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Abstract. In this paper, a new optimization model of competitive facil-
ity location and pricing is introduced. This model is an extension of the
well-known (r|p)-centroid problem. In the model, two companies com-
pete for the client’s demand. Each client has a finite budget and a finite
demand. First, a company-leader determines a location of p facilities.
Taking into account the location of leader’s facilities, the company-
follower determines a location of its own r facilities. After that, each
company assigns a price for each client. When buying a product, the
client pays the price of the product and its transportation. A client buys
everything from a company with lower total costs if their total costs do
not exceed the budget of the client. If the cost of buying a product from
both companies is the same, the demand of clients is distributed equally
among them. The goal is to determine a location of leader’s facilities and
set the prices in which the total income of the leader is maximal. Results
about the computational complexity of the model are presented. Several
special cases are considered. These cases can be divided into three cat-
egories: (1) polynomially solvable problems; (2) NP-hard problems; (3)
problems related to the second level of the polynomial hierarchy. Finally,
the complexity of the maxmin-2-Sat problem is discussed.

Keywords: Competitive location · Pricing · Split demand
Computational complexity

1 Introduction

Research in the field of competitive location problems was initiated in [1], where
the process of choosing the location of facilities and the choice of the policy of
pricing by two competitors in a finite segment with a uniform distribution of
buyers were considered. The last decades, more and more attention is drawn to
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problems in which the decision to place and pricing is taken by players competing
with each other [2–5]. To date, many relevant problems are being addressed in
this area and many interesting results have been obtained. In this paper, we
consider a model that is in some ways an extension of the model of competitive
location and pricing from [6].

Let us describe in more detail the problem with its novelty and differences
from previous models. The problem is based on the Stackelberg game of two
players - the leader and the follower. The players select their locations and then
set prices in order to maximize their profits. The leader makes the decision first,
and then the follower makes his move. Players consistently place their facilities
in the finite set of predetermined locations. When all facilities are placed, the
players set prices for a homogeneous product. Here, a discriminatory pricing
strategy is used, when the player assigns a price for each client at each facility. In
[6], the well-known Bertrand model was used to determine prices and distribute
customers by facilities. In this model, the client is monopolized by the facility,
where the minimum cost of maintenance is achieved and the monopoly price is
assigned. In this paper, a new situation is considered when players can share
the demand of clients when it is profitable for them. Obviously, if a player at
his facility assigns a price to a client that does not exceed the minimum cost of
services at the follower’s facilities, then a rational client will prefer to be serviced
by the leader since the follower can not offer a lower price. On the other hand,
players can agree among themselves to establish the prices at the level of the
maximum purchasing power of the client, and divide the customer’s demand
among themselves. We suppose that the demand will be shared equally. In other
words, the client will make purchases at the facility of the leader, in a half of
cases, and at the facility of the follower, in other cases.

In the paper, the main emphasis is placed on the computational complexity of
finding of exact and approximate solutions for different variants of the problem [7].

The paper is organized as follows. In the next section, we formulate the
problem. The third section contains results on the computational complexity of
the general problem. In the fourth section, we consider the special cases of the
problem, their complexity, and algorithms for their solution.

2 The Competitive Location and Pricing Problem
with the Uniform Split of the Demand

We introduce the following notation:
I = {1, ...,m} is the set of locations for the facilities of the leader and the

follower;
J = {1, ..., n} is the set of clients;
p is the number of facilities placed by the leader;
r is the number of facilities placed by the follower;
ti is the unit cost of production in location i;
bj is the budget of the client of j;
dj is the demand for the client of j;
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cij is the unit cost of transportation of product from the facility i to the
client j.

To identify the placement of facilities of the leader and follower, we use the
following variables:

xi =
{

1, if the leader placed the facility at the point i,
0 otherwise;

yi =
{

1, if the follower placed the facility at the point i,
0 otherwise.

For each client and each facility, we can calculate the prime cost of service. Let
vector x denote the leader’s choice and vector y denote the follower’s choice,
then cj(x) = min{dj(ti + cij)|xi = 1} is the prime cost of service for the client j
by the leader and cj(y) = min{dj(ti + cij)|yi = 1} is the prime cost of service by
the follower. When the facilities have been chosen, the pricing process for each
client is implemented based on the Bertrand price competition model. Companies
compete by setting prices simultaneously and clients choose a company with a
lower price [6,8,9]. A client prefers the leader if the costs of service by the leader
and the follower are the same.

