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Abstract. We consider the Euclidean Generalized Traveling Salesman
Problem in Grid Clusters (EGTSP-GC), a special geometric subclass of
the famous Generalized TSP, introduced by Bhattacharya et al. They
showed that the problem is strongly NP-hard if the number of clus-
ters k belongs to the instance and proposed the first polynomial time
algorithm with a fixed approximation ratio. Recently, we proved that
EGTSP-GC belongs to PTAS when k = O(log n) and k = n−O(log n).
Meanwhile, being the special case of GTSP, for any fixed k, EGTSP-
GC can be solved to optimality in polynomial time. Therefore, it seems
interesting to describe the most general case of the problem sharing this
property. Recently, by virtue of generalized pyramidal routes, we pro-
vided an optimal algorithm with O(n3) time complexity bound for the
case of EGTSP-GC, whose grid height does not exceed 2. In this paper,
we extend this result to the case of EGTSP-GC defined by a grid of any
fixed height.
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1 Introduction

The motivation of this paper is threefold. Firstly, we are motivated by the famous
NP-hardness result [12] obtained by Christos Papadimitriou for the Traveling
Salesman Problem (TSP) on the Euclidean plane. Another motivation of this
paper stems from recent parametric results both for classic TSP and its well-
known modification Generalized Traveling Salesman Problem (GTSP), which are
based on Balas precedence constraints [1,2,4] and generalized pyramidal tours [9,
11] and lead to efficient parameterized exact algorithms for these problems. Last
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(but not the least) motivation comes from recent achievements in computational
geometry. In particular, the results concerning a special geometric type of the
Euclidean GTSP, where the clusters are induced by cells of a regular planar grid
introduced in the recent paper [3].

Theoretical significance of the Papadimitriou’s result can hardly be overesti-
mated. Papadimitriou showed that the classic TSP is intractable even in such a
specific setting as considered in [12]. Meanwhile, the one-dimensional Euclidean
TSP is efficiently solvable. Therefore, the borderline between polynomially solv-
able instances of the Euclidean TSP and the NP-hard ones lies somewhere near
to univariate and two-dimensional settings of this problem, since the known
Papadimitriou intractability proof is based on polynomial time reduction of the
Exact Cover by 3-Sets (X3C) Problem to the specific, substantially non-flat
instances of the Euclidean TSP in the plane. Indeed, for any instance of the
X3C, this reduction assigns an appropriate instance of the Euclidean TSP hav-
ing the following properties:

(i) for any nodes p and q, the distance between them is at least 1;
(ii) the size of the nodeset grows proportionally to M × N , where N is the

number of covering sets and M is the size of the groundset of the X3C
instance to be reduced;

(iii) the smallest axis-aligned rectangular box enclosing the nodeset (on the
plane), whose width and height are proportional to the numbers N and M ,
respectively, i.e. both the height and the width of this box grow together
with the nodeset size and can not be fixed.

Consider a subclass of the Euclidean TSP on the plane consisting of the
instances, whose nodeset V satisfies the following additional constraints

separability: for some constants K and δ > 0 and each V ′ ⊂ V defining the
instance, any time when |V ′| ≥ K, the diameter of V ′ exceeds δ;

boundedness: V can be enclosed to a bounding-box, one of the sizes of which,
e.g. height, is fixed.

In this paper, we give a positive answer to the question: ‘Is the aforementioned
subclass of the Euclidean TSP tractable?’ for a special type of the separabili-
ty constraint defined by unit regular grid on the plane. Furthermore, we prove
polynomial time solvability for a generalization of such a subclass known as
Euclidean Generalized Traveling Salesman Problem in Grid Clusters defined by
a grid of a fixed height h (EGTSP-GC(h)).

