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Abstract. In the era of big data, the study of networks has received
an enormous amount of attention. Of recent interest is network
embedding—learning representations of the nodes of a network in a low
dimensional vector space, so that the network structural information and
properties are maximally preserved. In this paper, we present a review
of the latest developments on this topic. We compare modern methods
based on matrix factorization, including GraRep [5], HOPE [22], Deep-
Walk [23], and node2vec [12], in a collection of 12 real-world networks.
We find that the performance of methods depends on the applications
and the specific characteristics of the networks. There is no clear win-
ner for all of the applications and in all of the networks. In particular,
node2vec exhibits relatively reliable performance in the multi-label clas-
sification application, while HOPE demonstrates success in the link pre-
diction application. Moreover, we provide suggestions on how to choose
a method for practical purposes in terms of accuracy, speed, stability,
and prior knowledge requirement.

1 Introduction

We live in a complex world of interconnected entities [24,27]. In all fields of
human endeavor, from biology to medicine, economics, and climate science,
we are flooded with large-scale datasets. These datasets describe intricate real-
world systems, with entities being modeled as nodes and their connections as
edges, comprising various networks [24]. Indeed, we are surrounded by networks,
including the internet, neural networks, cellular networks, food webs, electrical
grids, communication networks, transportation networks, trade networks, and
social networks [2,21]. Effective analysis of these networks can provide a solid
understanding of the structure and dynamics of the real-world systems and can
improve many useful applications [10].

Recently, a growing number of researchers have shown interests in learning
representations of nodes of a network in a low dimensional vector space, or net-
work embedding [4,11,13]. One important reason is that we can use the learned
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embeddings as feature inputs for downstream machine learning algorithms, and
this technology is beneficial for many network analysis tasks, such as community
detection [20], node classification [3], link prediction [17], recommendation [16],
and visualization [28].

Many attempts to tackle the network embedding problem have been proposed
[6,9,26,33,35]. The proposed methods are extremely varied, and are based on a
range of different ideas. According to [4], the methods can be roughly classified
into five categories: matrix factorization based methods, deep learning based
methods, edge reconstruction based methods, graph kernel based methods, and
generative model based methods. Among them, the matrix factorization based
methods such as HOPE [22] have the advantage of high accuracy while preserving
efficiency, and thus are widely used. Additionally, both the deep learning based
methods, such as DeepWalk [23] and node2vec [12], and the edge reconstruction
based methods, such as LINE [29] and PTE [28], are closely related to matrix
factorization [15,25,34]. Therefore, in this paper we give a comparative study
of these methods that are closely related to matrix factorization. Specifically,
we make a comprehensive comparison in terms of accuracy, speed, stability,
and prior knowledge requirement in two embedding enabled applications in a
collection of 12 real-world networks. Then, we provide suggestions on how to
choose a method for practical purposes.

To this end, this paper is organized as follows. Section 2 reviews the technique
of matrix factorization and the methods to be compared. Section 3 specifies the
experiment settings and datasets. Section 4 shows the comparison results. Based
on these results, Sect. 5 gives our suggestion on how to choose a network embed-
ding method for practical purposes. Finally, Sect. 6 presents our conclusion.

2 The Matrix Factorization Based Methods

We begin with the symbols and definitions that will be used. For simplicity and
clarity, we limit our vision to an unweighted and undirected network G = (V, E),
where V = {vi | i = 1, · · · , n} is the node set, and E ⊆ V × V is the edge
set. The aim of network embedding is to learn a mapping φ: vi �→ ei ∈ R

d for
∀i = 1, . . . , n. d � n is the embedding dimension. The sense of a good mapping
is that the embeddings preserve the proximity structure between nodes. In other
words, the (dis)similarity of embeddings in the R

d space should, to some extent,
reflect the (dis)similarity of nodes in the original network.

