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Preface

This volume gathers the full articles presented at the 14th International Conference on
Latent Variable Analysis and Signal Separation, LVA/ICA 2018, which was held at the
University of Surrey, Guildford, UK, during July 2–5, 2018. The conference was
organized by the Centre for Vision, Speech and Signal Processing (CVSSP) and by the
Institute of Sound Recording (IoSR).

Since its inception in 1999, under the name “Independent Component Analysis and
Blind Source Separation,” ICA, the series of LVA/ICA conferences (held approxi-
mately every 18 months) has attracted hundreds of researchers and practitioners. The
conference has continuously broadened its horizons and scope of applications. The
LVA/ICA research topics encompass a wide range of general mixtures of latent vari-
able models but also theories and tools drawn from a great variety of disciplines such as
signal processing, applied statistics, machine learning, linear and multilinear algebra,
numerical analysis, optimization, etc. These research areas are of interest in numerous
application fields ranging from audio, image, telecommunications, biochemistry, and
quantum physics to biomedical engineering or observation sciences, to cite a few.
Thus, this conference offers very exciting interdisciplinary interactions between
researchers in various fields and domains. It also constitutes a multidisciplinary dis-
cussion forum for scientists and engineers where they can gain access to a broad
understanding of the state of the research in the field, keep up to date with active
research areas, discover or address the main theoretical challenges, and also face
real-world problems and share experiences.

This volume of Springer’s Lecture Notes in Computer Science (LNCS) continues
the tradition, which began in ICA 2004 (held in Granada, Spain), of publishing the
conference proceedings in this form. We thank the editorial board of LNCS for their
ongoing commitment and confidence in our conference.

For this 14th issue of the LVA/ICA international conference, 61 full papers were
submitted to both regular and special sessions. Each submission of a regular full paper
was peer reviewed by at least three members of our Technical Program Committee
(TPC) or by competent additional reviewers assigned by the TPC members. From these
61 submitted full papers, 52 were accepted, 28 as oral papers and 24 as poster pre-
sentations. The conference program included two special sessions: “Structured Tensor
Decompositions and Applications,” proposed by Laurent Albera (Université de
Rennes, France), Taylan Cemgil (Bogazici University, Turkey), and Umut Şimşekli
(Télécom ParisTech, France); and “Advances in Phase Retrieval and Applications,”
proposed by Antoine Deleforge (Inria, Nancy, Grand-Est, France) and Angélique
Dremeau (ENSTA Bretagne, France). Regular topics included: ICA methods, matrix
and tensor factorizations, nonlinear mixtures, audio data and methods, deep learning
and data-driven methods, sparsity-related methods, biomedical data methods, and
applications of LVA and ICA.



The Organizing Committee was pleased to invite three leading experts for keynote
addresses:

• Tuomas Virtanen (Tampere University of Technology, Finland)
• Orly Alter (University of Utah, USA)
• Danilo Mandic (Imperial College London, UK) Joint work with Andrzej Cichocki

(Skolkovo Institute of Science and Technology, Skoltech, Moscow, Russia)

The Organizing Committee also decided to precede the conference by a one-day
Summer School including plenary lectures given by:

• Evrim Acar (Simula Research Laboratory, Oslo, Norway)
• Richard Turner (University of Cambridge, UK)
• Russell Mason, Ryan Chungeun Kim, Dominic Ward (University of Surrey,

Guildford, UK)

The LVA/ICA conference was followed by a special one-day workshop organized
on “Audio Applications” with the support of the UK Engineering and Physical Sci-
ences Research Council (EPSRC) through the projects “Musical Audio Repurposing
Using Source Separation” (EP/L027119/2), S3A “Future Spatial Audio in the Home”
(EP/L000539/1), and “Making Sense of Sounds” (EP/N014111/1), and the “Audio
Commons Initiative” funded by the European Commission Horizon 2020 grant
688382. The conference also provided a forum for the seventh community-based
Signal Separation Evaluation Campaign (SiSEC 2018), organized by Antoine Liutkus
(Inria, Montpellier, Languedoc-Roussillon, France). SiSEC 2018 successfully contin-
ued the series of evaluation campaigns initiated at ICA 2007, in London.

The success of the LVA/ICA 2018 conference was the result of the hard work of
many people whom we wish to warmly thank here. We wish to thank all the authors,
keynote speakers, and tutorial lecturers, as well as all the members of the TPC, without
whom this high-quality edition of LVA/ICA 2018 would not exist. We also wish to
express our gratitude to the members of the International LVA/ICA Steering Com-
mittee for their support to the conference, to the SiSEC 2018 organizers, and finally to
the local Organizing Committee and Events Team, for their hard work behind the
scenes to ensure that the conference ran smoothly and seamlessly.

May 2018 Yannick Deville
Sharon Gannot
Russell Mason

Mark D. Plumbley
Dominic Ward
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Abstract. Although several methods are available to compute the mul-
tilinear rank of multi-way arrays, they are not sufficiently robust with
respect to the noise. In this paper, we propose a novel Multilinear Tensor
Decomposition (MTD) method, namely R-MTD (Robust MTD), which
is able to identify the multilinear rank even in the presence of noise. The
latter is based on sparsity and group sparsity of the core tensor imposed
by means of the l1 norm and the mixed-norm, respectively. After sev-
eral iterations of R-MTD, the underlying core tensor is sufficiently well
estimated, which allows for an efficient use of the minimum descrip-
tion length approach and an accurate estimation of the multilinear rank.
Computer results show the good behavior of R-MTD.

Keywords: Multilinear tensor rank · MTD · Low rank
Sparse · Mixed-norm · l1 norm

1 Introduction

The rank estimation problem has been considered for several decades. The noisy
matrix case was firstly considered. Methods based on the computation of singular
values and the use of either Akaike’s information criterion [1], the Bayesian
Information Criterion (BIC) [2] or the Minimum Description Length (MDL)
principle [3] were proposed. The singular values of a low-rank noiseless matrix
can be sorted in decreasing order (see the red diamonds in Fig. 1). Then the
estimated rank Rest can be computed by searching the breaking point of the
singular value curve, which minimizes the MDL criterion [3]:

Rest = arg min
r

− 2log

{∏I
i=r+1 λ

1/(I−r)
i

1
I−r

∑I
i=r+1 λi

}J(I−r)

+ r(2I − r)log(J) (1)

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-319-93764-9_1
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Fig. 1. Singular values of a matrix (red diamonds) and those of its noisy version for
an SNR value of 0 dB (blue circles). (Color figure online)

where λi is the i-th highest singular value and where (I × J) is the size of the
considered matrix. Unfortunately, when the matrix is strongly noisy the MDL
approach has difficulty finding the breaking point (see the blue circles in Fig. 1).

The rank estimation problem was also considered for arrays with more than
two entries, commonly named tensors. Contrarily to the matrix case, there are
several definitions of tensor rank. In the following, we will consider the definition
related to the Multilinear Tensor Decomposition (MTD) model [4]:

F = G ×1 A ×2 B ×3 C =
R1∑
i=1

R2∑
j=1

R3∑
k=1

Gi,j,kA:,i ◦ B:,j ◦ C:,k, (2)

where A ∈ R
I1×R1 , B ∈ R

I2×R2 and C ∈ R
I3×R3 are the loading matrices

and where G ∈ R
R1×R2×R3 is the core tensor of a third order tensor F . Note

that X:,j denotes the j-th column of X and ◦ denotes the vector outer product
operator. The multilinear rank of F is given by the minimal values of R1, R2 and
R3 for which the equality (2) holds. The classical Higher-Order Singular Value
Decomposition (HOSVD) [5] is a special MTD, which is a direct extension of the
matrix SVD to tensors. While the multilinear rank can be derived from the rank
of the unfolding matrices of the considered tensor, the latter matrix ranks are
difficult to estimate as explained previously. Thus authors proposed to minimize
the nuclear norm of each unfolding matrix in order to find the minimal MTD [8]
and consequently the multilinear rank. More recently, the SCORE algorithm [7],
based on the modified eigenvalues of the considered noisy tensor, was proposed
too. Unfortunately, such methods are not sufficiently robust with respect to the
presence of noise.

In this paper, we propose a novel MTD method, namely R-MTD (Robust
MTD), which is able to identify the multilinear rank even in the presence of noise.
The latter is based on sparsity and group sparsity of the core tensor imposed by
means of the l1 norm and the mixed-norm, respectively. Note that the mixed-
norm was proved to be a convex envelope of rank and used to provide robust
canonical polyadic and block term decomposition algorithms [9,10]. After several
iterations of R-MTD, the underlying core tensor is sufficiently well estimated,
which allows for an efficient use of the MDL approach and an accurate estimation
of the multilinear rank. Computer results show the good behavior of R-MTD.
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2 Notions and Preliminaries

A scalar is denoted by an italic letter, e.g., x and I. A vector is denoted by a bold
lowercase letter, e.g., x ∈ R

I and a matrix is represented by a bold capital letter,
e.g., X ∈ R

I×J and specially, I is the identity matrix. The vectorization of X is
denoted by vec(X) ∈ R

IJ×1. X† is the pseudo inverse of matrix X. The nuclear
norm of a matrix X ∈ R

I×J with rank r is equal to the sum of its singular
values, i.e., ‖X‖∗ =

∑r
i=1 σi, and ‖X‖ is the largest singular value. The symbol

rank(.) denotes the rank operator. The l0 norm, l1 norm and Frobenius norm of
X ∈ R

I×J are defined by ‖X‖0 =
∑I

i=1

∑J
j=1 Xi,j/Xi,j with Xi,j �= 0, ‖X‖1 =∑I

i=1

∑J
j=1 |Xi,j | and ‖X‖F =

√∑I
i=1

∑J
j=1 X2

i,j , respectively. The mixed-

norm pair of X ∈ R
I×J is given by ‖X‖2,1 =

∑I
i=1

√∑J
j=1 X2

i,j = Tr[XTΦX]

and ‖X‖1,2 =
∑J

j=1

√∑I
i=1 X2

i,j = Tr[XΨXT], where Tr[.] is the trace opera-

tor, where Φ is a diagonal matrix with Φi,i = 1/
√∑J

j=1 X2
i,j denoting the (i, i)-

th component of Φ and where Ψ is a diagonal matrix with Ψj,j = 1/
√∑I

i=1 X2
i,j

standing for the (j, j)-th component of Ψ. Note that this trace compact defini-
tion is convenient for a convex optimization if Φ and Ψ are fixed as weight
matrices. A high-order tensor is denoted by a bold calligraphic letter, e.g.,
X ∈ R

I1×I2×···×IN . The symbol ⊗ denotes the Kronecker product operator.
The n-th mode unfolding matrix of the tensor X ∈ R

I1×I2×···×IN is denoted by
X(n) ∈ R

In×(In+1In+2...IN I1I2...In−1). The sub-tensor X in=k is obtained by fixing
the n-th index to k. The scalar product of two tensors X ∈ R

I1×I2×···×IN and
Y ∈ R

I1×I2×···×IN is defined by 〈X ,Y〉 =
∑I1

i1=1 · · · ∑IN

iN=1 X i1,··· ,iN
Yi1,··· ,iN

.

The Frobenius norm of tensor X is defined by ‖X‖F =
√∑

i1...iN
X 2

i1,...,iN
.

3 The R-MTD Method

3.1 Preliminary Tools

First let’s recall the definition of a convex envelope which will be used in the
following analysis.

Definition 1 (Lower convex envelope). Let f : R
n → R be a real-valued

function. The convex envelope of f , represented by Cf , is the convex pointwise
largest function Cf : Rn → R which is pointwise less than f . In other words, we
have Cf = sup{g : Rn → R | g is convex and g(x) ≤ f (x) for any x ∈ R

n}.
Now let’s study the lower convex envelopes of rank. The nuclear norm of X is
one of them in the norm ball, i.e., ‖X‖ ≤ 1, as shown in [12, Theorem 1] and
since the low rank constraint involves a NP-hard optimization problem it is bet-
ter to minimize the nuclear norm. On the other hand, an interesting relationship
between the nuclear norm and the mixed-norm was established in [11, Proposi-
tion 1] for a thin matrix case, i.e., X ∈ R

m×n with m > n. We extended this
result by means of the following Theorem1 and Corollary 1.
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Theorem 1. Given any matrix X ∈ R
m×n and its orthonormal subspace decom-

position denoted by X = Dα and X = θZ, where D ∈ R
m×m and Z ∈ R

n×n

are orthonormal matrices, with α ∈ R
m×n and θ ∈ R

m×n, the mixed-norms of
α and θ are larger than or equal to the nuclear norm of X, i.e. ‖α‖2,1 ≥ ‖X‖∗
and ‖θ‖1,2 ≥ ‖X‖∗.

Then we can easily derive the following corollary by fixing D and Z equal to the
identity matrix in Theorem1.

Corollary 1. We have ‖X‖2,1 ≥ ‖X‖∗ and ‖X‖1,2 ≥ ‖X‖∗.

In fact, for a matrix with full column rank or full row rank, the nuclear norm is
not the tightest convex envelope of rank and the mixed-norm is more qualified
to be a lower convex envelop of rank compared with the nuclear norm based on
the Definition 1 and the explanation is given in the following theorem.

Theorem 2. Given any matrix X ∈ R
m×n with linearly independent rows or

columns, we have:

1. If X has linearly independent rows, which means that rank(X) = m and
m ≤ n, then we get rank(X) ≥ ‖X‖2,1

‖X‖ ≥ ‖X‖∗
‖X‖ .

2. If X has linearly independent columns, which means that rank(X) = n and
m ≥ n, then we get rank(X) ≥ ‖X‖1,2

‖X‖ ≥ ‖X‖∗
‖X‖ .

Consequently, we will use the mixed-norm in the following subsection in order
to impose the low rank property. Besides, we will also minimize the l1 norm of
the over-estimated core tensor in order to vanish the residual nonzero elements
for which the absolute values are close to zero.

3.2 Towards the R-MTD Algorithm

In order to guarantee a sufficient group sparsity of each unfolding matrix along
the different dimensions, and each unfolding matrix consist with linear indepen-
dent rows, the proposed method is implemented under the following assumption:
Ri � min{Ii,

∏3
k=1,k �=i Ik} and Ri ≤ ∏3

k=1,k �=i Rk, i = 1, 2, 3.

R-MTD for Rank Estimation: The mixed-norm
∥∥Ĝ(i)

∥∥
2,1

is considered as
a lower convex envelope of rank in the objective function and the other mixed-
norm

∥∥Ĝ(i)
∥∥
1,2

is also adopted as a convex upper bound of the nuclear norm
for a more robust estimation. The objective function is presented below for a
third order multilinear tensor as an example but it is not hard to generalize it
to higher orders:

min
̂A,̂B,̂C,̂G

3∑
i=1

λi

(∥∥Ĝ(i)
∥∥
2,1

+
∥∥Ĝ(i)

∥∥
1,2

)
+

∥∥Ĝ∥∥
1

s.t. T = Ĝ ×1 Â ×2 B̂ ×3 Ĉ + N , Ĝ ∈ R
̂R1× ̂R2× ̂R3 ,

Â ∈ R
I1× ̂R1 , B̂ ∈ R

I2× ̂R2 , Ĉ ∈ R
I3× ̂R3 , (3)
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where Ĝ is the over-estimated core tensor, where Ĝ(i) are the unfolding matri-
ces along the different dimensions and where Â, B̂, Ĉ are the corresponding
over-estimated loading matrices. Here, we should note that R̂i should be larger
than Ri. The minimization problem (3) is solved by means of the Alternating
Directions Method of Multiplier (ADMM) [14]:

min
̂A,̂B,̂C,̂G

3∑
i=1

λi

(∥∥Ĝ(i)
∥∥
2,1

+
∥∥Ĝ(i)

∥∥
1,2

)
+

∥∥P̂∥∥
1

+
u

2

∥∥T − Ĝ ×1 Â ×2 B̂ ×3 Ĉ
∥∥2

F

s.t. Ĝ − P̂ = 0. (4)

The augmented Lagrangian function L of the variables Ĝ, Â, B̂, Ĉ, P̂ , Ŷ , β,
Φ(i) and Ψ(i) can be written as follows using the mixed-norm definition given
in Sect. 2:

L =
3∑

i=1

λi

[
Tr

(
Ĝ(i)TΦ(i)Ĝ(i)

)
+ Tr

(
Ĝ(i)Ψ(i)Ĝ(i)T

)]

+
∥∥P̂∥∥

1
+

u

2

∥∥T − Ĝ ×1 Â ×2 B̂ ×3 Ĉ
∥∥2

F

+
〈
Ĝ − P̂ , Ŷ

〉
+

β

2

∥∥Ĝ − P̂
∥∥2

F
, (5)

where the parameters λi, u and β are penalty coefficients and where Ŷ is the
Lagrangian multiplier tensor. Now let’s derive the update rule of each variable.
The mode-1 unfolding matrix of the core tensor Ĝ is computed from the following
gradient equation:

∂L
∂Ĝ(1)

= 2λiΦ(1)Ĝ(1) + 2λiĜ(1)Ψ(1) + βĜ(1) + uÂTÂĜ(1)
(
B̂ ⊗ Ĉ

)T(
B̂ ⊗ Ĉ

)
+ Ŷ(1) − βP̂(1) − uÂTT(1)

(
B̂ ⊗ Ĉ

)
= 0. (6)

The solution of (6) can be calculated by Encapsulating Sum in [15], the (k+1)-th
iteration of Ĝ(1) is given by:

vec(Ĝ(1)
k+1) =

{
I ⊗ (

2λiΦ
(1)
k

)
+

(
2λiΨ

(1)
k + βkI

) ⊗ I +
[(

B̂k ⊗ Ĉk

)T(
B̂k ⊗ Ĉk

)]

⊗ (
uÂT

kÂk

)}−1

vec
[
βkP̂

(1)
k − Ŷ(1)

k + uÂT

kT
(1)

(
B̂k ⊗ Ĉk

)]
. (7)

Consecutively, Ĝ(2) and Ĝ(3) at the (k + 1)-th iteration can be computed as
follows:

vec(Ĝ(2)
k+1) =

{
I ⊗ (

2λiΦ
(2)
k

)
+

(
2λiΨ

(2)
k + βkI

) ⊗ I +
[(

Ĉk ⊗ Âk

)T(
Ĉk ⊗ Âk

)]

⊗ (
uB̂T

kB̂k

)}−1

vec
[
βkP̂

(2)
k − Ŷ(2)

k + uB̂T

kT
(2)

(
Ĉk ⊗ Âk

)]
, (8)
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vec(Ĝ(3)
k+1) =

{
I ⊗ (

2λiΦ
(3)
k

)
+

(
2λiΨ

(3)
k + βkI

) ⊗ I +
[(

Âk ⊗ B̂k

)T(
Âk ⊗ B̂k

)]

⊗ (
uĈT

kĈk

)}−1

vec
[
βkP̂

(3)
k − Ŷ(3)

k + uĈT

kT
(3)

(
Âk ⊗ B̂k

)]
. (9)

Note that, the weighting matrices Φ(1)
k and Ψ(1)

k are derived from Ĝ(1)
k as the

definition in Sect. 2. For the computation of Φ(2)
k and Ψ(2)

k , they are calculated
using the 2-th mode unfolding matrix of the updated core tensor Ĝ(1)

k+1. Iden-

tically, Φ(3)
k and Ψ(3)

k are given using the updated core tensor Ĝ(2)
k+1. Then,

updating factor matrices by using tensor Ĝk+1, i.e., Ĝ(3)
k+1. The sub-problem

function about factor matrix Â in (k + 1)-th iteration is given as following:

min
̂Ak+1

∥∥T(1) − Âk+1Ĝ
(1)
k+1

(
B̂k ⊗ Ĉk

)T∥∥2

F
. (10)

The updated Âk+1 matrix at the (k + 1)-th iteration is given by:

Âk+1 = T(1)
[
Ĝ(1)

k+1

(
B̂k ⊗ Ĉk

)T
]†

. (11)

Using Âk+1, B̂k+1 at the (k + 1)-th iteration can be computed as follows:

B̂k+1 = T(2)
[
Ĝ(2)

k+1

(
Ĉk ⊗ Âk+1

)T
]†

. (12)

Similarly, Ĉk+1 at the (k + 1)-th iteration is given by:

Ĉk+1 = T(3)
[
Ĝ(3)

k+1

(
Âk+1 ⊗ B̂k+1

)T
]†

. (13)

Regarding variable P̂ , we have to minimize:

min
̂P

∥∥P̂∥∥
1

+
〈
Ĝ − P̂ , Ŷ

〉
+

β

2

∥∥Ĝ − P̂
∥∥2

F
. (14)

An equivalent problem of (14) is given by:

min
̂P

∥∥P̂∥∥
1

+
β

2

∥∥Ĝ − P̂ +
1
β
Ŷ

∥∥2

F
. (15)

The solution of P̂ in problem (15) has been solved in [13] as follows:

P̂k+1 = S 1
βk

(
Ĝk+1 +

1
βk

Ŷk

)
, (16)

where Sτ (x) = sign(x)(|x| − τ, 0), x ∈ R is the soft-thresholding operator and it
is used elementwise. The multiplier tensor Ŷ in (k +1)-th iteration is calculated
based on the following update rule:

Ŷk+1 = Ŷk + βk

(
Ĝk+1 − P̂k+1

)
. (17)
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The parameter β in (k + 1)-th iteration is updated as:

βk+1 = ρβk, ρ > 1. (18)

Finally, the proposed algorithm R-MTD stops when the convergence criterion is
reached, i.e.,

errork+1 − errork

errork
< tolerance (19)

with errork+1 =
∥∥T − Ĝk+1 ×1 Âk+1 ×2 B̂k+1 ×3 Ĉk+1‖F and errork =

∥∥T −
Ĝk ×1 Âk ×2 B̂k ×3 Ĉk‖F . Eventually, the values Rest

i are estimated using the
MDL criterion (2) on the singular values derived from the SVD of the unfolding
matrices Ĝ(i)

k+1, i = 1, 2, 3.

R-MTD for Denoising: Once the multilinear rank is estimated, we can use it
to replace the over-estimated rank in (3) and the penalty function for denoising
is rewritten as follows:

min
A,B,C,G

3∑
i=1

λi

(∥∥G(i)
∥∥
2,1

+
∥∥G(i)

∥∥
1,2

)
+ γ

∥∥G∥∥
1

s.t. T = G ×1 A ×2 B ×3 C + N ,G ∈ R
Rest

1 ×Rest
2 ×Rest

3 ,

A ∈ R
I1×Rest

1 ,B ∈ R
I2×Rest

2 ,C ∈ R
I3×Rest

3 . (20)

Here, the weight parameters of the constraints are set to zero, i.e., λi = γ = 0, i =
1, 2, 3. With these zero weight parameters, we can repeat the same procedure as
described previously.

4 Experiment Results

In this section, the noisy simulated data is utilized to test the performance of
R-MTD on rank estimation and signal denoising. A comparative study of our
method with the recent and efficient SCORE algorithm [7] is also provided. For
the proposed method, the selection of parameter λi, i = 1, 2, 3 should be larger
when the size of underlying core tensor is smaller than the over-estimated core
tensor size. Typically, these coefficients are set as λi = 5, i = 1, 2, 3 and the other
parameters μ, β and ρ are fixed as 0.025, 0.3 and 20, respectively. The selected
parameters of SCORE method are chosen as the paper [7] advised. All results
reported in this section are averaged over 100 Monte Carlo (MC) realizations.

Experimental Setting. The size of F is fixed with (I1 = I2 = I3 = 100)
and we consider different sizes of the core tensor G: (R1 = R2 = R3 = 3),
(R1 = R2 = R3 = 4) and (R1 = R2 = R3 = 5). All the elements of factor
matrices and the core tensor follow a Gaussian distribution. To implement our
method, the over-estimated core size is set to R̂1 = R̂2 = R̂3 = 10. The noise
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tensor E ∈ R
I1×I2×I3 also follows Gaussian distribution with different Signal-to-

Noise Ratio (SNR). Finally, the noisy tensor T is obtained as follows:

T = F + σ
‖F‖F

‖E‖F
E,

where the parameter σ controls the SNR, i.e. SNR = −20log10(σ).

Rank Estimation Performance. To evaluate the performance of all methods
on rank estimation, we propose two criteria. The first one named Accuracy Rate
(AR) measures the good estimate rate of all ranks, i.e. R1 = Rest

1 , R2 = Rest
2

and R3 = Rest
3 , and is defined as the following:

AR : Times of Ri = Rest
i , i = 1, 2, 3.

The second criterion, called Average Rank Estimation Error (AREE), measures
the deviation between the estimated ranks and exact ranks. It is given by:

AREE :
1

100

100∑
times=1

( 3∑
i=1

∣∣Ri − Rest
i

∣∣ )
.
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Fig. 2. The Accuracy Rate (AR) and the Average Rank Estimation Error (AREE)
criteria for different sizes of the core tensor as a function of SNR.

Figure 2, displays the obtained results of the rank estimation for different SNR
and different sizes of the core tensor. We can see that the AR criterion obtained
for R-MTD and SCORE is increasing as the SNR increases (first line of Fig. 2).
We also observed that, for all cases of the size of the core tensor, the robustness to
noise of the R-MTD outperforms the SCORE whatever the SNR is. The second
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(a) core size-(3× 3× 3)
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(b) core size-(4× 4× 4)
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(c) core size-(5× 5× 5)

Fig. 3. The Average Relative Error (ARE) criterion for different sizes of the core tensor
as a function of SNR.

line of Fig. 2 shows the AREE criterion. Clearly, the rank estimation errors of
R-MTD are always smaller than those of the SCORE method for all scenarios
and SNR.

Signal Denoising Efficiency. In this section, we consider the effectiveness
and robustness of the proposed method on signal denoising. To do so, four com-
bination cases of rank estimation methods and tensor decomposition ones are
considered: R-MTD+R-MTD, R-MTD+HOOI [6], SCORE+T-HOSVD [5] and
SCORE+HOOI. The reconstruction error is defined as the Average Relative
Error (ARE), given by:

ARE :
1

100

100∑
times=1

‖Fest − F‖F

‖F‖F
.

Figure 3 gives the effectiveness of the four compared methods. For SNR higher
or equal to −5 dB, all methods seem to have similar performances. Regard-
ing the lower SNR, we can see that the performances of the SCORE+HOOI,
R-MTD+R-MTD and R-MTD+HOOI are better than the SCORE+T-HOSVD.
This can be explained by the fact that the T-HOSVD method only extract
the first several components corresponding to the estimated rank without any
denoising process, it cannot gives excellent denoising result for lower SNR cases.
Besides, although AR results of the R-MTD is more effective than the SCORE,
the denoising efficiency of SCORE+HOOI is almost the same as the efficiency
of R-MTD+R-MTD and R-MTD+HOOI because of the smaller difference of
AREE between the SCORE and the R-MTD.

5 Conclusion

We have proposed a new MTD method, named R-MTD, that permits to identify
the multilinear rank of noisy data. To do so, a sparsity and group sparsity of the
core tensor are imposed by means of the l1 norm and the mixed-norm, respec-
tively. More precisely, we first over-estimate the core tensor, then an optimal
core tensor is estimated from noisy multilinear tensor after several iterations of
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the R-MTD algorithm. We also assessed the importance of a good estimation of
the rank of the core tensor to signal denoising. Different experiments conducted
using simulated data demonstrated the effectiveness of the R-MTD algorithm
both for rank estimation and for data denoising.
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Abstract. This paper introduces a new method for multichannel speech
enhancement based on a versatile modeling of the residual noise spec-
trogram. Such a model has already been presented before in the sin-
gle channel case where the noise component is assumed to follow an
alpha-stable distribution for each time-frequency bin, whereas the speech
spectrogram, supposed to be more regular, is modeled as Gaussian. In
this paper, we describe a multichannel extension of this model, as well
as a Monte Carlo Expectation - Maximisation algorithm for parameter
estimation. In particular, a multichannel extension of the Itakura-Saito
nonnegative matrix factorization is exploited to estimate the spectral
parameters for speech, and a Metropolis-Hastings algorithm is proposed
to estimate the noise contribution. We evaluate the proposed method in
a challenging multichannel denoising application and compare it to other
state-of-the-art algorithms.

1 Introduction

In many contexts, speech denoising is studied and applied in order to obtain,
among other things, a comfortable listening or broadcast of a talk [2], by exploit-
ing the observed noisy signal, obtained by several microphones. From an audio
source separation perspective, this denoising is achieved through a probabilis-
tic model, where the observed signal is divided into two latent sources: a noise
component and a target source.

Both speech and noise components are usually considered in the time fre-
quency (TF) domain where all TF-bins are supposed to be independent and
follow a Gaussian law [5,13]. A common approach to speech enhancement is the
spectral subtraction method [6]. Its principle is to estimate an a priori signal to
noise ratio (SNR) in order to infer a short-time spectral amplitude (STSA) esti-
mator of the noise which will be substracted from the STSA of the observations.
Another popular trend is to decompose the power spectral densities (PSD) of
sources into a product of two matrices. The non-negative matrix factorization
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 13–23, 2018.
https://doi.org/10.1007/978-3-319-93764-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93764-9_2&domain=pdf
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(NMF) model assumes that the PSDs admit low-rank structures and it performs
well in denoising.

To the best of our knowledge, NMF models for multichannel speech enhance-
ment have been proposed only in a Gaussian probabilistic context, whereas a
non-Gaussian approach could offer a more flexible model for noise and speech.
Moreover, a good initialization in a Gaussian NMF model is crucial to avoid
staying stuck in a local minimum [3]. Many studies in the single-channel case
have shown a better robustness to initialization when the signal is modeled in
the TF domain with as heavy tail distribution [19,22].

Among this type of distributions, α-stable distributions preserve interesting
properties satisfied by Gaussian laws, and they can model distributions ranging
from light tails as in the Gaussian case to heavy tails as in the Cauchy case.
Indeed, α-stable distributions are the only ones which admit a central limit
theorem and stability by summation [16]. Various studies have been carried out
on audio modeling using alpha-stable processes [12,19]. Especially in the TF
domain, a generalization of wide-sense stationary (WSS) processes [13] has been
established in the α−stable case [12] and applied to noise reduction [8]. More
precisely, in [20] it was considered that the target source is Gaussian and the
residual noise is α-stable, in order to get a greater flexibility on noise modeling.

This paper introduces a generalization of [20] to the multichannel case. The
goal is to develop a Gaussian NMF model for speech that assumes a low-rank
structure for speech covariances [5], while the noise part is taken as an α−stable
process. Parameters are estimated through a combination of the multichannel
extension of Itakura Saito NMF (IS-NMF) [17] for speech and a Markov Chain
Monte Carlo (MCMC) strategy for estimating the noise part. The proposed
method is evaluated for multichannel denoising, and compared to other state-
of-the-art algorithms.

2 Probabilistic and Filtering Models

2.1 Mixture Model

Let x ∈ C
F×T×K be the observed data in the short-time Fourier transform

(STFT) domain where F, T and K denote the number of frequency bands, time
frames and microphones, respectively. The observation x will be assumed to be
the sum of two latent audio sources represented by two tensors: the first one is
written y ∈ C

F×T×K and accounts for the speech signal. The second one is
written r ∈ C

F×T×K and called the residual component. We have:

xft = yft + rft, (1)

where each term belongs to C
K . The main goal in this paper is to estimate the

tensors y and r knowing x, by using a probabilistic model described below.
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2.2 Source Model

At short time scales, the speech signal may be assumed stationary and does not
feature strong impulsiveness. This motivates modeling it as a locally stationary
Gaussian process [13]. Furthermore, we also assume that the different channels
for yft are correlated, accounting for the spatial characteristics of the signal.
Consequently, we assume that each yft is an isotropic complex Gaussian vector1

of mean 0 and covariance matrix Cy
ft � Rfvf,t, where the spatial covariance

matrix Rf ∈ C
K×K encodes the time-invariant correlations of speech in the

different channels and vft is the PSD of the speech signal [5]. To exploit the
redundancy of speech, we further decompose vft through NMF and obtain:

∀f, t yft ∼ Nc

(
yft; 0,Rfvft � Rf

L∑
l=1

wflhlt

)
. (2)

where � means “equals by definition”and W ∈ R
F×L
+ ,H ∈ R

L×T
+ are matrices

which respectively contain all non-negative scalars wfl and hlt. While W is
understood as L spectral bases, H stands for their activations over time. To
make notations simpler, let Θ � {W ,H,R} be the parameters to be estimated
with R � {Rf}f . Note that the decomposition of vft is not unique: it is defined
up to multiplicative constant.

In contrast to the speech signal, the model of the residual component should
allow for outliers and impulsiveness. To do so, the residual part is modeled by an
heavy-tailed distribution in the time domain. Recent works proposed a station-
ary model called α−harmonizable process with α ∈ (0, 2] in the single-channel
case. It is shown in [12,16] that such a model is equivalent to assuming that
the signal at every time-frequency bin f, t follows a complex isotropic symmet-
ric α−stable distribution. With the aim of extending the previous model to a
multichannel one, we take all rft as distributed with respect to an elliptically
contoured multivariate stable distribution (ECMS, denoted EαS) and indepen-
dent of one another. These distributions, which are a particular case of α−stable
distributions, have the particularity of requiring only two parameters [11,16]:

1. A characteristic exponent α ∈ (0, 2]: the smaller α, the heavier the tails of
the distribution.

2. A positive definite Hermitian scatter matrix in C
K×K .

In this article, the scatter matrices for all rft are taken equal to σfIK ,
where IK ∈ R

K×K is the identity matrix and σf > 0 is a positive scalar that
does not depend on time. We have:

∀f, t rft ∼ EαSK (σfIK) . (3)

1 The probability density function (PDF) of an isotropic complex Gaussian vector
is NC(x|μ, C) = 1

πK det C
exp

(− (x − μ)� C−1 (x − μ)
)
.
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2.3 Filtering Model

As mentioned in Subsect. 2.1, we aim to reconstruct the sources y and r from
the observed data x. From a signal processing point of view, when parameters
σ,W ,H,R are known, one would like to compute the Minimum Mean Squared
Error (MMSE) estimates of both sources. In our probabilistic context, these can
be expressed as the posteriori expectations E (yft|xft,Θ,σ).

To compute such estimates, a property specific to ECMS distributions can
be exploited to represent r as a complex normal distribution Nc of dimension K,
whose variance is randomly multiplied by a positive random impulse variable φft

distributed as P α
2 S

(
2 cos

(
πα
4

)2/α
)
, where P α

2 S is the positive α/2-stable dis-
tribution (see [19] for more details):

∀f, t rft|φft ∼ Nc (rft; 0, φftσfIK) , (4)

If we assume for now that Φ � {φft}f,t are known in (4), we get the distribution
of the mixture as:

∀f, t xft|φft ∼ Nc

(
xft; 0,C

x|φ
ft

)
, (5)

where C
x|φ
ft � Rf

∑L
l=1 wflhlt + φftσfIK . This in turns allows to build a mul-

tichannel Wiener filter as [2]:

E (yft|xft,Φ,Θ,σ) = Cy
ft

(
C

x|φ
ft

)−1

xft, (6)

with .−1 standing for matrix inversion.
Now, the strategy we adopt here is to marginalize this expression over Φ | x,

to get:
ŷft = EΦ|x [E [yft|xft,Φ,Θ,σ]] = Gftxft,

where
Gft � Cy

ftΞft (7)

is the marginal Wiener filter, and Ξft � EΦ|x

[(
C

x|φ
ft

)−1
]

is the average inverse

mixture covariance matrix. We will explain how to compute Ξ later in Sect. 3.3.

3 Parameter Estimation

3.1 Expectation-Maximization (EM) Algorithm

Assuming that the observations x and the impulse variable φ are known, we first
aim to estimate the parameters Θ. We choose a maximum likelihood estimator
in order to get the most likely source NMF parameters W ,H:

(W �,H�,R�) = arg max
W ,H ,R

logP (x,Φ |Θ,σ) , (8)
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where Φ is a latent variable and logP (x,Φ |Θ,σ) is the log-likelihood. As in [20],
we propose an EM algorithm. This method aims to minimize an upper-bound
of Ln (W ,H,R) = − logP (x,Φ |Θ,σ). This approach is summarized in the
following two steps:

E-Step: Qn (W ,H ,R) = −EΦ|x,W (n−1),H (n−1) [Ln (W ,H ,R)] , (9)

M-Step:
(
W (n),H(n),R(n)

)
= arg max

W ,H ,R
Qn (W ,H ,R) . (10)

E-Step: We first introduce a positive function that upper-bounds the negative
log-likelihood Ln (W ,H,R), which is equal to [17]:

Ln (W ,H,R) =
∑
f,t

[
tr

(
X̃ft

(
C

x|φ
ft

)−1
)

+ log detC
x|φ
ft

]
(11)

where X̃ft � xftx
�
ft and .� stands for the Hermitian transposition. A positive

auxiliary function L+
n (W ,H,R,U ,V ) =

∑
f,t

[ ∑
l

tr

(
X̃ ftU lft

(
C

x |φ
lft

)−1
U lft

)

wflhlt
+

tr(X̃ ftU
2
lft)

σf φft
+ log detV ft +

detC
x |φ
ft −detV ft

detV ft

]
which satisfies:

L+
n (W ,H,R,U ,V ) ≥ Ln (W ,H,R) (12)

is introduced in [17]. Using (12) and the definition of Qn in (9), we obtain:

EΦ|xLn (.) ≤ EΦ|xL+
n (.) � Q+

n (.) (13)

with:

Q+
n (W ,H,R,U ,V ) =

∑
f,t

[ ∑
l

EΦ|x

(
tr

[
X̃ftU lft

(
C

x|φ
lft

)−1

U lft

])
wflhlt

+EΦ|x
(
tr

[
X̃ftU

2
lft

])
σ−1

f φ−1
ft + EΦ|x

(
log det V ft + det

(
V −1

ft C
x|φ
lft

)
− 1

) ]
(14)

The form in (14) admits partial derivatives that will be useful as part of a
multiplicative update [7] in the M-Step.

M-Step: Solving the M-Step in (10) is equivalent to zeroing the partial deriva-
tives ∂Q+

n

∂wfl
and ∂Q+

n

∂hlt
and to set U ,V such that the equality in (13) is verified. A

multiplicative update approach yields:

wfl ← wfl

√∑
t hlttr (RfP ft)∑
t hlttr (RfΞft)

; hlt ← hlt

√∑
f wfltr (RfP ft)∑
f wfltr (RfΞft)

(15)
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where the quantity Ξft = EΦ|x

[(
C

x|ϕi

ft

)−1
]

has been used above in (7) and

P ft = EΦ |x

[(
C

x |ϕi
ft

)−1

X̃ft

(
C

x |ϕi
ft

)−1
]
. We will explain how to compute these

expectations in Subsect. 3.3.

3.2 Estimation of Spatial Covariance Matrices and Noise Gains σ

We update the spatial covariance matrix R in the M-step as in [5], further using
the trick proposed in [14] to use a weighted update, resulting in:

Rf ←
(∑

t

vft

)−1

×
∑

t

(
C

yy�|x
ft

)
, (16)

where: C
yy�|x
ft � GftX̃ftGft +Cy

ft −GftC
y
ft is the total posterior variance for

the speech source.
Concerning the estimation of the noise gain σ in (3), we exploit a result

in [4] that if z ∼ EαS (σ) , then E [‖z‖p]
α
p ∝ σ, for p < α, with ∝ standing for

proportionality. The strategy we adopt is to apply this estimation only once at
the beginning of the algorithm to the mixture itself, by taking a robust estimation
like the median M instead of the average, to account for the fact that not all TF
bins pertain to the noise, but that a small portion also pertain to speech. We
thus pick p = α/2 and take:

σf ← M

(
‖
∑

t

x (f, t) ‖α/2

)2

. (17)

3.3 Expectation Estimation Using Metropolis-Hastings Algorithm

We still have to calculate the expectations Ξft and P ft. Unfortunately, they
cannot be calculated analytically. To address this issue, we set up a Markov
Chain Monte Carlo (MCMC) algorithm in order to approximate the expectations
for each iteration. We are focusing on the Metropolis-Hastings algorithm through
an empirical estimation of Ξft and P ft as follows:

Ξft 
 1
I

I∑
i=1

(
C

x|ϕi

ft

)−1

; P ft 
 1
I

I∑
i=1

((
C

x|ϕi

ft

)−1

X̃ft

(
C

x|ϕi

ft

)−1
)

(18)

with
(
C

x|ϕi

ft

)−1

= [
∑

l (Rflwflhlt) + ϕft, iσfIk]−1 and ϕft, i are sampled as
follows:

First Step (Sampling Process): Generate a sampling via the prior distribu-
tion ϕ′

ft ∼ P α
2 S

(
2 cos

(
πα
4

)2/α
)
.
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Second Step (Acceptance):

– Draw u ∼ U ([0, 1]) where U denotes the uniform distribution.
– Compute the following acceptance probability:

acc (ϕft → ϕ′
ft) = min

⎛
⎝1,

Nc

(
xft; 0, ϕ′

ftσfIK + Cy
ft

)
Nc

(
xft; 0, ϕftσfIK + Cy

ft

)
⎞
⎠

– Test the acceptance:
• if u < acc (ϕft, i−1 → ϕ′

ft), then ϕft, i = ϕ′
ft (acceptance)

• otherwise, ϕft, i = ϕft, i−1 (rejection)

4 Single-Channel Speech Signal Reconstruction

Let ŷ be the multichannel signal obtained after Wiener filtering (7). In the
context of speech enhancement, the desired speech is rather a single-channel
signal, that we write ŝ ∈ C

F×T . In this study, we take ŝ as a linear combination
of ŷ with a time-invariant beamformer Bf ∈ C

K [21]:

ŝft � B�
f ŷft,

where .�denotes the Hermitian transposition. There are many ways to devise the
beamformer Bf . In this study, we choose to maximize the energy of B�

fyft | x:

1
T

∑
t

E

(∣∣B�
fyft

∣∣2 |xft

)
= B�

fE
(
yfty

�
ft|x

)
Bf .

= B�
f

1
T

∑
t

(
C

yy�|x
ft

)
Bf .

This is solved by taking Bf as the eigenvector associated to the largest eigenvalue

of the Hermitian matrix 1
T

∑
t

(
C

yy�|x
ft

)
[5].

5 Evaluation

We investigate both the quality of speech enhancement and the audio source sep-
aration performance. Our proposed approach will be compared to two baseline
methods:

ARC The proposed Alpha Residual component. We take N = 10 iterations
for the EM and pick α = 1.9.

MWF The classic multi-channel Wiener filter [5] which assumes Gaussianity
for both noise and speech.

GEVD The generalized eigenvalue decomposition [18] is based on a low-rank
approximation of the autocorrelation matrix of the speech signal.
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5.1 Experimental Setup

The corpus for evaluation is made up of mono speech excerpts from Librispeech [15]
and three different environmental noises taken from Aurora [10]: babble noise,
restaurant and train. A groundtruth voice activity detection (VAD) is used on all
three methods.

Mixtures were obtained for two 15 cm separated microphones, with the
Roomsimove simulator with room dimensions of 5×4×3 meters and RT60=0 ms
and 500 ms. The sources are taken 1 m from the microphones, with different SNR
values of −5, 0, 5, 10 dB and an angular distance of 30◦or 90◦. This results in 48
experiments.

5.2 Performance Measures

For the evaluation, two scores will be measured: the first one is a speech intelli-
gibility weighted spectral distortion (SIW-SD) measure and the second one is a
speech intelligibility-weighted SNR (SIW-SNR) [9].

The SIW-SD measure is defined as:

SIW − SD =
∑

i

IiSDi (19)

where Ii is the band importance function [1] and SDi the average SD (in dB) in
the i -th one third octave band,

SDi =
1

(21/6 − 2−1/6)fc
i

∫ 21/6fc
i

2−1/6fc
i

|10 log10 Gy(f)|df (20)

with center frequencies fc
i and Gy(f) is given by:

Gy(f) =
P y (f)
Pŷ (f)

(21)

where P y (f) and Pŷ (f) are the power, for the frequency f , of the speech com-
ponent of the input signal y and the speech component output signal ŷ, respec-
tively.

The SIW-SNR [9] is used here to compute the SIW-SNR improvement which
is defined as

ΔSNRintellig =
∑

i

Ii(SNRi,out − SNRi,in) (22)

where SNRi,out and SNRi,in represent the output SNR of the noise reduc-
tion filter and the SNR of the signal in the first microphone in the ith band,
respectively.
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5.3 Results

Results are displayed on Fig. 1 and present the SIW-SNR and SIW-SD scores
averaged over noise types and spatial scenarios, against the input SNR.

We first investigate the impact of reverberation. While we see that ARC is
outperformed by other methods in the anechoic case, we see it is much less sensi-
tive to reverberation and becomes competitive compared to the other algorithms
in terms of SIW-SD at low input SNR.
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Fig. 1. SIW (left, higher is better) and SNR & SIW-SD (right, lower is better) for:
(top) an anechoic scenario and (bottom) a reverberent room.

6 Conclusion

We proposed a new method ARC for denoising that is more robust to reverber-
ation than competing approaches, although less effective in the anechoic case.
It is based on modeling the speech signal as a Gaussian process and noise as
an α-stable sub-Gaussian process. Interestingly, that approach can be combined
with existing methods, which could be an interesting avenue for future work.
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Abstract. We develop an extension to Poisson factorization, to model
Multinomial data using amoment parametrization. Our construction is an
alternative to the canonical construction of generalized linearmodels. This
is achieved by defining K component Poisson Factorization models and
constraining the sum of observation tensors across components. A family
of fully conjugate tensor decompositionmodels for binary, ordinal ormulti-
nomial data is devised as a result, which can be used as a generic building
block in hierarchicalmodels for arrays of such data.We give parameter esti-
mation and approximate inference procedures based on ExpectationMax-
imization and variational inference. The flexibility of the resulting model
on binary and ordinal matrix factorizations is illustrated. Empirical eval-
uation is performed for movie recommendation on ordinal ratings matrix,
and for knowledge graph completion on binary tensors. Themodel is tested
for both prediction and producing ranked lists.

1 Introduction

Approximate matrix and tensor factorization methods have found diverse appli-
cations all across in machine learning, information retrieval, bioinformatics and
signal processing [5]. For many applications, they provide a good balance between
accurate, interpretable models and efficient, scalable and parallelizable algo-
rithms. This balance, supported with a rich background theory has arguably
contributed to the popularity of approximate matrix decompositions.

The approximate matrix factorization problem is typically cast as an opti-
mization problem: for a given matrix X find matrices W ∗,H∗ such that

(W ∗,H∗) = arg min
W,H

D(X||WH) (1)

where the error function D is a divergence. Note that this formulation is equiva-
lent to finding a nearby matrix X̂ that can be written as an exact matrix product
X̂ = WH.
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Error functions for matrices are almost always chosen as elementwise, where
D(X||X̂) =

∑
ij d(X(i, j)||X̂(i, j)), with the most popular choice being the

square Euclidean divergence d(x||x̂) = (x − x̂)2/2. When matrix element X(i, j)
and the corresponding approximation X̂(i, j) are positive, the information diver-
gence with d(x||x̂) = x log(x/x̂) − x + x̂ is also often used. When the matrices
X and X̂ are suitably normalized, the information divergence is also known as
the Kullback-Leibler (KL) divergence.

Approximate matrix factorization can also be cast as a statistical estima-
tion problem. Such a probabilistic perspective is attractive as it opens up the
possibility of solving more challenging tasks such as active learning or model
selection, via an hierarchical Bayesian treatment. In the sequel, we will detail
on two closely related approaches for the construction of probabilistic matrix
factorization models as generative models [9,18].

The first approach is defining the observation density for each matrix element
X(i, j) as an exponential family:

X(i, j) ∼ p(·; θ(i, j)) = exp(ψ(X(i, j))θ(i, j) − A(θ(i, j))) (2)

Here ψ is known as the sufficient statistics and A is the log-partition function [1,
21]. We will refer to this model as the canonical parametrization. The exponential
family form arises naturally as the maximum entropy (Gibbs) distribution when
the data distribution is solely described in terms of fixed dimensional sufficient
statistics ψ. Many models, such as exponential family PCA [6], Logistic Matrix
Factorization [20], Ordinal Matrix Factorization [10,17], or various binary tensor
factorization models such as RESCAL [15] can be viewed as a factorization of the
canonical parameters.

In the second approach, one directly parametrizes the moment parameters.
Here, each matrix entry X(i, j) is modelled with a random variable having a
density of the form

X(i, j) ∼ p(·;μ(i, j)) =
1
Z

exp(−D(X(i, j)||μ(i, j))) (3)

where μ(i, j) is an expectation parameter. One key aspect is that the normalizing
constant Z does not depend on the expectation μ. Many popular matrix decom-
position methods, such as Probabilistic PCA [14], Factor analysis, Nonnegative
Matrix factorization with KL cost (KL-NMF) also known as Poisson Factor-
ization [3,4,7,8] Gaussian Matrix Factorization [18] can be viewed as a low-
rank decompositions of moment parameters. For example, Poisson factorization
closely related to NMF with KL cost assumes X(i, j) ∼ PO(

∑
k W (i, k)H(k, j))

where PO(μ) denotes the Poisson distribution with intensity μ [3].
In the absence of any parameter tying or regularization, the moment and

canonical forms would be equivalent in the sense that there exists a bijective
mapping g between the two parametrizations as g−1(θ(i, j)) = μ(i, j) known as
the canonical link. In fact, when D is a Bregman divergence, there is a one-to-
one correspondance between exponential family distributions and divergences [2].
However, as matrix factorization achieves parameter tying via a low rank decom-
position, the choice of the parametrization can sometime have a dramatic effect
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on the prediction power as well as the interpretability of the resulting model.
In other words, it makes a difference when μ(i, j) or θ(i, j) is set to be equal to∑

k W (i, k)H(k, j). The difference is sometimes explained informally as additive
versus multiplicative combination of the inferred latent representations W (i, :)
and H(:, j). For example, the canonical form alternative to Poisson factoriza-
tion is X(i, j) ∼ PO(exp(

∑
k W (i, k)H(k, j))), where the canonical parameter

θ = log μ is factorized, is far less often used, possibly because the parameters
would lack sparsity and are not easily interpretable.

This observation brings us to the motivation of the present paper: to develop
a simple method to extend Poisson factorization, hence KL-NMF, to Multino-
mial models using a moment parametrization. The resulting approach enjoys
all the attractive properties of Poisson factorization such as conjugacy and can
be very easily implemented. The model can also be used as a building block
in hierarchical models for arrays of binary, ordinal or categorical data, as the
multinomial family of distributions include Bernoulli, Binomial and categorical
distributions. The derivation is simple and hinges on two well known properties
of Poisson distributions [11]: (i) the sum n =

∑K
i=1 xi of a collection of inde-

pendent Poisson random variables xi with intensities μi is also Poisson with the
intensity μ =

∑
i μi; and (ii) conditioned on n, the joint posterior p(x1, . . . , xK |n)

is multinomial with the i’th cell probability given as μi/μ. A similar construction
for source separation but for conditionally Gaussian models has been described
in [19].

2 Model

The Sum Conditioned Poisson Factorization (SCPF) model defines K compo-
nent Poisson Factorization (PF) models and constrains the sum of observation
matrices across components. More precisely, the generative model for SCPF is:

wk,i,r ∼ G(aw, bw/aw) hk,r,j ∼ G(ah, bh/ah) sk,i,j,r ∼ PO(wk,i,rhk,r,j)

xk,i,j =
Rk∑

r=1

sk,i,j,r ni,j =
K∑

k=1

xk,i,j (4)

where G(a, b/a) denotes the Gamma distribution with shape a and mean b.
Using the superposition property, each matrix entry xk,i,j is a-priori Poisson

with intensity
∑Rk

r=1 wk,i,rhk,r,j where Rk is the model order, that is the rank
of the latent intensity matrix. The model is completed by constraining the total
sum across k components to ni,j that we will refer as the cardinality matrix. In
practice, we will assume that the cardinality matrix ni,j is always known and
is equal to the cardinality of the discrete variable and K is the number of cate-
gories in an one-hot encoding schema. Conditioning on ni,j couples the random
variables x:,i,j across the k index to have jointly a Multinomial distribution. As a
specific example, for modelling a binary matrix, we choose K = 2 and let ni,j = 1
to be a matrix of ones. As such, the full conditional p(x1:2,i,j |ni,j , w:,i,:, h:,:,j) is a
Bernoulli in a one-hot encoding [1, 0] or [0, 1]. For a categorical distribution, we



Sum Conditioned Poisson Factorization 27

choose K as the number of categories and let ni,j = 1. For a binomial random
variable with a range of {0, . . . , n}, we let ni,j = n and K = 2. A schematic
representation with ‘cubic’ plots is shown in Fig. 1.
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N = k Xki

j

. . . . . .

Fig. 1. A schematic description of SCPF model.

The SCPF model is particularly suitable for modeling bounded ordinal data
such as movie ratings by a Binomial distribution. Suppose we are given an
incomplete matrix with entries Y (i, j) ∈ {0, . . . , n} with observed (missing)
entries denoted by a mask matrix m̃i,j = 1 (=0). We would define a SCPF
model with K = 2 and ni,j = n for all variables and clamp x1,i,j = Y (i, j).
For the special case of K = 2, we can infer that x2,i,j = n − x1,i,j . Here,
the matrices x1,:,: and x2,:,: correspond to ‘like’ and ‘dislike’ scores respec-
tively. If there were no missing entries in the original matrix Y , the cor-
responding SCPF model would reduce to two conditionally independent PF
models. However, when there are missing entries, the predictive distribution
p(x1,i,j |ni,j ,W,H) is Binomial with index parameter n and the probability
∑R1

r=1 w1,i,rh1,r,j/(
∑R1

r=1 w1,i,rh1,r,j +
∑R2

r=1 w2,i,rh2,r,j). In a sense, the model
balances ‘like’ and ‘dislike’ features to generate predictions.

For the general case n > 1 and K > 2, we introduce for each component
k = 1 . . . K a 0–1 mask matrix mk,i,j , that is 1 or 0 if xk,i,j is observed or
missing. Since the cardinality matrix ni,j is always fixed, the unobserved xk,i,j

for a fixed i, j pair are still coupled. To simplify the notation, we define a residual
matrix Ñ where ñi,j = ni,j − ∑K

k=1 xk,i,jmk,i,j . Ñ provides the fraction of data
that needs to be explained by the unobserved component matrices Xk.
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3 Learning and Inference

In this section we present an Expectation Maximization (EM) approach for
parameter estimation in a SCPF model and compare it to KL-NMF and PF. We
also present full Bayesian inference with Variational inference.

For notational clarity, the procedures given in this section would, without
loss of generality, assume 3-way component and cardinality tensors and 3 factor
matrices per each component. Also for brevity, we will omit symmetrical update
rules.

The generative model becomes:

wk,i,r ∼ G(aw, bw/aw) hk,j,r ∼ G(ah, bh/ah) gk,l,r ∼ G(ag, bg/ag)

sk,i,j,l,r ∼ PO(wk,i,rhk,j,rgk,l,r) xk,i,j,l =
Rk∑

r=1

sk,i,j,l,r ni,j,l =
K∑

k=1

xk,i,j,l

(5)

3.1 Expectation Maximization

Given observed entries of component tensors X, the mask M and cardinality
tensors N , our goal is to infer the factors W , H and G such that the likelihood
is maximized.

The derivations are straightforward and follow closely [3]. The SCPF log-
likelihood is:

log p(N,X|W,H,G) = log

[
∑

S

p(N |X)p(X|S)p(S|W,H,G)

]

=
∑

k,i,j,l

mk,i,j,l log(PO(xk,i,j,l;
∑

r

wk,i,rhk,j,rgk,l,r)) (6)

+
∑

i,j,l

log(PO(ñi,j,l;
∑

k

(1 − mk,i,j,l)
∑

r

wk,i,rhk,j,rgk,l,r))

(7)

The expected sufficient statistics of the latent components s can be computed
in closed form:

E1(sk,i,j,l,r) =
wk,i,rhk,j,rgk,l,r

∑Rk

r=1 wk,i,rhk,j,rgk,l,r
xk,i,j,l (8)

E0(sk,i,j,l,r) =
wk,i,rhk,j,rgk,l,r

∑K
k=1(1 − mk,i,j,l)

∑Rk

r=1 wk,i,rhk,j,rgk,l,r
ñi,j,l (9)

When xk,i,j,l is observed, the corresponding latent variables wk,i,:, hk,j,: and gk,l,:
are conditionally independent from others (w�k,i,: and h �k,j,:, g�k,l,:). When some
x:,i,j,l are missing, however, the latent decomposition variables become coupled,
and the residual ñi,j,l is shared among the corresponding factor variables.
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The EM update equations can be viewed as a simple generalization of KL-
NMF [12], or PF [3,7]. Indeed, when no data is missing, the algorithm identically
reduces to the so-called multiplicative updates for KL-NMF. However, with miss-
ing data, the model incorporates the residual matrix into the update rules via
the second terms. The updates for a maximum a-posteriori (MAP) estimation
take the forms given below:

wk,i,r ← aw +
∑

j,l (mk,i,j,lE1(sk,i,j,l,r) + (1 − mk,i,j,l)E0(sk,i,j,l,r))
aw/bw +

∑
j,l hk,j,rgk,l,r

(10)

where aw and bw correspond to the shape and mean parameters of the a-priori
Gamma distributions for each entry of W

The predictive distribution for xk,i,j,l is a Multinomial with mean:

x̂k,i,j,l = ni,j,l

∑Rk

r=1 wk,i,rhk,j,rgk,l,r
∑K

k=1

∑Rk

r=1 wk,i,rhk,j,rgk,l,r
(11)

3.2 Variational Inference

The hierarchical probability model is conjugate and here we present varia-
tional inference equations with mean field approximation. Fully factorized instru-
mental distribution q(S,W,H,G) is used to approximate posterior distribution
p(S,W,H,G|N,X), where sk,i,j,l|pk,i,j,l is the multinomial variational decompo-
sition variable, and wk,i,r|αw

k,i,r, β
w
k,i,r is the variational gamma factor variable.

H and G are devised analogously to W .
The variational objective can be optimized by using coordinate solvers at

each iteration due to conjugacy. The updates are shown below:

φk,i,j,l,r ← exp [E[log wk,i,r] + E[log hk,j,r] + E[log gk,l,r]] (12)

αw
k,i,r ← aw +

∑

j,l

[

mk,i,j,lxk,i,j,l
φk,i,j,l,r∑
r′ φk,i,j,l,r′

+ (1 − mk,i,j,l)ñi,j,l
φk,i,j,l,r∑

k′(1 − mk′,i,j,l)
∑

r′ φk′,i,j,l,r′

]

(13)

βw
k,i,r ←

⎛

⎝aw/bw +
∑

j,l

E[hk,j,r]E[log gk,l,r]

⎞

⎠

−1

(14)

where E[wk,i,r] = αw
k,i,rβ

w
k,i,r and E[log wk,i,r] = ψ(αw

k,i,r) + log(βw
k,i,r) with

digamma function ψ(.)

4 Experiments

In this section, we will illustrate the flexibility of the SCPF in binary and ordinal
data analysis tasks. The first experiment with binary synthetic data is on the
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Swimmer data set: a synthetically generated sequence of binary images where
each image has four “limbs” of that can be in one of 4 positions.1 In the second set
of experiments, we compare the approach to alternative methods on an ordinal
Matrix Factorization problem, as applied to the MovieLens data set of 100-K
ratings (1–5) from 943 users on 1,682 movies.2 Lastly, we evaluate the predictive
power of SCPF with link prediction task on Knowledge Graph datasets.

4.1 Binary Matrix Factorization

We define K = 2, x1,i,j = Y (i, j), and x2,i,j = 1 − x1,i,j to perform binary
matrix factorization with SCPF. The approach is compared to the canon-
ical form alternative, Logistic Matrix Factorization (LMF), i.e. Y (i, j) ∼
BE(σ(

∑
k W (i, k)H(k, j)) where σ(.) is the sigmoid function and BE is Bernoulli

distribution. Two alternatives are used to factorize the Swimmer data set.
The reshaped basis vectors in the template matrices inferred by LMF and the

first component of SCPF are shown in Fig. 2. We observe the effect of moment
parametrization for the latter case, resulting in a more interpretable template
matrix.

Fig. 2. (a) Each figure is a sample from the data set. (b, c) Each image is constructed
by reshaping a basis vector in the template matrix (the first one in the SCPF case)
inferred by the models.

4.2 Ordinal Matrix Factorization for Collaborative Filtering

On the movie ratings data set, we define two SCPF models with K = 2 and K = 3.
In both cases x1,i,j = Y (i, j) for observed Y (i, j), and ni,j = 5. Conditioning the
sum of components to ni,j , the maximum allowed rating value, results in binomial
and multinomial component (predictive) distributions for K = 2 and K = 3,
respectively. We are interested in completion of the first matrix (which is filled with

1 http://www.stanford.edu/∼vcs/Data/Y.mat.
2 https://grouplens.org/datasets/movielens/100k/.

http://www.stanford.edu/~vcs/Data/Y.mat
https://grouplens.org/datasets/movielens/100k/
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the actual rating behavior of users), the marginal of X1, which is a Binomial in both
cases.

As the canonical form alternative for ordinal matrices, we use the ordered
probit model described at [17]. We also compare the models with Gaussian [18]
and Poisson Matrix Factorizations [3].

Experiment Setup. The models are tested on MovieLens 100-K data set with
5-fold cross validation where we split data set randomly into a training and a
test set with 80% and 20% ratings. Each experiment is repeated for the latent
ranks R ∈ {20, 50, 100} so Rk = R for each k. In the MAP -estimate case, shape
A and mean parameter B of SCPF are fixed to 10−3 and 1/R, respectively. For
variational inference, the user factors for each component are Gamma random
variables a-priori with shape 1 and mean 1, and the movie factors with shape
1 and mean 10/rank. While the latent rank of Ordinal Matrix Factorization
(OMF) is changed, other parameters are kept as in [17]. The maximum iteration
number is taken as 1000 for each algorithm.

Both the maximum a-posteriori estimates and the approximate posterior
inference are included in SCPF experimental results. We used the mean of
the variational distributions for predictions. Parameter estimation in LMF and
Gaussian Matrix Factorization (GMF) is carried out through Stochastic Gradi-
ent Descent (SGD) with L2 regularization. The Gibbs sampler for OMF is used
as provided, with a burnin period of 500 iterations.3

Metrics. The models are evaluated for their performance in predicting the
test ratings (with Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE)) and top-K recommendation. Top-K recommendation perfor-
mance is evaluated with the standard IR metrics Mean Average Precision (MAP)
and Recall@k, where avg-precisioni =

∑
j∈testi

Precision(rank(i, j))/|testi| and
Recall@ki =

∑
j∈testi

1 [rank(i, j) ≤ k]/min(k, |testi|). Movies that user i rated
5 are included in testi. rank(i, j) denotes the position of the item j in the rec-
ommendation list for user i

Results. Table 1 summarizes the Collaborative Filtering (CF) results. We
observe both more accurate matrix completion (rating prediction) performance,
and higher average precision for SCPF variants, an indicator of ranking perfor-
mance of the model. Specifically in comparison with PF, this justifies the effect
of introducing the second component representing users’ dislikes, negatively cor-
related with the original preference matrix.

When computing MAP, we keep recommending from the predictive regardless
of the length of the ranked recommendation list. The users of a recommender
system, however, are more likely to observe only a short list of recommenda-
tions. We observe higher recalls in recommendation lists of length 10, 20 and 50
produced by SCPF.
3 http://cogsys.imm.dtu.dk/ordinalmatrixfactorization.

http://cogsys.imm.dtu.dk/ordinalmatrixfactorization
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Table 1. MovieLens 100-K experiment results. SCPF-K denotes the proposed model
with K components. R@k is abbreviation for Recall@k.

Model RMSE MAE MAP R@10 R@20 R@50

R = 20 SCPF-2 0.961 0.743 0.083 0.113 0.165 0.240

SCPF-3 0.978 0.753 0.080 0.123 0.150 0.219

SCPF(VI)-2 0.914 0.718 0.088 0.126 0.184 0.300

SCPF(VI)-3 0.912 0.720 0.080 0.123 0.178 0.295

PF 1.330 0.957 0.019 0.009 0.018 0.045

GMF 0.940 0.744 0.071 0.098 0.132 0.239

OMF 0.980 0.762 0.041 0.058 0.086 0.174

R = 50 SCPF-2 0.973 0.750 0.086 0.133 0.175 0.255

SCPF-3 0.999 0.763 0.075 0.122 0.162 0.223

SCPF(VI)-2 0.918 0.723 0.075 0.112 0.163 0.278

SCPF(VI)-3 0.915 0.723 0.082 0.124 0.177 0.290

PF 1.393 1.031 0.020 0.018 0.036 0.099

GMF 0.926 0.736 0.076 0.112 0.165 0.285

OMF 0.986 0.766 0.043 0.060 0.092 0.175

R = 100 SCPF-2 0.997 0.763 0.084 0.133 0.180 0.265

SCPF-3 1.016 0.771 0.074 0.121 0.167 0.266

SCPF(VI)-2 0.927 0.731 0.065 0.102 0.152 0.262

SCPF(VI)-3 0.929 0.738 0.065 0.099 0.152 0.268

PF 1.325 1.011 0.031 0.040 0.067 0.150

GMF 0.924 0.734 0.068 0.099 0.154 0.276

OMF 0.999 0.778 0.037 0.054 0.080 0.158

A relevant problem to SCPF for collaborative filtering might be modelling
implicit feedback datasets by modelling exposure [13], where we observe positive
feedback (likes, bookmarks, etc.) by the users, but explicit negative feedback
is absent: a user might dislike, or might be unaware of the existence of the
item. Setting ni,j = 1 with K = 3 might result in 3 competing explanations
for Y (i, j) (perhaps when one component is supported by side information as
covariates for modelling the non-exposure), representing like, dislike, and non-
exposure respectively. We leave further exploration of modeling the described
phenomenon within the described framework as a future work.

4.3 Binary Tensor Factorization for Knowledge Graph Completion

We apply SCPF to 3 Knowledge Graph datasets (Nation, UMLS, Kinship)4,5.
The input 3-way tensors are treated with a Closed World Assumption (CWA)
4 https://github.com/arongdari/kg-data.
5 https://github.com/mnick/rescal.py/tree/master/data.

https://github.com/arongdari/kg-data
https://github.com/mnick/rescal.py/tree/master/data
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[15], i.e., known (unknown) facts are considered positive (negative) examples.
This makes the problem a binary tensor decomposition, and the canonical form
alternative is Logistic Tensor Factorization (LTF) [16] specialized for Knowledge
Graph completion: Yijl ∼ Ber(Yijl;σ(aT

i Rlaj)) where ai and aj are latent fea-
ture vectors belong to ith and jth entitites respectively, and Rl is latent matrix
of lth relation which defines in what way entitites interact and generate the
observations.

The SCPF model can be setup with K = 2, x1,i,j,l = Yijl, x2,i,j,l = 1−x1,i,j,l,
and ni,j,l = 1.

Experiment Setup and Metrics. For all datasets, We created 50%–50%
random splits for training and test. LTF and 2 versions of SCPF (with ML
estimation and Variational Inference) are used to make predictions on test data.
Expected values of the variational distributions were used for prediction.

Knowledge Graph Completion with CWA is a classification task and the
datasets are highly imbalanced in number of positive and negative observations.
Area under the ROC (true-positive-rate vs. false-positive-rate) curve created by
using different threshold values is used for performance evaluation.