The rest of the paper is structured as follows. In Sect. 2, we present the
setting of the EGTSP-GC and remind some known related results. In Section 3
we introduce pseudo-pyramidal tours for the GTSP and show that for any fixed
l, an l-pseudo-pyramidal tour of minimal cost can be found efficiently. In Sect. 4,
we show that, for any instance of the EGTSP-GC(h), each optimal tour is l(h)-
pseudo-pyramidal, for some value l(h) independent on the instance and n and
come to the final conclusion on tractability both of the EGTSP-GC(h) and the
corresponding subclass of the Euclidean TSP in the plane.
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2 Euclidean Generalized Traveling Salesman Problem
in Grid Clusters

The Generalized Traveling Salesman Problem (GTSP) is a widely known exten-
sion of the famous Traveling Salesman Problem (TSP). An instance of the
GTSP is defined by a complete edge-weighted graph G = (V,E, c), cost function
c : V 2 → R+, and partition V1 ∪ . . .∪Vk = V of the nodeset V onto k non-empty
disjoint clusters. A cyclic tour τ = vi1 , . . . , vik

is feasible, if it visits each cluster
Vij

exactly once. The goal is to find a feasible tour of the minimum cost

C(τ) =
k−1∑

j=1

c(vij
, vij+1) + c(vik

, vi1).

We consider a geometric setting of the GTSP known as the Euclidean Gene-
ralized Traveling Salesman Problem in Grid Clusters (EGTSP-GC) introduced
recently in [3] by Bhattacharya et al. For any instance of the EGTSP-GC, the
graph G, cost function c, and clustering V1 . . . , Vk have a geometric nature:

(i) the nodeset V of the graph G is a finite subset of the plane
(ii) for any u, v ∈ V , the cost c(u, v) = ‖u − v‖2 is defined by the Euclidean

distance between these points
(iii) clusters are determined implicitly by non-empty cells of the unit grid1 of

some height h and width w.

As for the general setting of the GTSP, the goal is to find any feasible tour of
the minimum cost (length).

Like the general case of the GTSP, the EGTSP-GC NP-hard, if the number of
clusters k belongs to the instance. In [3], for this case of the EGTSP-GC and for
any ε > 0, a (1.5+8

√
2+ε)-approximation algorithm was proposed. Augmented

by some additional constraints, the problem may become approximable much
better. For instance, the results of [5] imply that for any instance defined by a
grid with a fixed height h, such that the set of non-empty cells is connected, a
2-approximate solution can be found in a polynomial time.

In [7,8], three polynomial time approximation schemes for slow and fast
growing dependence of the number of clusters k on the size n of the node-
set were proposed. Actually, first two of them have time complexity bounds of
O(k2O(1/ε)2k)+O(n) and 2O(k)k4(log k)O(1/ε) +O(n), respectively, and remain
PTAS for k = O(log n). The last one, for any ε > 0, provides a (1 + ε)-
approximate solution in time of (n/k)k(log k)O(1/ε) depending on n polynomially
for k = np − O(log n).

In the sequel, we consider the subclass of the EGTSP-GC defined by grids of
height at most h, which is called EGTSP-GC(h). The special case of the EGTSP-
GC(h)consisting of the instances, whose clusters has a single node, satisfies the
aforementioned separability and boundedness conditions. Indeed, boundedness
is valid, obviously. Separability can be represented in terms of the following
assertion proven in [3].
1 Any non-empty cell induces a separate cluster, tights are broken arbitrarily.
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Assertion 1. For any subset V ′ ⊂ V of size |V ′| ≥ 5, any tree T spanning the
subset V ′ has weight at least 1.

In [10], we showed that any instance of the EGTSP-GC(2) can be solved to
optimality in time of O(n3). In this paper, we extend this result to the case of
any fixed h ≥ 1.

3 Pseudo-Pyramidal Tours

We proceed with some technical background concerning the general case of the
Generalized Traveling Salesman Problem (GTSP).

Any ordering of clusters V1, . . . , Vk induces the corresponding partial order
on the nodeset V as follows: for any u ∈ Vi and v ∈ Vj , u ≺ v iff i < j.

In the sequel, it is convenient to assume that, for any feasible tour τ =
vi1 , vi2 , . . . , vik

, its vertices are indexed by numbers of the clusters that contain
them, i.e. vij

∈ Vij
.

We consider a special type of feasible tours that are consistent with the
defined order. We call these tours pseudo-pyramidal [9].

