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Abstract. Mining high utility sequential pattern is an interesting problem in
data mining. In this paper, we propose a new algorithm called high utility
sequential pattern mining based on maximal remaining utility (HUSP-MRU). In
HUSP-MRU, the maximal remaining utility (MRU) is defined as tighter upper
bound of candidates. Representing the search space with lexicographic
sequential pattern tree, the matrix structures are used for MRU storage, and
branch as well as node pruning based on MRU are used for improving mining
efficiency. Extensive tests conducted on publicly available datasets show that the
proposed algorithm outperforms USpan algorithm in terms of mining efficiency.
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1 Introduction

High utility sequential pattern (HUSP) mining [1, 7], which is to discover sequential
patterns with high utility in a sequence database, is an important topic in the field of
utility pattern mining [3, 6], and has wide real-world applications [5, 8].

Different from traditional frequent sequential pattern [4], HUSP considers both
occurrence frequency and profit of itemsets in a sequence. Thus, the infrequent but high
profit sequential patterns can be discovered through mining HUSPs.

USpan [7] is a typical HUSP mining algorithm. For width pruning, USpan use the
sequence-weighted utilization as the upper bound, which may include unnecessary
operations on utility computation. To improve the efficiency, a new HUSP mining
algorithm named HUSP-MRU is proposed. In this algorithm, the maximal remaining
utility is defined as a tighter upper bound. To store maximal remaining utility, the
item-utility matrix and maximal utility matrix structures are used. The search space is
represented by lexicographic sequential pattern tree, and the branch as well as node
pruning strategies are used to avoid unnecessary traversal of unpromising nodes.
Experimental results show that the HUSP-MRU algorithm is efficient.
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2 Problem of HUSP Mining

Let I ¼ i1; i2; . . .; imf g be a finite set of items, set X � I is called an itemset. An itemset
sequence Sr is an ordered list of itemsets \X1;X2; . . .;Xn [ . Each itemset Xd in
sequence Sr is denoted as Sdr . A sequence database SDB is a set of tuples of the form
(sid, S), where sid is the ID of sequence S.

The internal utility qði; Sdr Þ represents the quantity of item i in itemset Sdr of
sequence Sr. The external utility p(i) is the unit profit value of item i. The utility of item
i in itemset Sdr is defined as uði; Sdr Þ ¼ pðiÞ � qði; Sdr Þ. The utility of itemset X in Sdr of
sequence Sr is defined as uðX; Sdr Þ ¼

P
i2X

uði; Sdr Þ.
A sequential pattern a ¼ \X1;X2; . . .;Xp [ is called a subsequence of a sequence

Sr ¼ \S1r ; S
2
r ; . . .; S

n
r [ , denoted asaYSr, if there exist integers 1� j1\j2\. . .\jp � n

such that X1�Sj1r ;X2�Sj2r ; . . .;Xp�Sjpr . We say the ordered list of itemsets

\Sj1r ; S
j2
r ; . . .; S

jp
r [ anoccurrenceofa inSr. The set of all occurrences ofa inSr is denoted

asOccSet(a, Sr).
In this paper, the term sequence refers to the sequence database transactions, while

the term sequential pattern refers to the extracted subsequences from these sequences.

Let occ ¼ \Sj1r ; S
j2
r ; . . .; S

jp
r [ be an occurrence of a ¼ \X1;X2; . . .;Xp [ in

sequence Sr. The utility of a with respect to occ is defined as uða; occÞ ¼ Pp
i¼1

uðXi; Sjir Þ,
and utility of a in Sr is defined as uða; SrÞ ¼ maxfuða; occÞ jocc 2 OccSetða; SrÞg. The
sequence utility (SU) of a sequence Sr is defined as SU(Sr) = u(Sr, Sr). The utility of a
sequential pattern a in SDB is defined as uðaÞ ¼ P

aYSr^Sr2SDB
uða; SrÞ.

The minimum utility threshold d, specified by the user, is defined as a percentage of
the total SU values of the database, whereas the minimum utility value is defined as
min util ¼ d� P

Sr2SDB
SUðSrÞ. An sequential pattern a is called an HUSP if u(a) �

min_util. Given a sequence database SDB, the task of HUSP mining is to determine all
sequential patterns that have utilities no less than min_util. Similar to the algorithms in
[1, 7], the concept of remaining utility is also used in our algorithm to speed up the
mining process.