Results. In Fig. 3, we plotted performance of SCPF with Maximum Likelihood
and Bayesian inference versus Logistic Tensor Factorization with 20 different
train-test splits and for each dataset. For all datasets, SCPF with maximum
likelihood outperforms Logistic Tensor Factorization. Predictive performance of
SCPF with variational inference is not as high as maximum likelihood, but even
so it is superior to LTF in UMLS and Kinship datasets.

Fig. 3. Performance comparison with area under the ROC curve for Knowledge Graph
completion.
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LTF with Rescal factorization model is designed for Knowledge Graph prob-
lems, specifically. We used the generic SCPF with PARAFAC-type decomposi-
tion, and further improvement might be possible with different decomposition
types. Considering the effectiveness of SCPF in Swimmer dataset and intro-
duced Bayesian inference, interpretability of entity and relation latent features
for Knowledge Graph datasets deserves a further study.

5 Conclusion

In this work, we discuss the moment and canonical parametrization as alter-
native tensor factorization models and propose a simple method that allows
modeling binary, ordinal or categorical data with a moment parametrization.
We demonstrate the benefits of our model, which is an extension of Poisson fac-
torization, on various data sets: Swimmer (binary), Knowledge Graphs (binary)
and MovieLens 100-K (ordinal). The models are compared with their canoni-
cal form alternatives LMF, Logistic Tensor Factorization (LTF) and OMF for
binary and ordinal data.

As the toy example on the Swimmer data illustrates, the interpretability of
factorization models with a moment parametrization tends to be easier when
compared to canonical parametrizations, that are mostly used for binary or
bounded discrete data. The experimental results indicate that the proposed mod-
els tend to outperform their canonical alternatives and PF in terms of predictive
performance for test ratings, classification and top-K recommendation.

We believe that our approach provides a flexible framework for developing
fully conjugate tensor decomposition models for binary, ordinal or multinomial
data that can be used as a generic building block in hierarchical models for
arrays of such data.
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Abstract. We propose an extension of the canonical polyadic (CP) ten-
sor model where one of the latent factors is allowed to vary through data
slices in a constrained way. The components of the latent factors, which
we want to retrieve from data, can vary from one slice to another up to a
diffeomorphism. We suppose that the diffeomorphisms are also unknown,
thus merging curve registration and tensor decomposition in one model,
which we call registered CP. We present an algorithm to retrieve both
the latent factors and the diffeomorphism, which is assumed to be in a
parametrized form. At the end of the paper, we show simulation results
comparing registered CP with other models from the literature.

Keywords: Tensor decompositions · Curve registration · Data fusion

1 Introduction

Joint decomposition models such as the canonical polyadic (CP) tensor decom-
position [4] allow to blindly extract patterns of underlying hidden phenomena
from a block of data measurements based on their algebraic properties with-
out statistical assumptions. Thanks to their uniqueness properties under mild
conditions [4], tensor decompositions have been applied in many domains: neu-
rosciences [1], chemometrics [21] and digital communications [20] to name a few.

To retrieve the latent patterns without statistical assumptions, the num-
ber of free parameters must be rather low (i.e. the number of latent patterns
is small with respect to the data dimensions). For example, in the CP model
for a 3-way data block, M ∈ R

3, each slice Mk in one of the dimensions is
approximated by a rank R matrix decomposition: Mk = ADiag (C(k, :))BT ,
where A = [a1, . . . ,aR], B = [b1, . . . ,bR], and Diag (C(k, :)) is the diagonal
matrix formed with the k-th row of C = [c1, . . . , cR]. Here the columns of these
matrices are the latent patterns that we are searching for and the fundamental
constraint is that the matrix factors A and B are exactly the same as k varies.
Clearly, the model for the slices in any of the 3-ways of the CP decomposition cor-
responds to a coupled matrix decomposition where the A and B matrix factors
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 36–45, 2018.
https://doi.org/10.1007/978-3-319-93764-9_4
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are shared. Other models with less stringent coupling constraints have been con-
sidered in the literature, for example, PARAFAC2 [7], Shift-PARAFAC [6,13],
soft non-negative matrix co-factorization [19] or probabilistic couplings [3].

In this paper, we are also interested in such a less constrained decomposi-
tion, where one of the matrix factors, B for example, is allowed to change over
the experimental parameter k: Mk = ADiag (C(k, :))BT

k . The components of
the factor from one slice to another are all similar up to a diffeomorphism, that
is up to local compression and dilations. This can be useful, for example, in
ocular-artifact removal in EEG [17] where the coupled latent signals are related
to different eye blinks or saccades, or in chromatography [2] where the latent
components are time elution responses of chemical compounds on different chro-
matographic experiments. In both examples, the patterns feature domain varia-
tions, that may differ at any given time but are similar after alignment through
delay, local dilations and compressions.

Finding the diffeomorphisms, that is, the transformations of the arguments
(time or space) of the latent curves, leading to an alignment is known in statistics
as curve registration [15] and in signal processing as time warping [18]. In curve
registration one may be interested in computing the structured average [10],
i.e. an aligned mean curve, which serves as a template for trend analysis. In
this paper, we are facing a different problem than in curve registration since the
curves themselves are unknown latent functions. By merging both curve registra-
tion and CP decompositions, we expect that the factors obtained from the joint
decomposition of each slice will be retrieved with an increased accuracy when
compared with other methods which do not include fully the diffeomorphism
coupling information, as in Shift-PARAFAC [6] and PARAFAC2 [11,13].

In this work we propose to modify the well-known alternating least squares
(ALS) algorithm for CP decomposition [4] to include a curve registration step
on the factor containing domain variation. Closely related to our work, warped
factor analysis (WFA) has been proposed in [8] where curve registration is explic-
itly carried out using a piecewise linear model for the diffeomorphism. In WFA,
the template curve (i.e. the structural average which is used as reference) is
contained directly in the data, which is a fundamental difference with the pro-
posed approach. In our work we extend WFA (i) to a generalized diffeomorphism
model, and (ii) to have a less arbitrary template curve estimated from all latent
patterns by searching for a structural average curve. To retrieve this structural
average curve and the optimal diffeomorphisms, we follow an alternating app-
roach similar to [22].

Notation: Vectors are denoted in bold symbols a, matrices as bold capital sym-
bols M. The (i, j)-th entry of matrix M is denoted M(i, j), its i-th column M(:, i)
or mi and the i-th row M(i, :). The transposition operator is denoted as MT .
◦ is the composition operator: (f ◦ g)(·) = f

(
g(·)).
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2 Curve Registered Decomposition Models

In this section we present the curve registered decomposition model through a
Bayesian estimation perspective. We present it in three steps: Sect. 2.1 develops
the measurement model and its corresponding likelihood. Section 2.2 presents
the registered CP derived from the maximum a posteriori (MAP) estimator of
all unknown parameters (i.e. both measurement and coupling models). Finally
Sect. 2.3 introduces a parametric model for the diffeomorphisms.

2.1 Measurement Model: Low-Rank Matrix Decomposition Model

Without loss of generality, we consider the data block to be a 3-way array,
M ∈ R

I×J×K , such that K 2-way measurement arrays (Mk ∈ R
I × J) of size

I × J are available. Moreover, we suppose that each matrix is given by a rank-R
factorization plus a measurement noise term:

Mk =
R∑

r=1

ck,rarbT
k,r + Vk = ADiag (C(k, :))BT

k + Vk (1)

where the rank R is supposed to be known and much smaller than the dimensions
I, J and K. The factor matrices A,

{
Bk

}
1≤k≤K

and C are the unknown latent
patterns to be retrieved and Vk are noise matrices assumed to be independent
from one another and with independent elements. Note that the factor matrix
A is shared across data slices Mk. The elements vijk = Vk(i, j) of the noise
matrices are assumed to be independent zero-mean normally distributed with
a variance σ2

k: p(vijk) ∝ exp
{

−v2
ijk/2σ2

k

}
. Without further knowledge on a

relationship relating factors Bk, a natural way to retrieve the latent factors is
through maximum likelihood estimation. This corresponds to the minimization
of the cost function L w.r.t. the factor matrices:

L =
K∑

k=1

1
σ2

k

‖Mk − ADiag (C(k, :))BT
k ‖2F, (2)

where ‖ · ‖F stands for the Frobenius norm. Minimizing (2) actually corresponds
to computing a low rank matrix factorization of the stacked matrices M1:K =
[ 1
σ1
n
M1, . . . ,

1
σK
n

MK ]. Therefore, there is no guarantee that the retrieved patterns
will be physically interpretable, since the model is not uniquely identifiable due
to rotational ambiguity.

2.2 Registered CP from MAP Formulation

In what follows, factors Bk are supposed to be similar in shape but with varia-
tions on their domain. For example, consider that factors Bk relate to time and
that they are sampled versions of continuous-time signals: Bk(r, j) = bk,r(tj).
We assume that the sampling grid points tj , with j ∈ {1, · · · , J}, are the same



Curve Registered Coupled Low Rank Factorization 39

for all measurement matrices and we consider a normalized time period so that
tj ∈ [0, 1]. For any of the K underlying continuous signals, domain variation can
be expressed as

∀(r, k) ∈ �1, R� × �1,K�, br,k(t) = b∗
r

(
γr,k(t)

)
+ wr,k(t), (3)

where the functions representing the variation γr,k(t) are diffeomorphisms from
[0, 1] to [0, 1]. They are non-decreasing functions with γr,k(0) = 0 and γr,k(1) = 1.
Note that the signals b∗

r(·) play the role of common unknown reference shapes,
and wr,k(·) are zero mean white Gaussian processes independent for all differ-
ent r and k. This perturbation in the coupling model may be understood in
two ways: (1) As some prior knowledge that the coupling relationship between
factors Bk is not exactly a warping. (2) As a variable splitting that makes the
underlying optimization problem easier to solve. Indeed, if additional constraints
are imposed on factors Bk, for instance nonnegativity, we will show below that
the estimation process can be cast as constrained least squares problem.

For discrete time samples t1, · · · , tJ and assuming γr,k(tj) are known,
this approach implies that br,k(tj) are independent Gaussian random variables
br,k(tj) ∼ N (

b∗
r(γr,k(tj)), σ2

w

)
, where σ2

w is a known variance. With this prior,
criterion (2) can be modified to obtain the following MAP cost function:

C = L +
1

σ2
w

∑

r,k,j

[
Bk(r, j) − b∗

r

(
γr,k(tj)

)]2
, (4)

where the coupling term is introduced by the prior. The minimum of C over all
parameters yield the proposed model, coined Registered CP. The main difference
with (2) is that the additional constraints are expected to solve the rotational
ambiguity intrinsic to matrix factorizations.

It is worth noting that:

– CP model: If γr,k(·) are identity and if σ2
w → 0, then the model becomes a

CP model obtained by stacking matrices Mk along a third dimension.
– Indeterminacy: An indeterminacy remains in determining canonical b∗

r(·)
and γr,k(·), since for any given r one can apply a common warping to all
br,k(·) and obtain a different b∗

r(·): br,k =
(
b∗
r ◦γ−1

)◦(
γ◦γr,k

)
. In other words,

diffeomorphisms γr,k can only be obtained up to a common diffeomorphism.
– Linear interpolation: In theory br,k, b∗

r and γr,k are functions of contin-
uous time. In practice we work with discrete time. This means exact time
transformations b∗

r(γr,k(t)) are not actually computed. Rather, transformed
functions are obtained through linear interpolation.

2.3 Parametric Model for the Diffeomorphisms

In their non-parametric continuous-time form, the diffeomorphisms γr,k(t) cannot
be handled numerically. While it is possible to use dynamic programming to pro-
cess these diffeomorphisms as non-parametric functions [16,22], this is typically
very sensitive to the noise and time consuming, specially if the dataset is large.
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Therefore, to simplify, we assume that these functions can be modeled with a
parametric form, with a small number of parameters. Multiple parametrized
forms for these functions exist. Here we focus on exponential maps.

Exponential Maps: Since γr,k(t) are also cumulative distribution functions, they
can be defined through their derivatives, which are probability density functions,
i.e. they are positive and sum to one. We can define easily such functions by
applying the exponential map to any function φr,k(t) defined on [0, 1]. This
approach is commonly found in curve registration [9,15] and it is also referred
as the log-derivative approach [12]. It leads to the following diffeomorphism:

γr,k(t) =
(∫ t

0

eφr,k(s)ds

)
/

(∫ 1

0

eφr,k(s)ds

)
. (5)

The main purpose of this representation is that we can parametrize the func-
tions φr,k(t) without imposing monotonicity constraints. In particular, we can
assume that all φr,k(t) are linear combinations of n functions ψi(t):

φr,k(t) = φ(t, βr,k) =
n∑

i=1

βi
r,kψi(t). (6)

where βr,k = [β1
r,k · · · βN

r,k]T is the vector of parameters characterizing the dif-
feomorphism. The following particular cases are of interest:

B-splines: Function ψi(t) can be a B-splines with a fixed number of knots
and degree.
Linear: If a simple linear function is used, with n = 1 and ψ1 = −t, then the
diffeomorphisms are

γr,k(t) =
1 − e−βr,kt

1 − e−βr,k
. (7)

Constant: If we use a 0-th order B-splines basis then we obtain the
parametrization used implicitly in [8].

3 Algorithm

This section describes the alternating algorithm approach to obtain the Regis-
tered CP model.

3.1 Multiway Array Decomposition Algorithm

Given a previous update or guess of b∗
r(γk,r), one can minimize w.r.t. A,C in

an alternating approach using standard linear least squares, while factor Bk can
be retrieved by solving the following least squares problem:

Bk = argmin
B=[b1,...,br]

∥
∥
∥Mk − ADkBT

∥
∥
∥
2

F
+ λk

R∑

r=1

∥
∥
∥br,k − b∗

r

[
γr,k

]∥∥
∥
2

F
, (8)

where b∗
r [γr,k] stands for b∗

r(γr,k(t)) taken at sampled times points ti using linear
interpolation
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3.2 Shape Alignment Using Exponential Maps

From this point onwards, the diffeomorphisms γr,k are assumed to be well mod-
elled as the previously introduced exponential maps γr,k(t) = (1 − e−βr,kt)/(1 −
e−βr,k). Given previous update of latent factors br,k, what needs to be esti-
mated are both the values of βr,k and the underlying b∗

r . Thus, the following
optimization problem needs to be solved for all r:

argmin
{βr,k}k,b∗

r

∑

k

1
σ2

w

∥
∥
∥br,k − b∗

r [γr,k]
∥
∥
∥
2

F
. (9)

Since estimating both the structured mean and γr,k(t) is cumbersome, as sug-
gested in [22], an alternating strategy is used. The following can be used inde-
pendently as a very simple alignment algorithm summarized in Algorithm1:

1. Structure mean estimation b∗
r : Given the values of βr,k, the structured aver-

ages b∗
r are computed as the solutions of linear systems, namely

b∗
r = argmin

b

∑

k

∥
∥br,k − Pr,kb

∥
∥2

F
, (10)

where Pr,k is the interpolation matrix obtained by linear interpolation from
the sampling grid [tj ]j to the warped sampling grid [γr,k(tj)]j .

2. Warping parameters estimation: Given b∗
r , the criterion (9) becomes K one

dimensional problems. And even through it is highly non-convex in the gen-
eral case, good values of βr,k can be computed using a grid search. Multiple
strategies can then be used to refine the search space once convergence is
achieved and we used in particular the Golden Search method [14]. In both
cases, the cost of one evaluation is rather low since computing (9) requires a
linear interpolation and K × R × J multiplications, but evaluating the cost
on a grid can be time consuming.

This algorithm should converge since the cost is reduced at each iteration and for
each block of parameters. However, we cannot guaranty that the final estimate
is a local minimum of the cost function.

3.3 Detailed 3-Way Algorithm

Joining the alternating least squares update of factors A, Bk, and C with the
alignment algorithm (Algorithm 1) leads to Algorithm 2, which is given below
along with some implementation details. It can be easily adapted for constrained
Registered CP by replacing the least squares solver with a constrained one: e.g.,
for nonnegative least squares, one can use the algorithm described in [5].

Initialization: Due to the highly non-convex behavior of the cost function w.r.t.
βr,k, a good initialization method is required. As a reasonable option, we used
the factors given by a standard CP model fitting. Moreover, the initial values
of λk are also very important, since large values put too much emphasis on
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Algorithm 1. Alignment algorithm under parametrized diffeomorphisms.

Input: Initial target b∗, initial warping parameters βk, similar-shaped func-
tions {bk}k, regularization parameters {λk}k.
while residual

∑
k λk‖bk − b∗[γk]‖F is too large do

Structure mean estimation: set b∗ as either the
1. bk[γ

−1
k ] that minimized the residuals (first iteration)

2. the solution to (10)
3. initial target b∗ (inside a larger optimization scheme)

Warping parameters estimation: ∀k
if Residuals are higher than some threshold (coarse estimation) then

Compute criterion (9) on a grid to define an interval [ak, bk] surrounding the
optimum.

else
Find the optimal βk in interval [ak, bk] using Golden Search.

end if
end while
Output: Estimated warping parameters {βk}k and structured mean b∗.

Algorithm 2. Alternating least squares algorithm for Registered CP under
parametrized diffeomorphisms.

Input: Data matrices {Mk}k, initial guesses A, C, {Bk}k, initial {λk}k values.
while Stopping criterion is not met do

• Solve argminA

∑K
k ‖Mk − ADkB

T
k ‖2

F and normalize column-wise with the �2
norm ⇒ A
• ∀k, solve argminD ‖Mk − ADBT

k ‖2
F , ⇒ {Dk}k

• ∀k, solve optimization problem (8) and normalize column-wise with the �∞ norm,
⇒ {Bk}k

• Use Algorithm 1 to align the previously estimated {Bk}k, ⇒ B∗ and {βr,k}r,k

• If necessary, increase the regularization parameters ⇒ {λk}k

end while
Output: Estimated factors A, {Bk}k and C, coupling parameters B∗ and {βr,k}r,k.

the regularization terms, which implies factors Bk not change much and the
algorithm mostly fits A and C. Empirically, we used the following values for the
values of λk at the first and second iterations:

λ0
k = 10− SNR

10
‖Mk − A0D0

kB0
k

T ‖2F
‖B0

k‖2F
and λ1

k = 10−SNR
10

‖Mk − A1D1
kB1

k
T ‖2F

‖B1
k − B1∗[Γk]‖2F

(11)
where A0 is the initial value of A, A1 is the estimate of A after the first iteration,
B∗[Γk] is a matrix containing stacked b∗

r [γr,k] and SNR refers to the expected
Signal to Noise ratio of the whole tensor data. We used λ1

k in all following
iterations.

Normalization: Columns of A are normalized with 	2 norm, while the columns
of Bk are normalized with 	∞ norm.
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Case γkr = γk for all r: It may happen that all components in Bk have
the same warping, for instance when the variability generating process affects
the data uniformly across the sensors. Such an hypothesis is actually exploited
also in [8] and is an underlying hypothesis of PARAFAC2. Formally, with
parametrized diffeomorphisms, this means that βkr = βk for all r. Then the
alignment algorithm can be slightly modified to improve estimation accuracy
since the number of parameters is reduced.

4 Experiments on Simulated Nonnegative Data

In this section, the Registered CP model is tested on simulated nonnegative data
and compared with similar state-of-the-art models, namely the Shift PARAFAC
model and the PARAFAC2 model. Many data alignment models have been pro-
posed in the literature, but only those two models align the factors directly inside
the optimization process.

Simulation Settings: After setting the rank R, factors A and C are drawn
entry-wise from uniform distributions over [0, 1]. A latent factor B∗ is generated
column-wise using the exponential map, which mode is randomly determined but
so that all R modes do not overlap. The variances are also randomly determined.
Then, βk,r are chosen using affine functions of the k variable with random slope
depending on the r variable. Thus each component has its own warping range.
Finally, the Bk are generated from B∗ using exponential maps of parameters
βk,r. Additive Gaussian noise variance is determined from a user-defined SNR
using σk

n =
√

R10− SNR
20 .

In the following experiment, the total reconstruction error εB on Bk

εB =

(
K∑

k=1

‖Bk − ΠkB̂k‖2F
)

/

(
K∑

k=1

‖Bk‖2F
)

(12)

is monitored over N = 50 experiments. Πk is the best permutation that matches
columns of the estimated B̂k with the true Bk. Note that in (12), the Bk matrices
are normalized column-wise using the 	2 norm. The rank is set to R = 3 and
data dimensions are 15 × 200 × 10. The Registered CP algorithm is initialized
by the result of 100 iterations of standard alternating least squares.

Figure 1 shows εB for several SNR values and the various mentioned algo-
rithms. Although PARAFAC2 algorithm should not perform well since it relies on
the assumption that γk,r = γk for all r, it outperforms both the Shift-PARAFAC
and the Registered CP model at high SNR values. However, on average, the Reg-
istered CP performs the best for medium and low SNR values. All the algorithms
feature a high variability in their outputs, thus indicating a high sensibility to the
initialization. The fact that PARAFAC2 uses the best of several initializations
is probably the reason why it performs best at high SNR.

In order to study the dependence of εB on regularization parameters λ
for Registered CP, in a second experiment, instead of the values suggested in
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Fig. 1. log(εB) × SNR: RCP - registered CP, SP - shift PARAFAC, P2 - PARAFAC2.

Eq. (11), we fixed values SNR = 40 or SNR = 60 gridded over a multiplicative
coefficient ρ in front of the initial λk values:

λ0
k = ρ

‖Mk − A0D0
kB0

k
T ‖2F

‖B0
k‖2F

and λ1
k = ρ

‖Mk − A1D1
kB1

k
T ‖2F

‖B1
k − B1∗[Γk]‖2F

. (13)

Figure 2 shows the obtained results for N = 25 realizations. It can be observed
that finding a good set of regularization parameters is important to obtain better
results on average. The good performance of the uncoupled matrix factorization
algorithm (regularization set to 0) is due to the nonnegativity constraints applied
on all factors. Nevertheless, using the Registered CP model, estimation perfor-
mances on the Bk are improved at both SNR = 40 and 60. Variability however
seems to increase alongside the amount of regularization.

Fig. 2. log(εB) × ρ: Left - SNR = 40, right - SNR = 60.

5 Conclusion

A new coupled tensor decomposition model is introduced, namely the Registered
CP model, where factors on one mode are similar up to time contraction or
dilatation. A specific class of diffeomorphisms is used to generate a decomposition
algorithm that can identify both the factors and the latent coupling parameters.
Simulations on synthetic data show encouraging results, but the Registered CP
model is yet to be tested on actual data sets. Furthermore, in future works, the
class of allowed diffeomorphisms should be enlarged.
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Abstract. Atrial fibrillation (AF) is the most common sustained cardiac
arrhythmia in clinical practice, and is becoming a major public health
concern. To better understand the mechanisms of this arrhythmia an
accurate analysis of the atrial activity (AA) signal in electrocardiogram
(ECG) recordings is necessary. The block term decomposition (BTD), a
tensor factorization technique, has been recently proposed as a tool to
extract the AA in ECG signals using a blind source separation (BSS)
approach. This paper makes a deep analysis of the sources estimated by
BTD, showing that the classical method to select the atrial source among
the other sources may not work in some cases, even for the matrix-based
methods. In this context, we propose two new automated methods to
select the atrial source by considering another novel parameter. Experi-
mental results on ten patients show the validity of the proposed methods.

Keywords: Atrial source selection · Block term decomposition
Atrial fibrillation · Blind source separation

1 Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in
clinical practice, responsible for up to 25% of strokes and 1/3 of the hospital-
izations due to cardiac related disturbances [1]. This arrhythmia is becoming a
major public health concern, since about 160 000 new AF cases are discovered
every year only in USA, with similar numbers in European countries. This makes
AF an increasingly prevalent disease that could become a new epidemic over the
years [2]. The mechanisms of this supraventricular arrhythmia are not completely
understood, making AF a challenging cardiac condition, considered as the last
great frontier of cardiac electrophysiology. During AF, electrical impulses typ-
ically generated around the pulmonary veins propagate in a chaotic and irreg-
ular way across the atria, replacing the P wave, that corresponds to a normal
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atrial activation, by low-amplitude fibrillatory waves, or f-waves. The f-waves
are present through all the electrocardiogram (ECG) recording, but masked by
the QRS complex of ventricular activity (VA) in each heartbeat.

To better understand the mechanisms of AF, it is necessary an accurate anal-
ysis of the atrial activity (AA), specifically, the f waves. A noninvasive analysis
can be made by extracting the AA from the cardiac signals recorded by the
standard 12-lead ECG using matrix decompositions techniques for blind source
separation (BSS), such as principal component analysis (PCA) and independent
component analysis (ICA) [3–5]. This matrix decomposition approach has proven
to be useful for AA extraction. However, it has some limitations, since constraints
need to be imposed to guarantee the uniqueness of such decompositions, e.g.,
orthogonality or statistical independence between the sources. Although math-
ematically coherent, such constraints may lack physiological grounds.

In order to overcome these limitations, a tensor approach has recently been
proposed to analyze AF signals [6–9]. As compared to matrix techniques, tensor
decompositions present some remarkable features such as essential uniqueness
with practically minimal or no constraints. The block term decomposition (BTD)
proposed in [12] suits the characteristics of AA in an AF signal, since atrial sig-
nals can be approximated by all-pole models and mapped onto Hankel matrices
with rank equal to the number of poles [9]. These Hankel matrices that contain
the ECG data are stacked in the third dimension of a 3rd-order tensor, and then
processed by BTD. Previous experimental results in synthetic and real ECG data
showed the potential superiority of BTD as compared to matrix decompositions
for short ECG recordings [6–8].

The success of the BSS approach to AA extraction depends on the accu-
rate identification of the atrial signal among the estimated sources. The classical
method for atrial source selection consists in selecting the source with the high-
est spectral concentration (SC) among the sources whose dominant frequency
(DF) lies between 3 and 9 Hz [3,4]. The present work makes a deep analysis in
the sources estimated by BTD, showing that the classical method may not work
in some cases, even when the matrix-based approach is used. Taking this into
account, a new parameter to improve the performance of the classical method is
proposed. This parameter consists in analyzing the power of the source contribu-
tion to the lead V1, a lead that significantly reflects AA. Also, a new automated
method for atrial source selection is proposed, using the proposed parameter
and another one based on the kurtosis of the signal in the frequency domain.
Experimental results using ten patients with persistent AF evaluate the pro-
posed methods, showing their better performance in selecting the atrial source
among the sources estimated by BTD and two matrix-based methods previously
proposed in literature for AA extraction: RobustICA-f [10] and PCA [11]. It is
also shown that BTD can provide a better estimation of the AA signal, outper-
forming the matrix-based techniques in most cases.

The rest of this paper is organized as follows. Section 2 introduces the nota-
tion used in the work. Section 3 recalls the BTD as a tensor approach to solve
BSS problems, while Sect. 4 discusses the estimated sources and the atrial source
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selection methods. Section 5 presents the experimental results and, finally, Sect. 6
formulates the conclusion of this work, as well as the prospects for future works.

2 Notations

Scalars, vectors, matrices and tensors are represented by lower-case (a, b, c, ...),
boldface lower-case (a, b, c, ...), boldface capital (A, B, C, ...) and calligraphic
(A, B, C, ...) letters, respectively.

The transpose is represented by (·)T , symbol ‖ · ‖ represents the l2-norm
and ◦ represents the outer product. The operator diag(·) builds a diagonal
matrix by placing its arguments along the diagonal. Given a 3rd-order ten-
sor A ∈ C

I1×I2×I3 , with scalars ai1,i2,i3 , its frontal slices are represented by
A..i3 ∈ C

I1×I2 . Given a matrix A ∈ C
I1×I2 , with scalars ai1,i2 , its ith1 row and

the ith2 column are represented by ai1. and a.i2 , respectively.

3 Block Term Decomposition

The BTD of an arbitrary 3rd-order tensor T ∈ R
I1×I2×I3 is written as

T =
R∑

r=1

Er ◦ cr, (1)

with cr ∈ R
I3 . Matrix Er ∈ R

I1×I2 has rank Lr and admits a decomposition
Er = ArBT

r , where Ar ∈ R
I1×Lr and Br ∈ R

I2×Lr have rank Lr. We may then
rewrite (1) as

T =
R∑

r=1

(
ArBT

r

)
◦ cr. (2)

One can see that the BTD is a decomposition of T in multilinear rank-(Lr,
Lr, 1) terms. If the matrix factors A =

[
A1 A2 . . . AR

]
∈ R

I1×∑R
r=1 Lr and

B =
[
B1 B2 . . . BR

]
∈ R

I2×∑R
r=1 Lr are full-column rank, which requires that∑R

r=1 Lr ≤ I1, I2, and C =
[
c1 c2 . . . cR

]
∈ R

I3×R does not contain proportional
columns, then the BTD is essentially unique [12, Theorem 2.2]. Milder uniqueness
conditions are presented in [12].

The ECG data matrix, with K leads and N samples, can be modeled as

Y = MS ∈ R
K×N , (3)

where M ∈ R
K×R is the mixing matrix, modelling the propagation of the car-

diac electrical sources from the heart to the body surface, S ∈ R
R×N is the

source matrix that contains the atrial, ventricular and noise sources, and R is
the number of sources [5]. The AA extraction in an AF ECG recording can be
seen as a BSS problem, since the only data observed is matrix Y, and we aim
to estimate M and S from it. In [12], the BTD is proposed as a solution of
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a BSS problem like (3), but does not deal with the AA extraction specifically.
The idea to obtain a tensor from Y is to map its kth row onto a Hankel matrix
H(k)

Y ∈ R
I×J , where I = J = N+1

2 if N is odd or I = N
2 and J = N

2 + 1 if N is
even, with

[H(k)
Y ]i,j � yk,i+j−1, (4)

where i = 1, ..., I, j = 1, ..., J , and k = 1, ...,K. Next, the tensor is built by
stacking each Hankel matrix along the third dimension (as frontal slices) of a
3rd-order tensor Y ∈ R

I×J×K , that is

Y..k = H(k)
Y . (5)

The kth matrix slice of the tensor Y can be represented as

Y..k =
R∑

r=1

mk,rH
(r)
S , (6)

where H(r)
S ∈ R

I×J is a Hankel matrix built from the rth row of S. We can see
that for each r, the outer product between matrix H(r)

S and the rth column of
M, i.e., m.r, is being performed. This way, the tensor Y can be written as

Y =
R∑

r=1

H(r)
S ◦ m.r. (7)

Comparing Eq. (1) with (7), we can conclude that the tensor ECG data
follows a BTD tensor model.

During AF, the AA presents certain harmonicity. Hence, atrial sources can
plausibly be represented by the exponential (or all-pole) model as

sr,n =
Lr∑

�=1

λ�,rz
n−1
�,r , (8)

where n = 1, ..., N , r = 1, .., R, Lr is the number of exponential terms, z�,r is the
�th pole of the rth source, and λ�,r is the scaling coefficient [6–9]. This way, their
associated Hankel matrix accepts the Vandermonde decomposition as in [13].

4 Atrial Source Selection

4.1 Classical Method

To select the AA signal or the source with the most significant AA activity, the
classical method considers two parameters. The first one is the DF, that is, the
position of the peak frequency in the power spectral density, since the AA during
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AF typically has a peak between 3 and 9 Hz. The second parameter, called SC,
is the relative amount of energy around the DF, and it is calculated as:

SC =

∑1.17fp

0.82fp
PAA(fi)

∑Fs/2
0 PAA(fi)

, (9)

where fp is the value of DF, Fs is the sampling frequency and PAA is the power
spectrum of the AA signal, estimated as in [4]. In this work, the SC is calculated
over the first harmonic (fundamental frequency) only.

The classical method of atrial source selection makes the assumption that
the atrial source is concentrated in a single source only. This method consists of
the following steps:

1. Select all the estimated sources with DF between 3 and 9 Hz. We refer to
sources fulfilling this condition as potential atrial sources.

2. Select the potential atrial source with the highest SC.

4.2 Proposed Method 1

In the literature, the classical automated method described above has been used
to detect the atrial source among the other estimated sources. However, in some
cases, this method may not precisely select the atrial source, as will be illustrated
later in this work. In Figs. 3 and 4, for example, the atrial source does not
correspond to the potential source with the highest SC, despite the fact that
they have close values of SC at very close DF positions.

Aiming at a better estimation of the AA signal, this paper proposes two new
parameters. The first new parameter is the power contribution to the recording,
which is given by

P (r) =
1
N

||m(V 1)
r sr.||2, (10)

in mV2, where m
(V 1)
r is the contribution of the rth source to lead V1 (given by

the corresponding element of the estimated mixing matrix) and sr. is the rth

source, corresponding to the rth row of matrix S in Eq. (3). Using the power
contribution to the recording as a new parameter the classical method becomes:

1. Select all the estimated sources with DF between 3 and 9 Hz (potential atrial
sources).

2. Select all the potential atrial sources with power contribution higher than
10−4 mV2. We refer to this subset of sources as likely atrial sources.

3. Select the likely atrial source with the highest SC.

Selecting the sources with power contribution higher than 10−4 mV2 is needed
in order to eliminate all sources that may present AA-like signature but are
actually too weak to represent AA components. This threshold is chosen based
on initial experiments that showed that sources with power contribution lower
than 10−4 mV2 do not present any significant contribution to the original signal.
The power contribution is calculated in lead V1 due to the fact that this lead
typically reflects AA best in AF ECGs, as its exploring electrode lies close to
the right atrium.



Source Analysis and Selection Using BTD in AF 51

4.3 Proposed Method 2

In order to better select the source with the most significant AA content among
the other estimated sources, a new automated method is now proposed. The
first two steps of this method are the same as those of the proposed method
introduced in the previous subsection. The third and last step of this new method
is to compute the kurtosis, denoted K, of the signal in the frequency domain
acquired by a 4096-point FFT (the second new parameter). As in [10], we use
the general expression of kurtosis valid for non-circular complex data. The likely
atrial source with the highest kurtosis is related as the atrial source.

In the experiments below, it will be shown that selecting the source with the
highest kurtosis provides a better performance than selecting the source with
the highest SC. A possible explanation is that kurtosis is computed from the
whole signal, while SC is only computed around the DF. Recall that AA in AF
is typically a harmonic signal, characterized by a sparse frequency spectrum with
few values significantly different from zero. Kurtosis is a measure of peakedness
and sparsity of a distribution and, when computed in the frequency domain,
it naturally provides a quantitative measure of harmonicity of the signal. Also,
kurtosis is parameter free, whereas SC depends on the DF and the definition of
a suitable interval for interpretation.

5 Experimental Results

5.1 Real AF ECG Data and Preprocessing

The recordings used in our experiments belong to a database provided by the
Cardiology Department of the Princess Grace Hospital Center, Monaco. These
recordings were acquired at a 977 Hz sampling rate and preprocessed by a zero-
phase forward-backward type-II Chebyshev bandpass filter with cutoff frequen-
cies of 0.5 and 40 Hz, to suppress high-frequency noise and baseline wandering.
To analyze the potential atrial sources, we consider a randomly selected heart-
beat (QRS-T complex + TQ segment) of a standard 12-lead ECG recording
from a persistent AF patient. A single-beat segment of this patient is shown in
Fig. 1, where we can see the TQ interval just after the QRS-T complex in lead II.
The beat from this patient used to analyze the potential atrial sources is chosen
randomly and has 1300 samples.

To asses the atrial selection methods, a population of 10 patients with persis-
tent AF is used in the same way previously described. Similarly, one beat from
each of the ten patients is chosen randomly to evaluate atrial source selection
performance. The lengths of the chosen beats is between 1000 and 1400 samples
(1.02 and 1.43 s, respectively). Due to lack of space, the potential source analysis
of all ten patients is not reported in this paper. So only the first patient of the
observed population was chosen for source analysis.
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Fig. 1. A single-beat segment of an AF ECG recording of one patient in lead II. The
vertical line marks the location of the T-wave offset.

5.2 BTD Setup

The BTD is implemented using the non-linear least squares (NLS) method avail-
able in Tensorlab MATLAB toolbox [14] choosing R = 12 and Lr = 95, for
r = 1, 2, ..., 12. This choice is made based on the work [9], which showed that
these values provided good results for the heartbeat with the largest TQ seg-
ment of one of the patients in the present observed population. The tolerance
threshold for convergence is set to 10−9 and the maximum number of iterations
is set to 1000. BTD is known to be dependent on a suitable initialization of its
factors. The experiments reported in this section evaluate the influence of BTD
factors initialization on source estimation performance and atrial source selec-
tion. Ten Monte Carlo runs, with normalized Gaussian random initialization for
the matrix and vector factors at each run, are used to analyze the potential
atrial sources found by BTD and compare them with the ones found by the
matrix-based methods PCA and RobustICA-f. All the beats are downsampled
by a factor of two, since the 3rd-order tensor built from the original 12-lead ECG
beat poses some difficulties to Tensorlab.

5.3 Potential Atrial Source Analysis

For the observed patient used to analyze the potential atrial sources, PCA found
6 potential sources, RobustICA-f found 5 potential sources and BTD found a
mean of 7.2 potential sources. In 7 out of the 10 independent runs, the BTD found
more potential sources than the matrix-based methods, reflecting the ability of
the tensor technique to perform undetermined source separation [12]. Finding
several potential atrial sources is interesting, since it increases the possibility of
finding some features that, although weakly contributing to the AA, may provide
useful physiological and clinical information about the arrhythmia. In this work,
however, we assume as in the previous literature of this topic that all AA can
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be represented by a single source, and we leave the multiple source hypothesis
for further works. Due to the lack of space and for the sake of clarity, only two
potential atrial sources for PCA, RobustICA-f and BTD are shown in Figs. 2,
3 and 4. The other sources were disregarded for presenting a very weak power
contribution.

Looking at Fig. 2, we can see that the atrial source estimated by PCA (located
in the second row) has SC equal to 62.5%, while looking at Fig. 3, the estimated
atrial source by RobustICA-f (located in the second row) has SC equal to 68.3%.
For BTD, 8 out of the 10 independent runs estimated an atrial source with higher
SC than PCA and 6 with higher SC than both matrix-based methods, giving
an average SC over the 10 runs equal to 67.8%. Figure 4 shows the results for
a particular initialization of BTD, where the estimated atrial source (located
in the second row) has SC equal to 76.5%. The DF position of both PCA and
RobustICA-f are located at 5.96 Hz, while in BTD it lies between 5.72 and 5.96
Hz. For comparison, the DF position obtained from an electrogram simultane-
ously acquired by a catheter located in the left atrial appendage of the same
patient, is equal to 4.77 Hz.
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Fig. 2. Potential atrial sources contribution to lead V1 estimated by PCA. Left: time
domain (in mV). Right: frequency domain (in mV/

√
Hz).

5.4 Atrial Source Selection

As ground truth, the sources were visually analyzed in time and frequency
domain with guidance of the parameters previously described. The source with
the strongest representation of AA content was taken as the atrial source.

The classical method and the two proposed methods of atrial source selection
were assessed in 10 segments of 10 different patients, as previously explained.
From a total of 120 runs for the 10 patients (100 for BTD, 10 for PCA and 10 for
RobustICA-f) the classical method succeeded only in 45.8% of runs. Applying
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Fig. 3. Potential atrial sources contribution to lead V1 estimated by RobustICA-f.
Left: time domain (in mV). Right: frequency domain (in mV/

√
Hz).
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Fig. 4. Potential atrial sources contribution to lead V1 estimated by BTD for a single
run. Left: time domain (in mV). Right: frequency domain (in mV/

√
Hz).

the first proposed method, the index of success increases to 75%, while the second
proposed technique succeeds in 83.7% of the trials. It should be mentioned that
in 35.8% of the trials, both the classical and the second proposed method were
able to select the source with most AA content. Also, in 12.5% of trials none
of the methods were able to select the AA signal. This means that the existing
methods are suboptimal regarding the AA source selection. However, from the
reported experiments, it is believed that a balanced combination between power
contribution and kurtosis may lead to an optimal or at least a better method.

6 Conclusions

The present work has analyzed the potential atrial sources estimated by BTD,
showing its satisfactory performance for most initializations in the tested
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database. We have shown that the classical method of atrial source selection may
not work in some cases, and we have proposed two new automated methods that
better select the atrial source among the other potential sources. These meth-
ods have been validated in experimental results not only for BTD but also for
the matrix-based methods PCA and RobustICA-f in a population of 10 patients
with persistent AF. In future works, we aim to assess the proposed methods in a
larger database and along consecutive time segments of each patient to analyze
intra-patient (temporal) stability.
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Abstract. Tensor decompositions are still in the process of study and
development. In this paper, we point out a problem existing in nonnega-
tive tensor decompositions, stemming from the representation of decom-
posable tensors by outer products of vectors, and propose approaches
to solve it. In fact, a scaling indeterminacy appears whereas it is not
inherent in the decomposition, and the choice of scaling factors has an
impact during the execution of iterative algorithms and should not be
overlooked. Computer experiments support the interest in the greedy
algorithm proposed, in the case of the CP decomposition.

1 Introduction

Tensors of order d are represented by data arrays with d indices, (d = 2 for
matrices). They provide unique features as they are a suitable data structure for
representing multimodal or multisource data, in which each diversity is repre-
sented by one of the ways of the tensor. One of the most interesting applications
of tensors is the Canonical Polyadic (CP) decomposition defined below, which
aims at representing a tensor as a sum of decomposable rank one tensors, reveal-
ing relationships among its d ways.

CP Decomposition. In this paper, we shall focus our attention on the CP decom-
position of third order tensors. To begin with, a tensor D is decomposable if it
can be expressed as the outer product of vectors, i.e.: Dijk = aibjck, which will
be denoted compactly as D = a ⊗ b ⊗ c, where ⊗ is the outer (tensor) product.
Next, every real tensor T of order d = 3 and dimensions I × J × K, admits a
CP Decomposition of the following form:

T =
R∑

r=1

λr D(r), (1)

where D(r) def= a(r) ⊗ b(r) ⊗ c(r), a(r), b(r) and c(r) being real vectors, which
can be stored in the so-called factor matrices, A, B and C respectively, of size
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I × R, J × R, and K × R respectively, and λr are real positive scalars. The CP
decomposition reveals tensor rank when R is minimal, which will be assumed
from now on; for instance, tensors D(r) are of rank 1. Note that another writing
of (1) in terms of factor matrices is Tijk =

∑R
r=1 λrAirBjrCkr. In addition,

because of the presence of λr, the columns of factor matrices may be normalized
to 1.

At this stage, it is important to stress that there is no scaling ambiguity in the
CP decomposition (1), contrary to what is sometimes claimed in the literature.
Only the representation of tensors D(r) by triplets of vectors is subject to this
indeterminacy. In fact, by definition, tensors are precisely equivalence classes
with respect to scaling [1–4]: the triplets (a, b, c) and (αa, βb, γc) represent the
same tensor provided that αβγ = 1.

The rank R of the CP decomposition (1) is of particular interest in appli-
cations since it is related to the intrinsic dimensionality of multilinear data.
Furthermore, the CP decomposition, contrary to other tensor decompositions,
e.g., Tucker’s or High-Order Singular Value Decomposition (HOSVD), enjoys
uniqueness if the rank is not too large [5–7]. Uniqueness is of utmost importance
since it eventually allows physical interpretation of relationships among the ways
of a tensor.

2 Motivation

NonNegativity. When the observation tensor T contains only real nonnegative
entries, it is suitable to impose decomposable tensors D(r) to also be nonneg-
ative. By doing this, we define a nonnegative rank, R+, which may be larger
than R. This is actually already true for matrices (tensors of order 2). In fact,
Herbert E. Robbins exhibited a simple example of a 5 × 5 matrix having rank 3
but nonnegative rank 4; see [4,8] for its expression. It is thus necessary to define
the nonnegative CP decomposition of a nonnegative tensor as:

T =
R+∑

r=1

λr a(r) ⊗ b(r) ⊗ c(r), (2)

where ai(r) ∈ R
+, bj(r) ∈ R

+ and ck(r) ∈ R
+, ∀(i, j, k, r).

There are many applications where nonnegativity is relevant, as to provide
better interpretable results when dealing with variables related to physical quan-
tities such as luminance in images, spectra or chemical concentrations [9,10].
There exist many algorithms aiming at computing the CP decomposition of non-
negative tensors [9,11]. However, due to measurement noise or modeling errors,
the tensor to decompose may not be nonnegative or may have a too large rank,
hence requiring to be approximated. It turns out that, given any real tensor T
of rank R, it is fortunately always possible to find a best nonnegative approxi-
mation of T of given nonnegative rank R+. This problem is indeed well-posed
[12,13] (which would not be the case in R instead of R+).
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Projection onto the NonNegative Orthant: In the nonnegative CP decomposi-
tion (2), all quantities are nonnegative. For instance, vector a(r) belongs to the
nonnegative orthant (R+)I . In iterative algorithms, this constraint is ensured
at each iteration by projecting a computed value onto the nonnegative orthant.
This is where the problem shows up. In fact, projecting D(r) or its building
vectors {a(r), b(r), c(r)} do not yield the same result. Since this observation is
already true for matrices, a simple example will be most convincing.

Example. Take the matrix M below, of rank 1. Now its projection M+ has rank
2. So it is preferred to project its supporting vectors {a, b} instead. The obtained
vectors are {a+, b+} and yield a matrix of nonnegative rank equal to 1:

M =

(
4 −2

−2 1

)
=

(
2

−1

)
⊗

(
2

−1

)
= a⊗b, M+ =

(
4 0
0 1

)
, a+⊗b+ =

(
4 0
0 0

)
.

The problem is that vectors {a, b} are not uniquely defined. We could have taken
{−a, −b} without changing M . Should we do that, we obtain instead:

M =

(
4 −2

−2 1

)
=

(−2
1

)
⊗

(−2
1

)
= a⊗b, M+ =

(
4 0
0 1

)
, a+⊗b+ =

(
0 0
0 1

)
.

We see that the projected matrix of nonnegative rank 1 is not the same. This issue

comes from the fact that no care has been taken of the scaling indeterminacies

(which reduce to sign indeterminacies thanks to the use of factors λr) inherent

in the representation of a rank-1 tensor by a triplet of vectors.

Algorithms resorting to projection include Alternating Nonnegative Least
Squares (ANLS) [9], Projected and Compressed ANLS (ProCo) [14], or Alternat-
ing Direction Method of Multipliers (ADMM) [11], among others. Hard thresh-
olding is the procedure in which it is the easiest to illustrate the occurring of the
problem.

Algorithm 1. Alternating Nonnegative Least Squares (ANLS)
Require: T , B = B[0], C = C [0]

t = 0;
while stopping criterion is not met, do

t = t + 1
compute A from B[t − 1] and C [t − 1]; A[t] ← A+

compute B from C [t − 1] and A[t]; B[t] ← B+

compute C from A[t] and B[t]; C [t] ← C+

normalize columns: A[t] ← A[t]Λ−1
A ; B[t] ← B[t]Λ−1

B ; C [t] ← C [t]ΛAΛB ;
end while
normalize columns: C [t] ← C [t]Λ−1

return A[t], B[t], C [t], Λ
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ANLS. One algorithm that has been widely used to compute CP decomposi-
tion (1) is the Alternating Least Squares (ALS) algorithm. ALS minimizes with
respect to matrices A, B, C in an alternating fashion, the loss:

Φ =
∑

ijk

[Tijk −
R∑

r=1

λr Air Bjr Ckr]2. (3)

Factor matrices are updated in turns during each iteration until a certain con-
dition is attained (e.g. the number of iterations or a certain threshold on the
reconstruction error). When a nonnegative decomposition is sought, each factor
matrix can be projected onto the nonnegative orthant right after its calculation;
this is the ANLS algorithm [9, p.47]. The pseudo-code is given in Algorithm1.

3 Proposed Approach

We illustrate the problem with hard thresholding (cf. Sect. 4), but our solution
could also reveal useful in soft thresholding as well. The problem is worse when
all entries in a column vector are set to zero; this prevents its normalization (as it
would lead to a division by zero) or imposes an erroneous reduction of the rank
(due to the arbitrary removal of the null columns). The solution we describe
overcomes these two difficulties most of the time, up to negligible extraneous
computation load. We propose to implement this in a procedure to be executed
before projection. The concept goes as follows. Because of normalization, the
scaling indeterminacy reduces merely to signs. In fact, in every decomposable
tensor D(r), we have two variables, ε, η ∈ {−1,+1}, which are to be used as
sign flippers for the columns a(r), b(r) and c(r) that are together involved in an
outer product term, without changing the result of the outer product given by:

a(r) ⊗ b(r) ⊗ c(r) = (εηa(r)) ⊗ (εb(r)) ⊗ (ηc(r)), ∀(ε, η) ∈ {−1,+1}. (4)

This formula covers all 4 combinations of sign flipping of vectors, without affect-
ing the result of the original outer product. Now denote by a′(r) = ε η a(r),
b′(r) = ε b(r), and c′(r) = η c(r), and:

a−(r) = a′(r) where a′(r) < 0, and 0 elsewhere (5)

b−(r) = b′(r) where b′(r) < 0, and 0 elsewhere (6)

c−(r) = c′(r) where c′(r) < 0, and 0 elsewhere. (7)

Vectors a+(r), b+(r) and c+(r) are defined in a similar manner, with positive
entries. In particular, a+(r) + a−(r) = a′(r).

Given a triplet of vectors, (a, b, c), there are 4 possibilities to construct a non-
negative decomposable tensor D[�] by just flipping their signs without changing
the value of (a ⊗ b ⊗ c) and by setting to zero negative values in each vector
(refer to Table. 1).
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Table 1. The 4 possibilities created by sign flipping.

(ε, η) (+, +) (−, −) (+, −) (−, +)

� 1 2 3 4

D[�] D[1] = a+ ⊗ b+ ⊗ c+ D[2] = a+ ⊗ b− ⊗ c− D[3] = a− ⊗ b+ ⊗ c− D[4] = a− ⊗ b− ⊗ c+

where for the sake of convenience, a+ stands for vector a[�](r)+, and similarly
for a−, b+, b−, c+ and c−.

We are interested to know which combination would yield the minimal num-
ber of resets. Ultimately, we are concerned about (i) avoiding to set a whole
vector to zero, which would lead to decrease the rank. This goal can mean “set
as few entries to zero as possible”. And we also aim at (ii) minimizing the dis-
tance between the original tensor and its nonnegative approximation.

We explored several criteria. The first is to minimize Φ0 = ‖T −
∑

r D
[�](r)‖2.

This criterion is very costly to optimize, due to the large number of combinations.
In fact, for every r, there are 4 possibilities to assign (ε, η), and this assignment
can be different for each r. This would result in 4R possibilities to explore. This is
why we propose two greedy algorithms searching for the optimal solution D[�](r)
independently for every r. One possibility is to minimize w.r.t. 	 the following
product for every r independently, and for the L2 norm:

Φ1(	, r) = ‖D(r) − D[�](r)‖22. (8)

Let us express this criterion for 	 = 1, without loss of generality. We have for
any fixed r (that we drop for the sake of convenience):

Φ1(1, r) = ‖D(r)‖22 + ‖D[1](r)‖22 − 2
∑

ijk

aia
+
i bjb

+
j ckc+k . (9)

The last term can be rewritten as 2 (aTa+)(bTb+)(cTc+). Next, it is also equal
to 2‖a+‖2 ‖b+‖2 ‖c+‖2, since a+ and a− are orthogonal and a = a+ −a−. This
suggests another criterion to minimize w.r.t. 	:

Φ2(	, r) = ‖a−‖ · ‖b−‖ · ‖c−‖ (10)

Criteria Φ1 and Φ2 are easy to optimize w.r.t. (ε, η), i.e w.r.t. 	, and need neg-
ligible extraneous computation load.

4 A Toy Example

Consider the factor matrices:

A =

⎡

⎣
0.8025 0.1914
0.0089 0.9106
0.5966 0.3662

⎤

⎦ , B =
[
0.0088 0.7495

1 0.6620

]
, C =

⎡

⎢⎢⎢⎢⎣

0 0
0 1
0 0

0.7071 0
0.7071 0

⎤

⎥⎥⎥⎥⎦
.



62 M. Jouni et al.

Algorithm 2. Minimization of Φ1 w.r.t. to ε and η for fixed r

Require: a(r), b(r), c(r)
initialize ε(�), η(�) for each possible D[�]; (according to Table.1)

normalize: a ← a (r)
‖a (r)‖ ; b ← b(r)

‖b(r)‖ ; c ← c(r)
‖c(r)‖ ;

� = 0;
while � ≤ 4, do

� = � + 1;
a′ ← ε(�) η(�) a; b′ ← ε(�) b; c′ ← η(�) c;
compute a+, b+, and c+;
Φ1(�) ← ‖D − D[�]‖2

2;
end while
Find �o = arg min� Φ1(�);
a(r) ← ε(�o) η(�o) a(r); b(r) ← ε(�o) b(r); c(r) ← η(�o) c(r);
return a(r), b(r), c(r);

Algorithm 3. Modified ANLS
Require: T , B = B[0], C = C [0]

t = 0;
while stopping criterion is not met, do

t = t + 1
compute A from B[t − 1] and C [t − 1]; A[t]
compute B from C [t − 1] and A[t]; B[t]
compute C from A[t] and B[t]; C [t]
r = 0;
while r < R do

update a(r), b(r), and c(r) using Alg.2;
r = r + 1;

end while
A[t] ← A+; B[t] ← B+; C [t] ← C+;
replace null columns in A, B or C by random values using e.g. absolute value of
standard Gaussian distribution; (see Sect.5)
normalize columns: A[t] ← A[t]Λ−1

A ; B[t] ← B[t]Λ−1
B ; C [t] ← C [t]ΛAΛB ;

end while
normalize columns: C [t] ← C [t]Λ−1

return A[t], B[t], C [t], Λ

When computing the CP Decomposition with Algorithm1, after one update
of A, one of its columns became negative, and hence one of its columns got
discarded, and the rank was decreased by 1. Note that, for the sake of conciseness,
during the loop of updates only the columns of A and B are normalized and
their norms multiply C; after the loop ends, C is normalized and its column
norms (containing that of A and B) form the values of Λ (cf. Algorithm 1).

Algorithm 1: Standard ALS

A :

⎡

⎣
0.2311 −0.0464
0.1891 −0.0627
0.2178 −0.0498

⎤

⎦ →

⎡

⎣
0.2311 0
0.1891 0
0.2178 0

⎤

⎦ →

⎡

⎣
0.6252 Undefined
0.5118 Undefined
0.5893 Undefined

⎤

⎦ →

⎡

⎣
0.6252
0.5118
0.5893

⎤

⎦
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B :
[
0.2962 0
1.0561 0

]
→

[
0.2962 0
1.0561 0

]
→

[
0.2701 Undefined
0.9628 Undefined

]
→

[
0.2701
0.9628

]

C :

⎡

⎢⎢⎢⎢⎣

0 0
0.4978 0

0 0
1.3779 0
1.3779 0

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

0 0
0.4978 0

0 0
1.3779 0
1.3779 0

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

0 0
0.2018 0

0 0
0.5585 0
0.5585 0

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

0
0.2018

0
0.5585
0.5585

⎤

⎥⎥⎥⎥⎦

At the end the output of standard ANLS results in:

A =

⎡

⎣
0.8004
0.0249
0.5990

⎤

⎦ ;B =
[
0.0165
0.9999

]
;C =

⎡

⎢⎢⎢⎢⎣

0
0.0835

0
0.7046
0.7046

⎤

⎥⎥⎥⎥⎦

Algorithm 2: Modified ANLS (using Φ1)

A :

⎡

⎣
0.2311 −0.0464
0.1891 −0.0627
0.2178 −0.0498

⎤

⎦ →

⎡

⎣
0.2311 0.0464
0.1891 0.0627
0.2178 0.0498

⎤

⎦ →

⎡

⎣
0.6252 0.5015
0.5118 0.6772
0.5893 0.5384

⎤

⎦

B :
[
0.3420 0.4425
1.1203 0.6211

]
→

[
0.3420 0.4425
1.1203 0.6211

]
→

[
0.2919 0.5802
0.9564 0.8145

]

C :

⎡

⎢⎢⎢⎢⎣

0 0
−0.4978 −7.6392

0 0
2.9691 11.1635
2.9691 11.1635

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

0 0
0 7.6392
0 0

2.9691 0
2.9691 0

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

0 0
0 0.5392
0 0

1.2853 0
1.2853 0

⎤

⎥⎥⎥⎥⎦

At the end the output of Modified ANLS results in:

A =

⎡

⎣
0.8025 0.1914
0.0089 0.9106
0.5966 0.3662

⎤

⎦ ;B =
[
0.0088 0.7495

1 0.6620

]
;C =

⎡

⎢⎢⎢⎢⎣

0 0
0 1
0 0

0.7071 0
0.7071 0

⎤

⎥⎥⎥⎥⎦

5 Computer Results

500 realizations of 10 × 5 matrices {A,B,C} are drawn. The rank of the tensor
that is tested is hence R = 5. Entries of factor matrices are the absolute value
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Fig. 1. Histograms of the error, in log10 scale, obtained after 500 iterations. Top: ANLS.
Middle: ANLS modified with Φ1. Bottom: ANLS modified with Φ1 and with column
reinitialization.

of i.i.d. drawn from a standard Gaussian distribution. On each realization, both
ANLS and a modified version based on the minimization of Φ1 are run.

As can be seen in Fig. 1, 107 realizations out of 500 are unsuccessful with
ANLS, that is, 107 realizations generate one fully negative column in a factor
matrix which is then zeroed due to hard thresholding. This eventually leads to
a decrease of the rank down to 4 and hence to a large reconstruction error (close
to 10−1). Among those 107 pathological cases, our simple function described
by Algorithm 2 could cope with 92 of them without a significant increase in
complexity. However, 15 realizations remain unsolved, because they correspond
to either one of two particular cases: (i) either one column, say a(ro), is fully
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negative, and the two others, namely b(ro) and c(ro) are fully positive, or (ii) all
the three columns are fully negative.

Fig. 2. The average error obtained after 500 iterations, as a function of the number
of iterations in ANLS (blue crosses), ANLS modified with Φ1 (red circles), and ANLS
modified with Φ1 and with column reinitialization (yellow triangles). (Color figure
online)

In order to cope with the latter cases, a straightforward improvement was
brought in Algorithm3, by drawing a fresh column vector (also the absolute value
of i.i.d drawn from a standard Gaussian distribution) to replace null vectors when
generated in the unsolved pathological cases, before normalizing the columns.
The results can be seen in Figs. 1 (bottom) and 2, where all 15 cases were solved
and the rank was preserved.

6 Concluding Remarks

In this paper, we have emphasized the fact that rank-1 tensors should not be
treated as a collection of vectors without care, and showed an illustration in
the case of ANLS using hard thresholding. In the latter case, two modifications
have been proposed to fix the problem. In future works, we plan to investigate
applications to other algorithms such as ADMM, and/or using soft thresholding.
The influence of noise would also deserve to be further addressed.
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Abstract. We study the problem of finding a subspace representative of
multiple datasets by minimizing the maximal dissimilarity between this
subspace and all the subspaces generated by those datasets. After argu-
ing for the choice of the dissimilarity function, we derive some properties
of the corresponding formulation. We propose an adaptation of an algo-
rithm used for a similar problem on Riemannian manifolds. Experiments
on synthetic data show that the subspace recovered by our algorithm
is closer to the true common subspace than the solution obtained using
an SVD.

Keywords: Common subspace extraction · Total grassmannian
Minimal enclosing ball

1 Introduction

We address the problem of extracting common information from multiple data-
sets. In recent years data has become increasingly easy to generate and store
for analysis to guide decision making, and it is not uncommon to have access to
datasets representing similar but not exactly equivalent phenomena. A typical
example can be found in bioinformatic, where datasets usually have a few tens
to at most a few hundreds of samples for a few (tens of) thousands of features.
However there usually exist various datasets measuring the same disease on
different sets of patients, but corresponding to different studies and different
experimental conditions that should be taken into account in further analysis.
Considering all those similar datasets at once can be very useful to deal with
the high number of features since statistical inferences require a large number of
samples to be robust enough and generalizable to other data.

Beside the basic possibility to simply concatenate all the datasets X1,...,Xm

into a larger dataset X = [X1 . . . Xm] and apply usual methods such as princi-
pal components analysis on X, more specific approaches exist to extract common
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 69–78, 2018.
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components present in the datasets. A method to factorize two datasets with a
common factor was proposed in [1] with a closed-form solution, and an exten-
sion to more than two datasets was proposed in [2]. However, such methods
assume that the common dimension of the datasets is full-rank, which is not
the case if we consider datasets with a higher number of variables than samples,
such as gene expression datasets. The best known method is probably canoni-
cal correlation analysis (CCA) [3], which aims to find a linear combination of
the initial features for both datasets maximizing the correlation between those
two combinations. When dealing with two datasets only, an exact solution can
be computed based on the covariance matrix. In order to find more than one
pair of correlated combination of features, deflation is usually used: the same
procedure (CCA) is repeated on the data from which the previous components
were removed. Another well known method, partial least square regression [4],
aims to find linear combinations of features for the two datasets such that the
covariance between those two new representations is maximal. As in CCA a
closed-form solution exists, and deflation can be used to compute the follow-
ing components. Another variation is co-inertia analysis (CIA) and its exten-
sion multiple CIA [5] that maximizes a sum of weighted squared covariances
between linear combination of the datasets features and a reference vector. Con-
sensus principal component analysis is very similar to CIA, the main difference
being in the deflation process [6]. Different extensions of those methods to more
than two datasets have been proposed, with various criteria to optimize (see for
example [7,8] and references within): maximizing a sum on all pairs of datasets
of covariances or correlations, possibly squared or in absolute value, and with
different constraints. In such cases, a closed-form solution does not always exist.

A central question when using more than two datasets is the importance to
give to those different (pairs of) datasets. Common approaches are to give all
datasets the same importance or, as in [7], to consider if a pair of datasets is
connected or not and to give to the corresponding term a weight of 1 or 0. If
we are dealing with a set of datasets all very similar except one (for example,
because measured using another technology), those kind of choices can lead to
components representing very well all the similar datasets but being not repre-
sentative at all of the last one. Here, we want to avoid this situation, and in order
to take all Xi into account we propose to minimize the maximal dissimilarity d
between the common component U ∈ R

p×K and all datasets Xi ∈ R
p×ni :

U∗ = arg min
U

max
i

d(U,Xi). (1)

This formulation can be viewed as looking for the center of the smallest-radius
sphere enclosing all Xi, and can be linked to the minimum enclosing ball, 1-center
problem or minimax optimization problem. However, since here U represents a
subspace, we are really interested in the subspace generated by the columns of
U . So we want to solve problem (1) such that d(U,Xi) = d(U ,Xi) is a dissimi-
larity measure between U and Xi, the subspaces generated by the columns of U
and X.
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The problem of finding the smallest enclosing ball of a finite point set
X = {x1, . . . , xm} has been already thoroughly investigated in Euclidean space,
and an efficient approximation algorithm has been proposed in [9]. An adapta-
tion of the algorithm presented in [9] to Riemannian geometry is proposed in
[10] with a study of the convergence rate, and in [11] to compute Riemannian
L1 and L∞ center of mass of structure tensor images in order to denoise those
images.

In this paper we assume that each point Xi represents a subspace of dimen-
sion ni in R

p, that is Xi belongs to the Grassmannian manifold G(ni, p) and
so X = {X1, . . . ,Xm} is included in the total Grassmannian ∪G(ni, p). The pro-
posed approach to solve problem (1) is inspired by [10]. The main difference
is that each data point Xi belongs to a different Grassmannian G(ni, p), which
prevents us by using the usual Grassmannian distance. Instead we use an adap-
tation based on principal angles, which allows us to measure the dissimilarity
between any pair of subspaces of different dimension, and to project G(ni, p) on
G(K, p) in order to return to a common manifold.

The paper is organized as followed. We first discuss the choice of the dissimi-
larity measure and the resulting problem in Sect. 2, then details of the proposed
approach are presented in Sect. 3. Section 4 describes the results obtained on
synthetic data, and we conclude in Sect. 5.

2 Problem Formulation

Let Xi ∈ R
p×ni be a matrix of p variables times ni samples, for i = 1, ...,m. Our

goal is to find a subspace U of dimension K representative of all the subspaces Xi,
where Xi is the subspace generated by the columns of Xi. In other words we are
looking for a U ∈ R

p×K minimizing d(U,Xi) for all i, where d(U,X) = d(U ,X )
is a dissimilarity measure between the span of U and the span of X.

2.1 Dissimilarity Measure

Different dissimilarities are possible to quantify d(U,X), we detail some of them
below. For K = 1, a possible choice to evaluate if a vector u ∈ R

p is close to X
is the angle between u and its orthogonal projection on X . A vector u is close
to the subspace X if the (positive) angle between them is small. If we define φ
as the angle between u and X (in [−π

2 , π
2 ]), we have

u�X̌X̌�u = cos2 φ

where ||u|| = 1 and X̌ is an orthonormal basis of X . The term u�X̌X̌�u can
then be seen as a similarity measure evaluating how close u is to X , with a value
of 1 when u is in the subspace X , and 0 when they are orthogonal. We can then
define a dissimilarity:

d(u,X) = 1 − u�X̌X̌�u = sin2 φ

with d(u,X) = 0 if and only if u ∈ X .
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This can be extended to a more general U ∈ R
p×K with p ≥ n ≥ K ≥ 1

(with n the dimension of X ) by summing the dissimilarities obtained for each
element of an orthonormal basis Ǔ of U :

da(U,X) =
∑

k

1−Ǔ(:, k)�X̌X̌�Ǔ(:, k) = K−Tr
(
Ǔ�X̌X̌�Ǔ

)
=

∑

k

sin2 φk(U,X)

with cos φk(U,X) the singular values of Ǔ�X̌. Note that this quantity does not
depend on the Ǔ or X̌ chosen.

Another possible dissimilarity is [12]:

db(U,X) =
1√
2
||Ǔ Ǔ�− X̌X̌�||F =

√
K + n

2
− Tr(Ǔ�X̌X̌�Ǔ)

=

√
n − K

2
+

∑

k

sin2 φk(U,X).

Similarly, we can consider the norm between X̌ and its projection onto the
common subspace U (termed chordal metric in [13, Table 3]):

dc(U,X) = ||(I − Ǔ Ǔ�)X̌||F =
√

n − Tr
(
Ǔ�X̌X̌�Ǔ

)

=
√

n − K +
∑

k

sin2 φk(U,X).

Another possibility is to consider the principal angles φk between both sub-
spaces:

dd(U,X) =
√∑

k

φ2
k(U,X)

See [13] for other possible dissimilarity measures.
Letting σk = cos φk(U,X) denote the kth singular value of Ǔ�X̌, we can

compare the different dissimilarities in Table 1 (with nu and nx dimensions of
subspaces U and X ). When using those dissimilarities in minU maxi d(U,Xi), db

and dc will give more importance to datasets Xi with a higher ni. All dissimi-
larities except dd can be directly expressed in terms of Ǔ�XX�Ǔ . As da and dd

respect U � X ⇒ d(U,X) = 0, they are not distances. Note that if nx = nu, we
have

√
da = db = dc.

In the context of (1), it is natural to require that d(U,X) = 0 when U ⊂ X
or X ⊂ U . We opt for da, since it yields a simpler objective function than dd.
Hence, (1) becomes:

min
U∈Rp×K

max
i

K − Tr(Ǔ�X̌iX̌
�
i Ǔ).