Let xi = 1, cj(x) = dj(ti + cij) and yk = 1, cj(y) = dj(tk + ckj). Suppose,
that cj(x) ≤ cj(y), i.e. for the client j, the leader is the winner. Note, that the
leader can set the price at the income-making level of the follower. Denote this
price as q1ijk. Then from the equation dj(p1ijk + cij) = dj(tk + ckj) we get the
price

q1ijk = tk + ckj − cij

for the client j. Hence, the income of the leader at point i is w1
ijk = dj(q1ijk − ti).

On the other hand, the revenue at the ith service point from the jth client
does not exceed bj −dj(ti + cij). It gives one more way of formation of the price.
Denote this price as q2ij . Set bj − dj(cij + q2ij) = 0. We get

q2ij =
bj
dj

− cij .

Therefore, the income of the leader in this case is w2
ij = dj(q2ij −ti) = bj −dj(ti+

cij). It is easy to see that

w1
ijk − w2

ij = dj(q1ijk − q2ij) = dj(tk + ckj) − bj .

Let w3
ij = (dj/2)(q2ij − ti) is the income of the leader from the division of the

demand in half between players.
Let’s analyze the possible cases.
1. Let q2ij ≥ q1ijk and w1

ijk ≤ w3
ij . That is, the income from monopolization

is less than the income from the division of the demand in half between players.
Therefore in our model, in this case, players agree to share the client’s demand
among themselves.
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2. If q2ij ≥ q1ijk and w1
ijk > w3

ij , then the leader has more income when using
a monopoly price q1ijk.

3. If q2ij < q1ijk, then the leader gets the maximum possible income, that is
equal to w2

ij = dj(q2ij − ti) = bj − dj(ti + cij) using the price q2ij .
Case cj(x) > cj(y) is analyzed in a similar way.
Now, as in [6], we replace non-Boolean variables q1ijk, q

2
ij with boolean vari-

ables.

zLc
ijk =

⎧⎨
⎩

1, if the client j is serviced by the leader’s facility i
with the price q1ijk,

0 otherwise;

zLb
ijk =

⎧⎨
⎩

1, if the client j is serviced by the leader’s facility i
with the price q2ij ,

0 otherwise;

zFc
ijk =

⎧⎨
⎩

1, if the client j is serviced by the follower’s facility k
with the price q1ijk,

0 otherwise;

zFb
ijk =

⎧⎨
⎩

1, if the client j is serviced by the follower’s facility k
with the price q2ij

0 otherwise;

zijk =

⎧⎨
⎩

1, if the client j is serviced by the leader from the point i and
the follower from the point k simultaneously,

0 otherwise;

This approach allows us to limit ourselves to only Boolean variables in the pro-
posed model. The set Ij(x) consists of locations that the follower can use to
capture the client j:

Ij(x) = {i ∈ I : cij + ti < min
k∈I:xk=1

(ckj + tk)}.

The competitive location and pricing problem with the uniform split of the
demand can be represented as the linear Boolean bi-level optimization program.
We propose the following model for the leader

∑
i∈I

∑
j∈J

∑
k∈I

(
dj(ckj + tk − cij − ti)zLc

ijk + (bj − dj(cij + ti))zLb
ijk (1)

+ 0.5(bj − dj(cij + ti))zijk
) → max

x,y,zLc,zLb,zFc,zFb,z

under constraints: ∑
i∈I

xi = p; (2)

(y, zLc, zLb, zFc, zFb, z) ∈ F∗(x); (3)
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xi ∈ {0, 1}; i ∈ I. (4)

The objective function (1) defines the income of the leader. Here the first
term corresponds to the case when the leader monopolizes the client, reducing
his price to the level of the cost price of service at the follower’s facilities. That
is, in terms of prices and revenues, it is the case 2: q2ij ≥ q1ijk and w1

ijk > w3
ij . If

the price of q2ij , determined by the budget, is less than the monopoly price q1ijk,
then the second term linking the price to the budget level is used. The third term
corresponds to the case when it is advantageous for the leader to share the client’s
budget with the follower. That is, the income from monopolization is less than
the income from the division of the demand in half between players. Constraint
(2) means that the leader must open exactly p facilities. From constraint (3) it
follows that the distribution of clients between players and the player’s incomes
are determined on the basis of the optimal solution of the follower. Due to this
constraint, our model is a bilevel programming problem. The set F∗(x) is the
set of optimal solutions for the follower’s parametric problem. As the parameter,
we consider here the set of facility locations chosen by the leader.

