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Abstract. Far-field speech capture systems rely on microphone arrays
to spatially filter sound, attenuating unwanted interference and noise and
enhancing a speech signal of interest. To design effective spatial filters,
we must first estimate the acoustic transfer functions between the source
and the microphones. It is difficult to estimate these transfer functions if
the source signals are unknown. However, in systems that are activated
by a particular speech phrase, we can use that phrase as a pilot signal
to estimate the relative transfer functions. Here, we propose a method
to estimate relative transfer functions from known speech phrases in the
presence of background noise and interference using template matching
and time-frequency masking. We find that the proposed method can out-
perform conventional estimation techniques, but its performance depends
on the characteristics of the speech phrase.
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1 Introduction

In many audio processing applications, such as voice assistants and augmented
listening devices, we wish to isolate a single speech signal of interest from back-
ground noise and interference. These systems can use microphone arrays to spa-
tially filter audio signals, emphasizing sounds from a target direction and atten-
uating signals from other directions [1]. Multichannel processing has been shown
to improve the performance of speech recognition systems in noisy environments
[2]. Arrays can also be used in hearing aids and other listening devices to enhance
human hearing [3]. In order to filter out interference, a system must determine
which signals are coming from which source. We can differentiate sources using
their relative transfer functions (RTF), which describe differences in sound prop-
agation between sources and microphones and are generally different for sources
in different locations [4]. In environments with significant reverberation, particu-
larly when devices are placed next to walls or other reflecting surfaces, the RTFs
are difficult to predict geometrically and must be estimated from observed data.
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Because the target speech and unwanted interference signals are generally
unknown, RTF estimation is a difficult problem. If the desired signal is stronger
than the background noise or if the noise statistics can be reliably estimated,
then the RTFs can be estimated using subspace techniques [5,6]. The RTFs can
also be estimated using a variety of blind source separation techniques that rely
on assumptions about the properties of the signals [7,8]. It would be more reliable
to estimate RTFs using a known pilot signal like those used in communication
systems [9], but such signals are typically unavailable. In some applications,
however, we do have partial knowledge of the content of the speech. We can
therefore use the speech itself as a pilot signal to estimate the RTFs.

In this work, we consider audio capture systems that are activated by a
certain speech phrase, known as a keyword. Such keywords are often used to
remotely activate voice assistants on mobile phones and other electronic devices.
These systems use low-power keyword spotting algorithms to continuously mon-
itor for the speech phrase, then activate the full recognition system once it is
detected [10]. Because the content of this speech phrase is known in advance,
we can use the keyword to better estimate the RTFs of the speaker. Here, we
propose an RTF estimation system that matches a multichannel recording to
a prerecorded template of the keyword, uses that template to isolate the key-
word in each channel, and estimates the RTFs from those isolated recordings.
To demonstrate the source separation utility of the keyword alone, we do not
apply any other blind source separation techniques and we use no information
about the array geometry. A key question in this study is the impact of the
choice of keyword on the performance of the system: how do the length and
spectral content of the keyword affect the accuracy of the RTF estimate? We
will demonstrate the performance of the system and address this question using
a crowdsourced database of speech commands and a microphone array similar
to those used in commercial voice-assistant-enabled speakers.

2 Far-Field Audio Capture

A far-field audio capture system is shown in Fig. 1. Sound is captured by an array
of M microphones, which we assume to behave linearly but which may have
arbitrary locations and frequency responses. The system continuously records
from all M microphones while it waits for the keyword. The signals are processed
as follows:

1. A keyword spotting algorithm, which we assume to work perfectly, activates
the system upon detecting the keyword.

2. Once the system is activated, the keyword is used to estimate the relative
transfer functions of the source.

3. The RTFs are used to design a source separation filter that isolates the speech
following the keyword and suppresses interference and noise.

4. The separated speech is then reproduced, stored, transmitted, or processed
further, depending on the application.
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Fig. 1. A far-field audio capture system uses a known speech keyword to design a
multichannel filter and separate the unknown speech.

