®

Check for
updates

Robust Multilinear Decomposition of Low
Rank Tensors

Xu Han'?4, Laurent Albera'24®) Amar Kachenoura'>*, Huazhong Shu®*,
and Lotfi Senhadjil-24

1 LTSI, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
2 INSERM, U 1099, 35402 Rennes Cedex, France
3 LIST, Southeast University, 2 Sipailou, Nanjing 210096, China
4 Centre de Recherche en Information Biomédicale Sino-Francais, Rennes, France
hanxu.list@gmail.com,shu.list@seu.edu.cn,
{laurent.albera,amar.kachenoura,lotfi.senhadji}@univ-rennesl.fr

Abstract. Although several methods are available to compute the mul-
tilinear rank of multi-way arrays, they are not sufficiently robust with
respect to the noise. In this paper, we propose a novel Multilinear Tensor
Decomposition (MTD) method, namely R-MTD (Robust MTD), which
is able to identify the multilinear rank even in the presence of noise. The
latter is based on sparsity and group sparsity of the core tensor imposed
by means of the /1 norm and the mixed-norm, respectively. After sev-
eral iterations of R-MTD, the underlying core tensor is sufficiently well
estimated, which allows for an efficient use of the minimum descrip-
tion length approach and an accurate estimation of the multilinear rank.
Computer results show the good behavior of R-MTD.
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1 Introduction

The rank estimation problem has been considered for several decades. The noisy
matrix case was firstly considered. Methods based on the computation of singular
values and the use of either Akaike’s information criterion [1], the Bayesian
Information Criterion (BIC) [2] or the Minimum Description Length (MDL)
principle [3] were proposed. The singular values of a low-rank noiseless matrix
can be sorted in decreasing order (see the red diamonds in Fig.1). Then the
estimated rank R®** can be computed by searching the breaking point of the
singular value curve, which minimizes the MDL criterion [3]:
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Fig. 1. Singular values of a matrix (red diamonds) and those of its noisy version for
an SNR value of 0 dB (blue circles). (Color figure online)

where \; is the i-th highest singular value and where (I x J) is the size of the
considered matrix. Unfortunately, when the matrix is strongly noisy the MDL
approach has difficulty finding the breaking point (see the blue circles in Fig. 1).

The rank estimation problem was also considered for arrays with more than
two entries, commonly named tensors. Contrarily to the matrix case, there are
several definitions of tensor rank. In the following, we will consider the definition
related to the Multilinear Tensor Decomposition (MTD) model [4]:

R; Ry R3

F=Gx1Ax3Bx3C= ZZZ gi,j,kA:,ioB:,jOC:,kv (2)

i=1 j=1 k=1

where A € RIiv<Fi B ¢ RE2XE2 and C € R*f are the loading matrices
and where G € Rft1xR2XFs j5 the core tensor of a third order tensor F. Note
that X. ; denotes the j-th column of X and o denotes the vector outer product
operator. The multilinear rank of F is given by the minimal values of Ry, R2 and
Rj3 for which the equality (2) holds. The classical Higher-Order Singular Value
Decomposition (HOSVD) [5] is a special MTD, which is a direct extension of the
matrix SVD to tensors. While the multilinear rank can be derived from the rank
of the unfolding matrices of the considered tensor, the latter matrix ranks are
difficult to estimate as explained previously. Thus authors proposed to minimize
the nuclear norm of each unfolding matrix in order to find the minimal MTD [§]
and consequently the multilinear rank. More recently, the SCORE algorithm [7],
based on the modified eigenvalues of the considered noisy tensor, was proposed
too. Unfortunately, such methods are not sufficiently robust with respect to the
presence of noise.