For the follower, we propose the following model:
∑
i∈I

∑
j∈J

∑
k∈I

(
dj(cij + ti − ckj − tk)zFc

ijk + (bj − dj(ckj + tk))zFb
ijk (5)

+ 0.5(bj − dj(ckj + tk))zijk
) → max

y,zLc,zLb,zFc,zFb,z

under constraints: ∑
i∈I

yi = r; (6)

∑
i,k∈I

(zFc
ijk + zFb

ijk) ≤
∑

i∈Ij(x)

yi; j ∈ J ; (7)

xi + yi ≤ 1; i ∈ I; (8)∑
i,k∈I

(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ 1; j ∈ J ; (9)

∑
k∈I

(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ xi; i ∈ I, j ∈ J ; (10)

∑
i∈I

(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ yk; k ∈ I, j ∈ J ; (11)

(cij + ti)(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ (ci′j + ti′)xi′ (12)

+ (1 − xi′)C; i, i′, k ∈ I, j ∈ J ;

(ckj + tk)(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ (ck′j + tk′)yk′ (13)

+ (1 − yk′)C; i, k, k′ ∈ I, j ∈ J ;



A New Model of Competitive Location and Pricing 21

dj(ckj+tk−cij−ti) ≤ 0.5(bj −dj(cij +ti))zijk+(1−zijk)C; i, k ∈ I, j ∈ J ; (14)∑
i∈I

∑
k∈I

(dj(ckj + tk) − bj)zLc
ijk ≤ 0; j ∈ J ; (15)

∑
i∈I

∑
k∈I

(dj(cij + ti) − bj)zFc
ijk ≤ 0; j ∈ J ; (16)

zLc
ijk, z

Lb
ijk, z

Fc
ijk, z

Fb
ijk, zijk, yi ∈ {0, 1}; i, k ∈ I, j ∈ J. (17)

The objective function (5) defines the income of the follower. The components
of the objective function have the same meaning as the terms of the objective
function of the leader. The constraint (6) means that the follower must open
exactly r facilities. The constraints (7) and (9) implement the mechanism of
distribution of clients between players. If Ij(x) = ∅ then the leader monopolize
the client since he has the minimal servicing cost there. Otherwise, the client
may belong to the follower if he chooses one of the points of the set Ij(x) as the
location for one of his facilities. The constraint (8) prohibits to the leader and
follower to place facilities at the same point. From the constraints (10) and (11)
it follows that the client cannot be serviced at a point where there are no open
facilities. The constraints (9), (12) and (13) imply that we have selected a unique
pair of open facilities for the client j, one for the leader (i) and another for the
follower (k), and the chosen leader’s facility achieves the smallest servicing cost
for the client. Similarly, the smallest cost of service for client in follower’s facilities
is achieved at his chosen facility. Further assume that the client was monopolized
by the leader and we consider the optimal solution of the bilevel problem. Then
if the prices q1ijk and q2ij are nontrivial, then it follows from the restriction of (9)
that one of the variables zLc

ijk, zLb
ijk, zijk is equal to 1. Let dj(tk + ckj) − bj ≤ 0

and w1
ijk ≤ w3

ij = (dj/2)(q2ij − ti), that is, case 1 is executed. Then the income
from monopolization is less than the income from the division of the demand in
half between players. So, zijk = 1 and the restriction (14) holds. Suppose, that
dj(tk+ckj)−bj ≤ 0 and w1

ijk > w3
ij , then the leader has more income when using

a monopoly price q1ijk. Then zLc
ijk = 1 and the restriction (15) holds. Finally, if

dj(tk + ckj) − bj > 0, then the leader gets the maximum possible income equals
to w2

ij = dj(q2ij − ti) = bj − dj(ti + cij) using the price q2ij . Constraints (14) and
(16) are interpreted in a similar way for client j monopolized by the follower.

Further, we will assume that the initial data for the problem is rational.

3 The Computational Complexity

We recall the definition of the first level of the polynomial hierarchy of complexity
classes of decision problems. The first level consists of classes P , NP and co-
NP . The class P contains problems solvable in polynomial time on deterministic
Turing machines. The class NP is defined as the class of problems solvable in
polynomial time on nondeterministic Turing machines. The third basic class
co-NP consists of decision problems whose complements belong to NP . These
classes are also denoted as ΔP

1 , ΣP
1 , and ΠP

1 , respectively. The second level of



22 A. V. Kononov et al.

the polynomial hierarchy is defined by deterministic and nondeterministic Turing
machines with oracle [7]. It is said that the decision problem belongs to class ΔP

2

if there exists a deterministic Turing machine with an oracle that recognizes its
in polynomial time, using as oracle some language from class NP . Similarly, the
decision problem belongs to class ΣP

2 if there exists a nondeterministic Turing
machine with an oracle that recognizes its in polynomial time, using as oracle
some language from class NP .

