible set is linear and in fact, an explicit algebraic
formula can be given for the equal area rule.3 Dagan and Volij’s choice of the Nash
and Kalai-Smorodinsky solutions led them to well-known rules for claims problems,
but the equal area rule is new. We begin by studying its properties.

We find that it satisfies all of the basic properties that have been formulated
in the literature on claims problems, including all monotonicity properties. The
properties that it does not satisfy are mainly invariance properties, which should
not be surprising, in the light of our earlier comments on its sensitivity to the shape
of the feasible set. One property of that type that it does satisfy however is invariance
with respect to truncation of claims at the endowment.4

We then turn to problems with more than two claimants. There is more than one
way of generalizing the two-claimant equal area bargaining solution to arbitrarily
many players, and we briefly discuss the reasons why. These difficulties apply here
as well. In the face of this multiplicity, we invoke an important property of allocation
rules, called consistency, which has successfully guided the search for extensions of
two-agent rules in a great variety of contexts. For claims problems, its expression
is particularly simple: a rule is consistent if for each problem, the awards vector

2A family of rules are introduced by Young (1987) under the name of “equal sacrifice” rules.” Our
solution is not a member of this family.
3An application of the idea to classical fair allocation problems is proposed and studied by Velez
and Thomson (2012).
4Incidentally, this property is necessary and sufficient condition for a rule to be obtainable as the
composition of two mappings: one is O’Neill’s mapping from claims problems to transferable
utility coalitional games; the other is a solution for this class of games (Curiel et al., 1987).
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it selects is such that for each subgroup of claimants, it selects the restriction of
that vector to this population for the problem of allocating among them the amount
that remains available after the other claimants have collected their awards and
left. Unfortunately, as we show, the two-claimant equal area rule has no consistent
extension. In the light of this negative result, we turn to the weaker notion of average
consistency (Dagan and Volij, 1997), which still captures much of what consistency
itself conveys. This notion allows an extension, and this extension is unique. We
discuss some of its properties.

2 The Model and the Equal Area Rule

A group of agents, N , have claims, (ci)i∈N , on an infinitely divisible resource.
These claims add up to more than what is available, the endowment, E. Thus, a
claims problem is a pair (c,E) ∈ R

N+ × R+ such that
∑
i∈N ci ≥ E.5 Let CN

denote the class of all claims problems.
An awards vector for (c,E) is a vector x ∈ R

N+ satisfying the non-negativity
and claims boundedness inequalities 0 � x � c and the balance equality

∑
xi =

E. We refer to the line of equation
∑
xi = E as a budget line. A rule is a mapping

that associates with each problem in CN an awards vector for it. The path of awards
of a rule S for a claims vector c ∈ R

N+ is the locus of the awards vector S selects
for (c,E) as E ranges from 0 to

∑
ci . We denote it pS(c).

For our purposes, it will suffice to define a bargaining game with player set N
(Nash, 1950) as a convex, compact, and comprehensive6 subset of RN+ that contains
at least one point whose coordinates are all positive.7 A bargaining solution asso-
ciates with each such game a point of it. Let BN be the class of all bargaining games.

The bargaining solution that is our point of departure is defined for two players.
LetN ≡ {1, 2}. Given S ∈ BN , the equal area solution,A, selects the undominated
point of S with the property that the area α1(S, x) of the set of points of S of abscissa
greater than x1 is equal to the area α2(S, x) of the set of points of S of ordinate
greater than x2 (Fig. 1).

Given a claims problem (c,E) ∈ CN , its associated bargaining game B(c,E)
consists of the points of RN+ that are dominated by c and lie below the budget line.
The equal area bargaining solution leads directly to the following rule for claims
problems (Ortells and Santos, 2011):

5We denote by R
N+ the cartesian product of |N | copies of R+ indexed by the members of N . The

superscript N may also indicate some object pertaining to the set N . Which interpretation is the
right one should be clear from the context. We allow the equality

∑
i∈N ci = E for convenience.

6A subset S of RN+ is comprehensive if for each x ∈ S and each 0 ≤ y ≤ x, y ∈ S.
7The usual specification of a bargaining game includes a disagreement point, and our formulation
amounts to assuming that it is the origin. This assumption is justified if the theory is required
to be independent of the choice of origin for the utility functions that are used to represent the
opportunities available to the agents.
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u1

u2

x = A(S)

α1(S, x)

α2(S, x)

S

Fig. 1 For two players, the equal area solution. The equal area solution selects the undominated
point x of S at which the two curvi-linear triangles defined by the boundary of S and lines parallel
to the axes through x have equal areas: α1(S, x) = α2(S, x)

E

E
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x ≡ A(c, E)

x1

x2

(a)

E

E

c

c1

c2

E − c1

x ≡ A(c, E)

x1

x2

G(c1)

(b)

E

E

c

c1

c2

G(c1)

H(c)

E − c1

E − c2

x ≡ A(c, E)

x1

x2

(c)

Fig. 2 Constructing a path of awards of the equal area rule. Here, c1 < c2. The path has three
parts, each corresponding to one of the three intervals into which the range of variations in the
endowment can be partitioned. (a) When E ≤ c1. (b) When c1 ≤ E ≤ c2. (c) When E ≥ c2

Equal Area Rule, A: Let N ≡ {1, 2} and (c,E) ∈ CN . Then, A(c,E) is the
awards vector x with the property that among the points that are dominated by c and
lie below the budget line, the area of those points whose abscissa is greater than x1
is equal to the area of those points whose ordinate is greater than x2.

Other Notation Given a, b, c ∈ R
N , �(a, b, c) denotes the triangle with these

points as vertices.
Because the bargaining problem associated with a claims problem is a rectangle

truncated by a line of slope −1, the coordinates of its equal area point can be
calculated explicitly. They are given in the following lemma. Let c ∈ R

N+ . The
lemma says that pA(c) has three parts, corresponding to a three-way partition of the
set of possible values of the endowment given c. They are represented in the three
panels of Fig. 2.
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Lemma 1 (Ortells and Santos, 2011) Let N ≡ {1, 2} and (c,E) ∈ CN be such
that c1 < c2, say. The coordinates of its equal area awards vector are as follows:
Case 1: E ≤ c1: A(c,E) = (E2 , E2 ).
Case 2: E ∈ [c1, c2]: A(c,E) = (c1[1− c1

2E ], E − c1[1− c1
2E ]).

Case 3:E ≥ c2:A(c,E) = (E2 +(c1−c2)(1− c1+c22E ),E− E2 −(c1−c2)(1− c1+c22E )).

In each of the three cases enumerated in the lemma, the coordinates of A(c,E)
are obtained by writing equality of

Case 1: the area of �(x, (x1, 0), (E, 0)) and the area of �(x, (0, x2), (0, E))
(panel (a)).

Case 2: the difference of the areas of �(x, (x1, 0), (E, 0)) and �((c1, E −
c1), (c1, 0), (E, 0)), and the area of �(x, (0, x2), (0, E)) (panel (b)).

Case 3: the difference in the areas of �(x, (x1, 0), (E, 0)) and �((c1, E −
c1), (c1, 0), (E, 0)), and the difference in the areas of �(x, (0, x2), (0, E)) and
�((E − c2, c2), (0, c2), (0, E)), (panel (c)).

In Case 2, the coordinates of A(c,E) do not depend on c2. Given c0 ∈ R+,
let G(c0) be the locus of the point (c0[1 − c0

2E ], E − c0[1 − c0
2E ]) as E varies

in [c0,∞[. Later on, we will consider claims vectors for the group {1, 3} in
which agent 1’s claim is the smaller one, and for the group {2, 3} in which
agent 2’s claim is the smaller one, and we will construct the paths of awards of
the equal area rule for these claims vectors. Then, the notation G(c1) and G(2)
will designate the copy of the curve we just defined in the spaces R

{1,3} and
R
{2,3}. For pA(c), we only need the part of it that corresponds to E varying in
[min ci ,max ci].

In Case 3, the locus of A(c,E) as E varies in [max ci, c1+ c2] is a curve that we
call H(c).

3 Properties of the Equal Area Rule

In this section, we identify which of the basic properties of rules the equal area rule
satisfies. These properties are as follows.

The 1
|N| -truncated-claims lower bound on awards8 says that each claimant

should receive at least 1
|N | th of his claim truncated at the endowment.

Order preservation says that, given two claimants, the award to the larger
claimant should be at least as large as the award to the smaller claimant, and that

8The bound is introduced by Moreno-Ternero and Villar (2004) under the name of “securement.”
Order preservation is introduced by Aumann and Maschler (1985), and order preservation under
endowment variations by Dagan et al. (1997) under the name of “supermodularity.” Linked
claims-endowment monotonicity appears in connection with a discussion of the duality operator
in Thomson and Yeh (2008), and bounded gain under claim increase is introduced by Kasajima
and Thomson (2012) together with a variety of other monotonicity properties. Claims truncation
invariance is introduced by Curiel et al. (1987) and minimal rights first by the same authors under
the name of the “minimal rights property.” Composition down is introduced by Moulin (1987),
composition up by Young (1988), and duality notions, including self-duality, by Aumann and
Maschler (1985).
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their losses should also be ordered in that way. This property obviously implies the
common requirement that two claimants whose claims are equal be assigned equal
amounts, equal treatment of equals. Homogeneity says that multiplying the data
of a problem by any λ > 0 results in a new problem that is solved by rescaling by λ
the awards vector chosen for the initial problem.

Endowment monotonicity says that if the endowment increases, each agent
should receive at least as much as he did initially. Order preservation under
endowment variations says that if the endowment increases, given two claimants,
the award to the larger claimant should increase by at least as much as the award to
the smaller claimant.

Claim monotonicity says that if an agent’s claim increases, he should receive at
least as much as he did initially. Bounded award increase under claim increase
says that if an agent’s claim increases, his award should not increase by more than
his claim did. Linked claim-endowment monotonicity says that if an agent’s claim
and the endowment increase by equal amounts, that claimant’s award should not
increase by more than that amount.

Claims truncation invariance says that truncating a claim at the endowment
should not affect the awards vector that is selected. Minimal rights first says a
problem can be equivalently solved in either one of the following two ways: (1)
directly; (2) in two steps, by first assigning to each claimant the difference between
the endowment and the sum of the claims of the other claimants, or 0 if this
difference is negative, and then the amount he would be assigned in the problem
in which claims are reduced by these first-round awards and the endowment by
their sum.

Composition down says that if the endowment decreases from some initial
value, the awards vector for the new problem can be computed in either one of
the following two ways: (1) directly; (2) by using as claims vector the awards vector
calculated for the initial endowment. Composition up (Young, 1988) is a counter
part of this invariance property that pertains to possible increases in the endowment.

Self-duality says that the awards vector selected by a rule for some problem is
equal to the vector of losses implied by its choice in the “dual” problem, that is, the
problem with the same claims vector but an endowment equal to the deficit in the
initial problem.

When discussing claims truncation invariance, we will refer to the following
characterization (Thomson, 2018):

Lemma 2 For |N | = 2, say N ≡ {1, 2}. A rule S is claims truncation invariant if
and only if it can be described in terms of the following networks of paths:

(a) a path F ⊂ R
N+ that, for eachE ∈ R+, meets the line of equation x1+x2 = E

exactly once;
(b1) for each c2 ∈ R+, a path G(c2) ⊂ R

N+ that, for each E ≥ c2, meets the line
of equation x1 + x2 = E exactly once, and is bounded above by the line of
equation x2 = c2;
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(b2) for each c1 ∈ R+, a pathG(c1) ⊂ R
N+ that, for each E ≥ c1, meets the line of

equation x1 + x2 = E exactly once, and is bounded to the right by the line of
equation x1 = c1; and

(c) for each c ∈ R
N+ a path H(c) ⊂ R

N+ that, for each E ∈ [max{ci}, c1 + c2],
meets the line of equation x1 + x2 = E exactly once, and is bounded above
by c,

these paths being used as follows: for each c ∈ R
N+ such that c1 ≥ c2, the path for c

follows F until the line of equation x1 + x2 = c2, then follows G(c2) until the line
of equation x1+ x2 = c1, then followsH(c) until c; also for each c ∈ R

N+ such that
c1 ≤ c2, the path for c follows F until the line of equation x1 + x2 = c1, follows
G(c1) until the line of equation x1 + x2 = c2, then follows H(c) until c.

If in addition to claims truncation invariance, a rule satisfies equal treatment of
equals, the path F is the 45◦ line.

Theorem 1 The equal area rule satisfies the following properties: The 1
|N | -

truncated-claims lower bound on awards, order preservation, homogeneity,
endowment monotonicity, order preservation under endowment variations,
claims monotonicity, bounded gain under claim increase, linked claims-resource
monotonicity, and claim truncation invariance.

It violates minimal rights first, composition down, composition up, and self-
duality.

Proof The proofs of most of these statements can be obtained from Lemma 1 by
straightforward calculations that we omit.

• The 1
|N | -truncated-claims lower bound on awards. For two claimants, meeting

this bound requires each path of awards to contain the segment from the origin to
the point whose coordinates are equal to half of the smaller claim. This is what
is described under Case 1 of Lemma 1.

• Order preservation. Assuming c1 ≤ c2 (and symmetrically if c2 ≤ c1), the path
of awards for each c ∈ R

N+ should lie on or above the 45◦ line and on or below
the line of slope 1 passing through c. This is easily verified for the equal area
rule.

• Homogeneity. Again, this property follows directly from the definition of the
equal area rule.

• Endowment monotonicity. This means that paths of awards should be monotone
curves. This is the case for the equal area rule. In fact, the rule satisfies the
strict version of this property, which says that as the endowment increases, any
claimant whose claim is positive should be assigned more.

• Order preservation under endowment variation. Let c ∈ R
N+ . For a rule whose

paths of awards are differentiable curves, this means that if c1 < c2, the slope of
pA(c) is at least 1. Here, differentiability holds at every point except when the
endowment is equal to c2, and this slope requirement is easily verified.

• Claim monotonicity. The equal area rule satisfies this property but not its strict
version, which says that, if the endowment is positive, a claimant whose claim
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increases should be assigned more. Indeed, each of its paths of awards starts with
a segment of slope 1 that emanates from the origin and whose length is equal to
half of the smaller claim (Case 1 of Lemma 1).

• Bounded gain under claim increase. Proving that the equal area rule satisfies
this property requires more extensive calculations, but they are straightforward
as well. We omit them.

• Linked claims-endowment monotonicity. Let x ≡ A(c,E). Assuming that c1
increases by δ, at the point x+(δ, 0), the sacrifice made by claimant 1 is the same
as at x whereas that of claimant 2 is larger. To reestablish equality, claimant 1’s
award should increase by less than δ.

• Claims truncation invariance. This follows directly from the definition of the
equal area rule. The curves in terms of which its paths of awards can be described
and whose existence is stated in Lemma 2 are (G(c1))c1∈R+ and (G(c2))c2∈R+ .
Given c ∈ R

N+ with c1 ≤ c2, the path for c follows the 45◦ line up to the point
of coordinates ( c12 ,

c1
2 ), then it follows G(c1) until it meets the line of equation

x1 + x2 = c2. Figure 3 shows a few sample paths of awards.
• Minimal rights first. Let (c,E) ∈ CN be given by c ≡ (4, 8) and E = 8. Then
A(c,E) = (3, 5). The vector of minimal rights in (c,E) is (8−8, 8−4) = (0, 4)
and A(c − (0, 4), 8 − (0 + 4)) = (2, 2). Since A(c,E) �= (0, 4) + (2, 2), the
equal area rule violates the property.

• Composition down. Let (c,E) ∈ CN be given by c ≡ (4, 8) and E = 8. Then
x ≡ A(c,E) = (3, 5). Let E′ ≡ 4. We have A(c,E′) = (2, 2). However, the
path of the equal area rule for x contains seg[(0, 0), (3

2 ,
3
2

)] and continues with
the portion of the curve G(3) which lies above the 45◦ line. Thus A(x,E′) �=
A(c,E′); the equal area rule violates the property.

x1

x2

c̄

c̄1

c̄2

G(c̄1)

H(c̄)

G(c2)
c̄2
2

c̄1
2

H(c)

c1

c2 c

c̃c̃2
G(c̃2)

c̃1

H(c̃1, c2)

H(c̃)

Fig. 3 Generating paths of awards of the equal area rule. Keeping agent 2’s claim fixed at c2 and
c̃2, we show the curvesG(c2) andG(c̃2). The path for c̃ ≡ (c̃1, c̃2) consists of some initial segment
of the 45◦ line, a piece of G(c̃2) and a curvi-linear segment H(c̃)
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• Composition up. Let (c,E) ∈ CN be given by c ≡ (4, 8) and E = 4. Then
x ≡ A(c,E) = (2, 2). Now, let E′ ≡ 8. We have A(c,E′) = (3, 5). However,
the path of A for c − x = A(2, 6) contains seg[(0, 0), (1, 1)] and continues with
the strictly monotone curveG(2). Thus,A(c,E′) �= A(c,E)+A(c−x,E′E) and
the equal area rule violates the property. We omit the straightforward derivation.

• Self-duality. This property implies that the path of awards for each c ∈ R
N+ pass

through c
2 . This is the case only if c1 = c2.

��
Two rules are dual if for each problem, one rule divides the endowment in the

same way as the other divides the shortfall (the difference between the sum of the
claims and the endowment) in the problem in which the claims vector is the same but
the endowment is equal to the shortfall of the first problem. Self-duality is invariance
under the duality operator.

It is clear that the equal area rule is not self-dual. Its dual is the rule that selects,
for each problem (c,E) ∈ CN , the awards vector x with the property that among the
points that are dominated by c and lie above the budget line, the area of those that
are below the line of ordinate c2 is equal to the area of those that are to the left of
the line of abscissa c1. When generalized to bargaining games in the obvious way
(in the above statement, simply replace “lie above the budget line” by “lie above the
boundary of the feasible set”), we obtain a solution proposed by Karagözoğlu and
Rachmilevitch (2017).

4 Consistency

So far, we have only considered the two-claimant case. For more than two claimants,
we begin by noting a difficulty that arises in extending the definition of the equal
area rule. To illustrate, let us return to bargaining games. Let N ≡ {1, 2, 3} and x
be an efficient point of some S ∈ BN . In order to evaluate an agent’s sacrifice at
a proposed compromise, it appears natural to work with volumes. For each i ∈ N ,
let then Vi(x, S) be the volume of the part of S of all points at which player i’s
utility is at least as large as xi . The difficulty comes from the fact that V1(S, x) and
V2(S, x) typically have a non-empty intersection. In Fig. 4, V1(S, x) is shown to
consist of three regions, labeledW1(S, x),W12(S, x), andW13(S, x). At each point
of Wi(S, x), player i’s utility is at least as large as at x and it is the opposite for
players j and k. At each point ofWij (S, x), players i and j ’s utilities are at least as
large as at x and it is the opposite for player k. Should we simply look for a point
at which all Vi(S, x) are equal? Would ignoring the region Wij (S, x) of overlap
when defining the sacrifices made by players i and j at x be unfair to player k?
Instead, should this common volume be somehow “shared” between players i and j?
A discussion of these various options, and of their pros and cons, is in Thomson
(1996).
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u1

u2
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W1(S, x)

W2(S, x)

W3(S, x)

W12(S, x)

W13(S, x)

W23(S, x)

Fig. 4 Illustrating the difficulty in generalizing the equal area bargaining solution to more than
two players. The region of points at which player i’s payoff is at least as large as xi is denoted
Vi(S, x). The regions of points at which two players’s payoff are at least as large at a typical point
x overlap. For instance, the intersection of V1(S, x) and V2(S, c) isW12(S, x)

In our search for an extension of the equal area rule to more than two claimants,
we will sidestep the difficulty just discussed and impose a property of coherence of
rules across populations of different sizes. For that purpose, we need to generalize
our framework of analysis. We imagine that there is an infinite set of “potential”
claimants indexed by the natural numbers, N. Let N be the family of finite subsets
of N; these are the populations that may be involved in a claims problem. A rule is
now defined over

⋃
N∈N CN .

Consider the following property of such a rule. Having identified the awards
vector it chooses for some problem, we imagine that some claimants leave the
scene with their awards and we reevaluate the situation at this point. The amount
available for the remaining claimants is equal to the endowment minus the sum
of the awards to the claimants who left. Let us apply the rule to this “reduced”
problem. Consistency says that the rule should choose the same award for each
of the remaining claimants as it did initially. Formally, for each N ∈ N , each
(c,E) ∈ CN , and each N ′ ⊂ N , and—introducing x ≡ S(c,E)—we have
xN ′ = S(cN ′ ,∑N ′ xi) = S(cN ′ , E −

∑
N\N ′ xi).

It will be convenient to rephrase this requirement by saying that if x belongs
to the path of awards of the rule for c, its projection on any coordinate subspace
belongs to its path for the projection of c onto the subspace. Thus, its path for c,
when projected on that subspace, is a subset of its path for the projection of c.
Moreover, if a rule is endowment continuous, which is the case for the equal area
rule, the projection of its path for c is in fact equal to its path for the projection of c.
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Similar questions have been asked about other two-claimant rules. One of them
is the rule known as concede-and-divide. For each claims vector, this rule is defined
by assigning to each claimant i the amount conceded by the other claimant j ,
namely the difference between the endowment and claimant j ’s claim, or 0 is
that difference is negative, and in dividing the remainder equally. It turns out that
concede-and-divide has a consistent extension, which is none other than the so-
called Talmud rule. On the other hand, the rule obtained from the proportional rule
by first truncating claims at the endowment has no such extension (Dagan and Volij,
1997).

A general technique to identify the consistent extension of a two-claimant rule
when such an extension exists, or to prove that none does if that is the case, is
developed in Thomson (2007). It exploits the projection implication of consistency
just noted. This technique is particularly useful when paths of awards are piece-wise
linear, as is often the case, but it has also helped address the question of existence of
consistent extensions of rules whose paths of awards are not piece-wise linear. For
example, it can be used to prove the non-existence mentioned above, of a consistent
extension of the version of the proportional rule defined by truncating claims at the
endowment first (Thomson, 2008). The proof of the negative result that we offer
next follows the same logic.

Theorem 2 The equal area rule has no consistent extension.

Proof Let N ≡ {1, 2, 3} and c ∈ R
N+ be such that c1 < c2 < c3. Because c1 < c2,

pA(c1, c2) includes seg[(0, 0), ( c12 , c12 )] and the part C of the curve G(c1) in R
{1,2}
+

that lies between the lines of equation x1 + x2 = c1 and x1 + x2 = c2.
Similarly, because c1 < c3, pA(c1, c3) includes seg[(0, 0), ( c12 , c12 )], and the part

D of the curve G(c1) in R
{1,3} that lies between the lines of equation x1 + x3 = c1

and x1 + x3 = c3.
Because A is strictly endowment monotonic, pA(c1, c2) and pA(c1, c3) are

strictly monotone curves, and one can recover pA(c) from them as follows. Given
t ∈ [0, c1], the plane P t of equation x1 = t crosses pA(c1, c2) at a single point, xt ,
and it crosses pA(c1, c3) at a single point, yt . There is a unique point zt ∈ R

N whose
projections onto R

{1,2} and R
{1,3} are xt and yt , respectively. Because the same

curveG(c1) is used to generateC ⊂ pA(c1, c2) andD ⊂ pA(c1, c3), it follows that
up to an endowment equal to c2 = min{c2, c3}, C andD are the same curve (except
that one lies in R

{1,2}
+ and the other in R

{2,3}
+ ), so that xt2 = yt3. Thus, the first two

coordinates of zt are equal, and by letting t run from c1
2 to c1(1− c1

2c2
), the abscissa

of the topmost point of C, we deduce that the path for c of a consistent extension of
A, if such an extension exists, contains, in addition to seg[(0, 0, 0), ( c12 , c12 , c12 )], a
monotone curve in R

N in the plane of equation x1 = x3 whose topmost point has
second and third coordinates equal to c1(1 − c1

2c2
). (∗) The projection of these two

objects onto R
{2,3} is seg[(0, 0), (c1(1− c1

2c2
), c1(1− c1

2c2
))].

However, we also know that the path of awards of A for (c2, c3) consists of
seg[(0, 0), ( c22 , c22 )], and that it continues with the part of the curve G(c2) in R

{2,3}
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that lies between the lines of equation x2 + x3 = c2 and x2 + x3 = c3. Because
c1(1− c1

2c2
) > c2

2 , we obtain a contradiction to (∗). ��
In the face of the negative result stated as Theorem 2, the question arises as to

what to do for more than two claimants and preserve the spirit of the equal area
rule. The notion of average consistency comes to our rescue. A rule satisfies this
property if for each problem and each claimant, the award to this claimant is equal
to the average of his awards in all of the two-claimant reduced problems associated
with it involving him (Dagan and Volij, 1997). Formally, for each N ∈ N , each
(c,E) ∈ CN , and each i ∈ N , xi = 1

|N |−1

∑
j∈N\{i} Si(ci, cj , xi + xj ). Although

the equal area rule has no consistent extension, we have the following existence and
uniqueness result involving average consistency.

Theorem 3 The equal area rule has a unique average consistent extension.

Indeed, the only requirement for such an extension of a two-claimant rule to
exist, and uniqueness is implied too, is that it be endowment monotonic (Dagan and
Volij, 1997), and we have seen that the equal area rule enjoys this property.

The operator that associates with each two-claimant rule its average consistent
extension preserves many of its properties. Included are endowment monotonicity,
anonymity (Dagan and Volij, 1997), claims monotonicity, claims continuity, and
claims truncation invariance. Thus, the average consistent extension of the two-
claimant equal area rule satisfies each of the properties just enumerated.

5 Concluding Comments

In certain circumstances, one may decide that a particular claimant is more
deserving than some other claimant, independently of the relative values of their
claims. For example, one may give preferential treatment to a war veteran and to a
single mother. To accommodate this possibility, one can assign weights to claimants
and require that rules “respect” or “reflect” these weights. The most natural way to
achieve this here is to select, for each problem, a point at which the areas appearing
in the original definition, multiplied by the players’ respective weights, are equal.
For each claims vector, as the relative weights assigned to two claimants go to
infinity, the path of awards for that claims vector approaches that of the sequential
priority rule in which the claimant who is first is the one who is assigned the
greater weight. All of the properties of the equal area rule are preserved under this
generalization except, obviously, the 1

|N | -lower bound and all order preservation
properties. It is indeed the purpose of assigning different weights to claimants to
inflect awards in their direction.

An alternative to the equal area bargaining solution that can also be understood
as attempting to equate sacrifices among players and has been the object of some
discussion is the solution that selects, for each bargaining problem, the point x for
which the lengths of the curvi-linear segments in its boundary that connect x to the
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endpoints of the set of undominated payoff vectors are equal. This “equal length
bargaining solution” can be applied to claims problems to generate an “equal length
rule.” It is an easy matter to check that this rule is none other than the well-studied
“concede-and-divide” rule. The same comment applies to the Perles-Maschler
bargaining solution (1981). Although these two bargaining solutions generally
differ, the rules they induce for claims problem indeed coincide.9 It is known that
concede-and-divide has only one consistent extension, the “Talmud rule,” so-called
because it rationalizes resolutions proposed in the Talmud for particular numerical
examples (Aumann and Maschler, 1985).

Finally, one may argue that instead of measuring agent i’s sacrifice at a proposed
compromise x by the area of the set of points y at which his award is greater than xi ,
the difference between yi and xi be taken into consideration. A simple idea would be
to measure the sacrifice imposed on claimant i ∈ N by the integral over t ∈ [xi, ci ]
of the product (t − xi)(E − t).
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Implementation



Recent Results on Implementation
with Complete Information

Bhaskar Dutta

1 Introduction

The origins of the theory of mechanism design can be traced back to the debate
on the relative merits of centralized planning and free markets. Lange (1936) and
Lerner (1944) argued that centralized planning could emulate the achievements of
free markets, and possibly do better since it could correct for market failure. On
the other side of the debate were von Hayek (1944) and von Mises (1935) who
argued that centralized planning could not possibly be as successful as free markets.
However, it was Leo Hurwicz (1960, 1972) who provided a conceptual framework
for what we now know as the theory of mechanism design. For instance, Hurwicz
(1960) provided a formal definition of a mechanism as a system of communication
in which agents send messages to each other or to a message center, and where
a prespecified function or rule assigns an outcome to each profile of messages.
He defined a mechanism as a communication system in which participants send
messages to each other and/or to a “message center”, and where a pre-specified
rule assigns an outcome (such as an allocation of goods and services) for every
collection of received messages. Hurwicz (1972) introduced the key notion of
incentive compatibility. Hurwicz also formulated the basic implementation issue by
asking whether there exist mechanisms through which the equilibrium interaction
of self-interested agents yield the Walrasian equilibrium allocations.
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In a seminal paper, Maskin (1999)1 provided a very elegant answer to a more
general question, by almost completely characterizing the correspondences that
can be obtained as Nash equilibrium correspondences of various mechanisms in
a very wide variety of settings. The Maskin framework studies mechanism design
under complete information. The planner’s goals are represented as a social choice
correspondence that selects a set of feasible social outcomes for each state of the
world. The state of the world is common knowledge amongst the set of individuals
in the society, but is not known to the planner. The planner cannot simply ask
the agent to announce the state of the world since the agents’ preferences may
not coincide with that of the planner. So, the planner has to design a mechanism
that will induce agents to correctly reveal the state of the world. A mechanism
along with a state of the world describes a complete information game. Maskin
(1999) focussed on mechanisms where agents choose messages simultaneously. He
used the conventional game-theoretic notion of Nash equilibrium, and provided an
almost complete characterization of the class of social choice correspondences that
are implementable in Nash equilibrium.