Definition 1. A tour τ = v1, vi1 , . . . , vir
, vk, vjk−r−2 , . . . , vj1 is called an l-pse-

udo-pyramidal tour, if ip − ip+1 ≤ l and jq − jq+1 ≤ l for any 1 ≤ p ≤ r − 1 and
1 ≤ q ≤ k − r − 3.

Actually, any l-pseudo-pyramidal tour consists of two chains v1, vi1 , . . . , vk

and vk, . . . , vj1 , v1 that are ‘almost monotonous’ with respect to the aforemen-
tioned order. We denote them τ+ and τ−, respectively. Similarly to the classic
pyramidal tours (see, e.g. [6]), pseudo-pyramidal tours of minimum (or maxi-
mum) cost can be found efficiently.

Theorem 1. For any instance of the GTSP with an arbitrary non-negative cost
function, a minimum cost l-pseudo-pyramidal tour can be found in time O(k · l ·
nO(l)).

Proof. Generally, our proof follows to the proof of Theorem 3.7 from [11] for the
classic TSP. We start with some necessary notation. For any nodes u, v ∈ V ,
we introduce ordered pairs (u, v)+ and (u, v)−. Each pair induces a number of
subtours connecting in the graph G the nodes u and v. Any such a subtour P
is called feasible for the pair (u, v)+ (pair (u, v)−) if P belongs to the chain τ+

(chain τ−) of some l-pseudo-pyramidal tour in the graph G.
In the sequel, we consider sets S = {p1, p2, . . . , pm} of node-pairs pj intro-

duced above such that

(i) p1 = (u1, v1)+, p2 = (u2, u1)− for some node u1 ∈ V1 and nodes v1, u2 from
other clusters Vi1 and Vi2 ;

(ii) all the pairs are mutually disjunctive except the pairs p1 and p2.
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To any set S = {p1, p2, . . . , pm}, we assign a subset Q = Q(S) ⊂ V comprising
all the endpoints of the pairs pj ∈ S.

Given by an integer 1 ≤ i ≤ k − 1 and a set S, we consider collections of
feasible subtours P1, P2, . . . , Pm induced by the pairs p1, . . . , pm, respectively,
visiting all the clusters V1, . . . , Vi once (except the cluster V1, which is visited
twice by P1 and P2). By fl(i, S) we denote the total cost of the cheapest collection
among them. Evidently,

OPT = min
u1∈V1,uk∈Vk

min
{s,t}⊂V2∪...∪Vk−1

{fl(k − 1, {(u1, s)+, (t, u1)−})

+ w(s, uk) + w(uk, t)} (1)

To compute values of fl we use dynamic programming procedure as follows.

Case 1. Suppose S contains a pair p = (u, u)+ (or p = (u, u)−) for some u ∈ Vi.
In this case, fl(i, S) = fl(i − 1, S \ {p}).

Case 2. Suppose there exist a pair p = (u, v)+ ∈ S such that u ∈ Vi and v ∈ Vj .
Then, in the subtour P induced by the pair p, there is a node t succeeding the
node u. Since the resulting tour should be l-pseudo-pyramidal

fl(i, S) = min
t∈∪Vα,α∈[i−l,i)\Q

{fl(i − 1, S ∪ {(t, v)+} \ {p}) + w(u, t)}.

Case 3. Suppose p = (u, v)− ∈ S, where u ∈ Vi and v ∈ Vj . Then,

fl(i, S) = min
t∈∪Vα,α∈[1,i)\Q

{fl(i − 1, S ∪ {(t, v)−} \ {p}) + w(u, t)}.

Cases 4 and 5, where (v, u)+ ∈ S and (v, u)− ∈ S are similar to Case 3 and
Case 4, respectively.