In this paper, we propose a novel MTD method, namely R-MTD (Robust
MTD), which is able to identify the multilinear rank even in the presence of noise.
The latter is based on sparsity and group sparsity of the core tensor imposed by
means of the [; norm and the mixed-norm, respectively. Note that the mixed-
norm was proved to be a convex envelope of rank and used to provide robust
canonical polyadic and block term decomposition algorithms [9,10]. After several
iterations of R-MTD, the underlying core tensor is sufficiently well estimated,
which allows for an efficient use of the MDL approach and an accurate estimation
of the multilinear rank. Computer results show the good behavior of R-MTD.
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2 Notions and Preliminaries

A scalar is denoted by an italic letter, e.g., x and I. A vector is denoted by a bold
lowercase letter, e.g., x € R! and a matrix is represented by a bold capital letter,
e.g., X € R™*7 and specially, I is the identity matrix. The vectorization of X is
denoted by vec(X) € RI7*1. X1 is the pseudo inverse of matrix X. The nuclear
norm of a matrix X € R!*’ with rank r is equal to the sum of its singular
values, ie., |X|. =>"I_; 0, and ||X]|| is the largest singular value. The symbol
rank(.) denotes the rank operator. The [y norm, /3 norm and Frobenius norm of
X e RI*7 are defined by ||X||0 = Zle Z;-Izl Xitj/Xi,j with Xi,j 7é 0, HXHl =

Sy S Xyl and [X[p = /S, S, X2, respectively. The mixed-
norm pair of X € R’ is given by [|X||2,1 = Zle ijl Xﬁj = Tr[X"®X]

and ||X]|

12 = E;.le S X3 = Tr[X®X], where T[] is the trace opera-
tor, where ® is a diagonal matrix with ®;; =1/ ijl X7 ; denoting the (i, 1)-

th component of ® and where W is a diagonal matrix with ¥; ; =1/ Zfil X3

standing for the (7, j)-th component of ¥. Note that this trace compact defini-
tion is convenient for a convex optimization if ® and W are fixed as weight
matrices. A high-order tensor is denoted by a bold calligraphic letter, e.g.,
X € RIivxx--xIn  The symbol ® denotes the Kronecker product operator.
The n-th mode unfolding matrix of the tensor X € RI1*/2XxIn ig denoted by
X g RIn*Untilngo.Inlil2In1)  The sub-tensor X, —i is obtained by fixing
the n-th index to k. The scalar product of two tensors X € RIr>x12XxIn and
Y e RIvxI2xxIn g defined by (X,¥) = S0 -V & Vi ine

ip=1" in=1

The Frobenius norm of tensor X is defined by | X||r = \/Zil-uiN x?

i1,..IN "

3 The R-MTD Method

3.1 Preliminary Tools

First let’s recall the definition of a convex envelope which will be used in the
following analysis.

Definition 1 (Lower convex envelope). Let f : R” — R be a real-valued
function. The convex envelope of f, represented by Cy, is the convex pointwise
largest function Cy : R™ — R which is pointwise less than f. In other words, we
have Cy = sup{g : R™ — R| g is convex and g(x) < f(z) for any x € R"}.

Now let’s study the lower convex envelopes of rank. The nuclear norm of X is
one of them in the norm ball, i.e., || X|| < 1, as shown in [12, Theorem 1] and
since the low rank constraint involves a NP-hard optimization problem it is bet-
ter to minimize the nuclear norm. On the other hand, an interesting relationship
between the nuclear norm and the mixed-norm was established in [11, Proposi-
tion 1] for a thin matrix case, i.e., X € R™*" with m > n. We extended this
result by means of the following Theorem 1 and Corollary 1.
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Theorem 1. Given any matriz X € R™*™ and its orthonormal subspace decom-
position denoted by X = Da and X = 0Z, where D € R™*™ aqnd Z € R™*"
are orthonormal matrices, with o € R™*™ and @ € R™*" the mized-norms of
a and 0 are larger than or equal to the nuclear norm of X, i.e. |lall2,1 > [|X]|«
and (|62 = [|X]]..

Then we can easily derive the following corollary by fixing D and Z equal to the
identity matrix in Theorem 1.

Corollary 1. We have [|X]|2,1 > ||X]|« and [|X]|1,2 > |X]|«.

In fact, for a matrix with full column rank or full row rank, the nuclear norm is
not the tightest convex envelope of rank and the mixed-norm is more qualified
to be a lower convex envelop of rank compared with the nuclear norm based on
the Definition 1 and the explanation is given in the following theorem.

Theorem 2. Given any matriz X € R™*™ with linearly independent rows or
columns, we have:

1. If X has linearly independent rows, which means that rank(X) = m and

X2 < 11Xl
m < n, then we get rank(X) > X[l =z =i -

2. If X has linearly independent columns, which means that rank(X) = n and

IXl12 < X[l
m > n, then we get rank(X) > X > =T

Consequently, we will use the mixed-norm in the following subsection in order
to impose the low rank property. Besides, we will also minimize the [; norm of
the over-estimated core tensor in order to vanish the residual nonzero elements
for which the absolute values are close to zero.