In order to proceed optimization problems, we use the concept of the stan-
dard decision problem corresponding to the optimization problem. We associate
optimization problem L with the following decision problem D(L). The input of
this problem is the input of the problem L and an arbitrary rational number k.
In the problem D(L) it is necessary to decide whether a feasible solution exists
with the objective function value large or equal to k. Class PO (correspondingly,
ΔP

2 O) includes optimization problems for which the standard decision problem
lies in class P (correspondingly, ΔP

2 ). Similarly, class NPO (correspondingly,
ΣP

2 O) includes optimization problems for which the standard decision problem
lies in class NP (correspondingly, ΣP

2 ).
In this section, we analyze the complexity of the competitive location and

pricing problem and its subproblems. We start from the following lemma.

Lemma 1. The competitive location and pricing problem with the uniform split
of the demand belongs to the class ΣP

2 O.

Proof. In the standard decision problem, it is necessary to find a solution to the
problem with the value of the objective function at least k. Such a problem can
be solved by brute force enumeration of all locations of leader’s facilities and
by solving the parametric problem of the follower. In other words, we can guess
the necessary location x of the leader’s facilities and the corresponding optimal
solution (y, zLc, zLb, zFc, zFb, z) of the follower in a non-deterministic time and
then check constraints (2)–(4) in polynomial time, using a suitable NP-oracle.
The verification of constraints (2) and (4) is trivial. As an NP-oracle, let’s take
the standard decision problem for the follower’s problem. Since the follower’s
objective function is limited, with the help of the oracle and binary search we
will find the optimal value of the parametric problem of the follower for the given
location x of the leader’s facilities. If the variables (y, zLc, zLb, zFc, zFb, z) satisfy
the constraints of the follower’s problem and the value of the objective function
on this feasible solution coincides with the previously found optimal value, then
the constraint (3) is satisfied. Since the number of calls to an oracle is limited by
the logarithm of the length of the record of the initial data of the problem, then
to verify constraints (2)–(4), a polynomial time is sufficient. Thus, the problem
of the leader belongs to class ΣP

2 O.

Theorem 1. The competitive location and pricing problem with the uniform
split of the demand is ΣP

2 -hard.

Proof. We reduce the following problem to the competitive location and pricing
problem.
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Fig. 1. Facilities and profitable clients that correspond to variables xi and yi.

Problem 1 (∃∀3, 4SAT )
Input: We are given two vectors x = (x1, . . . , xp) and y = (y1, . . . , yr) of
Boolean variables and a formula ϕ(x, y) in the disjunctive normal form.
Each conjunction contains exactly one variable from x and either two or
three variables from y.
Question: Does there exist a truth assignment of x such that for all assign-
ments of y the formula ϕ(x, y) is satisfied?

As shown in [10] ∃∀3, 4SAT is Σp
2 -complete.

Given an instance of ∃∀3, 4SAT and let k be the number of conjunction in
ϕ(x, y).

We construct the following instance of the competitive location and pricing
problem. For each variable xi(yi) we introduce two profitable facility locations
xi and xi (yi and yi) corresponding to literals xi and xi (yi and yi), respectively.
Between the facility locations xi and xi (yi and yi) we insert a profitable client
jxi (jyi ) which is connected by arcs to both facility locations (see Fig. 1). The
length of arcs that connect jxi (jyi ) with xi (yi) and xi (yi) is equal to k, i.e.
d(xi, j

x
i ) = d(jxi , xi) = d(yi, j

y
i ) = d(jyi , yi) = k. The budget of the client jxi is

equal to 16k2 + k and the budget of the client jyi is equal to 12k2 + k. We will
call locations xi and xi (yi and yi) alternative facility locations.

