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Abstract. Nowadays, recommender systems are widely used to solve
the problem of information overload in modern society. And most of
the previous studies focus overwhelmingly on high accuracy in the rec-
ommender systems. But in a real system, the high accuracy does not
always satisfy overall user experience. The explainability has a great
impact on the user experience. We mainly focus on the explainability
of recommender systems in this paper. To the best of our knowledge, it
is the first time that the neighborhood information in the latent space
is integrated into the Explainable Matrix Factorization. We change the
method of calculation of the explainability matrix and consider the neigh-
bors’ weight to further improve performance. We use the benchmark
data set (MovieLens) to demonstrate the effectiveness of the proposed
Neighborhood-based Explainable Matrix Factorization. And the result
shows a great improvement for accuracy and explainability.

Keywords: Recommender systems · Explainability
Matrix factorization · Neighborhood information

1 Introduction

Information overload has become a serious obstacle with the development of
Internet technology. Recommender systems provide a promising way to alleviate
the dilemma. Recommender systems become more accurate with the deepen-
ing of machine learning research applied in it. However, prediction accuracy is
not the only metric that should be taken into consideration in recommender
systems. Many other metrics are equally important. One of them is the explain-
ability which is used to describe the reason why the items are recommended
to users and show the transparency of recommender systems. The explanation
of recommender systems plays important roles in the industries, e.g., helping
users make better choices, enhancing customers’ trust to e-commerce web sites.
Therefore, what we recommend and how we recommend are equally important
to improve the performances of recommender systems [3].
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There are many approaches to show explanation in the recommender systems.
For example, there are some labels such as “customers who bought this item also
bought that...” that are shown to customer on the TaoBao. In the article [6],
Gedikli et al. made use of semi-structured interviews in which authors asked the
participants about their opinions towards explanation. In the article [14], Jesse
et al. proposed community tag to achieve explanation which was mainly based
on content model. Zhang et al. [15] proposed an explicit factor model based on
Phrase-level Sentiment Analysis. Abdollahi et al. [2] proposed a method (EMF),
which only used the rating data and incorporate the neighborhood-based CF
method and latent factor models. Explainability could be directly formulated
based on the rating distribution within the user’s or item’s neighbors, providing
a basis upon which to explain the recommendations.

The EMF only uses a simple expected value of the ratings of items to get
the explainability which is not very reasonable. Besides it still directly factorizes
user-item interactions in the latent space, which is poor at identifying strong
associations among a small set of closely related items [9], especially when data
is highly sparse. Based on those considerations, we change the method of calcula-
tion of explainability and enhance EMF’s ability to leverage localized information
by joining the neighborhood information in the latent space.

Our contributions are summarized as follows: (1) We change the method
of calculation to get the explainability matrix more reasonable; (2) It is the
first time to integrate the neighborhood information in the latent space into
the explainable matrix factorization; (3) We add the neighbors’ weight in the
explainability constraint term; (4) Experiments on real-world data set demon-
strate the effectiveness of our model for the explainable recommendation task
in the situation that the absence of any additional data source, such as item
content or user attributes.

2 Preliminary

2.1 Explainability

As we all known, the recommendation list obtained by the neighborhood-based
CF method is explainable. We can explain the recommended result to customers
like “your friends bought them, and they gave a high comprehensive rating, so we
recommend them to you.” So we can make use of it to achieve explanation. For
the neighborhood-based explanation, it is divided into user-based explanation
and item-based explanation which are analogous. Take user-based explanation
for example. Given the set of similar users for user u, the empirical density
distribution of the similar users ratings on the recommended item i can be
obtained by dividing the counts for each rating value by the total counts. It
equals to the empirical conditional probability of ratings of item i [2]. For each
rating m in the set of ratings, the probability is written as follows:

Pr(rv,i = m|v ∈ Nu) =
|Nu ∩ Ui,m|

Nu
, (1)
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where rv,i denotes the rating of user v to item i; Nu is the set of similar users of
user u and Ui,m stands for the set of users who have given rating m to item i.
Through Eq. 1, we can get the expected value of rating given by the similar users
to the recommended item i. A reasonable and intuitive measure of explanation
can be given by the expected value as follows:

E(rv,i|Nu) =
∑

m∈M

m ∗ Pr(rv,i = m|v ∈ Nu). (2)

Item-based formulas have the similar expression with Eqs. 1 and 2.
In this study, considering the difference of neighbors, the expected value can

be obtained more reasonable through similarity, such as Pearson Correlation
Coefficient of users (items) which is more reasonable. The equation is given as
follows:

Sim(u, v) =

∑
i∈Iuv

(rui − Ru) ∗ (rvi − Rv)
√ ∑

i∈Iuv

(rui − Ru)2 ∗ ∑
i∈Iuv

(rvi − Rv)2
, (3)

where Iu is the set of items rated by user u, Iv is the set of items rated by user
v and Iuv = Iu ∩ Iv; Ru and Rv is the average of rating of user u and user v,
respectively.

E(rv,i|Nu)sim =

∑
v∈Nu

rv,i ∗ Sim(u, v)
∑

v∈Nu

|Sim(u, v)| . (4)

Because of the different relationships between every user (item), it is inac-
curate that we only use the empirical conditional probability of rating to get
the expected rating result. Considering each individual’s effect on this active
user (item) is more reasonable. So in this study, we use the E(rv,i|Nu)sim as a
soft constraint in cost function that can achieve a mixture of explanation and
recommendation.

2.2 Explainability Matrix

To represent the relationship of users and items, a bipartite graph G is used. The
edge weights can generate the explainability matrix W whose values represent
the explanation of items to users. If the value of W for item is larger, the item is
more easily explained. Otherwise, the case is opposite. Hence the explainability
matrix W is defined as follows:

Wu,i =

{
Eu,i if Eu,i ≥ θ

0 otherwise
, (5)

where Eu,i is either E(rv,i|Nu) or E(rv,i|Ni), depending on the specific case
(based on users or based on items), and θ denotes a threshold set above which
we can accept that item i is explainable for user u. θ is set by ourself, depending
on our consciousness.
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2.3 Explainable Matrix Factorization

Matrix Factorization transforms original rating matrix Rn×M into two lower-
rank matrices P and Q. The rank of P and Q is defined as f . The rating is
predicted by the approximation of Rn×M ≈ Pn×fQT

f×m. User u and item i are
associated with the factors pu ∈ R

f and qi ∈ R
f , respectively. Each item and

Each user are mapped to factor vectors pu, qi ∈ R
f by making use of machine

learning method, respectively. The explainable MF [2] is obtained by adding
explainability as a constraint to matrix factorization:

J =
∑

u,i∈R

(ru,i − puqT
i )2 +

β

2
(||pu||2 + ||qi||2) +

γ

2
||pu − qi||2Wu,i. (6)

For the last term (explainability constraint term) of the formula, we can
illustrate it as follow:

For the explainability parameter Wu,i, when Eu,i is lower than a certain
threshold, we think that the item is unexplainable, so the Wu,i equals zero, and
the last term is zero. The formula becomes the loss function of the MF. When
Eu,i exceeds a certain threshold, we think that the item is explainable, and the
Wu,i equals the Eu,i (same as the prediction rating based on CF). The greater
the value is, the stronger the explainability is.

The explainability has some influence on the latent space. The pu represents
the features of user u and the qi represents the features of item i in the latent
space. Only when those features are similar (close in the space), the predicted
rating of item i for user u will be high. So, if the recommended item is explainable,
which means that the predicted rating of item is high (high rating item should
be recommended), the pu and qi will be close in the latent space. Thus, when
we minimize the objective function J , we can ensure items that have higher
explainability relation (Wu,i is large) to a user, to be projected close (||pu − qi||
is small) to that user in the latent space.

3 Proposed Methods

In this section, we propose a series of novel methods. First, due to the difference
of individuality, explainability matrix is generated based on similarity, getting
the explainable matrix factorization based on similarity. Second, considering the
neighborhood information in the latent space, similar users should be close to
this explainable item (this user should also be close to the similar explainable
items), so the neighbors are added to the explainability constraint term. Further,
considering the difference of neighbors, the weights of neighbors are added to
better exploit the whole relationship.