Let occ ¼ \Sj1r ; S
j2
r ; . . .; S

jp
r [ be an occurrence of a ¼ \X1;X2; . . .;Xp [ in

sequence Sr, the last item of Xp, say item i, is called extension item of a. The remaining
sequential pattern of Sr w.r.t. position jp, denoted as Sr/(a, jp), is defined as the sub-
sequence of Sr from the item after the i to the end of Sr. The remaining utility of a w.r.t.
the sequential pattern Sr=ða; jpÞ, denoted as ruða; Sr=ða; jpÞÞ, is the sum of the utilities
of all items in Sr=ða; jpÞ. Among all values of ruða; Sr=ða; jpÞÞ, the one with the highest
value is called the maximal remaining utility of a in Sr, denoted as mru(a, Sr).

Consider the sequence database in Table 1 and the profit table in Table 2. In the
example database, the utility of item a in second itemset of S2 (i.e., S22) is
uða; S22Þ ¼ 6� 3 ¼ 18, the utility of itemset {ae} in S22 is uð aef g; S22Þ ¼ 18þ 2 ¼ 20.
Both occ1 ¼ \S14; S

2
4 [ and occ2 ¼ \S14; S

3
4 [ are occurrences of a = <ba> in S4. So

Mining High Utility Sequential Patterns 467



uða; S4Þ ¼ maxfuða; occ1Þ, uða; occ2Þg ¼ max 31; 22f g ¼ 31. In the example data-
base, uðaÞ ¼ uða; S3Þþ uða; S4Þþ uða; S5Þ ¼ 11þ 31þ 28 ¼ 70. Given
min util ¼ 60, as uðaÞ [min util, a is an HUSP. Consider the occurrence occ2 ¼
\S14; S

3
4 [ of a in S4, the remaining sequential pattern S4=ða; 3Þ ¼ \ bef g[ , and

ruða; S4=ða; 3ÞÞ ¼ 5þ 2 ¼ 7. Since ruða; S4=ða; 2ÞÞ ¼ 6þ 12þ 5þ 2 ¼ 25, which is
higher than ruða; S4=ða; 3ÞÞ, so mruða; S4Þ ¼ 25.

3 HUSP-MRU Algorithm

3.1 The Matrix Structure

For HUSP-MRU, an item-utility matrix structure is defined for each sequence.

Definition 1. Let Sr ¼ \S1r ; S
2
r ; . . .; S

n
r [ be a sequence, the item-utility matrix of

sequence Sr is an m � (2 � n) matrix denoted as Mr, where m is the number of items in
Sr. Each row of Mr, representing item i, is composed of n pairs, and each pair is with
the form of pk ¼ \uk ið Þ; iruk ið Þ[ ð1� k� nÞ, where uk(i) is calculated by Eq. 1.

ukðiÞ ¼ uði; SkrÞ; i 2 Skr
0; i 62 Skr

�
ð1Þ

Let “�” be the lexicographic order of items, if item j � i, and there exists no item
q such that j � q � i, iruk(i) is calculated by Eq. 2.

irukðiÞ ¼
ruði; Sr=ð\i[ ; kÞÞ; i 2 Skr
irukðjÞ ; i 62 Skr ^ k 6¼ 1
SUðSrÞ; i 62 Skr ^ k ¼ 1

8<
: ð2Þ

Table 1. Example sequence database

SID Sequence

S1 <(e,5) {(c,2), (f,1)} (b,2)>
S2 <(c,1) {(a,6), (d,3), (e,2)}>
S3 <{(a,2), (e,6)} {(a,1), (b,1), (c,2)} {(a,2), (d,3), (e,3)}>
S4 <{(b,2), (e,2)} {(a,7), (d,3)} {(a,4), (b,1), (e,2)}>
S5 <{(b,2), (e,3)} {(a,6), (e,3)} {(a,2), (b,1)}>

Table 2. Profit table

Item a b c d e f

Profit 3 5 4 2 1 2
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According to Definition 1, for two items i and j, if j � i and there exists no item
q such that j � q � i, we have iruk(j) = uk(i) + iruk(i), which can facilitate the cal-
culation of item-utility matrix. Given item-utility matrix, the maximal utility as well as
maximal remaining utility are also recorded in the maximal utility matrix.

Definition 2. Let Sr ¼ \S1r ; S
2
r ; . . .; S

n
r [ be a sequence, the maximal utility matrix of

sequence Sr is an m � 3 matrix, where m is the number of items in Sr. For each row, the
first element (denoted as i) is the item this row represents, the second element is u(i, Sr),
the third element is mru(i, Sr).

As the utility of sequential pattern is based on the maximal utility among all
occurrences, the maximal utility matrix structure is convenient for HUSP mining.

Consider S3 in Table 1. The item-utility matrix of S3 is shown in Table 3, and the
maximal utility matrix of S3 is shown in Table 4.