Since K is fixed and Ǔ verifies Ǔ�Ǔ = IK , this is equivalent to

max
U�U=I

min
i

Tr(U�X̌iX̌
�
i U). (2)
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Table 1. Summary of the dissimilarities

Formulation Distance U ⊂ X ⇒ d(U, X) = 0

da(X, U) = min(nx, nu) − ∑min(nx,nu)
k cos2(φk) - �

db(X, U) =
√

nx+nu
2

− ∑min(nx,nu)
k cos2(φk) � -

dc(X, U) =

√

max(nx, nu) − ∑min(nx,nu)
k cos2(φk) � -

dd(X, U) =

√
∑min(nx,nu)

k φ2
k - �

Since maxU mini fi(U) is equivalent to maxU,τ τ subject to τ ≤ fi(U) for all i,
(2) is equivalent to:

max
U,τ

τ

s.t. τ −
K∑

k=1

u�
kX̌iX̌

�
i uk ≤ 0 ∀i = 1, ...,m (3a)

u�
j uj − 1 = 0 ∀j = 1, ...,K (3b)

u�
j uk = 0 ∀k 
= j, j = 1, ...,K ; k = 1, ...,K (3c)

with ui the ith column of U . Observe that (3) is an optimization problem with
a linear objective function and quadratic (in)equality constraints.

2.2 KKT Conditions

We derive the first order necessary conditions of optimality for problem (3). Asso-
ciating Lagrange multipliers γi’s with constraints (3a), Mjj ’s with constraints
(3b) and Mjk’s with constraints (3c), the KKT conditions, see e.g., [14] can be
written as:

∑

i

γi = 1 (4a)

(
∑

i

γiX̌iX̌
�
i

)
U = UM (4b)

U�U = I (4c)

τ − Tr
(
U�X̌iX̌

�
i U

) ≤ 0 ∀i = 1, ...,m (4d)
γi ≥ 0 ∀i = 1, ...,m (4e)

γi

(
τ − Tr

(
U�X̌iX̌

�
i U

))
= 0 ∀i = 1, ...,m (4f)

The Mij ’s correspond to the Lagrange multipliers associated with constraints
u�

i uj = 0 and the Mii’s to u�
i ui − 1 = 0, so M is symmetric. Therefore there

exist a diagonal matrix D and an orthogonal matrix Q such that M = QDQ�.
We have then

(∑
i γiX̌iX̌

�
i

)
UQ = UQD which means that UQ is a matrix of
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eigenvectors of
∑

i γiX̌iX̌
�
i . The γi’s can be interpreted as the importance given

to the corresponding subspaces, and are positive only for those subspaces that
achieve the max of problem (3).

Let UY DY V �
Y be the singular value decomposition of

Y = [
√

γ1X̌1,
√

γ2X̌2, ...,
√

γmX̌m] ∈ Rp×N .

Observe that UY D2
Y U�

Y is then an eigendecomposition of Y Y �. A candidate
solution of problem (3) would then be, for fixed γi respecting condition (4f):

Mij = 0 ∀i 
= j U = UY

Mii = D2
Y (i, i) τ = Tr

(
U�Y Y �U

)
.

The last equality results from the combination of conditions (4a) and (4f):

τ =
∑

i

γiτ =
∑

i

γiTr
(
U�XiX

�
i U

)
.

To maximize τ , we should consider the K first singular values of Y . The difficulty
is then to find γi such that condition (4f) is respected.

We can easily see that unless the optimal U belongs to all subspaces Xi,
more than one γi is nonzero. To see this, observe that if γi = 0 for all i 
= j,
constraint (4b) would imply that U belongs to subspace Xj , which means that
Tr(U�X̌jX̌

�
j U) = K and τ = K by condition (4f). Since for all i, k we have

0 ≤ u�
kX̌iX̌

�
i uk ≤ 1 and Tr

(
U�X̌iX̌

�
i U

) ≥ τ = K by condition (4d), we have
Tr

(
U�X̌iX̌

�
i U

)
= K for all i, and U belongs to all the other Xi’s. As a result,

any candidate solution should have at least two Xi’s realizing the optimum.

3 Proposed Approach

In [9], a fast and simple procedure is proposed to find an approximation of
the minimum enclosing ball center of a finite-dimensional Euclidean space. The
procedure is extended to arbitrary Riemannian manifolds in [10]:

– Initialize the candidate solution U (t) with a point in the set
– Iteratively update as U (t+1) = Geodesic

(
U (t),X

(t)
f , 1

t+1

)
, where X

(t)
f is the

farthest point to U (t), and Geodesic(p, q, t) represents the intermediate point
m on the geodesic passing through p and q such that dist(p,m) = dist(p, q).

Since we are interested in finding the best subspace of dimension K in R
p,

our solution U belongs to the Grassmann manifold G(K, p). The main difference
with [10] is that we are dealing with points representing subspaces of differ-
ent dimensions ni and therefore belonging to different manifolds G(ni, p). The
first consequence is that the usual Grassmaniann distance cannot be used to
determine the farthest point X

(t)
f . Since we want to preserve d(U,Xi) = 0 when
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U ⊂ Xi, we used a dissimilarity which is not a metric except if the two sub-
spaces belongs to the same Grassmannian. The second consequence is that to
update the current iterate U (t) using a geodesic, X

(t)
f should be first projected on

G(K, p). The next proposition shows how, given Xf ∈ G(nf , p) and U ∈ G(K, p)
with nf ≥ K, we can compute Yf ∈ G(K, p) included in Xf that minimizes the
distance to U . We can then update U using the corresponding geodesic.

Proposition 1. Let Y, U ∈ G(K, p) and X ∈ G(n, p) where n ≥ K, with X̌
and Ǔ orthonormal basis of X and U . Let A1D1B

T
1 be an SVD of ǓT X̌, then

we have
min
Y⊂X

da(Y,U) = da(X ,U) = da(Col(XB1),U).

Those equalities hold also for dd.

Algorithm 1. Heuristic to extract a subspace minimizing the maximal dissim-
ilarity with the Xi.
Require: tol, ε, X1, ...,XN

1: t ← 1
2: U (0)D(0)V (0)T ← SVD([X̌1...X̌m], K)
3: err(0) ← tol + 1
4: while err(t) ≥ tol do
5: for all X̌j do

6: d
(t)
j ← da(U

(t), X̌j)
7: end for
8: imax ← arg maxi d

(t)
i

9: UcDcV
�

c ← SVD(X̌�
imax Ǔ (t), K)

10: S0 ← U (t)Vc

11: S1 ← X̌imaxUc

12: Θ ← arccos diag Dc

13: Γα ← diag cos αΘ
14: Σα ← diag sin αΘ
15: δ ← 1

t+1

16: U (t+1) ← S0Γδ + (S1 − S0Γ1) Σ−1
1 Σδ

17: dsorted ← sortdecreasing(d
(t))

18: err(t) ← dsorted(1) − dsorted(2)
19: t ← t + 1
20: end while

An adaptation is proposed in Algorithm 1, integrating results obtained
from the KKT conditions analysis. We initialize using a K-truncated SVD of
Y = [X̌1, X̌2, ..., X̌m], corresponding to the case where all the γi’s are equal
(line 2), and stop when the two farthest subspaces have close dissimilarity values
(line 18). As explained in Subsect. 2.2, this is a necessary, but not sufficient, con-
dition at optimality. The farthest Xi from current U (t) is determined using the
chosen dissimilarity based on the principal angles (lines 5 to 8). The associated
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orthonormal basis S0 and S1 of U and Ximax are computed (lines 9 to 11) to
update U (t) in the direction of Ximax with a step 1

t+1 along the Grassmannian
geodesic [15] (lines 12 to 16).

4 Experiments

We generated synthetic data to represent a case where datasets are unevenly
distributed in space and the minimax approach is justified. We first generated
a common subspace Uc ∈ R

p×Kc ∼ N(0, 1). We then perturbed it to generate
two different noisy versions Uj = Uc + N(0, sjμUc

), j ∈ {1, 2}, with μUc
=

mean(|Uc|), from which we generated two groups of data. For each Uj , j ∈ {1, 2},
we generated different datasets Xi:

Xi =
[
Uj Ai

] [
V �

i

B�
i

]

where Bi ∈ R
ni×Ki is distributed ∼ U[0,1], and Ai ∈ R

p×Ki ∼ N(0, 1). Each
column of matrices Uj , Ai and Bi is normalized (using the L2 norm) to give the
same importance to each component within the dataset. Each column Vi(:, j) of
Vi ∈ R

ni×Kc is distributed ∼ U
[0,

3wij
p ]

, where wij represents the importance of

the common component j within dataset i. Finally, Gaussian noise εi ∼ N(0, σi∗
μXi

) is added to each datasets: Xi ← Xi+N(0, σi∗μXi
) with μXi

= mean(|Xi|).
We generated datasets in two groups: the first, based on U1, contains more

datasets but with higher noise, while the second group, based on U2, contains
fewer less noisy datasets. The first group contains 17 datasets with s1 = 1,
while the second contains 3 datasets with s2 = 0.1. We took Kc = 3 common
components and Ki = 5 additional components, p = 1000 features and ni ∼
U[20 220] samples for each dataset Xi. The weights wij were randomly generated
as ∼ U[0.05 0.5] to ’hide’ the common components in the datasets. The final added
noise has σi = 0.1.

We compared our Grassmaniann Minimum Enclosing Ball approach
GMEBda described in Algorithm 1 to a K-truncated SVD on X = [X1...Xn]
(SV D) and X̌ = [X̌1...X̌n] (SV Do). Working with X̌ instead of X improves the
recovery of components that are (weakly) present in all Xi’s. For each subspace
obtained, we computed its maximal dissimilarity to X̌i, but also to the back-
ground truth Uc and the two noisy Uj . Mean results on 100 randomly generated
datasets are shown on Fig. 1, where we also give results when using dissimilarities
db, dc or dd in Algorithm 1.

When computing dissimilarities to the U ’s, we logically have
√

da = db = dc

since, in these cases, nx and nu of Table 1 are equivalent. Results obtained for
db and dc with X̌i are similar for all methods, due to the influence of ni in
the dissimilarities. Since we have dc(U,Xi) ∈ [

√
ni − K,

√
ni] and ni > K, the

results are mainly influenced by maxi ni. On the criterion minimized (da on X̌i),
the common subspace approach is the best one. As expected, SV Do recovers
very well the noisy components U1, but the common subspace approach recovers
better the U2. The original Uc is then recovered better by the subspace approach
than by SV Do.
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Fig. 1. Mean on 100 tests of maximal dissimilarity, for different dissimilarities and
methods. Observe that methods GMEBda and GMEBdd perform best at recovering
the ground truth Uc.

5 Conclusion

In this paper, we examined the problem of finding a subspace representative
of multiple datasets by minimizing the maximal dissimilarity between this sub-
space and all the subspaces generated by those datasets. After arguing for a
particular choice of dissimilarity measure, we derived some properties of the cor-
responding formulation. Based on those properties, we proposed an adaptation
of an algorithm used for a similar problem on a Riemannian manifold. We then
tested the proposed algorithm on synthetic data. Compared to SVD, the sub-
space recovered by our algorithm is closer to the true common subspace. Based
on these promising results, the next step is to analyze properly the convergence
of the proposed algorithm. Other approaches to solve the problem should also
be investigated, for example based on the KKT conditions or on linearization.
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visiting professor at Université catholique de Louvain.
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Abstract. The power of multivariate functions is their ability to model
a wide variety of phenomena, but have the disadvantages that they lack
an intuitive or interpretable representation, and often require a (very)
large number of parameters. We study decoupled representations of mul-
tivariate vector functions, which are linear combinations of univariate
functions in linear combinations of the input variables. This model struc-
ture provides a description with fewer parameters, and reveals the inter-
nal workings in a simpler way, as the nonlinearities are one-to-one func-
tions. In earlier work, a tensor-based method was developed for perform-
ing this decomposition by using first-order derivative information. In this
article, we generalize this method and study how the use of second-order
derivative information can be incorporated. By doing this, we are able to
push the method towards more involved configurations, while preserving
uniqueness of the underlying tensor decompositions. Furthermore, even
for some non-identifiable structures, the method seems to return a valid
decoupled representation. These results are a step towards more gen-
eral data-driven and noise-robust tensor-based framework for computing
decoupled function representations.

Keywords: Tensor · CPD · Function decomposition
Tensor decomposition · Waring decomposition · Polynomial

1 Introduction

1.1 Towards Interpretability of Nonlinear Models

Nonlinear models are used in a wide variety of science and engineering fields,
such as data analytics, signal processing, system identification, and control engi-
neering. While nonlinear models are able to capture wild nonlinear effects, this
often comes at the cost of high parametric complexity, and a lack of ‘model
interpretability’.

This paper studies the question how a given nonlinear multivariate vector
function f : Rm → R

n can be decomposed into a simpler structure, as in [5,9,
18,19,21]. In particular, we investigate a structure of the form

f(x) = Wg(VTx), (1)
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 79–88, 2018.
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where W and V are transformation matrices, and the vector function g(z) =[
g1(z1) · · · gr(zr)

]T is composed of univariate functions gi(zi) in its r compo-
nents. The decoupled representation is visualized in Fig. 1.

y1

...

yn

f(u)

x1

...

xm

↔

y1

...

yn

W

g1(z1)

...

gr(zr)

VT

z1

zr

x1

...

xm

Fig. 1. A multivariate nonlinear vector function f(x) can be represented in a decou-
pled representation f(x) = Wg(VTx). A decoupled representation typically has fewer
parameters, and reveals in an intuitive way, the internal nonlinearities of f(x).

The decomposition (1) provides a representation that is easier to comprehend,
as the nonlinearity is contained in a set of univariate components. Moreover, it
typically has a lower parametric complexity, and could hence be viewed as a
form of nonlinear model order reduction.

1.2 Tensorization Methods for Decoupling Polynomials

When f is polynomial, the decomposition (1) has connections to the canoni-
cal polyadic decomposition (CPD) of a partially symmetric tensor (possibly a
joint decomposition), see [20]. Indeed, typical tensorization methods make use
of the connection between homogeneous polynomials and their coefficient ten-
sors [4,20]. The (homogeneous) scalar polynomial case, i.e., n = 1, is known
as the Waring decomposition [2,13], and is a fundamental problem in algebraic
geometry. The problem (1) we study is hence very reminiscent of the classical
Waring problem, but we consider the non-homogeneous case of several polynomi-
als. The non-homogeneous Waring problem is studied in [1,14]. The simultaneous
Waring problem for several homogeneous polynomials is studied in [2,18].

1.3 Contributions and Organization of This Paper

We start from the tensorization method of [9]. In this framework, the function f
and its first-order derivative information are evaluated in a number of sampling
points. A tensor is constructed from the set of corresponding Jacobian matrices,
which admits a CPD that allows for the reconstruction of the decomposition (1).
This approach has the following advantages: (i) the order and size of the con-
structed tensor do not increase with the degree of f , and, (ii) the approach is
not limited to the use of polynomials.

In the current paper, we generalize the method [9] to incorporate second-
order derivative information. Since second-order derivative information leads to
partially symmetric tensors, we are ultimately able to formulate the decom-
position as a partially symmetric joint tensor decomposition. By involving the
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second-order derivatives, we impose additional constraints on the (joint) tensor
decompositions, hence it is expected to enjoy more relaxed uniqueness conditions.
In the article, we assume that an exact and uniquely identifiable [5] represen-
tation of f(x) exists. Nevertheless, the resulting joint tensor decomposition will
ultimately be phrased as an optimization problem, and provides a natural start-
ing point for studying both the noisy decoupling problem, as well as a model
reduction interpretation, but this is beyond the scope of the current paper.

The current article is organized as follows. Section 2 outlines the tensor-
based decoupling method, leading to a joint tensor decomposition formula-
tion. We illustrate how the uniqueness properties improve by including second-
order derivatives. Section 3 validates the method on three simulation examples.
Section 4 summarizes the results and points out a few future research directions.

1.4 Notation

Scalars are denoted by lowercase or uppercase letters and vectors are denoted
by lowercase bold-face letters. Elements of a vector are denoted by lowercase
letters with an index as subscript, e.g., x =

[
x1 . . . xm

]T . Matrices are denoted
by uppercase bold-face letters, e.g., V ∈ R

m×r. The entry in the i-th row and
j-th column of the matrix V is denoted by vij . A matrix V ∈ R

m×r has columns
vi as in V =

[
v1 . . . vr

]
. The transpose of a matrix V is denoted by VT . A

diagonal matrix with diagonal elements a1, a2, a3 is denoted by diag(a1, a2, a3) or
diag(ai). Higher-order tensors are denoted by bold-face uppercase caligraphical
letters, e.g., J ∈ R

n×m×N . For scalar, vector, matrix and higher-order tensor
functions, we employ the same conventions. The outer product is denoted by ◦
and defined as follows: For X = u◦v◦w, the entry in position (i, j, k) is uivjwk.
The Frobenius norm of a tensor X is denoted as ‖X‖F . The Euclidean norm of
a vector x is denoted as ‖x‖. The first-order and second-order derivatives of a
univariate function g(z) are denoted by g′(z) and g′′(z), respectively.

2 Decoupling Multivariate Functions Using Tensors

2.1 The Canonical Polyadic Decomposition

The canonical polyadic decomposition (CPD) [3,10,11] is the decomposition of
a tensor into a minimal sum of rank-one components. For instance, a third-order
tensor T has a CPD of the form

T =
R∑

i=1

ai ◦ bi ◦ c, (2)

or in a short-hand notation T = [[A,B,C]], where A =
[
a1 · · · aR

]
(similar for

B and C). The CPD is a celebrated tensor decomposition, which has found a vari-
ety of applications in signal processing and data sciences. One of the attractive
properties of the CPD is its more relaxed uniqueness conditions. In contrast with
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matrix factorization, where uniqueness is only possible by imposing additional
constraints (e.g., orthogonality in the singular value decomposition (SVD)), the
CPD has milder uniqueness properties [6–8,11,12].

In our framework, the uniqueness conditions of the CPD will allow us to
ensure that the proposed decoupling method retrieves the uniquely identifiable
model structure: for identifiable models, uniqueness of the CPD is a sufficient
condition for uniqueness of the model.

2.2 Decoupling Functions Using First-Order Information

Consider the function f : Rm → R
n that admits a decoupled representation (1).

The Jacobian J(x) is represented with an n × m matrix function defined as

Jij(x) =
∂fi(x)
∂xj

. (3)

The chain rule for derivation shows that the Jacobian matrix J(x) can be fac-
torized as J(x) = W diag(g′

i(v
T
i x))VT , or alternatively, in a CPD formulation

J = [[W,V, (g′(VTx))T ]] . Then an n × m × N tensor J , built from evaluating
the Jacobian matrix J(x(k)) in a set of N sampling points x(k), k = 1, . . . , N ,
admits a CPD of the form

J = [[W,V,G′]] , (4)

where G′ contains the first-order derivatives of the functions gi in the N points,
i.e., G′

ki = g′
i(v

T
i x

(k)). In this way, the decoupled representation can be recon-
structed from a simultaneous matrix diagonalization, or a CPD (Fig. 2).

2.3 Decoupling Functions Using Second-Order Information

Along the same lines, we may represent the Hessian H(x) by an n × m × m
tensor function defined as

Hijk(x) =
∂2fi(x)
∂xj∂xk

, (5)

which is symmetric in the second and third mode since ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

. The
Hessian tensor function has a CPD representation of the form

H(x) = [[W,V,V, (g′′(VTx))T ]] . (6)

By evaluating the Hessian in a set of N sampling points x(k), k = 1, . . . , N , we
find the CPD of the n × m × m × N tensor H as

H = [[W,V,V,G′′]] , (7)

where the columns of G′′ contain the second-order derivatives of the functions
gi in the N points, i.e., G′′

ki = g′′
i (vT

i x(k)).
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Fig. 2. The first-order information of f is collected in a set of sampling points x(k),
with k = 1, . . . , N (indicated by the colored patches on the surfaces in (a)). The
corresponding Jacobian matrices J(x(k)) are arranged into a three-way tensor (b). Each
Jacobian matrix can be written as J(x(k)) = W diag(g′

i(v
T
i x

(k)))VT . This results in a
simultaneous matrix diagonalization problem, which is computed by the CPD.

2.4 A Joint Tensor Decomposition with Partial Symmetry

The first-order and second-order derivative information can be combined into a
joint tensor decomposition with partial symmetry. This can be phrased into the
Structured Data Fusion framework [15] and is implemented in tensorlab [22] for
MATLAB. The underlying optimization problem is

minimize
W,V,G′,G′′

α1 ‖J − [[W,V,G′]]‖2F + α2 ‖H − [[W,V,V,G′′]]‖2F , (8)

where the two terms in the cost function can be given different weights α1 and
α2. The factor matrices W and V are shared among both decompositions. The
partial symmetry in the Hessian tensor can be recognized in the fact that the
factor V occurs twice. The joint decomposition approach is visualized in Fig. 3.

2.5 Some Remarks on Uniqueness

Our framework contains two notions that relate to ‘uniqueness’ or
‘identifiability’, which could be confusing. Therefore, it is useful to elaborate
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H(x)
n×m×m

H(x(k))
n×m×m×N

H = [[W, V,V, G ]]
n×R m×R N ×R

∂
∂x

J(x)
n×m

J(x(k))
n×m×N

J = [[W, V, G ]]
n×R m×R N ×R

∂
∂x

f(x)
n× 1

f(x(k))
n×N

F = [[W, G]]
n×R N ×R

N samples CPD

Fig. 3. The proposed method takes into account a combination of first-order and
second-order derivatives evaluations. These evaluations are organized into two ten-
sors which admit a joint canonical polyadic decomposition with partial symmetry. The
corresponding cost function is α1 ‖J − [[W,V,G′]]‖2

F + α2 ‖H − [[W,V,V,G′′]]‖2
F .

briefly on this matter. There is a notion of uniqueness at the level of the function
decomposition (1), as well as at the level of the CPD of a (corresponding) ten-
sor. It is important to realize that in both cases, we consider so-called ‘essential
uniqueness’, which makes abstraction of trivial scaling and permutation invari-
ances.

On the one hand, in the polynomial case of (1), the problem at hand has a rich
algebraic structure, which has recently been studied in the X-rank framework,
leading to novel identifiability results [5]. These results assert that, for certain
choices for m, n and r, the function (1) has a single ‘unique’ representation
for generic choices of W, V and g(z). In other words, there does not exist an
equivalent representation (1) having different W, V and g(z).

On the other hand, tensor decompositions have uniqueness properties them-
selves [6–8,11,12], which ensure that if the tensor decomposition has converged
to a (numerical) zero error, then the (essentially) unique underlying factoriza-
tion has been retrieved. Observe that uniqueness of the tensor decomposition is
a sufficient condition for uniqueness of the function decomposition (1).

Uniqueness properties of joint CPDs have only been studied recently in [16,
17]. Intuitively, it can be expected that, by imposing additional constraints on
a decomposition, it is likely that uniqueness conditions are more easily met.

3 Numerical Examples

In the current section, we will illustrate the proposed method on a number of
examples. The joint decomposition (8) is implemented in tensorlab [22].
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3.1 Second-Order Derivatives for Tackling the Waring
Decomposition

In the single-output case, the Jacobian of the multivariate scalar function f(x) is
a vector function rather than a matrix function. Its representation simplifies to
f(x) = wTg(VTx). Notice that w could be absorbed into the function g, but we
have chosen to keep it explicitly in the formula to show the resemblance to the
vector function case. For a scalar function f(x), the Jacobian reduces to a vector
function, rather than a matrix function, i.e., jT (x) = [[wT ,V, (g′(VTx)T ]]. Eval-
uating the Jacobian in a set of sampling points then gives rise to a matrix, rather
than a tensor. Summarizing, the n × m × N Jacobian tensor J reduces in this
situation to an m × N matrix J, and we obtain a matrix factorization question,
rather than the third-order tensor CPD (4). It is easy to understand that there
is no unique solution, since one can insert MM−1, with M an invertible R × R
matrix, to obtain an equivalent factorization J = (VM)(G′M−T ) = ṼG̃′T .

A possible solution to resolve this lack of uniqueness is to consider second-
order derivative information of f(x). We evaluate the m × m Hessian function

Hij(x) =
∂2f(x)
∂xi∂xj

, (9)

in a set of N sampling points x(k). This gives an m × m × N tensor H with

H = [[wT ,V,V,G′′]] , (10)

as in (7). Now, we have again a case in which uniqueness of the CPD is attainable.
For instance, we consider the function

f(x1, x2) = −37x3
1 − 213x2

1x2 − 399x1x
2
2 + 5x1 − 239x3

2 + 9x2 − 2, (11)

which can be decomposed with

wT =
[
1 1

]
, V =

[
1 2
3 4

]
, (12)

and
g1(z1) = 3z31 − z1 + 5,
g2(z2) = −5z32 + 3z2 − 7.

(13)

We draw an i.i.d. set of sampling points x(k), k = 1, . . . , 200 from a uniform
distribution between −10 and 10 in both components. The Jacobian matrix is
hence a 2×200 matrix J, which admits a non-unique rank-two factorization. If we
take into account the Hessian information, the problem again becomes a uniquely
defined tensor question. The CPD of H is computed using tensorlab [22], and
retrieves up to a scaling and permutation invariance, the true factors V and G′′.
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3.2 Second-Order Derivatives Improve Uniqueness of the CPD

For a general vector function f(x), including the Hessian information can improve
the uniqueness properties beyond the Jacobian tensor method. For instance, in
the case m = n = 2, the bound by [9] ensures uniqueness up to r ≤ 2. It can be
verified that the Jacobian-based CPD method is not able to retrieve the under-
lying model. However, [5] asserts that r = 3 is still identifiable for polynomial
models (with degree d ≥ 3). Considering the second-order information then leads
to a CPD that is generically unique.

We consider the function f(x) which is defined as

f1(x1, x2) = 24x3
1 + 36x2

1x2 − 4x2
1 + 18x1x

2
2 − 4x1x2 + 84x3

2 − x2
2 − 6x2 + 7,

f2(x1, x2) = −43x3
1 − 72x2

1x2 + 8x2
1 − 36x1x

2
2 + 8x1x2 − 3x1

+75x3
2 + 2x2

2 − 6x2 − 1,
(14)

and admits a representation with

W =
[

1 0 1
−2 −1 1

]
and V =

[
2 1 0
1 0 3

]
, (15)

and

g1(z1) = 3z31 − z21 + 5,

g2(z2) = −5z32 + 3z2 − 7,

g3(z3) = 3z33 − 2z3 + 2.

(16)

A set of sampling points x(k), k = 1, . . . , 200 is sampled again uniformly on
[−10, 10]2. Applying the Jacobian method results in an 2× 2× 200 tensor which
does not satisfy the uniqueness conditions. Indeed, although the CPD has an
error of the order 10−11, it does not return the correct factors. However, if we
compute the CPD of the Hessian tensor, the underlying representation is found.

3.3 Can We Go Beyond Identifiable Structures?

In our experiments, we have observed a number of cases where adding Hessian
info ensures interpretability, while the underlying model structure does not seem
to be identifiable. For instance consider the m = n = 2 and r = 4 case of
polynomials of degree d = 3. We consider a function f(x) of the form (1) with

W =
[

1 0 1 2
−2 −1 1 3

]
, and V =

[
2 1 0 1
1 0 3 −1

]
, (17)

and
g1(z1) = 3z31 − z21 + 5,
g2(z2) = −5z32 + 3z2 − 7,
g3(z3) = 3z33 − 2z3 + 2,
g4(z4) = z34 − 2z24 + 1.

(18)
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We observe that by considering the second-order derivatives information, we
are able to retrieve a decomposition having (numerical) zero error. However,
the linear transformations W and V are not equal (up to scaling and permu-
tation) to the underlying factors. Nevertheless, when investigating the factor
G′′, we see that the retrieved factor does have in its components a set of linear
relations as expected from G′′

ki = g′′
i (vT

i x
(k)). The fact that an interpretable

model is obtained is a surprising result: it seems to suggest that, considering the
second-order information enforces that only ‘interpretable’ models are retrieved.
However, we should mention that we have observed that this effect does not
always hold for other cases.

4 Conclusions and Perspectives

In this article, we generalized a tensor-based method for finding a decoupled rep-
resentation of a given nonlinear multivariate vector function. The method works
by evaluating second-order derivatives in a set of sampling points. First-order
and second-order information can be combined in this way into a simultaneous
higher-order tensor decomposition task with partial symmetry. We illustrated
the promising abilities of this approach on a number of simulation examples.
The method was shown to outperform the existing approach: uniquely identi-
fiable structures are recovered in a greater number of configurations, such as
the single-output case, and cases in which the Jacobian tensor method was not
able to ensure uniqueness. We also observed that the method seems to extract
meaningful representations even in some cases when the model structure is not
uniquely identifiable, which is a property that merits further investigation.

In future work, we want to investigate how function evaluations can be taken
into account: this seems to make sense when the corresponding (matrix) factor-
ization is a low-rank approximation, which occurs when r < n. Also the use of
higher-order derivatives is a possible extension, which might improve the unique-
ness conditions even further. In this sense, the results in this article are a step
towards a more general data-driven and noise-robust tensor-based framework for
decoupling function representations.
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Abstract. Modeling variability in tensor decomposition methods is one
of the challenges of source separation. One possible solution to account
for variations from one data set to another, jointly analysed, is to resort
to the PARAFAC2 model. However, so far imposing constraints on the
mode with variability has not been possible. In the following manuscript,
a relaxation of the PARAFAC2 model is introduced, that allows for
imposing nonnegativity constraints on the varying mode. An algorithm
to compute the proposed flexible PARAFAC2 model is derived, and its
performance is studied on both synthetic and chemometrics data.

Keywords: PARAFAC2 · Nonnegativity constraints
Flexible coupling

1 Introduction

The PARAFAC2 model is an interesting alternative to the more widespread
PARAFAC model [7]. As opposed to PARAFAC, it allows for non-linearities
such that the data need not behave according to a low-rank trilinear model.
In fact, it can even handle sub-matrices (slabs) of varying length. This is often
useful for example when one of the modes is a time mode [13,14]. One of the
prime uses of PARAFAC2 is in the resolution of chromatographic data [1,5,9].

The PARAFAC2 model has shown to have a remarkable ability to resolve
complicated chromatographic data. A typical three-way dataset will have one
mode made up of the various physical samples measured. These could e.g. be
different milk samples. Another mode will be reflecting elution time which is a
physical separation of the constituents of the sample over time. The last mode
refers to the spectral detection such as mass spectrometry—which represents
the actual measurement of a mass spectrum at each time point for each sam-
ple. A successful PARAFAC2 model will provide parameters for each mode,
so-called loading matrices, that will ideally represent the concentrations of the
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chemical compounds measured, the corresponding elution time profiles and the
corresponding pure analyte mass spectra. Usually, the PARAFAC2 model is only
applied to a narrow time interval as for example a timespan of a few overlapping
peaks that are hard to separate without the use of PARAFAC2.

In the context of chromatographic data, the ‘Selling point’ of PARAFAC2
is that it allows the elution profile of a given chemical to be different in each
experiment. If chromatographic data would be modeled with a PARAFAC model
and most other conventional curve resolution methods, they would require a
given chemical to have the same elution shape in every sample. Unfortunately,
that is almost never the case. There will often be retention time shifts and other
shape changes that makes it impossible to model the data with a conventional
approach. The PARAFAC2 model, though, can handle this type of artefacts
quite well.

In many cases, it is desired that the parameters are constrained to be nonneg-
ative. Most notably because ideally, concentrations, elution profiles and spectra
are nonnegative. Unfortunately, it is not hitherto possible to constrain all the
parameters to be nonnegative. The ‘elution time’ mode of the PARAFAC2 model
is estimated implicitly as a product of two matrices and so far no algorithms have
been presented that allows imposing nonnegativity on the product of those two
matrices. In this paper, we will develop such an algorithm. In the first section,
the PARAFAC2 model is cast as a coupled matrix factorization model, which is
used in Sect. 4 to derive an algorithm for computing Flexible PARAFAC2 with
nonnegativity constraints. Finally, Sect. 5 shows the performance of the proposed
method on both synthetic and real world data.

2 Reminders on the PARAFAC2 Model

The PARAFAC2 model was first introduced by Harshman in the context of
phonetics [7]. In his work, Harshman looked for a way to factorize simultaneously
several matrices given that one factor was almost the same, but not exactly,
in all those matrices. He thus imposed a linear transformation as a coupling
relationship between the similar factors. However using a generic linear coupling
model adds too many parameters, and to ensure identifiability of both the factors
and the coupling matrices, orthogonality constraints were imposed. This leads
to the following PARAFAC2 model:

Mk = ADkB
T
k + Ek, Bk = PkB

∗, PT
k Pk = Ir, (1)

where B∗ is a r × r matrix of coefficients, Dk is a r × r diagonal matrix, Pk is
a mk × r left-orthogonal matrix and Ek is a n × mk residual error matrix. Here
the coupled matrices are the Bk, and the coupling matrices, the Pk.

Another way to understand PARAFAC2, more widely used in the tensor
community, is to cast it as a relaxation of the PARAFAC model. Indeed, stacking
matrices Mk into one large tensor T , the PARAFAC2 model yields:
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Tijk =
r∑

p=1
AipB

(k)
jp Ckp

r∑

p=1
B

(k)
j1p

B
(k)
j2p

=
r∑

p=1
B∗

j1p
B∗

j2p
∀j1, j2, k

, (2)

where C is obtained by stacking the diagonals of Dk in rows. One can observe
that contrary to the PARAFAC model, the B factor is allowed to vary for each
slice k. This variation is controlled by the inner products stored in B∗ and kept
constant through k. As a matter of fact, the orthogonality constraints on the Pk

matrices are equivalent to imposing a shared Gramian matrix for all Bk, that
is BT

k Bk = B∗TB∗ for all k. The power of PARAFAC2 comes from the fact
that this constraint is implicit, and may give birth to a wide range of variability
among the Bk while maintaining an overall coupling structure. In contrast, other
similar models like Shift-PARAFAC impose a coupling constraint in an explicit
fashion that may be too specific and difficult to implement [8,11].

To identify the parameters of the (unconstrained) PARAFAC2 model, the
following optimization problem needs to be solved:

argmin
A,Dk,Pk,B∗

K∑

k=1

‖Mk − ADk (PkB
∗)T ‖2F

so that PT
k Pk = I

. (3)

An efficient alternating algorithm to solve (3) has been introduced in [10]. It relies
on the fact that if the Pk matrices are known, then multiplying each data slice
Mk by Pk on the right, the PARAFAC2 model becomes a PARAFAC model with
second mode factor B∗. Therefore, an alternating algorithm may first estimate
Pk fixing the other parameters, then pre-process the data by multiplying each
slice with PT

k , and then use a few step of an algorithm to compute PARAFAC,
for instance Alternating Least Squares [4]. The estimation of the orthogonal
coupling matrices is easily obtained with SVD, knowing that the solution of

argmin
P∈Rm×r

‖M − PX‖2F
such that PTP = I

(4)

is given by P = U(:, 1 : r)V (:, 1 : r)T , where [U, S, V ] is the Singular Value
Decomposition of MXT .

3 About Exact Nonnegative PARAFAC2

Imposing nonnegativity on the B mode in the PARAFAC2 model is known to be
a difficult problem and no solver actually implements it currently. Let us show
rapidly why it is not straightforward, but still feasible, to impose nonnegativ-
ity within the algorithmic framework described above, that is when estimating
Pk, A,B∗ and C alternatively.
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Clearly, imposing nonnegativity on B∗—which would be possible since non-
negativity is well understood for PARAFAC—does not guarantee that the recon-
structed Bk = PkB

∗ are themselves nonnegative. Therefore, the following set of
constraints has to be imposed on Pk and B∗ in the PARAFAC2 model:

PkB
∗ ≥ 0 ∀k ∈ [1, l], (5)

which requires to modify the estimation procedures of both Pk and B∗.

3.1 Estimating the Orthogonal Coupling Matrices

The estimation of the orthogonal matrices Pk is a crucial step in the ALS algo-
rithm which can be done slice by slice. The following optimization problem is
solved:

argmin
Pk∈Rmk×r

‖Mk − ADk(PkB
∗)T ‖2F

so that PT
k Pk = I, PkB

∗ ≥ 0
. (6)

Without nonnegativity constraints, Pk is computed using the Singular Value
Decomposition (SVD). Sadly such a simple procedure cannot be used anymore
in order to build a converging optimization algorithm because of the nonnega-
tivity constraints. This optimization problem is reminiscent of the Orthogonal
Nonnegative Matrix Factorization problem [12] which is difficult to solve.

3.2 Estimating the Latent Factor

Supposing matrices Pk have been computed in a previous step, after the data
matrices Mk have been processed by multiplying them with PT

k , the second mode
variable in the PARAFAC model becomes B∗.

Within the framework of alternating optimization that we develop here1,
knowing the current estimates for A and C, the following optimization problem
is to be solved:

argmin
B∗∈Rr×r

1
2‖T[2] − B∗(A � C)T ‖2F

s.t. PkB
∗ ≥ 0 ∀k ∈ [1, l]

. (7)

A possible approach to our problem would be to solve the exact nonnegative
least squares using the Kronecker structure of the problem. This is by no means
an easy task, and we could find no other work related to this issue. Another
approach would be to use a projected gradient, but a projector on the constraint
space would then be needed, which is not known in closed form.

As a consequence, since both the estimation of Pk and B∗ are cumbersome,
the algorithm implementing the methods described above proved to be quite
slow and very sensitive to initialization, making it mostly useless in practice.
That is the reason why the flexibly coupled PARAFAC2 is introduced in the
next section.
1 Alternating optimization may be avoided using an all-at-once method but the prob-
lem of satisfying the nonnegativity constraints still remains.
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4 A Flexible PARAFAC2 Model

As described in Sect. 2, the PARAFAC2 model can be understood as a coupled
matrix low rank factorization, where the coupled factors Bk are constrained
to have the same inner products. The difficulty of working with constrained
PARAFAC2 is that, by parameterizing each Bk as PkB

∗, constraints on the
coupled mode are imposed on a product of two blocks of variables. In particular
the Pk matrices are already constrained to be orthogonal.

Moreover, even though PARAFAC2 is less constrained than PARAFAC
and has therefore been applied in context of subject variability, it makes the
important underlying assumption that all the columns of Bk are transformed
similarly, by opposition to component by component transformation found in
other related models like Shift-PARAFAC. For instance, in the context of Gas
Chromatography—Mass Spectroscopy, from one batch to another, elution pro-
files change in a slightly unpredictable manner, and their inner products are
not exactly constant over the batches. Relaxing the hard coupling constraint in
PARAFAC2 could allow for a better fitting of the PARAFAC2 in difficult cases.

For both those reasons, it makes sense to introduce a Flexible PARAFAC2
model, where the coupled factors Bk are no longer parameterized, but instead
constrained to be close to PkB

∗. Formally, the Flexible PARAFAC2 model can
be cast as follows:

Mk = ADkB
T
k + Nk, Bk = PkB

∗ + Γk, PT
k Pk = Ir

‖A(:, i)‖2 = 1 and ‖B∗(:, i)‖2 = 1, ∀i ∈ {1..r} , (8)

where Γk is an coupling error matrix. This kind of flexible coupling have been
introduced in [3]. Under Gaussianity assumption for both model and coupling
errors, a Maximum A Priori estimator of the different variables can be easily
obtained by solving an optimization problem, here cast with nonnegativity con-
straints:

argmin
A,Bk,B∗,Pk,Dk

K∑

k=1

‖Mk − ADkB
T
k ‖2F + μk‖Bk − PkB

∗‖2F
so that A ≥ 0, Bk ≥ 0,Dk ≥ 0, ‖A(:, i)‖2 = 1, ‖B∗(:, i)‖2 = 1 ∀i ∈ {1, .., r}

,

(9)
where μk is a collection of regularization parameters controlling the distance
between the factors Bk and their coupled counterparts PkB

∗. If noise levels on
each data slice Mk are available, they can be added as a normalization constant
in front of the data fitting terms. Note that the normalization of A and B∗ in
Eq. (8) is important, otherwise the regularization parameters μk and the latent
factor B∗ are defined up to scaling and that makes the coupling terms difficult
to interpret.

The main advantage of solving (9) over (3) is that the nonnegativity con-
straints now apply directly on factors Bk. In an alternating optimization scheme,
alternating over variables A,Dk, Bk, Pk and B∗, the coupled factors can be esti-
mated with a simple nonnegative least squares algorithm, for instance [6]. The
estimates for Pk can be obtained using SVD, and computing B∗ is a least squares
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problem. Therefore deriving an alternating optimization algorithm as the sug-
gested Algorithm 1 is straightforward. Moreover, because each sub-problem in
Algorithm 1 is optimally solved, given that the parameters μk are kept con-
stant, the cost function is guarantied to decrease after each iteration. Therefore,
the proposed algorithm for computing Flexible PARAFAC2 is guarantied to con-
verge, although little can be said about whether the final estimate is a stationary
point or not.

At this stage, the Flexible PARAFAC2 model can be thought of as a relax-
ation of the PARAFAC2 model, but it is also possible to interpret (9) as a relaxed
optimization problem to solve the exact PARAFAC2 model, see for instance
Chap. 17 in [15]. Then by increasing the values of μk during the optimization
algorithm, asymptotically, minimizing (9) yields an exactly coupled PARAFAC2
model. As a consequence, introducing flexibility may be understood as an opti-
mization trick that makes constrained PARAFAC2 easier to compute. Practi-
cally, the residual relative coupling errors ‖Bk−PkB

∗‖2
F

‖Bk‖2
F

can be monitored so that
when a low value of such error is reached, the regularization parameter μk may
stop increasing to ensure final convergence.

Algorithm 1. Alternating nonnegative least squares algorithm for solving Flex-
ible PARAFAC2 with nonnegativity constraints.

INPUT: Data slices Mk, initial guesses for factors A, Dk, Bk, Pk, B∗.
1. Set small initial values for μk using (10) and normalize Mk with the total �2 norm
of all slices.
while Stopping criterion is not met do

2. For all k, increase μk if necessary
3. For all k, Pk estimation: Pk = U(:, 1 : r)V (:, 1 : r)T

where [U, S, V T ] = SVD(BkB∗T )

4. B∗ estimation: B∗ = 1
K∑

k=1
µk

K∑

k=1

μkPT
k Bk normalized columnwise.

5. A estimation: A = argmin
A≥0

K∑

k=1

‖Mk − ADkBT
k ‖2

F solved by nonnegative least

squares, then normalized columnwise.
6. For all k, Bk estimation: Bk = argmin

Bk≥0
‖Mk − ADkBT

k ‖2
F + μk‖Bk − PkB∗‖2

F

solved by nonnegative least squares.
7. For all k, Dk estimation: Dk = argmin

Dk≥0
‖Mk − ADkBT

k ‖2
F solved by nonnegative

least squares after vectorization.
8. If this is the first iteration, for all k, choose μk so that regularization is a certain
percent of cost function using (10).

end while
OUTPUT: Estimated nonnegative factors A, Dk, Bk and coupling factors Pk, B∗.

Remark. If the parameters μk increase too fast at the beginning of the algorithm,
then the updates of Bk are mostly driven by the regularization term. In that
case, we observed that the values of Bk do not change much, and the algorithm
ends up in a local minimum where only A and C are optimized. Therefore, it
is important to not increase parameters μk over some reasonable threshold that
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depends on the data fitting terms. For the initial value of μk and their values
after the first iteration, we used respectively

μ0
k = 10−1 ‖Mk − A0D0

kB
0
k
T ‖2F

‖B0
k‖2F

and μ1
k = 10−SNR/10 ‖Mk − A1D1

kB
1
k
T ‖2F

‖B1
k − P 1

kB1∗‖2F
(10)

where A0 is the initial value of A, A1 is the estimate of A after the first iteration
and SNR refers to the expected Signal to Noise ratio of the whole tensor data.
These values can be tuned by the user if necessary. The increase of μk at each
iteration is implemented as a multiplication of the current value by 1.02 if μk ≤
10. 10 is the maximal value used in the simulation sections, and seemed to work
well in our case. Larger maximal values can be used to obtain a stronger final
coupling constraint depending on the problem at hand.

Initialization. In the experiments conducted in the next section, we used random
factors for initialization. Another possible choice for the factors initial values is
to use the output of a PARAFAC model or to compute independent nonnegative
matrix factorizations for each slice. In our experiments, all these methods pro-
vided good initialization to the flexible PARAFAC2 model, yet this claim will
be rigorously studied in later research. A good choice of initial Pk in any case is
the zero-padded identity matrix.

5 Experiments on Synthetic Data

In this section, we provide experimental proof that the proposed Flexible PARA-
FAC2 model allows for imposing nonnegativity constraints on the B mode while
showing performance at least similar to the state-of-the-art PARAFAC2 algo-
rithm introduced in [10]. Also, we show that the proposed algorithm exhibits
better robustness to random initialization, which in practice means a reduced
number of initial trials is required.

The synthetic data are generated as follows. The dimensions are set to [20 ×
30 × 20] and the rank to R = 3. The entries of factors A are Gaussian with
unit variance, then clipped to zero to have a sparse factor matrix. The entries
of factor C are drawn from a uniform distribution on [0, 1]. Both A and C are
then normalized column-wise using the �2 norm. In the experiments above, an
i.i.d. Gaussian noise of variance σ2 is added to each entry of the obtained tensor,
where σ is a parameter of the experiments.

Generating nonnegative factors Bk that have the same Gramiam matrix is
not straightforward. In this manuscript, we used a particular coupling between
the Bk for which the inner products are trivially kept constant over the third
mode. Namely, a first factor B1 is drawn entry-wise using a Gaussian unitary dis-
tribution, clipped to 0 and normalized column-wise, then factors Bk are obtained
by circularly shifting B1 along the grid of indexes. The obtained model is then
actually a Shifted PARAFAC model, which is a particular case of PARAFAC2
that can be easily generated for simulation purpose. The general case will be
studied in further extended work.
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The maximum number of iterations is set to 1000, and a stopping criterion
based on the relative error decrease is used.

The experiments are conducted to check the performance of the nonnega-
tive flexible PARAFAC2 proposed algorithm with respect to the state-of-the-art
algorithm [10], which does not implement nonnegativity on the coupled mode.
To this end, the following relative error on factors Bk is computed for N = 50
simulated tensor data drawn with various noise values σ ranging from 5 × 10−2

to 10−4:

1
K

K∑

k=1

‖Bk −
[
B̂k

]+
‖2F

‖Bk‖2F
, (11)

where all Bk and B̂k have been normalized column-wise.
To study robustness to initialization, Fig. 1 exhibits the error on Bk with

both one random initialization and the best out of five initializations.
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Fig. 1. Relative error on Bk for one initialization (left) and best of five initializations
(right), showing in dotted lines the 20% and 80% quantiles.

From the results shown in Fig. 1, it can be concluded that, for the specific
choice of shifted coupled factor Bk, the flexible PARAFAC2 best performance is
similarly to the state-of-the-art PARAFAC2 algorithm best performance, with
slightly lower estimation error due to the nonnegativity constraints applied on
the B factor. Also, the average performances are significantly better for the
flexible PARAFAC2, and the worst results are also much closer to the best
ones. Therefore, it seems that the flexible algorithm is more robust to random
initialization.

6 Experiments on Chromatography Data

To further assess the performance of the proposed flexible PARAFAC2 model
with nonnegativity constraints, a Gas Chromatography Mass Spectroscopy (GC-
MS) time interval is deconvolved, for which the usual PARAFAC2 model pro-
duces poor results. The data come from an analysis of various types of red wine
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of the type Cabernet Sauvignon. The analysis was done using headspace GC-MS
analysis on a Hewlett Packard 6890 GC coupled with an Agilent (Santa Clara,
California, United States) 5973 Mass Selective Detector. More details can be
found in the publication by Ballabio et al. [2].

The chosen time interval is difficult to decompose since there is supposedly
a double peak in the time elution factors, meaning that there are two columns
of factor Bk that are highly colinear. The rank is expected to be either 3 or
4, so both values were used in the comparisons below. Initial factors for the
PARAFAC2 decompositions were drawn from uniform distributions on [0,1]. We
picked the best results out of ten runs for both the unconstrained and flexible
PARAFAC2 algorithms, based on the reconstruction error.

Results are presented in Fig. 2. First it can be observed that the elution
profiles obtained using PARAFAC2 and flexible PARAFAC2 with nonnegativity
constraints are different. Only the flexible PARAFAC2 outputs make sense in
terms of elution profiles, for both three and four components models, in the
sense that they are nonnegative. Having negative elution profiles is not physically
meaningful.

Fig. 2. Elution profiles obtained by (top) PARAFAC2 and (bottom) Flexible
PARAFAC2 with nonnegativity constraints. The rank is set to (left) 3 and (right)
four. The profiles represent all the Bk matrices. E.g., in the three-component model,
each of the Bk matrices consist of a blue, a black and a red profile. (Color figure online)

7 Conclusion

The difficult problem of imposing nonnegative constraints on the coupled mode
in the PARAFAC2 model is tackled in this manuscript. Using a flexible coupling
formalism, the coupled variables and their latent representation are split, which
leads to a simple constrained alternating least squares algorithm that is easily
shown to converge for fixed regularization parameters. Through the decompo-
sition of both simulated and gas chromatography mass spectroscopy data, it is
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shown that the proposed flexible PARAFAC2 model behaves at worse similarly
to the state-of-the-art PARAFAC2 model, but implementing nonnegativity con-
straints on all modes and featuring more robustness to random initialization.
Further works will focus on a more precise analysis of the flexible PARAFAC2
model for solving various problems, and an extension for imposing any off-the-
shelf constraints on the coupled mode.

Acknowledgements. The authors wish to thank Nicolas Gillis for helpful discus-
sions on alternatives to the flexible coupling approach for computing nonnegative
PARAFAC2.
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Abstract. We consider the problem of computing the greatest common
divisor of a set of univariate polynomials and present applications of
this problem in system theory and signal processing. One application is
blind system identification: given the responses of a system to unknown
inputs, find the system. Assuming that the unknown system is finite
impulse response and at least two experiments are done with inputs
that have finite support and their Z-transforms have no common factors,
the impulse response of the system can be computed up to a scaling
factor as the greatest common divisor of the Z-transforms of the outputs.
Other applications of greatest common divisor problem in system theory
and signal processing are finding the distance of a system to the set
of uncontrollable systems and common dynamics estimation in a multi-
channel sum-of-exponentials model.

Keywords: Blind system identification
Sum-of-exponentials modeling · Distance to uncontrollability
Approximate common factor · Low-rank approximation

1 Introduction

Finding the greatest common divisor of a set of univariate polynomials is a classic
problem in algebra, which is still an active research topic. Numerically it is an
ill-conditioned problem: small perturbations in the input data (the polynomials’
coefficients) may result in large changes in the solution (the greatest common
divisor coefficients). This requires computing an approximate common divisor.

There are two different formulations of the approximate common divisor
problem. In the first one, the degree of the common divisor is a priori specified
and the smallest perturbation on the polynomial coefficients that leads to poly-
nomials with common divisor of such a degree is sought [6,9,13,15,18]. In the
second formulation, refered to as ε-common divisor, the size of the maximum
perturbation is given and perturbed polynomials with maximal degree common
divisor is sought [1,14,17]. The two problems are dual to each other. In fact,
c© Springer International Publishing AG, part of Springer Nature 2018
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they are two different scalarizations of the biobjective problem where the size
of the perturbation is minimized while the degree of the perturbed polynomi-
als common divisor is maximized. The two formulations trace the same Pareto
optimal trade-off curve.

The approximate greatest common divisor problem is a non-convex opti-
mization problem, for which there are no efficient global solution methods. The
existing methods can be classified as local optimization methods and convex
relaxations. Local optimization methods require an initial approximation and
are in general computationally more expensive than the relaxation methods,
however, the local optimization methods explicitly optimize the desired criterion
(size of the coefficient perturbation), which ensures that they produce at least
as good result as a relaxation method, provided the solution of the relaxation
method is used as an initial approximation for the local optimization method.
For a recent overview of computational approaches, we refer the reader to [15].

Applications of the greatest common divisor in systems, control, and signal
processing, however, are surprisingly missing from the broad literature on the
theoretical and computational aspects of the problem. We present here applica-
tions that are directly solvable by a greatest common divisor computation. Sub-
sequently existing greatest common divisor methods, algorithms and software
can be used in the applications. Vice versa, methods, algorithms and software
developed for the applications can be viewed as and used for greatest common
divisor computation.

In this paper, we consider the following approximate common factor compu-
tation problem: given polynomials p1, . . . , pN and a natural number d,

minimize over p̂1, . . . , p̂N
N

∑

i=1

‖pi − p̂i‖22

subject to deg
(

gcd(p̂1, . . . , p̂N )
) ≥ d.

(1)

(gcd(p1, . . . , pN ) is the greatest common divisor of the polynomials p1(z), . . . ,
pN (z).) Sect. 2 shows application of (1) for blind finite impulse response system
identification. Section 3 shows application of (1) for computing the distance of a
given linear time-invariant system to the set of uncontrollable systems. Section 4
shows application of (1) for estimation of common dynamics across multiple chan-
nels of an autonomous linear time-invariant system.

2 Blind Finite Impulse Response System Identification

The identification problem considered in this section is defined as follows.

Problem 1 (Blind finite impulse response system identification). Given out-
put observations y1, . . . , yN of a finite impulse response system, generated by
unknown signals u1, . . . , uN , find the impulse response h of the system.

The Z-transform of a finite duration time-domain signal yi is a polynomial
yi(z). (We use the argument z, as in yi(z), to indicate that the signal is in the
Z-domain).
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Theorem 1. Assuming that at least N = 2 responses y1, . . . , yN of a finite
impulse response system are given,

1. the inputs u1, . . . , uN have finite support, and
2. gcd

(

u1(z), . . . , uN (z)
)

= 1,

the impulse response h of the system is up to a scaling factor α ∈ R the greatest
common factor of y1(z), . . . , yN (z),

h(z) = α gcd
(

y1(z), . . . , yN (z)
)

.

Proof. Let � be the convolution operator. We have,

yi = h � ui, for i = 1, . . . , N.

Since the system is finite impulse response h(z) := Z(h) is a polynomial. Under
assumption 1, ui(z) := Z(ui) are also polynomials. Therefore, yi(z) := Z(yi)

yi(z) = h(z)ui(z), for i = 1, . . . , N (2)

are polynomials. It follows from (2) that h(z) is a common factor of y1, . . . , yN .
By assumption 2, h(z) is the greatest common factor of y1, . . . , yN . ��

With noisy data

yi
d = ȳi + ỹi, for i = 1, . . . , N

(the subscript index “d” stands for “data”), where ȳi is the “true value” and
ỹ is the measurement noise, y1

d, . . . , y
N
d are generically co-prime, i.e., they have

no nontrivial common factor. Assuming that the noise ỹ is zero mean, white,
Gaussian, the maximum-likelihood estimator of the “true impulse response” h̄
is given by the following problem

minimize over ŷ1, . . . , ŷN , û1, . . . , ûN , and̂h

N
∑

i=1

‖yi
d − ŷi‖22

subject to ŷi = ̂h � ûi, for i = 1, . . . , N.

(3)

Note that since we include ̂h as an optimization variable, we assume that its
length (or equivalently the order n̄ = dim(h̄) − 1 of the true system) is a priori
known.

Problem (3) is an approximate common factor computation problem.

Theorem 2. Problems (3) and (1) are equivalent.
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3 Distance to Uncontrollability

Verifying whether a given linear time-invariant system is controllable involves
rank computation. Arbitrary small perturbations of the system’s parameters can
switch the property. This issue is addressed by the notion of distance to uncon-
trollability, which is quantitative rather than qualitative measure of controlla-
bility. The definition of distance to uncontrollability, considered in the literature
[10], is a property of the parameters A and B in a state space representation
of the system. Using the notion of controllability in the behavioral setting [12]
we define a representation invariant measure of distance to uncontrollability and
propose an algorithm for computing it.

Consider a linear time-invariant system B with a state space representation

B = Bi/s/o(A,B,C,D) := {w = (u, y) | σx = Ax + Bu, y = Cx + Du }, (4)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and D ∈ R

p×m are parameters of B;
and σ is the shift operator (σx)(t) = x(t+1) (in discrete-time) or the derivative
operator σx = dx/dt (in continuous-time).

We adopt the behavioral setting [12], i.e., a system is viewed as a set of
trajectories. For a given system B, the parameters A, B, and C of the state
space representation (4) of B are not unique due to the fact that for any change
of basis x′ = V x of the state space, B(V AV −1, V B,CV −1,D) is the same model
as B(A,B,C,D), i.e.,

Bi/s/o(A,B,C,D) = Bi/s/o(V AV −1, V B,CV −1,D).

In addition, the parameters A, B, and C are not unique due to nonminimality
of the state dimension; for example

Bi/s/o(A,B,C,D) = B

([

A A12

A21 A22

]

,

[

B
0

]

,
[

C 0
]

,D

)

,

for any A12 ∈ R
n×Δn, A21 ∈ R

Δn×n, and A22 ∈ R
Δn×Δn.

A state space representation with parameters A and B is state controllable
if and only if the matrix

C (A,B) :=
[

A AB · · · An−1B
]

is full rank. Note that this classical notion of controllability is a property of
the pair of matrices (A,B) and is not a property of a system B due to the
nonuniqueness of a state space representation. The question of whether a given
state space representation is state controllable is a rank test problem for the
structured matrix C (A,B). A corresponding quantitative measure is the distance
of C (A,B) to rank deficiency, i.e., the smallest (ΔA,ΔB), such that

C ( ̂A, ̂B) := C (A,B) + C (ΔA,ΔB)

is rank deficient.
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Consider the set of m × n structured matrices S and define the distance
measure

dr(A) := min
ΔA∈S

‖ΔA‖ subject to A + ΔA has rankr,

where ‖ · ‖ is a matrix norm. With S = R
m×n, dr(A) is a distance to unstruc-

tured rank-r matrices. In the special cases of spectral and Frobenius norms, the
unstructured distance dr(A) can be computed using the singular value decom-
position of A.

Motivated by the issues of computing the numerical rank of a matrix, C.
Paige defined in [10] the distance to uncontrollability

dunctr(A,B) := minimize over ̂A, ̂B
∥

∥

∥

[

A B
] −

[

̂A ̂B
] ∥

∥

∥

F

subject to ( ̂A, ̂B) is uncontrollable.

This problem falls into a broader category of distance problems [4], such as
distance to instability, distance to positive definiteness, etc. There is a big volume
of literature devoted on the problem of computing dunctr(A,B), see, e.g., [2,3,
5,7,8]. The measure dunctr(A,B), however, is not invariant of the state space
representation because it depends on the choice of basis. This issue is resolved
in the behavioral setting, where controllability is defined as a property of the
system rather then a property of a particular representation.

Definition 1 ([16]). A time-invariant system B is controllable if for any two
trajectories wp, wf ∈ B, there is Δt > 0 and a trajectory wc ∈ B, such that
wp(t) = wc(t), for all t < 0, and wf(t) = wf(t), for all t ≥ Δt.

Checking the controllability property in practice is done by performing a
numerical test on the parameters of a specific representation of the system. For
a single-input single-output linear time-invariant system with an input/output
representation

Bi/o(p, q) := { [ u
y ] | p(σ)y = q(σ)u } (5)

is controllable if and only if the polynomials are co-prime.

Theorem 3 ([12]). Consider the polynomials p(z) and q(z) and let the degree
of p be higher than or equal to the degree of q. The single-input single-output
system Bi/o(p, q) is controllable if and only if p and q are co-prime.

By Theorem 3, the system Bi/o(p, q) is controllable if and only if p and q
have no common factors of degree one or more.

Let Lctrb be the set of uncontrollable linear time-invariant systems:

Lctrb = {B : Bis linear time-invariant and uncontrollable }
and consider the distance measure

dist
(

Bi/o(p, q),Bi/o(p̂, q̂)
)

:=
∥

∥

∥

∥

[

q
p

]

−
[

q̂
p̂

]∥

∥

∥

∥

2

. (6)
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The representation invariant notion of distance to uncontrollability proposed is:
Given a controllable system Bi/o(p, q), find:

dunctr(B) := min
̂B∈Lctrb

dist(B, ̂B). (7)

We refer to dunctr(B) as the uncontrollability radius.

Theorem 4. Problems (7) and (1) with d = 1 are equivalent.

Proof. Follows directly from Theorem 3. ��

4 Common Dynamics Estimation

The problem considered in this section is defined as follows.

Problem 2. Given a set of N scalar autonomous linear time-invariant systems
B1, . . . ,BN , find their “common dynamics”, defined as B := B1 ∩ · · · ∩ BN .

Let the systems be represented by their kernel representations Bi = ker
(

pi(σ)
)

,
where

ker
(

p(σ)
)

:= { y | p0y + p1σy + · · · + pnσ
ny = 0 }. (8)

Then, the kernel representation ker
(

p(σ)
)

of the common dynamics B is given by
the greatest common divisor p = gcd(p1, · · · , pN ). In the case when B1, . . . ,BN

have no common dynamics (B = { 0 }), a problem of finding approximate com-
mon dynamics of a specified dimension is considered. The approximate common
dynamics problem is equivalent to the approximate common divisor Problem (1).

A variation of the common dynamic’s estimation problem is considered in [11].
In this case, which we call “data-driven” in order to distinguish it from the “model-
based” Problem 2, the aiming is to model a set of scalar time series y1, . . . , yN

by sums of, respectively, n1, . . . , nN damped exponentials, which have nc ≤
min(n1, . . . , nN ) common exponents. The given time series

yi =
(

yi(1), . . . , yi(Ti)
)

are approximated by time series ŷ satisfying the model equation

ŷi(t) =
ni−nc
∑

j=1

αijλ
t
ij +

nc
∑

j=1

βijμ
t
j , t = 1, . . . , Ti. (9)

Here, μ1, . . . , μnc are the exponents common to all signals and λi1, . . . , λini are
the remaining exponents of the ith signal.
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In [11], a subspace-type method for common dynamics estimation is pro-
posed. Assuming that the data is generated in the output error setup, i.e.,
yi = ȳi + ỹi, where the true values ȳi satisfy the model (9) and ỹi is the mea-
surement noise that is zero mean, white, Gaussian, the maximum-likelihood
estimator is

minimize over ŷi ∈ R
Ti , λij ∈ C, μj ∈ C, αij ∈ C, and βij ∈ C

√

√

√

√

N
∑

i=1

‖yi − ŷi‖22

subject to (9).

(10)

The following result shows equivalent optimization problems to (10) based on
the kernel and state space representations of the model.

Theorem 5. Problem (10) is equivalent to the following problems:

– kernel representation

minimize over ŷi ∈ R
Ti , Rs,i, Rc ‖y − ŷ‖2

subject to (Rs,i � Rc)Hni+1(ŷi) = 0, for i = 1, . . . , N.
(11)

– state-space representation

minimize over ŷi ∈ R
Ti , λi, μ, ci, c

′ ‖y − ŷ‖2

subject to ŷ ∈ B
(

diag(λ1, . . . , λN , μ),

⎡

⎢

⎣

c1 c′
1

. . .
...

cN c′
N

⎤

⎥

⎦

)

,
(12)

where λi ∈ C
1×(�i−�c), ci ∈ C

1×(�i−�c), and c′ ∈ C
1×�c .

Although these problems are not equivalent to the approximate common divisor
problem (1), the solution methods are closely related. Indeed (11) is a Hankel
structured low-rank approximation problem. As shown in [15], Problem (1) is a
Sylvester structured low-rank approximation problem.
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Abstract. An approach is proposed for underdetermined blind separation of
nonnegative dependent (overlapped) sources from their nonlinear mixtures. The
method performs empirical kernel maps based mappings of original data matrix
onto reproducible kernel Hilbert spaces (RKHSs). Provided that sources comply
with probabilistic model that is sparse in support and amplitude nonlinear
underdetermined mixture model in the input space becomes overdetermined
linear mixture model in RKHS comprised of original sources and their mostly
second-order monomials. It is assumed that linear mixture models in different
RKHSs share the same representation, i.e. the matrix of sources. Thus, we
propose novel sparseness regularized joint nonnegative matrix factorization
method to separate sources shared across different RKHSs. The method is
validated comparatively on numerical problem related to extraction of eight
overlapped sources from three nonlinear mixtures.

Keywords: Underdetermined blind source separation � Nonlinear mixtures
Empirical kernel map � Joint nonnegative matrix factorization � Sparseness

1 Introduction

Blind source separation (BSS) refers to extraction of source signals from observed
mixture signals only [1]. When the sources and mixing matrix are nonnegative algo-
rithms of nonnegative matrix factorization (NMF) are shown to be effective solving the
BSS problem [2–4]. In particular, when nonnegativity is combined with sparseness
underdetermined BSS problems, characterized with more sources than mixtures avail-
able, can be solved [5, 6]. That, as an example, is relevant to mass spectrometry [7] or
nuclear magnetic resonance (NMR) spectroscopy [8] based metabolic profiling where
large number of sources (a.k.a. pure components or analytes) needs to be separated from
the small number of available mixture spectra [7]. However, in a large number of cases
algorithms for BSS address separation of sources from their linear mixtures. As opposed
to them the number of methods that address the nonlinear BSS problem is rather small,
see chapter 14 in [1]. Thus, we propose a method for separation of nonnegative mutually
dependent (overlapped) but individually independent and identically distributed (i.i.d.)
sources from smaller number of their nonlinear mixtures. Compared with proposed
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method existing methods either: (i) address determined case, where the number of
sources equals the number of mixtures [9–18]; (ii) do not take into account nonnega-
tivity constraint [9–21]; (iii) assume that sources [10–12, 15–17, 19–22] or their
derivatives [18] are statistically independent or that sources are individually correlated
[16, 19–21]. In particular, we map data matrix from the input space onto reproducible
kernel Hilbert spaces (RKHSs) by means of empirical kernel maps (EKM) [23]. We treat
mapped data as they are coming from different views and propose a linear mixture
model (LMM)-based representation such that all models have different mixing matrices
but share the same source (representation) matrix. Thus, we propose an algorithm for
joint NMF such that LMMs of mixture data mapped in multiple RKHSs share the same
source matrix. That is different from joint NMF approach to multi-view clustering [24],
where LMMs comprised of view dependent mixing and source matrices are assumed
such that source matrices are forced to converge towards common consensus. We
introduce nonlinear BSS problem in Sect. 2. Section 3 presents new joint NMF-based
approach to nonlinear underdetermined BSS problem. Results of comparative perfor-
mance analysis on numerical problem are presented in Sect. 4. Section 5 concludes the
paper.

2 Problem Formulation

Nonlinear BSS problem with nonnegative dependent sources is formulated as:

X ¼ f Sð Þ þ E ð1Þ

whereX 2 R
N�T
0þ stands for nonnegativematrix ofNnonlinearmixtures atTobservations,

S 2 R
M�T
0þ stands for matrix ofM unknown nonnegative sources, f : RM

0þ ! R
N
0þ stands

for unknown nonlinear mapping f :¼ f1 Sð Þ. . .fN Sð Þ½ �T acting observation-wise,
E 2 R

N�T
0þ stands for an error term andR0þ stands for the set of real nonnegative numbers.