Maskin identified a condition that has come to be called Maskin Monotonicity as
a necessary and almost sufficient condition for Nash implementation. Unfortunately,
Monotonicity has a lot of bite—for instance, no non-dictatorial social choice
function satisfies this condition if all logically possible states of the world are in
the domain of the function. However, there has been a sudden resurgence of inter-
est in implementation under complete information.2 One particularly interesting
implication of this literature is that a (small) modification of the original framework
produces a dramatically different result. In this paper, we briefly discuss the main
results when individual(s) have some preference for honesty as well as repeated
Nash implementation.

2 Framework

Let N be a set of n individuals. The set of states of the world is represented by
	, while X is the set of feasible social alternatives. A social choice function is a
mapping f : 	→ X.

Each individual i ∈ N has a utility function ui : X×	→ R. So, ui(x, θ) is the
utility that i gets from x in state θ .3

1Although published in 1999, drafts of the paper have been in circulation since 1978.
2 See, for instance, Bull and Watson (2007), Kartik and Tercieux (2012) on implementation
with evidence, Dutta and Sen (2012), Matsushima (2008a,b), Ortner (2015), Saporiti (2014) and
Lombardi and Yoshihara (2011), for the case when some individuals have a “small” preference
for honesty, and Lee and Sabourian (2011), Mezzetti and Renou (2017) for repeated Nash
implementation.
3Note that in the one-stage implementation problem, utility can be ordinal.



Recent Results on Implementation with Complete Information 251

A one-stage mechanism is a pair g = (M, π) whereM ≡ M1 ×M2 × . . .×Mn
and π : M → X. Here, each Mi is the set of messages that i can send while π is
the outcome space specifying an outcome for each n-tuple of messages.

Maskin (1999) asked the following question—what is the class of social choice
functions such that there exists a mechanism g whose Nash equilibria coincide with
the social choice function at each state of the world, and proceeded to give an almost
complete answer.

Define the lower contour set for i at (x, θ) as follows. Let Li(x, θ) =
{y ∈ X|ui(x, θ) ≥ ui(y, θ)}. A fundamental condition for implementation is
Monotonicity.

Definition 1 An scf satisfies Monotonicity if for all θ, θ ′, and x,

[
f (θ) = x,Li(x, θ) ⊆ Li(x, θ ′)

]→ f (θ ′) = x

This seems an intuitively appealing condition. It requires that if x is socially optimal
in state θ , and the position of x vis-a-vis any alternative is no worse in state phi, then
x should remain optimal in state θ ′. However, no social choice function satisfies
Monotonicity if the social choice function has full domain. As an example, consider
the following.

Example 1 Let N = {1, 2, 3}, and X = {x, y, z}. The social choice function picks
the pairwise majority winner if it exists and x otherwise. The utility profile is

• u1(x, θ) > u1(y, θ) > u1(z, θ).
• u2(y, θ) > u2(z, θ) > u2(x, θ).
• u3(z, θ) > u3(x, θ) > u3(x, θ).
• u2(z, φ) > u2(y, φ) > u2(x, φ).
• The utility functions of individuals 1 and 3 are identical in states θ and φ.

Notice that the utility profile in state θ corresponds to the voting paradox. Since
there is no majority winner, x is the socially optimal the social optimal alternative
according to the stipulated social choice function. However, z is the majority winner
in state φ and hence socially optimal in that state. This is a violation of Monotonicity
since Li(x, θ) = Li(x, φ) for all individuals.

Definition 2 A scf satisfies Absence of Veto (AV) if f (θ) = x whenever at least
(n− 1) prefer x to any other alternative.

Unlike Monotonicity, AV is a very weak condition. For instance, it is trivially
satisfied if there is a private good and no one is satiated with respect to this good.

The Maskin theorem follows.

Theorem 1 If a social choice function f is implementable in Nash equilibrium,
then it satisfies Monotonicity. Moreover, if n ≥ 3, then f is implementable in Nash
equilibrium if it satisfies Monotonicity and Absence of Veto.
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Dutta and Sen (1991) and Moore and Repullo (1990) deal with the two-person
case. Moore and Repullo (1990) also have a complete characterization of the many-
person case.4 This is going to be the point of departure for what follows.

3 Preference for Honesty

The canonical mechanism for Nash implementation requires agents to announce (i)
a state of the world θ in	 (ii) an outcome∈ X, (iii) and an integer k ∈ {1, 2, . . . , n}.
Let us writeMi ≡ M1

i ×M2
i whereM1

i = 	.
In order to define an intrinsic preference for truthtelling—however small this

preference may be—one needs to extend an individual’s preferences over outcomes
to one over messages. So, extend each individual i’s utility function ui over 	 ×
X to ũi over	×Mi .

Dutta and Sen (2012)5 define the concept of partial honesty.

Definition 3 An individual is partially honest if for all θ ∈ 	, for all mi,m′i ∈ Mi
and m−i ∈ M−i , ũi(θ, (mi,m−i )) > ũi(θ, (m′i , m−i )) if (i) ui(θ, π((mi,mi)) =
ui(θ, π((m

′
i , mi)), (ii) m1

i = θ and m
′1
i �= θ .

The implication of partial honesty is that if mi and m′i are both best responses to
m−i in terms of ui , but mi involves declaration of the true state of the world, while
m′i involves a false state of the world, then i has a strict preference for telling the
truth. In all other cases, partial honesty imposes no restriction on preferences. So, an
individual is said to have a preference for honesty if she prefers to announce the true
state of the world whenever a lie does not change the outcome given the messages
announced by the others. Notice that this is a very weak preference for honesty
since an “honest” individual may prefer to lie whenever the lie allows the individual
to obtain a more preferred outcome. An alternative way of describing an honest
individual’s preference for honesty is that the preference ordering is lexicographic in
the sense that the preference for honesty becomes operational only if the individual
is indifferent on the outcome dimension, that is in terms of the utility function ui .

This makes the following theorem, due to Dutta and Sen (2012),6

Theorem 2 Suppose n ≥ 3, and at least one agent is partially honest. Then, every
social choice function satisfying AV is implementable in Nash equilibrium.

Dutta and Sen also show that an additional condition on the social choice
function is sufficient for Nash implementation in the two-person case. Importantly,

4The reader is referred to Jackson (2001) and Maskin and Sjostrom (2002) for very comprehensive
surveys of the literature.
5Matsushima (2008a,b), Kartik and Tercieux (2012), Lombardi and Yoshihara (2011), Ortner
(2015) also assume that some individuals have a “small” preference for honesty.
6Kartik and Tercieux (2012) also prove essentially the same result in a cardinal framework.
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Monotonicity which has such strong implications is no longer a necessary condition
for implementation. Hence, even a small preference for honesty has a large
consequence for implementation!

Rather than presenting the proof of the theorem, I will discuss the role of
Monotonicity in Maskin’s original theorem and how the presence of one partially
honest individual is sufficient to get rid of Monotonicity.

Suppose the social choice function is implementable in Nash equilibrium by
means of the canonical mechanism (M, π). Then, for any state θ , f (θ) can be
supported as a Nash equilibrium if everyone announces (θ,m2

i ). The canonical
mechanism is designed so that a unilateral deviation by individual i either does
not change the outcome or the outcome is in the lower contour set of i with
respect to θ . Notice that Monotonicity plays no role here. Monotonicity is essential
in establishing the difficult part of implementation—that no socially suboptimal
outcome can be supported as a Nash equilibrium. Suppose that in state θ , everyone
reports m = (φ,m2) and that m is a Nash equilibrium in state φ. If f (θ) �= f (φ),
then m must not be a Nash equilibrium in state θ . Monotonicity ensures the
existence of some individual i and social outcome x such that x ∈ Li(f (φ), φ)
but x /∈ Li(f (φ), θ). The canonical mechanism gives individual i the power to
unilaterally deviate to some message m′i and get outcome x. Notice that since
x ∈ Li(f (φ), i will not want to deviate to m′i when the true state is actually φ.
But, since x /∈ Li(f (φ), θ), individual i does want to deviate to m′i when the true
state is θ . This ensures that m is not a Nash equilibrium in state θ .

How does Partial Honesty help? Consider a modification of the canonical
mechanism. Let (M, π) be a mechanism such that π(m) = f (θ) whenever at
least (n − 1) individuals announce m1

i = θ . As in the canonical mechanism, the
modulo game is used to choose the outcome when no more than (n− 2) individuals
agree on the first component of their messages. Now, suppose the true state is φ but
everyone announces θ in the first component. Unanimous falsehood is no longer a
Nash equilibrium. Consider an individual i who is partially honest. Individual i can
deviate and announce φ. The outcome does not change since (n − 1) individuals
continue to announce θ . However, individual i gains in terms of ũi because she is
now announcing the true state of the world.

The mechanism used in Dutta and Sen (2012) uses a modulo game as part of the
mechanism in order to rule out unwanted equilibria when individuals make hybrid
announcements—that is, less than (n − 1) individuals announce the same state. In
a modulo game, each individual announces an integer between 1 and n. The winner
of the modulo game is individual i if i equals the sum of the announced integers
modulo n. The winner is then allowed to choose any outcome from X. Notice that
given the integer announcements of the other (n − 1) individuals, individual i has
a best response that allows her to be the winner of the modulo game. So, in the
region of the message space where hybrid announcements are made, there can be a
pure strategy Nash equilibrium only if all individuals share a common top outcome.
But, then by AV, this outcome must be socially optimal. While modulo games do
not have pure strategy equilibria, they do have mixed strategy equilibria which are
not taken into account. To the extent that the outcomes associated with these mixed



254 B. Dutta

strategy equilibria are socially suboptimal, one can question whether this is a proper
implementation result. An alternative to the use of modulo games is the so-called
integer game in which the agent announcing the highest integer is the winner and
gets to pick the outcome in the case of hybrid announcements. These mechanisms
suffer from the Jackson (1992) critique—the mechanisms are unbounded7 and casts
into doubt the predictive value of Nash equilibrium. Unfortunately, to the best of
my knowledge, all papers in Nash implementation where the social choice function
has unrestricted domain of preferences employ either an integer game or a modulo
game.

As I have mentioned earlier, the difficult part of Nash implementation is that
the Nash equilibrium correspondence tends to be too large and so there is the
possibility that socially suboptimal outcomes can be supported as equilibrium
outcomes. The role of integer and modulo games is to restrict the (pure strategy)
Nash equilibrium correspondence. Of course, the same purpose is served simply by
refining the concept of equilibrium since this too reduces the size of the equilibrium
correspondence. Another possibility is to seek appropriate restricted domains of
preferences that will also eliminate unwanted equilibria. Both approaches have been
tried in the literature.

Holden et al. (2014) restrict the domain of preferences to one allowing separable
punishments. Strictly speaking, their separability restriction is not just on the domain
of preferences since the permissible domain is specific to the social choice function
under consideration. Their permissible domain has the following feature—there are
two individuals i and j such that for each pair of states θ, θ ′, there is an alternative
a(θ ′)which is distinct from f (θ ′), such that in any state θ , individual j is indifferent
between a(θ ′) and f (θ ′) but individual i finds a(θ ′) to be strictly worse than f (θ ′).
Formally, the condition is the following.

Definition 4 There is separable punishment if for each state θ ′ ∈ 	, there is a(θ ′)
and individuals i and j such that for all θ ∈ 	, uj (a(θ ′), θ) = uj (f (θ ′), θ) and
ui(a(θ

′), θ) < ui(f (θ ′), θ).

This restriction is particularly appropriate in economic environments with private
goods. Such environments allow the possibility of selective punishment—one indi-
vidual or group can be punished without punishing others. Domain restrictions in a
similar spirit have been used in earlier literature. Perhaps the earliest was Jackson
et al. (1994) who used a similar but not identical restriction. They characterized
the class of social choice correspondences that can be implemented in undominated
mechanisms in separable environments by bounded mechanisms which have the
additional feature of there being no mixed strategy equilibrium.

7A mechanism is bounded if any weakly dominated strategy is weakly dominated by a strategy
which is itself undominated. Jackson et al. (1994) characterize the class of social choice
correspondences that are implemented in undominated Nash equilibrium by bounded mechanisms.
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Holden, Kartik and Tercieux then go on to show that in the case of a separable
punishment domain, if individuals are partially honest,8 then any social choice
function can be implemented by means of a direct mechanism in two rounds of
iterative elimination of strictly dominated strategies. The use of a direct mechanism
obviously avoids the Jackson critique. Moreover, since implementation is achieved
in elimination of strictly dominated strategies, there are no unaccounted mixed
strategy equilibria. Another feature of their result is that the two-person case no
longer needs separate treatment.

The example below (Table 1 in their paper) illustrates the main idea underlying
their proof. There are two states θ and θ ′ and two individuals 1 and 2, with the
latter being partially honest. The mechanism designer can also levy small fines ti
on individual i, though these are not required on the equilibrium path. The outcome
from X depends only on individual 1’s announcement. A fine is levied on 1 if her
announcement does not match that of 2. Assume that there are ti , t ′i such that

u1(f (θ
′), t ′1, θ) < u1(f (θ), θ) (1)

u1(f (θ), t1, θ
′) < u1(f (θ

′), θ ′) (2)

Equation 1 requires that there is a fine t ′1 such that 1 prefers f (θ) to (f (θ ′), t ′1) when
the true state is θ , while Eq. (2) requires the existence of a large enough fine t1 such
that 1 prefers f (θ ′) to (f (θ), t1) when the true state is θ ′. The table below exhibits
these outcomes.

θ θ ′

θ f (θ) ((f (θ), t1), f (θ))

θ ′ ((f (θ ′), t ′1), f (θ ′)) f (θ ′)

Notice that it is a strictly dominant strategy for individual 2 to declare the true
state of the world—her announcement has no effect on the outcome but she gets a
bonus from telling the truth. Knowing that 2 will tell the truth, lying about the state
is dominated by truthtelling for 1 in view of Eqs. (1) and (2).

Dutta and Sen (2012) have a related result on separable domains. Their concept
of a separable domain assumes the existence of a reference alternative w with the
property that for any alternative x ∈ X and subset of agents J , there is an alternative
aJ such that agents in J are indifferent to w while agents not in J are indifferent to
a in all states of the world. An example of a separable domain is the pure exchange
economy. The alternative w is the allocation (0, . . . , 0) where all agents get zero
amounts of all goods. For any other allocation a and set of agents J , the allocation

8Their result goes through even if there is just one partially honest individual. But, then the
construction of the mechanism would depend upon the identity of this individual and so the result
will not be detail-free.
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aJ is the one where agents in J get zero amounts of all goods while individuals not
in J get the same consumption bundle that they are assigned in a. This definition
has the advantage that it does not depend on the social choice function. On the
other hand, its weakness is that it cannot handle the “standard” case of public goods
economies with quasilinear preferences because aJ cannot depend on preferences—
it has to be indifferent to w for all agents in J and indifferent to a for all agents
outside J for all states.

Assuming that all agents are partially honest and that there are at least three
individuals, Dutta and Sen prove a strong result—every social choice function is
implementable in strongly dominant strategies. That is, declaring the true state of
the world is a strongly dominant strategy for all agents in the direct mechanism.
Notice that this does not contradict, for instance, the negative results of Barbera and
Jackson (on strategyproofness of allocations in pure exchange economies because
Dutta and Sen assume a complete information environment where individuals have
to announce the state of the world, whereas the strategyproofness literature assumes
that individuals only know their own preferences).

I conclude this section with a brief discussion of Ortner (2015), who uses two
refinements of Nash equilibrium along with partial honesty. One refinement is that
of Kandori et al. (1993) and Young (1993) stochastically stable equilibrium. The
other refinement, labeled fault tolerant equilibrium while related to k-fault tolerant
Nash equilibrium due to Eliaz (2002), is distinct. It incorporates the possibility
that each player does not know whether other players are irrational and so chooses
strategies to insure herself against irrational behavior of others. Ortner assumes that
there are at least five individuals, and that all of them are partially honest. Moreover,
there is a distinguished outcome a∗ which is not in the range of the social choice
function. Armed with these assumptions, he shows that any social choice function
is implementable by means of a simple direct mechanism in either refinement of
equilibrium.

4 Repeated Implementation

Two recent papers by Lee and Sabourian (2011) and Mezzetti and Renou (2017)
extend the original Maskin framework in a new direction by considering the
repeated implementation problem. In their setting, the same set of infinitely lived
agents interact repeatedly over time, either a finite or infinite number of times. At
each discrete point of time, a state of the world is drawn. Players learn the state so
that there is complete information. The implementation problem arises because the
planner does not observe the state in any period. Neither does the planner observe
past states of the world. However, at each date, the planner does learn the outcome of
past mechanisms.The planner’s objective is to repeatedly implement an scf in each
period after every possible history. He commits to a mechanism for each period, but
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the mechanism in period t can be conditioned on the past history of outcomes in
periods 1, . . . , t − 1. Players discount the future by δ.

Notice that although players interact repeatedly over time, this is not a repeated
game since both the state of the world as well as the mechanism change over time.
However, it does have the whiff of a repeated game and so one’s first impression
may be that the folk-theorem type results will enlarge the set of equilibria and hence
make the implementation problem harder. Even if folk-type results do not hold,
players can coordinate on past histories and generate additional equilibria in the
repeated context. This implies that social choice functions satisfying Monotonicity
and AV may not be repeatedly implementable. This intuition is confirmed in the
following example.

θ θ ′

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

a 4 2 2 3 1 2

b 0 3 3 0 4 4

c 0 4 4 0 2 3

Let f (θ) = a, f (θ ′) = b. Then, f is efficient, monotonic and satisfies AV.
However, the repeated use of the Maskin canonical mechanism does not implement
f . Consider the unanimous report of (θ ′, b, 0) in each state. Player 1 would prefer to
deviate since he prefers a to b in both states. But, the mechanism does not allow him
to change the outcome. Player 2 does not want to deviate—she is getting her best
outcome in each state. Any deviation of player 3 is punished by playing the stage
game equilibrium in all subsequent stages. He can deviate in state θ and obtain ?
instead of b, but this would be met by punishment in which his continuation payoff
is a convex combination of 2 in θ and 4 in θ ′. This is less than the equilibrium payoff
provided the player is patient enough.

This example illustrates a well-known phenomenon in repeated games. Unless
the minmax payoffs of the game lie on the efficiency frontier, there will typically
be many equilibrium paths along which unwanted outcomes are implemented if
players are patient. Notice that in this example, the equilibrium payoffs are less
than the minmax payoff of player 1. The minmax payoff of player 1 is 0 arising
from the equilibrium strategies of 2 and 3 in state θ ′. All this suggests that
the conditions that guarantee one-shot implementation may not be sufficient for
repeated implementation. A key result of Lee and Sabourian is that they may not be
necessary either.

In order to derive their characterization conditions, Lee and Sabourian depend
heavily upon insights from results in repeated games. For instance, let v(f ) be the
payoff vector associated with f . Lee and Sabourian show that there cannot be any
payoff vector in the convex hull of all payoffs that can be constructed from the range
of f that strictly dominates v(f ). This is because if this condition is not met, then
there can be a collusive equilibrium in which all agents earn the higher payoff. This
then gives a necessary condition for implementation—if v(f ) is strictly Pareto
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dominated by another vector v′ ∈ CO(V (f )) (where V (f ) is the set of payoff
vectors in the range of f ), then if players are sufficiently patient, f cannot be
repeatedly implementable from any period t onwards. So, weak efficiency in the
range is a necessary condition for repeated implementation. Lee and Sabourian then
go on to prove a partial converse—under some mild conditions, if there are at least
three individuals, then strong efficiency in the range of f is a sufficient condition for
repeated Nash implementation if players are patient enough and from period two
onwards.

Weak and Strong Efficiency are quite far removed from Monotonicity, and there
are no apparent connections between them. However, Mezzetti and Renou (2017)
actually establish a close relationship. They study repeated implementation in its
full generality by considering repeated implementation both over infinite and finite
periods, so that the standard one-shot implementation problem becomes a special
case. They introduce a condition dynamic monotonicity and show that it is necessary
and almost sufficient in all repeated implementation problems, including the case
of a finite number of interactions and the case of infinitely repeated interactions
with general discount factors. Moreover, dynamic monotonicity is equivalent to
Maskin monotonicity in the one-shot case. In infinitely repeated problems with an
arbitrarily high enough discount factor, dynamic monotonicity is closely related to
weak efficiency in the range.

5 Conclusion

There has been a resurgence of interest in complete information implementation
theory. In this paper, I have briefly discussed two strands of the recent literature,
one on partial honesty being close to behavioral economics. This is in keeping
with developments in economic theory which is now modelling individual behavior
that does not necessarily conform to the neoclassical paradigm of maximization
of a preference ordering. The recent literature in Behavioral economics focuses
on departures from classical notions of choice behavior determined by preference
maximization. Choice behavior can be influenced by a variety of phenomena such
as menu dependence, framing, temptation and self-control. In multi-person settings,
considerations of reciprocity mean that one agent’s choice behavior or optimal
action(s) may be influenced by other agents’ actions. These phenomena then mean
that choice behavior may no longer be rationalizable by means of a preference
ordering defined over X.

Obviously, implementation theory has to change if it is to keep up with
developments in behavioral economics. In an important paper, de Clippel (2014)
takes a big step in incorporating such behavioral concerns into complete information
implementation. He assumes that each individual’s choice behavior is described
by a choice correspondence Ci(−, θ) which describes the set of alternatives that
individual i would choose from any set S⊆X. This explicitly allows for menu
dependence since the choice out of a set S need not have any relationship with choice
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out of a set T in any state of the world. de Clippel goes on to derive necessary and
sufficient conditions for Nash implementability in this setting. But, these conditions
are far from a complete characterization, at least partly because of the generality
of his framework—no restriction is imposed at all on the choice correspondences
{Ci}i∈N .

However, a common approach in behavioral economics is to impose some
restrictions in the form of axioms on individual choice behavior.9 For example, one
axiom—WWARP—is a weakening of the well-known Weak axiom of Revealed
Preference that is necessary for full rationalizability of choice behavior. Manzini
and Mariotti (2007) use WWARP and another relatively weak axiom to characterize
a class of choice correspondences that can be described as short-list method. Given
any set S, the individual first shortlists candidates according to one criterion and
then chooses one candidate out of the set of candidates according to a (common)
preference ordering defined over X. Thus, choice behavior follows a well-defined
procedure providing some structure to the choice correspondences {Ci}i∈N . This
suggests the possibility of using the de Clippel framework, but borrowing from
the axiomatic approach in behavioral economics to develop a theory of behavioral
implementation.

Another interesting and unexplored area again arises from the empirical obser-
vation that individual preferences may be endogenous and may in fact be influenced
by the institutional mechanism itself. Bowles and Polania-Reyes discuss some
literature which describes how incentives can alter individuals’ social preferences
for adhering to social norms of doing the right thing—the introduction of overtime
allowances resulting in shorter hours worked being an example. More generally,
the provision of incentives may actually be counterproductive. This obviously
renders problematic standard design approach of constructing a mechanism which
would operate on fixed individual preferences to produce desirable outcomes in
equilibrium.
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Unrestricted Domain Extensions
of Dominant Strategy Implementable
Allocation Functions

Paul H. Edelman and John A. Weymark

1 Introduction

A mechanism consists of an allocation function and a payment function that,
respectively, determine the alternative that is chosen and the payment that must be
made by each individual as a function of their reported types. It is well known
that for a dominant strategy incentive compatible mechanism, there is no loss of
generality if attention is restricted to a one-person mechanism in which the types
of all but one individual are fixed. We show that any one-person dominant strategy
implementable allocation function g on a restricted domain of types can be extended
to the unrestricted domain in such a way that dominant strategy implementability is
preserved when utility is quasilinear. We identify a sufficient condition for which
this extension is essentially unique in a sense made precise below. Much is known
about the properties of dominant strategy implementable allocation functions and
their implementing payment functions on an unrestricted domain (see, e.g., Cuff
et al., 2012; Vohra, 2011). Because g is the restriction of any of its unrestricted
domain extensions, the properties of g’s extensions can be used to analyze the
properties of g itself, particularly when the extension is essentially unique.

For an arbitrary type space, Rochet (1987) identifies a necessary and sufficient
condition for an allocation function to be dominant strategy implementable. Gui
et al. (2004) show that Rochet’s conditions are equivalent to all cycles in the
corresponding allocation graph having nonnegative length. The allocation graph is
a graph derived from the allocation function whose nodes are the alternatives. Gui
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et al. (2004) also show that the partition of the type space into the sets of types
that are assigned the same alternative by the allocation function can be identified
using polyhedra known as difference sets that are defined using the lengths of the
arcs in the allocation graph.1 Our arguments draw on the analysis by Edelman
and Weymark (2017) of the geometric structure of this partition when the cycle
lengths in the allocation graph are all zero. They also draw on an alternative
characterization of dominant strategy implementability in terms of node potentials
due to Heydenreich et al. (2009).

In Sect. 2, we describe the model. Section 3 introduces allocation graphs
and states Rochet’s Theorem. Difference sets and the zero 2-cycle condition are
considered in Sect. 4. Node potentials are introduced in Sect. 5. The existence of
an unrestricted domain extension of a dominant strategy implementable allocation
function is established in Sect. 6 and a sufficient condition for this extension to
be essentially unique is provided in Sect. 7. Examples illustrating our results are
presented in Sect. 8. In Sect. 9, we offer some concluding remarks.2

2 Preliminaries

As noted in Sect. 1, there is no loss of generality in restricting attention to one-
person mechanisms. The set of alternatives is A = {a1, . . . , am}, where m ≥ 2. An
alternative is sometimes referred to by the integer i ∈ M = {1, . . . ,m} that indexes
it. The individual’s type is a vector v = (v1, . . . , vm) = (v(a1), . . . , v(am)), where
vi = v(ai) is his valuation of the ith alternative. The type space (the set of possible
types) is V , where |V | ≥ 2. The type space is unrestricted if V = R

m.
The mechanism designer knows that the individual’s type is in V , but does not

know which type in V it is. He designs a mechanism (g, π), where g : V → A is an
allocation function and π : V → R is a payment function. These functions specify
the alternative that is chosen and the individual’s payment (subsidy, if negative) as
a function of his reported type. The type space V is the domain of the mechanism.

The individual’s utility is his valuation minus his payment, and so is quasilinear.
Formally, given the mechanism (g, π), his utility is given by

v(g(ṽ))− π(ṽ) (1)

when v is his true type and ṽ is his reported type. The individual reports a type that
maximizes his utility, which need not be his true type.

1The main results in Gui et al. (2004) also appear in Vohra (2011).
2Further details about the material discussed in Sects. 2–5 and 9 may be found in Edelman and
Weymark (2017), Heydenreich et al. (2009), and Vohra (2011).
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A mechanism (g, π) is dominant strategy incentive compatible if

v(g(v)) − π(v) ≥ v(g(ṽ))− π(ṽ), ∀v, ṽ ∈ V. (2)

For such a mechanism, the individual has an incentive to report his true type
whatever it is. The allocation function g is dominant strategy implementable if
there exists a payment function π such that (g, π) is dominant strategy incentive
compatible. We only consider dominant strategy incentive compatible mechanisms.

Dominant strategy implementability has two implications that allow for some
simplification. First, the allocation and payment functions only depend on the
valuations of the alternatives that are ever chosen, so, as in Edelman and Weymark
(2017), we can reinterpretA as being this set of alternatives. With this interpretation
of A, g is surjective. Second, payments must be the same for types that are allocated
the same alternative, so a payment function that implements the allocation function
g can be equivalently described by a function ρg : M → R, where ρg(i) is the
payment if the ith alternative is chosen. That is, using ρg, g(v) solves the following
affine maximization problem:

g(v) = aj for some j ∈ arg max
i∈M {vi − ρg(i)}, ∀v ∈ V. (3)

The fact that g can be implemented by payments that only depend on the chosen
alternative is known as the taxation principle.

The ith alternative preimage is

Ri = {v ∈ V |g(v) = ai}, ∀i ∈ M. (4)

That is, Ri is the set of types that are assigned the ith alternative by g. By
assumption, g is surjective, so each of these sets is nonempty.