Let E = (e1,e2, · · · ,en )� denote the embedding matrix, where the i-th row
represents the embedding of vi. The matrix factorization based methods have
the unified form:

E = arg min
El

‖S − ElE�
r ‖2F , (1)

where ‖·‖F denotes the matrix Frobenius norm, S ∈ R
n×n is some matrix

defined on the network topology (different methods have different definitions),
and El,Er ∈ R

n×d are matrices that factorize S.
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For a given S, Eq. (1) is often solved approximately by Singular Value Decom-
position (SVD) on S [5,15,22,25]. Suppose σ1 ≥ σ2 ≥ · · · ≥ σn denote the singu-
lar values of S, and ui ,vi denote the corresponding left and right singular vectors
of σi. Let Σd = diag(σ1, σ2, · · · , σd) be the diagonal matrix formed from the top
d singular values, and let Ud = (u1,u2, · · · ,ud) and Vd = (v1,v2, · · · ,vd)
be the matrices produced by selecting the corresponding left and right singular
vectors. The truncated SVD of S can be expressed as

Sd = UdΣd(Vd)� ≈ S, (2)

where Sd is the best rank-d matrix that approximates S. Then, the embedding
solution is:

E = Ud(Σd)
1
2 . (3)

Note that the matrix S to be factorized is based on user’s definition. Previous
research have shown the success of S based on different definitions, such as the
adjacency matrix [1], modularity matrix [30], graph Laplacians [25,31], and Katz
similarity matrix [22]. In addition, there are random walk and Skip-Gram model
based methods such as DeepWalk [23] and node2vec [12] that factorize some
matrices S implicitly.

In this paper, we limit our comparison to four methods that cover the state-
of-the-art techniques, i.e. GraRep [5], HOPE [22], DeepWalk [23], and Node2vec
[12], all of which are related to matrix factorization of the above form. We
exclude other matrix factorization approaches such as LINE [29] and SocDim
[30,31], because they have already been shown to be inferior to the methods
considered here [12,23].

A brief introduction of the four methods follows.

– GraRep defines a loss function by integrating the transition probabilities.
Minimizing this loss function has proven to be equivalent to factorizing a
matrix that is related to the k-step transition probability matrix. For each
k the factorization produces a sub-embedding. Then GraRep concatenates
sub-embeddings on different k as the final embedding solution.

– HOPE learns embeddings by factorizing a similarity matrix defined on the
Katz Index. The authors also developed a generalized SVD algorithm that
can efficiently factorize a matrix in the form of S = M−1

g Ml, where M−1
g and

Ml are sparse matrices.
– DeepWalk first transforms a network into a collection of linear sequences of

nodes using multiple random walks. It then learns embeddings by applying
the Skip-Gram model [18,19], originating from natural language processing,
to the sequences of nodes. DeepWalk implicitly factorizes a matrix, which is
a low-rank transformation of the networks normalized Laplacian matrix [25].

– Node2vec is a variant of DeepWalk. Similar to DeepWalk, node2vec samples
sequences of nodes and feed them to the Skip-Gram model. Instead of copy-
ing DeepWalk’s random search sampling strategy, node2vec introduces two
hyper-parameters to use 2nd-order random walks in order to bias the walks
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towards a particular search strategy. Node2vec factorizes a matrix related to
the stationary distribution and transition probability tensor of the 2nd-order
random walk [25].

3 Experiment Settings

We evaluate these methods based on two embedding enabled applications: multi-
label classification [23] and link prediction [12]. In the multi-label classification
settings, every node is associated with one or more labels from a finite set L. The
task is executed according to the following procedure. First, we randomly sample
a portion of the labeled nodes for training, with the rest for testing. Then, we use
the learned embeddings (normalized by L2-norm) and the corresponding labels
of the training nodes to train a one-vs-all logistic regression (LR) classifier (with
L2 regularization). Finally, feeding the embeddings of the testing nodes to the
classifier we predict their labels, which will be compared to the true labels for
evaluation. We repeat this procedure 10 times and evaluate the performance in
terms of the average F1-Macro and F1-Micro scores.