Case 6. For any p = (ua, va) ∈ S, both nodes ua and va do not belong to Vi.
in this case, to compute fl(i, S), we suppose that some node u ∈ Vi is an inner
vertex of some Pa (defined by elements of S). Denote the predecessor and the
successor of u by s and t, respectively. Then,

fl(i, S) = min
{

min
(ua,va)

+∈S,
s∈∪Vα,α∈[1,i)\Q′

t∈∪Vβ ,β∈[i−l,i)\Q′

{fl(i − 1, S ∪ {(ua, s)+, (t, va)+} \ {p}) + w(s, u) + w(u, t)},

min
(ua,va)

−∈S,
s∈∪Vα,α∈[i−l,i)\Q′

t∈∪Vβ ,β∈[1,i)\Q′

{fl(i − 1, S ∪ {(ua, s)−, (t, va)−} \ {p}) + w(s, u) + w(u, t)}
}

,
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for Q′ = Q \ {ia, ja}, where ua ∈ Via
and va ∈ Vja

.
To estimate time complexity of the procedure proposed, we obtain upper

bounds for the number of possible states (i, S) and running time for each case,
respectively.

The former bound comes from the following observation. By construction,
for i = 1, there is a unique feasible state (1, {(1, 1)+, (1, 1)−}). For any i > 1,
each possible S consists of

(i) two pairs (u1, v1)+ and (u2, u1)− exactly for some u1 ∈ V1, v1 ∈ Vi1 , and
u2 ∈ Vi2 , where 1 �= i1 �= i2;

(ii) at most one pair, whose one or both ends belong to Vi;
(iii) at most l − 1 pairs featuring the representatives of clusters V2, . . . , Vi−1.

Any pair of this kind has a form (u, v)+ or (v, u)− for some u ∈ Vj , where
j ∈ [i − 1 − l, i).

Therefore, for any 1 ≤ i < k, the number of possible states (i, S) is

O

(
n3 · n2 ·

l−1∑

z=0

(2n)z

(
n

z

))
.

Since, for any z, the value fl(i, S) can be obtained in time O(z · n2) and the
final computations by formula (2) can be performed in time O(n3) the overall
complexity bound is

k · O(n7)
l−1∑

z=0

O

(
z · (2n)z

(
n

z

))
= O(kln2l+7) = O(klnO(l)).

Theorem is proved.

4 Optimal Tours of EGTSP-GC(h) are l(h)-Pseudo-
Pyramidal

In this section, for any fixed h, we show that there exist a number l = l(h), such
that all optimal tours of any EGTSP-GC(h) instance are l(h)-pseudo-pyramidal.
The clusters are numbered left to right and down to up (Fig. 1).

We proceed with some necessary notation. Without loss of generality, we
assume that the grid is axis-aligned. For any point p in the plane, by x(p) and
y(p) we denote coordinates of the point p. Then, anywhere, we do not distinguish
the tour τ and the piece-wise linear curve in the plane induced by this tour.
Further, suppose this curve contains some points p and q, by τ(p, q) we denote
a subtour of the τ connecting this points (and starting at the point p).

Theorem 2. For any instance of the EGTSP-GC(h), an arbitrary minimum
cost tour is (15h3 + 2h)-pseudo-pyramidal.
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Fig. 1: Cluster numbering.

For the sake of brevity, we provide a short sketch of the proof, its full version
will be published in a forthcoming paper.

The main idea of the proof is as follows. Suppose, we are given by an instance
of EGTSP-GC(h) defined by a grid of height h and width w. Consider an arbi-
trary feasible tour τ , which is obviously l-pseudo-pyramidal for some value l.
We show that, if l > 15h3 + 2h, the tour τ can be transformed locally to some
shorter l′-pseudo-pyramidal tour τ ′, for l′ ≤ l.

Without loss a generality we assume that the edge {u, v}, for which

u ∈ Vi1 , v ∈ Vi2 andi1 − i2 = l, (2)

belongs to the chain τ+ of the tour τ and the smallest t × h subgrid T . Further-
more, we assume that in T , the chain τ+ has the form as presented in Fig. 2.

Fig. 2: The subtour τ(1, 4) and the subgrid T containing the edge {u, v}.

Namely, for the first time, the chain τ+ enters T at point 1 and finally leaves
it at point 4. We denote this subtour by τ(1, 4). Of course, the tour τ can leave
T before it visits u or after visiting v, once or several times. Nevertheless, we
assume that the segments τ(1, 2) and τ(3, 4) connecting points 1 and 2 and
points 3 and 4, respectively, belong to the subgrid T completely. By virtue of
our notation, Eq. (2) and the numbering of clusters V1, . . . , Vk, we have t ≥ l/h.