3.2 Towards the R-MTD Algorithm

In order to guarantee a sufficient group sparsity of each unfolding matrix along
the different dimensions, and each unfolding matrix consist with linear indepen-
dent rows, the proposed method is implemented under the following assumption:
Ry < min{Z;, TTp_y yps I} and Ry < Loy o Bav i = 1,2,3.

R-MTD for Rank Estimation: The mixed-norm Hé(i)Hz , s considered as
a lower convex envelope of rank in the objective function and the other mixed-
norm HG(")H1 , 1s also adopted as a convex upper bound of the nuclear norm
for a more robust estimation. The objective function is presented below for a
third order multilinear tensor as an example but it is not hard to generalize it
to higher orders:

3
min 30 A (GO, +1GV],,) + 6]

s.t. T:axl‘XXQ]/_)\)X?)é—}—N,é€R§1X§2X§3’
KER11X§1,:§ER12X§2,6ER13X§37 (3)
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where G is the over-estimated core tensor, where (A}A(‘) _are the unfolding matri-
ces along the different dimensions and where A, B, C are the corresponding
over-estimated loading matrices. Here, we should note that R; should be larger
than R;. The minimization problem (3) is solved by means of the Alternating
Directions Method of Multiplier (ADMM) [14]:

3

Z (IGO0, + 16, ,) + 1P,

=1

—|—§HT—§ Xl:&XQ]/_)\) X3 6“?

min_
B,C,C

s.t. Q’ — 73 =0. (4)

The augmented Lagrangian function £ of the variables 37 K, ]§, (Al 73, 57, 0,
& and ¥ can be written as follows using the mixed-norm definition given
in Sect. 2:

L= Z/\{Tr GO BOGD) + TH(GOEOGO)]
FIP], + 27 -G AxaBxy 6
+(G-PI)+ 0GP (5)

where the parameters \;, u and 3 are penalty coefficients and where 57 is the
Lagrangian multiplier tensor. Now let’s derive the update rule of each variable.
The mode-1 unfolding matrix of the core tensor G is computed from the following
gradient equation:

oL .
Sam ~ 2 MG +2),GVeW 4+ GV + LATAGH (B C) (B C)

D P —yATTW (B C) = 0. (6)

The solution of (6) can be calculated by Encapsulating Sum in [15], the (k+1)-th
iteration of G is given by:

Vec(agll) = {I ® (2>\i’l>}(€1)) + (2/\1‘\1’21) + ﬁkl) QI+ [(ﬁk ® (AJk)T(f%k ® (Alk)}

® (m&;,&k)} vec [gkﬁfj) ~ Y +uA TV (B, ® ék)} )

Consecutively, G® and G® at the (k + 1)-th iteration can be computed as
follows:

vee(GY)) = {1 © (2000) + 22T + 5 @1+ [(ék ®Ay) (Cr @ Kk)}

-1
® (uﬁ%ﬁk)} vec {/Bklggf) - ?,(f) +uBLT® (ak ® Kk:)i|7 (8)
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vee(GY)) = {I ® (20n®0) + 20T + 5I) @ T+ [(f&k ®By) (Ar® ﬁk)}
~ ~ 71 A~ A~ ~ o~ A~
® (ucgck)} vec [5kP,§3> Y 4 uCLT® (A © Bk)] )

Note that, the weighting matrices <I>,(€1) and ‘II,(:) are derived from (A},(Cl) as the
definition in Sect. 2. For the computation of 'I>,(€2) and \Ill(f), they are calculated
using the 2-th mode unfolding matrix of the updated core tensor (A}gl Iden-

tically, <I>,(€3) and \Ilff) are given using the updated core tensor éfﬁl Then,

updating factor matrices by using tensor ak+1, ie., (A},(ﬁzl The sub-problem

function about factor matrix A in (k + 1)-th iteration is given as following:

min | TV — A, G, (B @ Cr) [ (10)