It is worth noting that previous approaches for training the LR classifier often
ignores tuning the regularization strength parameter and accepts the default
parameter value for granted [23]. We found that this parameter sometimes have
a significant influence on the result, especially when the classification problem
is highly imbalanced. Therefore, we carefully tune this parameter based on 10-
fold cross-validation of the training nodes. Also, we note that at the prediction
stage previous approaches often employes information that is typically unknown.
Precisely, they use the actual number of labels m each testing node has [23,25].
They consider a label as a positive if it is among the top m labels in terms
of prediction probability by the LR classifier, regardless of its real probability
value. However, in real-world situations it is fairly uncommon to have such prior
knowledge of m. We eliminate the use of the prior knowledge in a similar way
as proposed in [8]. Instead of ranking the prediction probabilities and taking
the labels corresponding to the top m, we label a testing node based on the
probability directly, i.e., if the probability of a label l is greater than 0.5 we
consider l as positive.

In the link prediction task, we are given a network G′ with 50% of edges
removed from the original network G. We predict the missing edges (i.e. the
50% removed edges) according to the procedures in [12]. First, based on the
node embeddings learned from G′, we generate edge embeddings for pairs of
nodes using the element-wise operators listed below. We label an edge embed-
ding as positive if the corresponding edge exists in G′ and negative otherwise.
Then, we train a binary LR classifier (with L1 regularization) using all of the
edge embeddings that have positive labels and the same amount of randomly
sampled edge embeddings that have negative labels. After that, feeding an edge
embedding to the LR classifier we can calculate the existence probability of the
corresponding edge. Finally, we evaluate the performance based on the proba-
bilities of the missing edges and non-existent edges (i.e. the edges that do not
exist in G) in terms of the Area Under the Curve (AUC) score.
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The element-wise operators for generating edge embeddings are:

– Average: [eij ]t =
(
[ei ]t + [ej ]t

)
/2,

– Hadamard: [eij ]t = [ei ]t ·[ej ]t,
– Weighted L1: [eij ]t = |[ei ]t − [ej ]t|,
– Weighted L2: [eij ]t = |[ei ]t − [ej ]t|2,
where t ∈ 1, · · · , d denotes the subscript of the t-th element of an embedding.

Table 1. Statistics of the datasets.

Dataset |V| |E| |L|
Kaggle3059 157 2,474 15

Kaggle4406 399 3,412 28

BrazilAir 131 1,003 4

EuropeAir 399 5,993 4

USAir 1,190 13,599 4

Cora 2,708 5,278 7

Citeseer 3,264 4,551 6

DBLP 13,184 47,937 5

WikiPage 2,363 11,596 17

WikiWord 4,777 92,295 40

PPI 3,860 37,845 50

BlogCatalog 10,312 333,983 39

We use a variety of real-world network datasets from various domains. A
brief description of them follows.

– Kaggle3059, Kaggle4406 [7]1: The friendship networks of Facebook users. The
labels represent the social circles of the users.

– BrazilAir [26]2, EuropeAir [26]3, USAir [26]4: The air-traffic networks of
Brazil, Europe, and the USA, respectively. The nodes indicate airports and
the edges denote the existence of commercial flights. The labels represent the
capacity levels of the airports.

– Cora [35]5, Citeseer [14](See footnote 5), DBLP [28]6: Paper citation networks.
The labels represent the topics of the papers.

1 https://www.kaggle.com/c/learning-social-circles/data.
2 http://www.anac.gov.br/.
3 http://ec.europa.eu/.
4 https://transtats.bts.gov/.
5 https://linqs.soe.ucsc.edu/data/.
6 https://aminer.org/billboard/citation/.

https://www.kaggle.com/c/learning-social-circles/data
http://www.anac.gov.br/
http://ec.europa.eu/
https://transtats.bts.gov/
https://linqs.soe.ucsc.edu/data/
https://aminer.org/billboard/citation/
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(a) Kaggle3059 (b) Kaggle4406 (c) BrazilAir

(d) EuropeAir (e) USAir (f) Cora

(g) Citeseer (h) DBLP (i) WikiPage

(j) WikiWord (k) PPI (l) BlogCatalog

Fig. 1. F1-Macro of multi-label classification on the 12 networks.

– WikiPage [32]7: A network of webpages in Wikipedia, with edges indicating
hyperlinks. The labels represent the topic categories of the webpages.