3.2 Lexicographic Sequential Pattern Tree

Given a sequential pattern a ¼ \X1;X2; . . .;Xp [ and an item x, a}x means a
concatenates with x. It can be I-extension, a}Ix ¼ \X1;X2; . . .;Xp [ x[ ; or
S-extension, a}Sx ¼ \X1;X2; . . .;Xp; x[ . For example, <{ae}> is an I-extension of
<a>, while <ae> is a S-extension of <a>.

The search space of the HUSP-MRU can be represented as a lexicographic tree.
A lexicographic sequential pattern tree (LSP-Tree) T is a tree structure composed as
follows: (1) One empty root labeled as “< >”. (2) Each node N except root consists of
four fields: N.seq, N.ulist, N.u, and N.mru, where N.seq records the sequential pattern
represented by N, N.ulist is composed of information for search space pruning (see
Definition 3), N.u is u(N.seq, Sr), and N.mru is mru(N.seq, Sr), where Sr 2 SDB.

Table 3. The item-utility matrix of S3

Item S13 S23 S33
u iru u iru u iru

a 6 37 3 28 6 9
b 0 37 5 23 0 9
c 0 37 8 15 0 9
d 0 37 0 15 6 3
e 6 31 0 15 3 0

Table 4. The maximal utility matrix of S3

Item mu mru

a 6 37
b 5 23
c 8 15
d 6 3
e 6 31
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Given a node N in an LSP-Tree T, the sequential pattern represented by a child
node N’ of N (i.e., N’.seq) is either an I-extension sequential pattern or an S-extension
sequential pattern of N.seq.

Figure 1 shows a part of the LSP-Tree of the sequence database in Table 1. All the
children nodes of a parent node are ordered lexicographically with I-extension
sequential patterns before S-extension sequential patterns.

Definition 3. Let SDB be a sequence database, N be a node of LSP-Tree T repre-
senting sequential pattern a ¼ \X1;X2; . . .;Xp [ . Each entry of N.ulist corresponds
to an element of gðaÞ ¼ fSr 2 SDBjaYSrg, and consists of five fields: SID, TID, u, ru
and pointer, where SID is the sequence ID, TID is the itemset ID of extension item of a
occurs, u and ru are utility and remaining utility w.r.t. the enumerating occurrence,
pointer links to the next occurrence of a in SID, or “null” if there is none.

For the node N representing sequential pattern <ba>, the N.ulist is illustrated in
Fig. 2, while N.u and N.mru are shown in Table 5.

Fig. 1. Partial LSP-Tree for the example sequence database in Table 1

Fig. 2. The ulist structure of <ba>
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3.3 Searching Strategies

After constructing the LSP-Tree, our algorithm traverses the search space from the root
using a depth-first strategy. For a sequential pattern a = <X1, X2,…, Xp>, the
HUSP-MRU algorithm checks its extension item to perform I-extension and
S-extension, respectively. To facilitate the operation of sequential pattern extension, the
item-utility matrix can be used. For I-extension, only items in the entries below the
extension item are checked, and the set of all potential I-extension items is denoted as
PIS(a). For S-extension, only items in the entries after the itemset containing extension
item are checked, and the set of all potential S-extension items is denoted as PSS(a).

Here, we consider the extension case of sequential pattern <{ab}> in S3. Here item
b is the extension item. As shown in Table 3, items c, d and e are larger than b ac-
cording to the lexicographic order, so entries of the last three rows of the matrix could
be concatenated after b for I-extension. Specifically, only S23 includes {ab}, so only
item c can be used to form the I-extension, and the result is <{abc}>. The utility of
<{abc}> is the utility of u({ab}, S3) plus the newly added item’s utility u(c, S3), i.e.,
u abcf g; S3ð Þ ¼ 8þ 8 ¼ 16.

We still use the sequential pattern <{ab}> to show the idea of S-extension. As we
can see from Table 3, items that can be used for S-extension to <{ab}> are located in
the third column of the item-utility matrix of S3. Thus, sequential patterns <{ab}a>,
<{ab}d > and <{ab}e> are the candidates. Take <{ab}a> for example,
u \ abf ga[ ; S3ð Þ ¼ u abf g; S3ð Þþ uða; S33Þ ¼ 8þ 6 ¼ 14.

3.4 Pruning Strategies

Without pruning, an LSP-Tree search will consider every node. The key to an efficient
LSP-Tree search is to remove entire branches or unpromising nodes from
consideration.

In the search space formed by LSP-Tree, when a new node Na representing
sequential pattern a ¼ \X1;X2; . . .;Xp [ is constructed, we compute

buðaÞ ¼
X

aYSr^Sr2SDB
ðuðaÞþmruða; SrÞÞ ð3Þ

If bu(a) < min_util, then we stop traversing all children nodes of Na, we call this
pruning strategy branch pruning.