Akt

The updated ;&.kJrl matrix at the (k + 1)-th iteration is given by:
~ ~ ~ ~ T
Ap =TO[GY, (Bro )] (11)
Using Agy1, Bry1 at the (k + 1)-th iteration can be computed as follows:
~ ~ ~ ~ T
By = T® [ngzl(ck ® Ak+1)T} . (12)

Similarly, ékﬂ at the (k + 1)-th iteration is given by:

~ ~ [ ~ ~ f
Chir = T® [G;jﬁl(AkH ® B,CH)T} . (13)
Regarding variable 73, we have to minimize:
S P Bus 2
min [P, + (&~ 7,9+ 216 - I (1)
An equivalent problem of (14) is given by:
TP Bia =, Log2
min ([P, + =||G —P + =Y| ... 15
win [P, + 5| Rl (15)
The solution of P in problem (15) has been solved in [13] as follows:
Pri1 =S (@ +i57) (16)
k+1 — ﬁ k+1 /Bk ks

where S;(z) = sign(z)(|z| — 7,0),2 € R is the soft-thresholding operator and it
is used elementwise. The multiplier tensor Y in (k + 1)-th iteration is calculated
based on the following update rule:

Vir1 = Vi + B(Grs1 — Pryr).- (17)
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The parameter 3 in (k + 1)-th iteration is updated as:

Br+1 = pPr, p > 1. (18)

Finally, the proposed algorithm R-MTD stops when the convergence criterion is
reached, i.e.,

€ITOr'y 1 — €ITOrg

< tolerance (19)
errory,

with eITOrk 1 = H’T g,m X1 Ak+1 Xo Bk+1 X3 Ck+1||F and errory = HT —
gk X1 Ak X9 Bk X3 Ck||p Eventually, the values R¢*! are estimated using the
MDL criterion (2) on the singular values derived from the SVD of the unfolding

matrices G i = 1,2,3.

k+1

R-MTD for Denoising: Once the multilinear rank is estimated, we can use it
to replace the over-estimated rank in (3) and the penalty function for denoising
is rewritten as follows:

3
aing 2N (16Y 1+ 16, ) +Al6l,

st. T=Gx;AxyBx3C+N,Ge R R RS
A € RGBT B e REXRS € g REXAS, (20)

Here, the weight parameters of the constraints are set to zero, i.e., \; = v =0,71 =
1,2,3. With these zero weight parameters, we can repeat the same procedure as
described previously.

4 Experiment Results

In this section, the noisy simulated data is utilized to test the performance of
R-MTD on rank estimation and signal denoising. A comparative study of our
method with the recent and efficient SCORE algorithm [7] is also provided. For
the proposed method, the selection of parameter \;,7 = 1,2, 3 should be larger
when the size of underlying core tensor is smaller than the over-estimated core
tensor size. Typically, these coefficients are set as A; = 5,7 = 1,2, 3 and the other
parameters u, 3 and p are fixed as 0.025, 0.3 and 20, respectively. The selected
parameters of SCORE method are chosen as the paper [7] advised. All results
reported in this section are averaged over 100 Monte Carlo (MC) realizations.

Experimental Setting. The size of F is fixed with (I; = I = I3 = 100)
and we consider different sizes of the core tensor G: (R; = Ry = R3 = 3),
(Rl = R2 = R3 = 4) and (R = Ry = R3 = 5). All the elements of factor
matrices and the core tensor follow a Gaussian distribution. To implement our
method, the over-estimated core size is set to Ry = Ry = R3 = 10. The noise
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tensor £ € RI1*12xIs 350 follows Gaussian distribution with different Signal-to-
Noise Ratio (SNR). Finally, the noisy tensor 7 is obtained as follows:

||7"||F£

T=F+o ,
1]l

where the parameter o controls the SNR, i.e. SNR = —20log( (o).