The symbol “:=” means “by definition”. We also assume that st 2 R
N�1
0þ

�� ��
0 �K

n oT

t¼1
,

where stk k0 is indicator function that counts number of non-zero entries of st and K
denotes maximal number of sources that can be present (active) at any observation

coordinate t. The nonlinear BSSproblem implies that sources sm 2 R
1�T
0þ

� �M
m¼1 have to be

inferred from the mixture data matrix X only. Herein, we impose assumptions on the
sources and nonlinear mixture model (1):

(A1) 0� smt � 1 8m ¼ 1; . . .; M and 8t ¼ 1; . . .; T ;
(A2) Amplitude smt is i.i.d. random variable that obeys exponential distribution on (0, 1]

interval and discrete distribution at zero, see Eq. (2),

(A3) Components of the vector-valued function f(S): fn Sð Þ : RM�T
0þ ! R

1�T
0þ

� �N
n¼1 are

differentiable up to second-order,
(A4) M > N.

Assumptions A1 to A4 are shown in [7] to be relevant for separation of pure
components from nonlinear mixtures of mass spectra. They are expected to hold for
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separation of pure components from amplitude NMR spectra as well [8]. To be useful
solution of any BSS problem is expected to be essentially unique [1]. However, even
for linear underdetermined BSS problem hard (sparseness) constraints ought to be
imposed on sources [7, 25] to obtain essentially unique solution. The quality of sep-
aration heavily depends on degree of sparseness, i.e. the value of K. To make nonlinear
underdetermined BSS problem tractable we assume, as in [27], that amplitudes of the
source signals comply with sparse probabilistic model [25, 26]:

pðsmtÞ ¼ qmd smtð Þþ 1� qmð Þd� smtð Þg smtð Þ 8m ¼ 1; . . .;M and 8t ¼ 1; . . .T ð2Þ

where d smtð Þ is an indicator function and d� smtð Þ ¼ 1� d smtð Þ is its complementary
function, qm ¼ P smt ¼ 0ð Þf gTt¼1. Thus, P smt [ 0ð Þ ¼ 1� qmf gTt¼1. The nonzero state of
smt is distributed according to probability density function g smtð Þ. Exponential distribu-
tion g smtð Þ ¼ ð1=lmÞexpð�smt=lmÞ is selected in which case the most probable outcome
is equal to lm. To emphasize practical relevance of probabilistic model (2) we point out
[7]. Another modality to which model (2) can be relevant is NMR spectroscopy [8]. It has
been verified in [7] that mass spectra of pure components obey (2) with exponential
distribution selected for g smtð Þ. Thereby q̂m 2 0:27; 0:74½ � and l̂m 2 0:0012; 0:0014½ �.
Under such priors the nonlinear mixture model (1) simplifies to [27]:

X ¼ JS þ 1
2
H 1ð Þ

s21
. . .
s2M
. . .
sisj
� �M

i;j¼1

2
66664

3
77775 þ HOT ¼ B

S
s21
. . .
s2M
. . .
sisj
� �M

i;j¼1

2
6666664

3
7777775
þ HOT ð3Þ

where J stands for Jacobian matrix, H(1) stands for mode-1 unfolded third-order
Hessian tensor, B ¼ J 1

2 H 1ð Þ
� �

stands for the overall mixing matrix and HOT stands
for higher order terms. Since original nonlinear problem (1) is underdetermined the
equivalent linear problem (3) is even more underdetermined because it is comprised of
the same number of mixtures, N, but of the P ¼ 2MþM M � 1ð Þ=2 dependent sources.
When degree of the overlap of the sources in (1) is K degree of the overlap of new
sources in (3) is Q � 2K þK K � 1ð Þ=2. Uniqueness of the solution of (3) depends on
the triplet (N, P, Q). For deterministic mixing matrix B the necessary condition for
uniqueness is N = O(Q2) [28]. Thus, it becomes virtually impossible to obtain an
essentially unique solution of the underdetermined nonlinear BSS problem (1) with
overlapped sources. Separation quality can, however, be increased through nonlinear

mapping of mixture data xt 2 R
N�1
0þ ! / xtð Þ 2 R

�N�1
0þ

n oT

t¼1
where explicit feature map

(EFM) / xtð Þ maps data into, in principle, infinite dimensional feature space. To make
calculations in mapped space computationally tractable, / Xð Þ :¼ / xtð Þf gTt¼1 needs to
be projected to a low-dimensional subspace of induced space spanned by

/ Vð Þ :¼ / vdð Þf gDd¼1. Thereby, the basis V :¼ vd 2 R
N�1
0þ

� �D
d¼1 spans the input space:

span vdf gDd¼1 � span xtf gTt¼1 and it is estimated from X by k-means clustering
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algorithm. Projection known as EKM, see Definition 2.15 in [23], maps data from input
space onto RKHS:

W V; Xð Þ ¼ / Vð ÞT/ Xð Þ ¼ K V; Xð Þ ð4Þ

where K V; Xð Þ 2 R
D�T
0þ denotes Gram or kernel matrix with the elements j vd ; xtð Þ ¼f

/ vdð ÞT/ xtð ÞgD; Td; t¼1. It is shown in [7] that under sparse probabilistic prior (2) Eq. (4)
becomes:

W V; Xð Þ � A
01�T

S
sisj
� �M

i; j¼1

2
4

3
5 þ �E ð5Þ

where A denotes a nonnegative mixing matrix of appropriate dimensions, 01�T stands
for row vector of zeros and �E stands for approximation error. The uniqueness condition
for system (5) becomes: D = O(Q2), [28]. When D 	N that can be fulfilled with
greater probability than uniqueness condition for system (3): N = O(Q2), [7, 27]. Thus,
the role of nonlinear EKM-based mapping is to “increase number of mixtures”.

3 Joint Nonnegative Matrix Factorization in Reproducible
Kernel Hilbert Spaces

It has been demonstrated that sparseness constrained NMF in an EKM-induced RKHS
enables separation of nonnegative dependent sources from smaller number of their
nonlinear mixtures [27]. However, the fundamental issue is how to select the kernel
function, i.e. its parameters in (4)/(5). The common choice is a Gaussian kernel

j vd; xtð Þ ¼ exp � vd � xtk k2=r2
� �

. That is justified by its universal approximation

property [29]. However, proper selection of the kernel variance r2 requires a priori
knowledge of the signal-to-noise (SNR) ratio. When dealing with experimental data
that is often hard to know in practice. Herein, we propose to map data X into multiple
RKHSs using EKMs with Gaussian kernel with the values for variance that cover wide

enough range: r2 2 r2
1; . . .;r

2
nv

n o
. Hence, we obtain nv data matrices in induced

RKHSs with representations as follow:

Wi V; Xð Þ ¼ Ai
�Sþ �Ei i ¼ 1; . . .; nv ð6Þ

where meaning of �S is clear from direct comparison between (6) and (5). To establish
weak analogy with the multi-view clustering, [24], we denoted mixture matrices in
RKHSs as data arising from multiple views. Also, without loss of generality, to enable
fair comparison with multi-view NMF algorithm [24] we assume that mixture matrices
in each “view i” satisfy Wi V; Xð Þk k1¼ 1

� �nv
i¼1. The difference between our model (6)

and multi-view NMF model [24] is that our model (6) assumes that all the views share
the same source matrix �S, while in [24] source matrices are different for each view and
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are enforced to converge towards a common consensus. To derive the NMF update rule
on the level of “view i” we assume Gaussian distribution for the error term in (6) and
minimize the loss function under constrains Ai 
 0, �S
 0:

L Ai; �S
	 
 ¼ 1

2
Wi V; Xð Þ � Ai

�S
�� ��2

2 þ a �S
�� ��

1 ð7Þ

where a stands for sparseness regularization constant. Minimization yields the fol-
lowing update rules for Ai and �S, see also Table 1 in [3]:

Ai ¼ Ai � Wi V; Xð Þ�ST

AiSS
T þ e1DP

�S ¼ �S� AT
i Wi V; Xð Þ � a1PT

� �
þ

AT
i Ai

�S þ e1PT

ð8Þ

In (8) � denotes entry-wise multiplication, 1DP and 1PT stand for matrices of all
ones, e is a small constant and [x]+ stands for max(0, x) operator. At each iteration the
algorithm cycles through all the views 1,…, nv. It is clear that representation (6)
automatically resolves the permutation indeterminacy issue that is problematic for joint
NMF across multiple views [24]. We coin our method multi-view NMF (mvNMF).
The joint NMF method [24] is coined multi-view consensus NMF (mvCNMF). Even
though our method is developed for separation of sources from nonlinear underde-
termined mixtures it can be applied directly to multi-view clustering in the same spirit
as joint NMF method in [24]. In that case Wi V;Xð Þ ought to be replaced with the data
matrix at view i: Xi. Furthermore, when BSS problem is linear, X = AS, with one view
only, i.e. nv = 1, Eq. (8) with the appropriate substitutions represents standard
sparseness constrained NMF [3].

4 Numerical Evaluation

To validate proposed mvNMF method we generate three nonlinear mixtures of eight
overlapped sources according to:

f1 sð Þ ¼ s31 þ s22 þ tan�1 s3ð Þ þ s24 þ s35 þ s36 þ tanh s7ð Þ þ sin s8ð Þ þ e1

f2 sð Þ ¼ tanh s1ð Þ þ s32 þ s33 þ tan�1 s4ð Þ þ tanh s5ð Þ þ sin s6ð Þ þ s27 þ s28 þ e2

f3 sð Þ ¼ sin s1ð Þ þ tan�1 s2ð Þ þ s23 þ s34 þ tanh s5ð Þ þ sin s6ð Þ þ s37 þ tan�1 s8ð Þ þ e3

We generated eight source signals in T = 1000 observations with degrees of
overlap equal to K 2 1; 3; 5f g. According to probabilistic prior (2) we set
qm ¼ 0:6f g8m¼1 and lm ¼ 0:15f g8m¼1. Thus, generated sources correspond with the real

world signals such as mass spectra. Furthermore, noise was added to the mixtures with
SNR = 0 dB. We use the Gaussian kernel with the variance r2 2 {1000, 100, 10, 1,
0.1, 0.01, 0.001}. That covers wide range of possible SNRs. The basis matrix V for
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EKM-based mappings was estimated from X by k-means algorithm with D = 100
cluster centers. We compare the proposed mvNMF algorithm with the mvCNMF
algorithm [24], with ordinary NMF algorithm [3] applied directly to mixture data
matrix X and with algorithm (8) applied to each “view”, mapped data matrix
Wi V; Xð Þf gnvi¼1, separately. We coined the last algorithm as single view NMF (svNMF)

and point out that it coincides with the algorithm [27] applied in each RKHS separately.
We set sparseness related regularization constant in (8) to a = 0.2. In case of mvCNMF
algorithm we use the result for consensus matrix to be compared with the result of
mvNMF. For each value of K we repeated the comparison 100 times. In each exper-
iment we separated eight sources from the mixtures and annotated them with the true
sources using mean normalized correlation as criterion:

mean correlation ¼
X
i2Ic

ci ŝi; sið Þ
 !,

M ð9Þ

where Ic denotes index set of correctly assigned sources, ŝi denotes the separated and si
the true source and 0� ci ŝi; sið Þ� 1 stands for the normalized correlation coefficient.
Thus, if more than one separated source was assigned to the same true source that was
counted as assignment error and reduced value of the mean correlation.

Figure 1a shows mean values of assignment errors (with the variance as error bar)
for NMF, mvNMF and mvCNMF algorithms. Figures 1b shows assignment errors for
the svNMF algorithm. Corresponding correlation coefficients (9) are shown in Fig. 2a
and b. The largest mean value of assignment error is 36% for mvNMF, 34.63% for
NMF, 45.37% for mvCNMF and 35.37% for svNMF. The largest values of mean
correlation coefficient for the algorithms in respective order are 8.12%, 4.23%, 7.44%
and 4.36%. Thus. proposed mvNMF method increased correlation coefficient in
comparison with NMF and svNMF methods having similar assignment error. In
comparison with mvCNMF the mvNMF method has similar correlation coefficient but
smaller assignment error. The mvCNMF method extracted typically two or three
unique sources with the “highest” value of correlation coefficient. That explains its

Fig. 1. Assignment error. (a) NMF, mvNMF and mvCNMF algorithms. (b) svNMF algorithm,
i.e. NMF algorithm applied to each “view” separately. (Color figure online)
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“good” performance in terms of correlation and poor in terms of assignment error.
Figures 1b and 2b show that performing source separation in each induced RKHS
separately yields results worse than when all the RKHSs are used. Although the sep-
aration quality of proposed mvNMF method could be considered low we comment that
described nonlinear BSS problem is hard and for it, to the best of our knowledge, no
method is developed yet.

5 Conclusion

Blind separation of nonnegative dependent (overlapped) sources from smaller number
of nonlinear mixtures represents a hard problem with, arguably, no algorithm proposed
to solve it. Herein, we propose method for separation of sparse dependent sources by
joint NMF on mixture matrices mapped in multiple RKHSs. RKHSs were induced by
mappings based on Gaussian kernel with variances that cover a wide range of possible
SNR values. Mixtures in induced RKHSs were represented with the linear mixture
models comprised of different mixing matrices and common matrix of sources. That is
justified by the fact that mixtures in mapped data space are obtained from the same
mixture matrix in input data space. Thus, a novel joint NMF method is proposed to
separate common source matrix from multiple mixtures. On numerical experiment the
proposed method achieved competitive performance. In addition for nonlinear BSS
proposed joint NMF method could be also used for clustering data from multiple views
in the spirit of [24].

Acknowledgments. This work has been supported in part by the Grant IP-2016-06-5253 funded
by Croatian Science Foundation and in part by the European Regional Development Fund under
the grant KK.01.1.1.01.0009 (DATACROSS).

Fig. 2. Mean correlation coefficients (9) of correctly assigned sources separated with: (a) NMF,
mvNMF and mvCNMF algorithms. (b) svNMF algorithm, i.e. NMF algorithm applied to each
“view” separately. (Color figure online)
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Abstract. Nonnegative matrix factorization is a well-known unsuper-
vised learning method for part-based feature extraction and dimension-
ality reduction of a nonnegative matrix with a variety of applications.
One of them is a matrix completion problem in which missing entries in
an observed matrix is recovered on the basis of partially known entries.
In this study, we present a geometric approach to the low-rank image
completion problem with separable nonnegative matrix factorization of
an incomplete data. The proposed method recursively selects extreme
rays of a simplicial cone spanned by an observed image and updates the
latent factors with the hierarchical alternating least-squares algorithm.
The numerical experiments performed on several images with missing
entries demonstrate that the proposed method outperforms other algo-
rithms in terms of computational time and accuracy.

Keywords: Nonnegative Matrix Factorization · Image completion
Geometric NMF · Separable matrix factorization

1 Introduction

Nonnegative Matrix Factorization (NMF) [1] is an unsupervised method for
extracting a latent structure from an input matrix which contains only nonneg-
ative entries. The basic model of NMF assumes an approximate decomposition of
an input nonnegative matrix into lower-rank nonnegative factors. Due to the huge
flexibility of NMF and easy interpretation of its factors, this model has already
found many applications in various areas of research and engineering [1,2].

NMF was popularized by Lee and Seung [3,4] who proposed simple mul-
tiplicative algorithms for updating the factors. Nowadays, there are plenty of
computational strategies for updating the factors in various NMF models [1,2],
and thousands of publications about NMF. Among them, an emerging group
consists of geometry-based NMF, such as the XRAY [5], Hottopix [6], Succes-
sive Nonnegative Projection Algorithm (SNPA) [7], Hierarchical Convex-Hull
NMF (HCH-NMF) [8], SimplexMax [9]. These algorithms find the feature vec-
tors by searching the extreme rays of a simplicial cone spanned by observations.
c© Springer International Publishing AG, part of Springer Nature 2018
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If the extreme rays are represented by a subset of columns (or rows) of an input
matrix, then such an NMF model satisfies the separability assumption [5,9]. If so,
any other data point can be presented by the conic combination of the extreme
rays. The geometry-based NMF algorithms work very efficiently in many applica-
tions, especially for a blind unmixing hyperspectral problem [7,10,11] or textual
document representation [5,12,13].

NMF has been also applied to a matrix completion problem [14], where a
subset of its known entries is used to restore missing entries in a given incomplete
matrix. The problem can be expressed by the following model:

min
Y

rank(Y ), s.t. yit = mit,∀(i, t) ∈ Ω (1)

where M = [mit] ∈ R
I×T
+ is the original incomplete matrix, Y = [yit] ∈ R

I×T
+ is

the recovered matrix, and Ω is the set of indexes of the known elements in M .
As expressed by (1), the matrix completion problem boils down to the problem
of finding such a minimum-rank matrix Y that has the same set of elements as
the matrix M among the items indicated by the set Ω.

One of the recently studied models for the above-mentioned problem is Non-
negative Matrix Completion model under Separability Assumption (NMCSA)
which was proposed by Yu et al. in [15]. The NMCSA combines a geometric
approach to NMF with coordinate-descent gradient optimization for updating
the latent factors. The columns of M generate a convex cone C(M) ⊂ R

I
+, and

under the separability condition, the selected columns from M are regarded as
its extreme rays. The NMCSA selects the extreme rays with random projections.
Motivated by the efficiently of the SimplexMax algorithm [9] for initialization of
latent factors in the standard NMF model, we propose to use the concept of the
SimplexMax to select the extreme rays of C(M) in the NMCSA. Furthermore,
the missing entries in M may occur in every column, including the columns
selected for representing the extreme rays. The missing entries in these columns
cannot be recovered in one run of the NMCSA. To tackle this problem, we pro-
pose to run the NMCSA recursively, and in further recursive steps to randomly
select the candidates for the extreme rays. We applied the proposed method to
the image completion problem with a few incomplete images.

The paper is organized in following way: in the next section, we briefly discuss
the NMCSA [15]. The proposed methods are described in Sect. 3. The numerical
experiments performed for various image completion problems are presented in
Sect. 4. The last section contains the summary and conclusions.

Notations: boldface uppercase letters (e.g. X) denotes for matrices; lowercase
boldface ones stand for vectors (e.g. x); not bold letters are scalars. For a matrix
X, xi,j denotes the (i, j)-th element, xj or xj stand for the j-th column or row,
respectively. The symbol || · ||F denotes the Frobenius norm of a matrix; || · ||2
denotes the 2-nd norm. The set of nonnegative real numbers is denoted by R+.
For a matrix, X ∈ R

I×J
+ or X ≥ 0 means that all elements in X are nonnegative.

Let Γ be a subset of an arbitrary set, then Γ̄ is its complement, and |Γ | is the
cardinality of Γ . The submatrix created from the columns of X indexed by Γ is
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denoted by XΓ . The symbol C(X) stands for the convex set generated by the
columns of X.

2 NMCSA Algorithm

In the NMCSA, the matrix Y in (1) is assumed to satisfy the separability
assumption. Hence, the NMCSA model takes the form:

minY,Pi,X,Γ
1
2
||Y Π − Y Γ [I X] ||2F , s.t. Y ∈ R

I×T
+ , yit = mit, ∀(i, t) ∈ Ω,

XT1J = 1T−J , X ∈ R
J×(T−J)
+ , |Γ | = J, (2)

where J is a given rank of factorization, Π is a permutation matrix, Y Γ ∈
R

I×J
+ contains the features represented by the anchors selected from Y , and the

columns of X contain coefficients of a conic combination of the features. The
set Γ contains the indices of the anchors. From the separability condition, the
columns of Y Γ represent the extreme rays of the simplicial cone C(Y ) ⊂ R

I
+,

C(Y ) ⊆ C(Y Γ ), and ∀t : yt ∈ C(Y Γ ).
If the set Γ is known, the problem (2) can be reformulated as:

minQ,A,X
1
2
||Q − AX||2F , s.t. Y ∈ R

I×T
+ , yit = mit, ∀(i, t) ∈ Ω,

XT1J = 1T−J , X ∈ R
J×(T−J)
+ , |Γ | = J, (3)

where Q = Y Γ̄ ∈ R
I×(T−J)
+ , A = Y Γ ∈ R

I×J
+ , and Y = [Q A]Π ∈ R

I×T
+ .

To update A and X, the following subproblems created from (3) are solved:

minA
1
2
||Q − AX||2F , s.t. Y ∈ R

I×T
+ , yit = mit, ∀(i, t) ∈ Ω, (4)

minX
1
2
||Q − AX||2F , s.t. XT1J = 1T−J , X ∈ R

J×(T−J)
+ . (5)

The matrix Q in (3) is updated according to the rule: Q = Y Γ̄ = (AX)Γ̄ .
In the NMCSA, the problems (4) and (5) are solved with nonnegatively con-

strained coordinate-descent gradient algorithms. The algorithm for updating A
is closely related to the Hierarchical Alternating Least-Squares (HALS) algo-
rithm which was proposed by Cichocki et al. [16] for updating latent factors in
NMF/NTF models. The problem (5) is solved with a similar algorithm to the
HALS, however, instead of rank-one update, it performs two-rank updates, i.e.
two rows of X are updated simultaneously in each inner iteration.

To solve the problems (4) and (5), the set Γ must be known. In the NMCSA,
the set Γ is estimated with the random projections expressed by Algorithm 1.
According to the considerations in [15], Algorithm 1 selects the anchors with a
high probability according to the statistics defined via Tp times projections on
randomly selected standard basis vector e of RI .
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Algorithm 1. Random Projections

Input : M ∈ R
I×T – incomplete matrix, J – rank of factorization, Tp -

number of random projections
Output: Γ - indexes of anchors

1 Initialization: I = ∅;
2 for t = 1, . . . , Tp do
3 randomly select standard basis vector e;
4 i∗ = arg maxt∈{1,...,T} mT

t e;
5 I = I ∪ i∗ ;

6 Γ = J unique elements of I with largest occurrences;

3 Improved NMCSA for Image Completion Problem

The random projections in Algorithm1 select possible dense columns of Y , which
is justified by the fact that dense vectors are not incomplete. However, such
vectors may be far away from the true extreme rays of C(Y ). There are many
methods for estimating the extreme rays of a convex cone, which are mentioned
in Sect. 1. Many experiments confirmed that the SimplexMax [9] is one of the
most efficient algorithms for pursuing this task. Hence, we also use the concept
of the SimplexMax to estimate the set Γ in (3).

To apply the SimplexMax, the columns of Y are scaled to unit l1-norm, i.e.
Ȳ = Y D, where D ∈ R

T
+ is a diagonal scaling matrix. The scaling means that

C(Y ) is cut with the hyperplane determined by the unit vectors in R
I
+. The

intersection forms the convex hull H(Y ). If the factorization model Y = AX
satisfies the separability condition, the vertices of the convex hull H(Y ) are the
anchors of Ȳ which span a polytope of the maximal volume [17]. The set Γ in
(3) can be obtained by solving the problem:

Γ = arg max
T ⊂{1,...,T}

vol H(Ȳ T ) = arg max
T ⊂{1,...,T}

det
{
(Ȳ T )T (Ȳ T )

}
, (6)

where vol H(Ȳ T ) is the volume of the polytope H(Ȳ T ) generated by the vectors
in Ȳ T with |T | = |Γ | = J .

The problem (6) belongs to a class of combinatorial problems, however, under
the separability condition of NMF, it can be well approximated by the following
recursive algorithm. In the first step, we attempt to find such the vector ȳt

from Ȳ that is located in the furthest distance from the central point ȳm =
1
T

∑T
t=1 ȳt ∈ R

I
+. Such a vector determines one of the vertices of H(Ȳ ), i.e. the

vector a1 of A. The index t is the first entry of Γ . In the next step, another vector
ȳs from Ȳ is searched that maximizes the area of the parallelogram formed by
the vectors ȳt and ȳs. As a result, Γ = {t, s}. In each recursive step, the new
vector from Ȳ is added to the basis of the previously found vertex vectors, and
the corresponding index is added to the set Γ . After performing J recursive
steps, the matrix A and the corresponding set Γ are found. In real applications,
p vectors from Ȳ with the highest impact on the solution to (6) is found in each
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Algorithm 2. ICSA Algorithm
Input : M ∈ R

I×T - incomplete matrix, J - rank of factorization, S – number
of recursive steps

Output: Y ∈ R
I×T - completed matrix

1 Initialization: S(0) = U = {1, . . . , T}, s = 1;

2 while s ≤ S, and |S(s−1)| > J do

3 Select Γ from S(s−1) using the SimplexMax or random projections;
4 Solve the problems (4) and (5) using the NMCSA updating rules, and

update Q, where Γ̄ = U\Γ ;

5 Update: S(s) = S(s−1)\Γ and s ← s + 1;

6 Return Y ;

Fig. 1. Original images: (first) Lena (256 × 256 pixels); (second) boats (512 × 512 pix-
els); (third) mountain (384 × 254 pixels); (fourth) ship (316 × 466 pixels)

recursive step. Then the vectors are averaged to form a rough estimator of the
desired vertex.

Regardless of the algorithm used for finding the extreme rays, it is highly
probable that each column vector of Y is incomplete, and such anchors remain
incomplete if the problems (4) and (5) are solved. To tackle this deficiency, we
propose to re-run the NMCSA with different extreme rays. In the first step, Γ is
determined from the set U = {1, . . . , T}. In the next step, the columns from Y Γ

go to Y Γ̄ (s) , and Γ (s) is selected from the difference U\Γ . The procedure can
be repeated S times, where S ≤ 
T

J �, or until the set |S(s)| < J . The concept of
re-selection of the extreme rays is illustrated by Algorithm 2.

4 Experiments

The numerical experiments are performed on image completion problems with
four original images that are illustrated in Fig. 1. The incomplete data are
obtained by removing a certain number of pixels from original images.

The discussed algorithms are run in PLGRID1 queues on the distributed
cluster server in Wroclaw Center for Networking and Supercomputing (WCSS)2

1 http://www.plgrid.pl/en
2 https://www.wcss.pl/en/

http://www.plgrid.pl/en
https://www.wcss.pl/en/
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using Matlab2016 parallel workers. Our resources are limited to 8 cores (ncpus)
and 8 GB RAM (mem). Due to the non-convex nature of NMF algorithms, the
tests were repeated 100 times.

The results are evaluated quantitatively with the Signal-to-Interference Ratio
(SIR) measure, defined as SIR = 20 log10

||M 0||F
||M 0−Y ||F , where M0 is an original

grey-scale image or a colormap. For RGB images, the SIRs are averaged over
colormaps. The selected images are shown in the form of 2D plots. The tested
algorithms are also validated in terms of the averaged runtime per iteration.

A couple of numerical experiments are conducted. In all the tests, we set
S = 2, and J = 50, which is motivated by the upper bound for the rank in [18].
In the first experiment, we compare the performance of the proposed algorithms,
i.e. ICSA with random projections (ICSA-rand) and ICSA with the SimplexMax
(ICSA-SI), with the baseline NMCSA (with random projections), by applying
them to the image completion problem with well-known images. The aim of this
test is to select the most efficient algorithm for further, more extensive tests. Two
well-known images from Fig. 1 were selected: the Lena in a gray-scale and the
boats, and then degraded to an incomplete version with about 50 % of missing
pixels. The choice of images is also motivated by their different resolution and
details of the scenery. The averaged SIR results are presented in Table 1.

Table 1. SIR-values [dB] for various algorithms

Image NMCSA ICSA-rand ICSA-SI

Lena 10.60 ± 0.09 17.36 ± 0.10 17.63 ± 0.10

Boats 14.12 ± 0.07 18.23 ± 0.10 18.96 ± 0.09

As we can see from Fig. 2 and Table 1, the NMCSA does not provide a sat-
isfactory solution; the basis lines (extreme rays) are not updated properly.
The ICSA-SI provides much better results. Since the ICSA-SI outperforms the
ICSA-rand, the further experiments show only a comparison of the ICSA-SI with
the NMCSA and other algorithms.

NMCSA ICSA

Fig. 2. NMCSA vs ICSA-SI.
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In the second experiment, we compare the algorithms on following images:
boats and mountain. Our choice was motivated by content-dependent image
completion. The boats image presents the detailed scenery with a non-smooth
horizontal structure. The other image contains such a structure which might
be easier represented by a conic combination of its few columns in each color
map. For such images, the NMCSA-based algorithms should work better. The
incomplete images were generated by removing from the original image: (a)
randomly selected 50%, 70% and 90% of pixels, (b) a single line of pixels forming
a regular grid of 10 pixels wide. For RGB images, the completion process is
performed separately for each color map. The following algorithms are tested
and compared: NMCSA [15], SVT [19], LMaFit [20], and ICSA-SI. The boxplots
of SIR values are demonstrated in Fig. 3, together with the selected completed
images. The averaged runtime/iteration is listed in Table 2.

NMCSA SVT Lmafit ICSA
14

16

18

50%

NMCSASVT Lmafit ICSA

10

15

70%

NMCSA SVT Lmafit ICSA

5

10
90%

NMCSA SVT Lmafit ICSA
7

8

9

grid

NMCSA SVT Lmafit ICSA
6
8

10
12
14
16

50%

NMCSASVT Lmafit ICSA
4
6
8

10
12

70%

NMCSA SVT Lmafit ICSA

4
6
8

90%

NMCSA SVT Lmafit ICSA
7

8

9

grid

Fig. 3. Results of images completion: • upper left: recovered boats image,
• upper right: recovered mountain image, • bottom left: boxplots of SIR-values for
boats image, • bottom right: boxplots of SIR-values for mountain image.

The third experiment, performed on the ship image [21] from Fig. 1, is aimed
to show how the discussed algorithms deal with a large block of missing pixels.
In this case, the block was a ship on the sea. The best method should replace
the ship with the background. The recovered images are shown in Fig. 4, and
the corresponding SIR values and the runtime/iteration are listed in Table 3.
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Table 2. Runtime/iteration ratio [in milliseconds] for the algorithms used in the second
experiment.

Boats

NMCSA SVT LMaFit ICSA-SI

50% 91.38 ± 31.0 184.21 ± 9.05 6.73 ± 0.91 94.45 ± 16.85

70% 110.49 ± 42.45 178.86 ± 16.14 5.13 ± 1.27 119.75 ± 48.47

90% 118.83 ± 23.07 174.05 ± 8.73 3.55 ± 0.47 128.76 ± 23.09

Grid 46.84 ± 4.41 157.65 ± 6.55 9.92 ± 1.52 43.43 ± 2.09

Mountain

50% 40.57 ± 2.47 43.24 ± 2.12 2.85 ± 0.29 42.01 ± 3.06

70% 53.72 ± 4.83 43.36 ± 2.23 2.08 ± 0.24 55.28 ± 5.0

90% 70.28 ± 9.04 44.82 ± 3.63 1.51 ± 0.29 72.46 ± 10.51

Grid 25.56 ± 3.27 43.01 ± 4.61 4.69 ± 0.72 21.17 ± 1.47

NMCSA SVT

Lmafit ICSA

Fig. 4. Block distortion removal.

Table 3. SIR-values and the runtime/iteration obtained in the third experiment.

NMCSA SVT LMaFit ICSA-SI

SIR [dB] 20.4 ± 0.7 14.0 ± 0 19.0 ± 0 21.0 ± 1.0

Time [ms/iter] 16.4 ± 0.6 47.6 ± 1.5 4.0 ± 0 22.0± 1.0

5 Conclusions

We proposed the ICSA-SI – the modified version of the NMCSA for solving image
completion problems. The experiments confirmed that the ICSA-SI outperforms
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the other algorithms in terms of the quality of recovered images, especially
for highly incomplete data (in which at least 70% of pixels is missing). Only
the ICSA-SI is able to remove the grid (with some distortions) from the grid-
disturbed images, leading to the highest SIR values. The SIR results listed in
Table 1 shows that the most promising approach is to repeat the procedure
for selecting the extreme rays. The experiments confirmed that initially-selected
extreme rays contain missing pixels, and hence the recursive strategy in the ICSA
is important to relax this problem. Comparing the ICSA-rand and ICSA-SI, we
can conclude that the SimplexMax-based strategy may lead to slightly better
results than the random projections but we did not observe the case where
the difference is large. This strategy probably would be very efficient for fully-
separable images, however natural images are at most near-separable, and hence
they might be only roughly modeled by a low-order polyhedral cone generated
by the selected columns from the underlying image. The quality of recovery
missing entries with the ICSA depends on the scenery of a completed image. For
example, the mountain image in Fig. 1 demonstrates a slow-varying horizontal
smoothness, and hence it may be better represented by such a geometric model,
whereas the boats contains more details in its horizontal direction, so its geo-
metric representation might be worse. Indeed, this statement is confirmed in
Fig. 3. The quality of the reconstructed mountain image is better (in terms of
the SIR measure) than for the boats image.

In the third experiment with the ship image, the ICSA-SI also gives the
best solution, although not as efficient as presented in [21], introducing some
disturbances.

The runtime/iteration of ICSA-SI depends on the number of recovered entries
(see Table 2), and is comparable with the NMCSA, and usually shorter than for
SVT. However, it is order-value longer than for LMaFit.

Summing up, the proposed method outperforms the other methods in terms
of the quality of results for all the tested cases. Further research is needed to
optimize the computational time.
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zhen wai olivier.ho@univ-fcomte.fr

https://sites.google.com/view/stephanechretien/home

Abstract. A problem of paramount importance in both pure (Restricted
Invertibility problem) and applied mathematics (Feature extraction) is
the one of selecting a submatrix of a given matrix, such that this subma-
trix has its smallest singular value above a specified level. Such problems
can be addressed using perturbation analysis. In this paper, we propose a
perturbation bound for the smallest singular value of a given matrix after
appending a column, under the assumption that its initial coherence is
not large, and we use this bound to derive a fast algorithm for feature
extraction.

Keywords: Restricted invertibility · Coherence · Null space property

1 Introduction

In this paper, all considered matrices will be assumed to have their columns �2-
normalised.

1.1 Background on Singular Value Perturbation

Spectrum perturbation after appending a column has been addressed recently in
the literature as a key ingredient in the study of graph sparsification [3], control
of pinned systems of ODE’s [26], the spiked model in statistics [25]; it can also be
useful in Compressed Sensing [16] or for the column selection problem [17]. It is
also connected to column selection problems in pure mathematics (Grothendieck
and Pietsch factorisation and the Bourgain-Tzafriri restricted invertibility prob-
lem) [30].

The goal of the present paper is to study this particular perturbation problem
in the special context of column subset selection. The column selection problem
was proved essential in High Dimensional Data Analysis [4,22,23,31,33], etc. Dif-
ferent criteria for column subsect selection have been studied [8]. The need for
efficient column selection in the era of Big Data is more pressing than ever. More-
over, deterministic techniques are often prefered over randomised techniques in
industrial applications due to repetability constraints.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 127–138, 2018.
https://doi.org/10.1007/978-3-319-93764-9_13
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1.2 Previous Approaches to Column Selection

Several approaches have been extensively discussed in the literature. Other
deterministic approaches have beed studied recently in the pure mathemat-
ics literature, namely [28,32]. However, these approaches are computationally
expensive because of the necessity to perform a matrix inversion at each step.
The method of [30] combines randomness with semi-definite programming and
although very elegant, is not computationally efficient in practice. A quite effi-
cient techniques is the rank-revealing QR decomposition. Table 1 in [9] provides
the performance of this approach and compares it with various other methods.
Randomized sampling-based approaches sometimes prove to be faster than the
deterministic approaches. For instance methods based e.g. on leverage scores is
often giving satisfactory results in practice. Note also that CUR decomposition
is much related to the Column Selection tasks and the associated methods can
be relevant in practice. A very interesting and efficient approach is the simple
greedy algorithm presented in [20,20]. However, the method of [21] does not
allow for control on the smallest singular value of the selected submatrix, a cri-
terion which often considered important for selecting sufficiently decorrelated
features.

1.3 Coherence

The coherence of a matrix X, usually denoted by μ(X), is defined as

μ(X) = max
1≤k<l≤p

|〈Xk,Xl〉|. (1.1)

If the coherence is equal to zero, then the matrix is orthogonal. On the other
hand, small coherence does not mean that X is close to square and orthogonal.
Indeed, as easy computations show, e.g. i.i.d. Gaussian matrices with values in
R

n×p and normalised columns can have a coherence of order log(p)−1 even for
n of order log(p)3; see [13, Sect. 1.1]. Situations where small coherence holds
arise often in practice, especially in signal processing [11] and statistics [13]. The
coherence of a matrix has attracted renewed interest recently due to its promi-
nent role in Compressed Sensing [14], Matrix Completion [27], Robust PCA [12]
and Sparse Estimation in general. The relationship between coherence and how
many columns one can extract uniformly at random which build up a robustly
invertible submatrix are studied in [15]. When the coherence is not sufficiently
small, the results in [15] are not so much useful anymore and we should turn to
the problem of extracting one submatrix with largest possible number of columns
with smallest possible correlation. Using coherence information in the study of
fast column selection procedures is one interesting question to address in this
field.

1.4 Contribution of the Paper

We propose a greedy algorithm for column subset selection and apply this algo-
rithm to some practical problems. Our contribution to the perturbation and the
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column selection problems focuses on the special setting where the matrix under
study has low coherence. Interestingly, standard perturbation results, e.g. [5] do
not take into account the potential incoherence of the matrix under study. The
results presented in this paper seem to be the first to incorporate such prior
information into the analysis of a column subset selection procedure.

Our approach here is based on a new eigenvalue perturbation bound for
matrices with small coherence. Previous bounds have been obtained using the
famous Gershgorin’s circles theorem [1] but Gershgorin’s bound is often to crude
as demonstrated in [18] and recent advances have been obtained in this direction
in [28,32].

2 Main Results

Our main result is a bound on the smallest singular value after appending a col-
umn of a given data matrix with potentially small coherence. Our approach is
based on a new result about eigenvalue perturbation. Perturbation after append-
ing a column is a special type of perturbation [16]. The goal of the next subsec-
tions is to prove refined results of this type for this problem.

Theorem 2.1 is our first main result on perturbation. This result gives a
perturbation bound on the spectrum of a submatrix XT0 of a matrix X. Corollary
2.2 takes into account the fact that the coherence of a submatrix can be smaller
by a factor α than the coherence of the full matrix. This factor α is crucial in
the study of e.g. greedy algorithms for column selection where at each step, the
selected submatrix has much better coherence than the full matrix from which
it is extracted. Corollary 2.3 proves a bound on the smallest singular value after
successively appending several columns. An example where this result will be
usefull is the application to greedy column selection algorithms where it can
provide a relevant stopping criterion.

2.1 Appending One Vector: Perturbation of the Smallest Non Zero
Eigenvalue

If we consider a subset T0 of {1, . . . , p} and a submatrix XT0 of X, the problem
of studying the eigenvalue perturbations resulting from appending a column Xj

to XT0 , with j �∈ T0 can be studied using Cauchy’s Interlacing Lemma as in the
following result.

Theorem 2.1. Let T0 ⊂ {1, . . . , p} with |T0| = s0 and XT0 a submatrix of X.
Let λ1

(
XT0X

t
T0

)
� ... � λs0

(
XT0X

t
T0

)
be the eigenvalues of XT0X

t
T0
.

We have

λs0+1

(
XT0Xt

T0 + XjX
t
j

) ≥ λs0

(
XT0Xt

T0

) − min

(

‖Xt
T0Xj‖2,

‖Xt
T0Xj‖2

2

1 − λs0

(
XT0Xt

T0

)

)

.

(2.2)
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Proof. Setting v = Xj

A = XT0X
t
T0

we obtain from Proposition A.1 that the smallest nonzero eigenvalue of XT0X
t
T0

+
XjX

t
j is the smallest root of

f(x) = 1 −
n∑

i=1

〈v, ui〉2
x − λi

(
XT0X

t
T0

) .

We can decompose this function into two terms

f(x) = 1 −
s0∑

i=1

〈v, ui〉2
x − λi

(
XT0X

t
T0

) −
n∑

i=s0+1

〈v, ui〉2
x − λi

(
XT0X

t
T0

) .

Since λi

(
XT0X

t
T0

)
= 0 for i = s0 + 1, . . . , n, we get

f(x) = 1 +
s0∑

i=1

〈v, ui〉2
λi

(
XT0X

t
T0

) − x
−

n∑

i=s0+1

〈v, ui〉2
x

.

Notice that
s0∑

i=1

〈v, ui〉2 ≤ 1
λs0

(
XT0X

t
T0

)
s0∑

i=1

λi

(
XT0X

t
T0

) 〈v, ui〉2 =
1

λs0

(
XT0X

t
T0

)‖Xt
T0

v‖22.

Since f is increasing on the set ]0, λs0

(
XT0X

t
T0

)
[, the smallest root of f is larger

than the smallest positive root of f̃ with

f̃(x) = 1 +
‖Xt

T0Xj‖2
2

λs0

(
XT0Xt

T0

)
(λs0

(
XT0Xt

T0

) − x)
− 1 − λs0

(
XT0Xt

T0

)−1 ‖Xt
T0Xj‖2

2

x
.

Thus, after some easy calculations, we find that

λs0+1

(
XT0Xt

T0 + XjX
t
j

) ≥
1 + λs0

(
XT0Xt

T0

) −
√

(1 − λs0

(
XT0Xt

T0

)
)2 + 4‖Xt

T0
Xj‖2

2

2

which, using
√

a + b ≤ √
a +

√
b and

√
1 + a ≤ 1 + a

2 , easily gives (2.2).

This theorem is useful in the case where μ small enough so that ‖Xt
T0

Xj‖22 � 1.
In practice, the submatrices XT0 of X have better coherence than X, up to a factor
α. Moreover, we have ‖XT0Xj‖22 ≤ s0μ

2. The following corollary rephrases Theo-
rem Sect. 2 using the parameter α.

Corollary 2.2. Let X and T0 be defined as in Theorem 2.1 and assume

‖Xt
T0

Xj‖22 ≤ αs0μ
2.

Then

λs0+1

(
XT0Xt

T0 + XjX
t
j

) ≥ λs0

(
XT0Xt

T0

) − min

(
√

αs0μ2,
αs0μ

2

1 − λs0

(
XT0Xt

T0

)

)

.

(2.3)
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2.2 Successive Perturbations

If we append s1 columns successively to the matrix XT0 , we obtain the following
result

Corollary 2.3. Let T0 ⊂ {1, . . . , p} with |T0| = s0 and XT0 a submatrix of X.
Let T1 ⊂ {1, . . . , p} with |T1| = s1 and T0 ∩ T1 = ∅. Let

εmin = min

(
√

αμ2

s0+s1∑

i=s0

√
i,

αμ2s0

1 − λs0

(
XT0Xt

T0

) +
2(1 − λs0

(
XT0Xt

T0

)
)

s0

s0+s1∑

i=s0+1

i

i − 1

)

.

(2.4)

Then

λs0+s1

(
Xt

T0∪T1
XT0∪T1

) ≥ λs0

(
XT0X

t
T0

) − εmin (2.5)

3 A Greedy Algorithm for Column Selection

The analysis in Sect. 2 suggest that a greedy algorithm can be easily devised for
efficient column extraction. The idea is quite simple: append the column which
minimises the norm of the scalar products with the columns selected up to the
current iteration. This algorithm is described with full details in Algorithm 1
below.

Algorithm 1. Greedy column selection
1: procedure Greedy column selection
2: Set s = 1 and choose a random singleton T = {j(1)} ⊂ {1, . . . , p}. Set η(1) = 1.
3: while η(s) ≥ 1 − ε do
4: Set

j(s) ∈ argminj∈{1,...,p}\T ‖Xt
TXj‖2.

5: Set

α(s) = ‖Xt
TXj(s)‖2

2/(sμ2).

6: Set T = T ∪ {j(s)}.
7:

η(s+1) = η(s) − min

(√
α sμ,

αμ2s

1 − λs(Xt
TXT )

)

8: s ← s + 1

Note that Algorithm 1 requires the computation of the smallest eigenvalue
at each step, which might be computationally expensive in large dimensional
settings.
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4 Numerical Experiments

4.1 Extracting Representative Time Series

Time series are ubiquitous in a world where so many phenomena are monitored
via sensor networks. One interesting application of greedy column selection is to

– extract representative time series among large datasets and
– understand the intrinsic “dimension” of the dataset, i.e. the maximum number

of different dynamics that are present.
– extract potential outliers.

In this experiment, we considered a set of 1479 times series of length 39 which
consist in non-linear transformation of satellite InSAR data1. Then, starting
from a random time series, we extracted 150 times series sequentially minimizing
‖Xt

T Xj‖2, j /∈ T at each step. Figure 1 shows the behavior of our algorithm over
time. For large μ, we see that the bound provided by Corollary 2.3 are worse
than the Gershgorin bound and successive applications of Theorem 2.1 provides
again a better bound.
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Fig. 1. Left: Evolution of the smallest singular value in the greedy column selection
Algorithm 1. Right: Main extracted Features.

4.2 Extracting Representative Images from a Dataset

Extracting representative objects in a dataset is of great importance in data
analytics. It can be used to detect outliers or clusters. In this example, we applied
our technique to the Yale Faces database shown in Fig. 2 (Left). In order to
cluster the set of images, we performed a preliminary scattering transform [10,24]
of the images in the dataset. We then reshaped the resulting scattering transform
matrices into column vectors that we further concatenated into a single matrix
X. We selected 9 faces using our column selection algorithm and we obtained
the result shown in Fig. 2 (Right). The total time for this computation was .07 s.
Larger Pictures are given in the associated report [18].
1 A non-linear transformation was performed in order to make the time-series locations

and sources impossible to identify.
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Fig. 2. Left: Faces from the Yale database. Right: Faces selected by our algorithm.

4.3 Comparison with CUR

We compared the behavior of our method with the CUR algorithm proposed in
[9]. We generated 100 matrices with i.i.d. standard Gaussian entries, with 100
rows and 10000 columns and performed both Algorithm 1 from the present paper
and the CUR method. We restricted the study to the case of 10 columns to be
extracted. The following histograms in Fig. 3 show the relative performance of
our method as compared to CUR [9]2.

The Monte Carlo experiments shown in Fig. 3 prove that our method pre-
forms better than the CUR method, both from the viewpoint of providing sub-
matrices with larger singular values on average and for a much smaller compu-
tational effort (our method was around 50 times faster for these experiments).
These experiments are extracted from a more extensive set of experiments,
including comparison with other methods, proposed in [18].

2 We used the Matlab implementation provided on Christos Boutsidis webpage.
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Fig. 3. Left: counts of the number of singular values of the submatrix extracted
with Algorithm 1 larger than for CUR among the 5 smallest singular spectrum for
100 independent Monte Carlo trials. Right-top: histogram of the computation time
for Algorithm 1. Right-bottom: histogram of the computation time for the CUR
method [9].

5 Conclusion and Perspectives

In this paper, we established a relationship between the coherence and a pertur-
bation bound for incoherent matrices. Our approach is based on perturbation
theory and no randomness assumption on the design matrix is used to estab-
lish this property. Coherence plays an important role in many pure and applied
mathematical problems and perturbation results may help go significantly fur-
ther. Two such problems for which we are planning further investigations are
the following.

– Random submatrices are well conditioned. Matrices with small coher-
ence have a very nice property: most submatrices with s columns have their
eigenvalues concentrated around 1 for s of the order n/ log(p). This was first
studied in [29], [13, Theorem 3.2 and following comments] and then improved
in [15]. The study of such properties is of tremendous importance in the
study of designs for sparse recovery [13]. An interesting potential application
of studying spectrum perturbations after appending a column is the one of
spectrum concentration via the bounded difference inequality [6]. Such con-
centration bounds should also appear essential in understanding the behavior
of random column sampling algorithms [8,19].

– The restricted invertibility problem. Given any matrix X, the Restricted
Invertibility problem of Bourgain and Tzafriri is the one of extracting the
largest number of columns Xj , j ∈ T form X while ensuring that the small-
est singular value of XT stays away from zero. Different procedures have been
proposed for this problem. Some of them are randomised and some are deter-
ministic. The original results obtained by Bourgain and Tzafriri were based
on random selection [7]. The current best results were recently obtained by
Youssef in [32] based on an remarkable inequality discovered by Batson, Spiel-
man and Srivastava in [2]. In [17], using an elementary perturbation approach,
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the first author and S. Darses recently obtained a very short proof of a weaker
version of the Bourgain-Tzafriri theorem (up to a log(s) multiplicative term).
Our next goal is to refine these types of perturbation results in the small
coherence setting and extend the applicability to Big Data analytics.

Acknowledgements. The work of the first author was funded by The National Mea-
surement Office of the UK’s Department for Business, Energy and Industrial Strategy
supported this work as part of its Materials and Modelling programme.

A Interlacing and the Characteristic Polynomial

Recall that for a matrix A inR
n×n, pA denotes the characteristic polynomial of A.

Proposition A.1. Cauchy’s Interlacing theorem. If A ∈ R
n×n is a sym-

metric matrix with eigenvalues λ1 � · · · � λn and associated eigenvectors
v1,. . . ,vn, and v ∈ R

n, then

pA+vvt(x) = pA(x)

(

1 −
n∑

i=1

〈v, ui〉2
x − λi

)

. (A.6)

The previous lemma states in particular that the eigenvalues of A interlace those
of A + vvt.

B Proof of Corollary 2.3

Define λs0+s,min by
{

λs0,min = λs0

(
XT0X

t
T0

)

λs0+s+1,min = λs0+s

(
XT0∪T Xt

T0∪T

) − min
(√

αμ2(s0 + s), αμ2(s0+s)
1−λs0+s,min

)

There are two step to prove for the theorem. The first step set up the basis
for some recurrence relation. We show that, for s ≥ 0, to obtain a lower-bound
of λs0+s+1, it is enough to use λs0+s,min as the basis for Corollary 2.2. Or simply
that we have

λs0+s,min − min
(√

αμ2(s0 + s),
α(s0 + s)μ2

1 − λs0+s,min

)

≤ λs0+s

(
XT0∪T Xt

T0∪T

) − min

(
√

αμ2(s0 + s),
α(s0 + s)μ2

1 − λs0+s

(
XT0∪T Xt

T0∪T

)

)

≤ λs0+s+1

(
XTs+1X

t
Ts+1

)
.

It is obvious that the case where one minimum is equal to
√

αμ(s0 + s)
satisfy the property. Therefore, we study the following inequality
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λs0+s,min − α(s0 + s)μ2

1 − λs0+s,min
≤ λs0+s − α(s0 + s)μ2

1 − λs0+s

(
XT0∪T Xt

T0∪T

)

It is easily verified that the property is true for s = 0. Denote

ε = λs0+s

(
XT0∪T Xt

T0∪T

) − λs0+s+1

(
XTs+1X

t
Ts+1

)
. (B.7)

Then the recursion step is equivalent to proving that

αμ
2 s0 + s

1 − λs0+s

(
XT0∪T Xt

T0∪T

) + αμ
2 s0 + s + 1

1 − λs0+s+1,min
≥ ε + αμ

2 s0 + s + 1

1 − λs0+s

(
XT0Xt

T0

)
+ ε

.

(B.8)

This inequality can be interpreted as the sum of errors obtained by applying
Corollary 2.2 twice is greater than the sum of errors obtained if we knew the
true value after one perturbation then apply Corollary 2.2.

Let g be defined by

gs0+s(x) = x + αμ2 s0 + s + 1
1 − λs0+s(XT0∪T Xt

T0∪T ) + x
.

Since ε ≤ αμ2 s0+s
1−λs0+s(XT0∪T Xt

T0∪T )
by Corollary (2.2), it is enough to prove

g increasing.
A simple analysis show that g is strictly increasing if

αμ2 s0 + s + 1
(1 − λs0+s(XT0∪T Xt

T0∪T ))2
<

3
4
.

In the case αμ2 s0+s+1
(1−λs0+s(XT0∪T Xt

T0∪T ))2
> 3

4 , we can show that the left side of

in Eq. (B.8) is larger than 1 − λs0+s(T0 ∪ T ) and this means that we obtain the
trivial bound 0 and therefore of not relevant interest.

This solves the problem of not knowing the true value λs0+s(T0 ∪ T1).

For the second part, we aim at bounding the sum of errors. We have

s0+s∑

i=s0

min
(√

αμ2i,
αμ2i

1 − λi,min

)
≤ min

(
s0+s∑

i=s0

√
αμ2i,

s0+s∑

i=s0

αμ2i

1 − λi,min

)

.

The second sum writes
s0+s∑

i=s0

αμ2i

1 − λs0(XT0X
t
T0

) +
∑i−1

j=s0

αμ2j
1−λs0 (XT0Xt

T0
)

=
s0+s∑

i=s0

αμ2i

1 − λs0(XT0X
t
T0

) + αμ2

1−λs0 (XT0Xt
T0

)

∑i−1
j=s0

j
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This is equal to

s0+s∑

i=s0

αμ2i

1 − λs0(XT0X
t
T0

) +
∑i−1

j=s0

αμ2j
1−λs0 (XT0Xt

T0
)

=
s0+s∑

i=s0+1

αμ2i

1 − λs0(XT0X
t
T0

) + αμ2s0(i−1)
1−λs0 (XT0Xt

T0
)

+
αμ2s0

1 − λs0(XT0X
t
T0

)

Simple computations lead to the result.
Therefore applying s1 times Corollary 2.2 and each time upper-bounding, we

have (2.5).
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Abstract. Higher-order tensors have become popular in many areas of
applied mathematics such as statistics, scientific computing, signal pro-
cessing or machine learning, notably thanks to the many possible ways of
decomposing a tensor. In this paper, we focus on the best approximation
in the least-squares sense of a higher-order tensor by a block term decom-
position. Using variable projection, we express the tensor approximation
problem as a minimization of a cost function on a Cartesian product of
Stiefel manifolds. The effect of variable projection on the Riemannian
gradient algorithm is studied through numerical experiments.

Keywords: Numerical multilinear algebra · Higher-order tensor
Block term decomposition · Variable projection method
Riemannian manifold · Riemannian optimization

1 Introduction

Higher-order tensors have found numerous applications in signal processing and
machine learning thanks to the many tensor decompositions available [1–4]. In
this paper, we focus on a recently introduced tensor decomposition called block
term decomposition (BTD) [5–7]. The usefulness of BTD in blind source sepa-
ration was outlined in [8,9] and further examples are discussed in [10–14].
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The BTD unifies the two most well known tensor decompositions which are
the Tucker decomposition and the canonical polyadic decomposition (CPD). It
also gives a unified view on how the basic concept of rank can be generalized from
matrices to tensors. While in CPD, as well as in classical matrix decompositions,
the components are rank-one terms, i.e., “atoms” of data, the terms in a BTD
have “low” (multilinear) rank and can be thought of as “molecules” (consisting
of several atoms) of data. Rank-one terms can only model data components
that are proportional along columns, rows, . . . and this assumption may not be
realistic. On the other hand, block terms can model multidimensional sources,
variations around mean activity, mildly nonlinear phenomena, drifts of setting
points, frequency shifts, mildly convolutive mixtures, and so on. Such a molecular
analysis is not possible in the matrix setting. Furthermore, it turns out that, like
CPDs, BTDs are still unique under mild conditions [6,10].

In practice, it is more frequent to approximate a tensor by a BTD than to
compute an exact BTD. More precisely, the problem of interest is to compute the
best approximation in the least-squares sense of a higher-order tensor by a BTD.
Only a few algorithms are currently available for this task. The Matlab toolbox
Tensorlab [15] proposes the two following functions: (i) btd minf uses L-BFGS
with dogleg trust region (a quasi-Newton method), (ii) btd nls uses nonlinear
least squares by Gauss–Newton with dogleg trust region. Another available algo-
rithm is the alternating least squares algorithm introduced in [7]. This algorithm
is not included in Tensorlab and does not work better than btd nls in general.

In this paper, we show that the performance of numerical methods can be
improved using variable projection. Variable projection consists in exploiting
the fact that, when the optimal value of some of the optimization variables
is easy to find when the others are fixed, this optimal value can be injected
in the objective function, yielding a new optimization problem where only the
other variables appear. This technique has already been applied to the Tucker
decomposition in [16] and exploited in [17,18]. Here we extend it to the BTD
approximation problem which is then expressed as a minimization of a cost func-
tion on a Cartesian product of Stiefel manifolds. Numerical experiments show
that variable projection modifies the performance of the Riemannian gradient
algorithm for BTDs of two terms by either increasing or decreasing its running
time and/or its reliability. Preliminary results can be found in the short con-
ference paper [19]. The present paper gives a detailed derivation of the variable
projection technique and presents numerical experiments for noised BTDs. We
focus on third-order tensors for simplicity but the generalization to tensors of
any order is straightforward.

2 Preliminaries and Notation

We let R
I1×I2×I3 denote the set of real third-order tensors of size (I1, I2, I3). In

order to improve readability, vectors are written in bold-face lower-case (e.g.,
a), matrices in bold-face capitals (e.g., A), and higher-order tensors in calli-
graphic letters (e.g., A). For n ∈ {1, 2, 3}, the mode-n vectors of A ∈ R

I1×I2×I3
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are obtained by varying the nth index while keeping the other indices fixed.
The mode-n rank of A, denoted rankn(A), is the dimension of the linear space
spanned by its mode-n vectors. The multilinear rank of A is the triple of the
mode-n ranks. The mode-n product of A by B ∈ R

Jn×In , denoted A ·n B, is
obtained by multiplying all the mode-n vectors of A by B. We endow R

I1×I2×I3

with the standard inner product, defined by

〈A,B〉 :=
I1∑

i1=1

I2∑

i2=1

I3∑

i3=1

A(i1, i2, i3)B(i1, i2, i3),

and we let ‖·‖ denote the induced norm, i.e., the Frobenius norm. It is sometimes
convenient to represent a tensor as a vector (vectorization) or as a matrix (matri-
cization). The vectorization of A ∈ R

I1×I2×I3 , denoted vec(A), is the vector of
length I1I2I3 defined as follows:

(vec(A)) ((i1 − 1)I2I3 + (i2 − 1)I3 + i3) := A(i1, i2, i3).

We define the following matrix representations of A:

A(i1, i2, i3) = (A(1))(i1, I3(i2 − 1) + i3)
= (A(2))(i2, I1(i3 − 1) + i1)
= (A(3))(i3, I2(i1 − 1) + i2).

One can check that if A = S ·1 U ·2 V ·3 W, then

vec(A) = (U ⊗ V ⊗ W) vec(S), (1)

A(1) = US(1)(V ⊗ W)T, (2)

A(2) = VS(2)(W ⊗ U)T, (3)

A(3) = WS(3)(U ⊗ V)T. (4)

Vectorization and matricization are linear mappings which preserve the norm.

3 Variable Projection

Let A ∈ R
I1×I2×I3 . Consider positive integers R and Ri such that Ri ≤ ranki(A)

for each i ∈ {1, 2, 3} and m := I1I2I3 ≥ RR1R2R3 =: n. The approximation
of A by a BTD of R terms of multilinear rank (R1, R2, R3) is a nonconvex
minimization problem which can be expressed using variable projection as

min
S,U,V,W

∥∥∥∥∥A −
R∑

r=1

Sr ·1 Ur ·2 Vr ·3 Wr

∥∥∥∥∥

2

︸ ︷︷ ︸
=:fA(S,U,V,W)

= min
U,V,W

min
S

fA(S,U,V,W)
︸ ︷︷ ︸

=:gA(U,V,W)

for the variables S ∈ (RR1×R2×R3)R, U ∈ (RI1×R1)R, V ∈ (RI2×R2)R and
W ∈ (RI3×R3)R subject to the constraints U ∈ St(R1, I1)R, V ∈ St(R2, I2)R
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and W ∈ St(R3, I3)R, where given integers p ≥ q ≥ 1 we let St(q, p) denote the
Stiefel manifold, i.e.,

St(q, p) := {X ∈ R
p×q : XTX = Iq}.

A schematic representation of the BTD approximation problem is given in Fig. 1.
Each term in a BTD is a Tucker term. The tensors Sr ∈ R

R1×R2×R3 are called
the core tensors while the matrices Ur,Vr,Wr, which can be assumed to be
in the Stiefel manifold without loss of generality, are referred to as the factor
matrices.

A ≈
S1

U1

V1

W1

+ · · ·+
SR

UR

VR

WR

Fig. 1. Schematic representation of the BTD approximation problem.

Computing gA(U,V,W) is a least squares problem. Indeed, using (1), if we
define a := vec(A) ∈ R

m, P(U,V,W) := [Uj ⊗ Vj ⊗ Wj ]
1,R
i,j=1 ∈ R

m×n and
s := [vec(Si)]

R,1
i,j=1 ∈ R

n, then

gA(U,V,W) = min
s∈Rn

‖a − P(U,V,W)s‖2 .

We let S∗(U,V,W) denote the minimizer of this least squares problem.1 Thus,

gA(U,V,W) = fA(S∗(U,V,W),U,V,W).

Computing the partial derivatives of gA reduces to the computation of partial
derivatives of fA. Indeed, using the first-order optimality condition

∂fA(S,U,V,W)
∂S

∣∣∣∣
S=S∗(U,V,W)

= 0 (5)

and the chain rule yields

∂gA(U,V,W)
∂(U,V,W)

=
∂fA(S,U,V,W)

∂(U,V,W)

∣∣∣∣
S=S∗(U,V,W)

. (6)

It remains to compute those partial derivatives of fA. In order to make the
derivation convenient, we first recall some basic facts on differentiation. Given
two vector spaces X and Y over a same field, we let Lin(X,Y ) denote the vector
space of linear mappings from X to Y .
1 The minimizer is unique if and only if the matrix P(U,V,W) has full column rank

which is the case almost everywhere (with respect to the Lebesgue measure) since
m ≥ n.
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Total Derivative and Gradient. Let (X, 〈·, ·〉) be a pre-Hilbert space and let ‖·‖
denote the norm induced by the inner product 〈·, ·〉. A function f : X → R is
differentiable at x ∈ X if and only if there is L ∈ Lin(X,R) such that

lim
h→0

f(x + h) − f(x) − L(h)
‖h‖ = 0,

which means that for every ε > 0, there is δ > 0 such that for any h ∈ X,
‖h‖ ≤ δ implies

|f(x + h) − f(x) − L(h)|
‖h‖ ≤ ε.

If such a L exists, it is unique, denoted by Df(x), and called the total derivative
of f at x. The gradient of f at x is the only g ∈ X such that

Df(x)[h] = 〈g, h〉
for all h ∈ X; it is denoted by grad f(x). If f is differentiable at x ∈ X, then

Df(x)[h] = lim
t→0

f(x + th) − f(x)
t

.

for every h ∈ X.

Gradient of the Squared Norm. Let f : X → R : x 
→ f(x) := ‖x‖2. For any
x, h ∈ X and any real t �= 0,

f(x + th) − f(x)
t

=
2t〈x, h〉 + t2 ‖h‖2

t
= 2〈x, h〉 + t ‖h‖2 .

It follows that Df(x)[h] = 2〈x, h〉 and so that grad f(x) = 2x.

Affine Transformation. Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) be two pre-Hilbert spaces,
g : Y → R be differentiable, L ∈ Lin(X,Y ), b ∈ Y , A : X → Y : x 
→ A(x) :=
L(x) + b, and f := g ◦ A. For any x, h ∈ X,

〈grad f(x), h〉X = lim
t→0

f(x + th) − f(x)
t

= lim
t→0

g(L(x) + b + tL(h)) − g(L(x) + b)
t

= 〈grad g(L(x) + b), L(h)〉Y .

From now on, let us assume that X and Y have finite dimension so that L has
an adjoint, which means that there is a (unique) L∗ ∈ Lin(Y,X) such that

〈y, L(x)〉Y = 〈L∗(y), x〉X

for any x ∈ X and y ∈ Y . This allows us to conclude that for any x ∈ X,

grad f(x) = L∗(grad g(L(x) + b)).
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Adjoint of the Matrix Product. Let A ∈ R
m×p and B ∈ R

q×n. The adjoint of

L : Rp×q → R
m×n : X 
→ AXB

is
L∗ : Rm×n → R

p×q : Y 
→ ATYBT.

Partial derivatives of fA. Using the matricization formulas (2)–(4) yields

fA(S,U,V,W) =

∥∥∥∥∥

R∑

r=1

Ur(Sr)(1)(Vr ⊗ Wr)T − A(1)

∥∥∥∥∥

2

=

∥∥∥∥∥

R∑

r=1

Vr(Sr)(2)(Wr ⊗ Ur)T − A(2)

∥∥∥∥∥

2

=

∥∥∥∥∥

R∑

r=1

Wr(Sr)(3)(Ur ⊗ Vr)T − A(3)

∥∥∥∥∥

2

.

Applying the results of the preceding paragraphs to these three equations gives
the three following ones for every i ∈ {1, . . . , R}:

∂fA(S,U,V,W)
∂Ui

= 2

⎛

⎝
R∑

j=1

Uj(Sj)(1)(Vj ⊗ Wj)T − A(1)

⎞

⎠ (Vi ⊗ Wi)(Si)T(1),

∂fA(S,U,V,W)
∂Vi

= 2

⎛

⎝
R∑

j=1

Vj(Sj)(2)(Wj ⊗ Uj)T − A(2)

⎞

⎠ (Wi ⊗ Ui)(Si)T(2),

∂fA(S,U,V,W)
∂Wi

= 2

⎛

⎝
R∑

j=1

Wj(Sj)(3)(Uj ⊗ Vj)T − A(3)

⎞

⎠ (Ui ⊗ Vi)(Si)T(3).

4 Riemannian Gradient Algorithm

We have shown in the preceding section that the approximation of A by a BTD
reduces to the minimization of a real-valued function defined on a Riemannian
manifold, namely, the restriction of gA on

∏3
i=1 St(Ri, Ii)R. In this section, we

briefly introduce the Riemannian gradient algorithm which we shall use to solve
our problem; our reference is [20].

Line-search methods to minimize a real-valued function F defined on a
Riemannian manifold M are based on the update formula

xk+1 = Rxk
(tkηk),

where ηk is selected in the tangent space to M at xk, denoted Txk
M, Rxk

is a
retraction on M at xk, and tk ∈ R. The algorithm is defined by the choice of
three ingredients: the retraction Rxk

, the search direction ηk and the step size tk.
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The gradient method consists of choosing ηk := −grad F (xk) where grad F is
the Riemannian gradient of F . In the case where M is an embedded submanifold
of a linear space E and F is the restriction on M of some function F̄ : E → R,
grad F (x) is simply the projection of the usual gradient of F̄ at x on TxM.
For instance, St(q, p) is an embedded submanifold of Rp×q and the projection of
Y ∈ R

p×q on TXSt(q, p) is given by [20, Eq. (3.35)]

(Ip − XXT)Y + Xskew(XTY) (7)

where skew(A) := 1
2 (A − AT) is the skew-symmetric part of A. Our cost func-

tion, the restriction of gA on
∏3

i=1 St(Ri, Ii)R, is defined on a Cartesian product
of Stiefel manifolds; this is not an issue since the tangent space of a Cartesian
product is the Cartesian product of the tangent spaces and the projection can
be performed componentwise. We are now able to compute the Riemannian gra-
dient of the restriction of gA. Starting from the first-order optimality condition
(5) written in matrix forms (2)–(4), we can show that for each i ∈ {1, . . . , R},

UT
i

∂gA(U,V,W)
∂Ui

= VT
i

∂gA(U,V,W)
∂Vi

= WT
i

∂gA(U,V,W)
∂Wi

= 0.

Therefore, in view of the projection formula (7), the Riemannian gradient of the
restriction of gA is equal to the (usual) gradient of gA given by (6).