3.1 Similarity-Based Explainable Matrix Factorization (SEMF)

It is more reasonable to use similarity between users and users or items and items
than to use the empirical conditional probability of rating. The similarity reflects
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the strength of relationship of users (items). If users have close relationship, the
influence of neighbors on user should be larger. Then the high rating items of
users who are similar to active user are also more explainable. Therefore, the
explainability matrix Ws is defined as Eqs. 4 and 5. Using the Ws in the EMF,
the SEMF is given as follows:

J =
∑

u,i∈R

(ru,i − puqT
i )2 +

β

2
(||pu||2 + ||qi||2) +

γ

2
||pu − qi||2Ws(u, i), (7)

where Ws(u, i) is obtained by the similarity Pearson Correlation Coefficient; the
β
2 (||pu||2 + ||qi||2) represents the regularization term adjusted by coefficient β,
which can prevent over fitting, and γ denotes the coefficient of explainability
term which controls the smoothness of the model and tradeoff between expla-
nation and accuracy. To minimize the loss function J to achieve prediction,
many methods such as machine learning including gradient descent [9,10,12]
and alternating least squares [4,8] are applied. In this study, the stochastic gra-
dient descent is adopted in which each sample is updated iteratively, rapidly
descending to approach to a minimum. The method is given as follows:

p(t+1)
u = pt

u + α(2(ru,i − puqT
i )qi − βpu − γ(pu − qi)Ws(u, i)),

q
(t+1)
i = qt

i + α(2(ru,i − puqT
i )pu − βqi + γ(pu − qi)Ws(u, i)).

(8)

3.2 Neighborhood-Based Explainable Matrix Factorization
(NEMF)

The neighborhood-based CF makes use of neighborhood information in the orig-
inal space to achieve explanation. In the subsection we make use of the neigh-
borhood information in the latent space to improve accuracy and explanation.
Because the items with high explainable relationship to user are close to this
active user in the latent space. Similarly, if we add the neighborhood informa-
tion in the latent space to the explainability term, the items should also be close
to the neighbors of this active user in the latent space. For the neighbors of
items, it is analogous. Hence we can get the NEMF approach as follows:

User − Based :

J =
∑

u,i∈R

[(ru,i − puqTi )2 +
β

2
(||pu||2 + ||qi||2) +

γ

2

∑

v∈neighbors

||pv − qi||2Wus(u, i)],

Item − Based :

J =
∑

u,i∈R

[(ru,i − puqTi )2 +
β

2
(||pu||2 + ||qi||2) +

γ

2

∑

j∈neighbors

||pu − qj ||2Wis(u, i)],

(9)
where neighbors is the neighbors of this active user (item) including itself. When
the item is explainable to the active user, meaning Ws(u, i) ≥ θ. Then the user
and the item are close in the latent space, i.e., ||pv − qi|| is close to zero. The
greater Ws(u, i) is, the closer to zero ||pv−qi|| is. Adding the neighbors’ effect can
balance the relationships of users (items), which is more reasonable to achieve
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explanation. We apply statistic gradient descent to minimize the objective func-
tion. Taking the user-based for example, the updates of p

(t+1)
u and q

(t+1)
i are

represented as follows:

p(t+1)
u = pt

u + α(2(ru,i − puqT
i )qi − βpu − γ(pu − qi)Wus(u, i)),

q
(t+1)
i = qt

i + α(2(ru,i − puqT
i )pu − βqi +

∑

v∈neighbors

γ(pv − qi)Wus(u, i)).