When the node Na passes the branch pruning, and can be used to form potential
sequential patterns, then the items in PISðaÞ or PSSðaÞ will be checked one by one.
Specifically, for each item i 2 PISðaÞ or i 2 PSSðaÞ, we compute

Table 5. N.u and N.mru of <ba>

SID u mru

S3 11 9
S4 31 25
S5 28 14
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nuðaÞ ¼
X

aYSr^Sr2SDB
ðuða0Þ þmruði; SrÞÞ ð4Þ

where a0 is the result of I-extension or S-extension of a with item i. If nu(a) < min_util,
then we do not need to extend a with i, and we call this pruning strategy node pruning.

3.5 Algorithm Description

The proposed HUSP-MRU algorithm for mining HUSPs is described in Algorithm 1.

In Algorithm 1, Steps 1–3 perform the branch pruning strategy. If the current
sequence pattern can not be used to generate HUSP, it returns to its parent sequential
pattern. The loop (Steps 4–14) checks each item in PIS(a) for I-extension of a. Steps 5–
8 perform the node pruning strategy. Then, new sequential pattern aI concatenated by
I-extension of a is generated in Step 9. If the utility of the extension result is no lower
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than the minimum utility value, it is output as an HUSP in Step 11. Step 13 recursively
invokes itself to go deeper in the LSP-Tree. Similarly, the loop (Steps 15–25) checks
each item in PSS(a) for S-extension of a. Finally, Step 26 outputs all of the discovered
high utility sequential patterns.

4 Performance Evaluation

We evaluate the performance of our HUSP-MRU algorithm and compare it with the
USpan [7] algorithm. The source code of USpan was downloaded from the SPMF data
mining library [2].

4.1 Experimental Environment and Datasets

The experiments were performed on a computer with 3.40 GHz CPU, 8 GB memory,
and running on 64-bit Microsoft Windows 7. Our program was written in Java. Four
real datasets, downloaded from the SPMF data mining library [2], were used for
evaluation, and their characteristics are presented in Table 6.

Bible is moderately dense and contains many medium length sequences. BMS
contains many short sequences. Kosarak10k is a sparse dataset that contains short
sequences and a few very long sequences. SIGN is a dense dataset having very long
sequences.

4.2 Running Time

We demonstrate the efficiency performance of the two algorithms. When measuring the
runtime, we varied the minimum utility threshold for each dataset.

Figures 3, 4, 5 and 6 show the execution time comparisons for the four datasets.
We can see that the HUSP-MRU algorithm is always faster than USpan algorithm. On
average, HUSP-MRU is faster than USpan by 25.16%, 12.40%, 14.81% and 28.71%
on Bible, BMS, Kosarak10k and SIGN, respectively. The reason for the results is that
the branch pruning and node pruning strategies can avoid unnecessary search space
traversal operations. Furthermore, with item-utility matrix and maximal utility matrix,
computation of utilities of candidate sequential patterns can be accelerated.

Table 6. Characteristics of the datasets

Dataset #Sequences #Items AvgLength Type of data

Bible 36369 13905 21.64 Book
BMS 59601 497 6.02 Click-stream
Kosarak10k 638811 39998 11.64 Click-stream
SIGN 730 267 93.00 Sign language
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Fig. 3. Execution times on Bible

Fig. 4. Execution times on BMS

Fig. 5. Execution times on Kosarak10k
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4.3 Effect of Pruning Strategies

To demonstrate the benefit of branch pruning and node pruning, we compare the
performance of HUSP-MRU with and without pruning strategies. In Figs. 7, 8, 9 and
10, we use HUSP-MRU-B to denote the baseline implementation of HUSP-MRU
without pruning strategies.

As shown in Figs. 7, 8, 9 and 10, the pruning strategies are beneficial in improving
the efficiency. On Bible and BMS, the implementation with pruning strategies spends
about half of the total time of the baseline algorithm. The most obvious case appears on
the dataset of SIGN that HUSP-MRU is 5.08 times faster than HUSP-MRU-B on
average.

Fig. 6. Execution times on SIGN

Fig. 7. Execution times of HUSP-MRU with and without pruning strategies on Bible
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Fig. 9. Execution times of HUSP-MRU with and without pruning strategies on Kosarak10k

Fig. 10. Execution times of HUSP-MRU with and without pruning strategies on SIGN

Fig. 8. Execution times of HUSP-MRU with and without pruning strategies on BMS
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5 Conclusions

In this paper, we proposed an HUSP mining algorithm called the HUSP-MRU based on
the maximal remaining utility. In the HUSP-MRU algorithm, matrix structures are used
to store information for utility computation. The search space is organized as the
LSP-Tree and traversed using depth-first manner. To improve the mining efficiency,
branch and node pruning strategies are used. Experiments on four datasets show that
the HUSP-MRU algorithm outperforms USpan algorithm.
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