A popular retraction on St(q, p), which we shall use in our problem, is the qf
retraction [20, Eq. (4.8)]:

RX(Y) := qf(X + Y)

where qf(A) is the Q factor of the decomposition of A ∈ R
p×q with rank(A) = q

as A = QR where Q ∈ St(q, p) and R is an upper triangular q × q matrix with
positive diagonal elements. Again, the manifold in our problem is a Cartesian
product of Stiefel manifolds and in this case the retraction can be performed
componentwise.

At this point, it remains to specify the step size tk. For that purpose, we
will use the backtracking strategy presented in [20, Sect. 4.2]. Assume we are at
the kth iteration. We want to find tk > 0 such that F (Rxk

(−tkgrad F (xk))) is
sufficiently small compared to F (xk). This can be achieved by the Armijo rule:
given ᾱ > 0, β, σ ∈ (0, 1) and τ0 := ᾱ, we iterate τi := βτi−1 until

F (Rxk
(−τi grad F (xk))) ≤ F (xk) − στi ‖grad F (xk)‖2

and then set tk := τi. In our implementation, we set ᾱ := 0.2, σ := 10−3, β := 0.2
and we perform at most 10 iterations in the backtracking loop.

The procedure described in the preceding paragraph corresponds to [20, Algo-
rithm 1] with c := 1 and equality in [20, Eq. (4.12)], except that the number
of iterations in the backtracking loop is limited. In our problem, the domain of
the cost function is compact since it is a Cartesian product of Stiefel manifolds.
Therefore, [20, Corollary 4.3.2] applies and ensures that

lim
k→∞

‖grad F (xk)‖ = 0,
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except if at some iteration the backtracking loop needs more than 10 iterations.
In view of this result, it seems natural to stop the algorithm as soon as the norm
of the Riemannian gradient becomes smaller than a given quantity ε > 0.

5 Numerical Results

In this section, we perform numerical experiments to study the effect of variable
projection on the Riemannian gradient algorithm applied to the BTD problem.
To this end, we evaluate the ability of this algorithm, both with and without
variable projection, to recover known BTDs possibly corrupted by some noise.
Thus, in this experiment, we try to recover a structure that is really present.

First, we explain how we build BTDs for this test. We set R := 2 and we select
the parameters (I1, I2, I3) and (R1, R2, R3). Then, for each r ∈ {1, . . . , R}, we
select Sr ∈ R

R1×R2×R3 , Ur ∈ St(R1, I1), Vr ∈ St(R2, I2) and Wr ∈ St(R3, I3)
according to the standard normal distribution, i.e., Sr := randn(R1,R2,R3)
and Ur := qf(randn(I1,R1)) in Matlab. Then, we set

A :=
R∑

r=1

Sr ·1 Ur ·2 Vr ·3 Wr. (8)

Finally, we select N ∈ R
I1×I2×I3 according to the standard normal distribution,

i.e., N := randn(I1,I2,I3) in Matlab, and define

Aσ :=
A

‖A‖ + σ
N

‖N‖ (9)

for some real value of the parameter σ which controls the noise level on the BTD.
Now, we describe the test itself. For 100 different Aσ as in (9), we ran the

Riemannian gradient algorithm with variable projection (i.e., on the cost func-
tion gAσ

) and without variable projection (i.e., on the cost function fAσ
) using

for each Aσ a randomly selected starting iterate. Representative results are given
in Table 1 for σ := 0 and σ := 0.3, which corresponds to a signal-to-noise ratio
of about 10 dB, both for (I1, I2, I3) := (5, 5, 5) and (R1, R2, R3) := (2, 2, 2).2

The success ratios are not equal to one because the number of iterations
that can be performed by the algorithm was (arbitrarily) limited to 104. When
variable projection is used, on one hand, the mean running time is multiplied by
about 0.86 for σ := 0 and 0.78 for σ := 0.3, and on the other hand, the success
ratio is multiplied by about 0.89 for both σ := 0 and σ := 0.3.

The same test with (I1, I2, I3) := (10, 10, 10) and (R1, R2, R3) := (2, 2, 3),
still with σ := 0 and σ := 0.3, has been conducted.3 For both values of σ, we
observed that variable projection multiplies the running time by about 1.1 on
one hand, and multiplies the success ratio by about 1.4 on the other hand.

2 The Matlab code that produced the results is available at https://sites.uclouvain.
be/absil/2018.01.

3 With these parameters, the BTD A in (8) is essentially unique by [6, Theorem 5.3].

https://sites.uclouvain.be/absil/2018.01
https://sites.uclouvain.be/absil/2018.01
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Table 1. By “success”, we mean for σ = 0 that the norm of the (Riemannian) gradient
is brought below 5·10−14 and that the objective function is brought below 10−25 within
104 iterations; for σ = 0.3, we mean that the norm of the gradient is brought below 10−7

still within 104 iterations; the algorithm was not able to bring the norm of the gradient
as low as in the noise-free case. Notation: “iter” refers to the number of iterations
performed by the gradient algorithm while “backtracking iter” refers to the number
of iterations performed in the backtracking loops. Running times are given in seconds.
The information in each column is computed based only on the successful runs.

σ := 0 σ := 0.3

With VP Without VP With VP Without VP

successes 39 44 41 46

min(iter) 2047 2069 995 891

mean(iter) 5644 5966 4119 4740

max(iter) 9509 9960 9498 9958

mean(backtracking iter) 1 1 1.004 1

min(time) 2.11 2.36 1.05 1.02

mean(time) 5.85 6.83 4.25 5.44

max(time) 9.79 11.35 9.77 11.35

6 Conclusion

In this paper, we applied variable projection to the BTD problem and discussed
its effect on the Riemannian gradient algorithm. Our numerical experiments
showed that variable projection may either increase or decrease the running
time and/or the reliability of the algorithm depending on the particular data
tensor considered.
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Abstract. We study optimization methods for solving the maximum
likelihood formulation of independent component analysis (ICA). We
consider both the problem constrained to white signals and the uncon-
strained problem. The Hessian of the objective function is costly to com-
pute, which renders Newton’s method impractical for large data sets.
Many algorithms proposed in the literature can be rewritten as quasi-
Newton methods, for which the Hessian approximation is cheap to com-
pute. These algorithms are very fast on simulated data where the linear
mixture assumption really holds. However, on real signals, we observe
that their rate of convergence can be severely impaired. In this paper,
we investigate the origins of this behavior, and show that the recently
proposed Preconditioned ICA for Real Data (Picard) algorithm over-
comes this issue on both constrained and unconstrained problems.

Keywords: Independent component analysis
Maximum likelihood estimation · Preconditioning · Optimization

1 Introduction

Linear Independent Component Analysis (ICA) [1] is an unsupervised data
exploration technique, which models the set of observed signals as a linear instan-
taneous mixture of independent sources. Several methods have been proposed
in the literature for recovering the sources and mixing matrix. When formu-
lated as a maximum likelihood estimation task, ICA becomes an optimization
problem where the negative log-likelihood has to be minimized. ICA may con-
stitute a bottleneck in practical data processing pipelines, for example due to
very long signals, high number of sources or bootstrapping techniques [2]. It is
hence crucial to maximize the likelihood as quickly as possible.

Several approaches are found in the literature. Infomax [3] can be seen as
a stochastic gradient descent [4]. Several second order methods have also been
proposed. In [5], the author propose a quasi-Newton method dubbed “Fast Rel-
ative Newton” method, which we will refer to as “FR-Newton” in the following.
In [6], a trust-region technique is used. AMICA [7] also uses a quasi-Newton
approach. Although it is formulated as a fixed point algorithm, FastICA [8] is a
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 151–160, 2018.
https://doi.org/10.1007/978-3-319-93764-9_15
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maximum likelihood estimator under whiteness constraint of the signals [9], and
also behaves like a quasi-Newton method close to convergence [10].

The aforementioned algorithms all share the following property: the Hessian
approximation that they use (implicitly or explicitly) stems from the expression
that the true Hessian takes when the problem is solved, i.e. when the signals are
truly independent. Unfortunately, in most practical cases, the assumption that
the observed signals are a mixture of independent signals is false to some extent.
There might be fewer/more sources than observed signals, the sources might not
be i.i.d. or stationary, they might be partially correlated, or there might be some
convolutive mixture.

In the following, we demonstrate that this can lead to large differences
between the true Hessian and its approximations, often leading to slow con-
vergence on real data. We then show that the recently proposed Preconditioned
ICA for Real Data (Picard) algorithm [10,11] overcomes this problem and is able
to build a better Hessian approximation.

This article is organized as follows. In Sect. 2, we recall the maximum like-
lihood formulation of ICA, study the objective function, and derive a classical
Hessian approximation. In Sect. 3, we give some classical results about quasi-
Newton algorithms, and show how the convergence speed is linked with the
distance between the true Hessian and the approximation. Section 4 contains
a brief description of the Picard algorithm. Finally, we illustrate the previous
result with experiments in Sect. 5. We show that Picard builds a much better
Hessian approximation that those used in previous algorithms. Through exten-
sive experiments, we show that this leads indeed to faster convergence.

Notation. The mean of a time-indexed sequence x(t)t=1··T is noted Ê[x(t)] �
1
T

∑T
t=1 x(t), and its expectation is noted E[x]. When M is a square N × N

matrix, exp(M) denotes its matrix exponential, defined as exp(M) �
∑∞

n=0
Mn

n! .
For two N × N matrices M and M ′, we use the Frobenius scalar product:
〈M |M ′〉 �

∑
i,j MijM

′
ij . We denote by ||M || �

√〈M |M〉 the associated norm.
For a fourth order tensor H of size N×N×N×N , the scalar product with respect
to H is defined as 〈M |H|M ′〉 �

∑
i,j,k,l HijklMijM

′
kl. The spectrum Sp(B) of a

linear symmetric operator B is the set of its eigenvalues. The Kronecker symbol
δij is equal to 1 when i = j and to 0 otherwise.

2 Maximum-Likelihood ICA

In this section, we derive the maximum-likelihood formulation of ICA, and study
the underlying objective function.

2.1 Objective Function

One observes N temporal signals x1(t), · · · , xN (t) of T samples each. The signal
matrix is X = [x1(t), · · · , xN (t)]� ∈ R

N×T .
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For the rest of this article, we assume without loss of generality that X
is white, i.e. the covariance C � 1

T XX� = IN . This can be enforced by a
preprocessing whitening step: multiplying X by a square root inverse of C.

The linear ICA model considered here is the following [1]: there are N sta-
tistically independent and identically distributed signals, s1(t), · · · , sN (t), which
are noted as S ∈ R

N×T in matrix form, and an invertible matrix A ∈ R
N×N

such that X = AS. The si are referred to as sources, and A is called the mixing
matrix. The aim is to estimate A and S given X. In the following, pi denotes
the probability density function (p.d.f.) of the i-th source si.

The likelihood of A writes [12]:

p(X|A) =
T∏

t=1

1
|det(A)|

N∏

i=1

pi([A−1X]it). (1)

It is more practical to work with the averaged negative log-likelihood, and the
variable W = A−1 called the unmixing matrix. In the following, Y � WX
denotes the current estimated sources. We define L(W ) � − 1

T log(p(X|W−1)).
It writes:

L(W ) = − log|det W | +
N∑

i=1

Ê[− log(pi(Yit))], (2)

where Ê denotes the time-averaging operation. FastICA attempts to minimize
L(W ) under whiteness constraint WW� = IN .

2.2 Relative Gradient and Hessian

To study the variations of L, it is convenient to work in a relative framework [13],
where the gradient G and Hessian H are given by the Taylor expansion of
L(exp(E)W ) where E is a small N × N matrix. G and H are implicitly defined
by the equation:

L(exp(E)W ) = L(W ) + 〈G|E〉 +
1
2
〈E|H|E〉 + O(||E||3). (3)

G is a square N × N matrix, and H is a linear operator from matrices
to matrices, which can be seen as a N × N × N × N tensor. In the following,
ψi � −p′

i

pi
is referred to as the score function. Simple computations yield (see [10]

for details):
G(W )ij = Ê[ψi(yi)yj ] − δij for 1 ≤ i, j ≤ N (4)

H(W )ijkl = δilδjkÊ[ψi(yi)yi] + δik Ê[ψ′
i(yi)yjyl] for 1 ≤ i, j, k, l ≤ N (5)

The Hessian is sparse since it has of the order of N3 non-zero coefficients. Still,
its evaluation requires computing O(N3) sample averages Ê[ψ′

i(yi)yjyl], making
the standard Newton’s method impractical for large data sets.
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Algorithm 1. Quasi-Newton method for likelihood optimization
input : Set of white mixed signals X, boolean “whiteness constraint”
Set W = IN ;
Set Y = X ;
repeat

Compute the gradient G using (4);
if whiteness constraint then

Project G on the antisymmetric matrices: G ← 1
2
(G − G�);

end

Compute a Hessian approximation Ĥ ;

Compute the search direction D = −Ĥ−1G ;
if whiteness constraint then

Project D on the antisymmetric matrices: D ← 1
2
(D − D�);

end
Compute the step size α = arg minα L(exp(αD)W ) using line-search ;
Set W ← exp(αD)W ;
Set Y = WX ;

output: Unmixing matrix W , unmixed signals Y .

2.3 The Hessian Approximation

If the signals (y1(t), · · · , yN (t)) are independent, then E[ψ′
i(yi)yjyl] =

δjlE[ψ′
i(yi)y2

j ]. A natural approximation of H is then:

H̃(W )ijkl = δilδjkÊ[ψi(yi)yi] + δikδjl Ê[ψ′
i(yi)y2

j ]. (6)

This approximation matches the true Hessian if the number of samples
goes to infinity and the (yi) are independent. If the linear ICA model
holds, i.e. if there exists independent signals S and a mixing matrix A such that
X = AS, then, for W ∗ = A−1, H̃(W ∗) = H(W ∗) + O( 1√

T
). As the number of

samples is generally large, the approximation is very good in that case.
However, in a practical case, ICA is performed on real data for which the

ICA model does not hold exactly. In that case, even for W ∗ = arg min L(W ),
one does not necessarily have E[ψ′

i(yi)yjyl] = δjlE[ψ′
i(yi)y2

j ], and H̃(W ∗) may
be quite far from H(W ∗).

3 Speed of Convergence of Quasi-Newton Methods

In the following, we consider a general relative quasi-Newton method to minimize
L, described in Algorithm 1. It takes as input the set of mixed signals X, which
are assumed white for simplicity, and a boolean “whiteness constraint” which
determines if the algorithm works under whiteness constraint. Note that the
policy to compute the approximation Ĥ is not specified: one could use Ĥ = H̃,
but other choices are possible. To keep the analysis simple, we assume that the
line-search is perfect, i.e. that the objective function is always minimized in the
search direction.
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3.1 Theoretical Results

Let us recall some results on the convergence speed of such method. These results
mostly come from Numerical Optimization [14], Chap. 3.3.

First, the following theorem shows that under mild assumptions, the sequence
of unmixing matrices produced by Algorithm 1 converges to a local minimum
of L.

Theorem 1. Assume that the sequence of Hessian approximations Ĥ used in
Algorithm 1 is positive definite, of spectrum lower bounded by some constant
λmin > 0. Then, the sequence of unmixing matrices generated by the algorithm
converges towards a matrix W ∗ such that G(W ∗) = 0 and H(W ∗) is positive
definite.

This theorem is a direct consequence of Zoutendijk’s result (see [14], Theorem
3.2). Interestingly, it implies that the algorithm cannot converge to a saddle point
(where H(W ∗) is not positive), but only towards local minima, as guaranteed
for gradient based methods.

Quasi-Newton methods typically aim at finding a direction close to Newton’s
direction −H−1G, and ideally have the same quadratic convergence rate. By
Theorem 3.6 in [14], this happens if and only if at convergence, the Hessian
approximation matches the true Hessian in the search direction. As we have
seen before, even when the ICA model holds, the simple approximation H̃ only
matches asymptotically the true Hessian, meaning that the above theorem never
practically applies. Thus, the convergence of Algorithm 1 can only be linear. The
following algorithm gives the rate of convergence.

Theorem 2. Assume that the condition of Theorem 1 holds. Assume that the
sequence of approximate Hessians Ĥ converges towards Ĥ∗. Let λm (resp. λM ) be

the smallest (resp. largest) eigenvalue of Ĥ∗− 1
2 HĤ∗− 1

2 and define the condition
number:

κ � λM

λm
. (7)

Then, for all r < 1
κ and n large enough, the sequence Wn of unmixing matrices

produced by Algorithm 1 satisfies L(Wn+1)−L(W ∗) ≤ (1− r)[L(Wn)−L(W ∗)].

We now give a brief sketch of proof.

Proof. For simplicity, the proof is made in a non-relative framework, where
the update rule is Wn+1 = Wn − αĤ−1

n ∇L(Wn). First, we make the use-

ful change of variable Un = Ĥ∗
1
2 Wn, and define the new objective function

L(Un) = L(Ĥ∗− 1
2 Un). Simple computations show that Un verifies Un+1 =

Un − αBn∇L(Un), where Bn � Ĥ∗
1
2 Ĥ−1

n Ĥ∗
1
2 . This sequence tends towards

identity, meaning that the behavior of Un is asymptotically the same as a gra-

dient descent. One has ∇2L(U) = Ĥ∗− 1
2 [∇2L(W )]Ĥ∗− 1

2 .
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Let ε > 0 be a small number. Since Sp(Bn) → {1} and Sp(∇2L(Un) ⊂
[λm, λM ] as n goes to infinity, for n large enough we have that Sp(Bn) ⊂ [1 −
ε, 1+ε] and Sp(∇2L(Un)) ⊂ [(1−ε)λm, (1+ε)λM ]. This means that the iterates
Un are in a set where L is (1 + ε)λM−smooth and (1 − ε)λm−strongly convex.
The smoothness implies the following convexity inequality:

L(V ) ≤ L(U) + 〈∇L(U)|V − U〉 +
(1 + ε)λM

2
||U − V ||2 (8)

and the strong convexity enforces the Polyak-Lojasiewicz conditions [15]:

1
2
||∇f(U)||2 ≥ (1 − ε)λm[L(U) − L(U∗)] (9)

Let β be a positive scalar. For an exact line-search, we have L(Un+1) ≤
L(Un−βBn∇L(Un)). Using U = Un and V = Un−βBn∇L(Un) in inequality (8),
we obtain:

L(Un+1) − L(Un) ≤ −β〈∇L(Un)|Bn∇L(Un)〉 + β2 (1 + ε)λM

2
||Bn∇L(Un)||2

(10)
The condition on the spectrum of Bn implies 〈∇L(Un)|Bn∇L(Un)〉 ≥ (1 −
ε)||∇L(Un)||2 and ||Bn∇L(Un)||2 ≤ (1 + ε)2||∇L(Un)||2. Replacing in Eq. (10)
yields:

L(Un+1) − L(Un) ≤
(

−β(1 − ε) + β2 (1 + ε)3λM

2

)

||∇L(Un)||2 (11)

This holds for any β, in particular for β = 1−ε
(1+ε)3λM

(which minimizes the scalar
factor in front of ||∇L(Un)||2). We obtain:

L(Un+1) − L(Un) ≤ − (1 − ε)2

2(1 + ε)3λM
||∇L(Un)||2 (12)

Using Eq. (9) then gives:

L(Un+1) − L(Un) ≤ − (1 − ε)3λm

(1 + ε)3λM
[L(Un) − L(U∗)] (13)

Rearranging the terms, we obtain the desired result for r = (1−ε
1+ε )3 1

κ .

3.2 Link with Maximum Likelihood ICA

There are many ICA algorithms closely related to the minimization of L and sim-
ilar to Algorithm 1. For instance, Infomax is a stochastic version of Algorithm 1
without whiteness constraint and with Ĥ = Id. In [5], the author proposes to
use Ĥ = H̃ in Algorithm 1, without the whiteness constraint. The algorithm is
denoted as “Fast Relative Newton method”, or FR-Newton for short. The same
approach is used in AMICA [7]. In [10], it is shown that close to convergence,
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FastICA’s iterations are similar to those of Algorithm 1 with the whiteness con-
straint, and where the Hessian approximation has the same properties as H̃: it
coincides asymptotically with H when the underlying signals (yi) are indepen-
dent, but may differ otherwise. Thus, the previous results apply for a wide range
of popular ICA methods.

4 Preconditioned ICA for Real Data

Let us now introduce the Preconditioned ICA for Real Data (Picard) algorithm,
which finds a better Hessian approximation than H̃. The algorithm is an adap-
tation of the L-BFGS algorithm [16]. It has a memory of size m which stores
the m previous iterates W and gradients G. From these values, it recursively
builds a Hessian approximation starting from H̃. In the following, HP denotes
that approximation. It does so in an uninformed fashion, without any prior on
the local geometry. L-BFGS has been shown to perform well on a wide variety
of problems. Here, we have the advantage of having H̃ as a good initialization
for the approximate Hessian. Another asset of this method is that the Hes-
sian approximation never has to be computed, because there is an efficient way
of computing the direction −H−1

P G. Picard can handle both constrained and
unconstrained problems. For further details for the practical implementation,
see [10,11].

Python and Matlab/Octave code for Picard is available online.1

5 Experiments

5.1 Comparison of the Condition Numbers

In this section, we show how close the Hessian approximations H̃ and HP are to
H on simulated and real data. We consider two different datasets X of N = 8

Fig. 1. A measure of the closeness of the approximate Hessians to the true Hessian at

the maximum likelihood: sorted spectrum of Ĥ− 1
2 HĤ− 1

2 . Left: simulated data where
the ICA model holds. Right: real data. On the simulated data, we find κ = 1.2 for
both Ĥ = H̃ and Ĥ = HP . For that example on real data, we find κ = 29 for H̃ and a
significantly smaller κ = 2.6 for HP .

1 https://github.com/pierreablin/picard.

https://github.com/pierreablin/picard
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signals of length T = 20000. The first one is obtained by simulating a source
matrix S of independent signals, and a random mixing matrix A. We take X =
AS. For that dataset, the linear ICA model holds by construction. The second
one is obtained by extracting 20000 square patches of size (8, 8) from a natural
image. PCA is then applied to reduce to 8 the number of signals.

First, we find a local minimum W ∗ of L(W ) by running one of the algorithms
on this dataset. Then, the simple approximation H̃(W ∗), the Picard approxi-
mation HP (W ∗) and the true Hessian H(W ∗) are computed. As explained by
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Genomics, 10 runs EEG, 130 runs Images, 300 runs

Fig. 2. Convergence speed of several ICA algorithms on 3 real data sets. Each column
corresponds to a type of data. The first two rows correspond to the unconstrained
algorithms, the last two to the constrained algorithms. The first row of each pair dis-
plays the evolution of gradient across iterations, the second one displays the evolution
of gradient against time. Bold lines correspond to the medians of the gradient norms,
and the shading displays the 10–90%.
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theorem 2, what drives the convergence speed of the algorithms is the spectrum
of Ĥ− 1

2 HĤ− 1
2 where Ĥ is the approximation. Figure 1 displays these spectrum

for the two datasets.
We observe that HP and H̃ are very similar on the simulated dataset, and

that the resulting condition numbers are close to 1, which explains the fast
convergence of the two algorithms. On the real dataset, the results are different:
the spectrum obtained with HP is flatter than the one obtained with H̃, which
means that Picard builds a Hessian approximation which is significantly better
than H̃.

5.2 Convergence Speed on Real Datasets

We now compare the convergence speed of Picard/Picard-O with FR-Newton
from [5] and FastICA [9] on three types of data on which ICA is widely used.

The first is a cancer genomics dataset generated by the TCGA Research
Network: http://cancergenome.nih.gov, of initial size N 
 2000 and T 
 20000
for which the dimension has been reduced to N = 60 by PCA. The second
consists of 13 EEG recordings datasets [17] of size N = 71 and T 
 300000.
The last one is 30 datasets of T = 20000 extracted image patches of size (8, 8),
flattened to obtain N = 64 signals. We run the aforementioned algorithms 10
times on each datasets. We keep track of the evolution of the gradient norm across
iterations and time. Figure 2 displays the median and 10–90% of the trajectories.

As expected regarding the previous results on the Hessian spectrum, Picard
and Picard-O converge faster than their counterparts relying purely on H̃ as
Hessian approximation.

6 Conclusion

This article considers quasi-Newton methods for maximum likelihood ICA using
approximated Hessian matrices. We argue that while the standard Hessian
approximation works very well on simulated data, it differs a lot from the true
Hessian on most applied problems. As a consequence, quasi-Newton algorithms
which model the curvature of the objective function with such an approximation
can have poor convergence rates. We advocate the L-BFGS method to refine ‘on
the fly’ the approximation of the Hessian. This is supported by experiments on 3
types of real signals which clearly demonstrate that this approach leads to faster
convergence.
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zbynek.koldovsky@tul.cz
2 The Czech Academy of Sciences, Institute of Information Theory and Automation,
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Abstract. We propose a new algorithm for Independent Component
Extraction that extracts one non-Gaussian component and is capable to
exploit the non-Gaussianity of background signals without decompos-
ing them into independent components. The algorithm is suitable for
situations when the signal to be extracted is determined through initial-
ization; it shows an extra stable convergence when the target component
is dominant. In simulations, the proposed method is compared with Nat-
ural Gradient and One-unit FastICA, and it yields improved results in
terms of the Signal-to-Interference ratio and the number of successful
extractions.
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1 Introduction

The Blind Source Extraction (BSE) problem where the goal is to extract one
particular component from a linear mixture

x = Au, (1)

has been a live topic for decades, also before the birth of Independent Component
Analysis (ICA) [3,4,7]. In the mixture, u and x are d × 1 vectors, respectively,
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of d original and mixed signals, and A is a d × d non-singular mixing matrix.
The components of u are assumed to be mutually independent. Let, without any
loss of generality, the desired component be u1, which will be referred to as SOI
(the source of interest); the other signals will be briefly called background.

By information theory, it is possible to extract an independent compo-
nent through finding a direction having minimum entropy (maximum non-
Gaussianity). However, methods extracting one non-Gaussian independent com-
ponent in this way (from here referred to as “one-unit” methods) are known
to have a limited asymptotic accuracy compared to methods performing the
whole ICA decomposition of (1). Performance analyses of several one-unit meth-
ods showed that they perform as if background components were all Gaussian
[5,12,14].

Specifically, let W be an unbiased estimate of A−1 (a de-mixing matrix)
up to the order and scales of its rows, and G = WA ≈ PΛ, where P and Λ
is, respectively, a permutation and a diagonal matrix. The Cramér-Rao bound
(CRLB) for ICA says that [14,15]

E[G2
ij ] ≥ 1

N

κj

κiκj − 1
, i �= j, (2)

where E[·] stands for the expectation operator, N is the number of samples of
x (assuming identically and independently distributed samples), and κi = E[ψ2

i ]
where ψi(x) = −∂/∂x log pi(x), which is the score function of pi where pi is the
pdf of the ith original signal ui.

For normalized variables with unit variance it holds that κi ≥ 1 where κi = 1
if and only if the ith pdf is Gaussian. Let w be the first row of W corresponding
to the extracted SOI, and let u have all unit variance. The asymptotic accuracy
(for N → +∞) of one-unit methods (when the true score function is used in the
algorithm’s contrast function) was shown to be characterized by [5,12,14]

E[g2j ] ≈ 1
N

1
κ1 − 1

, j �= 1, (3)

where g = wTA. The right-hand side coincides with the CRLB in (2) for i = 1
when κj = 1 for j = 2, . . . , d, which is the case when u2, . . . , ud are Gaussian
(for which case the CRLB (2) formally does not exist unless d = 2).

Recently, we have revised the BSE problem through Independent Component
Extraction (ICE) [10,11]. Here, the mixing model (1) is re-parameterized for the
extraction of the SOI in the way that the rest of the mixture is not object of
any particular decomposition, as compared to ICA. In the statistical model,
s is assumed to be non-Gaussian while the other components are assumed to
be Gaussian. Under these conditions, the CRLB for ICE has been confirmed to
correspond to the right-hand side of (3); see [8]. In [10], orthogonally-constrained
gradient learning algorithms for ICE have been proposed based on the maximum
likelihood principle.1 An appealing property of these algorithms resides in their
1 A particular variant of these algorithms (OGICEw) coincides with a method pro-
posed earlier by Pham in [12], which was derived based on a simplified form of
mutual information that is valid for Gaussian background.
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ability to keep converging to the desired source, e.g., to a dominant SOI. Using
methods that guarantee the extraction of the SOI with a high probability, the
complete ICA decomposition and the subsequent component selection due to the
random order can be avoided, which brings significant computational savings.

In this paper, our goal is to overcome the accuracy limitation given by (3). We
derive a new gradient ICE algorithm using the maximum likelihood approach.
The method takes into account possible non-Gaussianity of background. For
simplicity, real-valued mixing scenario and signals will be considered, although
a complex-valued extension is possible.

The rest of this paper is organized as follows. The ICE mixing model and the
statistical model of signals are described in Sect. 2. In Sect. 3, the novel algorithm
is proposed and described in details. Section 4 is devoted to simulations and
comparisons, and Sect. 5 concludes the paper.

Notation: Plain letters denote scalars; bold letters denote vectors; bold capital
letters denote matrices. The Matlab convention for matrix/vector concatenation
and indexing will be used, e.g., [1; g] = [1, gT ]T , and (A)j,: is the jth row of
A. Symbolic scalar and vector random variables will be denoted by lower case
letters, e.g. s and x, z, while the quantities collecting their N samples will be
denoted by bold (capital) letters, e.g. s (a row vector 1×N) and X, Z. Estimated
values of signals will be denoted by hat, e.g., ŝ, ̂Z.

2 Problem Formulation

2.1 Algebraic Mixing Model

Let the SOI be s = u1 and a be the first column of A, so A can be partitioned
as A = [a, A2]. Then, x can be written as

x = as + y, (4)

where y = A2u2 and u2 = [u2, . . . , ud]T . The fact that y = A2u2 means that
the mixture consists of the same number of sources as that of input channels.

Let the new parameterization of the mixing matrix and of its inverse matrix
be denoted by AICE and WICE, respectively. In ICE, the identification of A2 or
the decomposition of y into independent signals u2 is not the goal. Therefore, we
assume that AICE = [a, Q] where Q is, for now, arbitrary with full column-rank.
Then, (4) can be written as

x = AICEv, (5)

where v = [s; z], and y = Qz. Hence, the subspace spanned by z is the same
as that of u2. To complete the mixing matrix definition, we look at the inverse
matrix WICE = A−1

ICE.
Let a and WICE be partitioned, respectively, as a = [γ;g] and WICE =

[wT ; B]. B is required to be orthogonal to a, i.e. Ba = 0, which ensures that
Bx do not contain any contribution of s. A useful selection is B = [g,−γId−1]
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where Id denotes the d × d identity matrix. Let w be partitioned as w = [β;h].
Then,

WICE =
(

wT

B

)

=
(

β hT

g −γId−1

)

, (6)

and from AICE · WICE = Id it follows that

AICE = [a, Q] =
(

γ hT

g
(

ghT − Id−1

)

γ−1

)

, (7)

where β and γ are linked through

βγ = 1 − hTg. (8)

The latter equation can be also written in the form wTa = 1, which corre-
sponds to the distortionless response constraint [16]. The role of a, as follows
from (4), is the mixing vector related to s, while w is the separating vector as
s = wTx. For the background signal z, it holds that z = Bx = By = BA2u2.

Similarly to the indeterminacies in ICA, the scales of s and of a are ambiguous
in the sense that they can be replaced, respectively, by αs and α−1a where
α �= 0. The scaling ambiguity can be avoided by fixing β or γ. Next, the role of
s = u1 can be interchanged with ui, for any i = 2, . . . , d. This is the permutation
problem [13].

In this paper, we assume that an initial guess of a or of w is given, which
determines the SOI. The initial value is typically deviated by an estimation
error, which increases the probability that the given algorithm finally extracts a
different source than the SOI. In experiments (Sect. 4), we therefore conduct a
sensitivity analysis, which compares the size of the attraction area of different
BSE algorithms.

2.2 Statistical Model

The main principle of ICE is the same as that of ICA. We take the assumption
that s and z are independent, so the goal is to find a and w such that wTx and
Bx are independent (or as independent as possible).

Let the pdf of s and of z be, respectively, ps(s) and pz(z). The joint pdf of
the mixed signals x = AICEv is

px(x) = ps(wTx) · pz(Bx) · |detWICE| (9)

where it can be shown that

detWICE = (−1)d−1γd−2 = (−1)d−1β−(d−2)(1 − hTg)d−2. (10)

Since the background signals remain unmixed after ICE (up to special cases
such as d = 2), we proposed in [10,11] to model the unknown pz as Gaussian
with zero mean and covariance Cz. In this paper, we generalize the background
model to arbitrary (non-)Gaussian pdf. Thus, the unknown densities ps(s) and
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pz(z) are replaced, respectively, by model densities f(s) and q(z). The quasi-
loglikelihood function for N i.i.d. signal samples, according to (9), takes the
form

L(a,w) =
1
N

N
∑

n=1

{

log f(wTx(n)) + log q(Bx(n))
}

+ (d − 2) log |γ|. (11)

Orthogonal Constraint. The first term on the right-hand side of (11) depends
purely on w, while the second and the third terms depend purely on a. The only
link between a and w thus resides in (8). Therefore, the likelihood function can
have spurious maxima where a and w do not correspond to the same source.

To make the interconnection between a and w tighter, the orthogonal con-
straint (OG) can be imposed [2]. Let WICE be a current ICE de-mixing matrix
estimate having the structure of (6), and ̂V = [̂s; ̂Z] = WICEX be the estimated
matrix of de-mixed signal samples. The OG reads

1
N

ŝ · ̂ZT =
1
N

wTXXTBT = wT
̂CxBT = 0, (12)

where ̂Cx = XXT /N is the sample-based estimate of Cx = E[xxT ]. The reader
can verify that the OG together with (8) introduce the following links between
a and w:

a =
̂Cxw

wT ̂Cxw
, (13a) w =

̂Cx

−1
a

aT ̂Cx

−1
a

. (13b)

In this paper, we will consider the former coupling, that is, w will be the free
variable while a will be treated as dependent.

3 Gradient-Based Algorithm

3.1 Gradient of the Contrast Function

The gradient of L with respect to w under the coupling (13a), is

∂L
∂w

∣

∣

∣

∣

w.r.t. (13a)

= − 1
N

X̂φ
T

+
1
N

̂Cx

wT ̂Cxw

(

tr(EX̂Ψ ) + (d − 2)Nγ−1

−̂ΨXTe1

)

+2a
(

1
N

tr(̂Ψ
T

̂Z) − (d − 2)
)

, (14)

where tr(·) denotes the trace, E = [0, Id−1], e1 denotes the first column of Id,
̂φ = φ(ŝ), and ̂Ψ = ψ(̂Z), where

φ(ξ) = −∂ log f(ξ)
∂ξ

and ψi(z) = −∂ log q(z)
∂zi

, ψ(z) = [ψ1(z), . . . , ψd−1(z)]T ,

(15)
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are the score function of the model pdfs f(·) and q(·), respectively, which are
applied element/column-wise in case of the vector/matrix argument. We skip
details of the lengthy computation of (14) here due to the lack of space.

By exploring this gradient when N → +∞ and when w is the ideal separating
vector, that is, when wTx = s and Bx = z, an important fact can be shown:
The ideal separating vector is a stationary point of the contrast function (the
gradient is zero) only if φ and ψ satisfy E[sφ(s)] = 1 and E[zψ(z)T ] = Id−1,
respectively. Both conditions are automatically satisfied when φ and ψ are the
true score functions of the respective variables. However, since these are not
known in the blind scenario, we introduce the following normalizing conditions:
For any estimates of a and w, let

ŝ̂φ
T

= N and ̂ẐΨ
T

= NId−1. (16)

With these conditions and after few computations, (14) simplifies to

∂L
∂w

∣

∣

∣

∣

w.r.t. (13a)

= a − 1
N

X̂φ
T

+
1

wT ̂Cxw
̂CxBTp, (17)

where p = ̂Ψ ŝT /N .
A practical way to select φ and ψ meeting the conditions in (16) is by taking

some appropriate prototype functions φ1 and ψ1 instead. Then, the normaliza-
tion can be done through defining

̂φ = N(ŝ̂φ
T

1 )−1
̂φ1 and ̂Ψ = R−1

̂Ψ1, (18)

where R = ̂ẐΨ
T

1 /N , ̂φ1 = φ1(ŝ), and ̂Ψ1 = ψ1(̂Z).
A special case that is worth to mention at this point is when the background

signals z are Gaussian, i.e., z ∼ N (0,Cz). The covariance Cz is an unknown
nuisance parameter, which must be replaced by the sample-based covariance of
̂Z, that is, by ̂Cz = ̂ẐZT /N . It means that the model density q(·) corresponds to
N (0, ̂Cz), whose score function is ψ(z) = ̂C−1

z z. Then, ̂Ψ = ̂C−1
z

̂Z, R = Id−1,
and p = ̂Ψ ŝT /N = ̂C−1

z
̂ZŝT /N = 0 due to the OG (12). Consequently, the third

term on the right-hand side of (17) is zero, and the gradient simplifies to

∂L
∂w

∣

∣

∣

∣

w.r.t. (13a)

= a − 1
N

X̂φ
T
. (19)

This result coincides with those derived in [10,12] under the Gaussian assump-
tion.

The third term on the right-hand side of (17) can be seen as a correction
term due to the non-Gaussianity of z, as p consists of higher-order correlations
between ŝ and ̂Z, unless ψ is purely linear.

3.2 Proposed Algorithm

We propose a gradient-based algorithm whose steps are described in Algorithm 1.
In every step, the OG is imposed through (13a), the normalization steps given
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by (18) are done, and the method updates w in the direction of the steepest
ascent of L. This is repeated until the norm of the gradient is smaller than tol;
μ is the step length parameter; wini is the initial guess. We call this method
OGICENGB.

Algorithm 1. OGICENGB: separating vector estimation based on orthog-
onally constrained gradient-ascent algorithm
Input: X, wini, μ, tol, φ(·), ψ(·)
Output: a,w

1 ̂Cx = XXT /N ;
2 w = wini;
3 repeat

4 λw ← (wT
̂Cxw)−1;

5 a ← λw
̂Cxw; /* OG constraint (13a) */

6 B = [a2:d, −a1Id−1]; /* by (6) */

7 ŝ ← wTX; /* current SOI estimate */

8 ̂Z ← BX; /* current background estimate */

9 ν ← ŝφ(ŝ)T /N ; /* normalizing constant from (18) */

10 T ← Xψ(̂Z)T /N ; /* auxiliary matrix due to (18) */

11 p = (BT)−1TTw; /* by the definition of p */

12 Δ ← a − ν−1Xφ(ŝ)T /N + λ−1
w

̂CxB
Tp; /* by (17) */

13 w ← w + μΔ; /* gradient ascent */

14 until ‖Δ‖ < tol;

4 Simulations

We compare OGICENGB with its special variant OGICE (assuming Gaussian
background) [10,12], with One-unit FastICA (FICA) from [6], and with the Nat-
ural Gradient algorithm (NG) for ICA [1]. In one trial, an instantaneous mixture
of d = 10 signals is generated according to (1), and the SOI is extracted and
evaluated in terms of Signal-to-Interference Ratio (SIR). The SOI u1 as well as
u2, . . . , ud are drawn from the Laplacean distribution. The scales of the com-
ponents are selected so that SIRin = (d − 1)E[|u1|2](

∑d
i=2 E[|ui|2])−1 is 10 dB.

The elements of mixing matrices are drawn uniformly from [1, 2], which ensures
approximately equal SIR across all channels. The improvement of SIR (SIRimp)
is defined as the ratio between the average SIR on channels and the output SIR
of the extracted source; the extraction is rated as successful if SIRimp > 0 dB.
The percentage of successful trials will be referred to as success rate.

The algorithms are initialized by aini = a + eini, where a is the true mixing
vector, and eini is a random vector with Gaussian entries such that ‖eini‖2 = ε2.
NG is initialized by a de-mixing matrix yielding background subspace that is
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Fig. 1. Success rate and median SIR improvement as functions of ε2 achieved by the
compared algorithms in 100 trials for N = 100 (row 1) and N = 1000 (row 2).

orthogonal to the initial SOI estimate2. To compare, the SOI estimates using
(13b) with the true mixing vector (MPDR oracle) and with a = aini (MPDR ini)
are evaluated, also.

In algorithms, we choose φ(s) = tanh(s), which is a smooth approximation of
sign(x) (the true score function for the Laplacean pdf). For choosing ψ in OGI-
CENGB, we adopt the idea from [9] for modeling dependent variables using the
multivariate super-Gaussian distribution with covariance Cz. Thus, the model
pdf and the corresponding score function are, respectively,

q(z) ∝ exp
{

−
√

zTC−1
z z

}

and ψ(z) = C−1
z z/

√

zTC−1
z z. (20)

2 Note that the separated sources by NG are not reordered after the separation,
because the BSE problem is assumed to be resolved correctly only if the SOI appears
in the assumed output channel.
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Based on this, our final choice of ψ is ψ(z) = ̂C−1
z z/

√

zT ̂C−1
z z where ̂Cz is the

sample-based estimate of Cz, namely, ̂Cz = ̂ẐZT /N = B̂CxBT . The problem
of choosing more appropriate nonlinearities, especially ψ, is beyond the scope of
this paper.

For all algorithms, the maximum number of iterations is 50000; the stopping
criterion is tol = 10−4 for OGICE and OGICENGB, 10−3 for NG and 10−6 for
FICA. The step length μ was set to 0.1; 0.02 in NG; these values were selected
to ensure good performance of the methods.

Figure 1 shows the success rate and median SIRimp achieved in 100 trials
when the number of samples is, respectively, critical (N = 100) and moderate
(N = 1000). A performance bound is given by MPDR oracle, which yields 100%
success rate and 10 dB (resp. 22 dB) of median SIRimp for every ε2.

For N = 100 (row 1 in Fig. 1), NG and FICA fail to improve the initial median
SIR given by MPDR ini. By contrast, OGICE and OGICENGB show higher
success rate and median SIRimp than MPDR ini when ε2 > 0.001. OGICENGB
yields significant improvements compared to OGICE, which points to its ability
to exploit the non-Gaussianity of background.

The median SIRimp for N = 1000 (row 2, column 2 in Fig. 1) shows that the
accuracy of NG and FICA is superior provided that they are initialized in a very
close vicinity of the SOI (ε2 ≤ 0.01). Here, OGICE achieves similar SIRimp to
that of FICA, OGICENGB gives slightly higher SIRimp than OGICE and FICA,
and NG outperforms the other methods. This is in a good agreement with the
theory as NG exploits the nonGaussianity of background through separating all
sources, while OGICENGB performs only a partial separation. For ε2 > 0.1, the
median SIRimp of NG and FICA drops below −20 dB, which means that these
algorithms mostly converge to a different source (in more than 50% of trials).

The ICE methods show superior global convergence (success rate), which is
almost independent of ε2. Other simulations not shown here due to lack of space
confirm that the global convergence of these algorithms is related to the fact
that the SOI is significantly dominant in the mixture. The practical use of this
interesting property will be subject of further investigations.

5 Conclusions and Future Works

We have shown that OGICENGB can achieve higher separation accuracy than
OGICE and One-unit FastICA that assume Gaussian background. The algo-
rithm shows excellent global convergence similarly to OGICE when the SOI is
dominant, also in the scenario with a small number of samples (N = 100).

Open issues are the choice of a more suitable nonlinearity ψ(·), which might
improve the accuracy of OGICENGB, and a faster optimization strategy like that
of FastICA, which could considerably increase the convergence speed. Finally,
the idea of this paper can be extended to the extraction of a vector component
from a set of dependent instantaneous mixtures as an analogy to Independent
Vector Analysis; see [9,10].
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10. Koldovský, Z., Tichavský, P.: Gradient algorithms for complex non-gaussian inde-
pendent component/vector extraction (2018). ArXiv1803.10108
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A New Link Between Joint Blind Source
Separation Using Second Order Statistics

and the Canonical Polyadic
Decomposition
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Abstract. In this paper, we discuss the joint blind source separation
(JBSS) of real-valued Gaussian stationary sources with uncorrelated
samples from a new perspective. We show that the second-order statis-
tics of the observations can be reformulated as a coupled decomposi-
tion of several tensors. The canonical polyadic decomposition (CPD) of
each such tensor, if unique, results in the identification of one or two
mixing matrices. The proposed new formulation implies that standard
algorithms for joint diagonalization and CPD may be used to estimate
the mixing matrices, although only in a sub-optimal manner. We discuss
the uniqueness and identifiability of this new approach. We demonstrate
how the proposed approach can bring new insights on the uniqueness of
JBSS in the presence of underdetermined mixtures.

Keywords: Joint blind source separation
Independent vector analysis · Tensor
Canonical polyadic decomposition · Uniqueness · Identifiability

1 Introduction

In this paper, we present a new type of link between joint blind source separa-
tion (JBSS) [1,2] and the canonical polyadic decomposition (CPD) [3], in the
special case that each of the sources, in each mixture, is a real-valued Gaussian
random process with independent and identically distributed (i.i.d.) samples.
To the best of our knowledge, until now, this link has been shown only when
the data had some additional type of diversity, e.g., nonstationarity or higher-
order statistics (HOS) [4–7]. Our model assumptions, as well as previous related
results, are described in Sect. 2. The new algebraic formulation is introduced
in Sect. 3. In Sect. 4 we discuss the uniqueness of the proposed new formula-
tion. In Sect. 5, we suggest to use this new formulation as an alternative to
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existing JBSS algorithms on the one hand, and to the closed-form solution via
generalized eigenvalue decomposition (GEVD) on the other hand. In Sect. 6 we
demonstrate how the proposed approach leads to new insights and new results
on the identifiability of JBSS in underdetermined cases, beyond existing results
in the literature.

In this paper, scalars, column vectors, matrices, and tensors, are denoted
a, a, A, and A, respectively. The rth entry of a, and the rth column of A, are
denoted ar and ar, respectively. ·� denotes transpose. A−[k], X−[k,l], and A−[k]�

stand for (A[k])−1, (X[k,l])−1, and (A−[k])�, respectively. The outer product is
denoted as ◦, where a ◦ b = ab�, and a ◦ b ◦ c is a third-order array (tensor)
whose (i, j, k)th element is aibjck. Diag{a} is a diagonal matrix with the values
of a on its main diagonal. E{·} denotes expectation. kA denotes the Kruskal rank
of matrix A, which is equal to the largest integer kA such that every subset of
kA columns of A is linearly independent [8].

2 Problem Formulation

In this paper, we consider the JBSS problem in K ≥ 2 mixtures,

x[k] = A[k]s[k] , k = 1, . . . ,K (1)

where the random vector x[k] ∈ R
I[k]×1 represents the observations at I [k] sensors

at the kth mixture. Within each mixture, the R elements of the random vector
s[k] � [s[k]1 , . . . , s

[k]
R ] ∈ R

R×1 are statistically independent. Each random variable
s
[k]
r generates a real-valued Gaussian random process with i.i.d. samples. The K

mixing matrices A[k] � [a[k]
1 | · · · | a[k]

R ] ∈ R
I[k]×R are assumed to be different

from each other.
The kth mixture (sometimes referred to as “dataset”) can be written as a

sum of contributions from R ≥ 2 different sources,

x[k] =
R∑

r=1

a[k]
r s[k]r =

R∑

r=1

x[k]
r . (2)

It is clear that x[k]
r remains invariant if the pair (a[k]

r , s
[k]
r ) is replaced with

(z−1a[k]
r , zs

[k]
r ), for any z �= 0. Therefore, in the absence of additional infor-

mation, only span(a[k]
r ) and x[k]

r may be uniquely identified. Furthermore, the
order of the summands in (2) is immaterial. When the model is subject only to
these trivial ambiguities, we say that it is essentially unique.

In this paper, we focus on JBSS using second-order statistics (SOS). In this
model, the cross-correlation s

[k,l]
rρ between any two sources s

[k]
r and s

[l]
ρ satisfies

s[k,l]
rρ � E{s[k]r s[l]�ρ } =

{
s
[k,l]
rr r = ρ
0 r �= ρ

,
k, l = 1, . . . ,K
r, ρ = 1, . . . , R

(3)
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We assume that each mixture contains R non-zero sources, hence, s
[k,k]
rr �= 0 ∀k.

Furthermore, due to the arbitrary scaling between each source and the column
of the mixing matrix associated with it, we can always choose, without loss of
generality (w.l.o.g.), s

[k,k]
rr �= 1 ∀k. For k �= l, each of s

[k,l]
rr can be zero or non-

zero; s
[k,l]
rr �= 0 can be interpreted as a statistical link (correlation) between the

rth source in the kth and lth datasets. The cross-correlation S[k,l] between s[k]

and s[l] can thus be written as

S[k,l] � E{s[k]s[l]�} = Diag{s
[k,l]
11 , . . . , s

[k,l]
RR } ∈ R

R×R ∀k, l. (4)

In this paper, we assume that all the SOS exist and are finite-valued. Given our
assumptions, the sufficient statistics for the estimation of span(a[k]

r ) and x[k]
r are

the cross-correlation matrices of the observations:

X[k,l] � E{x[k]x[l]�} = A[k]S[k,l]A[l]� =
R∑

r=1

s[k,l]
rr a[k]

r a[l]�
r ∀k, l (5)

where the second equality on the right-hand side (RHS) of (5) is due to (1),
and the last equality is due to (2) and (4). In the statistical JBSS formula-
tion (1), each dataset has its own set of parameters, and the link (coupling)
between datasets is probabilistic, using additional parameters that represent
cross-correlations; in the algebraic formulation in (5), the link between two
cross-correlation matrices X[k,l] and X[k,l′] is deterministic, via a shared mixing
matrix A[k]. These two types of links are sometimes referred to as “soft” versus
“hard”, see [9] and references therein. Equation (5) implies that the statistically-
motivated JBSS can be written algebraically, as a coupled decomposition of the
ensemble of matrices {X[k,l]}K

k,l=1 [2].

2.1 JBSS via GEVD: A Closed-Form Solution for Two Datasets

Given our assumptions, when K = 2 and A[k] are nonsingular (hence, I [k] = R)
for k = 1, 2, the estimates of A[k] can always be obtained algebraically, using
the GEVD [10, Chapter 12.2, Equation (53)] (see also [11, Sec. 4.3]):

X[2,1]X−[1,1]X[1,2]V[1] = X[2,2]V[1]Λ (6a)

X[1,2]X−[2,2]X[2,1]V[2] = X[1,1]V[2]Λ (6b)

where Λ = Diag{λ1, . . . , λR}, and the rth column of V[k] ∈ R
R×R is the gen-

eralized eigenvector associated with the generalized eigenvalue λr. Therefore,
when K = 2, JBSS is identifiable if and only if (iff) this GEVD is unique, that
is, if its generalized eigenvalues are distinct. The resulting estimates of A[k],
A[1]GEVD � V[1]� and A[2]GEVD � V[2]�, exactly diagonalize {X[k,l]}K

k,l=1:

(A[k]GEVD)−1X[k,l](A[l]GEVD)−� ∈ Diag for any k, l = 1, 2 (7)

This solution always exists, and this exact diagonalization can always be
achieved, regardless of any perturbation of the observations with respect to
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(w.r.t.) the ground truth statistics, as long as X[k,l]X−[l,l]X[l,k] and X[k,k] are
Hermitian (symmetric, in the real case) and X[k,k] is positive-definite ∀k, l.

In the presence of K ≥ 3 datasets, the GEVD may be used, for example,
to initialize JBSS algorithms that optimize (5). Our new approach, which will
be explained in Sect. 3, is based on extending the formulation in (6) to K ≥ 2
mixtures.

3 JBSS as a Coupled CPD

Based on the GEVD in (6), we now propose a new algebraic formulation of JBSS
for K ≥ 2 datasets. For any nonsingular A[l] (i.e., of size R × R), and using our
assumption in Sect. 2 that S[k,k] is nonsingular ∀k, we can write

X[k,l]X−[l,l]X[l,m] = A[k]S[k,l]A[l]� · A−[l]�S−[l,l]A−[l] · A[l]S[l,m]A[m]� (8a)

= A[k] S[k,l]S−[l,l]S[l,m]
︸ ︷︷ ︸

diagonal

A[m]� = A[k]C[k,l,m]A[m]� � X[k,l,m] (8b)

The matrix C[k,l,m], introduced in (8b), is diagonal, due to (4):

S[k,l]S−[l,l]S[l,m] = Diag{s
[k,l]
11 s

−[l,l]
11 s

[l,m]
11 , . . . , s

[k,l]
RR s

−[l,l]
RR s

[l,m]
RR } (9a)

= Diag{c
[k,l,m]
1 , . . . , c

[k,l,m]
R } � C[k,l,m] (9b)

where

c[k,l,m]
r � s[k,l]

rr s−[l,l]
rr s[l,m]

rr . (10)

Let L denote the set of indices for which A[k] is nonsingular: L = {k | A[k]

nonsingular}, L ⊆ {1, . . . , K}, L � |L| ≤ K. W.l.o.g., let L = 1, . . . , L. For fixed
k and m, the ensemble {X[k,l,m]}L

l=1 can be written as

X[k,1,m] = A[k]C[k,1,m]A[m]� = a[k]
1 c

[k,1,m]
1 a[m]�

1 + . . . + a[k]
R c

[k,1,m]
R a[m]�

R (11a)
...

...

X[k,L,m] = A[k]C[k,L,m]A[m]� = a[k]
1 c

[k,L,m]
1 a[m]�

1 + . . . + a[k]
R c

[k,L,m]
R a[m]�

R

(11b)

Let

C[k,m] =

⎡

⎢⎢⎣

c
[k,1,m]
1 · · · c

[k,1,m]
R

...
...

c
[k,L,m]
1 · · · c

[k,L,m]
R

⎤

⎥⎥⎦ ∈ R
L×R (12)

and let c[k,m]
r denote the rth column of C[k,m]. Let us stack the L matrices

{X[k,l,m]}L
l=1 in a single 3rd-order tensor X [k,m] ∈ R

I[k]×I[m]×L, whose lth frontal
slice is X[k,l,m]. In this case, (11) can be written as

X [k,m] = a[k]
1 ◦ a[m]

1 ◦ c[k,m]
1 + . . . + a[k]

R ◦ a[m]
R ◦ c[k,m]

R . (13)
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Equation (13) is a decomposition in sum of rank-1 terms of X [k,m]. When R is
minimal, (13) is the CPD of X [k,m], whose three factor matrices are A[k], A[m],
and C[k,m].

We now discuss some degeneracies in this representation. Since
S[k,k]S−[k,k]S[k,m] = S[k,m] = S[k,m]S−[m,m]S[m,m] ∀k,m, we have

C[k,k,m] = C[k,m,m] = S[k,m] ∀k,m (14)

and

X[k,k,m] = X[k,m,m] = A[k]S[k,m]A[m]� = X[k,m] ∀k,m (15)

where the rightmost equality in (15) follows from (5). Therefore, for fixed
k �= m, each of the sequences {C[k,l,m]}K

l=1 and {X[k,l,m]}K
l=1 contains (at most)

(K − 1) distinct matrices, whereas for k = m, all the matrices in {C[k,l,k]}K
l=1

and {X[k,l,k]}K
l=1 may be distinct. In order to avoid this degeneracy, from this

point and on, we implicitly assume that all the tensors X [k,m] are constructed
such that they do not contain redundant frontal slices, i.e., they do not con-
tain both X[k,k,m] and X[k,m,m] for fixed k and m, if k �= m. Therefore, the
third “depth” dimension of the tensors X [k,k] and X [k,m]|k �=m is not, in general,
the same. As an example, if all A[k] are nonsingular, then the largest tensors
that we can construct for k �= m are X [k,m] ∈ R

R×R×(K−1), and for k = m,
X [k,k] ∈ R

R×R×K . Another point to keep in mind is that due to symmetry,
X [m,k] does not contribute any information beyond X [k,m].

The bottom line is that we have restated the JBSS problem that we defined
in Sect. 2 as an ensemble of tensors {X [k,m]}K

k,m=1 that admit a CPD (13). The
tensors in this ensemble are coupled because each of them shares, deterministi-
cally, a factor matrix A[k] and/or A[m] with one or several other CPDs. Hence,
we say that the ensemble {X [k,m]}K

k,m=1 admits a coupled CPD.
It is worth noting that if A[k] is nonsingular for some k, the CPD of X [k,k]

amounts to joint diagonalization (JD), and if both A[k] and A[m] are nonsingular
for some m �= k, then X [k,m] is an asymmetric two-sided tensor diagonalization.
If A[k] is nonsingular ∀k, this coupled CPD amounts to generalized joint diago-
nalization (GJD) [4]. In general, these are simpler problems.

3.1 Previous Links Between JBSS and Coupled CPD

In fact, the coupled CPD model that we have just described, in Sect. 3, and its
link with JBSS, are not new, as we now explain. Let us ignore for a moment the
latent structure of the entries of C[k,m] due to (9) and (10). Then, a representa-
tion of the sufficient statistics of a JBSS model in terms of tensors {X [k,m]}K

k,m=1

that admit a coupled CPD as in (13) has already been introduced (e.g., [4,5], [7,
Section VI]). However, until now, a three-way structure has been considered only
when the sources had an additional type of diversity, such as statistical depen-
dence (correlation) among samples, or nonstationarity; in other words, only when
the i.i.d. assumption was violated. In these cases, the distinct frontal slices of
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each tensor X [k,m] represented, for example, different correlation matrices taken
at different time lags. In these cases, the third “depth” dimension of the tensors
reflected the additional diversity in the data. In this paper, we show for the first
time that a coupled CPD formulation is possible even if none of these additional
types of diversity is present.

3.2 Discussion

Equation (15) implies that each tensor X [k,m] has one frontal slice that is identi-
cal to the (k,m)th matrix in (5). The difference from (5) is that now, for fixed k
and m, we have more than one equation that involves A[k] and A[m]. Therefore,
the new coupled CPD formulation subsumes the coupled matrix factorization
in (5). In previous work (e.g., [11]), it was shown that the JBSS problem in Sect. 2
can be solved optimally, in the maximum likelihood (ML) sense, i.e., in terms
of the minimal mean square error (MMSE), using the simpler coupled matrix
factorization in (5). The proposed coupled CPD formulation uses exactly the
same information, and thus cannot achieve a better MMSE. Similarly, in terms
of uniqueness, recall that the coupled factorization in (5) uses all the sufficient
statistics, and thus, its uniqueness is tantamount to JBSS identifiability [12–14].
Consequently, the alternative formulation of the same statistics in terms of a
coupled CPD cannot achieve stronger uniqueness properties. It is thus natural
to ask what we can obtain from the more complicated coupled CPD formulation
in Sect. 3. The rest of this paper is dedicated to this question.

4 Uniqueness

The identifiability of the JBSS model in Sect. 2 was characterized in [12–14], for
nonsingular A[k] ∀k. The model was shown to be identifiable except for very
special cases that were fully characterized in [12–14], and depended only on
the values of {S[k,l]}K

k,l=1. Our goal in this section is to show how these non-
identifiable scenarios are reflected in the tensorized framework of Sect. 3. In this
paper, we focus only on one of these non-identifiable cases; conclusions for the
other cases can be obtained similarly.

In [12–14], it was shown that our JBSS model is not identifiable if there exists
a pair (i, j), i �= j, of sources, whose statistics satisfy

s
[k,l]
jj = ϕ[k]ϕ[l]s

[k,l]
ii ∀k, l (16)

where ϕ[k] �= 0 ∀k. Equation (16) implies that, for each k, the subspaces asso-
ciated with the ith and jth columns of A[k] cannot be distinguished. Substitut-
ing (16) in (10), we obtain

c
[k,l,m]
j = s

[k,l]
jj s

−[l,l]
jj s

[l,m]
jj = ϕ[k]ϕ[m]s

[k,l]
ii s

−[l,l]
ii s

[l,m]
ii = ϕ[k]ϕ[m]c

[k,l,m]
i ∀k, l,m

(17)
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which implies

c[k,m]
j = ϕ[k]ϕ[m]c[k,m]

i ∀k,m (18)

The other non-identifiable cases are associated with pairs (i, j) of source corre-
lations {s

[k,l]
ii }K

k,l=1 and {s
[k,l]
jj }K

k,l=1 that contain zeros. Calculations similar to
those in (17) show that in these non-identifiable cases, some of C[k,m] contain
two zero columns (c[k,m]

i = 0 = c[k,m]
j ), and the remaining C[k,m] have pairs

of proportional columns that contain zeros in some of their entries, in specific
locations. Due to lack of space, we omit the details.

Let us assume for a moment that s
[k,l]
rr �= 0 ∀k, l, r. Hence, the model is not

identifiable, and the coupled CPD is not unique, iff (16) holds for some pair
(i, j), i �= j. Equation (18) implies that, in this case, the ith and jth columns
of C[k,m] are proportional ∀k,m. Hence, kC[k,m] = 1 ∀k,m, and none of the
tensors X [k,m] has a unique CPD [8]. However, it is important to note that the
notation “kC[k,m] = 1 ∀k,m” does not provide information about the indices of
the proportional columns. Hence, it does not necessarily imply that the coupled
CPD is not unique: if, for some pair of (k,m), the proportional columns are
not in the same indices (i, j) as in the other CPDs, then (16) does not hold,
and the JBSS is identifiable. In this case, the coupled matrix factorization (5),
as well as the coupled CPD associated with it, are unique. This result is of
potential interest because it is the first time that the uniqueness of the coupled
CPD is stated explicitly for C[k,m] that do not have full column rank ∀k,m
(the uniqueness analysis of the coupled CPD in [15] assumes that C[k,m] has
full column rank ∀k,m, and that the tensors do not have any latent structure).
Similar conclusions can be obtained from observing the structure of C[k,m] in the
other non-identifiable cases [12–14], as we have mentioned earlier in this section.

5 Estimating Mixing Matrices from a Single CPD

In this section, we focus our attention on a single CPD (or JD, or a two-sided
tensor diagonalization) in (13), within the context of the JBSS model in Sect. 2.
It follows from Sect. 4 that it is possible to have kC[k,m] ≥ 2. In this case, the
CPD of X [k,m] may be unique. The uniqueness of the CPD is guaranteed, for
example, if it satisfies [8]

kA[k] + kA[m] + kC[k,m] ≥ 2R + 2 . (19)

Equation (19) implies that, in certain cases, a single CPD may be unique even
if A[k] and/or A[m], as well as C[k,m], do not have full column rank. If the CPD
of X [k,m] is unique, then we can extract both A[k] and A[m] (if k �= m) or just
A[k] (if k = m) from it.1

1 In practice, due to finite sample size and noise, (13) is just an approximation. Ques-
tions related to uniqueness and estimation in the presence of perturbations from the
exact model are beyond the scope of this paper.
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Using a single CPD in (13) to estimate one or two mixing matrices can be
regarded as an intermediate stage between GEVD and coupled decomposition
of the whole ensemble. It allows to compute a single mixing matrix, or two
mixing matrices, using any standard JD or CPD algorithm, from a subset of
the available cross-correlations. The result of this computation may be used for
initialization, or validation, instead of GEVD. An advantage w.r.t. GEVD is that
JD and CPD can take into account more than two frontal slices, providing a more
accurate initialization (for example). Note also that the GEVD solution in (6) is
applicable only to data whose mixing matrices have full column rank, whereas
this restriction is relaxed when using a CPD. A drawback of this approach is
that we may lose the inherent ability of JBSS to fix a single permutation for all
the rank-1 terms in all datasets [1].

6 Application to Underdetermined JBSS

In this section, we demonstrate how our new formulation of the coupled CPD
can bring new insights about JBSS with underdetermined mixtures, when C[k,m]

does not have full column rank for at least one pair of (k,m). To the best of our
knowledge, this case has not yet been addressed in the literature.

Consider a JBSS setup as in Sect. 2. In this example, we assume that s
[k,l]
rr �= 0

∀k, l, r. Assume that K − 1 mixtures, indexed, w.l.o.g., k = 1, . . . ,K − 1, with
nonsingular mixing matrices, satisfy (16) (with K − 1 instead of K), and thus
are not identifiable. The Kth mixture is underdetermined, with a mixing matrix
A[K] that has more columns than rows, i.e. I [K] < R. We assume that the cross-
correlations of the sources, when taking into account all datasets k = 1, . . . ,K, do
not satisfy (16). Our goal is to demonstrate that this model may be identifiable.

We suggest to solve this problem by constructing a tensor X [K,m], whose
CPD will yield a unique estimate of A[K] and A[m]. Let us begin by looking at
C[K,m]. As an example, let K = 4, and m = 1. Then,

C[4,1] =

⎡

⎢⎢⎢⎢⎣

s
[4,1]
ii s

−[1,1]
ii s

[1,1]
ii s

[4,1]
jj s

−[1,1]
jj s

[1,1]
jj

· · · s
[4,2]
ii s

−[2,2]
ii s

[2,1]
ii · · · s

[4,2]
jj s

−[2,2]
jj s

[2,1]
jj · · ·

s
[4,3]
ii s

−[3,3]
ii s

[3,1]
ii s

[4,3]
jj s

−[3,3]
jj s

[3,1]
jj

⎤

⎥⎥⎥⎥⎦
∈ R

3×R (20a)

=

⎡

⎢⎢⎢⎢⎣

s
[4,1]
ii s

−[1,1]
ii s

[1,1]
ii s

[4,1]
jj

· · · s
[4,2]
ii s

−[2,2]
ii s

[2,1]
ii · · · ϕ−[2]ϕ[1]s

[4,2]
jj s

−[2,2]
ii s

[2,1]
ii · · ·

s
[4,3]
ii s

−[3,3]
ii s

[3,1]
ii ϕ−[3]ϕ[1]s

[4,3]
jj s

−[3,3]
ii s

[3,1]
ii

⎤

⎥⎥⎥⎥⎦
(20b)

Equation (20) depicts explicitly the ith and jth columns of C[4,1]. The tran-
sition to (20b) is due to (16). In this scenario, C[K,m] has size (K −1)×R; recall
that A[K] is not invertible, and thus, cannot take part in (8). Equation (20) shows
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that if, as we assume, the cross-correlations s
[4,m]
rr are such that the ensemble

{s
[k,l]
rr }K

k,l=1 does not satisfy (16), then there is no linear dependence between

c[4,1]
i and c[4,1]

j . Consequently, C[4,1] has full rank (although not necessarily full
column rank).

We now turn to the uniqueness of X [K,m], when m < K. By (19), the CPD
of X [K,m] is unique if

I [K]
︸︷︷︸
k
A[K]

+ R︸︷︷︸
k
A[m]

+ min(R,K − 1)︸ ︷︷ ︸
k
C[K,m]

≥ 2R + 2 (21)

It follows from (21) that the CPD of X [K,m] is unique, for example, when R = 3,
I [K] = 2, and K = 4, or when R = 4, I [k] = 3, and K = 4.

As soon as A[K] and A[m] have been identified, for some fixed m, we can
identify all the remaining mixtures A[k], k < K, k �= m, using the fact that now
A[m] is known and invertible, and the diagonal matrix S[k,m] is nonsingular [15]:

X[k,m] = A[k]S[k,m]A[m]� ⇒ X[k,m]A−[m]� = A[k]S[k,m] (22)

In this identifiable setup, the tensors X [k,m] with k,m < K have nonsingular
factors A[k] and A[m] and, as explained in Sect. 4, a third factor matrix C[k,m]

with kC[k,m] = 1. The tensors X [K,m] involve one underdetermined factor A[K],
a nonsingular A[m], and a third factor matrix C[K,m] that has full rank, but
may have more columns than rows, as explained earlier in Sect. 6. Our results
show that this model is identifiable, and hence, the overall coupled CPD must be
unique, too. This result has been obtained using only one CPD in the ensemble.
It is likely that the overall coupled CPD has an even stronger uniqueness.