7 https://github.com/thunlp/MMDW/tree/master/data/.

https://github.com/thunlp/MMDW/tree/master/data/
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(a) Kaggle3059 (b) Kaggle4406 (c) BrazilAir

(d) EuropeAir (e) USAir (f) Cora

(g) Citeseer (h) DBLP (i) WikiPage

(j) WikiWord (k) PPI (l) BlogCatalog

Fig. 2. F1-Micro of multi-label classification on the 12 networks.

– WikiWord [12]8: A co-occurrence network of the words appearing in
Wikipedia. The labels represent the part-of-speech tags inferred using the
Stanford POS-Tagger.

8 http://snap.stanford.edu/node2vec/#datasets/.

http://snap.stanford.edu/node2vec/#datasets/
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– PPI [12](See footnote 8): A subgraph of the protein-protein interactions net-
work for Homo Sapiens. The labels represent the biological states.

– BlogCatalog [30]9: A network of social relationships of the bloggers listed on
the BlogCatalog website. The labels represent topic categories provided by
the bloggers.

We remove self-loop edges and transform bi-directional edges to undirected
edges. The datasets after pre-processing are summarized in Table 1.

We uniformly set the embedding dimension as 120 for all methods. The
parameter settings for each method are in line with the typical ways. That is,
for GraRep, we set the maximum matrix transition step as 4. For HOPE, we set
the decay rate as 0.95 divided by the spectral radius of the adjacency matrix.
For DeepWalk and node2vec, we set the window size as 10, the walk length as
80, the number of walks per node as 10. Lastly, for node2vec, we learn the best
in-out and return hyperparameters using a grid search over {0.25, 0.50, 1, 2, 4}.

4 Results

Figures 1 and 2 depict the F1-Macro and F1-Micro scores of multi-label classi-
fication on different networks. Overall, F1-Macro and F1-Micro scores show the
similar trend, although there are many differences in the details. We find that the
performance is network dependent. Node2vec achieves remarkable performance
in five out of the 12 networks (Cora, Citeseer, DBLP, WikiPage, PPI). How-
ever, both node2vec and DeepWalk, which employ random walk with Skip-Gram
model strategy, show less success in the air-traffic networks (BrazilAir, Euro-
peAir, and USAir). One reason is that the labels in these networks are, to some
extent, an indication of the structural identity. However, random walk is not able
to find such identify that implies the symmetry structure. Node2vec is always
better than DeepWalk, because the former uses additional ground-truth labels
for learning the in-out and return hyperparameters and guide the 2nd-order
random walkers towards a particular search strategy. Moreover, HOPE outper-
forms the other methods in three networks (BrazilAir, EuropeAir, WikiWord)
but loses to the competition in another three networks (Kaggle4406, DBLP,
and BlogCatalog). GraRep obtains good result in three networks (Kaggle3059,
Kaggle4406, BlogCatalog), where there is no clear winner. Also, GraRep demon-
strates acceptable performance in other networks, except in Cora, Citeseer and
WikiPage. Comparatively speaking, node2vec, as an improved version of Deep-
Walk, exhibits relatively reliable performance in the multi-label classification
task.

Table 2 shows the link prediction results. Again, the performance of different
methods is network dependent. HOPE performs the best in seven out of the 12
networks. Impressively, in BrazilAir network the performance gain over Deep-
Walk is as high as 24.27%. Note that the similarity matrix factorized by HOPE is
defined on the Katz index and preserves higher order proximity between nodes.

9 http://socialcomputing.asu.edu/datasets/BlogCatalog3/.

http://socialcomputing.asu.edu/datasets/BlogCatalog3/
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This implies that preserving higher order proximity is conducive to predicting
unobserved links. However, in the DBLP network HOPE obtains the lowest score,
which is significantly lower than the others. A reason is that DBLP network is
very sparse.10 So, the network G′ that are obtained by removing 50% of the
edges of the original network G contains many disconnected components. How-
ever, Katz index is insufficient to measure the proximity for pairs of nodes that
come from disconnected components, consequently resulting in the less attractive
performance. One the other hand, GraRep and node2vec only outperform the
others in three and two networks, respectively. Like the situation for muti-label
calssification, DeepWalk is always inferior to node2vec. Comparatively speaking,
the performance of HOPE is more consistent, as it obtains high scores in almost
all of the networks.