3 Allocation Graphs and Rochet’s Theorem

The allocation graph Γg corresponding to g is the complete directed graph whose
nodes are the setM viewed as labels for them alternatives. The length (which could
be negative) of the directed arc from node i to node j is

lij = inf
v∈Rj

[
vj − vi

]
. (5)

By definition, lii = 0 for all i ∈ M . Provided that g is dominant strategy
implementable, all of these lengths are finite. Let

l̄i = 1

m

∑
j

lj i , ∀i ∈ M, (6)
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denote the average length of the arcs in Γg that terminate at node i.
For any pair of nodes i and j in Γg, a path is a sequence of directed arcs

connecting i to j and a k-cycle is a path from i to i with k arcs, where k is
any positive integer. The allocation function g satisfies the k-cycle nonnegativity
condition if all k-cycles in Γg have nonnegative length and it satisfies the zero k-
cycle condition if all k-cycles in Γg have zero length.

For an arbitrary type space, Rochet (1987) identifies a necessary and sufficient
condition for an allocation function to be dominant strategy implementable. Theo-
rem 1 provides a statement of Rochet’s Theorem in terms of cycles in the allocation
graph Γg.

Theorem 1 (Rochet (1987)) The following conditions for the allocation function
g : V → A are equivalent:

1. g is dominant strategy implementable.
2. For every integer k ≥ 2, the k-cycle nonnegativity condition is satisfied.

4 Difference Sets and the Zero 2-Cycle Condition

Our analysis exploits the geometric structure of the partition of the type space V
provided by them alternative preimages. This structure is identified using polyhedra
defined on all of Rm. In the following, we let intS denote the interior of the set S
and 1 denote the vector whose components are all equal to 1.

For all distinct i, j ∈M , the pairwise difference set for the ordered pair of
alternatives (ai, aj ) is

Hij = {v ∈ R
m|vi − vj ≥ lj i} (7)

and its boundary is

Hij = {v ∈ R
m|vi − vj = lj i}. (8)

Each of these pairwise difference sets is a closed halfspace in R
m. It is convenient

to let Hii = Hii = R
m. For all i ∈ M , the difference set for ai is the polyhedron

Pi =
m⋂
j=1

Hij . (9)

As Theorem 2 demonstrates, except for possibly on its boundary, the intersection
of the difference set Pi with the type space V is the set of types that are assigned the
ith alternative by g.
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Theorem 2 (Gui et al. (2004)) For the allocation function g : V → A, for any
alternative ai ∈ A:

1. For any type v ∈ Ri , v ∈ Pi ∩ V .
2. If g satisfies the 2-cycle nonnegativity condition, then for any type v ∈ intPi ∩V ,
v ∈ Ri .

An implication of Theorem 2 is that if v ∈ V but v �∈ Pi , then g(v) �= ai . If
Hij = Hji , then Pi and Pj have a facet in common and lij + lj i = 0. Dominant
strategy implementation implies that the difference sets for distinct alternatives have
no interior points in common. As a consequence, if Hij �= Hji , then lij + lj i > 0.

A further implication of Theorem 2 is that if g(v) = ai and v′ = v + c · 1, then
g(v′) = ai except possibly when v (and, hence v′) is on the boundary of Pi . The
latter observation permits us to normalize the type vectors so that their components
sum to 0 or, equivalently, that they lie in the subspace 1⊥ of Rm orthogonal to 1.

For all i ∈ M , the normalized difference set for ai is

P̂i = Pi ∩ 1⊥. (10)

Theorem 3 shows that this set is a pointed cone with vertex pi whose j th component
is the average length of the arcs in Γg that terminate at node i minus the length of
the arc that goes from node j to node i.

Theorem 3 (Edelman and Weymark (2017)) For all i ∈ M , P̂i is a pointed cone
with vertex pi whose j th component is

pij = l̄i − lj i , ∀j ∈ M. (11)

If the allocation function g is dominant strategy implementable and all of the
2-cycles in Γg have zero length, then all cycles in Γg have zero length (see Cuff
et al., 2012). The relationship between zero cycle lengths and the vertices of the
normalized difference sets is provided in Theorem 4.

Theorem 4 (Edelman and Weymark (2017)) If the allocation function g : V →
A is dominant strategy implementable, then the following conditions are equiva-
lent:

1. The vertices {pi} of the normalized difference sets {P̂i} coincide.
2. g satisfies the zero 2-cycle condition.

Restrictions on the type space for which the conditions in Theorem 4 are
satisfied when the allocation function is dominant strategy implementable have been
identified by Cuff et al. (2012) and Edelman and Weymark (2017). For example,
they hold if the type space is unrestricted.
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Because Pi is a cone, P̂i is the orthogonal projection of Pi onto 1⊥. The
orthogonal projection of the type space V onto 1⊥ (the projected type space) is
also of interest. This projection is denoted by V̂ .

5 Implementability and Node Potentials

An alternative characterization of dominant strategy implementability to that pro-
vided by Rochet’s Theorem can be obtained using node potentials. The function
ρg : M → R is a node potential for the allocation function g : V → A if

ρg(j) ≤ ρg(i)+ lij , ∀i, j ∈ M. (12)

That is, a node potential assigns a scalar to each node in the graph Γg in such a way
that (12) holds.

The payment function π : V → R corresponds to the node potential ρg if for
all i ∈ M and all v ∈ Ri , π(v) = ρg(i). In other words, the payment required by
the payment function π for any type v ∈ V that the allocation function g assigns
ai is the value assigned to the ith node in Γg by the node potential ρg . Theorem 5
provides a characterization of dominant strategy incentive compatibility in terms of
node potentials.

Theorem 5 (Heydenreich et al. (2009)) For the allocation function g : V → A

and payment function π : V → R, (g, π) is dominant strategy incentive compatible
if and only if π corresponds to a node potential ρg : M → R.

The node potential ρg thus provides a set of implementing payments for the
m alternatives. Using Theorems 3 and 4, Edelman and Weymark (2017) show
that when the zero 2-cycle condition is satisfied, the common vertex p of the
normalized difference sets are implementing payments. By (11), the payment for
the ith alternative is then l̄i (the average length of the arcs that terminate at node i
in the allocation graph Γg) because lii = 0 for all i ∈ M .

6 Extending the Domain

The allocation function g+ : Rm → A is an unrestricted domain extension of the
allocation function g : V → A if g+(v) = g(v) for all v ∈ V . We are interested
in universal domain extensions that preserve dominant strategy implementability.
Theorem 6 shows that any dominant strategy implementable allocation function on
a restricted type space has such an extension.
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Theorem 6 If the allocation function g : V → A is dominant strategy imple-
mentable, then g has a unrestricted domain extension g+ : Rm → A that is
dominant strategy implementable.

We give two proofs for Theorem 6 that provide different insights about the nature
of the extension. The first proof combines a revealed preference argument with the
taxation principle’s optimization problem in (3).

Proof (Version 1) Because g is dominant strategy implementable, there exists a
payment function π : V → R that implements it. By the taxation principle, this
payment function can be written as a function ρg : M → R because types that are
assigned the same alternative have the same payment. Let

O = {(ai, ρg(i)) | i ∈ M} (13)

be the set of all combinations of an alternative and its corresponding payment for
the mechanism (g, π).

For v ∈ V , let g+(v) = g(v). For all v ∈ R
m \ V , let

g+(v) = ai for some i ∈ arg max
i∈M {v(ai)− ρg(i)}. (14)

Because there are a finite number of alternatives, g+(v) is well defined. Thus, when
the type v is not in the domain V , the individual gets to choose any one of the
alternatives and pays the amount associated with it in the original mechanism. By
construction, when the individual is of type v, he is choosing a combination of an
alternative and a payment from O that is utility maximal for him. As a consequence,
because g+(v) = g(v) for v ∈ V , g+ is an extension of g that is dominant strategy
implementable. ��

This proof of Theorem 6 is quite simple and highlights the importance of the
taxation principle for the construction of the extension of g. However, it does not
exploit the geometric structure that is provided by the difference sets and the lengths
in the allocation graph that are used to define them. Our second proof of Theorem 6
does.

Consider any dominant strategy implementable allocation function g and let π
be a payment function that implements it. By Theorem 5, π corresponds to some
node potential ρg . Let

l+ij = ρg(j)− ρg(i), ∀i, j ∈ M. (15)

The value l+ij is the increment in the payment required if aj is chosen instead of ai
by the allocation function g using the payment function π corresponding to the node
potential ρg . The node potential allocation graph Γ +g is defined to be the complete
directed graph with node setM for which the length of the directed arc from node i
to node j is l+ij .
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It follows immediately from (15) that every cycle in Γ +g has zero length.

Lemma 1 If ρg : M → R is a node potential for the dominant strategy imple-
mentable allocation function g : V → A, then for every integer k ≥ 2, any k-cycle
in the node potential allocation graph Γ +g has zero length.

Lemma 2 shows that the length of any arc in the allocation graph Γg is at least
as large as the length of the corresponding arc in the node potential allocation graph
Γ +g and that these arc lengths coincide when an arc is part of a zero length 2-cycle
of Γg.

Lemma 2 If ρg : M → R is a node potential for the dominant strategy imple-
mentable allocation function g : V → A, then for all i, j ∈ M ,

lij ≥ l+ij . (16)

and for all i, j ∈ M for which lij + lj i = 0,

l+ij = lij . (17)

Proof Because ρg is a node potential for g, (16) follows from (12) and (15).
Consider any i, j ∈ M for which lij+lj i = 0. Because lij+lj i = 0 and l+ij+l+ji = 0,

if lij > l
+
ij , we would have

0 = lij + lj i > l+ij + l+ji = 0,

which is impossible. Hence, because (16) holds, (17) does as well. ��
For the allocation function g : V → A, the zero 2-cycle graph is the graph Γ 2

g

with node setM that has an edge between nodes i and j , denoted i ∼ j , if and only
if lij + lj i = 0. This graph is undirected and only has an edge between two nodes if
the length of the 2-cycle formed by the arcs connecting these nodes in Γg is zero.

For all i ∈ M , let P+i be the difference set for ai defined as in (9) but using the
lengths {l+ij } instead of the lengths {lij } when defining the analogues of the pairwise

difference sets in (7). Also let P̂+i ⊆ 1⊥ be the corresponding normalized difference
set for ai . An implication of Lemma 2 is that for all i ∈ M , Pi ⊆ P+i and P̂i ⊆ P̂+i .
In moving from Pi to P+i , any facet of Pi that is defined using an alternative whose
node forms a 2-cycle of Γ 2

g with node i is unchanged, whereas any facet of Pi that

is defined using an alternative whose node does not form a 2-cycle of Γ 2
g with node

i is moved parallel so as to increase the size of this difference set. We use these
observations in our second proof of Theorem 6.

Proof (Version 2) Because g is dominant strategy implementable, by Theorem 5,
there exists a node potential ρg : M → R and a payment function π : V → A

corresponding to it that implements g. By Lemma 2, l+ij = lij and l+ji = lj i for any
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pair of nodes i and j for which i ∼ j in the 2-cycle graph Γ 2
g . For any pair of nodes

i and j for which i �∼ j , by (16), lij > l
+
ij and lj i > l

+
ji . Hence, by the definitions

of Pi and P+i ,

Pi ⊆ P+i , ∀i ∈ M. (18)

We now show that

∪i∈MP+i = R
m. (19)

On the contrary, suppose that there exists a v ∈ R
m for which v /∈ P+i for any

i ∈ M . Using the lengths {l+ij } instead of the lengths {lij } in (7) and (9), it then
follows that for all i ∈ M , there exists an ij ∈ M such that

vi − vij < l+ij i . (20)

Because the number of nodes is finite, there exists a k-cycle for some k ∈
{2, . . . ,M} in which each arc is the arc from i to ij for some i. Let E be the set
of the arcs in this cycle with the arc that starts at node i denoted by iij . By (20),

0 =
∑
iij∈E

[vi − vij ] <
∑
iij∈E

l+iij . (21)

By Lemma 1, every cycle in the complete directed graph Γ +g has zero length, which
contradicts (21). Hence, (19) holds.

We now construct the allocation function g+ : Rm → A. For all v ∈ V , we let
g+(v) = g(v) so that g+ is an unrestricted domain extension of g. By construction,
intP+i ∩ intP+j = ∅ for all i, j ∈ M . For all i ∈ M , let g+(v) = ai for any

v ∈ intP+i \ V . For any other v ∈ R
m, there exists a maximal subset I ⊆ M for

which v ∈ ∩I∈I P+i . For such a v, let g+(v) = ai for some i ∈ I . By construction,
the allocation function g+ satisfies the conditions in Theorem 2 reinterpreted so as
to apply to g+.

By Lemma 1, all cycles in Γ +g have zero length. Hence, by Rochet’s Theorem
(Theorem 1), g+ is dominant strategy implementable. ��

An implication of Theorem 6 is that Γ +g is the allocation graph for the allocation
function g+. Because all 2-cycles in this graph have zero length and g+ is dominant
strategy implementable, it follows from Theorem 4 that the normalized difference
sets {P̂+i } have a common vertex, which we denote by p+.
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7 Essential Uniqueness of an Unrestricted Domain Extension

Two allocation functions g and g′ that have the same domain are essentially
equivalent if their difference sets are identical. By Theorem 2, both of these
functions assign the same alternative to any type in their common domain that is
in the interior of any of the difference sets. It is only when v is on the boundaries
of two or more difference sets that g(v) and g′(v) can differ. An unrestricted
domain extension g+ of an allocation function g is essentially unique if any other
unrestricted domain extension of g is essentially equivalent to g+.

In Theorem 7, we show that a dominant strategy implementable allocation
function g has an essentially unique unrestricted domain extension if the zero 2-
cycle graph Γ 2

g is connected. This graph need not have any cycles, but as Lemma 3
establishes, if there are any, they must have zero length. This observation is used to
help prove our uniqueness result.

Lemma 3 If the allocation function g : V → A is dominant strategy imple-
mentable, then any cycle of the zero 2-cycle graph Γ 2

g has zero length.

Proof By Lemma 2, for any i, j ∈ M for which i ∼ j in Γ 2
g , l+ij = lij . Because

Γ +g is complete and all of its cycles have zero length, it follows that any cycle of Γ 2
g

must have zero length. ��
Theorem 7 demonstrates that connectedness of the zero 2-cycle graph is suffi-

cient for the uniqueness of an unrestricted domain extension.

Theorem 7 If the allocation function g : V → A is dominant strategy imple-
mentable and the zero 2-cycle graph Γ 2

g is connected, then g has an essentially
unique unrestricted domain extension g+ : Rm→ A.

Proof Consider any three nodes i, j, k ∈ M of Γ 2
g for which i ∼ j and j ∼ k,

but i �∼ k. By Lemma 3, the length of the path from node i to node k via node
j is the negative of the reverse path. Adding the arc from node k to node i to the
first path results in a cycle. Moreover, there is a unique arc length l∗ki that results in
this cycle having zero length. The reverse cycle only has zero length if the arc from
node i to node k has length −l∗ki . The graph Γ 2

g is connected, and so by assigning

lengths in this way, we have uniquely extended Γ 2
g to a graph for which all three

cycles exist and have zero length. A simple induction argument shows that this way
of assigning lengths to arcs that are not in Γ 2

g uniquely extends Γ 2
g to a complete

graphΓ ∗g all of whose cycles have zero length. Lemmas 1 and 2 and Theorem 6 then
imply that Γ ∗g coincides with the node potential allocation graphΓ +g . The difference
sets for any unrestricted domain extension g+ of g are uniquely determined by the
lengths of the arcs in Γ +g . Hence, any unrestricted domain extension of g must have
the same difference sets and, therefore, there is an essentially unique unrestricted
domain extension of g. ��
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Fig. 1 Illustration of
Example 1

V̂

p+

P̂1 = P̂+
1

P̂2 = P̂+
2

P̂3 = P̂+
3

8 Examples

We provide three examples to illustrate how to construct an unrestricted domain
extension of an allocation function whose domain is not all of Rm. Edelman and
Weymark (2017) use the allocation functions in the first two examples to illustrate
Theorem 4, but they do not consider domain extensions.

In each of our examples, there are three alternatives. When this is the case, 1⊥
is a plane, which facilitates the use of diagrams. In our diagrams, the orientation
is chosen so that 1⊥ lies flat in the page. Each of the three normalized difference
sets P̂1, P̂2, and P̂3 lies in this plane. These sets are pointed cones whose bounding
rays form a 120◦ angle. Because the allocation function g is surjective, each of the
normalized difference sets must have a nonempty intersection with the projected
type space V̂ and each type in V̂ must be in at least one of them.

Example 1 A situation in which the conditions in Theorem 4 are satisfied is
illustrated in Fig. 1. Each pair of normalized difference sets shares a common facet,
and so all 2-cycles (and, hence, all cycles) have zero length. By Theorem 4, this
is only possible if P̂1, P̂2, and P̂3 share a common vertex. As we have seen in
Sect. 5, the ith component of this vertex is the average length l̄i of the arcs in Γg
that terminate at node i.

To define the allocation function g+ that extends g to all of R
3, we must, of

course, let g+(v) = g(v) for all v ∈ V . For v �∈ V , for all i, j ∈ M , g+ assigns
alternative ai to any v ∈ intPi , ai or aj to any v ∈ Pi ∩ Pj , and a1, a2, or a3 to any
v ∈ P1 ∩ P2 ∩ P3.

In Fig. 1, the union of the three normalized difference sets {P̂i} is all of 1⊥
and, hence, the union of the corresponding difference sets {Pi} is all of R

m. As
a consequence, for each i ∈ M , the normalized difference set P̂+i for g+ coincides

with the corresponding normalized difference set P̂i for g and, hence, their common
vertex p+ is also the common vertex of P̂1, P̂2, and P̂3.

Example 2 A situation in which the conditions in Theorem 4 are not satisfied is
illustrated in Fig. 2. The vertex p2 of P̂2 lies outside of V̂ and differs from the
vertices p1 of P̂1 and p3 of P̂3. Because the type space V is connected and m = 3,
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Fig. 2 Illustration of
Example 2

P̂1

P̂2

P̂3

V̂

p1 p2 = p+

p3

F̂13
F̂31

there must be at least two zero length 2-cycles (see Edelman and Weymark, 2017;
Vohra, 2011). Because the vertices of the normalized difference sets are not all the
same, it then follows from Theorem 4 that exactly one of the two cycles has positive
length. Here, it is the 2-cycle for a1 and a3. This 2-cycle has positive length because
P̂1 and P̂3 have no type in common. In contrast, each of the other two pairs of
normalized difference sets share a common facet, and so the other 2-cycles have
zero length.

There are points in R
3 that are not in any of the normalized difference sets. The

allocation function g+ that extends g to all of R3 is defined by first constructing
difference sets P+1 , P+2 , and P+3 for which (i) Pi ⊆ P+i for all i ∈ M and (ii)

∪i∈MPi = R
3. This is done by constructing normalized difference sets P̂+1 , P̂+2 ,

and P̂+3 for which (i) P̂i ⊆ P+i for all i ∈ M and (ii) ∪i∈MP̂i = 1⊥. The only way
to do this is to make p2 the common vertex of P̂+1 , P̂+2 , and P̂+3 .

By (8), for each i, j ∈ M , vi − vj = lj i on the line Hij ∩ 1⊥. Hence, any
normalized difference set P̂i has a facet whose slope is the same as one of the
facets of P̂j for j �= i. In Fig. 2, F̂13 and F̂31 are the parallel facets of P̂1 and
P̂3, respectively. The sets P̂+1 and P̂+3 are obtained from P̂1 and P̂3 by moving these

facets so that they coincide with the dashed line in the figure. The set P̂+2 is set equal
to P̂2.3 The three normalized difference sets constructed in this way have p2 as their
common vertex p+. For each i ∈ M , P+i = {v ∈ R

3 | v = ṽ + c · 1 for some ṽ ∈
P̂+i }.

The allocation function g+ that extends g to all of R
3 is now defined as in

Example 1. That is, g+(v) = g(v) for all v ∈ V and for all other v ∈ R
3, for

all i, j ∈ M , g+ assigns alternative ai to any v ∈ intPi , ai or aj to any v ∈ Pi ∩Pj ,
and a1, a2, or a3 to any v ∈ P1∩P2∩P3. All 2-cycles in the corresponding allocation
graph have zero length.

3In Figs. 2 and 3, we do not label these three normalized difference sets. However, they are easily
identified by our descriptions of their construction.
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p3
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V̂

V̂

P̂1

P̂2

P̂3

Fig. 3 Illustration of Example 3

In both Examples 1 and 2, that allocation function g has an essentially unique
unrestricted domain extension g+. Moreover, the common vertex p+ of the
normalized difference sets P̂+1 , P̂+2 , and P̂+3 for g+ coincides with some of the

vertices of the normalized difference sets P̂1, P̂2, and P̂3 for g. In Example 3,
the allocation function g does not have an essentially unique unrestricted domain
extension. For the extension g+ considered in this example, p+ does not coincide
with a vertex of any of the normalized difference sets for g.

Example 3 The projected type space V̂ and the three normalized difference sets P̂1,
P̂2, and P̂3 for the allocation function g are as illustrated in Fig. 3. Because V̂ is not
connected, V is not connected either. Because l12+ l21 = 0, the common vertex p+
of the three normalized difference sets P̂+1 , P̂+2 , and P̂+3 for the extension g+ must
lie on the line through p1 and p2. It must also lie on a line that is parallel to the
upward sloping facets of P̂1 and P̂3 and on a line that is parallel to the downward
sloping facets of P̂2 and P̂3. Furthermore, it must lie weakly to the right of P̂1
and weakly to the left of P̂3. It is because these constraints leave some freedom
about where to locate p+ that there is not an essentially unique unrestricted domain
extension of g. The exact location of p+ (subject to these constraints) depends on
which payment function is used to implement g or, equivalently, what node potential
is used.

The rays that originate at p+ are the facets of the normalized difference sets for
g+. These sets are used as in Examples 1 and 2 to specify the alternative assigned
by g+ for types that are not in V . All 2-cycles in the allocation graph for g+ have
zero length.
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9 Concluding Remarks

A dominant strategy implementable allocation function g satisfies the revenue
equivalence property if for any two payment functions π and π ′ that implement
it, there exists a scalar c such that

π ′(v) = π(v)+ c, ∀v ∈ V. (22)

Heydenreich et al. (2009) show that revenue equivalence holds if and only if for any
two nodes i and j in the allocation graph Γg, the length of the shortest path from
i to j is the negative of the length of the shortest path from j to i. An implication
of this result is that the length of the cycle formed by the shortest paths from node
i to j and from node j to i is zero. This cycle need not be a 2-cycle because these
paths need not be the direct paths between these two nodes. However, Edelman and
Weymark (2017) show that when the zero 2-cycle condition is satisfied, the shortest
path between two nodes is the direct path. As a consequence, revenue equivalence is
implied by the zero 2-cycle condition when g is dominant strategy implementable.
In general, g need not satisfy either the revenue equivalence property or the zero 2-
cycle condition. Nevertheless, any unrestricted domain extension of g must satisfy
the zero 2-cycle condition because the domain is unrestricted (Cuff et al., 2012) and,
hence, it satisfies the revenue equivalence property.

When the zero 2-cycle condition is satisfied by a dominant strategy imple-
mentable allocation function g, the normalized difference sets for it and for any
unrestricted domain extension are the same. As we have seen, their common vertex
p is a set of implementing payments for the alternatives and, hence, the payment
function π that corresponds to it is an implementing payment function (as a function
of the type). Because this is a situation in which revenue equivalence holds, the set
of all payment functions that implement g is the set of all π ′ that satisfy (22) for
some scalar c for the payment function π identified in this way.

It is an open question whether there is a simple way to characterize all of the
implementing payment functions for a dominant strategy implementable allocation
function g when revenue equivalence does not hold. Such a characterization can
be obtained if there exists a simple characterization of the normalized difference
sets for all of the unrestricted domain extensions of g when there is not an
essentially unique extension. Using the vertices of these normalized difference sets,
implementing payments can be identified as is done here for the case in which an
unrestricted domain extension is essentially unique.
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Self-implementation of Social Choice
Correspondences in Strong Equilibrium

Bezalel Peleg and Hans Peters

1 Introduction

A social choice correspondence chooses alternatives based on the preferences of
the agents. Generally speaking, one looks for social choice correspondences with
desirable properties, such as anonymity, Pareto optimality, and many more. The
problem, as already studied in Hurwicz (1972), is that preferences may be private
knowledge or, more generally, agents are entitled to report any preferences they
wish, resulting in alternatives chosen on the basis of the wrong information, and
thus in the desired properties of the social choice correspondence being violated.
Requiring strategy-proofness of a social choice function, meaning that no agent can
ever benefit from not reporting truthfully, is in general too strong and results in
dictatorship (Gibbard, 1973; Satterthwaite, 1975).

Implementation theory is concerned with finding game forms (mechanisms,
decentralized systems) of which the equilibrium (Nash, strong, etc.) alternatives in
the game with the true preferences coincide with the alternatives assigned to those
preferences by the social choice correspondence under consideration. In particular
since the work of Hurwicz (1972) there is a large literature on necessary and/or
sufficient conditions for implementation of social choice correspondences under
various equilibrium concepts, with Maskin (1999) as one of the basic contributions.
For an overview of this literature up to the current millennium, see Jackson (2001).
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A well-recognized drawback of many of the game forms or mechanisms
employed in implementation theory is that they tend to be fairly complicated and
not easy to use in practice. For instance, they may require agents to report not
just preferences but complete preference profiles, to report integer numbers, etc.
In the present paper, we therefore ask what is still feasible by using what we call
‘self-implementation’: this means implementation by a game form that is simply
a selection (social choice function) from the correspondence under consideration
and, thus, requires the agents just to report their own preferences and nothing else.
Apart from the simplicity of such a mechanism its use is also defendable in the
sense that it is close to the social choice correspondence that is deemed desirable.
Specifically, we ask the following question: which social choice correspondences
are self-implementable in strong equilibrium (that is, strategy-profiles such that no
coalition can gain by deviating, as introduced in Aumann, 1959)?

It turns out that under some natural additional conditions we are able to give a
precise answer to this question: if the number of agents is not too small and the
social choice function that selects from the correspondence and implements it is
anonymous and satisfies ‘no veto power’, then the correspondence must result from
so-called feasible elimination, as already introduced in Peleg (1978). The number
of agents being not too small will be made precise and, together with the no veto
power property boils down to this number being at least as large as twice the number
of alternatives minus one—a condition satisfied in most (political) elections. No
veto power means that no agent on its own is able to exclude any alternative from
being chosen—again a natural condition in larger elections. This result is quite
involved: its proof can be based on a selection from existing results in the literature,
as we will indicate; nevertheless, for the convenience of the reader and in order to
avoid having to introduce many additional concepts, we present a completely self-
contained proof.

As already mentioned, the concept of feasible elimination was introduced by
Peleg (1978), in order to construct the so-called exactly and strongly consistent
social choice functions: for such social choice functions there is for every profile
of (true) preferences a strong equilibrium profile resulting in the truthful alternative.
What we explicitly add in the present paper is not only that social choice functions
that select from a feasible elimination social choice correspondence implement
this correspondence in strong equilibrium, but also that under the additional
conditions mentioned above, the feasible elimination correspondence is the unique
correspondence for which this can be done.

Section 2 introduces the main concepts and Sect. 3 presents the main result. Most
parts of the proof are shifted to the Appendix. Section 4 concludes.

Notations The following basic notations are used throughout. For a set D, |D|
denotes the cardinality of D, P(D) the power set, i.e., the set of all subsets of D,
and P0(D) the set of all nonempty subsets of D.
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2 Self-implementation in Strong Equilibrium

Let A be the set of m alternatives, m ≥ 2, and let N = {1, . . . , n}, n ≥ 2, be the
set of voters. Subsets of N are called coalitions. Let L be the set of all preferences,
i.e., complete, antisymmetric and transitive binary relations, on A. Then LN is the
set of all (preference) profiles. A social choice correspondence (SCC) is a function
H : LN → P0(A). A social choice function (SCF) is a function F : LN → A.
A social choice function F is a selection from a social choice correspondenceH if
F(RN) ∈ H(RN) for every RN ∈ LN .

A game form is an (n+ 1)-tuple g = (�1, . . . , �n, π), where �i is the strategy
set of player (voter) i ∈ N , and π :  ni=1�

i → A is the outcome function. For every
RN ∈ LN the pair (g,RN ) is a(n ordinal) game. A strategy profile σ ∈  ni=1�

i is a
strong equilibrium (Aumann, 1959) in the game (g,RN ) if there are no S ∈ P0(N)

and σ̃ S ∈  i∈S�i such that π(̃σS, σN\S) �= π(σ) and π(̃σS, σN\S)Riπ(σ) for all
i ∈ S.1

A social choice correspondence H is strong equilibrium implementable if there
is a game form g = (�1, . . . , �n, π) such that for every RN ∈ LN we have

H(RN) = {π(σ) : σ is a strong equilibrium in (g,RN )} .

In this case we also say that the game form g implements the SCC H in strong
equilibrium.