2.1 Microphone Array System

Let s(n, k) be the short-time Fourier transform (STFT) of the signal of interest
at the first microphone, where n is the frame index and k is the frequency index.
Let x(n, k) be the M -dimensional STFT vector of mixture signals received by
the M microphones. Under the multiplicative transfer function model [8], the
mixture is given by

x(n, k) = a(k)s(n, k) + z(n, k) (1)
= c(n, k) + z(n, k), (2)

where z(n, k) is the M -dimensional STFT vector of unwanted interference and
noise signals received by the microphones, a(k) is the vector of RTFs, and
c(n, k) = a(k)s(n, k) is the noise-free vector of source images. Because s(n, k)
is defined with respect to the first microphone, a1(k) = 1 for all k. The RTFs
depend on the relative positions of the source and microphones, the reverbera-
tion characteristics of the space, and the frequency responses and directionalities
of the microphones, which may be unknown.

2.2 Source Separation

To isolate the signal of interest, s(n, k), from the mixtures x(n, k), we use an
M -channel spatial filter w(k), sometimes known as a filter-and-sum beamformer:

ŝ(n, k) = wH(k)x(n, k). (3)

There are many ways to select the coefficients. Here, we restrict our attention
to the minimum power distortionless response (MPDR) coefficients [11],

w(k) =
Σ−1

x (k)a(k)
aH(k)Σ−1

x (k)a(k)
, (4)

where Σx(k) = E
[
x(n, k)xH(n, k)

]
is the covariance matrix of the mixture. The

MPDR filter minimizes the expected power of wH(k)x(n, k) while ensuring that
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Fig. 2. The relative transfer functions are estimated from the noisy recording using a
time-warped template and a time-frequency mask.

wH(k)a(k)s(n, k) = s(n, k). To compute the coefficients, we must first estimate
both Σx(k) and a(k). In our experiments, the mixture covariance matrix is
estimated from the recording itself,

Σ̂x(k) =
1
N

N∑

n=1

x(n, k)xH(n, k). (5)

The MPDR filter is known to be sensitive to errors in the estimate of a(k) [11].
While this is a disadvantage in practice, it is helpful in illustrating the RTF
estimation performance of the system.

3 Relative Transfer Function Estimation

If the source and microphone positions or the room acoustics are unknown, then
the RTFs must be estimated blindly from the noisy mixture data. Fortunately,
in keyword-activated systems, the keyword itself can act as a pilot signal to
measure the acoustic channel. Of course, the keyword signal as uttered by the
speaker is not known exactly; it must itself be estimated from the noisy mixture.

The proposed method, shown in Fig. 2, combines classic template matching
algorithms and modern single-channel source separation methods:

1. Use dynamic time warping to match the recorded keyword to a template
keyword from a database.

2. Use the warped template to generate a time-frequency mask consistent with
the recorded keyword.

3. Apply the mask to each of the M channels of the mixture to isolate the
recorded keyword from interference and noise.

4. Estimate the RTFs from the spatial correlation of the masked data.

To better analyze the performance of keyword-based RTF estimation and to
compare different keywords, we do not apply any other blind source separation
techniques and we do not use information from the speech following the keyword.
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3.1 Template Matching

Template matching is a classic small-vocabulary speech recognition technique
[12]. The recorded keyword signal x1(n, k) is matched to one of L templates
pl(n, k) from a database. Since the sounds within a keyword can be uttered at
different speeds, the templates are warped to match the time scale of the record-
ing. Mathematically, we find the best-fitting template and the corresponding
time mapping by solving the minimization problem

l̂, t̂(n) = arg min
l,t(n)

∑

n

Cost (x1(n,1),. . ., x1(n,K); pl(t(n),1),. . ., pl(t(n),K)) , (6)

where t(n) is nondecreasing. In our experiments, the cost function is the
Euclidean distance between the Mel frequency cepstral coefficients of each pair of
frames. The optimization problem (6) can be solved using dynamic programming
[12]. The warped template is given by

p̂(n, k) = pl̂(t̂(n), k), for k = 1, . . . , K. (7)

Note that in dynamic time warping, it is customary to warp the time scales of
both the recording and the template to find the closest match. Here, we warp
the time scale of the template to match that of the recording.