Table 2. AUC scores of link prediction on the 12 datasets. The scores are based on
the best results of choosing different operators for edge embedding.

Dataset Method

GraRep HOPE DeepWalk node2vec

Kaggle3059 0.9386 0.9389 0.8888 0.9144

Kaggle4406 0.9619 0.9633 0.9588 0.9613

BrazilAir 0.8903 0.8951 0.7203 0.7582

EuropeAir 0.9083 0.8992 0.8226 0.8383

USAir 0.9434 0.9501 0.8650 0.8934

Cora 0.6947 0.7018 0.7324 0.7381

Citeseer 0.6939 0.6673 0.6315 0.6535

WikiPage 0.8863 0.8839 0.8763 0.8827

WikiWord 0.9015 0.9097 0.8551 0.8656

PPI 0.8630 0.8700 0.8033 0.8097

DBLP 0.9216 0.9078 0.9224 0.9231

BlogCatalog 0.9307 0.9387 0.8774 0.8878

5 Choosing a Method

The results in the previous section indicate the accuracy of the methods in
multi-label classification and link prediction tasks. However, we have to take
other factors into account when choosing a method for practical purposes. In
some cases, a compromise must be reached between accuracy and running time,
especially for large networks. In other cases, we may consider whether a method
is stable, or whether we have some prior knowledge about the network. Table 3
summarizes the characteristics of different methods from five aspects: accuracy

10 The similar reason also applies to the Cora and Citeseer networks.
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for multi-label classification, accuracy for link prediction, speed, stability, and
prior knowledge requirement. To clarify this further, we give the following sug-
gestions for choosing a suitable method.

In one example, we want to embed a relatively small network that contains
several hundred nodes. Since the network is small, the speed of a method should
pose no restriction, and we are free to choose the most accurate method. In
this case, GraRep and node2vec would be an appropriate choice. When we deal
with large networks, it becomes intractable with methods such as GraRep. For
example, it may take more than ten days to embed a network with the number
of nodes in the order of 105 on a current desktop PC. In this case, HOPE and
node2vec would be better candidates.

Table 3. Characteristics of different methods.

Characteristic Method

GraRep HOPE DeepWalk node2vec

Accuracy (Clas.) High Medium Medium X-High

Accuracy (Pred.) High X-High Medium High

Speed Medium X-Fast Fast Fast

Stability Stable Stable Unstable Unstable

Prior Know. Reqt. No No No Yes

Let us consider a network that evolves with time. We want to embed the
network at multiple time slices and find out how the embeddings change with
time. In this case, we would not choose unstable methods such as DeepWalk or
node2vec. These two methods introduce some random factors such as random
walks, random initialization of the neural network weights, and random selection
for the mini-batch training. Thus, the embedding results can be different in
different runs.

Node2vec, as an improved version of DeepWalk, normally achieves better
performances. However, we need some prior knowledge to guide the 2nd-order
random walkers towards a particular search strategy or some information about
the downstream machine learning tasks. For example, some labels are required
to tune the hyper-parameters in the multi-label classification task. If such prior
knowledge is not available, DeepWalk is also a good alternative option.

6 Conclusion

In this paper, we have given a overview and a comprehensive comparison of
matrix factorization based methods for network embedding. We found that the
performance is network and application dependent; thus, there is no clear winner
for all of the applications and in all of the networks. We analyzed the charac-
teristics of each method and gave suggestions on how to choose a method for
practical purposes.
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Despite recent efforts in network embedding, some questions remain unan-
swered. The search for a faster and more accurate method is a never-ending
pursuit. Additionally, we lack embedding methods that can cope with temporal
networks. These will be left for our future work.

Acknowledgment. This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO).
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16. Lü, L., Medo, M., Yeung, C.H., Zhang, Y., Zhang, Z., Zhou, T.: Recommender
systems. Phys. Rep. 519, 1–49 (2012)
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