For each conjunction κs, we introduce two facility locations alts, sins and
four clients jcons , jalts , jsins , jads . The reduction of xi∧yi1 ∧yi2 ∧yi3 is illustrated in
Fig. 2. The client jcons is directly connected with five facility locations alts, xi, yi1 ,
yi2 , and yi3 . We set d(jcons , xi) = 10k2 + k, d(jcons , alts) = 10k2, and d(jcons , yi)
is equal to 10k2 + 1 for all i. The budget of jcons is equal to 10k2 + k + 1. We
will call the clients jcons conflicting clients. The client jalts is directly connected
with two facility locations xi and alts, wherein alts is located between jalts and
jcons . We set d(alts, j

alt
s ) = 5k2 and d(xi, j

alt
s ) = 16k2 − k. The budget of jalts is

equal to 16k2. The client jads is at a distance of 0 from the facility location xi

and his budget is equal to k. The client jsins and the facility location sins are
removed a sufficient distance from the other vertices and d(sins, j

sin
s ) = 0. The

budget of jsins is equal to 11k2 + ε, where 0 < ε < 1. The transportation cost
between two vertices given by the shortest path. For example, a network for the
formula ϕ(x, y) = (x1 ∧ y1 ∧ y2 ∧ y3) ∨ (x2 ∧ y2 ∧ y3) is described in Fig. 3. The
number of leader’s facilities p coincides with the number of Boolean variables x.
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Fig. 2. Representation of xi ∧ yi1 ∧ yi2 ∧ yi3

The number of follower’s facilities r = l + k, where l is the number of Boolean
variables y.

Now consider how the player’s income depends on the choice of the location
of the facilities. Let κs = xi ∧yi1 ∧yi2 ∧yi3 . Let the leader place the facility in xi

or xi. If the follower doesn’t occupy the alternative location then the leader will
receive a income of 16k2 from the client jxi , otherwise the leader and follower
share the income from the client jxi and each will receive 8k2. In the latter case,
the possible additional income of each of the facilities xi and xi from the clients
jcons , jalts , jads , s = 1, . . . , k will not exceed k2 + k. Thus, if both players place
their facilities in xi and xi their income will not exceed 9k2 + k. The maximal
income at yi, yi, i ∈ {i1, i2, i3}, alts, or sins doesn’t exceed 13k2 + k and the
minimal income at yi, yi, alts, or sins is at least 11k2 − k. Therefore, the leader
must place own facilities at xi and xi, one facility at each pair (xi, xi), because
he knows that in this case the follower set his facilities at yi, yi, alts, or sins.

Suppose that the leader took all the places near the profitable clients jxi . If
the follower places the facility in yi or yi, he will receive a income of 12k2 from
the client jyi . The possible income of each of the facilities alts and sins doesn’t
exceed 11k2 + k + 1. Thus, the follower must place r facilities at yi and yi, one
facility at each pair (yi, yi). The remaining facilities of the follower should be
placed in locations alts and sins. It is easy to verify that the follower must select
exactly one of locations alts or sins, for each s = 1, . . . , k and his choice will
depend on the location of the leader’s facilities. We note that the income of the
follower in sins does not depend on the location of the leader’s facilities and it
is equal to 11k2 + ε. Let the leader open the facility xi. Then the income of the
follower in alts is equal to 16k2 − k − 5k2 + 10k2 + k − 10k2 = 11k2 and he
prefers to open the facility sins. It follows that in this case, the leader receives
the client jalts and the income of k from it. Let the leader open the facility xi.
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Fig. 3. An example of network for ϕ(x, y) = (x1 ∧ y1 ∧ y2 ∧ y3) ∨ (x2 ∧ y2 ∧ y3)

In this case, the leader does not receive the client jalts but he receives the client
jads the income of k from it. It follows that the total income of the leader from all
clients except for conflicting clients is equal to (16p + 1)k2 and does not depend
on the choice in which of the locations xi or xi to open the facility. In turn, the
follower prefers to open the facility alts. Indeed, the income of the follower from
client jalts in alts is equal to 11k2 and he get an additional income of at least 1
from client jcons . It follows that the best location of follower’s facilities in vertices
alts and sins, s = 1, . . . , k, is completely determined by the location of leader’s
facilities and does not depend on the location of profitable follower’s facilities.
Hence, the income of each player depends on who gets conflicting clients. If the
leader opens the facility xi then the client jcons will be served by the follower.
Let the leader open the facility xi. The follower get the client jcons if and only
if he opens one of the facility yi1 , yi2 , or yi3 . Thus, the leader gets at least one
conflicting client if and only if there exists a truth assignment of x such that for
all assignments of y the formula ϕ(x, y) is satisfied.
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4 Special Cases