3.2 Time-Frequency Masking

Because speech and other signals are sparse in the time-frequency domain, mix-
tures of several such sources can be effectively separated by assigning each time-
frequency bin to a single source [13]. This process is known as time-frequency
masking, and is often used in single-channel source separation. First, a mask is
generated by comparing the power in the warped template to a threshold:

r(n, k) =

{
1, if |p̂(n, k)|2 > γ(k)
0, otherwise.

(8)

The threshold γ(k) is a tuning parameter. In our experiments, we set it so that
roughly 10% of the mask frames are 1 for each frequency bin k.

To isolate the keyword in the recording from interference and noise, we apply
the time-frequency mask to each channel:

ĉm(n, k) = xm(n, k)r(n, k). (9)

If the signals are indeed sparse and if the mask is a good fit, then for nonzero
values of ĉm(n, k), we have |am(k)s(n, k)|2 � |zm(n, k)|2, so that

ĉ(n, k) ≈ a(k)s(n, k). (10)
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32 mm

Fig. 3. Experimental setup using a MEMS microphone array in a living room.

3.3 Relative Transfer Functions

Finally, we use the masked signals to estimate the relative transfer functions.
We compute the sample covariance matrix of the masked source spatial images:

Σ̂c(k) =
1
N

N∑

n=1

ĉ(n, k)ĉH(n, k). (11)

If (10) held exactly, then Σ̂c(k) would be a rank-1 matrix proportional to
a(k)aH(k). Let u(k) be the singular vector corresponding to the largest singular
value of Σ̂c(k). Then the estimated RTF vector is

â(k) =
u(k)
u1(k)

. (12)

This is a special case of covariance whitening RTF estimation [6] where the
noise is reduced by time-frequency masking rather than whitening. Related
classification-based RTF estimation methods incorporate speech presence prob-
abilities [14] and sparsity assumptions [15] to improve the mask.

4 Experiments

To evaluate the performance of the proposed separation method, we present
empirical results for RTF estimation and source separation in a cocktail party
scenario. The recording device, which is designed for voice assistant applications,
is a circular array of M = 7 digital MEMS microphones spaced about 32 mm
apart, as shown in Fig. 3. The array sits on a coffee table in the center of a living
room (T60 ≈ 400 ms) and four signals are emitted from loudspeakers placed on a
television stand, sofa, chair, and dining table between one and two meters away.
One source is designated the target and the other three are interference.

Impulse responses were measured using sweep signals and used to simulate
speech mixtures from prerecorded data. The keywords, examples of which are
shown in Fig. 4, are taken from a crowdsourced database of one-second spoken
commands [16]. The samples were recorded in widely varying environments with
different equipment, reverberation characteristics, and noise levels, so the acous-
tic simulation is less realistic than it would be with samples recorded in controlled
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Fig. 4. Spectrograms of two keywords with different RTF estimation performance.

anechoic conditions. Recordings with excessive background noise were removed
and the clips were normalized to a constant average power. The experiments
below use a set of L = 500 templates and a separate test set of 100 utterances
for each keyword. For each trial, four ten-second speech clips are selected at
random from a subset of the TIMIT database [17]. The mixtures also include
a multichannel recording of living room background noise from appliances and
ventilation. In these experiments, all signals are sampled at 8 kHz and the STFT
uses a length-1024 discrete Fourier transform, a von Hann window of length 1024
samples (128 ms), and a step size of 256 samples (32 ms) .