Consider a horizontal projection of the line segment [u, v] connecting the
nodes u and v. By construction, its length s satisfies the equation t − 2 ≤ s ≤ t.
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Partition this projection onto 5 equal parts and consider the second and the
fourth vertical stripes obtained (of width s/5). We call these stripes S2 and
S4, respectively (see Fig. 3). For any edge {p, q} of the subtour τ(1, 4) (and the
corresponding line segment [p, q]), denote the length of [p, q] ∩ Sj by C(p, q, Sj).
Following to Assertion 1 we claim that

(i) in the subtour τ(1, 2), there exists an edge {p1, q1}, such that x(p1) ≤ x(q1)
and C(p1, q1, S2) ≥ 1/4;

(ii) in the subtour τ(3, 4), there exists an edge {p2, q2}, such that x(p2) ≤ x(q2)
and C(p2, q2, S4) ≥ 1/4;

Further, let [p1, q1] ∩ S2 = [p̄1, q̄1] and [p2, q2] ∩ S4 = [p̄2, q̄2]. Excluding from
the tour τ the edge {u, v} and the segments [p̄1, q̄1] and [p̄2, q̄2] and connecting
the points p̄1 with v, p̄2 with q̄1, and u with q̄2 directly we obtain a new tour τ ′,
after shortcutting by the triangle inequality.

Fig. 3: Shortening the tour τ
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Comparing the lengths C(τ) and C(τ ′) of the tours τ and τ ′, we obtain

ΔC = C(τ ′) − C(τ) ≤
3∑

i=1

√
(αis)2 + h2 − s − 1/2. (3)

In Eq. (3), we use notation α1s, . . . , α3s for the lengths of horizontal projections
of the line segments [p̄1, v], [p̄2, q̄1], and [u, q̄2], respectively. Since, by construc-
tion,

∑3
i=1 αi ≤ 1 and any αi ≥ 1/5,

ΔC ≤
3∑

i=1

(
√

(αis)2 + h2 − αis) − 1/2 =
3∑

i=1

h2

√
(αis)2 + h2 + αis

− 1/2

≤ h2
3∑

i=1

(2αis)−1 − 1/2 ≤ (15h2/s − 1)/2.

To obtain ΔC < 0, it is sufficient to ensure

s > 15h2. (4)

Since s ≥ t − 2, Eq. (4) is valid any time, when t > 15h2 + 2, which follows from
the equation

l > 15h3 + 2h. (5)

Thus, we showed that for any l satisfying Eq. (5), l-pseudo-pyramidal tour τ can
be shortened. Therefore, for any instance of the EGTSP-GC(h), each optimal
tour is (15h3 + 2h)-pseudo-pyramidal. Theorem 2 is proved.

Our main result is a simple consequence of Theorems 1 and 2.

Corollary 1. For any fixed h, any instance of the EGTSP-GC(h) can be solved
to optimality in time O(k · l(h) · nO(l(h))), where l(h) = 15h3 + 2h.

Employing the results of [11] together with Theorem 2, we obtain the similar
result for the Euclidean TSP on Grid of height h ETSP-GC(h), which appears
to be a special case of the EGTSP-GC(h) with k = n.

Corollary 2. Any instance of the ETSP-GC(h) can be solved to optimality in
time O(2l(h)nl(h)+3), where l(h) = 15h3 + 2h.

5 Conclusion

In this paper, we showed that the Euclidean Generalized Traveling Salesman
Problem in Grid Clusters (EGTSP-GC(h)) defined by a grid of the bounded
height is polynomially solvable. The same result is valid for the special type of
the Euclidean TSP on the plane.

The bound l(h) obtained in Theorem 2 seems to be untight and possibly
can be improved. In particular, the numerical evaluation carried out on random
instances of height 3 and n ∈ [100, 750] shows that the maximum observed value
of l(3) is equal to 4 and does not depend on n.
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