(10)

3.3 NEMF Adding Neighbors’ Weight (NEMF++)

Further, considering that the relationships of neighbors are different, the simi-
larity of users (or items) is added into the explainability term to represent the
different relationships. In the above subsection, we make the user and his neigh-
bors close to the item in latent space to improve the performance. In this part,
the similarities of neighbors are introduced. Because the neighbors are close to
the same one, the neighbors are close each other in the latent space. Introduc-
ing the similarities of neighbors make the degree of proximity different. The
approach makes explanation full. The equation is given as follows:

User − Based :

J =
∑

u,i∈R

[(ru,i − puqTi )2 +
β

2
(||pu||2 + ||qi||2) + γ

2

∑

v∈neighbors

||pv − qi||2Wus(u, i)simu,v ],

Item − Based :

J =
∑

u,i∈R

[(ru,i − puqTi )2 +
β

2
(||pu||2 + ||qi||2) + γ

2

∑

j∈neighbors

||pu − qj ||2Wis(u, i)simi,j ].

(11)
Anyhow, adding neighbors to explainability term, makes similar users and the
explainable item are all close to active user in the latent space. The relationships
of neighbors in the latent space prominently improve the model performance.

4 Experiments

4.1 Experiment Prepared

In our experiment, we use the public data set-100k MovieLens provided by Grou-
pLens [7] which contains 105 ratings on scale of 1 to 5 from 943 users on 1862
movies. We split data into two parts. Namely the 10% of the ratings from each
user are regarded as the test set, and the remaining ratings are the training set.
The data is normalized from 0 to 1 in our experiment and the parameters are
often tuned by cross validation.

We compare our approaches including the SEMF, NEMF and NEMF++
with the best baseline EMF which represents the state-of-art performance on the
explainable recommendation task without any additional data source. The rec-
ommendation list is generated by top-n recommendation method, which includes
the highest n ratings items.
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4.2 Evaluation Metrics

For the top-n recommendation, two of the most common metrics are applied to
evaluate the performances of proposed approaches, the same as, for the expla-
nation, two of the metrics are applied. The metrics are given as follows:

Mean Average Precision (MAP) [11]: MAP evenly measures the ratio of
the number of the test list contained in the top-n recommendation list for an
useru,i. The MAP is the mean of the average precision for each user, which can
be given by

MAP@n =

Nu∑
u=1

AP (n)

Nu
, (12)

where Nu is the number of the users. And AP can be written as:

AP@n =

n∑
k=1

P (k)

min(l, n)
, (13)

where P (k) means the precision at cut-off k in the item list, and l is the length
of actual test data list.

Area Under ROC Curve (AUC) [5]: AUC indicates the ability of distin-
guishing the relevant objects from the irrelevant objects, which is defined as:

AUC =
n1 + n2 ∗ 0.5

N
, (14)

where N is a large number for N independent comparisons. When we randomly
select a rated item and an unrated item, if the rating of rated item is larger than
the other, n1 will add one. If they are equal, n2 will add one.

Mean Explainability Precision (MEP) [1]: MEP measures the explainable
precision for items recommended to this active user. It is defined as:

MEP =
1
U

U∑

u=1

Nexp

L
, (15)

where Nexp is the number of explainable items (if Eu,i ≥ θ, we think the item
is explainable) in the top-n recommendation list and L is the number of recom-
mended (top-n) items for each user.
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Mean Explainability Recall (MER) [1]: MER measures the explainable
recall defined as:

MER =
1
U

U∑

u=1

Nexp

E
, (16)

where the E is the number of all explainable items for an user. In most cases,
the MEP and MER are contrary, so it is difficult to evaluate the performance.
Hence we introduce the F-measure.

F-Measure [13]: F-measure is the harmonic average of the precision and recall,
which can be used to evaluate proposed approaches. The F1 is defined as:

F1 =
2 ∗ MEP ∗ MER

MEP + MER
. (17)

4.3 Simulation and Discussion

In the simulation, the dimension f and the number of neighbors N is var-
ied. Other parameters are found by cross-validation: α = 0.001, β = 0.01, θ =
0.01, γ = 0.05. γ is not set very small, because explanation is important for us
and we compare the explanation with many approaches. If the γ is very small,
the difference of methods is also small. For the AUC, we set the frequency of
comparison as 106. The recommendation list length L is 50. We compare our
three approaches with the baseline state-of-the-art method Explanation Matrix
Factorization (EMF). The simulation of the four methods for explanation is as
follows:

Table 1. Compare MAP@50: Top row: varying the dimension of latent space f , N =
50. Bottom row: varying the number of neighbors N , f = 10

MAP@50

f EMF SEMF NEMF NEMF++

User Item User Item User Item User Item

5 0.01484 0.01558 0.01485 0.01559 0.01477 0.01599 0.01559 0.01590

10 0.01538 0.01611 0.01536 0.01613 0.01526 0.01667 0.01613 0.01672

20 0.01587 0.01745 0.01592 0.01750 0.01593 0.01835 0.01792 0.01845

50 0.01620 0.01688 0.01622 0.01698 0.01603 0.01785 0.01733 0.01795

N

5 0.01513 0.01613 0.01517 0.01620 0.01540 0.01670 0.01578 0.01667

10 0.01512 0.01606 0.01516 0.01617 0.01529 0.01665 0.01590 0.01674

20 0.01518 0.01607 0.01537 0.01612 0.01527 0.01672 0.01604 0.01672

50 0.01538 0.01611 0.01536 0.01613 0.01526 0.01667 0.01613 0.01672
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Table 2. Compare AUC: Top row: varying the dimension of latent space f , N = 50.
Bottom row: varying the number of neighbors N , f = 10

AUC

f EMF SEMF NEMF NEMF++

User Item User Item User Item User Item

5 0.8136 0.8153 0.8136 0.8154 0.8139 0.8163 0.8163 0.8167

10 0.8168 0.8185 0.8169 0.8187 0.8176 0.8199 0.8201 0.8205

20 0.8277 0.8291 0.8277 0.8292 0.8287 0.8301 0.8307 0.8310

50 0.8477 0.8488 0.8477 0.8489 0.8486 0.8495 0.8505 0.8506

N

5 0.8167 0.8185 0.8170 0.8193 0.8177 0.8201 0.8193 0.8204

10 0.8167 0.8183 0.8169 0.8190 0.8177 0.8200 0.8197 0.8204

20 0.8167 0.8183 0.8168 0.8188 0.8176 0.8199 0.8198 0.8205

50 0.8168 0.8185 0.8169 0.8187 0.8176 0.8199 0.8201 0.8205

Observing Tables 1 and 2 on the whole, we can find that all methods based
on item are better than the corresponding methods based on user in the top-n
recommendation. Because there are more data in the front of the data set, which
contributes better similarity based on item. Besides, with the increasing of f , the
performance becomes better. However, the change is small when varying N . The
dimension of latent space represents the feature. With the increasing of f , the
features can better represent the users (items). From the experimental result, it
can be seen that the change is small when varying N . There are minor influence
to the result with the change of the number of neighbors.

In the detail, the performance of proposed methods is gradually improved.
The proposed methods are better on MAP and AUC with the change of dimen-
sion f or number of neighbors N than the baseline method EMF in most cases.
And the NEMF++ greatly outperforms the benchmark methods EMF, sug-
gesting that considering neighborhood information can improve the accuracy
performance in the top-n recommendation.

In terms of explanation, the comparisons are given in Tables 3, 4 and 5. Simi-
larly, on the whole, all methods based on user are better than the corresponding
methods based on item in the terms of explanation, and this is greatly different
from MAP and AUC. The result is caused by the sparse data set. There are
sometimes no rating for items, especially at the back of data set. If there are no
rating for the items, the explanation of this item will be poor. If the threshold
is fixed, the number of explanation will become small, so the MEP of methods
based on item is smaller than the one based on user. Because we make use of the
relationship of users with users, users with items and items with items to achieve
the goal of explanation, for the MEP and MER, there is minor influence with the
change of dimension f , but there is greater influence with the change of number
N of neighbors. In the same threshold case, when the number N of neighbors
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Table 3. Compare MEP@50: Top row: varying the dimension of latent space f , N = 50.
Bottom row: varying the number of neighbors N , f = 10