A social choice function F can be identified with the game form in which the
strategy set of each voter is the set L and the outcome function is F , i.e., to each
strategy profile (preference profile) QN ∈ LN the outcome (alternative) F(QN) is
assigned. We denote this game form simply by F . Then (F,RN) is a game for every
RN ∈ LN .

Let H be a social choice correspondence. We call H strong self-implementable
if there is a social choice function F such that

(i) F(RN) ∈ H(RN) for every RN ∈ LN , and
(ii) H(RN) = {F(QN) : QN is a strong equilibrium in (F,RN)}.
In words, the selection F from H implements H in strong equilibrium.

We assume that every SCC H (including every SCF, since this can be viewed
as a single-valued SCC) occurring in the rest of the paper is non-imposed, i.e., for
every x ∈ A there is an RN ∈ LN such that H(RN) = {x}.

A well-known necessary condition (Maskin, 1999; see also Jackson, 2001) for
H to be (self-)implementable is the following.

Maskin Monotonicity For all RN = (R1, . . . , Rn), QN = (Q1, . . . ,Qn) ∈ LN ,
and x ∈ H(QN), if xQiy implies xRiy for all y ∈ A and i ∈ N , then x ∈ H(RN).

1Here, σN\S denotes the restriction of σ to N \ S. Similar notation will be used throughout the
paper.
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3 Main Result

The purpose of this section is to characterize all social choice correspondences H
that are self-implementable in strong equilibrium if the number of voters is relatively
large and the selection that implements H satisfies two natural properties, namely
anonymity and no-veto power. The latter means that no voter on his own is able to
exclude any alternative from being chosen. We arrive at this theorem by combining
a number of existing results in the literature, but our proof will be self-contained.

We start with the following concept, introduced by Peleg (1978). A social choice
function F is exactly and strongly consistent (ESC) if for every RN ∈ LN the game
(F,RN) has a strong equilibrium QN ∈ LN such that F(QN) = F(RN). We now
immediately have the following result.

Lemma 3.1 Let the selection F from the social choice correspondence H imple-
ment H in strong equilibrium. Then F is ESC.

Proof Let RN ∈ LN and x = F(RN). Then x ∈ H(RN) and therefore there
is a strong equilibrium QN of the game (F,RN) such that F(QN) = x. Hence,
F(QN) = F(RN). ��

The SCCs of interest in this section are based on the so-called feasible elimi-
nation procedures, defined for the case where n + 1 ≥ m. Informally, first, assign
weights β(x) ∈ N to the alternatives x ∈ A such that the sum of these weights is
equal to n+ 1. Consider a preference profile and take an alternative x that is bottom
ranked at least β(x) times. Eliminate β(x) preferences where x is bottom ranked,
and next eliminate x everywhere in the remaining profile. Repeat this procedure
until one alternative remains.

Formally, we have the following definition. Let n+1 ≥ m. A function β : A→ N

such that
∑
x∈A β(x) = n+ 1 is called a weight function.

Definition 3.2 Let β be a weight function. Let RN ∈ LN . A (β-)feasible elimina-
tion procedure ((β-)f.e.p.) forRN is a sequence (x1, C1; . . . ; xm−1, Cm−1; xm) such
that

(a) A = {x1, . . . , xm},
(b) C1, . . . , Cm−1 are pairwise disjoint subsets of N and |Cj | = β(xj ) for all j =

1, . . . ,m− 1,
(c) xkRixj for all j = 1, . . . ,m− 1, k = j + 1, . . . ,m, and i ∈ Cj .

Thus, in a feasible elimination procedure2 (x1, C1; . . . ; xm−1, Cm−1; xm), by
condition (c) alternative x1 is bottom ranked for all voters inC1 and by condition (b),
|C1| = β(x1). Now eliminate the preferences of the voters in C1, and eliminate x1
from the preferences of the remaining voters. In the remaining profile, x2 is bottom
ranked for all voters in C2 by condition (c), and by condition (b), |C2| = β(x2), so

2Dependence on β is often not mentioned when confusion is unlikely.
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that the preferences of the voters in C2 can be eliminated and x2 can be eliminated
from the remaining profile. And so on and so forth. Observe that after eliminating x1
there are n−β(x1) voters left, after eliminating x2 there are n−β(x1)−β(x2) voters
left, and after eliminating xm−1 there are n−β(x1)−. . .−β(xm−1) = β(xm)−1 ≥ 0
voters left.

An important observation about f.e.p.s. is the following. Suppose an alternative
x is bottom ranked by (at least) the voters in some coalition S with |S| = β(x), in
a profile RN ∈ LN . Then x must be eliminated in every f.e.p. for RN . To see this
suppose there is an f.e.p. in which x is not eliminated and let y be the alternative
eliminated last, say via coalition T . Then the finally left voters form a coalition S′
containing S. We have β(y) + β(x) = |T | + |S′| + 1 by the foregoing, but also
|T | + |S′| ≥ β(y)+ β(x), a contradiction.

It is not difficult to see that there exists always at least one f.e.p. under the
assumptions in the definition. If every alternative xj is bottom ranked less than
β(xj ) times, then the total number of voters is at most

∑m
j=1 β(xj ) − m, which

is equal to n + 1 −m and therefore strictly smaller than n. A similar argument can
be made after elimination of each alternative x1, . . . , xm−2.

Let β be a weight function. An alternative x is RN -maximal for β if there exists
a β-f.e.p. (x1, C1; . . . ; xm−1, Cm−1; x). We denote

Mβ(R
N) = {x ∈ A : x is RN -maximal for β}.

The following lemma repeats the known result that Mβ is Maskin monotonic.
For completeness, a proof can be found in the appendix, where also references to
the literature are provided. For a weight function β as in Definition 3.2 we use the
notation β(B) =∑

x∈B β(x) for B ⊆ A.

Lemma 3.3 Let β be a weight function. ThenMβ is Maskin monotonic.

Next, we provide a characterization of maximal alternatives. Again, see the
appendix for references and a proof.

Lemma 3.4 Let β be a weight function. Let x ∈ A and RN ∈ LN . The following
statements are equivalent.

(i) x ∈ Mβ(RN).
(ii) There are no S ∈ P0(N) and B ∈ P0(A) such that |S| ≥ β(A \ B), x ∈ A \ B,

and y Ri x for all i ∈ S and y ∈ B.

The following result says thatMβ is self-implementable in strong equilibrium by
any selection from it.

Proposition 3.5 Let β be a weight function and let F be a selection fromMβ . Then
F implementsMβ in strong equilibrium.
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Proof

(a) Let RN ∈ LN and x ∈ Mβ(RN). We show that there is a strong equilibrium
QN of (F,RN) such that F(QN) = x. Let (x1, C1; . . . ; xm−1, Cm−1; x) be an
f.e.p. for RN and consider the profileQN ∈ LN obtained from RN by lowering
xj to the last position in the preferences of the voters in Cj , j = 1, . . . ,m− 1,
leaving everything else in tact. ThenMβ(QN) = {x}, hence F(QN) = x. Also,
QN is a strong equilibrium of (F,RN). Indeed assume on the contrary that
there exist S ∈ P0(N) and PS ∈ LS such that F(PS,QN\S) = z �= x and
zRix for all i ∈ S. Then z = xj for some 1 ≤ j ≤ m− 1. By the definition of
an f.e.p., xRiz for all i ∈ Cj , hence S ∩Cj = ∅. Since |Cj | = β(z) and z is the
last ranked alternative of Q� for all � ∈ Cj , we have that z /∈ Mβ(PS,QN\S),
contradicting F(PS,QN\S) = z.

(b) Let QN be strong equilibrium of (F,RN) with F(QN) = x. We show that
x ∈ Mβ(RN). It is sufficient to show that (ii) of Lemma 3.4 holds for x. Suppose
not. Then there is an S ∈ P0(N) and B ∈ P0(A), x /∈ B, such that yRix for
all y ∈ B and i ∈ S, and |S| ≥ β(A \ B). Consider a profile PS ∈ LS with
A\B at bottom for all voters in S. Then by the remarks following Definition 3.2,
all elements of A \ B will be eliminated in any f.e.p. for (P S,QN\S), so that
Mβ(P

S,QN\S) ⊆ B, hence S has an improvement, a contradiction to the
assumption thatQN is strong equilibrium of (F,RN). ��

Before turning to a converse of Proposition 3.5 we introduce two additional
possible properties of a social choice correspondenceH . Of course, these properties
also apply for a social choice function F , since a social choice function can be
identified with a single-valued social choice correspondence.

Anonymity For all RN ∈ LN and for all permutations π of N , H(R1, . . . , Rn) =
H(Rπ(1), . . . , Rπ(n)).

No Veto Power For all x ∈ A and i ∈ N , there is no Ri ∈ L such that x /∈
H(Ri, RN\{i}) for all RN\{i} ∈ LN\{i}.
Proposition 3.6 Let social choice function F be ESC, anonymous, and satisfy No
Veto Power, and let n + 1 ≥ m. Then there is a weight function β such that F is a
selection fromMβ .

Also this proposition can be deduced from earlier results in the literature, but
for completeness we provide a self-contained proof in the appendix. The following
theorem is a corollary to Propositions 3.5 and 3.6 and the main result of this section.

Theorem 3.7 Let n+1 ≥ m and let the social choice functionH be implementable
in strong equilibrium by a selection F which is anonymous and satisfies No Veto
Power. Then H = Mβ for some weight function β.
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Proof By Lemma 3.1 and Proposition 3.6 it follows that there is a weight function
β such that F(RN) ∈ Mβ(RN) for all RN ∈ LN . By Proposition 3.5, F implements
Mβ in strong equilibrium. Hence,

H(RN) = {F(QN) : QN is a strong equilibrium in (F,RN)} = Mβ(RN)

for all RN ∈ LN , which completes the proof. ��
Theorem 3.7 says, roughly, that if the number of voters is relatively large, then the

only social choice correspondences which are self-implementable in a reasonable
way in strong equilibrium are the correspondences Mβ . Typically, in political
elections the constraint n + 1 ≥ m is satisfied and the conditions of Anonymity
and No Veto Power for a final selection of a candidate are natural if not compelling.

The conditions of Anonymity and No Veto Power in the theorem are on the
selection F . In general we can make the following observations. It is possible that
H is anonymous but F is not: let H assign to every profile the set of all top-ranked
alternatives, and let F select from that set the top-ranked alternative of agent 1.
Also, F can be anonymous but H not: fix an alternative a ∈ A and let H assign all
top-ranked alternatives, but leave out a if this is top-ranked by agent 1 alone, and
let F select from H the alternative that is ranked maximally according to a fixed
preference Q which has a last. Further, if F satisfies No Veto Power, then also H
does, but the converse is not necessarily true: fix an alternative a, let H assign all
top-ranked alternatives, and let F select from that according to a fixed orderingQ,
but leave out a as a possible choice if it is last ranked by agent 1. Then H satisfies
No Veto Power but F does not.

Since, by the preceding remarks,Mβ in the theorem satisfies No Veto Power, it
follows by the definition of a β-f.e.p. that β(x) ≥ 2 for all x ∈ A and, thus, that the
number of agents is at least as large as twice the number of alternatives minus one.

4 Concluding Remarks

Clearly, the approach in this paper leaves many open questions. We mention two of
these. First, which social choice correspondences are self-implementable in strong
equilibrium if the number of agents is relatively small—for instance, a small group
of people in a restaurant has to make some common choices from a large menu of
dishes? Second, what can be said about self-implementation in Nash equilibrium?
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Appendix: Remaining Proofs

Proofs of Lemmas 3.3 and 3.4

Proof of Lemma 3.33 Let QN and RN be as in the definition of Maskin mono-
tonicity, and x ∈ Mβ(QN). Without loss of generality we assume that there is a
voter v such that QN\{v} = RN\{v}. Let f ∗ = (x1, C1; . . . ; xm−1, Cm−1; x) be an
f.e.p. for QN , where A = {x1, . . . , xm−1, x}. If v /∈ C1 ∪ . . . ∪ Cm−1, then it is
easy to see that f ∗ is still an f.e.p. for RN , so that x ∈ Mβ(RN). Now assume
v ∈ C1 ∪ . . . ∪ Cm−1. If v ∈ Cj with j > 1, then we may eliminate x1, . . . , xj−1
and all voters in C1 ∪ . . . ∪ Cj−1 first, and next continue the argument with the
remaining profile, where now all voters in Cj have xj bottom ranked according to
QCj . So, without loss of generality, let v ∈ C1.

The rest of the proof is based on a three-step algorithm.

Step 1 If the bottom alternative of Rv is equal to x1, then f ∗ is still an f.e.p. forRN

and we are done. Otherwise, go to Step 2.
Step 2 Let the bottom alternative of Rv be x� �= x1, so � ∈ {2, . . . ,m − 1}. If all

voters in C� have x� as bottom alternative in RN , then we can first eliminate x�
via C� and go back to Step 1 for the reduced profile. Otherwise, go to Step 3.

Step 3 Take v̂ ∈ C� with x� not as bottom alternative and note that the bottom
alternative of Rv̂ = Qv̂ is some xj with j < � (since xj must be eliminated
before x� in f ∗). Then modify C� to Ĉ� = (C� ∪ {v}) \ {v̂} and modify C1 to
Ĉ1 = (C1 ∪ {v̂}) \ {v}. (In words, we switch v and v̂.) Go back to Step 1.

Repeat this procedure until the final substitute of v in the modified C1 has x1 at
bottom. Then we can apply an f.e.p. resulting in x, so that x ∈ Mβ(RN). ��
Proof of Lemma 3.44 For the implication (i) ⇒ (ii), let x ∈ Mβ(RN) and let
(x1, C1; . . . ; xm−1, Cm−1; x) be an f.e.p. for RN . Suppose there were S and B as

in (ii). Write B = {xi1, . . . , xi|B| } ⊆ {x1, . . . , xm−1}, then
(
∪|B|j=1Cij

)
∩ S = ∅

by definition of an f.e.p., and | ∪|B|j=1 Cij | = β(B). Hence |S| + | ∪|B|j=1 Cij | ≥
β(A \ B)+ β(B) = n+ 1, a contradiction.

We prove the implication (ii) ⇒ (i) by induction on the number of alternatives
m. Let x ∈ A and assume that (ii) holds.

If m = 2, say A = {x, y}, then there is no S ∈ P0(N) such that |S| ≥ β(x) and
yRix for all i ∈ S, so thatMβ(RN) = {x}.

3See Lemma 5.3.5 in Peleg (1984); or Remark 9.3.7 in Peleg and Peters (2010), based on Theorem
9.3.6 in the same source. In turn, the latter result goes back to Polishchuk (1978). More generally,
Lemma 3.7 in Peleg and Peters (2017b) shows Maskin monotonicity of an extension ofMβ .
4Also this result can be deduced from Theorem 9.3.6 in Peleg and Peters (2010). It is included as
Lemma 3.5 in Peleg and Peters (2017a).
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Now suppose that m > 2 and that the implication (ii) ⇒ (i) holds if there
are less than m alternatives. For every B ∈ P0(A \ {x}) denote SB = {i ∈ N :
yRix for all y ∈ B}. Then (ii) is equivalent to

|SB | < β(A \ B) for all B ∈ P0(A \ {x}) (1)

hence to

|N \ SB | ≥ β(B) for all B ∈ P0(A \ {x}). (2)

We consider two cases.

Case 1 There exists B̃ ∈ P0(A \ {x}) with |B̃| ≤ m− 2 and |N \ SB̃ | = β(B̃).
For this case we consider the two following subproblems:

• N1 = N \ SB̃ , A1 = B̃ ∪ {x}, β1(y) = β(y) for all y ∈ B̃, β1(x) = 1, and
Ri1 = Ri|A1

for all i ∈ N1.5

• N2 = SB̃ , A2 = A \ B̃, β2(y) = β(y) for all y ∈ A2, and Ri2 = Ri|A2
for all

i ∈ N2.

We next show that (1) holds for the first subproblem. If not, then there is a B ∈
P0(B̃) such that |T | ≥ β1(A1 \B), where T = {i ∈ N1 : yRi1x for all y ∈ B}. Then

|T ∪ SB̃ | = |T | + |SB̃ | ≥ [β1(x)+ β(B̃)− β(B)] + [n− β(B̃)] = β(A \B), hence
|SB | ≥ β(A \B), which is a violation of (1) for the original problem. Therefore, (1)
must hold for the first subproblem, implying that x ∈ Mβ1(R

N1
1 ) by induction.

Similarly, suppose that (1) does not hold for the second subproblem. Then there
is a B ∈ P0(A \ (B̃ ∪ {x})) such that |T | ≥ β2(A2 \ B), where now T = {i ∈
SB̃ : yRi2x for all y ∈ B}. Then |T ∪ (N \ SB̃)| = |T | + |N \ SB̃ | ≥ [β(A) −
β(B) − β(B̃)] + β(B̃) = β(A \ B), which is a violation of (1) for the original
problem. We conclude that (1) must hold for the second subproblem as well, so that
x ∈ Mβ2(R

N2
2 ) by induction.

Now let (z1, C1; . . . ; z|B̃|, C|B̃|; x) be an f.e.p. for the first subproblem and let
(u1,D1; . . . ; um−1−|B̃|,Dm−1−|B̃|; x) be an f.e.p. for the second subproblem. Since,

in particular, yRix for all y ∈ B̃ and i ∈ N2 = SB̃ , it follows that

(u1,D1; . . . ; um−1−|B̃|,Dm−1−|B̃|; z1, C1; . . . ; z|B̃|, C|B̃|; x)

is an f.e.p. for the original problem, implying that in this case we have x ∈ Mβ(RN).
Case 2 For all B̃ ∈ P0(A \ {x}) with |B̃| ≤ m− 2 we have |N \ SB̃ | > β(B̃).

Suppose there is an � ∈ N such that x is not ranked at the last or second last
position in R�, and let ŷ be the alternative ranked right below x. We switch x and ŷ
in voter �’s preference to obtain a new preference R̂� and a new preference profile

5Ri|B denotes the restriction of Ri to B.
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R̂N = (R1, . . . , R�−1, R̂�, R�+1, . . . , RN ) that still satisfies (2): for any set B with
|B| ≤ m−2 this holds because of the strict inequality in Case 2, and forB = A\{x}
this holds since x is not ranked last in R̂�.

If Case 1 applies to R̂N , then x ∈ Mβ(R̂N ). Thus, by Lemma 3.3, x ∈ Mβ(RN).
If Case 1 does not apply to R̂N , then we repeat this step for some voter �′ ∈ N with
x not ranked last or second last at R̂�

′
, and so on, until either Case 1 applies or there

is no voter left with x not ranked at the last or second last position.
In the latter case, we have a profile, say R̃N , for which still (2) holds and with

x ranked last or second last for each voter i ∈ N . Observe that y is last ranked
for all voters in N \ S{y} for all y ∈ A \ {x}. Also, by (2), |N \ S{y}| ≥ β(y) for
all y ∈ A \ {x}. It follows that in any f.e.p. for R̃N every y ∈ A \ {x} is bottom
ranked by at least β(y) voters and therefore eliminated, so thatMβ(R̃N ) = {x}. By
Lemma 3.3 again, x ∈ M(RN).

By (2), Cases 1 and 2 are exhaustive, which completes the proof of the
lemma. ��

Proof of Proposition 3.6

We now turn to the proof of Proposition 3.6.6 It will be convenient to introduce some
terminology related to effectivity functions.7 Let F be a social choice function and
let S ⊆ N and B ⊆ A. Then S is (F -)effective for B is there is RS ∈ LS such that
F(RS,QN\S) ∈ B for all QN\S ∈ LN\S . For every x ∈ A define the integer b(x)
(the ‘blocking coefficient’ of x) by

b(x) = min{|S| : S ⊆ N is effective for A \ {x} } .

By non-imposition of F , we have 1 ≤ b(x) ≤ n for all x ∈ A. We write b(B) for∑
x∈B b(x), B ⊆ A. Of course, b(·) depends on F but this will be suppressed from

notation if confusion is unlikely.
We start with three useful observations.8

Lemma A.1 Let the SCF F be anonymous. Let S ⊆ N and B ⊆ A such that
|S| ≥ b(A \ B). Then S is effective for B.

6Alternatively, a proof can be deduced from Theorem 5.5.3 in Peleg (1984), which in turn is
based on Holzman (1986). We include a proof here for completeness, and additionally to avoid
introduction of more definitions and concepts.
7These functions have been first formally introduced in Moulin and Peleg (1982). Here we just use
some of the associated terminology.
8Many of the arguments in this part are based on Chapter 10 in Peleg and Peters (2010) and the
references therein, in particular Holzman (1986).
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Proof Write A \ B = {x1, . . . , xk}, where k ≥ 0. Let S1, . . . , Sk be a partition
of S such that |Sj | ≥ b(xj ) for each j = 1, . . . , k, and let RSj ∈ LSj such that
F(RSj ,QN\Sj ) ∈ A \ {xj } for each j = 1, . . . , k and QN\Sj ∈ LN\Sj . Then
F(RS,QN\S) ∈ B for allQN\S ∈ LN\S . So S is effective for B. ��
Lemma A.2 Let the SCF F be ESC and let S ⊆ N be effective for B ⊆ A. Let
RN ∈ LN and x ∈ A\B such that yRix for all y ∈ B and i ∈ S. Then F(RN) �= x.

Proof Suppose on the contrary that F(RN) = x and letQN be a strong equilibrium
in (F,RN ) with F(QN) = x. Since S is effective for B, there is PS ∈ LS such that
F(PS,QN\S) ∈ B, contradicting thatQN is a strong equilibrium in (F,RN). ��
Lemma A.3 Let the SCF F be ESC and anonymous, and assume that b(A) = n+1.
Then F is a selection fromMb.

Proof Let RN ∈ LN and x = F(RN). Let B ⊆ A, S ⊆ N , |S| ≥ b(A \ B), and
x ∈ A \ B. In order to prove that x ∈ Mb(RN), it is by Lemma 3.4 sufficient to
prove that we do not have yRix for all y ∈ B and i ∈ S.

On the contrary, suppose that yRix for all y ∈ B and i ∈ S. Since |S| ≥ b(A \
B), Lemma A.1 implies that S is effective for B. Then Lemma A.2 implies that
F(RN) �= x, a contradiction. ��

Notice that in order to obtain Proposition 3.6 we may try and derive the condition
b(A) = n + 1 in Lemma A.3. This is, essentially, what is done in the remainder of
the proof.

Lemma A.4 Let the SCF F be ESC, S ⊆ N , B ⊆ A, and suppose that for every
QN\S ∈ LN\S there is PS ∈ LS such that F(PS,QN\S) ∈ B. Then S is effective
for B.9

Proof On the contrary, suppose that for everyQS ∈ LS there is PN\S ∈ LN\S such
that F(QS, PN\S ) ∈ A \B. Consider a profile RN ∈ LN such that xRiy and yRjx
for every i ∈ S, j ∈ N \ S, x ∈ B, and y ∈ A \B. Let z = F(RN) and letQN be a
strong equilibrium of (F,RN) with F(QN) = z. If z ∈ A \ B, then S can improve
by a profile PS as in the statement of the lemma. If z ∈ B, then N \ S can improve
by a profile PN\S as above. ��

In what follows we will use the notion of a generalized partition or g-partition of
a set, which is a partition in which some elements may be empty.

Lemma A.5 Let the SCF F be ESC. Then there are no p ≥ 2, partition
B1, . . . , Bp of A and g-partition S1, . . . , Sp of N such that N \ Si is effective for
Bi , for every i = 1, . . . , p.

9This lemma states that the effectivity function associated with F is ‘maximal’. See Moulin and
Peleg (1982) or Peleg (1984).
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Proof Suppose not, so (g-)partitions as in the lemma exist. Consider a profile RN

as in the following table:

S1 S2 · · · Sp
B2 B3 · · · B1
...
...

...

Bp B1 · · · Bp−1

B1 B2 · · · Bp
(meaning that every member of coalition S1 prefers all alternatives of B2 over all
alternatives of B3, all alternatives of B3 over all alternatives of B4, and so on and so
forth). Now by Lemma A.2, F(RN) /∈ Bi for every i = 1, . . . , p. Since ∪pi=1Bi =
A, this is a contradiction. ��
Lemma A.6 Let the SCF F be ESC and satisfy NVP. Then there are no partition
{x}, B1, B2 of A and g-partition S, T1, T2 of N such that |S| = b(x) and N \ Tj is
effective for Bj for j = 1, 2.

Proof Suppose not, so (g-)partitions as in the lemma exist.
First, suppose S = N . Then for every i ∈ N , |N \ {i}| < |S| = b(x). Therefore,

for every QN\{i} ∈ LN\{i} there is P i ∈ L such that F(P i,QN\{i}) = x, so that
by Lemma A.4, {i} is effective for x. Since |A| ≥ 2 this violates NVP of F . Thus,
S �= N and b(x) < n. By NVP, also b(x) > 1. So |S| ≥ 2 and T1 ∪ T2 �= ∅.

Let now S1, S2 be a partition of S and consider a profile RN as in the following
table:

S1 S2 T1 T2

B2 B1 {x} {x}
B1 B2 B2 B1

{x} {x} B1 B2

Since S = S1 ∪ S2 is effective for A \ {x} = B1 ∪ B2 we have by Lemma A.2 that
F(RN) �= x. Without loss of generality we assume that F(RN) ∈ B1. LetQN be a
strong equilibrium in (F,RN) with F(QN) = F(RN), hence F(QN) �= x.

Case 1 xQiy for some i ∈ S, without loss of generality i ∈ S1, and y ∈ A \ {x}.
In this case consider the partition {x}, {y}, A \ {x, y} of A and the g-partition

S \ {i}, {i}, T1 ∪ T2 of N . Since |S \ {i}| < b(x) we have that N \ (S \ {i}) is
effective for {x} by Lemma A.4. By NVP and Lemma A.4, N \ {i} is effective for
{y}. Hence, by Lemma A.5,N \(T1 ∪ T2) is not effective forA\{x, y}. In turn, again
by Lemma A.4, this implies that T1 ∪ T2 is effective for {x, y}. Consider a profile
PT1∪T2 ∈ LT1∪T2 such that xP j yP jz for all j ∈ T1 ∪ T2 and z ∈ A \ {x, y}. Then
by Lemma A.2, F(PT1∪T2,QS) ∈ {x, y}. Since xQiy and since T1 ∪ T2 ∪ {i} =
N \ (S \ {i}) is effective for {x}, again by Lemma A.2, F(PT1∪T2,QS) �= y. Hence,
F(PT1∪T2,QS) = x. This contradicts thatQN is a strong equilibrium in (F,RN).
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Case 2 yQix for all i ∈ S and y ∈ A \ {x}.
In this case, consider the partition {x}, B1, B2 of A and the g-partition S2, S1 ∪

T1, T2 of N . Since |S2| < b(x) we have by Lemma A.4 that N \ S2 is effective for
{x}. By assumption,N \ T2 is effective for B2. Hence by Lemma A.5,N \ (S1 ∪ T1)

is not effective for B1, which in turn by Lemma A.4 implies that S1 ∪ T1 is effective
for A \ B1. Consider a profile PS1∪T1 ∈ LS1∪T1 such that yP jxP j z for all j ∈
S1 ∪ T1, y ∈ B2, and z ∈ B1. By Lemma A.2, F(PS1∪T1,QS2∪T2) /∈ B1. Since by
assumption S1 ∪ S2 ∪ T1 is effective for B2, by Case 2 yQix for all y ∈ B2 and i ∈
S, andN \T2 is effective for B2, we have by Lemma A.2 that F(PS1∪T1 ,QS2∪T2) �=
x. Hence F(PS1∪T1,QS2∪T2) ∈ B2. Since F(QN) = F(RN) ∈ B1, S1 ∪ T1 has an
improvement, contradicting thatQN is a strong equilibrium of (F,RN). ��
Lemma A.7 Let the SCF F be ESC and satisfy NVP, and 1 ≤ k ≤ m − 2. Then
there are no partition {x1}, . . . , {xk}, B1, B2 of A and g-partition S1, . . . , Sk, T1, T2
of N such that |Si | = b(xi) for each i = 1, . . . , k, N \ T1 is effective for B1, and
N \ T2 is effective for B2.

Proof The proof is by induction on k. For k = 1 this is Lemma A.6. Let 2 ≤ k ≤
m− 2 and suppose that the statement in the lemma holds for k− 1. Suppose, on the
contrary, that the statement does not hold for k, and let {x1}, . . . , {xk}, B1, B2 and
S1, . . . , Sk, T1, T2 be as in the lemma. Since Si �= ∅ for every i = 1, . . . , k, we have
∅ �= Sk ∪ T1 �= N . By Lemma A.4, either Sk ∪ T1 is effective for A \ ({xk} ∪ B1)

or N \ (Sk ∪ T1) is effective for {xk} ∪ B1. In the first case, Lemma A.6 is violated
for the partition {xk}, B1, A \ ({xk} ∪B1) of A and the g-partition Sk, T1, N \ (Sk ∪
T1) of N . In the second case, the induction hypothesis is violated for the partition
{x1}, . . . , {xk−1}, {xk} ∪ B1, B2 of A and the g-partition S1, . . . , Sk−1, Sk ∪ T1, T2
of N . ��

The next lemma says that an ESC social choice function is ‘subadditive’.10

Lemma A.8 Let the SCF F be ESC, let S1 ⊆ N be effective for B1 ⊆ A and let
S2 ⊆ N be effective for B2 ⊆ A, such that B1 ∩ B2 = ∅. Then S1 ∩ S2 is effective
for B1 ∪ B2.