7 Conclusion

In this paper, we have shown, for the first time, that JBSS of K ≥ 3 mixtures can
be associated with the CPD even in the simplest case where each source in each
mixture is a real-valued Gaussian stationary random process with uncorrelated
samples. Apart from the theoretical interest in showing another type of link
between the statistically-motivated JBSS and an algebraic tensor-based model,
we proposed several practical uses to this new formulation. We have shown that
this new formulation can bring new insights and new stronger uniqueness results
on coupled CPD and on JBSS. In a broader perspective, we provided another
evidence for the richness of coupled decompositions.

In Sect. 3.2, we mentioned that the new formulation cannot improve on the
MMSE. However, it remains to be seen if the proposed formulation, of coupled
CPD, can achieve a smaller estimation error when a norm that does not achieve
the ML, e.g., the Frobenius norm, is used in the optimization, and, if so, is the
improvement justified w.r.t. the higher computational cost.

The same type of analysis that we presented in this paper for decomposition
in sum of rank-1 elements can be extended to terms of any low rank [7], and
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to complex-valued data. Finally, if the JBSS data have additional diversity, e.g.,
sample nonstationarity, this information can be added to each tensor X [k,m] as
additional frontal slices, and thus further enhance the estimation.
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Université de Toulouse, UPS, CNRS, CNES,
IRAP (Institut de Recherche en Astrophysique et Planétologie),

14 av. Edouard Belin, 31400 Toulouse, France
{andrea.guerrero,yannick.deville,shahram.hosseini}@irap.omp.eu

Abstract. In this paper, a blind source separation method for bilinear
mixtures of two source signals is presented, that relies on nonlinear cor-
relation between separating system outputs. An estimate of each source
is created by linearly combining observed mixtures and maximizing a
cost function based on the correlation between the element-wise product
of the estimated sources and the corresponding quadratic term. A proof
of the method separability, i.e. of the uniqueness of the solution to the
cost function maximization problem, is also given. The algorithm used
in this work is also presented. Its effectiveness is demonstrated through
tests with artificial mixtures created with real Earth observation spectra.
The proposed method is shown to yield much better performance than
a state-of-the-art method.

Keywords: Blind source separation methods · Bilinear mixtures
Nonlinear correlation · Hyperspectral imaging

1 Introduction

Blind source separation (BSS) consists of restoring source signals contained in
observed mixed data. In this paper, the target application field is Earth observa-
tion. In theoretical BSS investigations, the observed data are usually linear com-
binations of the sources, but various applications involve nonlinear mixtures.
In particular, Linear-Quadratic (LQ) memoryless mixtures, which include the
bilinear mixing studied here, appear in the show-through effect [3], in chemistry
applications [8] and also in Earth observation [1]. The bilinear case is considered
as a difficult problem because nonlinearity complicates BSS.

BSS methods have been largely studied in the past: see [9,11–13,15] for exam-
ple. Generally, they rely on source properties to resolve the problem. Independent
Component Analysis (ICA) methods exploit statistical independence of sources,
by using non-Gaussianity, non-stationarity or time correlation [5]. Sparse Com-
ponent Analysis (SCA) [6] methods are based on source sparsity, whereas Non-
negative Matrix Factorization (NMF) [7,12], which became popular these last
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 183–192, 2018.
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years, only requires non-negativity of sources and mixing coefficients, although
this yields major indeterminacies. For a survey of the BSS methods which have
been proposed in the literature for LQ and bilinear mixtures, see [14].

In this work, the (over)determined bilinear mixing model for two sources
is considered, and only the linear independence of source vectors and some of
their element-wise products is required to build a new powerful method, without
relying on any other information. In Sect. 2, the mixing model studied in this
paper is presented. Then, the proposed method and the principle on which it
is based are explained in Sect. 3. We also describe our algorithm and the tools
used to execute it. In Sect. 4, the uniqueness of the solution is proved. Then,
an evaluation of the performance of the method is provided through tests and
comparison with a state-of-the-art method in Sect. 5. Lastly, a conclusion about
the effectiveness of our method and perspectives of our work are given.

2 Bilinear Mixing Model

In Earth observation, especially in urban scenes, observed data are often multi-
spectral or hyperspectral images where every pixel spectrum may be a mixture
of several pure material spectra. Because of the reflection of a sunbeam on mul-
tiple materials like asphalt, building walls and ground, the observed data are
then produced by a bilinear mixing model [1]:

x(n) = Ãs̃(n) (1)
= Asa(n) + Bsb(n) (2)

where x is the observation vector defined in (3), s̃ the extended source vector
defined in (4) and Ã the mixing matrix. We consider real-valued signals that
depend on a discrete variable n corresponding to the wavelengths. The considered
image consists of P pixels, so x contains P observations and reads

x(n) =
[
x1(n) · · · xP (n)

]T (3)

whereas

s̃(n) =
[
sa(n)T sb(n)T

]T

=
[
s1(n) · · · sN (n) s1(n)s2(n) · · · sN−1(n)sN (n)

]T
. (4)

sa contains the N actual sources si(n) and sb contains the K = N(N − 1)/2
quadratic cross terms si(n)sj(n), i < j. We here consider an (over)determined
case where P ≥ N + K. In the same way, we define

Ã =
[
AB

]
(5)

=

⎡

⎢
⎣

a11 · · · a1N b1,1,2 · · · b1,N−1,N

...
. . .

...
...

. . .
...

aP1 · · · aPN bP,1,2 · · · bP,N−1,N

⎤

⎥
⎦ .
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Equation (5) contains two types of terms: A corresponding to mixing coefficients
for the N actual sources in sa and B which contains the mixing coefficients for
the quadratic terms in sb. So the mixed spectra contained in the observations
read

xi(n) =
N∑

j=1

aijsj(n) +
N−1∑

k=1

N∑

l=k+1

bi,k,lsk(n)sl(n) (6)

i ∈ {1, ..., P}.

From now on, we focus on the case of N = 2 actual sources to simplify calcu-
lations, so K = 1. To address the determined case, we choose P = N + K = 3
observations. The mixing model (2) then becomes

⎡

⎣
x1(n)
x2(n)
x3(n)

⎤

⎦ =

⎡

⎣
a11 a12 b1,1,2

a21 a22 b2,1,2

a31 a32 b3,1,2

⎤

⎦

⎡

⎣
s1(n)
s2(n)

s1(n)s2(n)

⎤

⎦ . (7)

3 Blind Source Separation Based on Output Nonlinear
Correlation

The proposed separating system is defined as y(n) = Cx(n) so that
⎡

⎣
y1(n)
y2(n)
y3(n)

⎤

⎦ =

⎡

⎣
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤

⎦

⎡

⎣
x1(n)
x2(n)
x3(n)

⎤

⎦ (8)

where C represents the separating matrix and y represents the estimated
extended sources. Each estimated signal reads

yi(n) = ci1x1(n) + ci2x2(n) + ci3x3(n)
i ∈ {1, 2, 3}.

(9)

3.1 Principle of Proposed Method

The proposed method, named BOCSS for Bilinear Output Correlation-based
Source Separation, linearly combines the observations to provide the estimated
sources yi as described in (9), considering the quadratic term as an additional
source. Thus, if the outputs yi are well estimated up to indeterminacies, y1
and y2 are proportional to s1 and s2 (not necessarily equal to them, due to
the scale indeterminacy of BSS) in an arbitrary order (due to the permutation
indeterminacy), whereas y3 is proportional to s1 � s2, with � the element-wise
product of source vectors. Therefore, y3 is proportional to y1 � y2. BOCSS then
consists of adapting C so as to ensure the latter proportionality condition. To
this end, it maximizes the cost function J defined as

J = ρ2 (y1 � y2, y3) . (10)
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ρ is the correlation coefficient defined as

ρ(α, β) =
cov(α, β)
σ(α)σ(β)

(11)

where cov is the covariance and σ is the standard deviation of the considered
signals. So when separation succeeds, (10) reaches the value 1, equivalent to
perfect correlation. We prove the uniqueness of the solution in Sect. 4.

3.2 Algorithm

The above method leads to the following algorithm. To optimize J , nine param-
eters must be adapted in the first variant of BOCSS, namely the nine coefficients
of C. We use the MATLAB R© fminsearch function to this end.

Algorithm 1. Separation method
for all t = 1 to T do

Initialize supposed mixing matrix Ãinit
t

Ct = inv(Ãinit
t )

Adapt Ct to maximize J in (10)
if inv(Ct) ≥ 0 then

Save Ct in Cglobal

end if
end for
Cluster Cglobal

T is the number of tests. Several tests, corresponding to several initializations
Ãinit

t , are needed because the optimization result depends on the matrix initial-
ization (see Sect. 5 for details). We then cluster the 3-entry vectors corresponding
to the first and second rows of all matrices Ct stored in Cglobal, and we keep the
medians of the two obtained clusters as the first two rows of C, then used to
derive y1(n) and y2(n) with (8). We use the k-medians method [10] to this end.

In each test, we check the relevance of the obtained matrix Ct based on
the mixing matrix non-negativity: it has been demonstrated in [1] that mixing
coefficients in Earth observation with an LQ or bilinear model are always non-
negative:

{
0 ≤ aij ≤ 1 i ∈ {1, ..., P}, j ∈ {1, ..., N}

0 ≤ bikl ≤ 0.5 k ∈ {1, ..., N − 1}, l ∈ {k + 1, ..., N} . (12)

It means the mixing matrix Ã has to be non-negative. So we verify the non-
negativity of the inverse of the separating matrix, inv(Ct), in each test after
optimization, and only keep those satisfying this property in the Cglobal set.

Two variants of BOCSS are proposed: with and without a constraint on
the separating matrix diagonal. This constraint consists of keeping its diagonal
coefficients constant during the optimization, so only 6 coefficients are adapted
instead of 9 and this eliminates the scale indeterminacy.
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4 Separability

In this section, we show the uniqueness of the solution to the maximization of the
cost function (10). To this end, we express the output of the separating system as

y(n) = CÃs̃(n)
= Gs̃(n). (13)

In (13), G contains the mixing step A and the separating step C. y is directly
connected to s through the coefficients gij , i ∈ {1, · · · , N + K} and j ∈
{1, · · · , N + K} with N + K = 3 extended sources. This yields

yi(n) = gi1s1(n) + gi2s2(n) + gi3s1(n)s2(n). (14)

Our criterion (10) is based on the comparison between the element-wise product
of y1 and y2, and y3. Using (14), with i = 1 and 2 yields

y1 � y2 = g11g21s1 � s1 + (g11g22 + g12g21)s1 � s2

+ g12g22s2 � s2 + (g11g23 + g13g21)s1 � s1 � s2

+ (g12g23 + g13g22)s1 � s2 � s2

+ g13g23s1 � s1 � s2 � s2. (15)

We hereafter consider the case when the eight vectors s1, s2, s1 � s1, s1 � s2,
s2 � s2, s1 � s1 � s2, s1 � s2 � s2, s1 � s1 � s2 � s2 are linearly independent
(see Sect. 5 for more explanations about this property), and y1, y2 and y3 non-
zero. Then, (15) and y3 (see (14)) show that the collinearity of y1 � y2 and y3
requested by our method is achieved if and only if both vectors are collinear to
s1 � s2. For y3, using (14), this yields g31 = g32 = 0. Besides, (15) then becomes

y1 � y2 = (g11g22 + g12g21)s1 � s2 (16)

and this case corresponds to the following constraints on gij :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g11g21 = 0
g12g22 = 0

(g11g23 + g13g21) = 0
(g12g23 + g13g22) = 0

g13g23 = 0

. (17)

Moreover, (16) with non-zero vectors y1 and y2 yields
⎧
⎨

⎩

g11g22 �= 0
or

g12g21 �= 0
. (18)

The two equations in (18) are mutually exclusive because if the two terms weren’t
null then the first condition in (17) would not be met, which would yield a
contradiction.
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Then we need to study each possible case to see if the uniqueness condition
is met. The first possible case based on (16) and (18) is

g11 = 0 then g12 �= 0 and g21 �= 0. (19)

Then Eq. (16) becomes

y1 � y2 = g12g21s1 � s2. (20)

Equations (17), (18) and (19) yield
⎧
⎨

⎩

g12 �= 0 then g22 = 0
(g11g23 + g13g21) = g13g21 = 0 then g13 = 0
(g12g23 + g13g22) = g12g23 = 0 then g23 = 0

. (21)

With these constraints on G, each output of interest is proportional to one source
since (14) with i = 1 and 2 yields

y1 = g12s2

y2 = g21s1. (22)

For this first studied case, matrix G thus becomes

G1 =

⎡

⎣
0 g12 0

g21 0 0
0 0 g33

⎤

⎦ . (23)

The only other possible case is g11 �= 0. Then (17) yields g21 = 0. Therefore, due
to (18), g22 �= 0. Hence, (17) yields g12 = 0. With the same type of calculations
as above, G is shown to then become

G2 =

⎡

⎣
g11 0 0
0 g22 0
0 0 g33

⎤

⎦ . (24)

As a conclusion, if the eight vectors s1, s2, s1 � s1, s1 � s2, s2 � s2, s1 � s1 � s2,
s1�s2�s2, s1�s1�s2�s2 are linearly independent, the cost function J reaches
its global maximum if and only if y1 and y2 are proportional to the sources in
an arbitrary order, and y3 is proportional to their product.

5 Test Results

To analyze the performance of our method, we choose a criterion called NRMSE
(Normalized Root Mean Square Error) defined in [4]:

NRMSE =

√
min

i�=j∈{1,2}
(Fij)

√
‖s21‖ + ‖s22‖

(25)
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where Fij represents

min
ε1=±1

(
‖s1 + ε1

‖s1‖
‖yi‖ yi‖2

)
+ min

ε2=±1

(
‖s2 + ε2

‖s2‖
‖yj‖yj‖2

)
. (26)

We test our method on artificial mixtures built from two real sources extracted
from the USGS hyperspectral database [16]. We create 2 artificial sources: each
of their samples is derived as the average of 200 (or 20 depending on the test)
adjacent samples of a USGS spectrum. This yields sources with only 10 (or 100)
samples, which corresponds to a difficult case since few separating methods are
able to separate sources containing few samples. We verify the linear indepen-
dence of the eight vectors s1, s2, s1�s1, s1�s2, s2�s2, s1�s1�s2, s1�s2�s2,
s1 � s1 � s2 � s2 needed for the separability: we create a matrix including these
eight vectors and we calculate the matrix rank. We obtain a rank of 8 which
shows the linear independence.

We create the mixing matrix Ã according to the model in [2]: the mixing
coefficients ai. are uniformly drawn in [0, 1] and then divided by their sum,
and the bikl coefficients are randomly chosen with a uniform distribution over
[0, 0.3]. In the first tests, the separating matrix Ct is initialized to the inverse
of the actual matrix Ã plus uniform “noise”, over a range set to 10, 20, 50 or
100 % of the considered entry of Ã. This aims at analyzing the robustness of
the proposed method to the initialization of Ct. Additional tests are performed
with all entries of Ãinit

t uniformly drawn over [0, 1]. All the implemented tests
use N = 2 sources and P = 3 mixtures. Tests were performed for T = 1000 and
T = 10000, in order to analyze the trade-off that the proposed method achieves
between clustering efficiency and computational complexity. The two variants of
BOCSS are tested here, i.e. with and without the diagonal constraint.

For a random initialization, i.e. no assumption on the mixing coefficients
except the range [0, 1], the method leads to only approximately 1% error. Using
a MATLAB code on a computer with an Intel Core i7 CPU with a frequency of
2.6 GHz and a RAM of 15.6 GB, the CPU time for the test without constraint
is approximately 35 min for T = 10000 and around 30 min with the constraint,

Table 1. Test results for spectra with 10 samples

T = 1000 tests without diagonal constraint

Noise added to Cinit
t 10% 20% 50% 100% Random initialization

NRMSE (%) 0.08 0.6 0.32 0.46 1.44

with diagonal constraint

NRMSE (%) 0.022 0.1 0.33 0.11 0.67

T = 10000 tests without diagonal constraint

NRMSE (%) 0.08 0.09 0.25 0.4 1.15

with diagonal constraint

NRMSE (%) 0.016 0.11 0.34 0.48 4.7
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Table 2. Test results for spectra with 100 samples

T = 1000 tests without diagonal constraint

Noise added to Cinit
t 10% 20% 50% 100% Random initialization

NRMSE (%) 0.02 0.14 0.31 0.42 1.44

with diagonal constraint

NRMSE (%) 0.02 0.1 0.25 0.33 7.93

T = 10000 tests without diagonal constraint

NRMSE (%) 0.01 0.13 0.28 0.45 0.64

with diagonal constraint

NRMSE (%) 0.0058 0.14 0.33 0.37 0.65

which is not surprising since only 6 coefficients are optimized in the latter case.
Tables 1 and 2 show that for T = 10000 tests and a random initialization, the per-
formance is globally better with 100-sample sources than with 10-sample sources.
Besides, the number of tests has no major impact on the method performance
since the NRMSE remains quite low whatever T .

We compare the BOCSS method with a different kind of approach, namely
the NMF Gradient-Newton LQ (NMF-Grd-Newton-LQ) method in [2] restricted
to the bilinear case, which is based on the NMF principle, i.e. on the non-
negativity of the data like in Earth observation. The maximization of the cost
function is done with the gradient descent with a Newton adaptive step. The
same configuration is kept: we test for 10 and 100-sample sources and for the
same type of initialization except that this method operates with the mixing
matrix A directly and not with the separating matrix C, and the method needs
a spectrum initialization. We choose the first spectrum initialization proposed
in [2], i.e. constant spectra equal to 0.5.
Table 3 shows that the NMF-Grd-Newton-LQ method yields errors around 9%,
whereas the BOCSS method leads to much better results: its error is often nearly
10 times lower. However the NMF-Grd-LQ method converges in a few minutes.

Table 3. Tests with the NMF-Grd-Newton-LQ method

Tests for 10-sample sources

Noise added to Ainit 10% 20% 50% 100% Random initialization

NRMSE (%) 9.06 9.06 9.06 9.07 9.1

Tests for 100-sample sources

NRMSE (%) 9.09 9.09 9.09 9.09 9.13
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6 Conclusion

The proposed BOCSS method based on output nonlinear correlation is really
interesting e.g. for the Earth observation field, because it doesn’t require informa-
tion on sources like sparsity, statistical independence or non-negativity. It only
requires linear independence between source vectors and some of their element-
wise products, as shown in Sect. 4. This work is based on bilinear mixtures and
possibly mixing matrix non-negativity property. Comparison with work reported
in [2] showed the effectiveness of our method with a major gain on the NRMSE.
Uniqueness of the solution is also shown in this paper. We could explore other
application fields in future work like Chemistry for example. It would be possible
to remove the non-negativity property of the mixing coefficients and study the
case with more than two sources to generalize BOCSS. Further investigations on
the algorithm will be done to improve the practical results and avoid algorithms
to get trapped in cost function local maxima.
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Abstract. In the context of Post-Nonlinear (PNL) mixtures, source sep-
aration based on Second-Order Statistics (SOS) is a challenging topic due
to the inherent difficulties when dealing with nonlinear transformations.
Under the assumption that sources are temporally colored, the existing
SOS-inspired methods require the use of Higher-Order Statistics (HOS)
as a complement in certain stages of PNL demixing. However, a recent
study has shown that the sole use of SOS is sufficient for separation if
certain constraints on the separation system are obeyed. In this paper,
we propose the use of a PNL separating model based on constrained
Taylor series expansions which is able to satisfy the requirements that
allow a successful SOS-based source separation. The simulation results
corroborate the proposal effectiveness.

Keywords: Blind source separation · Post-Nonlinear mixtures
Second-Order Statistics

1 Introduction

The Blind Source Separation (BSS) problem is concerned with retrieving a set of
unknown source signals from samples that are mixtures of them [1,2]. Under the
assumption that the sources are statistically mutually independent, a number of
separation methods were proposed considering that the mixing process is linear
and instantaneous, counting with a wide range of applications. Some of these
methods use the ubiquitous tool known as Independent Component Analysis
(ICA) [1], whose very essence is the recovery of statistical independence through
the use of the Higher-Order Statistics (HOS) of the output signals. Other meth-
ods alternatively consider the use of only Second-Order Statistics (SOS) of the
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Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 193–203, 2018.
https://doi.org/10.1007/978-3-319-93764-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93764-9_19&domain=pdf


194 D. G. Fantinato et al.

output signals, which is a reliable approach when the sources are temporally cor-
related [1]. This latter approach contributed to the development of techniques
like SOBI [3], TDSEP and AMUSE [1], which are computationally simpler in
comparison with ICA.

There are certain cases, however, in which the linear mixing assumption
is not sufficient, such as in hyperspectral imaging [4] and in chemical sensor
arrays [5], which demands source separation methods that take into account
the nonlinear mixing process. The main issue is that, from a general nonlinear
standpoint, neither the ICA framework nor the SOS-based methods are sufficient
for performing source separation [1]. In view of this limitation, the studies on
this topic focused on a set of constrained nonlinear models in which the ICA
methods are still valid [6], e.g., the Post-Nonlinear (PNL) models [7,8].

Indeed, ICA methods can be applied to solve the PNL mixing problem [7],
but, for the SOS-based methods, this statement does not hold, even consid-
ering that sources are temporally colored [6]. This motivated the use of the
second-order framework in a partial manner, i.e., by combining it to HOS: one
approach is, for instance, to solve the nonlinear part in a first step through a
HOS-based method and then apply an SOS-based method to the remaining lin-
ear BSS problem [8,9]; or, alternatively, some HOS source priors can be used as
additional information to aid the SOS-based methods [10]. Nevertheless, a recent
study pointed out that the sole use of SOS can be sufficient for separation of
PNL mixtures if certain constraints on the separation system are obeyed, which
includes the existence of a linear mixture term during adaptation [11]. Based on
this approach, we propose in this paper the use of a set of constrained Taylor
series-based expansions to compose the PNL separating system, which will be
able to satisfy the requirements for the sole use of an SOS-based method. As we
intend to show, the constrained separation model fully preserves its nonlinear
flexibility, allowing its use in a wide set of applications. Given the complex-
ity of the nonlinear framework, a metaheuristic known as Differential Evolution
(DE) [12] will be used to aid coefficient adaptation.

This work is organized as follows. Section 2 presents a brief background on
the PNL mixing problem and on the use of SOS for source separation. In Sect. 3,
we propose a PNL separating system based on a set of constrained Taylor series-
based expansions, whose parameters can be adapted via SOS-based criteria.
Some performance analyses are presented in Sect. 4. Finally, Sect. 5 concludes
the work.

2 Background on Post-Nonlinear Mixtures
and Second-Order Statistics

Within the BSS problem, the PNL model arises as a natural extension of the
standard linear instantaneous mixture process to a nonlinear one, in which ICA
methods – or, more generally, statistical independence – are able to retrieve
the original sources [1,7]. Basically, in the PNL mixture process, N mutually
independent sources – denoted by the vector s(n) = [s1(n) . . . sN (n)]T – are
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Fig. 1. Mixing and separating systems in the PNL model.

mixed by a linear combination followed by a set of univariate nonlinear func-
tions, resulting in M observed mixtures: x(n) = f (u(n)) = f (As(n)), being
A an M ×N matrix and f(·) = [f1(·) . . . fM (·)]T a set of M component-wise
functions, as illustrated in Fig. 1. As usual in BSS, the aim is to retrieve the
sources s(n) from the observed mixtures x(n), without prior information about
A or f(·). In order to do so, a mirrored version of the mixing system is used as
a separation system [7], whose output is given by y(n) = Wz(n) = Wg (x(n)),
where W is an N ×M matrix and g(·) is a set of M component-wise functions,
ideally the inverse of f(·). In this work, the analysis will be restrained to the
determined case, i.e., when M = N .

To perform blind separation, the PNL separating system can be adjusted
using the ICA framework, being sufficient conditions [13]: (i) the mixing matrix
A is invertible and effectively mixes the sources; (ii) f(·) and g(·) are monotonic
functions; (iii) at most one source is Gaussian, and (iv) the joint distribution of
the sources is differentiable and its derivative is continuous on its support.

One disadvantage of ICA methods is their dependence on HOS, which may
result in certain difficulties regarding estimation accuracy and/or computational
complexity. In that sense, a possible approach to overcome these difficulties is
to resort to the temporal statistical information of the sources (by assuming
temporally correlated sources) and their SOS, which are simpler to estimate [1].
However, the sole use of SOS is insufficient for performing separation of PNL
mixtures, except for cases in which certain properties and/or additional a priori
information can be exploited, as shown next.

2.1 Second-Order Statistics in PNL Mixtures

Different approaches can be used along with SOS for separation of PNL mixtures
in the context of temporally correlated sources. We highlight three of them, in
which the following features are exploited: the Gaussianization effect [9], the a
priori knowledge of one of the source distributions [10] and the residual nonlinear
term [11].

The first approach is based on the fact that, after the linear mixing part,
the random variables tend to become ‘more’ Gaussian. Hence, ideally, u(n) and
z(n) (after a successful nonlinear compensation) present distributions relatively
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close to a Gaussian. In that sense, the separation task can be performed in two
stages: first g(·) is adjusted so that z(n) is as Gaussian as possible and, then,
W is adjusted according to an SOS-based method [9], such as WASOBI and
TDSEP [1,2]. This strategy reveals to be more effective when the sources are
Gaussian distributed or when the number N of sources is large (in the spirit of
the central limit theorem); otherwise a performance loss is observed [10]. We will
refer to this method as the ‘Gaussianization-based approach’.

In the second approach, the distribution of one of the sources is assumed to
be known in aid of the separation task [10] – e.g., it is known that one of the
sources is Gaussian. In this case, the contrast function is a weighted composition
of a distribution matching part (so that one of the recovered sources matches
the known distribution type) plus the SOBI criterion, which diagonalizes the
correlation matrices. Thus, g(·) and W are jointly adapted. The performance
of the approach will depend on the quality of the distribution type estimation.
This method will here be called the ‘One Source Matching-based approach’.

In these two approaches, the use of HOS is required either in the Gaussian-
ization process or in the distribution matching part. However, a recent result
has shown that separation of PNL mixtures is possible using only SOS if certain
conditions regarding the nonlinear functions are met, allowing the removal of
nonlinear residual errors [11]. The essence of this third approach – which will be
of great interest for us in this work – can be posed as follows. Suppose that, for
a given f(·), g(·) is chosen so that the PNL system output yields:

y(n) = Wg ◦ f (As(n)) = WAs(n) + Wf̃ (As(n)) , (1)

which means that the composite nonlinear function g ◦ f(·) results in a linear
term plus a nonlinear residual term, denoted by f̃(·) – we assume that scale
and/or permutation factors are encompassed by matrix W. In such a case, the
time-lagged autocorrelation matrix of y(n), RY (m) = E

[
y(n)yT (n−m)

]
, where

m is some lag constant, m ∈ 1, . . . , d, can be expressed as

RY (m) = WAE
[
s(n)sT (n−m)

]
ATWT + WAE

[
s(n)

(
f̃ (As(n−m))

)T
]
WT

+ WE
[
f̃ (As(n)) sT (n−m)

]
ATWT

+ WE

[
f̃ (As(n))

(
f̃ (As(n−m))

)T
]
WT ,

(2)
in which either the first term or the remaining terms can be made diagonal
for all considered lags [11]. If the first term (associated with the linear part)
is made diagonal, then, since separation is not achieved in (1), the remain-
ing terms present non-null off-diagonal elements for some delays [11]. Then, for
RY (m) to be diagonal for all m ∈ 0, . . . , d the nonlinear residual error must
be null, ensuring a successful source separation. However, if the first term in
(1) does not exist due to a different choice of g(·), then RY (m) can be made
diagonal even when the nonlinear residual error is not suppressed [11]. In this
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sense, when performing source separation, g(·) must be chosen so that the first
term prevails. Once this condition is satisfied, the refinement of g(·) (to cancel
the nonlinear residual error) and the adjustment of the coefficients W can be
performed through a matrix diagonalization-based criterion (for RY (m)), such
as the SOBI criterion. Nevertheless, the authors propose an alternative crite-
rion called Second-Order Mutual Information - Quadratic version, or simply,
SOMIq, which seems to be more robust against local minima convergence for
metaheuristic optimization [11].

In the SOMIq criterion, the temporal statistical information of the sources is
jointly exploited in an extended correlation matrix (similarly to [14]). Basically,
column vectors are composed of signals at time instant n concatenated with their
d delayed versions in the following form:

y(n) = [y1(n) . . . y1(n−d) y2(n) . . . y2(n−d) . . . yN (n) . . . yN (n−d)]T

=
[
yT
1
(n) yT

2
(n) . . . yT

N
(n)

]T
,

(3)

where d is the largest considered lag and y
i
(n) = [yi(n) . . . yi(n−d)]T , for i =

{1, . . . , N}. From these vectors, we obtain the correlation matrices:

RY = E
[
y(n)yT (n)

]
; RY i

= E
[
y
i
(n)yT

i
(n)

]
. (4)

By combining the mutual information measure and assuming Gaussian dis-
tributed sources, it is possible to write the SOMIq criterion:

JSOMIq = min
g(·),W

(
N∏

i=1

|RY i
| − |RY |

)2

, (5)

where | · | is the determinant operator.
Since f(·) is not known a priori, the main difficulty of this third approach is

how to choose g(·) so that (1) is satisfied even during adaptation. In certain cases,
this task may be less difficult because f(·) can be partially known – for instance,
as occurs in chemical sensor array data, whose mixtures can be described accord-
ing to the Nicolsky-Eisenman model [5]. However, as we intend to show in this
paper, a wide set of nonlinear functions f(·) can be addressed if a constrained
model for g(·) is assumed: a Taylor series expansions-based parametric model
able to satisfy (1) and to preserve the nonlinear flexibility.

3 Proposal: Constrained Taylor Series Expansions

Taylor series expansion is an efficient mathematical tool that allows the represen-
tation of a function as an infinite power series. In nonlinear BSS, the expansion
is particularly useful when truncated Taylor series expansions are considered for
nonlinear function approximation, which, besides contributing with performance
improvement, can also reveal insightful theoretical aspects [15].
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Mathematically, the Taylor series of a continuous and (infinitely) differen-
tiable function f(u) around zero is the power series:

f(u) =
∞∑

k=0

f (k)(0)
(u)k

k!
, (6)

where (·)! denotes the factorial operator and f (k)(·) denotes the kth derivative
of f(·). This means that any differentiable nonlinear function f(·) can be decom-
posed into a sum of polynomial terms.

As previously mentioned, our objective is to specify g(·) so that Eq. (1) holds
– allowing us to use separation criteria solely based on SOS [11] – and the
first-order term in the Taylor series expansion will be the key for achieving
this goal, as shown in the following. Suppose that the PNL components of f(·)
can be represented by Taylor series expansions, as shown in Eq. (6), and that
the compensating nonlinear function for the ith mixture, gi(·), is a tth-order
truncated Taylor series-based expansion around zero, whose terms are given by

gi(xi(n)) = gi,1xi(n) + gi,2x
2
i (n) + · · · + gi,tx

t
i(n), (7)

where gi,j is the jth coefficient of the ith nonlinear function. Note that the zero-
order coefficient gi,0 is disregarded, since we are assuming that gi(·) and fi(·)
pass through the origin. Based on these assumptions, the composite g◦ f(·) gives

gi(xi(n)) = gi (fi (ui(n))) = gi,1fi (ui(n)) + gi,2f
2
i (ui(n)) + · · ·

= gi,1f
′
i(0)ui(n) + f̃i(ui(n)),

(8)

where f̃i(u(n)) gathers the other remaining terms. Thus, by constraining gi,1
to be non-null and assuming that f ′

i(0) �= 0, we are able to split the PNL
system output into a linear and a nonlinear term, satisfying (1) (recall that
u(n) = As(n) and that the scale factor can be compensated by W). Therefore,
g(·) must be of sufficient order but constrained with gi,1 equal to a non-null
constant, for i = 1, . . . ,M . Note that the other coefficients of gi(·) associated
with nonlinear terms are not constrained, preserving the nonlinear flexibility.

Interestingly, this Taylor series-based approach can be applied to a wide set
of nonlinear functions since fi(·) and gi(·) are required to be both monotonic
functions in PNL mixtures [13], thus presenting odd-order terms, usually includ-
ing the first one. Exceptions exist, however, when fi(·) is a polynomial whose
Taylor series expansion does not encompass the first-order term – in this case,
another approach must be followed for gi(·), but this will not be considered in
the present paper. In the following, we consider some simulation analysis when
applying the constraint gi,1 = 1 and using the SOMIq criterion to adapt the
other coefficients.

4 Simulation Results

In order to analyze the efficiency of the proposed approach, the compensating
nonlinear function g(·) is chosen to be as given by Eq. (7) – truncated at the 7th-
order – considering: (i) the constrained case, where gi,1 = 1 remains fixed and the
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other coefficients gi,j are allowed to vary freely, for i = 1, . . . ,M and j = 2, . . . , 7;
and (ii) the unconstrained case. Along with g(·), the linear separating matrix W
is adapted according to the SOMIq criterion, given by Eq. (5). Our objective is
to evaluate the performance of these constrained and unconstrained cases and to
compare them with the performance of the other two aforementioned SOS-based
approaches – i.e., the Gaussianization-based [9] and the One Source Matching-
based approach [10]. For the Gaussianization approach, in a first stage, g(·) –
unconstrained – will be adapted so that each ith output zi(n) has a null kurtosis
(meaning that zi(n) is Gaussian distributed) and, in a second stage, W will
be adapted according to the SOBI criterion [3]. For the One Source Matching-
based approach, it will be assumed that at least one of the sources is Gaussian
distributed, being g(·) – unconstrained – and W jointly adapted so that y1(n)
presents null kurtosis and that the time-lagged correlation matrices RY (m), for
m = 0, . . . , d, be diagonal via the SOBI criterion.

The coefficient adjustment will be performed with the aid of the metaheuris-
tic known as Differential Evolution (DE), a population-based technique that
efficiently exploits the search space using the information contained in the pop-
ulation of solutions instead of the usual random operators [12]. The DE param-
eters are: the population size NP , the crossover constant CR, the adaptation
step F and the number of iterations Nit. After training, the performance of
the best individual in the population shall be evaluated for a test set of 700000
samples and measured in terms of Signal-to-Interference Ratio (SIR), defined as
SIR = 10 log

(
E[y2i (n)]/E[(si(n) − yi(n))2]

)
, after sign and variance correction.

Two scenarios are considered: in the first one, we are mainly interested in the
constrained Taylor series-based approach effectiveness and in its performance;
in the second one, we investigate how the number of samples impacts on the
performance. In both scenarios, we consider two sources and two mixtures.
In scenario 1, one of the sources is a temporally correlated Gaussian and the
other one is a sequence with trapezoidal distribution between [−1, 1], as shown
in Fig. 3(a), the mixing system is given by A = [0.450 −0.551;−0.683 0.317],
f1(u1(n)) = arcsin(u1(n)) and f2(u2(n)) = arctanh(u2(n)), with −1 ≤ u(n) ≤
+1. The separating system is composed of two 7th-order polynomials with coef-
ficients g1,1, g1,2, . . ., g1,7, g2,1, g2,2, . . ., g2,7 – according to Eq. (7) – (recall that
g1,1 = g2,1 = 1 for the constrained case) and a 2-by-2 separating matrix W, with
four coefficients. 250000 samples of the mixtures are available for statistics esti-
mation. In scenario 2, the sources are two temporally correlated Gaussians. The
elements of the mixing system are A = [0.667 0.333; 0.445 −0.555], f1(u1(n)) =
arcsin(u1(n)) and f2(u2(n)) = arcsin(u2(n)), with −1 ≤ u(n) ≤ +1. We adopt
again a 2-by-2 separating matrix W and two 7th-order polynomial for g(·), but,
since the nonlinear mixing functions are equivalent (f1(·) = f2(·) = arcsin(·)),
we assume that g1,j = g2,j , for j = 1, . . . ,7, thus, reducing the search space. The
number of mixture samples will vary from 500 up to 500000 in this scenario. The
considered number of delays for SOBI and SOMIq is d = 8 in both scenarios.

To obtain a high global convergence rate, the DE parameters were empirically
chosen to be NP = 500, F = 0.5, CR = 0.9 and Nit = 7000 for scenario 1, and
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Fig. 2. Scatter plots of the sources and of the outputs for each method in scenario 1.

NP = 300, F = 0.5, CR = 0.9 and Nit = 2000 for scenario 2 (smaller search
space). For the Gaussianization approach, two DE runs are necessary, one for
the nonlinear and the other for the linear stage.

Figure 2 shows y(n) versus s(n) plots – where a diagonal line means that
a perfect separation was achieved – considering the outputs of the constrained
and unconstrained SOMIq, of the Gaussianization-based and of the One Source
Matching-based approach, from the left to the right. It is possible to note that
the constrained SOMIq output tends to a diagonal line, being able to recover
the sources (with small noise), while the unconstrained case completely fails,
indicating that the constrained Taylor Series-based approach can be an efficient
method for separation. The other two methods are also able to separate the
sources with certain noise. Remark that they require the use of HOS and demand
certain knowledge of the sources.

For 20 Monte Carlo simulations, the average SIR performance for scenario 1
is as shown in Table 1, where it is possible to note that the constrained SOMIq
approach is able to achieve the best performance, probably due to its simpler
SOS-based construction. The unconstrained SOMIq case exposes the fact that
the sole use of the SOS is insufficient for nonlinear separation in this case. The
Gaussianization-based and the One Source Matching-based approaches present
a good performance, but the two-stage adaptation of the Gaussianization-based
approach reduces the search space and contributes to a higher global convergence
rate. Although no monotonicity constraint over g(·) was applied, the solutions
found for the constrained SOMIq case resulted in monotonic g(·).

Table 1. Performance in terms of SIR [dB] for scenario 1

Sources Constrain.SOMIq Unconstr.SOMIq Gaussianization approach One source matching

1 47.04 −5.58 37.63 30.86

2 55.43 −3.92 41.75 32.63
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For scenario 2, Fig. 3(b) displays the average SIR performance of the con-
sidered methods for 20 Monte Carlo simulations as a function of the number of
samples (in logarithmic scale). The SIR performance of the constrained SOMIq
is improved as the number of samples increases, being able to achieve almost 50
dB with 10000 samples and 70 dB with 300000. On the other hand, the uncon-
strained SOMIq fails independently of the number of samples, which confirms the
necessity of holding the condition given by (1). A number of samples larger than
1000 seems to cause minor effects on the performance of the Gaussianization-
based and the One Source Matching-based approaches, which vary around 35 dB
and 27 dB, respectively. For all number of samples considered, the constrained
SOMIq obtained the best average SIR performance.
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Fig. 3. Source distributions for scenario 1 and SIR performance for scenario 2.

5 Conclusions

In this work, we have proposed a constrained Taylor series approach for SOS-
based source separation in the PNL model. The method is based on the idea that
any nonlinear residual error can be suppressed by SOS-based separation methods
if a linear mixture term always exists in the separation process. Interestingly, by
defining the separating nonlinear function as a constrained Taylor series-based
expansion (whose first-order term is fixed), the linear mixture term is kept and
source separation can be successfully performed with the aid of an SOS-based
criterion named SOMIq. This method assumes that the sources are temporally
colored, but differently from the other SOS-based methods for separation of PNL
mixtures, no other prior information is necessary nor the use of HOS. The result
is a simple and robust nonlinear separation method. Along with the use of the
DE metaheuristic for coefficient adaptation, the simulations indicated that the
proposed method is able to outperform the concurrent SOS-based methods in
the chosen scenarios, although a reasonable amount of data might be necessary
to provide reliable SOS estimates. For future works, we consider the proposition
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of a gradient-based algorithm and the analysis in scenarios with a higher number
of sources.
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Abstract. We here present major extensions of the fields of blind quan-
tum source separation (BQSS) and blind quantum process tomogra-
phy (BQPT) for the Heisenberg Hamiltonian. They are based on a new
type of spin component measurements performed directly for the avail-
able quantum states, which yields new nonlinear mixing models, with
extended source signals and mixing parameters. The first two types of
proposed BQSS and/or BQPT methods are based on quantum-source
independent component analysis. They therefore require typically one
thousand quantum states to estimate the mixing parameters, and some
of them yield closed-form solutions. We then define a complementary,
inversion-based, BQSS/BQPT method which requires only one quantum
state, but which is based on solving nonlinear equations numerically.

Keywords: Blind quantum source separation
Blind system identification · Blind quantum process tomography
Nonlinear mixtures · Independent component analysis
Heisenberg Hamiltonian identification

1 Prior Work and Problem Statement

The general framework of latent variable analysis includes two closely related
problems, namely system identification and system inversion, especially in their
blind version (unknown input values for the considered system) [1]. For classical,
i.e. non-quantum, signals and systems, these problems have been extensively
studied, not only in the single-input single-output case, but also in multiple-
input multiple-output configurations, where blind system inversion and blind
source separation (BSS) are almost the same problem, but indeterminacies (i.e.
some residual transforms in restored signals) are accepted in BSS: see e.g. [3].

Let us now consider quantum “signals” (i.e. states) and systems. Then,
among the above problems, the one which was first studied is non-blind system
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-93764-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93764-9_20&domain=pdf


Blind Quantum Source Separation and Process Tomography 205

identification, called “quantum process tomography” by the Quantum Informa-
tion Processing community: see e.g. [2,11–14]. Besides, we introduced the field of
“quantum source separation” (QSS) and especially its blind version (BQSS) in
the 2007 edition of this (LVA/)ICA conference: see [4] and subsequent references
below. Moreover, we recently developed connections between BQSS and system
identification, thus introducing the field of “blind quantum process tomogra-
phy” (BQPT) at the 2015 LVA/ICA conference, and focusing on Heisenberg
Hamiltonian identification: see especially [7,9].

More precisely, the first class of BQSS and BQPT methods that we devel-
oped has the following features (see especially [5,6]): (i) these methods first
derive classical-form data from the directly available quantum states, by means
of measurements of the components of associated spin operators along a single
direction, (ii) this only allows them to estimate part of the “source and mixing
parameters” defined below, (iii) to estimate the considered mixing parameter,
they process the above classical-form data with quantum-source independent
component analysis (QSICA) algorithms [6], so that these identification meth-
ods typically require 107 quantum state preparations (103 different states, each
prepared 104 times, as explained hereafter in Sect. 3).

We then proposed a second, quite different, class of BQSS and BQPT meth-
ods which have the following features (see especially [10]): (i) their standard
versions process data in quantum form, except that they estimate all unknown
mixing parameters by using measurements of the components of output spin
operators along two directions (a single direction was shown not to be sufficient
for these methods, e.g. in [10]), (ii) they estimate all source parameters, (iii) to
estimate the mixing parameters, they process the available quantum states with
methods based on disentangling a few output quantum states of the separating
system (instead of using QSICA), so that these identification methods typically
require 6 × 104 state preparations (3 different states, each prepared 104 times,
and with measurements along 2 directions) when using advanced algorithms [8].

Our second class of methods thus has various attractive features, as compared
with the first class. One may wonder whether this results from using quantum-
form data, spin components along two directions or disentanglement-based adap-
tation. The present paper therefore aims at answering this question. To this end,
after summarizing the required information about the considered physical con-
figuration (see Sect. 2) and about our first class of methods (Sect. 3), we extend
that approach to measurements of spin components along two directions, thus
deriving a new, nonlinear, mixing model, a new class of BQSS methods (Sect. 4)
and a new class of BQPT methods (Sect. 5), which have complementary features.
We then propose an inversion-based joint BQSS/BQPT method which requires
far fewer quantum state preparations (Sect. 6).

2 Quantum States and Heisenberg Coupling Model

Computations in the field of Quantum Information Processing use quantum bits,
also called qubits, instead of classical bits [12]. A qubit with index i considered
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at a given time t0 has a quantum state. If this state is pure, it belongs to a
two-dimensional space Ei and may be expressed as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that we hereafter denote
as |+〉 and |−〉, whereas αi and βi are two complex-valued coefficients constrained
to be such that the state |ψi(t0)〉 is normalized (that is, |αi|2 + |βi|2 = 1).

In the BQSS and BQPT configurations studied in this paper, we first consider
a system composed of two qubits, called “qubit 1” and “qubit 2” hereafter, at a
given time t0. This system has a quantum state. If this state is pure, it belongs
to the four-dimensional space E defined as the tensor product (denoted ⊗) of the
spaces E1 and E2 respectively associated with qubits 1 and 2, i.e. E = E1⊗E2. We
hereafter denote as B+ the basis of E composed of the four orthonormal vectors
|++〉, |+−〉, |−+〉, |−−〉, where e.g. |+−〉 is an abbreviation for |+〉⊗|−〉, with
|+〉 corresponding to qubit 1 and |−〉 corresponding to qubit 2. In particular,
we study the case when the two qubits are independently initialized, with states
defined by (1) respectively with i = 1 and i = 2. The state of the two-qubit
system at the initial time t0 then reads

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (2)
= α1α2| + +〉 + α1β2| + −〉 + β1α2| − +〉 + β1β2| − −〉. (3)

Besides, we consider the case when the two qubits correspond to two distin-
guishable [10] spins 1/2 which have undesired coupling after they have been ini-
tialized according to (2). The considered coupling is based on the Heisenberg model
with a cylindrical-symmetry axis presently collinear to the applied magnetic field,
which has a magnitude B. This common axis is chosen as the “quantization axis”,
called Oz. Moreover, we assume an isotropic g tensor, with principal value g. The
time interval when these spins are considered is supposed to be short enough for
their couplingwith their environment to be negligible. In these conditions, the tem-
poral evolution of the quantum state of the system composed of these two spins is
governed by the following effective [10] Hamiltonian:

H = Gs1zB + Gs2zB − 2Jxy(s1xs2x + s1ys2y) − 2Jzs1zs2z (4)

where:

• G = gμe, where μe is the Bohr magneton, i.e. μe = e�/2me = 0.927 ×
10−23JT−1 and � is the reduced Planck constant.

• six, siy and siz, with i ∈ {1, 2}, are the three components of the vector
operator −→si associated with spin i in a cartesian frame. Besides, the above-
mentioned vectors |+〉 and |−〉 corresponding to spin i are eigenvectors of siz,
for the eigenvalues 1/2 and −1/2 respectively.

• Jxy and Jz are the principal values of the exchange tensor.

Among the above parameters, the value of g may be experimentally determined,
and B can be measured. The values of Jxy and Jz are here assumed to be
unknown.
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The final quantum state |ψ(t)〉 of the above two-spin system at an arbitrary
time t > t0, which results from the above Hamiltonian, was derived in [5], and
its expression is provided in Sect. 4.1. We hereafter consider the results of mea-
surement procedures applied to that state |ψ(t)〉.

3 BQSS and BQPT with Monodirectional Measurements:
Achievements and Limitations

The first class of BQSS methods that we especially detailed in [6] consists of
(i) first deriving classical-form data from the above-defined final quantum state
|ψ(t)〉, by measuring the components of the considered two spins along direction
Oz, and then (ii) processing the above classical-form data with original statistical
methods which have relationships with classical ICA. More precisely, the result
of each measurement of the above couple of spin components has four possible
values, whose probabilities are denoted as p1zz to p4zz hereafter. Besides, we use
the polar representation of the qubit parameters αi and βi, which reads

αi = rie
iθi βi = qie

iφi i ∈ {1, 2} (5)

where i is the imaginary unit, and with 0 ≤ ri ≤ 1 and

qi =
√

1 − r2i (6)

because |ψ(t0)〉 is normalized. The above probabilities then read [6]

p1zz = r21r22 (7)

p2zz = r21(1− r22)(1− v2) + (1− r21)r
2
2v2−2r1r2

√
1− r21

√
1− r22

√
1− v2v sinΔI (8)

p4zz = (1− r21)(1− r22) (9)

with

ΔI = (φ2 − θ2) − (φ1 − θ1) (10)

ΔE = −Jxy(t − t0)
�

(11)

v = sgn(cos ΔE) sin ΔE . (12)

Probability p3zz is redundant with the above ones, because

p1zz + p2zz + p3zz + p4zz = 1. (13)

p3zz is therefore not considered.
In BSS terms, the mixing model (7)–(9) involves three “observed signals”,

namely p1zz, p2zz and p4zz. Besides, they depend on only three unknown “source
signals”, namely r1, r2 and ΔI , which is an attractive feature because this allows
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the mixing transform (7)–(9) applied to these source signals to be invertible over
a bounded domain of source values if the fixed value of v is such that 0 < v2 < 1
(see details in [5,6]). It should be noted that this mixing model is nonlinear.

When developing our first class of BQSS methods, we restricted ourselves to
the above view of source and observed signals. We here have to further analyze
them as follows. Equations (3) and (5), which define the unknown initial state
|ψ(t0)〉, involve 8 polar parameters. However, only 4 of them should be considered
(thus defining 4 classical-form “potential source signals”), namely r1, r2, (φ1−θ1)
and (φ2−θ2), for the following two reasons. First, the parameters qi are redundant
with ri, due to (6). Second, a global phase factor in any quantum state |ψi(t0)〉 has
no physical consequence, so that using (5) and rewriting (1) as

|ψi(t0)〉 = eiθi

(
ri|+〉 + qie

i(φi−θi)|−〉
)

(14)

shows that the state |ψi(t0)〉 only involves a single relevant phase parameter,
that is, the phase difference (φi − θi). This means that, by using only a single
type of spin measurements, our first class of BQSS methods is able to estimate
only part of the (relevant) parameters of the unknown initial quantum state
|ψ(t0)〉: it cannot separately estimate each of the phase differences (φ1 − θ1) and
(φ2 − θ2), but only ΔI , which is the difference between them, as shown by (10).
One of the goals of this paper is to determine whether (φ1 − θ1) and (φ2 − θ2)
can be separately estimated by also performing other types of spin component
measurements for (other preparations of) the state |ψ(t)〉.

The above mixing model (7)–(9) involves a single, unknown, mixing param-
eter, namely v. In [6], we presented various statistical QSICA methods which
allow one to estimate v from a set of values of the triplet (p1zz, p2zz, p4zz) of
observed signals (this set typically consists of 103 values of this triplet, and each
value corresponds to one quantum state |ψ(t0)〉 and is estimated from typically
104 preparations of |ψ(t0)〉. Several of these QSICA methods yield closed-form
expressions for the estimates of v. As shown by (11)–(12), estimating v yields
an estimate of only one of the unknown physical parameters of the considered
Hamiltonian, namely Jxy (and up to some indeterminacies). The corresponding
class of BQPT methods, briefly introduced in [7], therefore only achieves partial
Hamiltonian estimation, since it cannot estimate Jz. In this paper, we therefore
also aim at investigating whether Jz can be estimated with this type of meth-
ods, by performing additional types of spin component measurements for (other
preparations of) the state |ψ(t)〉.

4 New BQSS Methods, with Bidirectional Measurements

4.1 New Mixing Model

We here consider (additional preparations of) the above-defined two-spin final
state |ψ(t)〉. Since we here aim at investigating measurements of the component
of each spin along the Ox axis, we have to express that state |ψ(t)〉 in the basis
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B+x of the above-defined space E composed of the four orthonormal vectors
| + x + x〉, | + x − x〉, | − x + x〉, | − x − x〉 where e.g. | + x − x〉 is an abbreviation
for | + x〉 ⊗ | − x〉, with | + x〉 corresponding to spin 1 and | − x〉 corresponding
to spin 2. In these expressions, the vectors | + x〉 and | − x〉 corresponding to
spin i, with i ∈ {1, 2}, are eigenvectors of six, for the eigenvalues 1/2 and −1/2
respectively.

To derive the required expression of |ψ(t)〉 in basis B+x, we start from its
expression in the basis composed of the eigenvectors of the matrix representing
the Hamiltonian H in the B+ basis. These eigenvectors read [5]

|1, 1 >= | + + >, |1, 0 >=
| + − > +| − + >√

2
(15)

|0, 0 >=
| + − > −| − + >√

2
, |1,−1 >= | − − > . (16)

In [5], we showed that |ψ(t)〉 may be expressed with respect to them as

|ψ(t) > = α1α2e
−iω1,1(t−t0)|1, 1 > +

α1β2 + β1α2√
2

e−iω1,0(t−t0)|1, 0 >

+
α1β2 − β1α2√

2
e−iω0,0(t−t0)|0, 0 > +β1β2e

−iω1,−1(t−t0)|1,−1 >(17)

where all ωk,l are angular frequencies defined in [5]. Moreover, a well-known
result of quantum physics is the link between the eigenvectors of siz and six:

|+〉 =
| + x〉 + | − x〉√

2
, |−〉 =

| + x〉 − | − x〉√
2

. (18)

Combining all above equations yields the required expression of |ψ(t)〉:

|ψ(t)〉 =
4∑

j=1

cjx(t − t0)|bjx > (19)

where |bjx > stands for the above-defined vectors composing basis B+x (in the
same order as above), and the corresponding coefficients read

c1x(t − t0) =
1
2
e−iω1,1(t−t0)(T1 + T4), c2x(t − t0) =

1
2
e−iω1,1(t−t0)(T2 − T3)

c3x(t − t0) =
1
2
e−iω1,1(t−t0)(T2 + T3), c4x(t − t0) =

1
2
e−iω1,1(t−t0)(T1 − T4)

where

T1 = α1α2 + β1β2e
i(ω1,1−ω1,−1)(t−t0), T4 = (α1β2 + β1α2)ei(ω1,1−ω1,0)(t−t0)

T2 = α1α2 − β1β2e
i(ω1,1−ω1,−1)(t−t0), T3 = (α1β2 − β1α2)ei(ω1,1−ω0,0)(t−t0).

When measuring the couple of spin components (s1x, s2x), the obtained couple
of values is equal to one of its four possible values, that is (+1

2 ,+ 1
2 ), (+1

2 ,− 1
2 ),
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(− 1
2 ,+ 1

2 ) or (− 1
2 ,− 1

2 ) in normalized units. The probabilities of these four values
are respectively denoted as p1xx, p2xx, p3xx and p4xx hereafter. They are equal
to the squared moduli of the coefficients cjx(t − t0) of the corresponding vectors
| ± x ± x > in the state expression (19), that is

p1xx = |c1x(t − t0)|2 =
1
4
|T1 + T4|2, p2xx = |c2x(t − t0)|2 =

1
4
|T2 − T3|2

p3xx = |c3x(t − t0)|2 =
1
4
|T2 + T3|2, p4xx = |c4x(t − t0)|2 =

1
4
|T1 − T4|2.

Expressing T1 to T4 with respect to the polar parameters of |ψ(t0)〉, defined
in (5), yields the final expressions of p1xx to p4xx. Here again, only three of
these probabilities or of their combinations need to be considered, because their
sum is equal to one. Together with p1zz p2zz, p4zz, this yields 6 non-redundant
classical-form “observed signals” in BSS terms. These signals again potentially
depend on all 4 above-defined relevant parameters of the unknown initial state
|ψ(t0)〉, which are then the 4 “source signals” of this new mixing model. This
model is therefore potentially invertible, at least over bounded intervals of the
source signals. This extended mixing model is nonlinear and original. It involves
2 unknown mixing parameters (through all four ωk,l [5]), namely Jxy and Jz.

As explained e.g. in [4–6], for any given state |ψ(t0)〉, the observed signals
available in practice for our previous BQSS methods are not the exact probabil-
ities p1zz to p4zz, but their estimates obtained with our Repeated Write/Read
(RWR) procedure, which consists of (i) repeatedly preparing |ψ(t0)〉, deriving
|ψ(t)〉, performing measurements, and (ii) then deriving the sample frequencies
of all possible measured values. The same principle here applies to p1xx to p4xx.

4.2 BQSS Methods

Here focusing on the BQSS task, as opposed to BQPT, the methods of Sect. 3
already allow us to extract the signals r1, r2 and ΔI , and what we still have to
do is to develop a method for then separately extracting (φ1 − θ1) and (φ2 − θ2),
by also using p1xx to p4xx. Although each of these probabilities alone has a
complicated expression, an analysis of their structure and calculations showed
us that a particularly attractive BQSS method may be developed by considering
their following combination:

p1xx + p4xx =
1
2

(|T1|2 + |T4|2
)

(20)

=
1
2

+ r1r2

√
1 − r21

√
1 − r22 [cos ΔI

+ cos ((φ1 − θ1) + (φ2 − θ2) − ΔΦ1,−1)] (21)

where the expressions of ω1,1 and ω1,−1 in [5] show that

ΔΦ1,−1 = (ω1,−1 − ω1,1)(t − t0) = −2GB(t − t0)
�

(22)
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and its value is therefore known in the considered configuration. The quantity
p1xx + p4xx is therefore attractive for BQSS because (unlike p1xx and p4xx) it
does not depend on the unknown mixing parameters Jxy and Jz ! This allows
us to build various complete BQSS methods which operate as follows:

– First, the “adaptation phase” essentially aims at estimating the required mix-
ing parameters, so as to fix the transform performed by the corresponding
separating system [10]. To this end, we consider a set (typically 103: see above)
of (repeatedly prepared) states |ψ(t0)〉, which yield the associated available
states |ψ(t)〉, that we use to estimate the mixing parameter v (related to Jxy)
of (8). To this end, we apply any of the methods based on measurements of
Oz spin components which were considered in Sect. 3.

– Then, in the “inversion phase” [10], for each (repeatedly prepared) available
state |ψ(t)〉, we aim at restoring the associated four source signals which
define the corresponding state |ψ(t0)〉. To this end, we first use the separating
structure corresponding to the methods of Sect. 3, e.g. described in [6]. This
yields estimates of r1, r2 and ΔI (the indeterminacies may be removed as
explained in [6]). We then use Ox measurements and invert (21)–(22) as

(φ1 − θ1) + (φ2 − θ2) = ±arccos

(
p1xx + p4xx − 1

2

r1r2
√

1 − r21
√

1 − r22
− cos ΔI

)

−2GB(t − t0)
�

+ 2kπ (23)

where one may reduce the ± and 2kπ inderminacies by using bounded inter-
vals for the considered quantities, as in [6]. Computing the (half) difference
and sum of (23) and (10) eventually yields (φ1 − θ1) and (φ2 − θ2).

It should be noted that extending BQSS methods to measurements along the
Ox axis thus does not increase “complexity” (in terms of the number of quan-
tum state preparations during the adaptation phase), as compared to our pre-
vious methods restricted to measurements along the Oz axis, especially because
we succeed in achieving this extended BQSS without having to estimate Jz

in addition. The counterpart of not estimating Jz is of course that this class
of BQSS methods do not achieve complete BQPT/Hamiltonian identification.
Other methods are therefore proposed hereafter to this end.

5 New BQPT Methods, with Bidirectional Measurements

We here again only use the available data defined in Sect. 4.1. Additional calcu-
lations yield the following expressions:

p1xx − p4xx = �(T1T
∗
4 ) = R14 cos ΔΦ1,0 − I14 sinΔΦ1,0 (24)
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where �(.) stands for real part, ∗ stands for complex conjugate, and where (again
using [5] to transform ω1,1 and ω1,0)

R14 = r21r2

√
1 − r22 cos(φ2 − θ2) + r22r1

√
1 − r21 cos(φ1 − θ1)

+(1 − r21)r2
√

1 − r22 cos(φ2 − θ2 − ΔΦ1,−1)

+(1 − r22)r1
√

1 − r21 cos(φ1 − θ1 − ΔΦ1,−1) (25)

I14 = −r21r2

√
1 − r22 sin(φ2 − θ2) − r22r1

√
1 − r21 sin(φ1 − θ1)

+(1 − r21)r2
√

1 − r22 sin(φ2 − θ2 − ΔΦ1,−1)

+(1 − r22)r1
√

1 − r21 sin(φ1 − θ1 − ΔΦ1,−1) (26)

ΔΦ1,0 = (ω1,0 − ω1,1)(t − t0) =
(t − t0)

�
(−Jxy + Jz − GB) . (27)

This allows us to propose the class of BQPT methods operating as follows. First,
we again use the adaptation phase of one of the methods of Sect. 3 to estimate v
and hence Jxy (up to indeterminacies). We then only need a single state |ψ(t)〉 and
we use the method of the inversion phase of Sect. 4.2 to estimate all four above-
defined source signals. Using (22), Eq. (24) then has a single unknown, that is
ΔΦ1,0, and it has the standard form a cos x+b sinx = c, so that it is easily solved.
This yields ΔΦ1,0 (up to some indeterminacies) and hence Jz thanks to (27).

6 A New Inversion-Based Joint BQSS/BQPT Method

We here use a third combination of p1xx to p4xx, not redundant with (20), (24):

p2xx − p3xx = −�(T2T
∗
3 ) = − (R23 cos ΔΦ0,0 − I23 sin ΔΦ0,0) (28)

with (again using [5] to transform ω1,1 and ω0,0)

ΔΦ0,0 = (ω0,0 − ω1,1)(t − t0) =
(t − t0)

�
(Jxy + Jz − GB) (29)

and R23, I23, respectively derived from (25) and (26) by changing the signs of
their second and fourth (i.e. last) terms.

With the same approach as in the previous sections, one would consider (7)–
(9), (21), (24), and (28) as a nonlinear mixing model (involving the above-defined
four source signals and two mixing parameters), one would first use statistical
QSICA methods for estimating the mixing parameters, and one would then use
these estimated parameters to restore (new values of) source signals. However,
introducing all above equations opens the way to the following, completely dif-
ferent, approach. One may consider (7)–(9), (21), (24), and (28) as a set of six
nonlinear equations which, fortunately, involve only six unknowns, namely r1,
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r2, (φ1 − θ1), (φ2 − θ2), Jxy and Jz. One may analytically solve part of these
equations: see [5] for (7) and (9). The others may be solved by using a nonlinear
numerical optimization algorithm from the literature. This is especially attrac-
tive because it requires only one (repeatedly prepared) state |ψ(t)〉, whereas the
above-defined QSICA methods typically need 103 (repeatedly prepared) such
states. On the contrary, some of the complete BQSS/BQPT methods defined
in the previous sections yield closed-form estimates for all above six source and
mixing quantities, whereas the numerical inversion-based method proposed here
might yield spurious global minima and convergence to local minima, which
should be further investigated.

7 Conclusion

In this paper, we introduced major extensions of the fields of blind quantum
source separation (BQSS) and blind quantum process tomography (BQPT): we
first considered a new type of spin component measurements for the directly
available quantum states (that correspond to the observed mixed signals pro-
cessed in classical BSS), which led us to introduce new nonlinear mixing models,
for which we proposed three types of BQSS and/or BQPT methods. Our future
works will especially consist of (i) analyzing the theoretical properties of the
inversion-based method defined in Sect. 6 and (ii) developing software tools to
simulate qubits and evaluate the performance of the proposed methods.
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Blind Signal Separation by Synchronized
Joint Diagonalization
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Abstract. Joint Diagonalization (JD) is a well-known method for blind
signal separation (BSS) by exploiting the nonstationarity of signals. In
this paper, we propose Synchronized Joint Diagonalization (SJD) that
solves multiple JD problems simultaneously and tries to synchronize the
activity of the same signal along the time axis over the multiple JD
problems. SJD attains not only signal separation by the mechanism of
JD but also permutation alignment by the synchronization when applied
to frequency-domain BSS. Although the formulation of SJD starts from
the minimization of multi-channel Itakura-Saito divergences between a
covariance matrix and a diagonal matrix, the simplified cost function
with the finest time blocks becomes similar to that of Independent Vec-
tor/Component Analysis (IVA/ICA). We discuss the relationship among
SJD and existing techniques. Experimental results on speech separation
are shown to demonstrate the behavior of these methods.

1 Introduction

As a blind signal separation (BSS) method that exploits the nonstationarity of
signals, there have been proposed many Joint Diagonalization (JD) methods [1–
7] applied to the covariance matrices of multiple time blocks. These are basically
separation methods for instantaneous mixtures. When applied to convolutive
mixtures with delays and reverberations, these methods need to be extended
or followed by some post-processing. Typically, the convolutive mixtures are
transformed into time-frequency domain, and multiple JD problems that are
associated with multiple frequency bins are solved [3] followed by permutation
alignment [8]. Such a way to solve a convolutive BSS problem is called frequency-
domain BSS.

In this paper, we propose a method called Synchronized Joint Diagonalization
(SJD). The method solves multiple JD problems with synchronizing the diagonal
elements of the same source along the time axis. We model the nonstationarity of
a source signal with parameters that depend only on signal identity and a time
block but not on a frequency bin. The modeling is typically effective for speech
separation as will be demonstrated later. We employ multichannel Itakura-Saito
(IS) divergence [9] between a covariance matrix of a separated signal and a
diagonal matrix that is modeled with above mentioned parameters. We propose

c© Springer International Publishing AG, part of Springer Nature 2018
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an algorithm that minimizes the IS divergence sum over all the time blocks and
all the frequency bins. Consequently, SJD is expected to produce solutions for
multiple JD problems with their permutations aligned among frequency bins.

JD and SJD methods utilize the nonstationarity of a signal by taking multiple
time blocks into account. Under some conditions later described, we observe a
relationship between other BSS methods based on other principles. More specif-
ically, we discuss (1) the relationship between JD and Independent Component
Analysis (ICA) [10,11] and (2) the relationship between SJD and Independent
Vector Analysis (IVA) [12–16] that is expected to perform permutation align-
ment as well.

This paper is organized as follows. Section 2 formulates frequency-domain
BSS and explains JD. Section 3 proposes SJD and discusses the relationships
among other BSS methods. Section 4 reports experimental results.

2 Preliminary

2.1 Formulation of Frequency-Domain BSS

Suppose we have M observed signals and their time-frequency representations
xijm ∈ C by applying a short-time Fourier transform (STFT), with i = 1, . . . , I
and j = 1, . . . , J being frequency bins and time frames, respectively. The M
observed signals form a complex vector as xij = [xij1, . . . , xijM ]T ∈ C

M , which
is assumed to be a linear mixture of N independent complex source signals
sijn = [sij ]n, n = 1, . . . , N as

xij = Aisij . (1)

The M×N complex mixing matrix Ai is assumed to be frequency-bin dependent,
but time-frame invariant. The purpose of frequency-domain BSS is to estimate
N × M separation matrices Wi for all frequency bins i = 1, . . . , I and to obtain
separated signals yijn = [yij ]n, n = 1, . . . , N that should be close to the original
source signals by

yij = Wixij . (2)

2.2 Joint Diagonalization (JD) of Covariance Matrices

This subsection explains a BSS method based on JD of covariance matrices [1–
7]. The process is frequency-bin i wise. The total J time frames are partitioned
⋃B

b=1 Jb = {1, . . . , J} into B time blocks Jb, b = 1, . . . , B. For each time block
Jb, we calculate the covariance matrix (assuming zero mean) of observed signals

Xib =
1

|Jb|
∑

j∈Jb

xijxH
ij (3)

and the covariance matrix (assuming zero mean, too) of separated signals
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Yib =
1

|Jb|
∑

j∈Jb

yijyH
ij = WiXibWH

i . (4)

The goal here is to estimate a separation matrix Wi that diagonalizes (or makes
the off-diagonal elements [Yib]nm, n �= m close to zero) all the B covariance
matrices Yib, b = 1, . . . , B, jointly.