In addition to the ∃∀3, 4Sat problem, consider ∃∀1, 2Sat problem. In this prob-
lem, each conjunction contains only one variable from x and at most one variable
from y. Obviously, the problem is polynomially solvable. In Theorem1, we con-
structed a set of instances of competitive location and pricing problem which
corresponds to ∃∀3, 4Sat problem. By analogy, we construct a set of instances
corresponding to the ∃∀1, 2Sat problem. We denote the set as a CLP2SAT prob-
lem. Is the CLP2SAT problem polynomially solvable? For the answer, consider
a maxmin-1,2-Sat problem. As in ∃∀1, 2Sat problem, we are given two vectors
x = (x1, . . . , xp) and y = (y1, . . . , yr) of Boolean variables and a formula ϕ(x, y)
in the disjunctive normal form. Each conjunction contains only one variable from
x and at most one variable from y. We need to find x, at which the total number
of satisfied conjunction is maximal for all y. Obviously, the CLP2SAT problem
is equivalent to the maxmin-1,2-Sat problem.

Theorem 2. The maxmin-1,2-Sat problem is NP-hard.

Proof. Consider the NP-hard Exact Cover by 3-sets problem.

Problem 2 (EC3SET)
Input: We are given a set X, with |X| = 3q (so, the size of X is a multiple
of 3), and a collection C of 3-element subsets of X.
Question: Does there exist a subset C̃ of C where every element of X
occurs in exactly one member of C̃?

Given an instance of EC3SET and let k be the cardinality of the collection C.
We construct the following instance of the maxmin-1,2-Sat problem.

For each subset Cr = (Xi,Xj ,Xl), we define boolean variables xr, yi, yj , yl
and introduce conjunctions (xr∧yi), (xr∧yj), (xr∧yl). Additionally, we introduce
3q conjunctions (x0 ∧ yi), i = 1, . . . , 3q, k conjunctions (xr ∧ y0), r = 1, . . . , k
and k identical conjunctions (x0 ∧ y0). We show that an exact cover of X exists
if and only if the total number of satisfied conjunctions is equal to 2q + k.

It is easy to see that we need only consider the case when x0 and y0 are equal
to 1. Let H be the total number of satisfied conjunctions and h be the number
of variables xr such that xr = 1. If h < q then H ≤ 3h+k−h = 2h+k < 2q+k.
If h > q then H ≤ 3q + k − h = 2q + k − (h − q) < 2q + k. Let h = q. We have

H = 3q − s + (k − q) = 2q + k − s,

where s is a number of repetitions of variables y in the truth assignment of x. It
follows that an exact cover of X exists if and only if the optimum is 2q + k.

Corollary 1. The CLP2SAT problem is NP-hard.

Consider particular cases, when leader’s and follower’s facilities are opened.
In these cases, each client needs to define a facility at which he will be served. It
can be done in O(mn2) times. Therefore, the problem is polynomially solvable.
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Note, the competitive location and pricing problem can be solved in O(Cn
p ∗

Cn−p
r ∗ mn2) = O(mnp+r+2) by look over through all locations. Consider the

following particular cases: (1) p = const; (2) r = const; (3) p, r = const.
In the first case, the number of leader’s location is Cn

p . It is a polynomial of
n. Therefore, the problem belongs to ΔP

2 O.
In the second case, the follower problem is polynomially solvable as Cn−p

r =
Poly(n, p). Then, the problem belongs to NPO.

In the third case, the problem can be solved in polynomial time. Then the
problem belongs to PO.

Finally, consider the cases, where p = 0 or r = 0. Then the problem is
equivalent to the widely known p-median problem, which is strongly NP-hard.
Therefore, these particular cases are strongly NP-hard as well.

5 Conclusion

This paper studies a new optimization model of competitive facility location and
pricing. Results of the computational complexity of the model are presented. A
few numbers of special cases are considered.

There are several interesting areas of research on this problem. The first
of them is connected with the development of exact algorithms for solving the
problem. Here, ideas from [11,12] can be used. Another area of research is the
development of algorithms for solving on the basis of local search and meta-
heuristics. Despite the fact that the exponential complexity of local search is
theoretically shown [13], the available experience of using such methods of solu-
tion indicates their practical effectiveness [14–18]. It is also important to continue
studying the relationships of this class of problems with the polynomial hierar-
chy and the approximation hierarchy. Similar results were obtained for a number
of interesting problems of bilevel programming [10,19–21].
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