Proof

(a) Say that coalition S is s-effective for a set of alternatives B if there is a partition
B1, . . . , Bk of B and there are coalitions S1, . . . , Sk such that Sj is effective for
Bj , j = 1, . . . , k, and S = ∩kj=1Sj . Clearly, if S is effective for B, then S is
also s-effective for B by taking k = 1, S1 = S, B1 = B. We will prove the
converse, which will imply the lemma.

(b) We first prove that if S is s-effective for B, then N \ S is not s-effective for
A \ B. Suppose the latter were not the case, i.e., both S is s-effective for B
and N \ S is s-effective for A \ B. Let B1, . . . , Bk and C1, . . . , C� be the
associated partitions of B and A \ B, and let S1, . . . , Sk and T1, . . . , T� be

10Cf. Moulin (1983).
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the associated coalitions, hence S = ∩kj=1Sj and N \ S = ∩�h=1Th. List
S1, . . . , Sk, T1, . . . , T� as V1, . . . , Vp and list the associated sets of alternatives
asD1, . . . ,Dp (where p = k+�). Then for every i ∈ N there is q ∈ {1, . . . , p}
such that i /∈ Vq . Consider a preference profile RN such that for every i ∈ N ,
Dq+1R

iDq+2R
i . . . RiDpR

iD1R
i . . . RiDq . Let x ∈ A. If x ∈ Dq for some

q > 1, then Dq−1R
ix for all i ∈ Vq−1, so that by Lemma A.2 we have

F(RN) �= x. If x ∈ D1, thenDpRix for all i ∈ Vp, so that again by Lemma A.2
we have F(RN) �= x. This is not possible, hence we have that if S is s-effective
for B, then N \ S is not s-effective for A \ B.

(c) Now, finally, assume that S is s-effective for B. Then by part (b), N \ S is not
s-effective for A \ B, hence by part (a), N \ S is not effective for A \ B. By
Lemma A.4, S is effective for B. This concludes the proof of the lemma. ��

The final lemma we need is the following.

Lemma A.9 Let the SCF F be ESC and satisfy NVP. Let 0 ≤ k ≤ m − 2. Then
there are no partition {x1}, . . . , {xm} ofA and g-partition S1, . . . , Sm ofN such that
|Sj | = b(xj ) for j = 1, . . . , k and |N \Sj | is effective for {xj } for j = k+1, . . . ,m.

Proof For k = 0 this follows from Lemma A.5. Now let k > 0. Suppose on the
contrary that we had {x1}, . . . , {xm} and S1, . . . , Sm as in the lemma. By repeated
application of Lemma A.8 we have that N \ (Sk+1 ∪ . . . ∪ Sm−1) is effective for
{xk+1, . . . , xm−1}. Now the partition {x1}, . . . , {xk}, {xk+1, . . . , xm−1}, {xm} and g-
partition S1, . . . , Sk, T1, T2 with T1 = Sk+1 ∪ . . . ∪ Sm−1 and T2 = Sm violate
Lemma A.7. ��
Proof of Proposition 3.6 In view of Lemma A.3, it is sufficient to prove that b(A) =
n + 1. Clearly, b(A) ≥ n + 1, otherwise N would have some profile RN such that
F(RN) /∈ A, which is clearly impossible. Write A = {x1, . . . , xm}. We distinguish
two cases.

Case 1 b(A) ≥ n+m. Then n ≤ b(A)−m =∑m
j=1(b(xj)− 1), so that there is a

g-partition S1, . . . , Sm of N with |Sj | ≤ b(xj ) − 1 for every j = 1, . . . ,m, which
by using Lemma A.4 violates Lemma A.9 for k = 0.

Case 2 b(A) = n + (m − k) for some k ∈ {1, . . . ,m − 2}. In this case, let Sj ,
j = 1, . . . , k, be coalitions with |Sj | = b(xj ). Since

k∑
j=1

|Sj | = b(A)− (b(xk+1 + . . .+ b(xm))

= n+ (m− k)− (b(xk+1 + . . .+ b(xm))
≤ n+ (m− k)− (m− k)
= n
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the Sj can be chosen disjoint. Also,

n−
k∑
j=1

|Sj | = n− (b(A)−
m∑

j=k+1

b(xj))

= n− n− (m− k)+
m∑

j=k+1

b(xj ))

=
m∑

j=k+1

(b(xj )− 1)

so that we can find disjoint Sk+1, . . . , Sm with |Sj | = b(xj) − 1 for all j =
k + 1, . . . ,m, hence, by Lemma A.4, N \ Sj is effective for {xj }. This is again a
violation of Lemma A.9.

Thus, b(A) = n+ 1, which concludes the proof. ��
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New Directions in Design



Domains Admitting Ex Post
Incentive Compatible and Respectful
Mechanisms: A Characterization
for the Two-Alternative Case

Salvador Barberà, Dolors Berga, and Bernardo Moreno

1 Introduction

We consider collective decision-making problems when only two outcomes are
possible. Finding satisfactory mechanisms in this case is an easy task in private
values environments, where each agent’s preferences are fully determined by their
type. Then, majority voting (with tiebreaking) and its generalizations are among the
many voting rules that satisfy good incentive and efficiency conditions, among other
properties.1

The situation is more complicated in the case of interdependent values, where
the type of each agent does not fully determine that agent’s preferences, which may
also depend on the type of other agents. This is, for example, the case of deliberative
juries, where each agent is endowed with information that she may share with others

1See, for example, May (1952), Austen-Smith and Banks (1999), and Fishburn (1973) Part I.
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strategically, and each one forms preferences on the basis of signals she gets from
nature and from other jurors. Each profile of revealed types, to which mechanisms
must assign an outcome, will still fully determine societies’ preference profiles. But
finding mechanisms with good incentives and other criteria is no longer a simple
task, even if only two alternatives are at stake.

In a preceding paper (Barberà et al. 2018), we have identified domains of type
profiles such that no mechanisms defined on them, other than the constant ones, can
be ex post incentive compatible and respectful.2 And we also provide examples of
alternative domains where satisfactory mechanisms can be designed.

This chapter uses essentially the same framework, notation, and definitions as our
preceding work. However, by focusing on situations where only two alternatives
are possible, we arrive at a sharp characterization result: a condition that is only
necessary to obtain positive results in the general case becomes sufficient as well
as in the special case we consider here. Given the general difficulties that one
encounters in designing mechanisms in the presence of interdependent types, and
the relevance of the two-alternative case for applications, we think that the sharp
result we present is of independent interest.

We work on a purely ordinal framework. This leads us to a somewhat nonstan-
dard formulation of the model. Part of this formulation involves the distinction
between types, as a holistic representation of agents, and preference functions,
which are the rules used by agents to form the preferences that will guide their
voting behavior. Properties of type domains are expressed in terms of the types
themselves and of the preferences they give rise to.

The chapter proceeds as follows. In Sect. 2, we present the general framework
and define the domain restrictions and the type of mechanisms we shall concentrate
on. Section 3 contains the result and its proof, and an application. We conclude in
Sect. 4.

2 The Model

Let N = {1, 2, . . . , n} be a finite set of agents with n � 2. Let A = {a, b} be the set
of alternatives. Let Ri ∈R denote agent i’s preference over A, where Pi and Ii are the
strict and the indifference part of Ri, respectively, where R contains three individual
preferences over A: aPib meaning that agent i (strictly) prefers a to b, bPia meaning
that i (strictly) prefers b to a, and aIib meaning that i is indifferent between a and b.
A preference profile, denoted by RN = (R1, . . . , Rn), is an element of Rn.

It will be useful to pay attention to the relationship between pairs of preferences.

Definition 1 Let x ∈ A. We say that R′i ∈ R is an x-monotonic transform of Ri ∈R
if for z ∈ A\{x}, either xIiz and xR′i z, or xPiz and xP ′i z, or zPix.

2See the definitions of properties in Sect. 2.
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In words: R′i is an x-monotonic transform of Ri if the position of x relative to
z has weakly improved when going from Ri to R′i . A special case of x-monotonic
transforms of preferences is when Ri = R′i .

Each agent i ∈N is endowed with a type θ i belonging to a set	i. Each θ i includes
all the information in the hands of i. We denote by 	 = ×i∈N	i the set of type
profiles. A type profile is an n-tuple θ = (θ1, . . . , θn).

The information about agent’s preferences is already contained in each type
profile. But we find it useful to develop a language that allows us to explicitly
differentiate between the overall information contained in the types and the specific
information that refers to preferences. This is often achieved in the literature by
predicating that agents are endowed with a utility function that depends on the
profile of types. But since we work with ordinal preferences, we formalize this
dependence by means of rules of the form R : 	→ Rn, which assign a preference
profile to each type profile and that we call preference functions. We will refer
to R(θ ) as the preference profile induced by θ . Ri(θ ) will stand for the induced
preferences of agent i at type profile θ .

Notice that the domain of R is a Cartesian product including all possible type
profiles. Its range is a set of preference profiles. We exclude the trivial case where
all type profiles lead to the same preference profile and assume that the range is not
a singleton. Also notice that this range may be a non-Cartesian strict subset of Rn.

Following the standard use, we will call private values environments those where
each agent’s component of the preference function only depends on her type.
That is, Ri(θ ) = Ri(θ i) for each agent i ∈ N and θ ∈ 	. Otherwise, we are in
interdependent values environments.

We now introduce an example which adapts in ordinal terms and for two
alternatives the one proposed by Bergemann and Morris (2005) as their Example 1.

Example 1 An interdependent values example with a non-Cartesian range.
Let N = {1, 2} and A = {a, b}. Each agent i has two possible types: 	i ={
θ i, θ i

}
. The preference function R is defined in Table 1. We write, in each cell, the

preferences of both agents for a given type profile, where preferences are represented
by an ordered list from better to worse, with parenthesis in case of indifferences.
Observe that aP1(θ1, θ2)b while bP1(θ1, θ 2)a; hence agent 1’s preferences over b
and a depend on agent 2’s type and we are in an interdependent values environment.

To show that the range of R is not a Cartesian product, note that R1 = {ab, ba,
(ab)} and R2 = {ab, ba}, but the preference profile (ba, ba) is not in the range of
the preference function R.

Table 1 Preference function
for Example 1

R θ2 θ2

θ1 R1
(
θ1, θ2

)
R2

(
θ1, θ2

)
ab ba

R1
(
θ1, θ2

)
R2

(
θ1, θ2

)
ba ab

θ1 R1
(
θ1, θ2

)
R2

(
θ1, θ2

)
(ab) ab

R1
(
θ1, θ2

)
R2

(
θ1, θ2

)
(ab) ab
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Our result focuses on direct mechanisms. In fact, the properties we discuss are
best analyzed with reference to the direct mechanism associated with any general
one that might be described in terms of different message spaces and outcome
functions.

A direct mechanism on 	 is a function f : 	→ A such that f (θ ) ∈ A for each
θ ∈ 	. From now on, we drop the term “direct” and refer to mechanisms, without
danger of ambiguity.

Notice that, by letting 	 be the domain of f, we implicitly assume that all type
profiles within this set are considered to be feasible by the designer.

We are interested in the characteristics of the domains on which mechanisms are
defined. We shall now identify an important condition on domains (see Definition
4) that may or may not be satisfied by given sets of type profiles. This condition
start by considering sequences of type profiles that result from changing the type
of individual agents, one at a time. These sequences are identified in detail in
Definitions 2 and 3.

Let S =
{
θSi(S,1), . . . , θ

S
i(S,tS)

}
∈

tS∏
h=1
	i(S,h) be a sequence of individual types of

length tS.
The sequence of agents whose types appear in S is denoted by I(S)= (i(S, 1), . . . ,

i(S, tS)), where i(S, h) is the agent in position h in S. Notice that agents may appear
in that sequence several times or not at all.

Given θ ∈ 	 and S =
{
θSi(S,1), . . . , θ

S
i(S,tS)

}
∈

tS∏
h=1
	i(S,h), we consider

the sequence of type profiles mh(θ , S) that results from changing one at a time
the types of agents according to S, starting from θ . Formally, mh(θ , S) ∈ 	 is
defined recursively so that m0(θ , S) = θ and for each h∈ {1, . . . , tS} ,mh(θ, S) =((
mh−1(θ, S)

)
N\i(S,h), θ

S
i(S,h)

)
.

Definition 2 Let θ ∈ 	,S =
{
θSi(S,1), . . . , θ

S
i(S,tS)

}
∈

tS∏
h=1
	i(S,h). We call the

sequence of type profiles
{
mh(θ, S)

}tS
h=0 the passage from θ to θ ′ through S if

mts (θ , S)= θ ′ for θ ′ ∈ 	.

More informally, we say that θ leads to θ ′ through S.
Notice that a given passage from θ to θ ′ through S induces a corresponding

sequence of preference profiles, Rh(θ , S) for h∈ {0, 1, . . . , tS}, where for each agent
i ∈ N, Rhi (θ, S) ≡ Ri(mh(θ, S)).

We can now establish a condition on the connection between sequences of
changes in type profiles and the changes in preferences profiles that they induce.

Definition 3 Let x ∈ A, θ , θ ′ ∈	. We say that the passage from θ to θ ′ through S is
x-satisfactory if for each h ∈ {1, . . . , tS}, Rhi(S,h) (θ, S) is an x-monotonic transform

of Rh−1
i(S,h) (θ, S).
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Example 1 (continued) Satisfactory and nonsatisfactory passages.
Let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ2, θ1, θ2

}
a sequence of

individual types. Note that I(S) = {2, 1, 2} and tS = 3. We claim that the passage
from θ to θ ′ through S is a-satisfactory. To show it, we have to check that for each
h ∈ {1, 2, tS = 3}, Rhi(S,h) (θ, S) is an a-monotonic transform of Rh−1

i(S,h) (θ, S).

For that, observe first thatR0
i(S,1)(θ, S)=R2(θ1, θ2), R

1
i(S,1)(θ, S)=R2(θ1, θ2),

R1
i(S,2)(θ, S)=R1(θ1, θ2), R

2
i(S,2)(θ, S) = R1(θ1, θ2), R

2
i(S,2)(θ, S) = R2(θ1, θ 2),

and R3
i(S,2)(θ, S) = R2(θ1, θ 2). Then, using the table in Example 1, note that the

following three facts hold: R2(θ1, θ2) is an a-monotonic transform of R2(θ1,
θ2). Moreover, R1(θ1, θ2) is an a-monotonic transform of R1(θ1, θ2). And,
R2(θ1, θ2) = R2(θ1, θ2).

Let x = a, θ = (θ1, θ2), θ
′ = (θ1, θ2), and S = {

θ1
}

a sequence of individual
types. Note that, I(S) = {1} and tS = 1. We claim that the passage from θ to θ ′
through S is not a-satisfactory. To show it, observe that for R1

i(S,1) (θ, S) = (ab) is

not an a-monotonic transform of R0
i(S,1)(θ, S) = Ri(S,1)(θ) = ab.

Notice that in the case of private values the order of individuals in S could be
changed and the new sequence would still serve the same purpose. This is because
the changes in the type of each agent only induce changes in the preferences of this
agent. By contrast, the precise order of agents I(S) may be crucial in the case of
interdependent values. We say that x is the reference alternative when going from θ
to θ ′.

Armed with these definitions we now state the concept of knit domains.

Definition 4 We say that 	 is knit if for any two pairs formed by an alternative
and a type profile each, (x, θ), (z, θ̃ ) ∈ A × 	, θ �= θ̃ , x �= z, there exist θ ′ ∈ 	
and sequences of types S and S̃, such that the passage from θ to θ ′ through S is
x-satisfactory and the passage from θ to θ̃ through S̃ is z-satisfactory.

Although the above definition is general, we want to remark that no domain is
knit in private values environments.

Proposition 1 No domain	 in a private values environment is knit.3

Proof of Proposition 1 Since we are assuming that the range of the preference
function is not a singleton, we can choose i ∈ N, θi, θ̃i ∈ 	i, θi �= θ̃i to be such that
R(θi) �= R(θ̃i). There will be a pair of alternatives, say x and z, such that xPi(θ i)z
and zRi (θ̃i)x (otherwise, for θi, θ̃i ∈ 	i,R(θi) = R(θ̃i)). To show that the set of
types 	 is not knit, we prove that for the two pairs (x, (θ i, θ–i)), and (z, (θ̃i , θ−i ))
for some θ–i, there does not exist any θ ′, S, and S̃ such that the passage from θ to θ ′

3The argument used here is the same as in the proof of Proposition 1 in Barberà et al. (2018). We
include it here for completeness and to illustrate a case where knitness fails.
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through S be x-satisfactory and the passage from θ̃ to θ ′ through S̃ be z-satisfactory.
We prove it by contradiction. Suppose otherwise that there exist θ∗, S∗, S̃∗, such

that the passages
{
mh (θ, S∗)

}tS∗
h=0 and

{
mh(θ, S̃∗)

}tS̃∗
h=0

from θ to θ∗ through S∗

and θ̃ to θ∗ through S̃∗ are x and z-satisfactory, respectively.
Since we are in a private values environment, changes in the type of agent j

never affect the induced preferences of other agents and in particular never affect i’s
induced preferences if j �= i. Moreover, we know that xPi(θ i)z and zRi (θ̃i)x. These
two observations imply that agent i must belong to I (S∗) ∪ I (S̃∗). That is, i will
appear in at least one of these two sequences.

We concentrate on the steps of the passage where agent i changes her type and
we show that there is no θ∗ compatible with the existence of x-satisfactory and z-
satisfactory passages from θ to θ∗ and from θ̃ to θ∗.

Without loss of generality, by the remark just after Definition 3, we can assume
that all types of agent i in S∗ and S̃∗ appear in the first positions in these sequences.

Let’s define IS∗,i ≡ {h ∈ {1, 2, . . . , iS∗} : i(S∗, h) = i} and IS̃∗,i =
{
h ∈

{1, 2, . . . , iS̃∗} : i(S̃∗, h) = i
}

.

Take 1 ∈ IS∗,i . Since R1
i (θ, S

∗) is an x-monotonic transform of Ri(θ i), we have
that xPi (m1

i (θ, S
∗))z. By repeating the same argument for each h ∈ IS∗,i we finally

obtain that xPi(m
iS∗
i (θ, S∗))z wheremiS∗i (θ, S∗) = θ∗i .

Now, take 1 ∈ IS̃∗,i . Since R1
i (θ̃

∗, S̃∗) is a z-monotonic transform of Ri(θ̃∗i ), we
have that zRi (m1

i (θ̃
∗, S̃∗))x. By repeating the same argument for each h ∈ IS̃∗,i we

finally obtain that zRi (m
iS̃∗
i (θ, S̃

∗))z where m
iS̃∗
i (θ, S̃

∗) = θ∗i .
As mentioned above, changes in the types of agents different from i will not

change agent i’s preferences. Thus, we have obtained the desired contradiction: on
the one hand that xPi (θ∗)z and on the other hand that zRi (θ∗)x. �

We now turn attention to some properties of the mechanisms themselves.
We first look at incentives. Ex post incentive compatibility requires, for all agents

to prefer truthtelling at a given type profile θ , if all the other agents also report
truthfully.4

Definition 5 A mechanism f is ex post incentive compatible on 	 if, for any agent
i ∈ N, θ ∈ 	, and θ ′i ∈ 	i, f (θ)Ri(θ)f (θ ′i , θN\{i}).

We say that an agent i ∈ N can ex post profitably deviate under mechanism f at
θ ∈ 	 if there exists θ ′i ∈ 	i such that f (θ ′i , θN\{i})Pi(θ)f (θ). Note that ex post
incentive compatibility requires that no agent can ex post profitably deviate at any
type profile.

Finally, we shall require our mechanisms to satisfy a condition that we call
respectfulness. It is a relatively weak requirement since it only applies to some

4This property is called uniform incentive compatibility by Holmstrom and Myerson (1983). See
also Bergemann and Morris (2005).
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limited changes in type profiles, and has no bite in some important cases (e.g.,
in public good economies where agents’ preferences are strict). The condition
essentially requires that for those limited changes in type profiles, no agent can
affect the outcome (for her and for others) unless she changes her own level of
satisfaction.

Definition 6 A mechanism f is (outcome) respectful on 	 if

f (θ)Ii(θ)f (θ
′
i , θN\{i}) implies f (θ) = f (θ ′i , θN\{i}),

for each i ∈ N, θ ∈ 	, and θ ′i ∈ 	i such that Ri(θ ′i , θN\{i}) is a f (θ )-monotonic
transform of Ri(θ ).

3 The Main Result

Our Theorem 1 provides a full characterization of those domains that admit
nonconstant, ex post incentive compatible, and respectful mechanisms in the two-
alternative case that we are considering.

Theorem 1 A domain 	 admits nonconstant, respectful, and ex post incentive
compatible mechanism if and only if it is not knit.

Proof Let us prove, by construction, that if a domain 	 is not knit then there exist
nonconstant, respectful, and ex post incentive compatible mechanisms on	. In any
domain that is not knit, there will be two pairs formed by an alternative and a type
profile each, (x, θ), (z, θ̃ )∈A × 	, θ �= θ̃ , x �= z such that there do not exist
θ ′ ∈ 	,S, S̃ where the passage from θ to θ ′ through S is x-satisfactory and the
passage from θ̃ to θ ′ through S̃ is z-satisfactory. Without loss of generality, assume
that x = a and z = b.

Before defining the desired mechanism, let us first propose the following
partition of 	:	1 = {θ ∈ 	 : there are S1 and S2 such that the passage from
θ to θ through S1 is a-satisfactory and the passage from θ to θ through S2 is
b-satisfactory},	2 = {θ ∈ 	 : there are S̃1 and S̃2 such that the passage from θ̃ to θ
through S̃1 is b-satisfactory and the passage from θ to θ̃ through S̃2 is a-satisfactory},
	3 = 	\(	1 ∪ 	2). Note that since the domain is not knit 	1 ∩ 	2 = ∅.

We now define a mechanism f as follows: f (θ̂) = a if θ̂ ∈	1∪	3 and f (θ̂) = b,
otherwise. Let us first check, by contradiction, that f is ex post incentive compatible.

Suppose that there exist θ ∈ 	, agent i ∈ N, θ ′i ∈ 	 such that f (θ ′i , θN\{i})
Pi(θ)f (θ).

Case 1. f (θ) = a and f (θ ′i , θN\{i}) = b. Thus, by definition of f, either (1)
θ ∈ 	1 or (2) θ ∈ 	\ (	1 ∪	2). However,

(
θ ′i , θN\{i}

) ∈ 	2.
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Observe thatRi(θ) is such that bP i(θ)a andRi(θ ′i , θN\{i}) can be any preference.
That is, bRi(θ ′i , θN\{i})a, aRi(θ ′i , θN\{i})b, or aI i(θ ′i , θN\{i})b holds. For the three
cases, observe that the passage from θ to

(
θ ′i , θN\{i}

)
through S′ = {

θ ′i
}

where
I(S′) = (i) is a-satisfactory and, also, the passage from

(
θ ′i , θN\{i}

)
to θ through

Ŝ where I (Ŝ) = (i) is b-satisfactory.
Subcase 1.1: θ ∈ 	1. Since θ ∈ 	1, we have that the passage from θ to θ through

S1 is a-satisfactory and therefore the passage from θ to
(
θ ′i , θN\{i}

)
through S1∪ S′

is a-satisfactory. Also since θ ∈ 	1, we have that the passage from θ to θ through
S2 is b-satisfactory and therefore the passage from

(
θ ′i , θN\{i}

)
to θ through Ŝ ∪S2

is b-direct satisfactory. Therefore,
(
θ ′i , θN\{i}

) ∈ 	1 which is a contradiction to the
assumption that

(
θ ′i , θN\{i}

)∈	2.
Subcase 1.2: θ ∈ 	\(	1 ∪	2

) = 	3. Since
(
θ ′i , θN\{i}

) ∈ 	2, we have that the
passage from θ̃ to

(
θ ′i , θN\{i}

)
through S̃1 is b-satisfactory, and therefore the passage

from θ̃ to θ through S̃1 ∪ Ŝ is b-satisfactory. Also, since
(
θ ′i , θN\{i}

) ∈ 	2, we have
that the passage from

(
θ ′i , θN\{i}

)
to θ̃ through S̃2 is a-satisfactory and therefore the

passage from θ to θ̃ through Ŝ ∪ S̃2 is a-satisfactory. Therefore, θ ∈ 	2 which is a
contradiction to the assumption that θ ∈ 	\ (	1 ∪	2).

Case 2. f
(
θ ′i , θN\{i}

) = a and f (θ) = b. Thus, by definition of f, either (1)(
θ ′i , θN\{i}

) ∈ 	1 or (2)
(
θ ′i , θN\{i}

) ∈ 	\ (	1 ∪	2). However, θ ∈ 	2.
Observe that Ri(θ) is such that aPi(θ )b and Ri

(
θ ′i , θN\{i}

)
can be any preference.

That is, bRi(θ ′i , θN\{i})a, aRi(θ ′i , θN\{i})b, or aI i(θ ′i , θN\{i})b holds. For the three
cases, observe that the passage from θ to

(
θ ′i , θN\{i}

)
through S′ = {

θ ′i
}

where
I(S′)= (i) is b-satisfactory, also, the passage from

(
θ ′i , θN\{i}

)
to θ through Ŝ where

I (Ŝ) = (i) is a a-satisfactory.
Since θ ∈	2, we have that the passage from θ̃ to θ through S̃1 is b-satisfactory,

and therefore the passage from θ̃ to
(
θ ′i , θN\{i}

)
through S̃1 ∪ S′ is b-satisfactory.

Also, since θ ∈ 	2, we have that the passage from θ to θ̃ through S̃2 is
a-satisfactory and therefore the passage from

(
θ ′i , θN\{i}

)
to θ̃ through Ŝ ∪ S̃2 is

a-satisfactory. Therefore,
(
θ ′i , θN\{i}

) ∈	2 which is a contradiction to the assump-
tion that

(
θ ′i , θN\{i}

) ∈ 	1 ∪	3.
Now, we show that f is respectful.
By contradiction suppose that there exist θ ∈	, agent i ∈ N, θ ′i ∈	 such that

f(θ ′i , θN\{i})Ii (θ)f (θ), f(θ ′i , θN\{i}) �=f(θ), andRi(θ ′i , θN\{i}) is a f(θ)-monotonic
transform of Ri(θ).

First, assume that f(θ) = a and f(θ ′i , θN\{i}) = b. Thus, by definition of f, either
(1) θ ∈ 	1 or (2) θ ∈ 	\ (	1 ∪	2). However,

(
θ ′i , θN\{i}

) ∈ 	2.
Observe that Ri(θ) is such that bIi(θ)a and Ri(θ ′i , θN\{i}) can be any preference.

That is, bRi(θ ′i , θN\{i})a, aRi(θ ′i , θN\{i})b, or aI i(θ ′i , θN\{i})b holds. For the three
cases, observe that the passage from θ to

(
θ ′i , θN\{i}

)
through S′ = {

θ ′i
}

where
I(S′)= (i) is a-satisfactory, also, the passage from

(
θ ′i , θN\{i}

)
to θ through Ŝ where

I(Ŝ) = (i) is a b-satisfactory.
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Repeating the same argument as in Cases 1 and 2 above we get the desired
contradiction.

An identical argument as above holds if f (θ ′i , θN\{i}) = a and f (θ) = b.
To prove the second part of our result, we invoke the fact that on knit domains any

respectful and ex post incentive compatible mechanism must be constant as stated
in Theorem 1 in Barberà et al. (2018). �

As an application of our framework and result we present an example of a delib-
erative jury, where jurors are endowed with preference functions that result from
very specific reactions to information. The example is inspired in Austen-Smith and
Feddersen (2006), but we extend it here to allow for agents to be indifferent between
the two outcomes. We exhibit a family of interesting mechanisms satisfying our
conditions and which in addition may reach efficient outcomes. Clearly, the domain
of types in this example is not knit.

Example 2 A three-person jury N = {1, 2, 3} must decide over two alternatives:
whether to acquit (A) or to convict (C) a defendant under a given mechanism. The
defendant is either guilty (g) or innocent (i). Each juror j gets a signal sj = g or
sj = i.

In this application, the type of each juror is the combination of the signals she has
received and the idiosyncratic methods she uses to process her information and that
of others into a preference over alternatives. In this and other applications, we find
it useful to be explicit about the way in which agents form their preferences, once
they know the type profile. We do so by distinguishing between two components
of their type: one is the set of signals they get, si, and the other is the rule they use
to form their preferences once they have the signals, bi. Formally, a type for agent
i ∈ N can be written as θ i = (bi, si) ∈	i, where bi is a function from type profiles to
individual i’s preferences. If we take those elements as the primitives of the model,
we can then induce the relevant preference function. Let Bi be the set of possible
preference formation rules for individual i.