If B = 2, exact diagonalization (making off-diagonal elements exactly zero) is
possible. A separation matrix Wi is obtained by solving generalized eigenvalue
decomposition Xi1WH

i = Xi2WH
i Λ where Λ is a diagonal matrix. Figure 1

shows an example when B = 2.
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Fig. 1. An example of JD when the number B of time blocks is two. The left hand
side shows two-channel observed mixtures (upper) and two source signals (lower). Let
the first time block J1 be from 0 to 0.2 (sec) and the second block J2 be from 0.2 to
0.4 (sec). The right hand side shows covariance matrices. The upper right corresponds
to those Xi1Xi2 of observed mixtures, which are not jointly diagonalized. The lower
right corresponds to those Yi1Yi2 of separated signals, which are jointly diagonalized.

If B ≥ 3, exact diagonalization is not possible in general. Therefore, we
typically define a distance or divergence such as

d(Yib) = ||Yib − diag(Yib)||F (5)

or
d(Yib) = log det diag(Yib) − log detYib , (6)

and minimize the sum over the whole time blocks

C(Wi) =
∑B

b=1 d(Yib) . (7)
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The operation diag(Y) keeps the diagonal elements of Y unchanged and makes

the off-diagonal elements zero. ||Y||F =
√∑N

n=1

∑M
m=1 |ynm|2 is a Frobenius

norm. For a covariance matrix Y, which is Hermitian, det diag(Y) ≥ detY
satisfies. Equations (5) and (6) are employed in [2,3,6,7] and [1,4,5], respectively.
Therein, various minimization algorithms have been proposed.

3 Proposed Method

3.1 Synchronized Joint Diagonalization (SJD)

In this paper, we generalize Eq. (6) and consider the multichannel Itakura-Saito
divergence [9] or log-determinant divergence

dIS(Yib, Ŷib) = tr(YibŶ−1
ib ) − log detYibŶ−1

ib − N (8)

between a covariance matrix Yib and a diagonal matrix Ŷib. If Ŷib = diag(Yib),
Eq. (8) reduces to Eq. (6).

In the formulation of SJD, we model the diagonal matrix Ŷib as

[Ŷib]nm =
{

vbn if n = m
0 if n �= m

(9)

The model parameter vbn depends on a time block b and a signal n, and does
not depend on frequency i. The intention of introducing this parameter is to
make signal n activity on each block b synchronized over all frequency bins i.
For the purpose of regularization, we assume a prior distribution for vbn using
an inverse-gamma distribution

vbn ∼ IG(vbn|α, β) =
βα

Γ(α)
v−α−1

bn exp
(

− β

vbn

)

. (10)

For notational convenience, let V be a B × N matrix and vbn = [V]bn.
SJD minimizes the sum of the total divergence and the negative log-

likelihood. The total divergence is over not only the whole time blocks but also
all frequency bins.

C({Wi}I
i=1,V) =

I∑

i=1

B∑

b=1

dIS(Yib, Ŷib) −
B∑

b=1

N∑

n=1

log IG(vbn|α, β) . (11)

Substituting Eqs. from (8) to (10) into Eq. (11) and eliminating constant terms,
we have a simplified cost function to be minimized

C =
B∑

b=1

N∑

n=1

[∑I
i=1[Yib]nn + β

vbn
+ (I + α + 1) log vbn

]

− 2B
I∑

i=1

log |detWi| .
(12)
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3.2 Optimization Algorithm

We minimize Eq. (12) by alternatively updating {Wi}I
i=1 and V.

Regarding V, we have an update rule for each element

vbn =
∑I

i=1[Yib]nn + β

I + α + 1
(13)

as a solution of the partial derivative

∂C
∂vbn

= −
∑I

i=1[Yib]nn + β

v2
bn

+
I + α + 1

vbn
(14)

of C with respect to the element vbn being zero.
Regarding a frequency bin-wise separation matrix

Wi =

⎡

⎢
⎣

wH
i1
...

wH
iN

⎤

⎥
⎦ , (15)

we update it by the following procedure [15] derived by an auxiliary function
method. First, we calculate a weighted mean

Uin =
1
B

B∑

b=1

1
vbn

Xib (16)

of the observation covariance matrices for all the signal n = 1, . . . , N . Then, we
solve the Hybrid Exact-Approximate Diagonalization (HEAD) problem [17] for
these N matrices Uin, and update Wi as the HEAD solution. An efficient way
[15] to solve the HEAD problem is to calculate

win = (WiUin)−1en (17)

for each n, where en is a vector whose n-th element is one and all the others are
zero, and

win =
win√

wH
inUinwin

. (18)

to accommodate a HEAD condition wH
inUinwin = 1.

As described in [18], normalization on the scale of Wi makes the algorithm
stable. Thus, we apply Wi ← Wi/

N
√|Wi| after each iteration.

3.3 Example

Figure 2 shows examples in which the model parameters V are estimated for
speech mixtures. When the number of time blocks is large B = 162, the dynamics
of speech is finely estimated. When the number of blocks is relatively small
B = 20, the averaged power is estimated for each time block.
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Fig. 2. Two speech signals whose spectrograms are shown in the top two rows are
assumed to be mixed. The model parameters V estimated by the optimization algo-
rithm are shown in the bottom two rows with different number B of time blocks.

3.4 Relationship to IVA

Time blocks Jb can be specified arbitrary. Now we consider a condition.

Condition 1. The number B of time blocks equals to the number J of time
frames and the block size |Jb| is one, i.e., Jj = {j} for j = 1, . . . , J .

Then, the summation in the covariance matrix calculation (4) disappears Yij =
yijyH

ij , and the cost function (12) becomes

C =
J∑

j=1

N∑

n=1

[∑I
i=1 |yijn|2 + β

vjn
+ (I + α + 1) log vjn

]

−2J

I∑

i=1

log |detWi| (19)

by considering [Yij ]nn = |yijn|2.
Now we see some relationship between (19) and Independent Vector Analysis

(IVA) [12–16]. In IVA, we consider a vector ỹjn = [y1jn, . . . , yIjn]T ∈ C
I that

represents all the complex values over all frequency bins of a separated signal n
at a time frame j. And we minimize the negative log-likelihood as a cost function

CIV A = −
J∑

j=1

N∑

n=1

log p(ỹjn) − 2J

I∑

i=1

log |detWi| . (20)
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The probability density function of the vector is typically assumed to be a super-
Gaussian distribution [12–15] with scale parameter γ

p(ỹjn) ∝ exp
(

−||ỹjn||
γ

)

= exp

⎛

⎝−
√∑I

i=1 |yijn|2
γ

⎞

⎠ (21)

or assumed to be a Gaussian distribution with time-varying variance σ2
jn [16]

p(ỹjn) ∝ exp

(

−||ỹjn||2
σ2

jn

)

= exp

(

−
∑I

i=1 |yijn|2
σ2

jn

)

. (22)

If we compare (19) and (20) together with (21) or (22), the difference regarding

the separation matrix Wi and the separated signals yijn is only in
∑I

i=1 |yijn|2+β

vjn

and
√∑I

i=1 |yijn|2
γ or

∑I
i=1 |yijn|2

σ2
jn

. Therefore, the optimization algorithm shown

from (16) to (18) has been derived by the auxiliary function technique [15,16]
with the above mentioned difference in mind.

3.5 Relationship to JD and ICA

Ordinary JD can be seen as a special case of SJD where the number of frequency
bins is one I = 1. This means that we obtain a new algorithm for JD by assuming
I = 1 in Subsect. 3.2.

When I = 1, the SJD cost function (12) and parameter update (13) become

C =
B∑

b=1

N∑

n=1

[
[Yib]nn + β

vbn
+ (α + 2) log vbn

]

− 2B log |detWi| , (23)

vbn =
[Yib]nn + β

α + 2
, (24)

respectively. By substituting (24) into (23), we have

C = (α + 2)
B∑

b=1

N∑

n=1

log ([Yib]nn + β) − 2B log |detWi| (25)

with constant terms omitted.
Now we discuss the relationship to Independent Component Analysis

(ICA) [10,11]. Again we assume Condition 1. Then, (25) becomes

C =
J∑

j=1

[

(α + 2)
N∑

n=1

log
(|yijn|2 + β

) − 2 log |detWi|
]

(26)

This cost function (26) has a relationship to complex-valued FastICA [11] with
G(|yijn|2) = log(|yijn|2 + β) contrast function. If we consider the fact that Fas-
tICA assumes unitary separation matrix |detWi| = 1, we see that these two
methods optimize the same function.
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Fig. 3. Summary of the relationship among SJD and other related existing techniques

3.6 Summary of the Relationship

Figure 3 summarizes the relationship discussed so far. We have extended JD with
the divergence (6) to SJD by modeling diagonal elements with parameters vbn.
Then, we considered Condition 1 where B = J , and observed the relationship
between SJD and IVA. On another path, we went back to single separation
(JD) from SJD by setting I = 1, and then observed the relationship to ICA by
assuming Condition 1 again.

We consider that Eq. (12) is the most general form. Section 3.2 shows an
algorithm to optimize it. As shown in Fig. 3 with the arrows, Eqs. (19), (25) and
(26) can be derived as special cases of Eq. (12). This means that we have opti-
mization algorithms for all the four equations. In the next Section, we compare
the results of BSS with these equations.

4 Experiments

To examine the behavior of SJD and its variants, we performed experiments for
blind speech separation. We measured impulse responses from two loudspeakers
to two microphones in a room whose reverberation time was RT60 = 200 ms.
Then, we made mixtures by convolving the impulse responses and 10-second
speech signals. The sampling frequency was 16 kHz. The frame width and shift
of STFT were 128 ms and 32 ms, respectively. We set α = β = 0.5 for (10). The
separation performance was evaluated in terms of Signal-to-Distortion Ratio
(SDR) [19]. The algorithm was coded with Matlab and run on an Intel Xeon
E3-1290.

Figure 4 shows the separation performance with varying B. The left plot
shows the results of SJD (12) and IVA (19). The center and right plots show the
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Fig. 4. Left: separation performances by SJD with varying the number B of time
blocks. A dotted line corresponds to a mixture of two speeches. The solid grey line
represents the average over eight mixtures. Center: separation performances by mul-
tiple JDs. Right: separation performances by multiple JDs followed by a permutation
alignment method [20].

results of JD (25) and ICA (26). In each plot, the left most values (when B =
325) correspond to IVA or ICA. In the center case, there was no care regarding
permutation ambiguities among frequency bins. In the right case, permutation
ambiguities were aligned by a post-processing method [20].

We observe the followings. SJD with a large B (325, 162, 81) generally con-
tributed to separation performance. This was because permutations were effec-
tively aligned by precisely tracking the activity of source speeches (see Fig. 2 for
an example). JD alone did not attain source separation. However, when followed
by the alignment post-processing, JD attained excellent separations. In these
JD cases, the number B of time blocks did not clearly affect separation perfor-
mance. This means that every BSS problems at every frequency bin is effectively
solved by JD regardless of B. In total, even though SJD/IVA is designed to align
permutations among frequency bins, there was still a small gap regarding the
alignment performance between SJD/IVA and the post-processing [20]. Future
work includes improvement of SJD/IVA on permutation alignment capability.

The optimization algorithms sufficiently converged with 50 iterations in all
cases. The execution time was around 12 s with B = J = 325 and was around
7.4 s with B = 81, respectively, for a 10-second mixture.

5 Conclusion

As a BSS method to exploit the nonstationarity of source signals, we extended JD
to SJD by introducing model parameters vbn = [V]bn that represent frequency-
independent source n activities. The SJD cost function (12) can efficiently be
optimized by the algorithm shown in Sect. 3.2, and can be considered as a general
cost function for BSS as summarized in Fig. 3. The findings described in this
paper help us to organize and understand various existing BSS methods including
ICA and IVA that exploit the nongaussianity of source signals.
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Abstract. This paper introduces a framework for robust speaker local-
ization in reverberant environments based on a causal analysis of the tem-
poral relationship between direct sound and corresponding reflections. It
extends previously proposed localization approaches for spherical micro-
phone arrays based on a direct-path dominance test. So far, these meth-
ods are applied in the time-frequency domain without considering the
temporal context of direction-of-arrival measurements. In this work, a
causal analysis of the temporal structure of subsequent directions-of-
arrival estimates based on the Granger causality test is proposed. The
cause-effect relationship between estimated directions is modeled via a
causal graph, which is used to distinguish the direction of the direct
sound from corresponding reflections. An experimental evaluation in sim-
ulated acoustic environments shows that the proposed approach yields an
improvement in localization performance especially in highly reverberant
conditions.

Keywords: Speaker localization · Spherical microphone arrays
Vector autoregressive models · Multivariate granger causality test

1 Introduction

Acoustic speaker localization (ASL) is a widely and actively investigated topic
in digital signal processing. It has important practical applications in speech
enhancement [1], teleconferencing and smart rooms [2,3], robot audition [4,5]
and many other fields. ASL aims at estimating the position or direction of
arrival (DoA) of speakers from audio signals captured by an array of micro-
phones. Popular methods for performing this task include approaches based on
beamforming [6,7], the multiple signal classification (MUSIC) algorithm [8,9]
and the degenerate unmixing and estimation technique (DUET) [10].
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Recently, several novel approaches to ASL using spherical microphone arrays
have been proposed, which allow a precise estimation of speaker DoAs in three-
dimensional space [11,12]. The method introduced in [11] utilized a direct-path
dominance (DPD) test to cope with reverberation effects by performing ASL
exclusively on time-frequency (TF) bins that are dominated by the direct sound.
This approach was extended in [12] towards a computationally less demanding
framework based on pseudo-intensity vectors. A central aspect of DPD-test-
based localization is the clustering of TF bins into components that correspond to
different DoAs. This is typically achieved using probabilistic clustering methods
like Gaussian mixture models (GMMs) [13]. Prior to clustering, DPD-test-based
DoA estimation processes each TF bin individually to decide if a particular
element in the acoustic spectrogram is dominated by the direct sound. The
GMM components obtained during the clustering step can thus be interpreted as
DoAs that correspond to the true source locations. However, mis-detections can
occur depending on the available amount of data and the clustering parameters,
which might yield GMM components corrupted by strong reflections. In [11] a
heuristic approach was proposed, where the DoA that is assumed to stem from
the true source location was chosen as the most dominant GMM component.
Here, the GMM components were estimated based on DoA observations obtained
by locally averaging TF regions without considering temporal structure. An open
question in this regard is, if considering the temporal context of the received
direct sound and corresponding reflections can be beneficial for selecting the
correct component.

This paper introduces a clustering-based DoA estimation framework for
spherical microphone arrays which exploits the temporal causal structure of
sound propagation. In a reverberant environment, the sound waves received at
the microphone array are typically composed of the direct sound, followed by
early-reflections and subsequent late reverberation [14, Chap. 4]. This physically
justified structure allows us to consider models that incorporate the temporal
context of the received acoustic signals explicitly. The underlying assumption is
that the DoA of the direct sound that arrives after a period of silence is visible
at the acoustic sensors before subsequent DoAs of acoustic reflections. Hence,
a temporal cause-effect relationship between direct sound and corresponding
reflections can be formulated. A popular framework to determine causal effects
between time-series is the Granger causality test (GCT) [15], which has received
wide acclaim in econometric time-series analysis [15,16]. This statistical test is
applied here in the context of ASL to distinguish the direct sound from corre-
sponding reflections DoAs based on their causal relationships.

2 Localization Framework

The localization framework that is used in this study is largely based on the
method introduced in [11] and will be briefly reviewed in this section. Further-
more, the GMM-based clustering approach from [17] and the generation of time
series signals, which serves as a basis for the causal analysis step proposed in
Sect. 3, will also be summarized below.
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2.1 Spherical Array Processing

A rigid spherical microphone array with radius r and Q acoustic sensors is con-
sidered in this study. The sound field around the array is assumed to be com-
posed of L plane waves. Let p(k, r, θq, φq) denote the sound pressure at the q-th
microphone, where k is the wave number and the angles θq and φq represent
the position of the microphone in spherical coordinates mq =

[
θq, φq

]T. By fol-
lowing the approach introduced in [11] and denoting Ω ∈ {m1, . . . , mQ}, the
sound pressure at the surface of the array can be formulated as

p(k, r, Ω) = Y (Ω)B(k, r)Y H(Ψ )s(k) + n(k), (1)

with p(k, r, Ω) = [p(k, r, m1), . . . , p(k, r, mQ)]T, where Y (Ω) ∈ C
Q×(N+1)2

and Y (Ψ ) ∈ C
L×(N+1)2 are spherical harmonics matrices with corresponding

spherical harmonics functions Y m
n (mq) and Y m

n (vl) of order n and degree m,
respectively. B(k, r) ∈ C

(N+1)2×(N+1)2 is a diagonal matrix modeling the scat-
tering of a plane wave from the rigid sphere via radial functions [18] and N
is the order of the spherical array. Ψ ∈ {v1, . . . , vL} represents the source
arrival directions, s(k) = [s1(k), . . . , sL(k)]T are the acoustic source signals and
n(k) = [n1(k), . . . , nQ(k)]T is a vector modeling additive noise.

A plane wave decomposition (PWD) [18] can be applied to Eq. (1) by left-
multiplying with B−1(k, r)[Y (Ω)]†, which yields

a(k) = Y H(Ψ )s(k) + ñ(k), (2)

where a(k) = [a00(k), . . . , aNN (k)]T ∈ C
(N+1)2 represents a vector containing

the complex spherical harmonics coefficients of the plane wave density function
and ñ(k) = B−1(k, r)[Y (Ω)]†n(k). Equation (2) is then transformed into the
shorttime Fourier transform (STFT) domain, which leads to

aτ,ν = Y H(Ψ )sτ,ν + ñτ,ν , (3)

where τ and ν denote the time- and frequency indices, respectively.

2.2 Direction-of-arrival Estimation

Based on Eq. (3), a spatial-spectrum matrix Rτ,ν = 〈aτ,νaH
τ,ν〉 is computed

at each TF bin by averaging over a specified number of neighboring time- and
frequency bins. Subsequently, the DPD test [11] is applied to distinguish TF bins
that are dominated by the direct sound from bins that are largely influenced by
coherent reflections. By following the approach introduced in [11], a singularvalue
decomposition (SVD) of the spatial-spectrum matrix is computed, followed by
applying the DPD-test to each Rτ,ν . This allows the construction of a set of TF
bins that pass the DPD test

D =
{

(τ, ν) :
σ1(Rτ,ν)
σ2(Rτ,ν)

≥ ξ
}

, (4)
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where σ1 and σ2 are the two largest singular values obtained by the SVD and ξ
denotes a threshold parameter, which is typically chosen sufficiently larger than
one [13]. In the following step, DoA estimation is performed within all TF bins
that passed the DPD test (τ, ν) ∈ D via the MUSIC estimation framework [9].
This yields a set of DoA vectors v̂τ,ν =

[
φ̂τ,ν θ̂τ,ν

]T
for all considered TF bins,

which will be subsequently used to generate DoA time series signals.

2.3 Clustering

A dataset of estimated azimuth and elevation angle pairs V = {v̂τ,ν} ∀ τ, ν ∈ D
is used to cluster all DoA candidates based on a GMM with the probability
density function (PDF)

p(V |λ) =
K∑

i=1

πi N (V |μi, Σi) (5)

with
∑K

i=1 πi = 1, where K denotes the number of mixture components, πi

correspond to the mixture weights and N (V |μi, Σi) describes a multivariate
normal distribution with mean vector μi and covariance matrix Σi. The model
parameters are summarized within the set λ = {πi, μi, Σi}K

i=1.
In recently proposed approaches for DoA estimation using the DPD test,

the corresponding source DoA was chosen according to Eq. (5) as the mixture
component with the largest mixture weight and lowest variance [11,13,17]. This
rather heuristic approach nevertheless yielded good estimation results in the
respective works, however, it did not take into account the temporal context of
the individual DoA estimates in the TF plane.

3 Causal Analysis

Causal analysis based on the GCT requires an appropriate time-domain rep-
resentation of the acoustic signals. In this work, time-series are generated as
binary activity patterns of the estimated GMM clusters in the TF domain
x
(i)
1:T,ν = [x(i)

τ,ν ]τ=1,...,T , with

x(i)
τ,ν =

{
1 if p(v̂τ,ν |μi, Σi) > p(v̂τ,ν |μj , Σj) ∀ j = 1 . . . , K, j �= i

0 otherwise
. (6)

The activity pattern in Eq. (6) models the TF bins in which the corresponding
i-th cluster is dominant over all other clusters. As each cluster is associated with
a certain range of DoAs, the binary activity pattern can be interpreted as a TF
representation of dominant incoming sound directions. The remaining question
is, which of the clusters corresponds to the true source DoA. A possible solution
to this problem based on the GCT will be introduced in this section.
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3.1 Granger Causality Test

The GCT [15] was initially proposed as an econometric analysis tool to test for
temporal causality between time series. A commonly used framework to perform
the GCT utilizes vector autoregressive (VAR) models of time-series data to be
analyzed. Herein, the notion of Granger causality follows a predictive interpre-
tation: Let X and Y denote jointly distributed, multivariate stochastic process
variables. Y is assumed to Granger-cause X, denoted as FY →X , if the degree
to which the past of Y helps to predict X is significantly higher than the degree
to which X can already be predicted by only considering its own past [19]. In
the context of VAR processes, this can be modeled as

[
xτ

yτ

]
=

m∑

μ=1

[
Axx,μ Axy ,μ

Ayx,μ Ayy ,μ

] [
xτ−μ

yτ−μ

]
+

[
εx,τ

εy ,τ

]
(7)

where xτ and yτ are realizations of the stochastic process variables X and Y , m
denotes the order of the VAR process, μ is the respective time lag and the matri-
ces Axx,μ, Axy ,μ, Ayx,μ and Ayy ,μ represent the regression coefficients of the
model. The residuals are assumed to be zero-mean, Gaussian distributed random
variables εx,τ ∼ N (0, Σx) and εy ,τ ∼ N (0, Σy ) with covariance matrices Σx

and Σy . Considering only the sub-expression of Eq. (7) related to xτ

xτ =
m∑

μ=1

Axx,μxτ−μ +
m∑

τ=1

Axy ,μyτ−μ + εx,τ , (8)

it is clear that the regression coefficients Axy ,μ represent the dependence of X
on the past of Y . Setting Axy ,μ = 0 ∀μ leads to a reduced VAR process model

xτ =
m∑

μ=1

A′
xx,μxτ−μ + ε′

x,τ , (9)

which completely omits this dependence. Here, A′
xx,μ denotes the regression

coefficients of the reduced model and ε′
x,t ∼ N (0, Σ′

x) are the corresponding
residuals with covariance matrix Σ′

x . A test for Granger causality FY →X can
now be conducted by comparing the prediction performances of the full (7) and
the reduced (9) VAR models. In this study, a GCT statistic based on the log-
likelihood ratio

FY →X ≡ log
{ |Σ′

x |
|Σx |

}
(10)

as described in [20] is utilized, which is evaluated using a statistical test based
on the F -test statistic [21]. As shown in [19], this test statistic can be used to
evaluate the null hypothesis H0 : Axy ,μ = 0 ∀μ representing zero causality
between the full and the reduced VAR model.

It has to be noted that the GCT as applied here is based on a linear Gaus-
sian assumption, whereas the generated time series in Eq. (6) are binary signals.
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Even though the Gaussian assumption is clearly violated in this case, the applied
framework has shown that it is able to cope with the specific type of signals used
in this work. As the current study shall serve as a proof of concept, the concep-
tually simple linear Gaussian model is adopted here. However, advanced GCT
measures for signals with different statistical properties exist [22] and provide
interesting research directions for future work.

3.2 Causal Graph Formulation

The notion of Granger causality introduced in Sect. 3.1 can be utilized to con-
struct a causal graph [23, Chap. 5], representing causal relationships between the
DoA time series introduced in Eq. (6). A causal graph is represented by a set of
nodes X = {X1, . . . , XN} representing multivariate random variables and a set
of edges E , which allows a directed, pair-wise connection between nodes if they
exhibit a causal relationship. In this study, an edge from Xi to Xj is added to
the causal graph if Granger causality FX i→X j

between the two variables exists,
i.e. they pass the GCT based on Eq. (10) given a specified significance level α.
An example of a causal analysis is depicted in Figs. 1a and b.

Fig. 1. Exemplary causal analysis of time-series data that was generated by a speech
source in a simulated acoustic setup with room dimensions 8 m×5m×3 m and T60 = 1 s.
The true source DoA with respect to the microphone array is φ = 99.4◦ and θ = 24.5◦.

The application of this analysis framework to the DoA estimation problem
discussed in Sect. 2 is straightforward: First, full and reduced VAR models
according to Eqs. (7) and (9) are fitted to each pair of time series acquired
through Eq. (6) using ordinary least squares (OLS) estimation for VAR pro-
cesses [24]. The model order of the VARs is determined via model order selec-
tion based on the Akaike information criterion (AIC) [25]. A pair-wise GCT is
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then conducted using the estimated VAR models according to Eq. (10). This
yields a causal graph which is subsequently analyzed to determine its root node,
corresponding to the time-series that is supposed to initially have caused all
other time-series. This root node is then selected as the DoA of the true source
position.

3.3 Root Node Selection

The causal model introduced in this study enables the analysis of causes and
effects between DoA time series that have been generated by the localization
framework introduced in Sect. 2. The purpose of this analysis is to distinguish
the DoA representing the true source position from other DoAs that correspond
to interfering reflections. From the viewpoint of Granger causality, the DoA
of the direct sound is directly related to a root node in the causal graph, as
all subsequent reflections imply a temporal causal relation with respect to the
direct sound. Hence, a root cause analysis (RCA) [26] can be applied to the
causal graph to determine the root node.

A root node in a causal graph corresponds to a node that has an indegree of
zero [27, Chap. 9]. Referring to the example in Fig. 1b, the node corresponding
to the variable X1 would represent a root node. However, in many practical
cases, the causal graph either might not contain a node that strictly fulfills this
condition at all, or there is more than one node with indegree zero. To solve this
issue, RCA partitions the causal graph into subgraphs of strongly connected
nodes. A subgraph is called strongly connected, if every node can be reached
through a path from every other node [27, Chap. 12]. In Fig. 1b, the variables X2,
X3 and X4 form a strongly connected subgraph. There exist several algorithms
based on depth-first search, which can find strongly connected components in
arbitrary graphs in linear time. In this work, Tarjan’s algorithm [28] is used
for the partitioning of the causal graph. Subsequently, the strongly connected
subgraph with the largest outdegree is selected as the root subgraph and the
node with the largest outdegree within that subgraph is chosen as the direct
sound component.

4 Evaluation

The proposed framework is evaluated in a simulated acoustic environment. As
a baseline, the DoA selection approach used in [13] was chosen for comparison.

4.1 Experimental Setup

Monte Carlo simulations with a single speaker in a room of size 8m × 5m × 3m
were conducted. The acoustic simulation was performed using the image-source
method [29] with a spherical microphone array of radius r = 4.2 cm composed of
32 microphones. A collection of speech sounds from the “sound event detection
in synthetic audio” task of the Detection and Classification of Acoustic Scenes
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and Events (DCASE) challenge 20161 was used throughout all experiments. 100
Monte Carlo runs each were conducted for reverberation times between 0.5 s
and 2.50 s to investigate the performance of the proposed framework also in very
challenging acoustic conditions. The length of each audio signal was fixed to 10 s.
Diffuse background noise with a signal-to-noise ratio of 40 dB was added to the
acoustic signal in all simulations. The GCT was performed with a significance
level of α < 0.05 in all experiments. The GMM parameters were estimated with
a fixed number of K = 10 components. Localization root mean square error
(RMSE) was selected as the evaluation metric for all experiments.
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Fig. 2. Averaged localization RMSEs with corresponding error standard deviations
obtained during the conducted Monte Carlo simulations.

4.2 Results and Discussion

The results depicted in Fig. 2 show that the proposed framework consistently out-
performs the baseline method from [13]. The improvement is especially notable
in acoustic environments with high reverberation time. This result indicates that
the explicit consideration of temporal causality is beneficial for DoA component
selection, especially if the influence of acoustic reflections becomes more signif-
icant with respect to the direct sound. To further investigate this effect, Table
1 shows the average coincidence rate of GMM indices selected with the baseline
method and the proposed framework based on the GCT. It indicates that with
increasing reverberation time, the selected GMM components that are assumed
to stem from the true source position also increasingly differ between both meth-
ods. This can be explained by the fact that the baseline method solely focuses
on the GMM component with largest mixture weight and lowest variance, which
becomes a less informative selection criterion if the influence of strong acoustic
reflections increases. In comparison, the proposed approach bases its decision on
causal relationships between the different DoAs and selects the root component
of the causal graph, which might not be the most dominant one in the case
of strong reflections. The results indicate that explicit consideration of Granger
causality between DoAs is beneficial in the context of ASL.

1 http://www.cs.tut.fi/sgn/arg/dcase2016/.

http://www.cs.tut.fi/sgn/arg/dcase2016/
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Table 1. Coincidence rate, representing the degree to which the same DoA components
of the GMM were selected by the proposed method and the baseline.

T60 in s 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Coincidence rate 0.97 0.93 0.91 0.81 0.79 0.79 0.72 0.65 0.65

5 Conclusion

This study has proposed a speaker localization framework based on the prin-
ciple of temporal causality between the direct sound DoA and corresponding
reflections. A DoA selection criterion using the Granger causality test was intro-
duced, which considers the DoA of the direct sound as a root node in a causal
graph. Experimental evaluation has shown that the proposed method outper-
forms previously introduced selection criteria, exclusively based on the strength
and variance of estimated individual DoAs without considering their temporal
relationship. Future work might focus on extending the proposed framework
towards different application domains like acoustic localization with arbitrary
array geometries or robot audition. Furthermore, an extension to the multi-
source case, as well as the incorporation of a statistical model that is more
accurate than the Gaussian assumption provide interesting directions for fur-
ther research.
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Abstract. Far-field speech capture systems rely on microphone arrays
to spatially filter sound, attenuating unwanted interference and noise and
enhancing a speech signal of interest. To design effective spatial filters,
we must first estimate the acoustic transfer functions between the source
and the microphones. It is difficult to estimate these transfer functions if
the source signals are unknown. However, in systems that are activated
by a particular speech phrase, we can use that phrase as a pilot signal
to estimate the relative transfer functions. Here, we propose a method
to estimate relative transfer functions from known speech phrases in the
presence of background noise and interference using template matching
and time-frequency masking. We find that the proposed method can out-
perform conventional estimation techniques, but its performance depends
on the characteristics of the speech phrase.

Keywords: Relative transfer function
Multichannel source separation · Keyword spotting · Microphone array

1 Introduction

In many audio processing applications, such as voice assistants and augmented
listening devices, we wish to isolate a single speech signal of interest from back-
ground noise and interference. These systems can use microphone arrays to spa-
tially filter audio signals, emphasizing sounds from a target direction and atten-
uating signals from other directions [1]. Multichannel processing has been shown
to improve the performance of speech recognition systems in noisy environments
[2]. Arrays can also be used in hearing aids and other listening devices to enhance
human hearing [3]. In order to filter out interference, a system must determine
which signals are coming from which source. We can differentiate sources using
their relative transfer functions (RTF), which describe differences in sound prop-
agation between sources and microphones and are generally different for sources
in different locations [4]. In environments with significant reverberation, particu-
larly when devices are placed next to walls or other reflecting surfaces, the RTFs
are difficult to predict geometrically and must be estimated from observed data.
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Because the target speech and unwanted interference signals are generally
unknown, RTF estimation is a difficult problem. If the desired signal is stronger
than the background noise or if the noise statistics can be reliably estimated,
then the RTFs can be estimated using subspace techniques [5,6]. The RTFs can
also be estimated using a variety of blind source separation techniques that rely
on assumptions about the properties of the signals [7,8]. It would be more reliable
to estimate RTFs using a known pilot signal like those used in communication
systems [9], but such signals are typically unavailable. In some applications,
however, we do have partial knowledge of the content of the speech. We can
therefore use the speech itself as a pilot signal to estimate the RTFs.

In this work, we consider audio capture systems that are activated by a
certain speech phrase, known as a keyword. Such keywords are often used to
remotely activate voice assistants on mobile phones and other electronic devices.
These systems use low-power keyword spotting algorithms to continuously mon-
itor for the speech phrase, then activate the full recognition system once it is
detected [10]. Because the content of this speech phrase is known in advance,
we can use the keyword to better estimate the RTFs of the speaker. Here, we
propose an RTF estimation system that matches a multichannel recording to
a prerecorded template of the keyword, uses that template to isolate the key-
word in each channel, and estimates the RTFs from those isolated recordings.
To demonstrate the source separation utility of the keyword alone, we do not
apply any other blind source separation techniques and we use no information
about the array geometry. A key question in this study is the impact of the
choice of keyword on the performance of the system: how do the length and
spectral content of the keyword affect the accuracy of the RTF estimate? We
will demonstrate the performance of the system and address this question using
a crowdsourced database of speech commands and a microphone array similar
to those used in commercial voice-assistant-enabled speakers.

2 Far-Field Audio Capture

A far-field audio capture system is shown in Fig. 1. Sound is captured by an array
of M microphones, which we assume to behave linearly but which may have
arbitrary locations and frequency responses. The system continuously records
from all M microphones while it waits for the keyword. The signals are processed
as follows:

1. A keyword spotting algorithm, which we assume to work perfectly, activates
the system upon detecting the keyword.

2. Once the system is activated, the keyword is used to estimate the relative
transfer functions of the source.

3. The RTFs are used to design a source separation filter that isolates the speech
following the keyword and suppresses interference and noise.

4. The separated speech is then reproduced, stored, transmitted, or processed
further, depending on the application.
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Fig. 1. A far-field audio capture system uses a known speech keyword to design a
multichannel filter and separate the unknown speech.

2.1 Microphone Array System

Let s(n, k) be the short-time Fourier transform (STFT) of the signal of interest
at the first microphone, where n is the frame index and k is the frequency index.
Let x(n, k) be the M -dimensional STFT vector of mixture signals received by
the M microphones. Under the multiplicative transfer function model [8], the
mixture is given by

x(n, k) = a(k)s(n, k) + z(n, k) (1)
= c(n, k) + z(n, k), (2)

where z(n, k) is the M -dimensional STFT vector of unwanted interference and
noise signals received by the microphones, a(k) is the vector of RTFs, and
c(n, k) = a(k)s(n, k) is the noise-free vector of source images. Because s(n, k)
is defined with respect to the first microphone, a1(k) = 1 for all k. The RTFs
depend on the relative positions of the source and microphones, the reverbera-
tion characteristics of the space, and the frequency responses and directionalities
of the microphones, which may be unknown.

2.2 Source Separation

To isolate the signal of interest, s(n, k), from the mixtures x(n, k), we use an
M -channel spatial filter w(k), sometimes known as a filter-and-sum beamformer:

ŝ(n, k) = wH(k)x(n, k). (3)

There are many ways to select the coefficients. Here, we restrict our attention
to the minimum power distortionless response (MPDR) coefficients [11],

w(k) =
Σ−1

x (k)a(k)
aH(k)Σ−1

x (k)a(k)
, (4)

where Σx(k) = E
[
x(n, k)xH(n, k)

]
is the covariance matrix of the mixture. The

MPDR filter minimizes the expected power of wH(k)x(n, k) while ensuring that
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Fig. 2. The relative transfer functions are estimated from the noisy recording using a
time-warped template and a time-frequency mask.

wH(k)a(k)s(n, k) = s(n, k). To compute the coefficients, we must first estimate
both Σx(k) and a(k). In our experiments, the mixture covariance matrix is
estimated from the recording itself,

Σ̂x(k) =
1
N

N∑

n=1

x(n, k)xH(n, k). (5)

The MPDR filter is known to be sensitive to errors in the estimate of a(k) [11].
While this is a disadvantage in practice, it is helpful in illustrating the RTF
estimation performance of the system.

3 Relative Transfer Function Estimation

If the source and microphone positions or the room acoustics are unknown, then
the RTFs must be estimated blindly from the noisy mixture data. Fortunately,
in keyword-activated systems, the keyword itself can act as a pilot signal to
measure the acoustic channel. Of course, the keyword signal as uttered by the
speaker is not known exactly; it must itself be estimated from the noisy mixture.

The proposed method, shown in Fig. 2, combines classic template matching
algorithms and modern single-channel source separation methods:

1. Use dynamic time warping to match the recorded keyword to a template
keyword from a database.

2. Use the warped template to generate a time-frequency mask consistent with
the recorded keyword.

3. Apply the mask to each of the M channels of the mixture to isolate the
recorded keyword from interference and noise.

4. Estimate the RTFs from the spatial correlation of the masked data.

To better analyze the performance of keyword-based RTF estimation and to
compare different keywords, we do not apply any other blind source separation
techniques and we do not use information from the speech following the keyword.
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3.1 Template Matching

Template matching is a classic small-vocabulary speech recognition technique
[12]. The recorded keyword signal x1(n, k) is matched to one of L templates
pl(n, k) from a database. Since the sounds within a keyword can be uttered at
different speeds, the templates are warped to match the time scale of the record-
ing. Mathematically, we find the best-fitting template and the corresponding
time mapping by solving the minimization problem

l̂, t̂(n) = arg min
l,t(n)

∑

n

Cost (x1(n,1),. . ., x1(n,K); pl(t(n),1),. . ., pl(t(n),K)) , (6)

where t(n) is nondecreasing. In our experiments, the cost function is the
Euclidean distance between the Mel frequency cepstral coefficients of each pair of
frames. The optimization problem (6) can be solved using dynamic programming
[12]. The warped template is given by

p̂(n, k) = pl̂(t̂(n), k), for k = 1, . . . , K. (7)

Note that in dynamic time warping, it is customary to warp the time scales of
both the recording and the template to find the closest match. Here, we warp
the time scale of the template to match that of the recording.

3.2 Time-Frequency Masking

Because speech and other signals are sparse in the time-frequency domain, mix-
tures of several such sources can be effectively separated by assigning each time-
frequency bin to a single source [13]. This process is known as time-frequency
masking, and is often used in single-channel source separation. First, a mask is
generated by comparing the power in the warped template to a threshold:

r(n, k) =

{
1, if |p̂(n, k)|2 > γ(k)
0, otherwise.

(8)

The threshold γ(k) is a tuning parameter. In our experiments, we set it so that
roughly 10% of the mask frames are 1 for each frequency bin k.

To isolate the keyword in the recording from interference and noise, we apply
the time-frequency mask to each channel:

ĉm(n, k) = xm(n, k)r(n, k). (9)

If the signals are indeed sparse and if the mask is a good fit, then for nonzero
values of ĉm(n, k), we have |am(k)s(n, k)|2 � |zm(n, k)|2, so that

ĉ(n, k) ≈ a(k)s(n, k). (10)
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32 mm

Fig. 3. Experimental setup using a MEMS microphone array in a living room.

3.3 Relative Transfer Functions

Finally, we use the masked signals to estimate the relative transfer functions.
We compute the sample covariance matrix of the masked source spatial images:

Σ̂c(k) =
1
N

N∑

n=1

ĉ(n, k)ĉH(n, k). (11)

If (10) held exactly, then Σ̂c(k) would be a rank-1 matrix proportional to
a(k)aH(k). Let u(k) be the singular vector corresponding to the largest singular
value of Σ̂c(k). Then the estimated RTF vector is

â(k) =
u(k)
u1(k)

. (12)

This is a special case of covariance whitening RTF estimation [6] where the
noise is reduced by time-frequency masking rather than whitening. Related
classification-based RTF estimation methods incorporate speech presence prob-
abilities [14] and sparsity assumptions [15] to improve the mask.

4 Experiments

To evaluate the performance of the proposed separation method, we present
empirical results for RTF estimation and source separation in a cocktail party
scenario. The recording device, which is designed for voice assistant applications,
is a circular array of M = 7 digital MEMS microphones spaced about 32 mm
apart, as shown in Fig. 3. The array sits on a coffee table in the center of a living
room (T60 ≈ 400 ms) and four signals are emitted from loudspeakers placed on a
television stand, sofa, chair, and dining table between one and two meters away.
One source is designated the target and the other three are interference.

Impulse responses were measured using sweep signals and used to simulate
speech mixtures from prerecorded data. The keywords, examples of which are
shown in Fig. 4, are taken from a crowdsourced database of one-second spoken
commands [16]. The samples were recorded in widely varying environments with
different equipment, reverberation characteristics, and noise levels, so the acous-
tic simulation is less realistic than it would be with samples recorded in controlled
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Fig. 4. Spectrograms of two keywords with different RTF estimation performance.

anechoic conditions. Recordings with excessive background noise were removed
and the clips were normalized to a constant average power. The experiments
below use a set of L = 500 templates and a separate test set of 100 utterances
for each keyword. For each trial, four ten-second speech clips are selected at
random from a subset of the TIMIT database [17]. The mixtures also include
a multichannel recording of living room background noise from appliances and
ventilation. In these experiments, all signals are sampled at 8 kHz and the STFT
uses a length-1024 discrete Fourier transform, a von Hann window of length 1024
samples (128 ms), and a step size of 256 samples (32 ms) .

4.1 Relative Transfer Function Estimation Results

The MPDR beamformer, like many related multichannel filters, reduces noise
and interference by projecting the mixture vector onto the RTF vector of the
target source. If the estimated RTF vector is not parallel to the source image
vector, the source will be distorted and unwanted noise might be amplified. Thus,
to measure RTF estimation performance, we use the angle between the true and
estimated RTF vectors, averaged across frequency bins:

RTF Error =
1
K

K−1∑

k=0

arccos Re

[
âH(k)a(k)
|â(k)| |a(k)|

]

. (13)

Figure 5 shows RTF estimation error as a function of the input signal-to-
interference-plus-noise ratio (SINR) of the keyword recording. The plots on the
left show estimation performance using the ideal binary mask (IBM), which is
one when |s(n, k)|2 > |z1(n, k)|2 and zero otherwise. The IBM experiment shows
the effect of keyword choice on RTF estimation performance if the keyword and
noise signals were known perfectly. The plots on the right show the performance
of the proposed method with template matching and mask estimation.

It is clear that longer keywords are better than shorter keywords, but there is
significant variation even between keywords with the same number of syllables.
Keywords that contain sibilants (“yes”, “Sheila”) and thus strong high-frequency
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Fig. 5. RTF estimation performance using different keywords. Top: RTF error versus
input SINR. Bottom: RTF error at 0 dB input SINR.

content appear to outperform keywords that do not. These keywords are easier
to align with templates and cover more of the speech spectrum.

4.2 Source Separation Results

The ultimate goal of the proposed method is to improve source separation perfor-
mance in a far-field speech capture system. We measure separation performance
using the signal-to-error ratio (SER), computed in the time domain:

SER = 10 log10

∑
t s2(t)

∑
t (ŝ(t) − s(t))2

. (14)

Figure 6 shows the SER for mixtures of four speech sources and background
noise at an input SINR of about −4 dB. The plot on the left shows the SER as
a function of the keyword input SINR (the input SINR of the unknown speech
was not varied). The proposed method provides a roughly 20 dB keyword SINR
improvement over the blind RTF estimator, which selects the dominant singular
vector of Σ̂x(k) at each frequency. There is a significant gap between the ideal
and estimated mask performance, suggesting that there is room for improvement
in the template-matching and mask estimation algorithms. The plot on the right
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Fig. 6. Source separation performance with four speech sources. Left: Median speech
output SER versus keyword input SINR with keyword “Yes Sheila”. Right: Speech
output SER at 0 dB keyword input SINR.

shows the output SER when the keyword input SER is 0 dB. The output SERs
vary less than the RTF errors for different keywords, and keywords that include
sibilants do not have a clear advantage. Since the average spectrum of speech
signals is concentrated at low frequencies, high-frequency RTF errors have a
smaller impact on the separated speech signal.

5 Conclusions

The experiments show that speech keywords can be used as pilot signals to
estimate the RTFs of a source in a noisy mixture. The proposed method is most
useful when the interference and noise statistics are not known in advance, so
covariance whitening and other model-based RTF estimation methods cannot be
applied. In these situations, our experiments suggest that keyword-based RTF
estimation can dramatically improve source separation performance.

The accuracy of the RTF estimate appears to depend on the length and
the spectral content of the keyword. The most useful keywords have a variety
of sounds, making them easy to separate by masking and ensuring that the
full speech spectrum is captured by the template. The choice of keyword has a
smaller impact on the performance of the separator, suggesting that the method
may be useful for some applications even with keywords that are short and
spectrally concentrated. In this work, we have used relatively simple algorithms
for template matching, mask estimation, and source separation. While these are
adequate for this proof of concept, our results suggest that more sophisticated
algorithms could improve performance.

Many source separation methods rely on assumptions about the geometry of
the array or the statistics of the source signals. However, we can also leverage
information about the content of the signals. This study has shown that we can
effectively separate a speech source from strong interference based only on our
knowledge of a single word.
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Abstract. We assume a second-order source separation model where
the observed multivariate time series is a linear mixture of latent, tempo-
rally uncorrelated time series with some components pure white noise. To
avoid the modelling of noise, we extract the non-noise latent components
using some standard method, allowing the modelling of the extracted
univariate time series individually. An important question is the deter-
mination of which of the latent components are of interest in modelling
and which can be considered as noise. Bootstrap-based methods have
recently been used in determining the latent dimension in various meth-
ods of unsupervised and supervised dimension reduction and we propose
a set of similar estimation strategies for second-order stationary time
series. Simulation studies and a sound wave example are used to show
the method’s effectiveness.

1 Time Series Modelling via Blind Source Separation

Consider a multivariate time series xt = (x1t, . . . , xpt)� ∈ R
p, t ∈ {1, . . . , T},

commonly encountered in contemporary applications in the form of e.g. climate,
financial, EEG, MEG of fMRI-data [1]. Naturally, in each of these cases the
series can have dependency both within and between the individual series and it
is this richness of structure that sets multivariate time series analysis apart from
its univariate counterpart. Needless to say, the added complexity comes with a
price: already in the simplest first-order vector autoregressive VAR(1)-model [2],
where each time point linearly depends on the values of the previous time only,
it takes a total of 2p2 parameters to describe the full covariance structure of
the model, and with any more sophisticated models the number of parameters
inflates even further. The problem with modelling is further amplified when the
dimensionality p is large: as multivariate data often contains varying quantities
of redundancy and noise some of the model parameters are actually used to
model them while in reality we could resort to a simpler model.

A simultaneous solution to both previous problems is given by (linear) blind
source separation (BSS) [3]. In our time series context, we assume in BSS that
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 248–258, 2018.
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the observed series xt is an invertible mixture of some latent series zt with a
simpler dependency structure, i.e.

xt = μ + Ωzt, t ∈ {1, . . . , T}, (1)

where μ ∈ R
p is the location vector and the mixing matrix Ω ∈ R

p×p is invert-
ible. Furthermore, zt is usually assumed to be weak second-order stationary and
its component series temporally uncorrelated,

E((zt − E(zt))(zt+τ − E(zt))�) = Λτ is diagonal for all lags τ ∈ Z+.

The assumption on stationarity further allows us to fix E(zt) = 0,Cov(zt) = Ip

as the two moments are in (1) confounded with μ and Ω, respectively. The BSS
model (1) equipped with the previous assumptions is commonly known as the
second order separation (SOS) model [3].

Measurement error and noise are commonly included in the model (1) addi-
tively, as xt = μ+Ωzt +εt where εt ∈ R

p is a white noise vector [3] representing
the two sources of external variation. However, as in this case all estimates of
the signals will always be distorted by some noise, we work in the following
with the contrasting idea that the noise is not an external but an internal part
of the model. That is, we assume that the latent series can be partitioned as
zt = (s�

t ,w�
t )� where wt ∈ R

p−k is white noise and the sources of interest
(“signals”) in st ∈ R

k contain all the time dependency manifested in xt. Similar
models (with different definitions of “noise”) have been previously used in the
context of both unsupervised and supervised dimension reduction in e.g. [4–7].
Compared to the additive noise model the proposed one makes the modelling and
predicting of xt particularly simple, the process consisting of four steps: estimate
the latent series zt using some standard method, identify the p − k white noise
series among zt and discard them, model the remaining k temporally uncor-
related signal series individually, and finally, back-transform the model to the
original scale. This recipe avoids both of the previous problems affecting multi-
variate time series models: the number of parameters is kept in control as instead
of modelling a full p-variate time series we model k univariate time series, and
the modelling of noise is averted as we discard it prior to the modelling step.

However, the second of the four steps, the estimation of the dimensionality
k, is often heavily overlooked in similar contexts in the literature. BSS as a
solution to the modelling problem can be seen to have succeeded only partially
if our estimate d of k is inconsistent: on one hand, having d > k means the
we model noise in the third step, further biasing any predictions made with
the model later, and on the other hand, having d < k means that not all of the
signal gets captured by the model and we have voluntarily discarded information.
The task is similar to that of selecting the number of principal components in
principal component analysis where näıve descriptive tools such as the scree plot
or the Kaiser rule [8] are commonly used. [9] approached the estimation via the
ladle estimator of [10] but, as far as the authors know, no other work towards
this goal in the context of time series has been done in the literature. As our
current approach, we propose a semi-parametric, bootstrap-based strategy for
estimating k.
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2 Two SOS Methods and Test Statistics

To motivate our approach we next go through the steps taken in the two most
popular SOS methods, AMUSE (algorithm for multiple signals extraction) [11]
and SOBI (second order blind identification) [12]. Also, without loss of generality,
we assume that all our series are centered, i.e. μ = 0. AMUSE and SOBI both
assume the model (1) and the assumptions following it. We denote the lag-τ
autocovariance matrix of the series xt by Στ (xt) = E(xtx

�
t+τ ), the choice τ = 0

giving the marginal covariance matrix of the series.
The usual starting point in BSS is whitening the data: we estimate the

marginal covariance matrix Σ0(xt) and standardize the series using its (unique
symmetric) inverse root Σ0(xt)−1/2. This yields us the standardized series
xst

t = Σ0(xt)−1/2xt with the property that Σ0(xst
t ) = Ip. Some algebra reveals

the importance of the standardization for the BSS model: the standardized series
satisfies xst

t = Uzt for some unknown orthogonal matrix U ∈ R
p×p [13,14].

This insight instantly suggests using the eigendecompositions of the autoco-
variance matrices to recover the missing matrix U . Following our assumptions,
for any fixed lag τ0 > 0 we have Στ0(x

st
t ) = UΛτ0U

� where Λτ0 is diagonal. The
diagonal elements of Λτ0 contain the marginal τ0th autocovariances of the latent
series and for the white noise series wt they naturally equal 0. Thus, assum-
ing that all the k signal series correspond to distinct, non-zero eigenvalues, the
related eigenvectors U1 ∈ R

p×k can be identified up to sign and order, and finally,
we obtain the signal series st via the transformation xt �→ U�

1 Σ0(xt)−1/2xt,
yielding the AMUSE-solution with lag τ0. In practice the time series of interest
are selected from the estimated p latent series by inspecting the diagonal val-
ues of the estimated Λ̂2

τ0 , where the squaring is used simply for convenience to
order the components in a decreasing order of interestingness. The noise compo-
nents can now be identified as being the last p − d components that have “small
enough” eigenvalues, d = 0, . . . , p, the key question then being what actually is
small enough. An equivalent formulation for the problem can be stated via the
running means mp−d of the last p − d squared eigenvalues by asking for which d
the estimate m̂p−d is “too large”. This prompts to use m̂p−d as a test statistic
for testing the null hypothesis,

H0,d : The last p − d latent series are white noise.

For a fixed d, if the observed value of m̂p−d exceeds some pre-defined critical
value we conclude that the result is too unlikely to have been originated under
the null hypothesis and infer that the number of signal components is larger
than d. Chaining together tests for several null hypotheses H0,d1 ,H0,d2 , . . . then
allows us to pinpoint the true value d = k. However, obtaining the distribution
of our test statistic under the null hypothesis is a highly non-trivial task under
the general SOS-model, and we thus resort to the bootstrap [15] to obtain the
quantiles, the next section detailing several bootstrapping strategies we can use
to accurately replicate the null distribution.

AMUSE already gives us a reasonable starting point for devising a test statis-
tic for the signal dimensionality, but suffers from a clear drawback: the signal
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components must all have non-zero τ0th autocovariances in order to be distin-
guished from the noise (to be distinguishable from each other the signal autoco-
variances also need to be mutually distinct but that is irrelevant with respect to
our current problem of separating the noise subspace from the signal subspace
as a whole). In practice this necessitates a careful choosing of the single lag τ0,
possibly using some expert knowledge on the phenomenon at hand. Such incon-
venience is avoided with our preferred SOS-method, SOBI. In SOBI one instead
chooses a set of lags, T0, and jointly diagonalizes all |T0| autocovariance matrices
of the standardized series corresponding to the lags (with |T0| = 1 we revert back
to AMUSE). The joint diagonalization is captured by the optimization problem

U� = argmax
V �V =Ip

∑

τ∈T0

∥∥diag
(
V �Στ

(
xst

t

)
V

)∥∥2

F
,

commonly solved using the Jacobi rotation algorithm [16]. For two latent com-
ponents to be mutually distinguishable by the joint diagonalization it is suf-
ficient that the corresponding marginal autocovariances differ for some lag in
T0 [12]. In particular, we can distinguish the noise subspace from the signal
subspace if all signal series exhibit autocorrelation for at least one lag in T0

(which can be a different lag for different signals), prompting us to choose a
relatively large set of lags, T0 = {1, . . . , 12} being a common choice. Thus, a
natural test statistic for the null hypothesis H0,d is again obtained by consider-
ing “eigenvalues”, the diagonal elements of the estimated as-diagonal-as-possible
matrices Λτ = diag(U�Στ (xst

t ) U). Ordering the sums of the squared elements
in decreasing order, the running means m̂p−d of the last p − d components of
the sample estimate of

∑
τ∈T0

Λ2
τ will be “small” for large enough values of d

and their null distributions can be used to find the value of d where m̂p−d is too
large to have originated under the null hypothesis, again allowing us to identify
the correct dimensionality.

3 Bootstrap Tests for the White Noise Dimension

Bootstrap-based methods have recently been used in determining the noise sub-
space dimension for principal component analysis (PCA), independent compo-
nent analysis (ICA) and sliced inverse regression (SIR) in [5] and for non-Gaussian
component analysis in [6]. As an alternative testing method both works also dis-
cuss tests that are based on limiting behaviors of certain functions of the noise
eigenvalues. Such asymptotic procedures are indeed efficient when the sample size
is high and could certainly be considered in our context as well, if not for the gen-
eral difficulty of obtaining limiting results for time series models (see however the
limiting behaviour of AMUSE and SOBI for linear processes in [17–21]). As such
we leave the development of asymptotic testing procedures to a subsequent work
and proceed now with bootstrapping tests.

Assume a time series coming from the model (1), fix a candidate for the
signal dimension d and let m̂p−d be the test statistic of the previous section,
the mean of the last p − d squared eigenvalues produced by either AMUSE or
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SOBI (mean of the sums of the squared “eigenvalues” in the case of SOBI).
To test the null hypothesis H0,d we need a way to generate samples from the
distribution of the model (1) under the null hypothesis. We will consider four
different strategies where we always leave the signal part untouched and take
bootstrap samples of the noise part under the current null hypothesis, denoted
z∗
i,s where i = d + 1, . . . , p denotes the component and s = 1, . . . , T the time

point.

Parametric bootstrap: The most widely used assumption about the white noise
is that it is Gaussian, making all noise features independently and identically
N(0, 1)-distributed. The bootstrap samples are then

z∗
i,s ∼ N(0, 1).

Naturally, the parametric bootstrap makes the strongest assumptions, in this
case that (i) the noise processes are independent, (ii) within a noise process the
time points are serially independent and (iii) the noise is Gaussian. Using next
non-parametric bootstrap these assumptions can be relaxed in different ways.

Non-parametric bootstrap I: First we relax the distributional assumption while
keeping assumptions (i) and (ii), and assume only that the noise distribution
is for all noise components the same but not necessarily Gaussian. Then all
(p−k)×T elements in the noise part are iid samples from the same distribution
and we can use use the combined sample to estimate the empirical distribution
function (ecdf) and to sample (p − d) × T elements from it. Thus

z∗
i,s ∼ ecdf{(ẑ�

d+1, . . . , ẑ
�
p )�}, i = d + 1, . . . , p, s = 1, . . . , T,

where ẑj is the T -vector of the estimated jth latent series and ecdf{x} denotes
the ecdf of the samples in x.

Non-parametric bootstrap II: Another way to relax the third assumption is to
keep assumptions (i) and (ii) but assume that each process has a possibly dif-
ferent standardized distribution. In that case each noise series should be boot-
strapped individually and independently from the others. Therefore using this
strategy the bootstrap samples are obtained as

z∗
i,s ∼ ecdf{ẑ�

i }, i = d + 1, . . . , p, s = 1, . . . , T.

Non-parametric bootstrap III: The last approach considered relaxes also the
independence between the noise processes and just requires that they are uncor-
related and serially independent. Hence the ecdf is now multivariate and a boot-
strap sample of vectors is obtained as

z∗
n,s ∼ ecdf{ẑn,1, . . . , ẑn,T }, s = 1, . . . , T,

where z∗
n,s = (z∗

d+1,s, . . . , z
∗
p,s)

� and ẑn,t = (ẑd+1,t, . . . , ẑp,t)�.
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In Algorithm 1 we describe the entire testing procedure for H0,d using SOBI
(where the version for AMUSE is obtained by using only a single lag).

Algorithm 1. Testing H0,d

Set proposed dimension d, number of resamples R, observed sample Xi;
Estimate the SOBI-solution for Xi: Û�Σ̂

−1/2
0 , m̂p−d;

for i ∈ {1, . . . , R} do
Z∗

i ← bootstrap the last p − d series of Ẑi = Û�Σ̂
−1/2
0 Xi;

X∗
i ← Σ̂

1/2
0 ÛZ∗

i ;
Estimate the SOBI-solution for X∗

i : m̂∗
p−d;

Return the p-value: [#(m̂∗
p−d ≥ m̂p−d) + 1]/(R + 1);

The addition of one in both the numerator and denominator of the p-value
is a commonly used “correction” to avoid the event of obtaining a zero p-value.
For some other guidelines concerning bootstrap hypothesis testing, see [22].

The procedure above tests only for a specific value of the signal/noise dimen-
sion. To obtain an estimate for the dimension, the changing point from rejection
to acceptance of the sequence of null hypotheses is of interest. For that the tests
have to be applied sequentially and different strategies are possible. For exam-
ple, one can start with the assumption that all components are noise and then
increase successively the hypothetical signal dimension until for the first time
the null hypothesis cannot be rejected or one can start with the hypothesis of a
single noise component and increase the noise dimension until the first time the
null hypothesis is rejected. Another possibility is to use some divide-and-conquer
strategy. Comparing different estimation strategies is however beyond the scope
of this paper and will be explored in a future work. The following simulation
study focuses on validating the bootstrap hypothesis tests as suggested above.

4 Simulations

In order to assess the performance of the bootstrap tests, we conducted a sim-
ulation study with three different settings using 5-dimensional time series. The
first two are taken as ARMA-processes: z1 ∼ ARMA(2, 1) with parameters
φ1 = 0.5, φ2 = 0.2 and θ1 = 0.5 and z2 ∼ MA(5) with the parameter vector
θ = (−0.4, 0.6,−0.3, 0.1,−0.3). The final three series are noise with the following
distributions in the different settings: Setting 1: z3, z4, z5 ∼ N(0, 1); Setting 2:
(z3, z4, z5) ∼ t5; Setting 3: z3 ∼ N(0, 1), z4 ∼ t5 and z5 ∼ U(−

√
3,

√
3).

In all settings the signal subspace has the true dimension k = 2. Setting
1 is possibly the most natural one, in Setting 2 the noise has a spherical 3-
variate t5-distribution which means that there is some dependence among the
components and in Setting 3 the noise components are independent but have
different marginal distributions. As a mixing matrix we used a random matrix
Ω, where the elements of the matrix were drawn randomly from the N(0, 1)-
distribution. Next the bootstrap p-values based on M = 200 and 500 bootstrap
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Table 1. Rejection rates in Setting 1 over 200 bootstrap samples and 2000 repetitions.

AMUSE SOBI

n Booststrap method H0,1 H0,2 H0,3 H0,1 H0,2 H0,3

200 Parametric 0.998 0.042 0.004 1.000 0.049 0.006

200 Non-parametric I 0.998 0.042 0.006 0.998 0.047 0.008

200 Non-parametric II 0.998 0.048 0.006 1.000 0.046 0.005

200 Non-parametric III 0.999 0.046 0.005 1.000 0.052 0.005

500 Parametric 1.000 0.047 0.008 1.000 0.052 0.010

500 Non-parametric I 1.000 0.043 0.007 1.000 0.047 0.008

500 Non-parametric II 1.000 0.046 0.010 1.000 0.050 0.010

500 Non-parametric III 1.000 0.045 0.010 1.000 0.054 0.008

2000 Parametric 1.000 0.053 0.008 1.000 0.048 0.007

2000 Non-parametric I 1.000 0.042 0.006 1.000 0.057 0.007

2000 Non-parametric II 1.000 0.052 0.006 1.000 0.050 0.008

2000 Non-parametric III 1.000 0.052 0.008 1.000 0.048 0.008

5000 Parametric 1.000 0.052 0.008 1.000 0.053 0.006

5000 Non-parametric I 1.000 0.050 0.009 1.000 0.054 0.006

5000 Non-parametric II 1.000 0.054 0.010 1.000 0.050 0.007

5000 Non-parametric III 1.000 0.052 0.007 1.000 0.050 0.006

samples were calculated and the procedure was repeated 2000 times. We used the
time series lengths T = 200, 500, 2000, 5000 and AMUSE with lag 1 and SOBI
with lags 1, . . . , 12. Tables 1, 2 and 3 show the proportions of rejections at the
α-level 0.05 based on 2000 repetitions for hypotheses H0,1, H0,2 (the true value
which should be the first test we do not reject) and H0,3 for each combination of
settings and methods with M = 200. The results based on M = 500 gave very
similar results and were thus omitted from the tables.

Based on the simulation results we conclude that all the tests had quite good
power and successfully detected if there were non-noise components among the
hypothetical noise part. Interestingly, the parametric bootstrap test seems quite
robust – it works also in Settings 2 and 3 where the data were generated using
other noise processes. The non-parametric bootstrap test I, which is the closest to
the parametric one, seems however to be the least effective of the non-parametric
bootstrap tests. As the non-parametric bootstrap test III is valid in all three
settings, and the other tests do not gain much in the settings they were designed
for, this test might be the best choice in practise. As the differences between
AMUSE and SOBI seem minor, we advocate SOBI for practical applications as
it is usually preferable over AMUSE and most likely estimates the signals better.
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Table 2. Rejection rates in Setting 2 over 200 bootstrap samples and 2000 repetitions.

AMUSE SOBI

n Booststrap method H0,1 H0,2 H0,3 H0,1 H0,2 H0,3

200 Parametric 1.000 0.046 0.007 1.000 0.052 0.008

200 Non-parametric I 0.998 0.045 0.006 1.000 0.030 0.004

200 Non-parametric II 1.000 0.046 0.006 1.000 0.048 0.010

200 Non-parametric III 1.000 0.044 0.006 0.999 0.051 0.012

500 Parametric 1.000 0.052 0.008 1.000 0.043 0.007

500 Non-parametric I 1.000 0.050 0.005 1.000 0.046 0.006

500 Non-parametric II 1.000 0.046 0.006 1.000 0.044 0.006

500 Non-parametric III 1.000 0.051 0.006 1.000 0.046 0.008

2000 Parametric 1.000 0.042 0.003 1.000 0.047 0.007

2000 Non-parametric I 1.000 0.044 0.005 1.000 0.051 0.006

2000 Non-parametric II 1.000 0.048 0.002 1.000 0.047 0.010

2000 Non-parametric III 1.000 0.044 0.003 1.000 0.045 0.008

5000 Parametric 1.000 0.050 0.008 1.000 0.047 0.009

5000 Non-parametric I 1.000 0.068 0.010 1.000 0.055 0.006

5000 Non-parametric II 1.000 0.049 0.005 1.000 0.048 0.008

5000 Non-parametric III 1.000 0.049 0.007 1.000 0.046 0.006

5 Sound Example

To evaluate the method in practice we used it to estimate the dimension of a
set of sound recordings mixed with noise. The signal part st was 3-dimensional
with the length T = 50000 and was obtained from http://research.ics.aalto.fi/
ica/cocktail/cocktail en.cgi as in [23]. To this we added 17 channels of N(0, 1)-
noise to obtain the latent z = (s1, s2, s3, w4, w5, . . . , w20)� which was mixed
with Ω ∈ R

20×20 containing iid N(0, 1) variables to obtain the “observed” data
xt = Ωzt.

We considered all four bootstrap strategies using AMUSE with lag 1 and
SOBI with lags 1, . . . , 12. Each combination then produced a string of p-values
p0, . . . , p19 corresponding respectively to the null hypotheses H0,0, . . . , H0,19. The
forwards estimate for d is then the first k for which H0,k is not rejected and
the backwards estimate for d is k + 1 where k is the last H0,k to be rejected.
The resulting estimates are shown in Table 4 and reveal that all combinations
correctly identify the true signal dimension. Note that as the forwards and back-
wards estimates yield the true dimension then also any divide-and-conquer meth-
ods are bound to find the true dimension in this case.

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi
http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi
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Table 3. Rejection rates in Setting 3 over 200 bootstrap samples and 2000 repetitions.

AMUSE SOBI

n Booststrap method H0,1 H0,2 H0,3 H0,1 H0,2 H0,3

200 Parametric 0.999 0.044 0.006 0.998 0.051 0.008

200 Non-parametric I 0.999 0.063 0.008 0.999 0.047 0.009

200 Non-parametric II 0.998 0.044 0.006 0.998 0.047 0.008

200 Non-parametric III 0.998 0.044 0.007 0.999 0.046 0.007

500 Parametric 1.000 0.045 0.008 1.000 0.054 0.006

500 Non-parametric I 1.000 0.052 0.005 1.000 0.047 0.006

500 Non-parametric II 1.000 0.044 0.005 1.000 0.052 0.009

500 Non-parametric III 1.000 0.051 0.006 1.000 0.056 0.006

2000 Parametric 1.000 0.050 0.004 1.000 0.051 0.007

2000 Non-parametric I 1.000 0.050 0.006 1.000 0.060 0.006

2000 Non-parametric II 1.000 0.050 0.006 1.000 0.052 0.009

2000 Non-parametric III 1.000 0.049 0.003 1.000 0.046 0.008

5000 Parametric 1.000 0.060 0.007 1.000 0.046 0.009

5000 Non-parametric I 1.000 0.053 0.008 1.000 0.053 0.009

5000 Non-parametric II 1.000 0.058 0.004 1.000 0.045 0.009

5000 Non-parametric III 1.000 0.058 0.006 1.000 0.046 0.006

Table 4. The estimates for d for each combination of bootstrap strategy and methods
in the sound example.