4.1 Relative Transfer Function Estimation Results

The MPDR beamformer, like many related multichannel filters, reduces noise
and interference by projecting the mixture vector onto the RTF vector of the
target source. If the estimated RTF vector is not parallel to the source image
vector, the source will be distorted and unwanted noise might be amplified. Thus,
to measure RTF estimation performance, we use the angle between the true and
estimated RTF vectors, averaged across frequency bins:

RTF Error =
1
K

K−1∑

k=0

arccos Re

[
âH(k)a(k)
|â(k)| |a(k)|

]

. (13)

Figure 5 shows RTF estimation error as a function of the input signal-to-
interference-plus-noise ratio (SINR) of the keyword recording. The plots on the
left show estimation performance using the ideal binary mask (IBM), which is
one when |s(n, k)|2 > |z1(n, k)|2 and zero otherwise. The IBM experiment shows
the effect of keyword choice on RTF estimation performance if the keyword and
noise signals were known perfectly. The plots on the right show the performance
of the proposed method with template matching and mask estimation.

It is clear that longer keywords are better than shorter keywords, but there is
significant variation even between keywords with the same number of syllables.
Keywords that contain sibilants (“yes”, “Sheila”) and thus strong high-frequency
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Fig. 5. RTF estimation performance using different keywords. Top: RTF error versus
input SINR. Bottom: RTF error at 0 dB input SINR.

content appear to outperform keywords that do not. These keywords are easier
to align with templates and cover more of the speech spectrum.

4.2 Source Separation Results

The ultimate goal of the proposed method is to improve source separation perfor-
mance in a far-field speech capture system. We measure separation performance
using the signal-to-error ratio (SER), computed in the time domain:

SER = 10 log10

∑
t s2(t)

∑
t (ŝ(t) − s(t))2

. (14)

Figure 6 shows the SER for mixtures of four speech sources and background
noise at an input SINR of about −4 dB. The plot on the left shows the SER as
a function of the keyword input SINR (the input SINR of the unknown speech
was not varied). The proposed method provides a roughly 20 dB keyword SINR
improvement over the blind RTF estimator, which selects the dominant singular
vector of Σ̂x(k) at each frequency. There is a significant gap between the ideal
and estimated mask performance, suggesting that there is room for improvement
in the template-matching and mask estimation algorithms. The plot on the right
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Fig. 6. Source separation performance with four speech sources. Left: Median speech
output SER versus keyword input SINR with keyword “Yes Sheila”. Right: Speech
output SER at 0 dB keyword input SINR.

shows the output SER when the keyword input SER is 0 dB. The output SERs
vary less than the RTF errors for different keywords, and keywords that include
sibilants do not have a clear advantage. Since the average spectrum of speech
signals is concentrated at low frequencies, high-frequency RTF errors have a
smaller impact on the separated speech signal.

5 Conclusions

The experiments show that speech keywords can be used as pilot signals to
estimate the RTFs of a source in a noisy mixture. The proposed method is most
useful when the interference and noise statistics are not known in advance, so
covariance whitening and other model-based RTF estimation methods cannot be
applied. In these situations, our experiments suggest that keyword-based RTF
estimation can dramatically improve source separation performance.

The accuracy of the RTF estimate appears to depend on the length and
the spectral content of the keyword. The most useful keywords have a variety
of sounds, making them easy to separate by masking and ensuring that the
full speech spectrum is captured by the template. The choice of keyword has a
smaller impact on the performance of the separator, suggesting that the method
may be useful for some applications even with keywords that are short and
spectrally concentrated. In this work, we have used relatively simple algorithms
for template matching, mask estimation, and source separation. While these are
adequate for this proof of concept, our results suggest that more sophisticated
algorithms could improve performance.

Many source separation methods rely on assumptions about the geometry of
the array or the statistics of the source signals. However, we can also leverage
information about the content of the signals. This study has shown that we can
effectively separate a speech source from strong interference based only on our
knowledge of a single word.
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