Let Si be the set of signals for agent i. We consider types in 	i ≡ Bi × Si and
the preference function R : 	→ ×i∈NRi is such that for each i ∈ N, Ri(θ ) = bi(s)
where s = (s1, . . . , sn). Thus, juror’s preferences arise from combining the different
signals they obtain from the deliberation, according to their particular preference
formation rules. These are of two possible kinds, depending on the agents’ tendency
to convict in view of their observed signals and of those declared by others.

Each juror may now be either unswerving or median. Unswerving jurors (u)
prefer to convict rather than acquit (this preference denoted by C) if they have
observed the “guilty” signal and have also received such a signal from at least
another juror. They prefer to acquit rather than to convict (denoted by A) if they have
the “innocent” signal and have also received such a signal from at least another juror.
Otherwise, they are indifferent. Median jurors (m) prefer to convict rather than to
acquit if they have observed the “guilty” signal and have also received such a signal
from at least another juror but also if they receive two “guilty” signals from other
jurors. Otherwise, they prefer to acquit rather than convict (denoted by AC).
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Formally, each agent can have two preference formation rules that are defined as
follows: (1) bui (s) = C if si = g and sj = g for some j �= i, bui (s) = A if si = i and
sj = i for some j �= i, and bui (s) = (AC), otherwise; (2) bmi (s) = bm(s) such that
bm(s) = C if # {i ∈ N : sj = g} ≥ 2 and bm(S)= A, otherwise. Here Bi =

{
bui , b

m
}
.

The preference function R is such that for each agent i ∈N,Ri((bui , si ), θ−i ) = bui (s)
and Ri((bm, si), θ−i) = bm(s).5

We now define mechanisms that are nonconstant, respectful, and ex post
incentive compatible on 	. In view of Theorem 1, this is possible since the domain
of definition is not knit. To prove that, consider any two pairs of alternatives and
types such that unanimity of induced preferences holds in favor of the corresponding
alternative. For example, let (C, θ ) where θ = ((bm1 , g), (bm2 , g), (bm3 , i)) and (A, θ̃)
where θ̃ = ((bm1 , i), (bm2 , i), (bm3 , i)) and observe that for each i ∈ N, Ri(θ )= C and
Ri(θ̃) = A. Then, there are no θ ′ and sequences S and S̃ such that the passage
from θ to θ ′ through S is C-satisfactory and the passage from θ̃ to θ ′ through S̃ is
A-satisfactory.

Let q ∈ {1, 2, 3}. A mechanism f is voting by quota q if f chooses C for a type
profile θ if and only if at least q agents have induced preferences from θ such that C
is preferred to A.6

Formally, for each type profile θ = (b, s) ∈ 	,

f (θ) = Cif and only if # {i ∈ N : bi(s) = C} ≥ q.

In Table 2, we describe all possible results of voting by quota for different values
of q. We have four matrices, one for each type of agent 3. In the rows of each matrix,
we write the four types of agent 1 and in the columns the four types of agent 2. In
each cell, we write each agent’s best alternatives according to their preference at
a given type profile, followed by the outcome of a quota mechanism. When two
outcomes appear in a cell, the one in the left stands for the outcome of voting by
quota 3 and the one in the right is the outcome for both quota 1 and 2, which in this
example are always the same.

Given Table 2, it is easy to check that this rule is ex post incentive compatible
and respectful. In addition, it also satisfies anonymity.

5Being unswerving for agents 1 and 2 is different. Suppose that both jurors are unswerving and the
signal profile is (g, i, g). Then, juror 1 will prefer to convict rather than to acquit but juror 2 would
not. Yet being both jurors median would induce the same preferences for both agents: they would
prefer to convict rather than to acquit.
6See Austen-Smith and Feddersen (2006) and Barberà and Jackson (2004) for papers where these
rules are analyzed.
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Table 2 For each type profile, each agent’s best alternative and feasible outcome of a voting by
quota mechanism(
bm3 , i

) (
bm2 , i

) (
bm2 , g

) (
bu2 , i

) (
bu2 , g

)
(
bm1 , i

)
AAA A AAA A AAA A A(AC)A A(

bm1 , g
)

AAA A CCC C AAA A CCC C(
bu1 , i

)
AAA A AAA A AAA A A(AC)A A(

bu1 , g
)

(AC)AA A CCC C (AC)AA A CCC C(
bu3 , i

) (
bm2 , i

) (
bm2 , g

) (
bu2 , i

) (
bu2 , g

)
(
bm1 , i

)
AAA A AAA A AAA A A(AC)A A(

bm1 , g
)

AAA A CC(AC) A/C AAA A CC(AC) A/C(
bu1 , i

)
AAA A AAA A AAA A A(AC)A A(

bu1 , g
)

(AC)AA A CC(AC) A/C (AC)AA A CC(AC) A/C(
bm3 , g

) (
bm2 , i

) (
bm2 , g

) (
bu2 , i

) (
bu2 , g

)
(
bm1 , i

)
AAA A CCC C AAA A CCC C(

bm1 , g
)

CCC C CCC C C(AC)C A/C CCC C(
bu1 , i

)
AAA A (AC)CC A/C AAA A (AC)CC A/C(

bu1 , g
)

CCC C CCC C C(AC)C A/C CCC C(
bu3 , g

) (
bm2 , i

) (
bm2 , g

) (
bu2 , i

) (
bu2 , g

)
(
bm1 , i

)
AA(AC) A CCC C AA(AC) A CCC C(

bm1 , g
)

CCC C CCC C C(AC)C A/C CCC C(
bu1 , i

)
AA(AC) A (AC)CC A/C AA(AC) A (AC)CC A/C(

bu1 , g
)

CCC C CCC C C(AC)C A/C CCC C

4 Concluding Remarks

We have argued that the design of mechanisms that operate in societies that
involve interdependent types is important and nontrivial, even when only two
possible social outcomes are at stake. We have proven that the possibility to design
satisfactory mechanisms in that context crucially depends on the domains over
which they must be defined. In a context that admits the possibility of agents to be
indifferent between the two potential alternatives, we have found characterization of
those domains admitting nonconstant, ex post incentive compatible, and respectful
mechanisms. We have also described a family of quota rules that satisfy these
conditions in an example involving deliberative committees. These mechanisms, in
addition, satisfy further properties, like anonymity and neutrality, which make them
particularly attractive and hint that in the absence of knitness there is a wide range of
mechanisms to choose from, some of which are far from trivial. While all quota rules
have much in common, two of the quotas (one and two) lead to efficient outcomes,
quota three rules may be inefficient. Further analysis of the compatibility between
efficiency and good incentives deserves additional attention in further work.



306 S. Barberà et al.

Ackowledgements Salvador Barberà acknowledges financial support from the Spanish Min-
istry of Economy and Competitiveness, through the Severo Ochoa Programme for Centers of
Excellence in R&D (SEV-2015-0563) and grant ECO2017-83534-P and feder, and from the
Generalitat de Catalunya, through grant 2017SGR-0711. D. Berga and B. Moreno acknowledge
the support from the Spanish Ministry of Economy, Industry and Competitiveness through grants
ECO2016-76255-P and ECO2017-86245-P, respectively, and thank the MOMA network.

References

Austen-Smith, D., & Banks, J. S. (1999). Positive political theory I. Collective preference. Ann
Arbor: The University of Michigan Press.

Austen-Smith, D., & Feddersen, T. J. (2006). Deliberation, preference uncertainty, and voting rules.
American Political Science Review, 100, 209–217.

Barberà, S., & Jackson, M. O. (2004). Choosing how to choose: Self-stable majority rules and
constitutions. Quarterly Journal of Economics, 119(3), 1011–1048.

Barberà, S., Berga, D., & Moreno, B. (2018). Restricted environments and incentive compatibility
in interdependent values models. SSRN WP/BGSE WP 1024.

Bergemann, D., & Morris, S. (2005). Robust mechanism design. Econometrica, 73, 1771–1813.
Fishburn, P. C. (1973). The theory of social choice. Princeton, NJ: Princeton University Press.
Holmstrom, B., & Myerson, R. B. (1983). Efficient and durable decision rules with incomplete

information. Econometrica, 51, 1799–1819.
May, K. O. (1952). A set of independent necessary and sufficient conditions for simple majority

decisions. Econometrica, 20, 680–684.



Mechanisms in a Digitalized World

Gabrielle Demange

1 Introduction

Social institutions were the primary interests of Leonid Hurwicz. He developed
a theory of how to analyze institutions and economic systems in terms of their
incentives and enforcement properties in Hurwicz (1960) and Hurwicz (1973). In
putting the emphasis on the crucial role of information for allocating resources
efficiently, he formalized ideas from Hayek and Mises on the market as an
aggregator of dispersed information. In doing so, as argued by Myerson (2009),
he shed light on an old debate about socialism and central planning. The tools he
introduced, relying on an analytical modeling of incentives, have a fundamental
influence on current economics, both theoretical and applied. They paved the way
to mechanism design, which considers how a designer (planner, institution, firm)
who aims at achieving certain goals should choose the rules applied to individuals
who act strategically. Mechanism design plays a critical role in the development
of new market allocation procedures. To name a few, the allocation of students
to schools, kidney exchanges, or auctions are all determined by mechanisms. As
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such, Leonid Hurwicz can be considered as a precursor of the new area of market
design. Furthermore, the formal procedures computed by algorithms for solving
public, economic, or social problems share common features with mechanisms as
defined by economists.1 As these procedures are developing fast due to computing
and communication facilities, the impact of Hurwicz’s work now extends to an even
broader area than expected.

After pioneering the mathematic modeling of incentives and introducing mech-
anism design, Hurwicz became interested in the “human side” of mechanisms. The
article “But who will guard the guardians?” (2008) refers to at least two human
sides. The first one is alluded to in the title of the article, which is a question raised
by Juvenal, described by Hurwicz as follows:

In posing the famous question, the Roman author, Juvenal, was suggesting that wives cannot
be trusted, and keeping them under guard is not a solution because the guards cannot be
trusted either.

In the mechanism context, Juvenal’s question could be rephrased as: Who are
the guardians of the institutions? Who watches whether the announced constitution
(or regulation) is correctly applied? In other words, Hurwicz raises the incentives’
issue on the mechanism’s designer rather than on the individuals on which the
mechanism applies. Apart from the designer’s incentives, one may also add: Who
checks whether the mechanism is correctly computed? Who checks that errors in
the mechanism do not generate large risks? Such issues are especially important for
the complex mechanisms that are now computed through algorithms by computers.

The second human side raised by Hurwicz (2008) pertains to the individuals
and their “illegal” strategies. This aspect is in line with his primary objective of
studying the functioning of economic systems, impossible to describe fully by an
analytical approach. While the analytical apparatus of mechanism design is suitable
for studying institutions that must be precisely defined, such as electoral rules, it is
too constrained to describe most institutions because of the numerous individuals’
possibilities of action (the illegal or secret strategies).2 Research has not much
considered illegal strategies, but rather developed in studying well-defined settings
ranging from the implementation literature to market design, in which case the issue
of illegal strategies is irrelevant.

A third human consideration differs from the ones referred to by Hurwicz. A
reluctance to mechanisms has been revealed now that they are implemented in
the real world at a large scale through computers and algorithms. Though, the
reluctance is only partly explained by the use of these computerized tools. The
very genuine feature of a mechanism is to be mechanical, and this feature per se
might be perceived as non-human, whether the mechanism is computed by hand or
a computer.

1Naturally, the relationships do not apply to all algorithms, in particular to those computed in
artificial intelligence.
2Such argument has the same flavor as the one saying that contracts are typically incomplete.
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The plan is as follows. Section 2 describes rules and mechanisms, introduces
some basic insights from the theoretical literature, and presents two examples
of mechanisms run by a governmental agency -spectrum auctions in the US
and assignments of students to universities in France. When the designer is a
governmental agency, there is a legitimate demand for explanation. I will argue that
the approach called “axiomatization” developed by social choice theory may help
policymakers in providing such an explanation. Section 3 discusses algorithms (in
the broad meaning used currently) in the economic and social areas and their links
with rules and mechanisms. It presents mechanisms used by private firms and ends
with the economic risks generated by their computing power.

2 Rules and Mechanisms

Ii is useful to consider rules before introducing mechanisms. A typical rule is a
voting procedure for the election of a president among several candidates. The rule
assigns the winner to the votes. No specific assumption is made on how voters
vote. A mechanism instead—in the precise sense of the mechanism design literature
following Hurwicz—assumes that the votes are cast strategically and considers the
rule that results of these strategic votes. As the term mechanism is more broadly
used in practice, I will refer in some places to a mechanism even when no specific
strategic assumption is being made.

2.1 Rules

The rules considered here aim at solving some social issues between a group of
“units” such as consumers, workers, or citizens. Specifically, a rule solves the issue
by choosing an outcome, such as an allocation of resources, an assignment of tasks
or a president. Crucially, the outcome is based on a profile of data, which specifies
data for each unit, representing, for example, the unit’s preferences, skills, resources.
In formal terms, a rule assigns an outcome to each set of data. The rule thus starts
with units’ data without making assumptions on how they have been gathered. There
are many rules in a variety of contexts, aiming at answering questions such as:

1. How to select a candidate? A voting procedure is a rule that assigns the selected
candidate (the outcome) to the expressed votes over the candidates (the data).
For some rules, a vote is a single name, while for others it is a list of admissible
candidates, or a full ranking of the candidates.
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2. How to rank a set of alternatives? A rule here assigns a full ranking of the
alternatives, as considered by Arrow (1950):

By a “social welfare function” will be meant a process or rule which, for each set of
individual orderings R1, . . . , Rn, for alternative social states (one ordering for each
individual), states a corresponding social ordering of alternative social states, R.

A social welfare function may be used to select a single alternative, the one at
the top of the social ordering. As an illustration, Arrow considers a community
that has to repeatedly choose between three alternative modes of social action,
e.g., disarmament, cold war, or hot war. In that case a rule assigns a ranking of the
alternatives as a function of individuals’ preferences at the time of the decision.

3. How to rank a set of Websites?3 Consider the search engine PageRank of Google,
described to “bring order on the Web” by Page et al. (1999). PageRank rates the
Websites corresponding to a query: the units are the Websites and the outcome
is their rating, which determines in which order Websites are displayed on the
screen. As described in 1999, PageRank is a method for rating Web pages
objectively and mechanically, mainly based on the hyperlink structure: PageRank
is a rule that determines the rating of the Websites as a function of data, where
the data for each Website is composed of the list of Websites that point to it.

4. How to assign students to schools, to universities? An assignment procedure is a
rule that assigns the students to universities based on students’ preferences and
universities’ priorities, as discussed in Sect. 2.2. Similar assignment problems
arise in other contexts, such as the allocation of social housing.

5. How to assign kidneys between receivers and donors? Here a rule defines an
ordering and a matching between receivers and donors based on observable
individuals’ characteristics (compatibility, age, health status, etc.) in the waiting
list (Roth et al., 2004).

6. How to allocate a painting? Here a rule determines who wins the painting, the
price paid by the winner and the compensations to others (if any), as a function of
the valuations of the potential buyers (their data). An auction procedure is such
a rule. More complex auctions for multiple goods are now run, as seen in the
example presented in Sect. 2.2.

The above questions can all be answered in a discretionary way. Instead, a rule
specifies the answer for all possible data prior to the knowledge of the current data.
A voting procedure, for example, is written in a constitution before knowing the
citizens’ votes.

The designer of a rule may be a state, a public agency, or a private firm. In the
latter case, a firm is not required to explain its rule, which might not be transparent.
For example, the procedure used by Google to rank the Websites (question 3 above)
has evolved and made less transparent than the original PageRank. Section 3 will
discuss mechanisms used by private firms. When the designer is a state or a public
agency, as is the case in our two next examples, there is a legitimate demand for

3This question is very much related to the previous one, as noted by Dwork et al. (2001).
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explanation. As said in the introduction, the axiomatization approach developed
by social choice theory may help policymakers in providing such an explanation
(Sect. 2.3).

2.2 Two Examples

I describe here in more detail two examples, a successful and a failed one.

Allocating Spectrum Rights The sale of spectrum licenses over the USA illus-
trates a successful procedure organized by the Federal Communications Commis-
sion (FCC). The procedure dramatically changed in 1993 (see McMillan 1994).
Prior to 1993, the sale of spectrum licenses over the USA was an administrative
decision, based on hearings and lotteries. There were obvious inefficiencies: some
licenses were left unassigned and it happened that a winner of a license re-sold
it quickly at a much higher price than the acquisition one. After 1993, thousands
of licenses were sold through auctions. The FCC goals were multiple: to avoid
monopoly, facilitate contiguous territories, favor access to certain minorities, avoid
collusion. The auctions were carefully designed with the help of game theorists to
satisfy these goals.4 They turned out to be a big success on various grounds. They
raised significantly higher revenues than previously and the absence of immediate
resale or bilateral exchanges witnessed the efficiency of the allocation. Such types of
large scale multi-item auctions are now conducted in many areas, like the millions
of Internet ad-auctions. The interaction between game theorists and policy-makers
to set up new allocation procedures thus proves to be fruitful.

Admission Post-Bac (APB) in France The procedure called APB put in place in
2009 for assigning students at their entrance to the French universities turned out
to be a failure, resulting in its replacement in 2018. The higher education system
in France is mostly public and any student who gets the second-degree diploma
called baccalaureat is entitled to a seat. As a result, the admission system has to deal
with a high number of candidates (in 2016, 335,696 entered). The APB procedure
is based on the centralized deferred-acceptance algorithm introduced by Gale and
Shapley (1962). The procedure works as follows. Students state rank the slots (a slot
specifies the education curriculum and the university) and the universities rank the
students. Then the algorithm computes an assignment, based on a virtual process
of successive applications-rejections defined by these rankings. The algorithm is
the building block of many successful matching mechanisms dealing with school
choice or labor market clearing (for a presentation, see Roth (2008)).

A main property of the deferred-acceptance algorithm is that it produces a stable
assignment, which was the main purpose of Gale and Shapley (1962). They defined

4As described in McMillan (1994), options were multiple, for example simultaneous versus
sequential auctions, open versus sealed bids, or royalties versus reserve prices.
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an assignment to be unstable if there are two applicants α and β who are assigned
to colleges A and B, respectively, although β prefers A to B and A prefers β to
α. As argued by Gale and Shapley, if this situation did occur, applicant β could
indicate to college A that he would like to transfer to it, and A could respond by
admitting β, letting α go to remain within its quota. The original assignment is
therefore “unstable” in the sense that it can be upset by a college and applicant
acting together in a manner which benefits both.

A second property of the deferred-acceptance algorithm has been shown by
Dubins and Freedman (1981):

Suppose a student, called Machiavelli, lies, that is, does not apply to the universities in the
order of true preference. Can this help Machiavelli? The answer is no, not if the others
continue to tell the truth. Similarly for coalitions of student liars.

Such a property, according to which students have no incentives to lie, is now
called strategy-proofness. Accounting for incentives is one of the main concerns
of Hurwicz, as discussed in Sect. 2.4. People may be doubtful about Dubins and
Freedman’s claim, especially when the method is applied to a large population, as
in the APB mechanism, because there are many opportunities to lie. The argument
is indeed not trivial, although it does not rely on any knowledge in mathematics.5

The APB procedure nevertheless revealed to be a fiasco in the last years. But
it modified the deferred-acceptance algorithm in an important way, which might
explain the failure. To cope with the required “no selection” principle, according to
which any student with the baccalaureat is entitled to a seat in any field, no priority
was set for the universities. When the number of applicants to some slots largely
exceeded the number of seats, students were allocated at random to satisfy the no
selection principle. The result was that some students lacking the background for
succeeding in a field and almost certain to fail got a seat while some others, much
better qualified, did not. The problem was exacerbated by the huge increase in the
number of applicants to universities due to the 2000 baby-boom and the policy of
proposing many new variants of the baccalaureat. But at the same time, neither
the number of seats nor new curriculums appropriate to the background of the
new students’ population followed the trend. The absurdity of the system led to its
rejection in 2017 after many debates and careful examinations, which culminated
in a meeting organized by the Field medal C. Villani for French policymakers and
deputies.

The blame has been put on the “non-human” aspect of the procedure, in particular
to the random draws, due to the fact that it was implemented by an algorithm. As
said previously, this non-human aspect is not the one referred to by Hurwicz (2008),
but is related to the mechanical aspect of a mechanism/algorithm.6 The new system

5The APB procedure did not satisfy this property because it modified the deferred-acceptance
algorithm so that universities’ choices depended on the students rankings. Though, students’
misreporting their preferences does not seem to have been a big issue.
6Another example of reluctance to automatic systems is Centrelink put in place in
Australia to recover social security overpayments. Though the system, dubbed “Robodebt”
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that replaces APB starting 2018 instead is quite opaque with unclear specification
of the universities’ objectives, and the overall process might last a very long time.7

The result of APB’s failure is a clear defiance towards “algorithms” from the
French population. In my view, the failure is due to the absence of consistency
and transparency in the policy, not in the way it is computed. Taking the viewpoint
of social choice theory described in the next section would have been beneficial:
explain the desirable properties the government wants to achieve and make explicit
the constraints. It would have made clear that the random draw was resulting
from the absence of selection and the space constraint. But this was not politically
admissible.

2.3 Justifying a Rule: Axiomatization

The huge benefit of thinking of solving problems through rules is to specify the
desirable properties—called “axioms” following Arrow (1950)—one would like a
rule to satisfy. Ideally, these properties can be stated in words. This was basically
the approach for designing the spectrum rights auction (along incentives issues).
The “axiomatization” approach compares the rules on the basis of the properties
they satisfy.

One may distinguish two types of properties: those bearing on the outcome
specified by the rule for a given data profile and those bearing on the behavior of the
rule when data varies, i.e. how the outcome varies with the data.

Here are a few representative examples of properties that bear on the outcome
for a given data profile: the outcome should be efficient, envy-free (for example,
an allocation of tasks is envy-free if each person prefers his/her bundle of tasks
and compensation to that of anyone else), anonymous (neutrality with respect to
labeling), stable in a suitable sense, as the assignments reached by the deferred-
acceptance algorithm.

Here are properties on the behavior of a rule when data varies. Some reflect
a monotonicity with respect to data. For example, in a representative election, a
party who sees its number of votes to increase at the expense of another party
should obtain at least as many seats. In the assignment problem, no student is
worse off if more seats are available at universities. Other properties reflect a
consistency “principle” (also called uniformity), which underlies studies in fair

by users, had some flaws initially—people being unable to complain or reach the service—
the main objection relied on the automatic nature of the procedure. Information can be
found in https://www.humanservices.gov.au/organisations/about-us/publications-and-resources/
government-response-community-affairs-references-committee-report.
7Each student will first select a list of applications without order; each application in the list is
sent to the corresponding university. Then there will be a succession of rejection or acceptance by
universities and students (on their list). The number of applications in a list is a priori constrained
to 10, but each application may regroup up to 20 slots.

https://www.humanservices.gov.au/organisations/about-us/publications-and-resources/government-response-community-affairs-references-committee-report
https://www.humanservices.gov.au/organisations/about-us/publications-and-resources/government-response-community-affairs-references-committee-report
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division, bankruptcy problems (Young, 1987), apportionment problems (Balinski
and Demange, 1989). In fair division for example, the principle says that if an
allocation among a group of individuals is fair, then it should be perceived as fair
when restricted to each subgroup of individuals (for a general presentation, see
Thomson (1990)).

To sum up, the axiomatization approach is as follows: define desirable properties
on the rule associated to the context under consideration and characterize the rules
that satisfy them. Why is it a relevant and delicate question? In most settings, no rule
enjoys all properties that sound desirable, as stated by the impossibility theorems,
following Arrow (1950, 1951). A rule has to make a choice between properties.

2.4 Mechanism: Introducing Incentives

A rule needs units’ data such as preferences, characteristics to compute its outcome.
How to learn them? When people provide their preferences, are they truthful? We
saw that students have no incentives to lie when the deferred-acceptance algorithm
is used: it is strategy-proof. But many rules are not. Consider, for example, plurality
voting with more than 2 candidates: a voter might be better off by not voting for her
preferred candidate.

A major vision of Hurwicz has been to account systematically for the incentives
of individuals to provide their data, possibly strategically. Formally, this is studied
through a game in which individuals’ strategies are the (non-verifiable) announce-
ment of their data. The outcome due to the strategic players may result in a very
different outcome than the one prescribed by the rule. There are however difficulties
to address this issue if the rule is not strategy-proof: How do people behave? What
do they know about others’ behavior? Do they need to anticipate others’ behavior?
I give here a simple example that will be useful to illustrate the role of information
in data collection.

Simple Buyers-Seller Games Let us consider the exchange of a painting between
a seller S and two potential buyers B1 and B2. Each attaches a value to the painting.
Let S’s valuation be 70 (meaning that S benefits from selling at a price larger than
70), B1’s and B2’s be, respectively, 100 and 80 (meaning that they benefit from
buying at a price, respectively, lower than 100 and 80).

Consider two rules, known as first price and second price auctions, assuming
the above valuations known. In each rule, B1 obtains the painting, but B1 pays
the highest valuation, here 100, in the first price auction and the second highest
valuation, here 80, in the second price auction. These two rules prescribe an efficient
outcome since the painting is acquired by B1, the person whose valuation is the
highest, but they produce a different share of the surplus.

Let us now assume that an auctioneer asks the buyers to announce their
valuations. The buyers’ incentives to announce their true valuations dramatically
differ in the two auction rules. In the second price auction, B1 does not benefit from
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lying about her valuation because as long as she wins, she will pay 80 (if B2 does
not lie). B2 does not benefit from lying either because he can win the object only
by bidding more than 100 (if B1 does not lie), in which case the price becomes
100, higher than 80, his valuation. This argument holds more generally whatever
the valuations: the second price auction is strategy-proof for the buyers (Vickrey,
1961). In the first price auction instead, B1 benefits from lying and bidding just
above B2’s bid, which is surely less than 80. Though, this strategy assumes that B1
knows B2’s bid; if this is not the case, finding which amount B1 should bid starts to
be quite complex as it depends on B1’s expectation on B2’s bid, and vice versa.8

Let us now consider the seller. S also may have incentives to lie. In the second
price auction for example, S benefits in posting a reserve price larger than 80, so as
to increase the price paid by B1, at the risk of not selling the painting and missing a
benefit opportunity if S does not perfectly know B1’s valuation. Note, however, that
under perfect knowledge of the bidders’ valuations, the seller extracts all the surplus
whatever the auction.

Neither auction thus elicits all three players to reveal their valuations. Further-
more, strategic behavior may result in inefficiency when valuations are unknown
due to foregone opportunities to trade. Such analysis and results on auctions extend
to situations with more buyers and general valuations or to multiple sellers and
buyers (Demange and Gale, 1985). Currently, auctions are being applied at a
huge scale on the Web, say for selling the ads and their positions on a Webpage
(Varian, 2007). The inefficiency in auctions illustrated by the above example is a
robust phenomena: Inefficiency is unavoidable when valuations are unknown, as
first shown by Myerson and Satterthwaite (1983) in the case of one seller and one
buyer: no exchange mechanism is efficient because strategic play induces foregone
opportunities of exchange. Though no one is efficient, some mechanisms are better
than others. Finding them is the main issue of mechanism design. Finally, players’
information is crucial in determining the outcome and a player may benefit from his
knowledge of others’ data.

2.5 Developments

Due to the facilities offered by Internet and computers to run mechanisms, a
tremendous amount of developments is being conducted by researchers in computer
sciences. Spiddit, for example, is a not-for-profit Website that provides algorithms
to compute the fair division of goods, credits, or tasks (see the description in
Goldman and Procaccia (2015)). A line of research, at the boundary of game
theory and computing science, is referred to as algorithmic mechanism design
(Nisan and Ronen, 2001). A main objective is to adapt the classic analysis by

8An equilibrium as defined by Nash solves this feedback. Wilson (1967) provides a first analysis of
the bidders’ strategies in an equilibrium context, further developed by Milgrom and Weber (1982).
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considering complexity issues (in the computational sense) or by analyzing complex
settings. Strategy-proofness is weakened by accounting for the cost and complexity
in lying. Dynamical aspects are introduced. Complex “combinatorial” auctions are
considered, in which buyers bid for a combination of items (a package) such as
a package made of take-off and landing slots at airports (see the book edited
by Cramton et al. (2006)). Allowing bidders to bid for a package helps reaching
efficiency when the goods in a package are “complements,” meaning that a buyer
values two goods more than the sum of each. For example, complementarities arise
in the FCC auction (Sect. 2.2) when a mobile phone operator values licenses in two
adjacent cities more than the sum of the individual license values, due to roaming
between the cities.