MEP@50

f EMF SEMF NEMF NEMF++

User Item User Item User Item User Item

5 0.9339 0.6164 0.9265 0.6022 0.9274 0.6062 0.9311 0.6075

10 0.9278 0.6093 0.9200 0.5931 0.9205 0.5982 0.9255 0.5977

20 0.9215 0.6182 0.9128 0.6038 0.9140 0.6102 0.9191 0.6120

50 0.9179 0.6324 0.9087 0.6169 0.9106 0.6244 0.9175 0.6257

N

5 0.4124 0.1889 0.4129 0.1897 0.4137 0.1920 0.4177 0.1919

10 0.5842 0.3027 0.5843 0.3035 0.5855 0.3066 0.5911 0.3069

20 0.7538 0.4337 0.7547 0.4347 0.7556 0.4397 0.7618 0.4398

50 0.9278 0.6093 0.9200 0.5931 0.9205 0.5982 0.9255 0.5977

Table 4. Compare MER@50: Top row: varying the dimension of latent space f , N =
50. Bottom row: varying the number of neighbors N , f = 10

MER@50

f EMF SEMF NEMF NEMF++

User Item User Item User Item User Item

5 0.06816 0.05305 0.07197 0.05221 0.07206 0.05729 0.07249 0.05763

10 0.06759 0.05200 0.07131 0.05090 0.07137 0.05598 0.07193 0.05607

20 0.06703 0.05322 0.07062 0.05236 0.07075 0.05790 0.07131 0.05828

50 0.06663 0.05481 0.07013 0.05376 0.07034 0.05940 0.07109 0.05966

N

5 0.11585 0.10380 0.11603 0.06728 0.11672 0.10663 0.11885 0.10676

10 0.09965 0.08705 0.09975 0.06714 0.10022 0.08908 0.10196 0.08933

20 0.08643 0.07103 0.08568 0.06101 0.08591 0.07235 0.08712 0.07256

50 0.06759 0.05200 0.07131 0.05090 0.07137 0.05598 0.07193 0.05607

becomes larger, the explainable items become more. So the MEP becomes large
with the increasing of number N of neighbors. But the MER usually is opposite.
So we use the parameter F1 to measure the two metrics.

In the detail, we compare the proposed methods with the baseline method. It
can be seen that the MEP of proposed methods are slightly poorer than EMF,
but the MER of proposed methods are significantly better than EMF. It suggests
that we can recommend more explainable items from all explainable items to
this active user. Meanwhile we can clearly find that NEMF++ is optimal in the
balanced metric F1.
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Table 5. Compare F1: Top row: varying the dimension of latent space f , N = 50.
Bottom row: varying the number of neighbors N , f = 10

F1

f EMF SEMF NEMF NEMF++

User Item User Item User Item User Item

5 0.1270 0.0977 0.1336 0.0961 0.1337 0.1047 0.1345 0.1053

10 0.1260 0.0958 0.1324 0.0937 0.1325 0.1024 0.1335 0.1025

20 0.1250 0.0980 0.1311 0.0964 0.1313 0.1058 0.1324 0.1064

50 0.1242 0.1009 0.1302 0.0989 0.1306 0.1085 0.1319 0.1089

N

5 0.1809 0.1340 0.1812 0.0993 0.1821 0.1371 0.1850 0.1372

10 0.1703 0.1352 0.1704 0.1100 0.1711 0.1381 0.1739 0.1384

20 0.1551 0.1221 0.1539 0.1070 0.1543 0.1243 0.1564 0.1246

50 0.1260 0.0958 0.1324 0.0937 0.1325 0.1024 0.1335 0.1025

5 Conclusion

From the experimental result, it can be seen that we can recommend more
explainable items to a customer and keep high accuracy. If we use our meth-
ods to recommend item A to a customer, We can explain to this customer that
“for the recommended item A, your friends bought it. The maximum of similar-
ity among them is B. They comprehensively gave rating C to this item.” Then
recommendation achieves explanation. In this study, we change the calculation
method of explainability matrix and propose a novel explainable matrix factor-
ization, which jointly characterizes both neighborhood information and user-item
interactions in the latent space to achieve better explanation. The experimental
results show that our methods outperform the baseline method in most cases.
In the future, we hope to extend our methods into other recommendation fields
and propose some metrics to evaluate the explainability further.
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