Rank Estimation Performance. To evaluate the performance of all methods
on rank estimation, we propose two criteria. The first one named Accuracy Rate
(AR) measures the good estimate rate of all ranks, i.e. Ry = R, Ry = R§™
and R3 = R$%, and is defined as the following:

AR : Times of R; = R{*",i =1,2,3.
The second criterion, called Average Rank Estimation Error (AREE), measures
the deviation between the estimated ranks and exact ranks. It is given by:

100 3

1 €S
AREE: oo > (D[R — R™|).

times=1 1¢=1

ESCORE ER-MTO [WscorE OR-MTQ WSCORE OR-MTQ
100] 100 100
80| 80| 80)
o 60 o 60 o 60
< < <
40 40 40
20| 20| 20|
o 0 0
-15 -10 -5 0 5 10 15 -15 =10 -5 0 5 10 15 -15 =10 -5 0 5 10 15
SNR(dB) SNR(dB) SNR(dB)
05 WSCOREMR-MTO 05 [ESCOREMR-MTD 05 WSCORE MR-MTD,
0.4 0.4 0.4
w 0.3 w 0.3] w 0.3
w w w
o [i4 4
<02 < 0.2 <02
0.1 0.1 0.1
0 0 0
-15-10 -5 0 5 10 15 -15 =10 -5 0 5 10 15 -15 =10 -5 0 5 10 15
SNR(dB) SNR(dB) SNR(dB)

Fig. 2. The Accuracy Rate (AR) and the Average Rank Estimation Error (AREE)
criteria for different sizes of the core tensor as a function of SNR.

Figure 2, displays the obtained results of the rank estimation for different SNR
and different sizes of the core tensor. We can see that the AR criterion obtained
for R-MTD and SCORE is increasing as the SNR increases (first line of Fig. 2).
We also observed that, for all cases of the size of the core tensor, the robustness to
noise of the R-MTD outperforms the SCORE whatever the SNR is. The second
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SCORE+T-HOSVD) 0'3[ SCORE+T-HOSVD)]
'SCORE+HOOI
@ R-MTD+R-MTD
*e:R-MTD+HOOI
0.2 0.
[TTREN LN w *,
x| 4 %
< < \ 1
1Y N
0.1 | 0.1
""""" ..,
... .
. v,
S S D ~Prennaen >
—q5 -10 -5 0 5 10 15 —q5 -10 -10 -5 0 5 10 15
SNR(dB) SNR(dB)
(a) core size-(3 x 3 x 3) (b) core size-(4 x 4 x 4) (c) core size-(5 x 5 x 5)

Fig. 3. The Average Relative Error (ARE) criterion for different sizes of the core tensor
as a function of SNR.

line of Fig.2 shows the AREE criterion. Clearly, the rank estimation errors of
R-MTD are always smaller than those of the SCORE method for all scenarios
and SNR.

Signal Denoising Efficiency. In this section, we consider the effectiveness
and robustness of the proposed method on signal denoising. To do so, four com-
bination cases of rank estimation methods and tensor decomposition ones are
considered: R-MTD+R-MTD, R-MTD+HOOI [6], SCORE+4+T-HOSVD [5] and
SCORE+HOOI. The reconstruction error is defined as the Average Relative
Error (ARE), given by:

100 est
1 [F* = Fllr
ARE: — E —_—
100 times=1 ||]:HF

Figure 3 gives the effectiveness of the four compared methods. For SNR higher
or equal to —5 dB, all methods seem to have similar performances. Regard-
ing the lower SNR, we can see that the performances of the SCORE+HOOI,
R-MTD+R-~-MTD and R-MTD+HOOI are better than the SCORE+T-HOSVD.
This can be explained by the fact that the T-HOSVD method only extract
the first several components corresponding to the estimated rank without any
denoising process, it cannot gives excellent denoising result for lower SNR cases.
Besides, although AR results of the R-MTD is more effective than the SCORE,
the denoising efficiency of SCORE+HOOI is almost the same as the efficiency
of R-MTD+R-MTD and R-MTD-+HOOI because of the smaller difference of
AREE between the SCORE and the R-MTD.

5 Conclusion

We have proposed a new MTD method, named R-MTD, that permits to identify
the multilinear rank of noisy data. To do so, a sparsity and group sparsity of the
core tensor are imposed by means of the [; norm and the mixed-norm, respec-
tively. More precisely, we first over-estimate the core tensor, then an optimal
core tensor is estimated from noisy multilinear tensor after several iterations of
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the R-MTD algorithm. We also assessed the importance of a good estimation of
the rank of the core tensor to signal denoising. Different experiments conducted
using simulated data demonstrated the effectiveness of the R-MTD algorithm
both for rank estimation and for data denoising.
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