3 Algorithms

In its original scientific sense, an algorithm is a computational tool solving a well-
defined class of problems, such as computing a solution to a linear optimization
problem or finding a stable assignment as the deferred-acceptance algorithm does
(Sect. 2.2). It is composed of a list of instructions9 that can be applied to different
data sets, for example different students’ preferences and universities’ priorities.
In everyday life, the usage of the word “algorithm” has spread and includes any
computerized tool that relies on data in order to provide an outcome in social life,
such as an assignment, recommendations to consumers, fiscal controls, or facial
recognition. In the settings involving choices and interactions between users, an
algorithm can often be viewed as a way for computing the outcome of a rule (as
defined as in Sect. 2.1). As such, it is useful to distinguish the rule from the tool
for computing it. Abstracting from the computational aspect, lessons can be drawn
from the theoretical and strategic analysis of rules roughly described in the previous
section.

3.1 Algorithm as Computing a Rule

Considering the rule computed by an algorithm, I retain three main lessons from the
previous analysis.

Firstly, in most contexts, an algorithm has to operate a selection between
fundamental desirable properties that cannot be satisfied simultaneously. Speaking
in terms of a rule—prior to the algorithm used to compute it—helps making the
selection explicit and thinking in terms of the priority goals one wants to achieve.

9This is not true for new algorithmic methods such as machine learning with evolving data,
neuronal networks and all the techniques referred to as “artificial intelligence.”
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Secondly, exhibiting the properties satisfied (or not) by the rule underlying an
algorithm helps explaining its rationale.

These two points are related to transparency. They are especially relevant when
the algorithm is designed by a public agency, but less so when the designer is
a private firm. To illustrate, consider PageRank, the search engine of Google
(Sect. 2.1). The engine’s computation of the ranking no longer follows the principles
described in Page et al. (1999) and is largely unknown. According to the European
Commission, Google has abused its market dominance as a search engine by giving
an illegal advantage to another Google product, its comparison shopping service.
As a result, the European Commission has fined Google 2.42 billion of euros for
breaching EU antitrust rules. The judgement is based on statistics showing the bias
in favor of Google’s product, not on the fact that the firm does not explain how its
ranking is computed.10 In other words, a firm is not required to provide detailed
information on its algorithms. When the environment is complex, the rule that is
computed by the algorithm might be difficult to decipher.

Thirdly, information is crucial. When individuals provide their data voluntarily,
the design of an algorithm should account for their incentives to distort them. When
an algorithm instead extracts data for its designer, possibly without the individuals’
consent, new issues arise. While data collection and processing bring social benefits
in many areas, they also raise privacy concerns. Both public and private designers
can use sophisticated techniques to extract data but often for different purposes. I
examine in the next section the case of private firms.

3.2 The Power of Algorithms

This section discusses some economic aspects that pertain to the power of algo-
rithms/mechanisms used by firms.

Collecting Personal Data: Extracting the New Oil? As we have seen on a simple
example between a seller and buyers (Sect. 2.4), the information the participants
have on each other’s valuations dramatically affect the exchanges. In particular, a
seller informed on the buyers’ valuations can extract the surplus of the exchanges,
provided there is no competing seller. When Internet users search or visit Websites,
they provide accurate information to search engines or companies on their intent to
purchase, thereby allowing for discriminate pricing and surplus extraction. This is
part of the extraction of the “new oil.”11

This point resonates with current “privacy” concerns. The EU General Data
Protection Regulation (GDPR), to be enforced in May 2018, regulates the use of

10More information can be found at http://europa.eu/rapid/press-release_IP-17-1784_en.htm.
11Clive Humby, a data scientist, claimed in 2006 “Data is the new oil,” now a popular maxim.

http://europa.eu/rapid/press-release_IP-17-1784_en.htm


318 G. Demange

data.12 A primary goal is to improve the users’ knowledge about how their data are
processed, not about the economic implication of data collection. Article 12, which
deals with “Transparent information, communication and modalities for the exercise
of the rights of the data subject” mainly specifies what the collecting entity should
reveal to the subject whose data is collected. Though useful in some contexts, this
information comes too late in others. Once an Internet user’s intent to buy a product
is known, a firm can charge him/her a higher price in a world where prices can
be changed very quickly and be personalized. This is a major economic problem,
complex to solve. So far, one could argue that firms and users are engaged in a
kind of tacit barter agreement where firms deliver a valuable service (search engine,
targeted proposals for products, targeted ads, access to friends, maps) in exchange
for the uploading of users’ data.13

Organizing Market Exchanges and Algorithmic Pricing Internet platforms
(AirBnb, Uber, Amazon, etc.) organize exchanges through computerized tools.
To illustrate, consider the Amazon platform Marketplace, which allows sellers
(including Amazon) to display and sell their products. A main tool of Marketplace
is the “Buy Box,” which displays the price and the name of a particular seller
corresponding to a search, as shown in Fig. 1 (see Chen et al. (2016) and the
references therein). Being the Buy Box winner yields a significant advantage

Fig. 1 An example of the Buy Box on Amazon Marketplace from Chen et al. (2016)

12https://www.eugdpr.org/.
13Balinski and Demange (2018) study whether tax instruments are useful in reducing excessive
level of data collection.

https://www.eugdpr.org/
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Fig. 2 Pricing strategies of Amazon and 3 sellers from Chen et al. (2016)

since 82% of the sales go through the Buy Box. The Buy Box winner, chosen
by a mechanism/algorithm designed by Amazon, is not necessarily the seller
with the cheapest product. The mechanism has unknown features, resulting in an
informational gap between Amazon and the other sellers. Though, as a private firm,
Amazon cannot be enforced to reveal its mechanism. Other sellers have two options:
decipher Amazon’s strategy or leave Marketplace.

Another gap exists between the sellers, specifically between those who set their
prices using computer algorithms, known as algorithmic pricing, and those who
do not. Sellers can adjust their prices at any time and have access to all the prices
posted on Marketplace. Algorithmic pricing thus allows sellers to react very quickly
to changes in the prices set by other sellers. For example, they can “track” others’
prices, as illustrated in Fig. 2 between Amazon and seller 3 (resp. the red and green
lines). There are periods of sharp decrease in the posted prices—each seller trying
to be the cheapest but at the minimum rebate—and, as soon as the competitor raises
its price, the other follows the increase. This can explain why there is no evidence
that algorithmic pricing pushes prices down, on average: As first shown by Stigler
(1964), dynamic pricing together with the price observation facilitates collusion.

Note finally that the sellers who do not rely on algorithmic pricing are unable to
exploit all the available information on time. One may guess that they will tend to
be eliminated.

Algorithmic Trading Algorithmic trading techniques, among which is high-
frequency trading, are becoming prevalent on financial markets. In 2016, high-
frequency trading is estimated roughly at 55% of the volume in the US equity
markets and 80% of the volume in the foreign exchange futures (Millera and Shorter,
2016).

Each algorithmic trading here is a mechanism, which takes at each instant of time
the observable market data, in particular the participants’ orders, to generate orders,
post prices, and execute trades. These automatic mechanisms interact between
themselves and may result in snowball effects difficult to control, thereby calling
for regulation. Pointing to the potential large and negative externalities generated
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by algorithmic trading, the EU Markets in Financial Instruments Directive (MiFID)
prescribes:

An investment firm that engages in algorithmic trading shall have the effective systems and
risk controls suitable to the business it operates to ensure that its trading systems are resilient
[...] and prevent the sending of erroneous orders [...] that may contribute to a disorderly
market (Article 17(1) MiFID II).

The main rationale here for the regulation is to avoid a systemic event due to
algorithm trading. Such event occurred in the “Flash Crash” of May 6 2010, which
was generated by an erroneous order followed by a sequence of automatic reactions.
The possible drawback of automatization first appeared in the stock market crash
of October 19 1987, with the S&P 500 stock market index falling about 20%. At
that time, a new technique, called portfolio insurance, was introduced, generating
automatic sales when the market was falling, and some argued that it had a large role
in the amplitude of the fall. But, according to the designers, the amplitude was due to
a misunderstanding of portfolio insurance by the market’s participants: Interpreting
the initial automatic selling orders as bad news, the market’s participants started to
sell, triggering further automatic sales and creating a downward spiral (see Carlson
2007).

Currently, automatic trading has developed at a much larger scale, so algorithms
and their interactions might create extreme disruptions difficult to control. There is
a debate about the benefits (increased liquidity) and the costs of high frequency
trading. The costs involve not only short-term price disruptions but also unfair
competition because techniques such as (extremely fast) order cancellation allow
high frequency traders to get advanced information on other traders’ intentions.
This led some to call for regulating the markets, by introducing a “Tobin” tax or
by changing the price mechanism.14

4 Conclusion

The approach pioneered by Hurwicz and few other researchers in economics and
game theory has a profound and growing impact in a variety of economic and
social decisions. Such impact has been multiplied by the huge development in
communications and computing facilities. Though, the use of heavily technical
tools and the scale at which they are applied raise new challenging issues. Keeping
Hurwicz’s viewpoint, a new issue is now “But who will guard the algorithms”?

14I am grateful to Carmine Ventre for calling my attention on this point. For more information, see
e.g. the book edited by Easley et al. (2014), in particular Chapter 4 by Golub, Dupuis and Olsen
and Chapter 10 by Linton, O’Hara and Zigrand.
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Incentive Compatibility
on the Blockchain

Jonathan Chiu and Thorsten Koeppl

1 Blockchain as a Distributed Ledger

A blockchain is a decentralized ledger that digitally records the ownerships of assets
and the transfer thereof. Owing to its digital nature, an ownership record is simply a
string of bits which can easily be copied and re-used repeatedly, leading to a double-
spending problem. In a centralized system such as PayPal, this problem can be
solved by relying on a trusted third-party to manage the ledger. This trusted central
authority validates and enforces all transactions, preventing users from tampering
with the ledger.

Blockchain systems aim to maintain a digital ledger without the need for a
designated party to keep records and enforce the transfer of ownership. Instead,
transactions are verified and processed by a network of potentially anonymous
validators. In this system, a block is simply a set of transactions that transfer
ownership between users in the ledger. From individual blocks a chain is formed
by time-stamping. The blocks are linked together in a sequence where each block
depends on the previous block in time. This creates a full, historical record of
transactions where no past block can be changed without also changing all the
subsequent blocks.

The ownership of assets is protected by the use of basic cryptographic principles.
An owner holds a private–public key pair where the private key is kept secret and
controls the entry in the blockchain, while the public key proves ownership to any
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other party. A transaction is conducted by transferring an entry in the blockchain to
a different private–public key pair.

In a truly decentralized blockchain such as Bitcoin, anyone can access the public
ledger, verify its information, and even serve as a validator who updates the chain
with a new block. The blockchain itself lives on a distributed network where users
interact peer-to-peer and each keeps a copy of the ledger. This extreme redundancy
introduces resiliency into the system. As long as one of the peers is live on the
network the ledger can be accessed and transactions can be conducted.

The key challenge is to design the rules for updating the blockchain so that it
is hard to tamper with and, thus, that users trust the information contained in the
ledger. The security of a blockchain is based on three elements: (1) a consensus
protocol, (2) confirmation lags, and (3) a reward scheme.

First, in a decentralized network, the system needs to ensure that, when new
transactions are incorporated into the blockchain, a common consensus about the
new update is agreed upon among all users. To reach such a consensus in a
decentralized setting, validators are asked to compete for the right to append a new
block to the chain. This competition can take various forms. In the most common
consensus protocol, Proof-of-Work (PoW), this process is called mining. Validators,
also called miners, need to solve a computationally difficult problem. The winner
of this mining competition has the right to update the chain with a new block. In
addition, the consensus protocol prescribes that the “longest” chain proposed by the
network will be accepted as the trusted public record. A chain is considered to be
the longest one if it has incorporated the most “work” by miners or, equivalently,
has burnt the most resources. This ensures that there is agreement within the peers
of the network what constitutes the true history of all past transactions.

The second element is a confirmation lag. This lag helps prevent users from
altering the history of transactions through double spending. After having trans-
ferred ownership of an asset, a user can attempt to convince other users to accept an
alternative history in which the transaction has not been conducted. For example, in
the case of Bitcoin, a dishonest user can try to revoke a payment in Bitcoin after he
has received goods from a seller. To do so, he needs to create an alternative history
of transactions by winning the mining competition against all honest miners. If such
an attack succeeds, the dishonest user effectively steals the goods from the seller, as
he gets the goods without paying the seller. The seller can protect himself against
double spending by delaying the delivery of goods until multiple confirmations of
the trade have been recorded in the blockchain. This is the case when several new
blocks have been stacked onto the block that contains the original record of the
transaction. Double spending would then require waiting for the delivery of the
good and then replacing all these other blocks and the original block containing the
transaction.

The final aspect is that mining needs to be properly incentivized. Under a PoW
protocol, the probability of winning the right to update a block is proportional to
the fraction of computational power owned by a miner. Hence, sufficient overall
mining activities help discourage dishonest behaviour. Since mining is costly,
mining has to be induced by offering rewards. These rewards can either be financed
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by seignorage—issuing cryptocurrency or tokens—or by collecting transaction fees
from traders. Importantly, increasing rewards will increase the effort and, hence, the
computational investment by miners making it harder to double spend.

The key innovation of blockchain technology is to put the users in the system in
charge of guarding the system itself. Nakamoto (2008) formalized a solution to the
problem of having to trust a third-party as the guardian of a payment system. Beyond
the original Bitcoin proposal, it has become clear that his somewhat brilliant idea
applies more broadly. Ironically, it arrived at about the same time as Leo Hurwicz
delivered his Nobel lecture that posed the problem of “But Who Will Guard the
Guardians?” once again (see Hurwicz, 2008). Our attempt here is to go full circle
by linking the idea of a blockchain back to an economic mechanism design problem.

In what follows, we first express the PoW protocol as a simple Cournot game
of mining. We then formalize the double spending problem and show that it can
be summarized as a simple incentive compatibility constraint given the Cournot
game of mining. We then briefly describe how this constraint manifests itself in two
examples. The first example concerns a securities settlement system where both the
asset transfer and the payment are recorded on a blockchain. The second one is the
classic example of using a cryptocurrency for payments as intended in the original
Bitcoin proposal. We close out our contribution by briefly discussing some further
issues.

2 Modelling the Proof-of-Work Protocol

We first set up a simple game form1 that captures the basic idea behind the PoW
protocol where consensus on the blockchain is reached by competition called
mining. Time is continuous and there are M miners. The protocol specifies a
computational problem and sets a difficulty D for the problem. It also specifies a
reward R for the first miner to solve the problem and decrees that the first one to
solve the problem is allowed to add a new block to the blockchain.

At the start of time, each miner invests a quantity qi , i = 1, . . . ,M , into
computing power to solve the computationally difficult problem. We denote the
price per unit of computing power by α. The probability that miner i with computing
power qi solves the computational problem in a given time t is assumed to follow an
exponential distribution with parameter qi/D. Hence, a miner can solve the problem
before t with probability

F(t) = 1− e− qiD t . (1)

The expected time for a solution by miner i is then given by D/qi .

1We use this terminology in the spirit of Hurwicz (2008) since the protocol specifies the strategy
domain for the individual actors and the outcome function that maps strategies into outcomes.
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The first solution (or proof-of-work (PoW)) among all M miners is then also
an exponentially distributed random variable with parameter 1

D

∑M
i=1 qi . Given

{qi}Mi=1, the expected time needed to complete the PoW is

D∑M
i=1 qi

, (2)

with miner i having the probability

ρi ≡ qi∑M
i=1 qi

. (3)

of being the first one to solve the problem. By adjusting the parameter D, the
protocol can thus ensure that—on average—a solution is found in a particular time
interval.

The PoW protocol essentially formalizes an exponential race where miners
decide how much to invest into the race to win a reward R. This implements a
simple Cournot game where each miner maximizes his payoff

max
qi
ρiR − αqi (4)

taking as given the investments of all other miners −i. The symmetric Nash
equilibrium to the Cournot game is given by

qi = Q ≡ M − 1

αM2 R (5)

which leads to the following result.

Lemma 1 The total mining cost is given by

C ≡ αQM = M − 1

M
R

and the expected time to solve a block (i.e. block time) is

T ≡ αM

M − 1

D

R
.

This allows us to immediately derive some comparative statics for the PoW
protocol. Of interest are the role of (1) computing costs, (2) rewards, and (3) total
mining capacity. Most importantly, as the number of miners increases, the total
mining cost converges to R. Competition dissipates all rents from mining, with
miners earning zero expected profits whenM →∞. These results are summarized
below.
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Proposition 1 The block time D decreases when mining rewards R increase, the
number of minersM increases or when the cost of computing power α falls.
Total mining costs are unaffected by the cost of computing α, but increase
proportionally with rewards R.
Total mining costs also increase with the number of miners M and mining profits
converge to 0 asM →∞.

The mining game we have formalized takes place for each block and does not
directly depend on block time and the size of the block which determines how
frequently blocks are added and how many transactions can be included into a single
block. It does, however, crucially depend on the reward R for solving a block. This
reward can be financed either through the issuance of tokens on the blockchain or
through transaction fees posted by users for including their transactions into a block.

For tokens to serve as rewards, they need to have some real value. This value
derives traditionally from their use as a payments instrument or, in other words,
cryptocurrency. Users exchange their tokens against real goods. More recently,
initial coin offerings have used tokens akin to shares in crowd investments where
future tokens can be seen as additional shares being offered. Transaction fees
arise when block size and block time are used to make settlement a scarce
resource. Restricting block size and lengthening block time create congestion on
the blockchain and, thus, exploit users willingness to pay for fast settlement.

In general, what matters is the reward per block. The difficulty D controls the
reward that is available over a fixed amount of time. Note thatD cannot be arbitrarily
short. In a distributed network, due to network latency, it takes time for data to
get from one designated point to another. Hence, some time delay is necessary to
communicate updates of the blockchain and to ensure that all miners and users
work with the same information on the blockchain. A lower difficulty speeds up
settlement, but reduces user willingness to post transaction fees, and thus the reward.
Similarly, any reward from newly created tokens needs to be split across blocks.
Keeping block rewards fixed over a time interval, a faster block time will lower the
rewards available per block.

Nakamoto (2008) was first to introduce the idea of using a PoW protocol for
achieving consensus on a blockchain with his Bitcoin proposal. The PoW problem
to be solved is to find a particular output to the SHA256 algorithm. This algorithm
takes an input of any bit size and hashes it to produce a random, but unique and
not invertible 256 bit output. Bitcoin’s protocol requires a miner to produce a hash
with a certain number of leading zeros using the transaction data in the block, a
summary of the previous block, the blockheader, plus an additional random number.
The difficulty is given by how many leading zeros the hash has to have. It is adjusted
every 2016 blocks so that the average time it takes miners to solve a block is about
10 min.

The reward that the Bitcoin protocol offers for miners comes from two sources.
First, each block includes a special transaction creating a certain number of new
Bitcoins. In other words, winning a block creates seignorage for the winning miner.
Second, users pledge transaction fees so that their transaction are included quickly
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into a block. The winner of a block also wins these transaction fees. As pointed out
in Proposition 1, if the value of Bitcoin relative to the dollar costs of computing
power increases, competition between miners will go up. The protocol then has to
raise the difficulty for solving the problem to ensure that the target for a block time
of 10 min is achieved on average.

3 Ruling Out Incentives to Cheat

3.1 Double Spending Problem

In a permissionless blockchain, any user can act as a miner to validate and process
transactions. As pointed out before, cryptography ensures that only private key
holders can transfer assets recorded on the blockchain. Therefore, a dishonest user
cannot simply steal assets without stealing someone else’s private keys. However,
a user can still remove transactions that have been initiated by himself or by other
users. To do so, he needs to alter the blockchain and have all other users believe in
the altered blockchain. This refers to what we call a double-spending problem.

We will first describe the general problem of a user double spending and then
consider two specific examples of the problem. Consider a blockchain based on a
PoW protocol with mining reward R. Suppose that double spending requires to win
the competition N times and gives an additional payoff denoted by �. The payoff
for a user trying to double spend is given by

Π(N,R) = max
q̃

P[q̃;N,Q(R)](NR +�)− c(q̃). (6)

Here, the user chooses a vector of computing power q̃ for the N blocks to maximize
the net expected return, where the probability of success, P(q̃;N,Q) increases with
q̃ and decreases with N and Q. When the user successfully wins the mining game
N + 1 times, he gains � from altering the blockchain. But he also receives all the
block rewards from winning the mining game N + 1 times. Finally, the user needs
to incur a mining cost c(q̃).

A user has an incentive to double spend wheneverΠ(N,R) > 0. Hence, in order
to rule out that users tamper with the blockchain, we require that

Π(N,R) ≤ 0 (7)

which we call a no double spending constraint (NoDS). This is akin to an incentive
constraint where the design of the blockchain—in particular rewards and the
confirmation lag—plays a crucial role in ruling out incentives for users to engage in
double spending.
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3.2 Example 1: Blockchain for Securities Settlement

We first study an example in which a blockchain is used for settling asset trades
(Chiu and Koeppl, 2018). In any security settlement system, it is important to avoid
settlement failures where the seller of a security fails to deliver the security while
receiving payment, or the buyer of a security fails to deliver payment while receiving
the security. A delivery versus payment (DvP) mechanism typically ensures that
the security and the cash are exchanged simultaneously in order to avoid such a
settlement failure. When both the cash and the asset are recorded on the same
blockchain, DvP can be enforced by a self-enforcing, autonomous program often
called a smart contract. In particular, the two legs involving the transfer of security
and the cash payment are executed either in their entirety or not at all. In database
systems, this is referred to as an atomic transaction which is an indivisible and
irreducible series of database operations such that either all or none of them occurs.

With settlement on a blockchain, when two counterparties agree to exchange
a payment for a security, they jointly broadcast a transaction message about the
terms of trade to the network so that the miners will validate the transaction and
update the blockchain accordingly. Since the transfer of the asset and the payment
are linked in an atomic transaction, it is infeasible for one side to undo the joint
transfers unilaterally. However, any counterparty can eliminate the entire transaction
by mining a block that changes ownership of one of the legs (cryptocurrency or
security) so that the original transaction is invalid. If such double spending is
successful before the original transaction has been included in the blockchain, the
transaction has effectively never occurred.

The buyer in a security trade has an incentive to double spend if the agreed price
is higher than the current value of the security, while a seller has an incentive to
do so when the current value of the security is higher than the price received in
the trade. For example, suppose the two counterparties originally have agreed to
trade the security at a price p. After the arrival of new information, the buyer’s
valuation of the security becomes vb while the seller’s valuation becomes vs . In this
example, the buyer has an incentive to revoke the trade—and effectively default—if
p − vb > 0. The seller wants to cancel the trade when vs − p > 0. Hence the
maximum incentive for one of the two sides to double spend is

V = max{p − vb, vs − p}. (8)

As pointed out, an investor can revoke a transaction by simply including a mes-
sage into a block that changes the ownership of the security or the cryptocurrency
used for payment. Hence, a dishonest investor needs to win the mining game against
honest miners just once. The probability of a successful double spend is therefore

P(q̃;N = 1,Q(R)) = q̃

q̃ +QM (9)
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where q̃ is the computing power invested by the dishonest investor who attempts
to revoke the transaction. In general, a dishonest user might be subject to a higher
mining cost than a regular miner. In addition, a dishonest investor may suffer a
reputational damage or penalty if cheating is detected. We can capture this by
assuming that the mining cost per block is given by

c(q̃) = Γ + α̂q̃ (10)

with Γ ≥ 0 and α̂ ≥ 1.
The dishonest user therefore solves

Π(N = 1, R) = max
q̃

q̃

q̃ +QM (R + V )− Γ − α̂q̃. (11)

For an interior solution we obtain

q̃ = QM
(√
V + R
α̂QM

− 1

)
(12)

with the gain from double spending given by

Π(N = 1, R) =
√
V+R
α̂QM

− 1√
V+R
α̂QM

(V + R)− Γ − α̂QM
(√
V + R
α̂QM

− 1

)
. (13)

Proposition 2 Suppose the cost function for double spending is given by c(q̃) =
Γ + α̂q̃ while the cost function for honest mining is c(q) = q .
AsM →∞, the NoDS constraint for users is given by

V ≤ Γ + 2
√
Rα̂Γ + R(α̂ − 1).

The proposition implies directly that—in order to discourage users from
cheating—the fixed cost Γ or the marginal cost α̂ have to be sufficiently high.
In particular, if double spending has no cost disadvantage over honest mining,
one cannot rule out double spending in a securities settlement system based on a
blockchain built on a PoW protocol.

3.3 Example 2: Blockchain for Cryptocurrency in Goods
Transactions

We now consider a different example where a blockchain is used to record
cryptocurrency transfers when purchasing real goods (Chiu and Koeppl, 2017). DvP
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in this context is not automatic anymore as the ownership of goods is not recorded
digitally on the blockchain. Consider a spot trade where a buyer agrees to pay p
units of cryptocurrency to a seller for a certain amount of goods. The buyer can
cheat by mining a block where the transfer of cryptocurrency is not included, but
instead the cryptocurrency is spent back to the buyer. If the attempt fails, the buyer
pays the seller, but still gets the goods. If the attempt succeeds, the buyer gets the
goods without paying the seller at all. Hence, the double-spending payoff for the
buyer is the price of the goods, p, which effectively means he steals the good.

Since there is no DvP, a seller can make double-spending more difficult by
introducing a confirmation lag. The goods are to be delivered only after the
transaction has been confirmed sufficiently many times—say N − 1 times—in the
blockchain. This forces the buyer to win the mining gameN times in a row, keeping
it a secret from the rest of the miners each time he finds a solution in the first N − 1
computational problems. Hence, we call a double spending attempt secret mining.
This way the seller is fooled to deliver the good after N − 1 confirmations, only to
lose the payment in the following block.

Suppose now for simplicity that the cost of secret mining for a dishonest buyer
is the same as that of a regular miner

c(q̃) = q̃ (14)

where we have normalized α = 1. If there are no confirmation lags (i.e. N = 0),
then Proposition 2 from the Sect. 3.2 above immediately implies that buyers have
no incentives to double spend if and only if p < 0. Hence, confirmation lags are
necessary for preventing double spending.

To see the effect of a confirmation lag, suppose N = 2 so that the buyer needs
to win the mining game twice in order to reclaim the payment p. If he succeeds,
he earns p + 2R, while if he fails, he earns 0. The dishonest buyer chooses his
investment in computing power for the first and second blocks (q̃1, q̃2) sequentially.
The probability of a successful double spending attempt is given by

P(q̃1, q̃2;N = 2,Q) = q̃1

q̃1 +QM
q̃2

q̃2 +QM (15)

as the buyer needs to win both blocks in order to revoke the payment.2 We can solve
the problem backward starting from the second block. Conditional on having solved
the first block, the optimal secret mining investment q̃2 for the second block is a
solution to the following problem

max
q̃2

q̃2

q̃2 +QM (p + 2R)− q̃2. (16)

2This is only an approximation to the decision problem of double spending. See Sect. 4 for a
discussion of the issue.



332 J. Chiu and T. Koeppl

Hence, the optimal investment is positive and given by3

q̃2 = QM
(√
p + 2R

QM
− 1

)
. (17)

The expected payoff from secret mining is also positive and given by

Π2 = QM
(√
p + 2R

QM
− 1

)2

. (18)

Given this solution, the optimal investment in secret mining for the first block
solves

max
q̃1

q̃1

q̃1 +QMΠ2 − q̃1. (19)

Hence, the optimal investment is given by

q̃1 = max

{
QM

(√
p + 2R

QM
− 2

)
, 0

}
(20)

and the expected payoff from mining secretly is

Π(N = 2, R) = max

⎧⎨
⎩QM

(√
p + 2R

QM
− 2

)2

, 0

⎫⎬
⎭ . (21)

It follows immediately that q̃1 < q̃2 because the chance of successful double
spending has gone up once the buyer has successfully mined the first block. The
following proposition derives a constraint on the buyer to rule out double spending.

Proposition 3 Suppose there is one confirmation lag so that N = 2 and suppose
the mining costs for double spending are c(q̃) = q̃.
AsM →∞, the NoDS constraint for users is given by

p < 2R.

3Note also that the buyer—having started to mine secretly—has no incentive to announce that he
has found a block. He would immediately get the block reward R but void the transaction which
is worth at least p. Hence, conditional on winning the first block with secret mining, the buyer has
an incentive to keep on mining secretly independent of p > 0. For details, see Chiu and Koeppl
(2017).
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Therefore, requiring confirmation in at least one block—which means that a
double spending has to solve N = 2 blocks to be successful—the transaction is
double-spending proof if the payment size is small relative to the mining rewards.
Chiu and Koeppl (2017) show that, for any givenN , the NoDS constraint is given by

p < RN(N − 1). (22)

Hence, larger transaction sizes require longer confirmation lags or higher rewards
for mining to ensure that there are no incentives for buyers to double spend.

4 Discussion

4.1 The Costs of Cryptocurrencies

Keeping records on a blockchain is not a free lunch. It is necessary to offer
rewards to rule out double spending which directly or indirectly increase the cost
of maintaining a distributed ledger. In case of a cryptocurrency, rewards can be
offered by seignorage. Such seignorage causes inflation which levies indirect costs
in form of an inflation tax on users. However, there are also direct costs that arise
from investment into computational power (mainly energy) that uses up most of
the revenue from seignorage. A traditional currency does not waste seignorage, but
raises revenue for the issuer. In the case of a modern central bank, this generates
profits above operational costs that can be used to offset other distortionary taxes
used by the government. A quantitative assessment has shown that a low-inflation
currency regime dominates any cryptocurrency (see Chiu and Koeppl (2017)).

Still cryptocurrencies can exploit a trade-off between settlement speed and
rewards to deter double spending. As shown in Sect. 3.3, for any given transaction
increasing the confirmation lag reduces the reward necessary for a tamper proof
blockchain. Notwithstanding, increasing confirmation lags has a time cost as the
delivery of goods is delayed.

This points to settling transactions in cryptocurrencies being a public good.
Settling one transaction does not preclude settling more transactions at any given
time. Interestingly, double spending is driven by transactions that have the largest
incentives to do so. Hence, all other transactions with lower incentives can free-ride
once double spending has been ruled out. In contrast, however, a single transaction
with very large incentives to double spend requires very large rewards for mining
blocks. These costs are then indirectly borne by all other users which can make
using a cryptocurrency unnecessarily expensive. This implies that a cryptocurrency
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works best for a fairly homogeneous group of transactions with small incentives to
double spend such as retail payments (see again Chiu and Koeppl, 2017).4

4.2 Double Spending as a Poisson Race

For simplicity, we have modelled secret mining as an exponential race for each
update against a group of honest miners. In order to double spend, a user had to win
the race N times in a row, but kept his result secret. This is not entirely accurate
when looking at actual PoW protocols employed for blockchain technology. These
users can catch up and only need to generate at least N blocks faster than all the
other miners. Hence, secret mining is really a Poisson race against a fringe of honest
miners that play a sequence of simple exponential races to find one block in each
race.

This is related to the so-called “51% attack” problem. If a miner controls more
than half the computational power among all miners, confirmation lags in theory
lose their power in controlling double spending incentives. The dishonest miner
creates an arrival rate that is larger than those of the other honest miners combined.
This implies that he eventually will outrun other miners for sure in generating a
longer chain and, thus, can always cheat by double spending (see, for example,
Rosenfeld (2014)). However, from an economic point of view, this requires that a
dishonest miner has deep pockets and is risk neutral. These assumptions tend to be
unrealistic and in practice users have little economic incentives to launch such an
attack especially when the computational investment by other miners is large.

This is reflected in our approach where larger confirmation lags reduce the
probability of successful double spending. More generally, rather than ruling out
double spending altogether it could be sufficient to ensure that double spending
only occurs with a sufficiently small probability. Interestingly, there could then
even be competition for double spending where there are multiple dishonest users.
If coordination of such behaviour is difficult, then double spending from the
perspective of an individual transaction is small.

4.3 Other Consensus Protocols

We have focussed exclusively on PoW protocols to achieve consensus. Many other
protocols have been discussed that try to save on the costs associated with running a
blockchain. Protocols based on Proof-of-Stake (PoS) allocate the right to update the

4In other applications, like securities settlement systems, it may be necessary to counteract the
public good character of settling on a blockchain. One has to create some congestion so that users
have an incentive to post transaction fees. Settlement on a blockchain then becomes a club good.
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blockchain randomly across users. The chance of any user to win the right is linked
to his stake in the system; for example, the number of units of cryptocurrency the
user owns. However, these alternative systems usually do not possess a key feature
of PoW: one needs to spend a large amount of resources to be successful in cheating
and being unsuccessful means that one has incurred a large, irretrievable sunk cost.

Another alternative is a voting type arrangement where a majority or super-
majority of users are needed to agree on a new block. The classic protocol in
this area is Practical Byzantine Fault Tolerance (PBFT) where for an update 2/3
of the users in a network need to agree that 2/3 of the users have agreed on a
new block.5 However, any blockchain with too many nodes cannot implement
such a protocol as it introduces too much latency due to extreme communication
requirements. Consequently, such protocols have been explored mainly in “closed”
or “permissioned” blockchains where a small group of known validators are charged
with updating the blockchain.
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Contextual Mechanism Design

Pierfrancesco La Mura

1 Introduction

We argue that the context in which a mechanism is meant to be implemented can
have a significant influence on its performance, and hence should be taken into
explicit account in its design phase. Such influences can arise not only from the
physical and information-theoretic context in which the participants operate, but
also from the subjective context in which they make their decisions.

To exemplify the first type of contextual influences consider the following
decentralized market scenario. A bidding team, comprised of Alice and Bob, is
active on separate auction markets for complements and substitutes. Alice and Bob
would like to coordinate their actions (namely, whether to buy or not) depending on
local information (say, which good is on sale on that day on their respective market),
but once they reach the two markets they have no opportunity to communicate. What
is the optimal performance they can achieve as a distributed bidding team? As we
shall see, an answer to this question cannot be given without a specification of the
physical and information-theoretic context in which the team is assumed to operate,
and in particular of which classes of signals from their shared environment may be
available to the team members.

To exemplify the second type of contextual influences consider the two following
auction scenarios. In the first scenario a seller has a single object for sale, and two
bidders (A and B) have a value of 1 for the object. The seller proposes the following
decreasing-price mechanism: at time t ∈ 1, 2, .. the price of the object is γ t , with
γ ∈ (0, 1). Bidder A gets a chance to buy (at the current price) whenever t is odd,
while bidder B can only buy when t is even. As soon as the object is purchased by
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either bidder at time t , the two bidders must bargain on how to split the resulting
surplus 1 − γ t . They bargain with alternating offers, starting with the bidder who
purchased the object. Both bidders have a time discount factor given by δ ∈ (0, 1),
that only applies to the bargaining stage, with δ < γ .

The above mechanism is a combination of a Dutch auction (with alternating
bidders) and infinite-horizon bilateral bargaining. The reader will also recognize in
it a structure similar to that of the Centipede game (Rosenthal, 1981), and indeed—
just as in the Centipede—the only prediction compatible with common knowledge
of rationality (in the sense of Aumann, 1995) is that bidders should purchase at the
current price as soon as they are able to, then bargain over the resulting surplus as
first movers.

Should the seller really expect, when offering an object for sale through a similar
mechanism, that it performs as expected on theoretical grounds? The empirical
analysis of the Centipede suggests that standard game-theoretic predictions here
could easily be misleading, and that actual decisions would depend much on context,
even to the point that two indistinguishable scenarios, from the perspective of a
hypothetical observer/experimenter/designer, could lead to dramatically different
predictions.

As a second exemplary scenario consider a sequential, first or second-price
auction with two identical objects for sale, namely, 1 and 2 (auctioned in the
same order), and three bidders, namely, A, B, and C, with independent private
values uniformly distributed in [0, 1]. Weber’s Martingale Theorem (Weber, 1983;
Weber and Milgrom, 2000) predicts that, if the price paid for the first object is P1,
this should also be the expected price for the second object. Yet, there are well-
documented order effects (e.g., the “afternoon effect” of decreasing prices in art
or wine auctions) that deviate from this theoretical prediction (Ashenfelter, 1989;
Deltas and Kosmopoulou, 2004; Andersson and Andersson, 2017). How to explain
and predict such effects in a principled way?

2 Decentralized Bidding in Markets for Substitutes
and Complements

A first source of contextual effects that are potentially relevant to the mechanism
designer is given by the type of physical and information-theoretic environment in
which the mechanism is meant to operate. In order to demonstrate the importance of
such influences on the performance of a mechanism let us consider the decentralized
auction setting mentioned in the introduction.

A team comprised of Alice and Bob is active on two separate markets: Alice
on market 1, and Bob on market 2. Once they reach their respective markets they
have no opportunity to communicate with each other. On each market, with equal
probability and independently of what happens on the other market, exactly one of
three types of object is put on auction, say: a table, a sofa or a bed. The expected
price of each item on either market, when available, is always P .
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Let us assume that Alice and Bob strive to maximize the expected value from
their joint market activity, net of the total cost for procuring the objects. Specifically,
let us assume the following team payoffs from procuring different combinations of
the three items. If they jointly procure a single object, say, one table, their team
payoff is equal to s = v − P > 0, namely, the (positive) surplus from winning a
single object at a price of P . If they procure two identical objects (say, two tables)
at the same unit price of P , then the second one brings no additional value, and the
team payoff is given by s −P . If they procure two different objects, say, a table and
a bed, then their payoff is given by 2s + ε, with ε > 0, reflecting the fact that for
Alice and Bob the two objects are partial complements. If they buy no objects, then
the team payoff is zero.

The two conditional payoff tables below summarize what Alice and Bob obtain
by buying (B) or not buying (N), respectively, depending on whether the two
markets offer the same type of object for sale (Same) or different types of object
(Different).

Same B N

B s − P s

N s 0

Different B N

B 2s + ε s

N s 0

Alice and Bob do not know (and, in the absence of communication, have no way
to find out) whether the two markets have the same type of object for sale, and
hence the team is playing with the payoffs in the left-hand side table, or different
types, in which case the payoffs are those on the right-hand side. Finally, let us
assume that the expected price P is large with respect to the potential surplus s.
What is the best performance that Alice and Bob can achieve as a decentralized
bidding team? What strategy should they follow? The answer, perhaps surprisingly,
turns out to depend on the physical and information-theoretic context in which they
operate. Specifically, if Alice and Bob are able to share an entangled quantum state
before reaching their respective markets, and to make their actions after accessing
the local information contingent on the outcome of measurement from their part of
the quantum state, then they can win just as often—but obtain a larger surplus—than
they would in case they only had access to classical signals when implementing their
decentralized strategy.

To see how this can be the case, observe that a good team strategy must avoid
whenever possible the large negative payoff s − P , and in fact if the participants
operate in a classical (non-quantum) environment one can easily see that, for P
sufficiently large, all efficient strategies must be of the following type. The three
goods are partitioned into two nonempty subsets, which are assigned to Alice and
Bob, respectively. Then Alice and Bob only buy if the object on sale on their
respective market belongs to the subset assigned to them.

For instance, Alice could be appointed to buy if, and only if, the object on sale
on her market is a table or a bed, while Bob if and only if the object on sale on his
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market is a sofa. With probability 1/3 the two markets will offer the same type of
object for sale, in which case according to the above strategy Alice and Bob will
procure exactly one item, obtaining a payoff of s. With probability 2/3 Alice and
Bob will bid for different objects, in which case: with probability (1/3) ∗1 = 1/3
both will buy, obtaining a team payoff of 2s + ε; with probability 1/3 + 0 = 1/3
only one of them will buy, obtaining a team payoff of s; and with the remaining
probability neither will buy, and the team payoff will be zero. Hence, the expected
payoff under the above strategy is given by

(1/3)s + (2/3)((1/3)(2s + ε)+ (1/3)s) = s + (2/9)ε

This game belongs to a class of team decision problems (namely, those repre-
sentable via Kuhn trees) in which correlated equilibrium payoffs coincide with the
convex hull of Nash equilibrium payoffs (La Mura, 2005; Brandenburger and La
Mura, 2016). Hence, the above is also the efficient team payoff in case Alice and
Bob are able to correlate their strategies through classical (non-quantum) signals
from their shared environment.

Let us compare the above scenario with one in which Alice and Bob, in addition
to classical signals, can also make use of quantum signals. Specifically, let us assume
that Alice and Bob, before they separate to go to their respective markets, are able
to share and preserve an entangled pair of quantum bits (qubits), on which they can
later perform one of several alternative measurements. Then Alice and Bob could
make their actions (after they learn which good is on sale on their respective market)
contingent on the outcome of measurement of their own qubit. The following
conditional probability tables, for the two cases in which the measurements operated
on the two qubits are the same (left) or different (right), can be realized quantum-
mechanically with a suitable preparation of the entangled quantum bit pair and
choice of three alternative measurements on each qubit (say,M1,M2, andM3).

Same Yes No

Yes 0 1/2

No 1/2 0

Different Yes No

Yes 3/8 1/8

No 1/8 3/8

If Alice and Bob operate measurement M1, M2, or M3 when the good on sale
on their market is a table, sofa or bed, respectively, and then buy if, and only if,
the outcome of their measurement is a Yes, then the expected payoff under such
quantum-correlated strategy is given by

(1/3)s + (2/3)((3/8)(2s + ε)+ (1/4)s) = s + (1/4)ε.

This is strictly larger than the optimal team payoff calculated above. Hence,
we conclude that a decentralized team of bidders active on separate markets in
the presence of both complementary and substitutable items can procure a higher
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expected surplus if a suitably prepared quantum state is shared in advance among
team members. In turn, this suggests that the availability of quantum information-
theoretic resources (or the designer’s ability to prevent participants from accessing
them) may become an important factor in the design and performance of high-speed,
high-frequency electronic marketplaces where communication among market par-
ticipants would be too slow to be useful.

3 Decisions with Contextual Preferences

Turning to the second family of contextual effects mentioned in the introduction,
and motivated by the two auction scenarios already discussed there, we would like
to provide an extension of the ordinary mechanism design formulation that accounts
for an element of context in the participants’ preferences. Specifically, we would
like to take the view that preferences are only well defined with respect to acts
mapping states of Nature into lotteries over a set of subjective consequences, which
may or may not coincide with the objective outcomes understood by the mechanism
designer. Those subjective consequences belong in the “large world” (in the sense of
Savage, 1954) in which the individual participant formulates his or her preferences.
We postulate that, for all practical purposes, such “large world” is generally not
accessible to the designer, who can only identify and set lotteries in the “small
world” of objective outcomes (e.g., price-allocation vector pairs). Hence, we submit,
the work of the designer should be carried on behind a “veil of ignorance” about
the broader context of decision, represented by the individual, “large worlds” of
subjective consequences of the mechanism participants.

As we would like to represent the same decision in two distinct frames of
reference, namely, the objective world of the designer and the subjective one of
the participant, we seek a representation in which the two perspectives can be
conveniently related. For this reason we shall identify lotteries with unit vectors
in L2, rather than in L1 as it is customarily done. This is because Euclidean space is
the only Lp space that is also Hilbert, and Hilbert spaces have the unique property
that the set of unit vectors is invariant with respect to basis changes. Specifically, we
introduce the following setup and notation.

S is a finite set of states of Nature.
〈.|.〉 denotes the usual inner product in Euclidean space.
� is the natural basis in R

n, identified with a finite set {ω1, . . . ., ωn} of lottery
outcomes (prizes).
Z is an orthonormal basis in R

m, with m ≥ n, identified with a finite set of
subjective consequences {z1, . . . ., zm}. V is an arbitrary (m × n) matrix chosen so
that, for all ωi in �, Vωi is a unit vector in R

m. Observe that V is always well
defined as long as m ≥ n. When m = n, we conventionally set V ≡ I , where I is
the n× n identity matrix.

Lotteries correspond to L2 unit vectors x ∈ R
n+; X is the set of all lotteries.
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Since � is the natural basis, 〈ωi |x〉2 = x2
i ; this quantity is interpreted as

p(ωi |x).
The quantity

〈
zj |V x〉2 is interpreted as p(zj |x), the conditional probability of

subjective consequence zj given lottery x. In particular,
〈
zj |Vωi 〉2 is interpreted

as p(zj |ωi), the conditional probability of subjective consequence zj given the
degenerate lottery which returns objective outcome ωi for sure. Once the subjective
consequences zj are specified, for any lottery x one can readily compute p(ωi |x) =
x2
i and p(zj |x) = 〈

zj |V x〉2. Moreover, given the latter probabilistic constraints,
one can readily identify a lottery x and an orthonormal basis Z which jointly
satisfy them. Hence, in the above construction lotteries are identified with respect
to two different frames of reference: objective lottery outcomes, and subjective
consequences.

An act is identified with a function f : S → X. H is the set of all acts.
�(X) is the (nonempty, closed, and convex) set of all probability functions on Z

induced by lotteries in X.M is the set of all vectors (ps)s∈S , with ps ∈ �(X).
For each f ∈ H a corresponding risk profile pf ∈ M is defined, for all s ∈ S

and all zj ∈ Z, by pfs (zj ) :=
〈
zj |Vfs〉2 .

As customary, we assume that the decision-maker’s preferences are characterized
by a rational (i.e., complete and transitive) preference ordering � on acts. Next,
we proceed with the following assumptions, which mirror those in Anscombe and
Aumann (1963).

Axiom 3.1 (Projective) There exists a finite orthonormal basis Z := {z1, . . . , zm},
with m ≥ n, such that any two acts f, g ∈ H are indifferent if pf = pg.

In Anscombe and Aumann’s setting, the above axiom is implicitly assumed to
hold with Z ≡ �. Because of Axiom 3.1, preferences on acts can be equivalently
expressed as preferences on risk profiles. For all pf , pg ∈ M , we stipulate that
pf � pg if and only if f � g.

Axiom 3.2 (Archimedean) If pf , pg, ph ∈ M are such that pf % pg % ph, then
there exist a, b ∈ (0, 1) such that apf + (1− a)ph % pg % bpf + (1− b)ph.
Axiom 3.3 (Independence) For all pf , pg, ph ∈ M , and for all a ∈ (0, 1], pf %
pg if and only if apf + (1− a)ph % apg + (1− a)ph.
Axiom 3.4 (Non-degeneracy) There exist pf , pg ∈ M such that pf % pg .

Axiom 3.5 (State Independence) Let s, t ∈ S be non-null states, and let
p, q ∈ �(X). Then, for any pf ∈ M , (pf1 , . . . , p

f
s−1, p, p

f
s+1, . . . , p

f
n ) %

(p
f

1 , . . . , p
f

s−1, q, p
f

s+1, . . . , p
f
n ) if, and only if, (pf1 , . . . , p

f

t−1, p, p
f

t+1, . . . , p
f
n )

% (pf1 , . . . , pft−1, q, p
f

t+1, . . . , p
f
n ).

Theorem 3.1 (Anscombe and Aumann) The preference relation � fulfills Axioms
1−5 if and only if there is a unique probability measure π on S and a non-constant
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function u : Z → R (unique up to positive affine rescaling) such that, for any
f, g ∈ H, f � g if, and only if,∑

s∈S π(s)
∑
zi∈Z p

f
s (z

i)u(zi) ≥∑
s∈S π(s)

∑
zi∈Z p

g
s (z

i)u(zi).

The following theorem, proven in La Mura (2009), relates the Anscombe and
Aumann result to the small world of objective outcomes.

Theorem 3.2 The preference relation � fulfills Axioms 1–5 if and only if there is a
unique probability measure π on S and a symmetric (n× n) matrix U with distinct
eigenvalues such that, for any f, g ∈ H, f � g if, and only if,∑

s∈S π(s)f
ᵀ
s Ufs ≥∑

s∈S π(s)g
ᵀ
s Ugs.

Let us call the above a projective expected utility (PEU) representation. Observe
that any two objective outcomes a and b identify a sub-matrix of the general payoff
matrix U that we can always write in the form below.

[
u(a) εa,b||u(a)− u(b)||

εa,b||u(a)− u(b)|| u(b)

]

Observe that the PEU from an equal objective mixture of a and b is given by

(
√

1/2,
√

1/2)Ua,b(
√

1/2,
√

1/2)ᵀ = u(a)/2+ u(b)/2+ εa,b||u(a)− u(b)||.

Hence, if εa,b > 0, the objective lottery involving an equal probability of a
and b has a higher utility than a situation involving equal probabilities but purely
subjective uncertainty (in which case, the PEU and EU values coincide and are given
by u(a)/2+ u(b)/2). If we further assume that a and b are monetary amounts, then
a linear (resp. concave, convex) specification of u captures risk neutrality (resp. risk
aversion, risk loving), while a zero (resp. positive, negative) εa,b captures ambiguity
neutrality (resp. aversion, loving).

4 Mechanisms with PEU Agents

It is shown in La Mura (2009) that every finite game with PEU-maximizing players
has an equilibrium, possibly involving a combination of objective randomization
and subjective uncertainty. Backward induction reasoning can be performed in
games with PEU agents, but the solution may or may not coincide with the one
obtained assuming EU-maximizing agents, depending on contextual effects. This
is due to the fact that lotteries involving strictly dominated strategies may not be
dominated. For instance, when in the last round of a Centipede game player 2
chooses with what probability p to quit, the PEU payoff is given by

(
√
p,

√
1− p)U(√p,√1− p)ᵀ = u(a)p + u(b)(1 − p)+ 2ε||u(a) − u(b)||√p√1− p



344 P. La Mura

where u(a), u(b) are the payoffs from quitting and staying, respectively, and
u(a) > u(b). The first order condition with respect to p is given by

u(a)− u(b)+ ε||u(a)− u(b)|| 1− 2p√
p
√

1− p = 0.

Observe that, for an ambiguity-averse decision-maker, the FOC is never satisfied
at p = 0 or p = 1. In particular, when ε is positive and small the optimal probability
of quitting is very close to, but strictly less than, one.

Why would an ambiguity-averse decision-maker prefer to commit to a random
variable giving a probability of success that is close, but not equal to one? One can
imagine cases in which what appeared to the decision-maker as a negative outcome
at the time of decision turns out against all odds to be a positive one (a “Frog
Prince”), or vice versa. If there is any ambiguity on the actual payoffs associated
to each outcome, the only possibility for the decision-maker to reduce it would be
to remain open, even with very low probability, to those outcomes which appear
dominated at the moment of decision. If both players are ambiguity-averse, this
guarantees a positive probability of continuation at all rounds of the Centipede. Yet,
unless ε is sufficiently large the payoff from continuing remains lower than that
from quitting, and hence the backward-induction solution still involves quitting,
with probability very close to one, at every opportunity independently of the number
of rounds.

Let us call a mechanism whose participants maximize PEU a PEU mechanism.
Which general results from the theory of economic mechanisms, and in particular
auction theory, carry over to the case of PEU mechanisms?

Let us consider mechanisms for PEU agents with private values, and preferences
that are quasi-linear with respect to money, where possible contextual effects only
take the form of varying degree of ambiguity aversion on surplus, controlled by a
single parameter ε. Specifically, let us assume that for any two mechanism outcomes
(a, x) and (b, y), where x and y are monetary expenditures, the corresponding
utility matrix is given by

[
v(a)− x ε||(v(a)− x)− (v(b)− y)||

ε||(v(a)− x)− (v(b)− y)|| v(b)− y
]

Some general foundations, such as the Revelation Principle (Myerson, 1981), do
not depend on whether participants are assumed to maximize EU or PEU.

The Revenue Equivalence theorem for single-object auctions still holds in case
all agents have diagonal payoff matrices (in which case PEU reduces to EU), but
fails with general payoff assignments. This will become apparent in the next section,
where we analyze bidders’ behavior in first and second price auctions with varying
attitudes towards ambiguity on surplus.

The Vickrey-Clarke-Groves mechanism (VCG) with PEU participants is still
individually rational and truthful whenever ε ≤ 0. By contrast, for positive and small
values of ε (and hence, for strictly ambiguity-averse agents) the VCG mechanism is
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never truthful. Yet, it can be modified in a simple way to obtain a truthful mechanism
that is still interim efficient, but may fail to be ex-post efficient. This will also
become apparent in the next section, when we discuss truthfulness in second-price
auctions.

5 First and Second Price Auctions with Ambiguity-Sensitive
Bidders

Consider a second-price auction for a single item with PEU-maximizing bidders.
Each bidder has quasi-linear utility, with payoff matrix

[
vi − P ε||vi − P ||
ε||vi − P || 0

]

so that vi − P is the surplus for i from winning the object at price P .
For general values of ε, if p is the probability of winning the object, then the

PEU payoff is given by

(
√
p,

√
1− p)U(√p,√1− p)ᵀ = (vi − P)p + 2ε||vi − P ||√p

√
1− p).

Taking the first order condition with respect to p, and multiplying both sides by√
p
√

1− p, one obtains

(vi − P)(√p
√

1− p)+ ε||vi − P ||(1 − 2p) = 0.

Solving for p, we find that p∗ = 1/2 ± (1/2)√1− 4ε2. Hence, the first order
condition implies that, if ε is zero, the bidder will want to set p to either zero or one
in case the surplus at price P is negative or positive, respectively. Evaluating the
FOC near p = 0 and p = 1 one finds that, for negative values of ε, the bidder
would still want to set the probability of winning to zero or one depending on
whether the surplus is positive or negative, just as above. By contrast, for small
and positive values of ε the bidder will want to set a probability very close to (but
strictly less than) one when the surplus is positive, and a probability very close to
(but strictly more than) zero when the surplus is negative. This cannot be obtained
in case the bid is always set to the true value. Hence, we conclude that second-price
auctions cannot be truthful in case bidders are averse to ambiguity. Yet, in such
scenarios a simple modification of the second-price auction, namely, one in which a
small amount of noise is added to each bid on behalf of the players, could be made
into a truthful mechanism that would still be interim (but not ex-post) efficient. In
particular, consider the very simple scenario of a second-price auction with a single
participant, who wins the object at a price of zero if, and only if, her bid is strictly
positive. Then a modification of the format, in which the accepted bid is set by a
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suitable random variable to be either the amount reported by the participant (with
probability p∗) or zero (with probability 1−p∗), would be truthful because it would
exactly replicate the optimal strategy on the participant’s behalf.

Let us now consider first-price auctions, in a simple scenario with two bidders,
with values that are i.i.d. and uniform in [0, 1]. If bidder j ∈ 1, 2 is bidding y =
vj/2, then bidder i (i �= j ) by offering x ∈ [0, 1] wins with probability 2x, and
receives a payoff of v1 − x, otherwise gets nothing and pays nothing. The expected
payoff for bidder i is (

√
2x,
√

1− 2x)Ui(
√

2x,
√

1− 2x)ᵀ, where Ui is the payoff
matrix above with P = x.

Assuming x ≤ vi , the PEU payoff is given by

(
√

2x,
√

1− 2x)Ui(
√

2x,
√

1− 2x)ᵀ = (vi − x)(2x + 2ε
√

2x(1− 2x)).

Taking the first order condition, and rearranging, yields

(vi − 2x)
√

2x(1− 2x)+ ε((vi − x)(1− 4x)− 2x(1− 2x)) = 0.

Observe that, when ε is zero, the unique solution is x = vi/2. This identifies the
unique symmetric equilibrium with EU bidders, in which both bid half of their true
value.

Evaluating the left-hand side of the first-order condition at x = vi/2 with general
ε one obtains −εvi/2, which is never zero except for the zero-value type. When ε
is positive the above expression is negative, and hence in that case the bidder would
want to bid less than half of the true value. By contrast, for negative ε the bidder
would want to bid strictly more than that amount.

Recalling that a positive ε in the PEU payoff matrix captures ambiguity aversion,
we can interpret the above result along the following lines: bidders who are averse
(resp., propense) to ambiguity will tend to bid less (resp., more ) aggressively in a
first-price auction than ambiguity-neutral ones. This is consistent with experimental
results on first and second price auctions, which find that bids in first price auctions
are lower in the presence of ambiguity (Chen et al., 2007).

The pattern of lower bids in first price auctions by ambiguity-averse bidders
could also be used, in principle, to explain afternoon effects in sequences of first
price auctions for identical objects. For instance, consider a scenario with n − 1
objects for n bidders, where values are i.i.d. and uniform in [0, 1]. Then with EU
bidders the following is an equilibrium. In each auction bidder i ∈ I bids xi = vi/2,
which is i’s expected price, and also expected surplus, in case of winning. In
equilibrium bidder i expects a surplus of vi/2 with probability 1 − (1 − vi)n−1,
and zero otherwise.

If bidder i is ambiguity averse, the PEU payoff at the EU equilibrium is given by

(vi/2)(1− (1− vi)n−1)+ 2ε(vi/2)
√

1− (1− vi)n−1
√
(1− vi)n−1,
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which for n large is approximately the same as the EU payoff. As the number of
remaining objects decreases the probability of winning an object also decreases for
each of the remaining bidders. Observe that the difference between EU and PEU
payoff, and hence the distortion, becomes highest when the probability is close to
1/2, while in case the probability of receiving an object is close to one or zero the
distortion becomes negligible. When n is sufficiently large bidder i initially expects
to win one of the n−1 objects with probability close to one, in which case distortion
and underbidding are both negligible. For each remaining bidder the probability of
winning an object decreases with each new auction, but as long as it remains above
1/2 an ambiguity-averse bidder will underbid more and more with each new auction.
By contrast, in scenarios when only few objects remain on sale among many bidders
then the probability of winning an object will eventually become lower than 1/2 for
most bidders, in which case the distortion and the underbidding again decrease. This
suggests that sequences of first price auctions with ambiguity averse bidders will
tend to produce afternoon effects when the probability of winning for most bidders
remains sufficiently high (few bidders per object), and reverse afternoon effects in
case that probability becomes sufficiently low (many bidders per object).
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