Estimator BSS Parametric Non-par I Non-par II Non-par III

Forwards AMUSE 3 3 3 3

Forwards SOBI 3 3 3 3

Backwards AMUSE 3 3 3 3

Backwards SOBI 3 3 3 3

6 Summary

We proposed four bootstrap tests to test the signal subspace dimension in an
SOS framework using AMUSE or SOBI. Simulations showed that the different
bootstrap tests work generally well and keep the α-level with good rejection
power. To estimate the subspace dimension, the tests would need to be applied
sequentially, maybe with different strategies and a possible need for multiple
testing adjustments. These issues will be addressed in future work, although an
application to sound wave data already yielded some evidence that the sequen-
tial estimation works in practice. Note that the suggested tests ignore any pos-
sible variation coming from the estimation of the signal as these parts are not
bootstrapped. Time series bootstrap strategies as described, for example, in [24]
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could then be applied also here for the signal parts. This extension will also be
explored in future research.
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Abstract. Generative models based on subband amplitude envelopes of
natural sounds have resulted in convincing synthesis, showing subband
amplitude modulation to be a crucial component of auditory perception.
Probabilistic latent variable analysis can be particularly insightful, but
existing approaches don’t incorporate prior knowledge about the physical
behaviour of amplitude envelopes, such as exponential decay or feedback.
We use latent force modelling, a probabilistic learning paradigm that
encodes physical knowledge into Gaussian process regression, to model
correlation across spectral subband envelopes. We augment the standard
latent force model approach by explicitly modelling dependencies across
multiple time steps. Incorporating this prior knowledge strengthens the
interpretation of the latent functions as the source that generated the
signal. We examine this interpretation via an experiment showing that
sounds generated by sampling from our probabilistic model are perceived
to be more realistic than those generated by comparative models based
on nonnegative matrix factorisation, even in cases where our model is
outperformed from a reconstruction error perspective.

Keywords: Latent force model · Gaussian processes
Natural sounds · Generative model

1 Introduction

Computational models for generating audio signals are a means of exploring and
understanding our perception of sound. Natural sounds, defined here as everyday
non-music, non-speech sounds, are an appealing medium with which to study
perception since they exclude cognitive factors such as language and musical
interpretation. McDermott [1] used synthesis as a means to demonstrate that the
human auditory system utilises time-averaged statistics of subband amplitudes
to classify sound textures. In a similar vein, Turner [2] constructed a synthesis
model based on probabilistic latent variable analysis of those same subband
amplitudes. One main advantage of a latent variable approach is the possibility
that the uncovered latent behaviour may represent either (i) the primitive source
that generated the signal, or (ii) the latent information that the human auditory
system encodes when it calculates time-averaged statistics.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 259–269, 2018.
https://doi.org/10.1007/978-3-319-93764-9_25
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Latent variable analysis captures correlations across multiple dimensions by
modelling the data’s shared dependence on some unobserved (latent) variable or
function. It is, by its very nature, ill-posed; we typically aim to simultaneously
predict both the latent functions and the mapping from this latent space to
the observation data. As such, infinitely many potential solutions exist and we
cannot guarantee that our prediction will encode the true sound source or our
true perceptual representation.

The ill-posed nature of the problem necessitates the use of prior information.
It is commonly suggested that nonnegativity, smoothness and sparsity form a
suitable set of prior assumptions about real life signals. We argue that, even
after imposing such constraints, a simple scalar mapping between the latent
space and observation space is insufficient to capture all the complex behaviour
that we observe in the subband amplitude envelopes of an audio signal. We
construct a latent force model (LFM) [3] to incorporate prior knowledge about
how amplitude envelopes behave via a discrete differential equation that models
exponential decay [4].

Utilising the state space formulation [5], we augment the standard LFM by
explicitly including in the current state information from many discrete time
steps. This allows us to capture phenomena such as feedback, damping and to
some extent reverberation. In this probabilistic approach the latent functions are
modelled with Gaussian processes, which provide uncertainty information about
our predictions whilst also guaranteeing that the latent functions are smooth.
Nonnegativity is imposed via a nonlinear transformation.

Evaluating latent representations is not straightforward. Objective measures
of our ability to reconstruct the observation data don’t inform us about the
interpretability of our predictions. We hypothesise that if the latent functions
capture physically or perceptually meaningful information, then a generative
model based on synthesising latent functions that are statistically similar should
generate realistic data when projected back to the observation space.

In this paper we introduce a generative model, applicable to a wide range
of natural sounds, based on an extended LFM1 (Sect. 3). Comparative models
based on variants of nonnegative matrix factorisation (NMF) are implemented
to perform evaluation-by-synthesis, which shows how listeners often perceive the
LFM approach to generate more realistic sounds even in cases where NMF is
more efficient from a reconstruction error perspective (Sect. 4).

2 Background

The perceptual similarity of two sounds is not determined by direct comparison
of their waveforms, but rather by comparison of their statistics [1]. Hence it is
argued that prior information for natural sounds should take a statistical form
[2]. We argue in Sect. 3 that these statistical representations can be improved

1 Matlab source code and example stimuli can be found at c4dm.eecs.qmul.ac.uk/
audioengineering/natural sound generation.

c4dm.eecs.qmul.ac.uk/audioengineering/natural_sound_generation
c4dm.eecs.qmul.ac.uk/audioengineering/natural_sound_generation
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through the inclusion of assumptions about the physical behaviour of sound,
resulting in a hybrid statistical-physical prior.

In order to analyse sound statistics, both McDermott [1] and Turner [2] utilise
the subband filtering approach to time-frequency analysis, in which the signal is
split into different frequency channels by a bank of band-pass filters. The time-
frequency representation is then formed by tracking the amplitude envelopes of
each subband. McDermott generates sound textures by designing an objective
function which allows the statistics of a synthetic signal to be matched to that
of a target signal. Turner utilises probabilistic time-frequency analysis combined
with probabilistic latent variable analysis to represent similar features. Turner’s
approach has the advantage that once the parameters have been optimised,
new amplitude envelopes can be generated by drawing samples from the latent
distribution. It should be noted that samples drawn from the model will not
exhibit the fast attack and slow decay we observe in audio amplitude envelopes,
since the model is temporally symmetric.

NMF is a ubiquitous technique for decomposing time-frequency audio data
[6–8], however a common criticism is its inability to take into account temporal
information. The most common approach to dealing with this issue is to impose
smoothness on the latent functions, the idea being that smoothness is a proxy
for local correlation across neighbouring time steps. Temporal NMF (tNMF)
imposes smoothness by penalising latent functions which change abruptly [8] or
by placing a Gaussian process prior over them [9]. An alternative approach is to
use a hidden Markov model to capture the changes in an audio signal’s spectral
make up over time [10]. High resolution NMF (HR-NMF) models the temporal
evolution of a sound by utilising the assumption that natural signals are a sum of
exponentially modulated sinusoids, with each frequency channel being assigned
its own decay parameter estimated using expectation-maximisation [11].

2.1 Latent Force Models

To incorporate our prior assumptions into data-driven analysis we use latent
force models (LFMs) [3], a probabilistic modelling approach which assumes M
observed output functions xm are produced by some R < M unobserved (latent)
functions ur being passed through a set of differential equations. If the chosen set
of differential equations represents some physical behaviour present in the system
we are modelling, even if only in a simplistic manner, then such a technique
can improve our ability to learn from data [12]. This is achieved by placing a
Gaussian process (GP) prior [13] over the R latent functions, calculating the
cross-covariances (which involves solving the ODEs), and performing regression.

It was shown by Hartikeinen and Särkka [5] that, under certain conditions,
an equivalent regression task can be performed by reformulating the model (i.e.
the ODE representing our physical knowledge of the system) into state space
(SS) form, reformulating the GP as a stochastic differential equation (SDE),
and then combining them into a joint SS model:

dx(t)
dt

= f(x(t)) + Lw(t) . (1)
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Here x(t) represents the state vector containing {xm(t)}M
m=1 and the states of

the SDE {ur(t), u̇r(t), ...}R
r=1, w(t) is a white noise process, f is the transition

function which is dependent on θ, the set of all ODE parameters and GP/SDE
hyperparameters, and L is a vector determining which states are driven by the
white noise. The model’s discrete form is

x[tk] = f̂(x[tk−1],Δtk) + q[tk−1] , (2)

where Δt is the time step size, f̂ is the discretised transition function and
q[tk−1] ∼ N(0, Q[Δtk]) is the noise term with process noise matrix Q. The
corresponding output measurement model is

y[tk] = Hx[tk] + ε[tk], ε[tk] ∼ N(0, σ2) , (3)

where measurement matrix H simply selects the outputs from the joint model.
The posterior process x[tk], i.e. the solution to (2), is a GP in the linear case

such that the filtering distribution p(x[tk] | y[t1], ...,y[tk]) is Gaussian. Hence
state estimation can be performed via Kalman filtering and smoothing [14].

However, if f is a nonlinear function, as is the case if we wish to impose
nonnegativity on the latent functions, then calculation of the predictive and
filtering distributions involves integrating equations which are a combination of
Gaussian processes and nonlinear functions. We may approximate the solutions
to these integrals numerically using Gaussian cubature rules. This approach is
known as the cubature Kalman filter (CKF) [15].

The Kalman update steps provide us with the means to calculate the
marginal data likelihood p(y[t1:T ] | θ). Model parameters θ can therefore be
estimated from the data by maximising this likelihood using gradient-based
methods.

3 Latent Force Models for Audio Signals

To obtain amplitude data in the desired form we pass an audio signal through
an equivalent rectangular bandwidth (ERB) filter bank. We then use Gaussian
process probabilistic amplitude demodulation (GPPAD) [16] to calculate the
subband envelopes and their corresponding carrier signals. GPPAD allows for
control over demodulation time-scales via GP lengthscale hyperparameters. We
are concerned with slowly varying behaviour correlated across the frequency
spectrum, in accordance with the observation that the human auditory system
summarises sound statistics over time [1]. Fast-varying behaviour is relegated to
the carrier signal and will be modelled as independent filtered noise.

The number of channels in the filter bank and the demodulation lengthscales
must be set manually during this first analysis stage. Keeping the number of
total model parameters small is a priority (see Sect. 3.1), so we typically set the
number of filters to 16, and the lengthscales such that we capture amplitude
behaviour occurring over durations of 10 ms and slower.
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3.1 Augmented Latent Force Models for Amplitude Envelopes

We use a first order differential equation to model the exponential decay that
occurs in audio amplitude envelopes [4]. However this overly simplistic model
does not take into account varying decay behaviour due to internal damping, or
feedback and other nonstationary effects which occur as a sound is generated
and propagates towards a listener.

Since we require nonnegativity of our latent functions, which is imposed via
nonlinear transformation, we use the nonlinear LFM whose general from is (2)
with nonlinear f̂ . For a first order ODE its discrete form is

ẋm[tk] = −Dmxm[tk] +
R∑

r=1

Smrg(ur[tk]) , (4)

for m = 1, ...,M where M is the number of frequency channels. Dm and Smr are
the damping and sensitivity parameters respectively and g(u) = log(1+eu) is the
positivity-enforcing nonlinear transformation. The model progresses forwards in
time with step size Δt using Euler’s method: xm[tk+1] = xm[tk] + Δtẋm[tk].

To account for the complex behaviour mentioned above that occurs in real
audio signals, we extend this discrete model such that predictions at the current
time step tk can be influenced explicitly by predictions from multiple time steps
in the past. As in [4] we augment the model by adding a parameter γm which
controls the “linearity” of decay. Our final model becomes

ẋm[tk] = −Dmxγm
m [tk] +

P∑

p=1

Bmpxm[tk−p] +
P∑

q=0

R∑

r=1

Smrqg(ur[tk−q]) . (5)

We restrict γm ∈ [0.5, 1], and for sounding objects with strong internal damping
we expect γm to be small, representing an almost linear decay. Parameters Bmp

are feedback coefficients which determine how the current output is affected by
output behaviour from p time steps in the past. Smrq are lag parameters which
determine how sensitive the current output is to input r from q time steps ago.

The lag term is important since modes of vibration in a sounding object tend
to be activated at slightly different times due to deformations in the object as
it vibrates, and due to the interaction of multiple modes of vibration. It can
also capture effects due to reverberation. The feedback terms allow for long and
varied decay behaviour that can’t be described by simple exponential decay.

The challenge is to incorporate (5) into our filtering procedure. We do this
by augmenting our state vector x[tk] and transition model

f̂(x[tk−1],Δtk) = x[tk] + Δtẋ[tk] (6)

with new rows corresponding to the delayed terms. Figure 1 shows how after
each time step the current states X[tk] = {xm[tk]}M

m=1, U [tk] = {ur[tk]}R
r=1

are “passed down” such that at the next time step they are in the locations
corresponding to feedback and lag terms. When performing the Kalman filter
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tktk−1 tk+1prediction
Kalman filter

feedback

lag

X[tk]

X[tk−1]

U [tk−1]

U [tk−2]

X[tk−2]

U [tk]

Fig. 1. The augmented LFM stores terms from previous time steps in the state vector.
Blue represents output predictions X (amplitudes), green represents latent predictions
U . Each step, predictions pass down to feedback and lag state locations. The entire
state is used to predict the next step’s outputs and latents via Kalman filtering.

prediction step, augmented states are included since they influence predictions
for the current state, however the predictions for these augmented entries are
simply exact copies from the previous time step.

Figure 2 shows the latent prediction for a metal impact sound with one latent
force, R = 1. The mean of the distribution is the minimum least squares error
estimate, so we pass it through discrete model (5) to reconstruct the amplitude
envelopes. Despite the single latent force, we observe that some of the complex
behaviour has been learnt. Additionally, the latent force is both smooth and
sparse, and the reconstructed envelopes have a slow decay despite this sparsity.

3.2 Generating Novel Instances of Natural Sounds

A significant benefit of probabilistic approaches such as LFM or tNMF is that,
as well as providing us with uncertainty information about our predictions, they
provide the means to sample new latent functions from the learnt distribution.
By passing these new functions through the model we can generate amplitude
envelopes. These envelopes modulate carrier signals produced using a sinusoids-
plus-noise approach based on analysis of the original carriers. The subbands are
then summed to create a new synthetic audio signal distinct from the original
but with similar characteristics.

Sampling from the prior of the learnt distribution generates functions with
appropriate smoothness and magnitude, however the desired energy sparsity is
not guaranteed. Latent functions are modelled independently, but in practice
they tend to co-occur and are activated in similar regions of the signal. We use
GPPAD again to demodulate our latent functions with a slowly varying envelope,
then fit a GP with a squared exponential covariance function to this envelope
[13]. We sample from this high-level envelope and use it to modulate our newly
generated latent functions; the results of this product is latent behaviour with
sparse energy, as demonstrated in Fig. 3(d).
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Fig. 2. LFM applied to a metal impact sound, with mean and 95% confidence of the
latent distribution shown. The mean is passed through the model (5) to reconstruct
the envelopes. Complex behaviour is maintained despite using a single force.

3.3 Optimisation Settings

The set of model parameters {Dm, Bmp, Smrq, γm, λr}, with GP lengthscales λr,
becomes large as R, P increase. To alleviate issues that occur when our parameter
space becomes large we sparsify the feedback and sensitivity parameters. For
example, if P = 10, we may manually fix Bmp to zero for p ∈ [3, 4, 6, 7, 9] such
that only half the parameters are included in the optimisation procedure.

Reliability of the optimisation procedure suffers as the number of parameters
increases, so in practice all M frequency channels are not optimised together.
We select the 6 envelopes contributing the most energy and train the model
on the observations from only these channels. The remaining channels are then
appended on and optimised whilst keeping the already-trained parameters fixed.
This improves reliability but prioritises envelopes of high energy. We also skip
prediction steps for periods of the signal that are of very low amplitude, which
speeds up the filtering step. Despite these adjustments, optimisation still takes
up to 72 h for a 2 s sound sample.

4 Evaluation

To evaluate our method we collated a set of 20 audio recordings, selected as
being representative of everyday natural sounds2. Music and speech sounds were
not included, nor were sounds with significant frequency modulation, since our
model doesn’t capture this behaviour. We compare against NMF, optimised
using alternating least squares, and the GP-based implementation of tNMF [9].

4.1 Reconstruction Error of Original Sound

We analyse our ability to reconstruct the original data by projecting the latent
representation back to the output space. For the LFM this means passing the
2 From freesound.org and from the Natural Sound Stimulus set: mcdermottlab.mit.

edu/svnh/Natural-Sound/Stimuli.html.

http://freesound.org
mcdermottlab.mit.edu/svnh/Natural-Sound/Stimuli.html
mcdermottlab.mit.edu/svnh/Natural-Sound/Stimuli.html
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mean of the learnt distribution through model (5). Figure 4 shows reconstruction
RMS error and cosine distance of LFM and tNMF relative to NMF for the 20
recordings. The smoothness constraint enforced by placing a GP prior over the
latent functions negatively impacts the reconstruction. This is demonstrated by
the fact that tNMF performs poorly from an RMS error perspective. Despite this,
the LFM has much descriptive power, and is sometimes capable of achieving a
lower RMS error than the unconstrained NMF. Interestingly however, tNMF
consistently outperforms the other two models based on cosine distance.

Fig. 3. LFM generative model with 3 latent forces applied to an applause sound. The
high-level modulator (black line in (b)) is calculated by demodulating the latent forces.

4.2 Listening Test for Novel Sounds

Objective results suggest that smoothness constraints harm reconstruction of
the original signal. However, our aim is to learn realistic latent representations
that will be the foundation of a generative model. To test their suitability, we
designed an experiment to compare generative models based on LFM, NMF and
tNMF. The approach outlined in Sect. 3.2 was used for all model types. Since
NMF is non-probabilistic, it does not provide an immediate way in which to
sample new data, therefore GPs were fit to the latent functions after analysis.

Our experiment followed a multi-stimulus subjective quality rating
paradigm3: 24 participants were shown 20 pages (order randomised), one per
3 The test was run online and implemented with the Web Audio Evaluation Tool:

github.com/BrechtDeMan/WebAudioEvaluationTool.

http://github.com/BrechtDeMan/WebAudioEvaluationTool
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sound example, and asked to listen to the reference recording and then rate 7
generated sounds (2 from each model plus an anchor) based on their credibility
as a new sound of the same type as the reference. Ratings were on a scale of 0 to
1, with a score of 1 representing a very realistic sound. Figure 5 shows the mean
realism ratings. Whilst variation was large between sound examples, LFM was
generally rated as more realistic than the other methods.

1 2 3

Number of latent functions

0

2

4

RMS error relative to NMF

1 2 3

Number of latent functions

-1

0

1
Cosine distance relative to NMF

NMF
LFM
tNMF

Fig. 4. Reconstruction error of LFM and tNMF plotted relative to NMF. Crosses
represent the median, error bars range from first to third quartile.

To test for significance we applied a generalised linear mixed effects model
(GLMM), with beta regression, in which sound example and participant were
treated as random effects. Table 1 shows that the mean realism rating was highest
for LFM regardless of number of latent functions. The difference was significant
at a 5% level except for LFM vs. NMF with 3 latent functions. This suggests
that for sounds requiring many latent functions to capture their behaviour, such
as textural sounds, LFM may not offer a significant gain over purely statistical
approaches. For example, the wind recording in Fig. 5, a textural sound whose
envelopes do not exhibit clear exponential decay, was captured best with tNMF.

Table 1. GLMM with three-way comparison applied to listening test results. LFM
received higher mean ratings, but confidence decreases with number of latent forces,
indicated by increasing p values. Estimate can be interpreted as the ratio increase in
realism rating when choosing model A over model B.

All sounds 1 latent fn. 2 latent fns. 3 latent fns.

Estimate p value Estimate p value Estimate p value Estimate p value

LFM vs. NMF 0.3839 <1e−04 0.8248 <1e−05 0.3140 0.0448 0.2052 0.2867

LFM vs. tNMF 0.4987 <1e−04 0.7976 <1e−05 0.5134 <0.001 0.3243 0.0285

NMF vs. tNMF 0.1148 0.3750 −0.0272 0.9980 0.1994 0.3218 0.1191 0.7154
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Fig. 5. Mean realism ratings obtained from the listening test.

5 Conclusion

Our results show that in order to extend existing synthesis techniques to a larger
class of sounds, it is important to utilise prior knowledge about how natural
sound behaves. We achieved this by using latent force modelling to capture
exponential decay, and augmented the standard approach to include feedback
and delay across many discrete time steps. Doing so allowed us to make smooth,
sparse latent predictions that we argue are more representative of the real source
that generated a given sound.

This claim is supported by the fact that a generative model based on LFM
was consistently rated as more realistic by listeners than alternatives based on
variants of NMF, even in cases where it was not superior in reconstruction of the
original signal. Resonance, decay and modulations in the subband amplitudes
were captured well by our model, which is flexible enough to be applicable to
sounds ranging from glass breaking to dogs barking.

The nonlinear ODE representing our physical knowledge contains a large
number of parameters, making our approach impractical in some cases, so a more
compact model would be of huge benefit. Efficient nonlinear filtering methods
or numerical ODE solvers would make the computation time more acceptable.
Future work includes amplitude behaviour occurring on multiple time scales at
once, and models for frequency modulation and other nonstationary effects would
further expand the class of sounds to which such techniques can be applied.
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Abstract. On-line frequency-domain blind separation of audio sources
performed through Independent Vector Analysis (IVA) suffers from the
problem of determining the order of the separated outputs. In this work,
we apply a supervised IVA based on pilot components obtained using
a bank of Relative Transfer Functions (RTF). The bank is assumed to
be available for potential positions of a target speaker within a confined
area. In every frame, the most suitable RTF is selected from the bank
based on a criterion. The pilot components are obtained as pre-separated
target and interference, respectively, through the Minimum-Power Dis-
tortionless Beamforming and Null Beamforming. The supervised IVA is
tested in a real-world scenario with various levels of up-to-dateness of
the bank. We show that the global permutation problem is resolved even
when the bank contains only pure delay filters. The Signal-to-Interference
Ratio in separated signals is mostly better than that achieved by the pre-
separation, unless the bank contains very precise RTFs.

Keywords: Independent vector analysis · Relative transfer function
Source separation · Speech enhancement

1 Introduction

Frequency-Domain Independent Component Analysis (FD-ICA) [18] provides an
effective tool for audio signal separation and enhancement. It is an unsupervised
method where each frequency band is treated separately as an instantaneous
mixture. This causes the permutation problem as the order of separated fre-
quency components is random [17]. Rather than solving the separation in two
steps, i.e., by applying FD-ICA and some depermutation method afterwards,
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a fast and effective solution is provided through Independent Vector Analysis
(IVA). Here, all frequencies are separated jointly; the separated sources should
be independent while frequency components corresponding to the same source
are forced to be as dependent as possible [5,8,15].

The random global order of separated sources is the remaining problem of
IVA. Classical solutions impose a constraint on the de-mixing filters obtained
through IVA. For example, the filters are constrained to remain close to the pure
delay filters where the delays correspond to the expected Directions of Arrival
(DOA) of the sources [4]. Unconstrained modifications of IVA have also been
proposed exploiting prior or side information. For example, a priori knowledge
of temporal power variations of sources is used in [16]. In [9], prior knowledge
of target positions was used to initialize the IVA, resulting in faster convergence
and known permutation of the targets in the de-mixed signals. This partly solves
the global permutation problem, but only when the sources remain in static
locations.

A general formulation, referred to as Supervised IVA (S-IVA), has been
recently proposed in [13] where higher-order dependencies between so-called pilot
components and the separated signals are used. For example, the outputs of a
voice activity detector (VAD) and of a video speech detector (VSD) were used
as the pilots in [14] to distinguish speakers. In this paper, we propose a cheaper
solution relying purely on audio. It is assumed that the position of a targeted
speaker is confined to a limited area and that a bank of Relative Transfer Func-
tions (RTFB) for some possible positions of the speaker is available. This bank
can be directly used for separation as in [6]. However, it is more realistic to
assume that the bank is not that up-to-date due to various changes (variations
of acoustic conditions, rotations of the target speaker, new locations, etc.) so
that its direct application yields a limited separation accuracy. Therefore, we
propose to use the bank for pre-separating the target from the interference and
to use these outputs as pilots in the supervised IVA.

The paper is organized as follows. In Sect. 2, S-IVA and a corresponding
algorithm are briefly described. In Sect. 3, the concept of the RTFB and its
deployment for obtaining pilot components for S-IVA are proposed. Section 4
is devoted to experiments with real-world on-line separation where S-IVA is
compared with the original IVA and with the beamforming-based separation
relying purely on the RTFB. Section 5 concludes the paper.

2 Blind Separation Using Supervised IVA

2.1 Problem Definition

In this paper, we will constrain to situations where two source signals are
recorded by two microphones. Let Sk

n and Xk
m be the Short-Term Fourier Trans-

form (STFT) coefficients of the nth source and the mth microphone, respectively,
where k is the frequency bin index. The source and the mixture vector will be
denoted, respectively, as Sk = [Sk

1 , Sk
2 ]T and Xk = [Xk

1 ,Xk
2 ]T . The mixing model

within the kth frequency bin reads
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Xk = HkSk + Vk, (1)

where Hk is the mixing matrix. The objective of IVA is to jointly estimate the set
of de-mixing matrices {Wk}k=1,...,K ; K is the number of frequency bins; see, e.g.,
[5]. The vector of the nth separated source will be denoted by Yn = [Y 1

n , . . . , Y K
n ]

where

Y k
n =

2∑

m=1

W k
nmXk

m, k = 1, . . . ,K. (2)

Each separated source corresponds to one of the two original sources up to
the scaling ambiguity, which we subsequently resolve using Minimal Distortion
Principle [11].

2.2 Supervised IVA Using Natural Gradient

The supervised IVA (S-IVA) is based on a joint statistical model of the fre-
quency components corresponding to a source and of additional pilot compo-
nents, because all these components are assumed to be dependent [13]. For sim-
plicity, we assume only one pilot component, for the nth source, denoted by Pn.
As in [8], the multivariate super-Gaussian distribution is used for modeling the
joint pdf of Yn and of Pn, that is,

f(Yn, Pn) ∝ exp

⎛

⎝−
√√√√

K∑

k=1

|Y k
n |2 + |Pn|2

⎞

⎠ . (3)

The log-likelihood function for the joint estimation of {Wk}k is given by

L({Wk}k) =
K∑

k=1

log |detWk| +
N∑

n=1

E[log f(Yn, Pn)]. (4)

which is maximized using the natural gradient-based learning rules

ΔW k
nm = (Inm − E[φk(Yn, Pn)(Y k

m)∗])W k
nm,

Wk
new = Wk

old + ηΔWk,
(5)

where η is the step length, Inm is the nmth element of the identity matrix, and
φk = −∂/∂Y k

m(log f), k = 1, . . . ,K, are the score functions related to (3). In
practice, we use ad hoc modifications of the score functions given by

φk(Ỹn) =
Y k

n√
(1 − βn)

∑K
k=1 |Y k

n |2 + βn|Pn|2
. (6)

where the hyper-parameter βn ∈ (0, 1) controls the influence of Pn. In (5), the
expectation value is either approximated by the average taken over frames or by
the instant value in case of on-line processing.



IVA Exploiting Pre-learned Banks of RTFs 273

3 Utilization of the Bank of RTFs

3.1 Bank of Relative Transfer Functions

Given a pair of microphones (we will denote them L and R for left and right),
the mixing model (1) can be re-written with respect to one particular (target)
source, from here denoted by S, and with respect to the left microphone as

Xk
L = Sk + V k

L

Xk
R = GkSk + V k

R .
(7)

Sk denotes the spatial image of the target source on the left microphone, and V k
L

and V k
R involve the contributions of the other source (in practice also of noise).

Gk is the Relative Transfer Function (RTF) related to the microphone pair and
to the target source.

Although several methods exist that can estimate Gk from noisy mixtures
[2], they can hardly achieve the accuracy of noise-free estimates. These can be
obtained when a sufficiently long noise and interference-free interval of recording
is available. However, the RTF estimate remains accurate only for the given
position of the source. In order to cover the area of the most probable target
source occurrence, a bank of RTFs (RTFB) was assumed to be available in
[7] such that the RTFs in the bank correspond to several potential target’s
positions within the confined area. It was assumed that such a bank was prepared
in advance during noise-free periods. Then, it can be used in dynamical noisy
situations when the target performs movements within the assumed area.

Specifically, in every processing frame, null beamforming using all RTFs can
be performed. The RTF corresponding to the null beamformer yielding output
with the lowest Lp norm is then selected as the most fitting solution [10]. Since we
assume that both target and interference are speech signals, the Null Beamformer
using the correct RTF should notice an increased sparsity on its output. Therefore,
the value of p is chosen to be p ≤ 1. Several other methods for selecting the best
RTF from the RTFB have also been proposed; see, e.g., [6,12].

3.2 Pre-separation Using Beamformers

Let us assume for now that Gk is known. We now describe simple approaches
for obtaining separated signals of the target and interference. To obtain the tar-
get, we can apply a minimum power distortionless beamformer (MPDR) whose
output is given by

Ŝk =
(

(Ck
x)−1uk

(uk)H(Ck
x)−1uk

)H

Xk, (8)

where uk = (1, Gk)T , and Ck
x is the covariance matrix of Xk; the superscript H

denotes the conjugate transpose. In the on-line processing regime, Ck
x has to be

estimated in a recursive way as

Ck,�
x = λCk,�−1

x + (1 − λ)Xk(Xk)H , (9)
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where � stands for the frame index.
Next, a signal containing only the interference can be obtained through block-

ing the target signal (null beamforming). Specifically, the reference signal is
obtained as

Zk = GkXk
L − Xk

R = GkV k
L − V k

R , (10)

which involves only V k
L and V k

R .

3.3 Pilot Component Definition

The performance of the beamforming approaches highly depends on the accuracy
of the RTFs in the RTFB. To achieve optimum separation, the RTFs must be up-
to-date with respect to changes of the acoustic environment, the RTFB should
cover the entire area of possible target’s positions, and the time domain length
of the RTFs must be sufficiently long with respect to reverberation. Since these
requirements are hardly met in practice, it is better to take into account a limited
performance of the beamforming methods.

It is more realistic to assume that the separated signals Ŝk and Zk are only
dominated by the target and interference, respectively. Then, we propose to
exploit these signals as pilots within S-IVA, which might finally achieve better
separation. Thus, the pilot components are defined as

P1 =
K∑

k=1

|Ŝk|, and P2 =
K∑

k=1

|Zk|, (11)

for the target and the interference output, respectively.

4 Experiments

In this section, we present results of experiments whose goal is to demonstrate the
influence of the accuracy of the RTFB on the solution of the global permutation
by S-IVA, and to compare the separation accuracies achieved though S-IVA and
the beamforming methods from Sect. 3.2.

4.1 Scenario

The experimental setup is illustrated in Fig. 1. Two speakers (simulated by loud-
speakers) recorded by two microphones with mutual distance of 18 cm are consid-
ered in a room with reverberation time T60 = 700ms. The target source is located
within a 15×15 cm area that is located approx. 1 m in front of the microphones.
The area is covered by a regular grid of 16 positions with inter-grid distance of
5 cm, for which the RTFB is prepared using noise-free training recordings played
from these exact positions. For the experiment, a testing recording is obtained
when the target loudspeaker is randomly moved within the area.

The interference is represented by another loudspeaker which is moving
between 0◦ through 180◦ around the microphones at the distance of 1.5 m.
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Fig. 1. The illustration of the experimental setup

The interference moves through major positions, denoted in Fig. 1, in the order
1, 2, 3, 2, 1, which is repeated several times. The interference source stopped at
each major position for about 20 s.

The utterances played by the loudspeakers were taken from the TIMIT
dataset [3]; the length of the entire testing recording is about 8 min; the sam-
ple rate is 16 kHz. Target and interference were recorded separately and mixed
afterwards at the initial global Signal-to-Interference Ratio (SIR) of 0 dB.

The on-line S-IVA algorithm was used to separate the sources in the STFT
domain with the frame length of 4096 samples and 75% frame overlap. The sepa-
rated signals were reconstructed in the time domain by the overlap-add method.
To improve the convergence of S-IVA, the scaled natural gradient modification
of (5) described in [1] was used.

For evaluation, the improvement of SIR (iSIR) is computed on each frame
and averaged over microphones. This gives us an improvement in SIR for all
separated sources. Averages of these results are used as a measure of separation
quality.

4.2 Results

The following notation is used for all figures. MPDR denotes the separation
provided by the combination of the MPDR and Null beamforming. DOA setting
indicates that the RTFs are pure delay filters. S-IVA followed by the specification
of the hyper-parameters, βn, denotes the proportion of piloting by the outputs
of the beamformers (11). “S-IVA oracle” corresponds to the S-IVA piloted by
original (oracle, separated) signals. IVA indicates the original unsupervised IVA
algorithm.

Figure 2 shows the per-frame performance of the above-mentioned methods.
It contains results for two different settings of the MPDR: RTFs are set to be
delay filters (DOA, top result) and full RTFs having the length of 1000 taps
in the time domain (bottom result). The most difficult periods for successful
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Fig. 2. Results in terms of iSIR as functions of time when the RTFB consists of pure
delay filters (DOA) and 1000 taps long RTFs (in the time domain), respectively.

separation are when the interference source stays in position 2, that is, when the
angular positions of both sources are the same. It can be observed that for those
cases the iSIR of all methods drops down close to 0 dB. In these situations, the
original IVA suffers from the global permutation problem, because the order of
the separated outputs can be changed with high probability. In our experiment,
the IVA performance suffers due to the global permutation (frames with negative
iSIR). By contrast, the results show that with S-IVA the problem is solved, even
with the DOA pilots. S-IVA piloted by clean signals in average achieves the best
results and the result shows limits of the separation provides by S-IVA.

The performance of the beamforming methods is close to that of S-IVA
only when the time-domain length of RTFs is 1000 taps or more. So the solu-
tion through S-IVA does not seem to bring many advantages compared to the
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Fig. 3. Average separation performance (iSIR averaged over all frames) for various
RTFB settings.

methods from [6,7,10] in this configuration. However, S-IVA provides better
performance when the RTFs are less accurate.

In the second experiment, we examine different time domain lengths of the
RTFs in order to simulate a deteriorated performance of the RTFB. Figure 3
compares average iSIR (over all frames) for all of the above-mentioned methods
as functions of the various lengths (including the DOA setting).

The original IVA yields −1 dB of average iSIR due to the global permutation
problem. The performance achieved through beamforming steadily grows with
the time domain length of RTFs and outperforms S-IVA when the length exceeds
500 taps.

S-IVA is presented with three settings: First, S-IVA piloted by the output of
the MPDR beamformer (β1 = 0.5, β2 = 0), which is dominated by the target
signal. Second, S-IVA piloted only by the output of the null beamformer (β1 =
0, β2 = 0.5) that is dominated by the interference signal. Finally, S-IVA piloted
by both pilot components (β1 = 0.5, β2 = 0.5). The results show that all variants
solve the global permutation problem. Nevertheless, S-IVA piloted only by the
MDPR beamformer is significantly worse than the other variants. This can be
explained by the fact that the separation of the target from the interference is
harder than the separation of interference from the target, because the target
source is much closer to the microphones. Consequently, the piloting of the global
permutation is more efficient when using the output of the null beamformer.
Finally, we should mention the fact that the performance of S-IVA is not much
influenced by the length of the RTFs.
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5 Conclusion

In this work, we have proposed a novel variant of the Supervised IVA where the
pilot component is obtained as the output of the MPDR or of the Null beam-
former steered by a bank of pre-learned RTFs. We have shown by experiments
that this variant of S-IVA is more practical than just using MPDR and Null
beamforming taking the most appropriate RTF from the bank, because their
performance is highly dependent on the quality of the RTFB. By contrast, we
have shown that the performance of S-IVA piloted by outputs of the beam-
formers is robust against poor accuracy of RTFB, while the global permutation
problem is efficiently solved.

In future works, we plan to generalize the proposed method for multiple
microphones and sources. A straightforward way is to derive appropriate pilot
components for all sources. Alternatively, a practical situation is when only some
sources should be extracted from the mixture. Pilot components should be used
to supervise the extraction of the sources as independent vector components.
The goal is ensure that the blind method extracts the desired signal.

We also plan to compare our method with approaches that impose constraints
on de-mixing filters to solve the global permutation problem, such as [4].

Acknowledgements. We are due to Dr. Francesco Nesta from Synaptics for his help-
ful comments and useful suggestions.
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Abstract. Kernel Additive Modelling (KAM) is a framework for source
separation aiming to explicitly model inherent properties of sound sources
to help with their identification and separation. KAM separates a given
source by applying robust statistics on the selection of time-frequency bins
obtained through a source-specific kernel, typically the k-NN function.
Even though the parameter k appears to be key for a successful separation,
little discussion on its influence or optimisation can be found in the liter-
ature. Here we propose a novel method, based on graph theory statistics,
to automatically optimise k in a vocal separation task. We introduce the
k-NN hubness as an indicator to find a tailored k at a low computational
cost. Subsequently, we evaluate our method in comparison to the common
approach to choose k. We further discuss the influence and importance of
this parameter with illuminating results.

Keywords: Source separation · Kernel additive modelling
Graph theory · Music processing · Vocal separation

1 Introduction

Source separation is a discipline aiming to isolate different sources from a given
observable mixture. Amongst the methods for music source separation in a blind
underdetermined scenario (less observable mixtures than sound sources), the
major goal becomes to find inherent characteristics of the sources of interest to
help with their identification and separation.

In the last decade, a number of computationally inexpensive methods explic-
itly modelling the target source’s properties have gotten some attention [1–7].
These methods can be understood as instances of the wider kernel additive mod-
elling (KAM) framework [8]. The basic idea behind KAM relies on the repetitive
nature of music by estimating the target source at a particular point based on
points at which the source’s output is somehow similar. This is typically applied
to time-frequency bins in a spectrogram representation. The function determin-
ing the target source similarity between time-frequency bins, while ignoring the
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entries associated with other sources, is the so-called kernel function. Conse-
quently, if a magnitude of a bin deviates amongst the ones judged to be similar
by the target source kernel, one can assume there is another overlaying source
and employ order statistics to attenuate its influence.

KAM has been successfully employed for a variety of tasks in source separa-
tion, such as vocal separation, speech enhancement, percussive/harmonic separa-
tion or interference reduction [4,8,9]. In the case of vocal separation, a popular
approach is to assume the accompaniment music to be typically more repeti-
tive and dense compared to the vocals, considered to be sparse and varied [2].
Meaning there are more segments in the mix containing the same or similar
background music than there is for vocals. The nature of these segments vary
amongst methods, such as a single repeating periodic musical pattern [2], the
temporal context surrounding every time frame [5] or just a single time frame
[1]. In all of these cases, the background music is implicitly assumed to have a
higher energy contribution than that of the vocal source.

Amongst these methods, a popular choice for the accompaniment proximity
kernel is the k nearest neighbours (k-NN) function, returning the k most similar
frames to a given frame. The proximity measure between frames is typically
based on the Euclidean distance, and therefore, two frames will be considered
to be similar if they share the same centre frequency. Within the k-NN frames
selection, if the vocal is indeed sparse it should appear as an outlier and can
therefore be separated from the more common source through median filtering
across similar bins. Since the breakdown point of the median operator is of 50%
of outliers (vocals), one could expect the choice of k to be key for a successful
separation. However, there is little or no guidance on how to set this parameter
in the literature, nor explanation of its overall influence.

Here we investigate the influence of the parameter k in a vocal separation
task and we further propose a novel method for its automatic optimisation, based
on consideration of the proximity graph, which is lightweight and needs no prior
training. In Sect. 2 will introduce the KAM vocal separation baseline and discuss
typical methods to choose the parameter k in the K-NN proximity kernel. We
will then propose a novel computationally inexpensive method for k optimisation
in Sect. 3 based on graph theory statistics. In Sect. 4 we will further analyse and
discuss the impact of this parameter through an experimental evaluation and
validate the proposed method in such scenario.

2 Vocal Separation Using k Nearest Neighbours

KAM is a framework capable of combining different approaches to source sep-
aration using different assumptions to model sound sources. From the different
proximity kernel families described in [8], we will focus on the models for repet-
itive patterns in a vocal separation task. In particular, we present a subset that
can be regarded as an instance of KAM using only one iteration of the kernel
backfitting procedure described in [8], which was also used in similar form in
the REPET family of methods [2], and later extended to account for different
repetitive patterns [1,7].
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These methods take advantage of the repetitive nature of music and define a
distinction between a repeating background and a sparse varied foreground. For
vocal separation in popular music the background typically corresponds to the
music accompaniment and the vocals can be regarded as the sparse foreground.
Therefore, one can assume that the musical accompaniment contributes to most
of the energy across the frequency spectrum. We follow the method and notation
described in [1] serving as the baseline method on which we will investigate the
influence and optimisation of its single inherent parameter k.

Formally, we define the magnitude spectrogram of a musical signal as X ∈
R

M×N , where M is the number of frequency bins and N the number of time
frames. For each pair of frames (j, �) ∈ {1, . . . , N}×{1, . . . , N} , we then compute
the squared Euclidean distance between the two corresponding columns in X:

Dj, � =
M∑

m=1

(Xm, j − Xm, �)2.

The result is a symmetric matrix D, which we can now sort to find the k nearest
neighbours to every frame by keeping track of the frame index. Then, for every
frame j, we create a matrix Aj ∈ R

M×K containing as columns the specific subset
of the k most similar frames taken from X. We expect the selected k closest
frames to j to share similar musical accompaniment and differ in terms of the
vocal part. In other words, the vocal contribution in the k nearest frames to j can
be regarded as an outlier and the musical accompaniment as the commonality
between them. Consequently, the median filter is the operator of choice in [1] to
extract the common background music and separate out the vocal contribution
on each frame. The estimated magnitude spectrogram Y ∈ R

M×N of the musical
accompaniment is:

Ym, j := median(Aj
m,1, . . . , A

j
m,K)

To extract both magnitude and vocals from the mixture, we use the soft mask
W ∈ [0, 1]M×N described in [1]. The complex spectrograms for the accompani-
ment and vocals can then be estimated by applying soft masks W and (1 − W )
respectively to the original mixture spectrogram using an element-wise multipli-
cation.

A successful separation between background music and vocals relies largely
on the vocals actually being outliers within the selection of the k closest frames.
We want to make sure that the k-NN frames have similar background music with
no or different vocals. However, there are also frames containing matching back-
ground music and matching vocals, which will then be very likely to be selected
as near neighbours. Those frames are unhelpful for the median filtering but since
the breakdown point of the median operator is of 50% of outliers (vocals), the
method is robust to the vocal repetitions up to a point. This robustness is closely
related to the number of nearest neighbours we choose, i.e. the parameter k.

There seems to be little or no indication on the method to find the optimal
parameter k in the literature [1,5,7,8]. In [7] the authors introduce three other
parameters to set boundaries for the choice of k. However, no indication was
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found on how to actually fix any of those parameters, including k. A recent
extension introducing a temporal context R in the proximity kernel [5] performs
a parameter sweep to set the new R parameter to the value giving the best mean
metric across a dataset.

To our knowledge, there are currently two broad approaches to setting k: per-
ceptual assessment or evaluation metric optimisation. In the first approach one
simply listens to the estimates for different k values and adjusts the parameter
to the best sounding setting. This is the preferred method to set k when there
is a reduced number of songs to be processed. The second approach relies on a
metric, typically the Signal to Distortion Ratio (SDR), comparing the estimated
sound sources with the ground truth. One will set k to obtain the best metric
result. In practice, this means a parameter sweep for different k values, for which
no indication was found on how to pick. In addition, the commonly used SDR
measure is known to be a proxy for perceptual quality and its precision has been
criticised [10]. However, when dealing with large datasets, perceptual assessment
of the results can be very time consuming. Therefore, it is more typical to use
the second approach to optimise for an overall best performance.

A parameter sweeping approach to find the optimal k value has a number of
disadvantages, primarily linked to the optimisation through a performance met-
ric. Firstly, the separation performance metrics usually require to have ground
truth separate tracks available, which is not always possible in an application
scenario. Further, the commonly used separation performance metrics are com-
putationally expensive [11], limiting the parameter sweep to a reduced number
of values in a time constraint situation. In addition, optimising k using an overall
performance metric does not assure the best value for all songs in the dataset.
Moreover, fixing the k sweep values leaves no room to inform the optimisation
with the track’s individual properties, such as length.

Ideally we would like to be able to automatically pick k in an unsupervised
way for each track separately, taking into account the nature of the song and
thus finding a tailored value for k assuring a successful separation. We would
also like to do this without having to perform multiple runs of source separation
and discarding all but one of them.

3 Properties of the k-NN Graph

For a given music recording, the family of KAM methods we consider depends
fundamentally for its behaviour on the set of nearest neighbours selected for
each of the N frames. These nearest neighbour relationships can be represented
as a directed graph with frames as nodes, and each node having k arcs leading
outward to its nearest neighbours. Note that if frame i is a neighbour of frame j,
the reverse is not necessarily true. At extreme settings, if k = 0 then the graph
has no arcs and thus no structure, while if k = N the graph is fully connected
and likewise exhibits no structure. What are desirable characteristics for a k-NN
graph to be used in KAM?

Unlike many problems defined on a graph, in KAM we do not wish our graph
to take on simple structure such as well-separated clusters: instead, we want all
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frames to have connections to frames which are similar according to the current
source kernel, but dissimilar in terms of the other sources. It is not clear how
these structural considerations can best be quantified numerically, though such
structure would have some impact on summary statistics considered in graph
theory.

Consider a set of frames containing a background musical phrase which is
repeated often: we would expect these to form a densely connected component in
the graph. The frames also containing sparsely-present and variable vocal energy
would be expected to have arcs pointing to that densely connected component
but few arcs pointing back out to them. Therefore, the number of incoming arcs
(i.e. in-degree) would be unevenly distributed across the nodes, directly as a
result of the observed signal properties which one assumes in KAM.

One way to analyse such properties in graph theory is the concept of ‘hubs’,
which are nodes with an unusually high in-degree [12]. This has been of particular
influence in social network theory as researchers studied effects such as ‘small
world’ phenomena, which can have important effects such as the speed at which
news or illness spreads through a social network. For a given graph, one can
define summary statistics which reflect the general presence of hubs. One referred
to as the ‘hubness’ is simply the skewness of the k-occurrence statistics, i.e.
the skewness of the distribution of the in-degrees of nodes in the graph. Here,
the k-occurrence of a frame corresponds to the number of times that frame is
amongst the k nearest neighbours, and the ‘hubness’ is therefore the skewness of
the distribution of all frames’ k-occurrence. In a k-NN graph we assign a fixed
number of arcs, and so the average in-degree is always k; however if the graph
contains strong hubs then the skewness of the in-degree will be high.

In our vocal separation application in KAM it is clear that a graph with
relatively high hubness should typically be one which has appropriate structure.
We typically have very little a priori guidance over what value of k to choose, so
it is advantageous that, for each track separately, we can iterate over a selection of
possible k, inspect graph statistics such as hubness for the graphs thus produced,
and select k which produces the optimal statistics. Therefore, we here propose
to select the k producing the maximum hubness of the associated k-NN graph.

However, in a situation where we vary k, the hubness h will vary even in
the null case of a randomly-constructed graph. (This can be seen in the extreme
cases: for k = 0 or k = N the graph is symmetric and the hubness is 0, whereas
for other k it can be nonzero.) A standard null model can be generated by select-
ing k neighbours for each frame purely at random. This is related to the classic
Erdős-Rényi random graph except that it is directed rather than undirected [13].
The distribution of k-occurrences in this null model follows a binomial distribu-
tion with parameters N and k/N , leading to an expression for the expected
hubness as:

hnull = (1 − 2k/N)/
√

k(1 − k/N) (1)

We can thus define a normalised hubness statistic as the ‘excess’ hubness, i.e. the
raw observed hubness minus the hubness expected under the null model, which
should then be less biased than the raw hubness in selecting k.
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The above null model is one of the simplest random graphs. In practice,
graphs constructed from high-dimensional similarity measures do not behave
strictly in that fashion, and it is an ongoing research topic to model how k-NN
graphs behave in general [12]. In preliminary work we found that the general
scaling of the hubness statistic was out of line (larger) than in the simple null
model, and so our empirical normalisation is given as

hnorm =
h

max(h)
− hnull

max(hnull)
(2)

where maxima are across the sweep of k settings.
Using the maximum hubness as a metric to choose k has numerous

advantages:

1. It does not require any ground truth information
2. k is optimised per track as a pre-processing step before the separation actually

takes place
3. It is quick to compute so we can sweep through a lot of different k values, so

we can have a finer optimisation
4. The hubness has been demonstrated to have perceptual relevance for song sim-

ilarity in music recommendation, suggesting that it reflects properties of the
nearest neighbour graph that have impact on its applied use. However, it has
not been used for frame selection in KAM and so that is to be explored here.

4 Experiments and Discussion

To evaluate the proposed method, we quantitatively compare it against the stan-
dard parameter sweep for setting k in KAM for a vocal separation task. We chose
to follow the vocal separation method described in [1] with FFT size of 4096 and
hop size of 1024 samples, as it represents a baseline instance of the larger KAM
framework.

To encourage reproducibility, we use the publicly available Test Demixing
Secrets Dataset (DSD100) [14], containing 50 full length songs of diverse genres
sampled at 44.1 kHz. Since the kernel implemented relies on musical repetition,
we evaluated our proposed method on full length songs to ensure as much sound
material as possible for KAM’s source reconstruction. However, the literature
only offers some indication on k values for 30 second segments. We therefore
use a broad range of fix k values for the traditional parameter sweep, letting
k ∈ {0, 25, 50, 100, 200, 400, 800, 1600, 3200}, and a finer percent increase sweep
for the computational inexpensive proposed method taking the song length into
account, letting k ∈ {(0.001, 0.011, 0.021, 0.031, ..., 0.45) × N} where N is the
total number of time frames in the song.

Following common practice in the field, we employ the Signal to Distortion
Ratio (SDR) in the BSS Eval toolbox 3.0 [11] as the quantitative indicator of
the separation performance. Therefore, we would expect to observe a positive
correlation between SDR and hubness for different k values. Due to the diversity
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Fig. 2. SDR Boxplot of every song in the Test DSD100 dataset for different k values.
The maximum and minimum SDR obtained for each song are marked in blue and
orange respectively, showing a general trend of higher separation performance with
increasing k value. (Color figure online)

of styles in the dataset, one could also expect an improvement in the overall
separation performance (and so SDR) by using a tailored k for each song follow-
ing the proposed method.
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Fig. 3. SDR Boxplot of different k value for each song in the Test DSD100 dataset,
briefly described in the top axis and sorted in ascending variance order. The SDR
obtained with the maximum k value of 3200 for each song is marked in blue showing
the different behaviour between songs.

According to the standard method to fix k, one would pick the value with a
higher overall SDR, here (Fig. 1) is the highest k of 3200 frames. Alternatively,
the positive correlation between the hubness and SDR seen in Fig. 1 suggests
the hubness to indicate the optimal k value for a successful separation.

Moreover, the similarity between boxplots in Fig. 2 for different k values
suggests there might not be an unique k that maximises the SDR of every song
in the dataset. However, the crosses indicating the k value from that set for
which the maximum and minimum SDR was obtained for each song partly go
against this idea, as most of the separations were more successful with the highest
k value. This behaviour is surprising as the songs in the dataset present very
distinct characteristics. One would expect most of the tracks to peak at lower
k, since 3200 frames represents more than 30% of the total frames for most
songs, which seems to be so many frames that it should generally overpass the
50% of outliers breaking point of the median operator. The abundance of highly
repetitive songs could potentially explain how such large k could be successful.

However, the markers in Fig. 2 show differently as most of the songs obtained
a higher SDR with the highest k value. This behaviour comes as a surprise taking
into account the dataset’s disparity. Most tracks were expected to peak in SDR
for lower k values than 3200 frames, which seems to be so many frames that
it should generally overpass the 50% of outliers breaking point of the median
operator. The abundance of highly repetitive songs could potentially explain
how such large k could be successful, although the literature indicates the SDR
may not be a reliable metric of the actual separation performance [10].
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Fig. 4. SDR values for each song in the Test DSD100 dataset sorted in ascending order,
using the optimal k issued from the standard and proposed method, in comparison to
the SDR of the raw mixture (i.e. k=0).

Figure 3 offers a different perspective on the individual song behaviour which
should shed some light on the above dilemma. As expected, very repetitive songs
such as track 45, 4 or 50, achieve a higher SDR with highest k values. However,
it is also the case for unconventional pop songs such as 43 or 17, where the
variance in SDR is extremely low (less than 0.05). For such cases the separation
may not have been successful, but Fig. 4 shows otherwise as the median SDR is
above the mixture’s SDR (equivalent k = 0). Further, the overall SDR variance
is surprisingly low, with a median of 1.4 dB potential SDR increase by changing
k (maximum of 3.57 dB and minimum of 0.17 dB). With such a low potential
SDR improvement, one might wonder if k actually matters at all or again, if the
SDR is failing to capture the actual separation performance.

The majority of cases where different values of k induce substantial changes in
SDR correspond to popular songs with a classic pop musical set-up and repeat-
ing musical structures (Fig. 3)—the ideal scenario for the implemented KAM
vocal separation as described in [1]. One could therefore infer that a track sen-
sitive to different k values (i.e. higher SDR variance), fulfills KAM requirements
for a successful source separation. Track 44 presents an excellent example as
it has a high SDR median and high SDR variance (2.72 dB of potential SDR
improvement). However, most of the tracks in the dataset fail to present such
characteristics, introducing a question regarding the flexibility and adaptability
of the implemented KAM for vocal separation.

Songs which fulfill KAM ideal requirements for vocal separation (sensitive
to k or highly repetitive) are expected to present higher SDR values than more
complex songs. However, Fig. 3 does not present such logic, which makes one
further wonder if the choice of separation performance metric is the adequate
choice and so perceptual models or listening tests should be adopted for separa-
tion methods evaluation.

Nevertheless, Fig. 4 shows the proposed method can be used as substitute
to the current technique for fixing k. Both methods present similar results in
most cases and although the proposed one presents lower SDR for some songs,
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it seems a small trade-off for a considerable decrease in computation time (1000
times faster than the standard method).
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Abstract. This paper reports the organization and results for the 2018
community-based Signal Separation Evaluation Campaign (SiSEC 2018).
This year’s edition was focused on audio and pursued the effort towards
scaling up and making it easier to prototype audio separation software in
an era of machine-learning based systems. For this purpose, we prepared
a new music separation database: MUSDB18, featuring close to 10 h
of audio. Additionally, open-source software was released to automati-
cally load, process and report performance on MUSDB18. Furthermore,
a new official Python version for the BSS Eval toolbox was released,
along with reference implementations for three oracle separation meth-
ods: ideal binary mask, ideal ratio mask, and multichannel Wiener filter.
We finally report the results obtained by the participants.

1 Introduction

Source separation is a signal processing problem that consists in recovering indi-
vidual superimposed sources from a mixture. Since 2008, the role of the Signal
Separation Evaluation Campaign (SiSEC) has been to compare performance
of separation systems on a volontary and community-based basis, by defining
tasks, datasets and metrics to evaluate methods [1,14,18,19,29,30,34]. Although
source separation may find applications in several domains, the focus of SiSEC
has always mostly been on audio source separation.

This year, we decided to drop the legacy speech separation and denoising
tasks UND and BGN, because they are now the core focus of very large and suc-
cessful other campaigns such as CHiME [2,3,31]. Instead, most of our efforts were
spent on music separation, where the SiSEC MUS task is playing an important
role, both in terms of datasets and participation. However, we also maintained
the ASY task of asynchronous separation, due to its originality and adequation
with the objectives of SiSEC.

While the primary objective of SiSEC is to regularly report on the progress
made by the community through standardized evaluations, its secondary objec-
tive is also to provide useful resources for research in source separation, even
outside the scope of the campaign itself. This explains why the SiSEC data has
always been made public, to be used for related publications.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 293–305, 2018.
https://doi.org/10.1007/978-3-319-93764-9_28
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Since 2015, the scope of the SiSEC MUS data was significantly widened,
so that it could serve not only for evaluation, but also for the design of music
separation system. This important shift is motivated by the recent development
of systems based on deep learning, which now define the state-of-the-art and
require important amounts of learning data. This lead to the proposal of the
MSD [19] and the DSD100 [14] datasets in the previous editions.

This year’s SiSEC present several contributions. First, the computation of
oracle performance goes further than the usual Ideal Binary Mask (IBM) to
also include Ideal Ratio Mask (IRM) and Multichannel Wiener Filters (MWF).
Second, we released the MUSDB18, that comprises almost 10 h of music with
separated stems. Third, we released a new version 4 for the BSS Eval tool-
box, that handles time-invariant distortion filters, significantly speeding up
computations1.

2 Oracle Performance for Audio Separation

We write I as he number of channels of the audio mixture: I = 2 for stereo. We
write x for the 3-dimensional complex array obtained by stacking the Short-Time
Frequency Transforms (STFT) of all channels. Its dimensions are F×T×I, where
F, T stand for the number of frequency bands and time frames, respectively. Its
values at Time-Frequency (TF) bin (f, t) are written x (f, t) ∈ C

I , with entries
xi (f, t). The mixture is the sum of the sources images: x (f, t) =

∑
j yj (f, t),

which are also multichannel.
A filtering method m usually computes estimates ŷm

j for the source images
linearly from x:

ŷm
j (f, t | θm) = Mm

j (f, t | θm) x (f, t) , (1)

where θm are some parameters specific to m and Mj (f, t | θm) is a I×I complex
matrix called a TF mask, computed using θm in a way specific to method m.
Once given the filtering strategy m, the objective of a source separation system
is to analyze the mixture to obtain parameters θm that yield good separation
performance.

For evaluation purposes, it is useful to know how good a filtering strategy
can be, i.e. to have some upper bound on its performance, which is what an
oracle is [33]:

θ�
m = argmin

θm

∑

f,t,j

∥
∥yj (f, t) − ŷm

j (f, t | θm)
∥
∥ , (2)

where ‖ · ‖ is any norm deemed appropriate. In this SiSEC, we covered the
three most commonly used filtering strategies, and assessed performance of their
respective oracles:

1 sisec.inria.fr.

http://sisec.inria.fr
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1. The Ideal Binary Mask (IBM, [35]) is arguably the simplest filtering
method. It processes all (f, t, i) of the mixture independently and simply
assigns each of them to one source only: M IBM

ij (f, t) ∈ {0, 1}. The IMB1
method is defined as Mij = 1 iff source j has a magnitude |yij(f, t)| that is at
least half the sum of all sources magnitudes. IBM2 is defined similarly with
the sources power spectrograms |yij(f, t)|2.

2. The Ideal Ratio Mask (IRM), also called the α-Wiener filter [12], relaxes
the binary nature of the IBM. It processes all (f, t, i) through multiplication
by M IRM

ij ∈ [0, 1] defined as:

M IRM
ij (f, t) =

vij (f, t)
∑

j′ vij′ (f, t)
, (3)

where vij (f, t) = |yij (f, t)|α is the fractional power spectrogram of the source
image yij . Particular cases include the IRM2 Wiener filter for α = 2 and the
IRM1 magnitude ratio mask for α = 1.

3. The Multichannel Wiener Filter (MWF, [6]) exploits multichannel infor-
mation, while IBM and IRM do not. MMWF

j (f, t) is a I × I complex matrix
given by:

MMWF
j (f, t) = Cj (f, t) C−1

x (f, t) , (4)

where Cj (f, t) is the I × I covariance matrix for source j at TF bin (f, t) and
Cx =

∑
j Cj . In the classical local Gaussian model [6], the further parame-

terization Cj (f, t) = vj (f, t) Rj (f) is picked, with Rj being the I × I spatial
covariance matrix, encoding the average correlations between channels at fre-
quency bin f , and vj (f, t) ≥ 0 encoding the power spectral density at (f, t).
The optimal values for these parameters are easily computed from the true
sources yj [13].

These five oracle systems IBM1, IBM2, IRM1, IRM2, MWF have been imple-
mented in Python and released in an open-source license2.

3 Data and Metrics

3.1 The MUSDB18 Dataset

For the organization of the present SiSEC, the MUSDB18 corpus was released [21],
comprising tracks from MedleyDB [4], DSD100 [14,19], and other material. It con-
tains 150 full-length tracks, totaling approximately 10 h of audio.

– All items are full-length tracks, enabling the handling of long-term musical
structures, and the evaluation of quality over silent regions for sources.

– All signals are stereo and mixed using professional digital audio workstations,
thus representative of real application scenarios.

2 github.com/sigsep/sigsep-mus-oracle.

http://github.com/sigsep/sigsep-mus-oracle
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– All signals are split into 4 predefined categories: bass, drums, vocals, and
other. This promotes automation of the algorithms.

– Many musical genres are represented: jazz, electro, metal, etc.
– It is split into a training (100 tracks, 6.5 h) and a test set (50 tracks, 3.5 h),

for the design of data-driven methods.

The dataset is freely available online, along with Python development tools3.

3.2 BSS Eval Version 4

The BSS Eval metrics, as implemented in the MATLAB toolboxes [7,32] are
widely used in the separation literature. They assess separation quality through
3 criteria: Source to Distortion, to Artefact, to Interference ratios (SDR, SAR,
SIR) and additionally with the Image to Spatial distortion (ISR) for the BSS
Eval v3 toolbox [32].

One particularity of BSS Eval is to compute the metrics after optimally
matching the estimates to the true sources through linear distortion filters. This
provides some robustness to linear mismatches. This matching is the reason for
most of the computation cost of BSS Eval, especially considering it is done for
each evaluation window.

In this SiSEC, we decided to drop the assumption that distortion filters could
be varying over time, but considered instead they are fixed for the whole length
of the track. First, this significantly reduces the computational cost because
matching is done only once for the whole signal. Second, this introduces more
dynamics in the evaluation, because time-varying matching filters over-estimate
performance, as we show later. Third, this makes matching more stable, because
sources are never silent throughout the whole recording, while they often were
for short windows.

This new 4th version for the BSS Eval toolbox was implemented in Python4,
and is fully compatible with earlier MATLAB-based versions up to a tolerance
of 10−12 dB in case time-varying filters are selected.

4 Separation Results

4.1 Oracle Performance with BSS Eval v4

To the best of our knowledge, the results presented in Fig. 2 are the first fair
comparison between the different and widely used oracle systems presented in
Sect. 2. On this figure, we can see boxplots of the BSS Eval scores obtained by
IBM1, IBM2, IRM1, IRM2 and MWF on the 4 sources considered in MUSDB18.
The scores were computed on 1 second windows, taken on the whole test-set.

The most striking fact we see on this Fig. 2 is that IBM is not achieving the
best scores on any metric except ISR. Most particularly, we notice that IBM

3 https://sigsep.github.io/musdb.
4 pip install museval.

https://sigsep.github.io/musdb
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systematically induces a small loss in performance of a few dBs on SDR and SIR
compared to soft masks for most sources, and to a significant loss for SAR, that
can get as bad as around 5 dB for the accompaniment source. This is in line with
the presence of strong musical noise produced by IBM whenever the source to
separate is dense and cannot be assumed stronger in magnitude or energy than
all others whenever it is active. This also happens for the bass, which is usually
weaker than all other sources at high frequencies, yielding significant distortion
with IBM. Furthermore, we suspect the strong scores obtained by IBM in vocals
and bass ISR to mostly be due to the zeroing of large amounts of frequency bands
in those estimates. Indeed, zero estimates lead the projection filters of BSS eval
to totally cancel those frequencies in the reference also, artificially boosting ISR
performance.

Now, comparing soft masks, it appears that IRM2 and MWF produce the
best overall performance as compared to IRM1. However, this result is expected:
BSS Eval scores are in fine relative to squared-error criteria, which are precisely
optimised with those filters. Previous perceptual studies showed that IRM1 may
be preferred in some cases [12]. This may be reflected in the slightly better
performance that IRM1 obtains for SAR. Finally, although IRM2 seems slightly
better than MWF for most metrics, we highlight that it also comes with twice
as many parameters: power spectral densities for left and right channels, instead
of just one for MWF, shared across channels.

Fig. 1. Vocals SIR score vs vocals energy for BSS eval v3 and v4.

Concerning the discrepancies between BSS Eval v3 and v4 (time-invariant
distortion filters), we observe several differences. First, computations were
8 times faster for v4 than for v3, which allowed using small 1 s frames and
thus get an estimate of the performance along time at a reasonable computing
cost. Second, computing distortion filters only once for the whole duration of
the signal brings an interesting side-effect, that can be visualized on Fig. 1. The
new v4 brings a much higher dynamics for the scores: we clearly see that lower
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energy for the true source brings lower performance. However, the marginal dis-
tributions for the scores over the whole dataset were not statistically different
between v3 and v4, which validates the use of fewer distortion filters to optimize
computing time and get to similar conclusions.

4.2 Comparison of Systems Submitted to SiSEC-MUS 2018

This year’s participation has been the strongest ever observed for SiSEC, with
30 systems submitted in total. Due to space constraints, we cannot detail all the
methods here, but refer the interested reader to the corresponding papers. We
may distinguish three broad groups of methods, that are:

Model-based. These methods exploit prior knowledge about the spectrograms
of the sources to separate and do not use the MUSDB18 training data for
their design. They are: MELO as described in [24], as well as all the method
implemented in NUSSL [15]: 2DFT [25], RPCA [9], REP1 [22], REP2 [20],
HPSS [8].

No additional data. These methods are data-driven and exploit only the
training data for MUSDB18 to learn the models. They are: RGT1-2 [23],
STL, HEL1 [10], MDL1 [17], MDLT [16], JY1-3 [11], WK [36], UHL1 [27],
UHL2 [28], TAK1 [26].

With additional data. These methods are also data-driven, and exploit addi-
tional training data on top of the MUSDB18 training set. They are: UHL3
[28], TAK2-3 [26], TAU [26,28].

As may be seen, the vast majority of methods submitted this year to SiSEC
MUS are based on deep learning, reflecting a shift in the community’s methodol-
ogy. The MIX method additionally serves as a negative anchor, that corresponds
to using the mixture as an estimate for all sources.

In the first set of results depicted on Fig. 2, we display boxplots of the BSSeval
scores for the evaluation. For each track, the median value of the score was taken
and used for the boxplots. Inspecting these results, we immediately see that data-
driven methods clearly outperform model-based approaches by a large margin.
This fact is noticeable for most targets and metrics.

In the second set of results displayed on Fig. 3, we computed the track-wise
median SDR score for all methods on the vocals (top) and accompaniment (bot-
tom) targets. The striking fact we notice there is that methods exploiting addi-
tional training data (UHL3, TA*) do perform comparably to the oracles for
approximately half of the tracks. After inspection, it turns out that room for
improvement mostly lies in tracks featuring significant amounts of distortion in
either the vocals or the accompaniment. We may also notice on these plots that
tracks where accompaniment separation is easy often come with a challenging
estimation of vocals. After inspection, this is the case when vocals are rarely
active. Consequently, correctly detecting vocals presence seems a good asset for
separation methods.

Our third round of analysis concerns the pair-wise post-hoc Conover-Inman
test, displayed on Fig. 4, to assess which methods perform significantly better
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Fig. 2. Details of results for all metrics, targets and methods.



300 F.-R. Stöter et al.

Fig. 3. Vocals (top) and accompaniment (below) SDR for all tracks and methods.
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Fig. 4. Pair-wise statistical significance of the differences between separation quality.
Left: vocals SDR. Right: accompaniment SDR.

than others, for both vocals and accompaniment separation. In this plot, an
obvious fact is that DNN-based methods exploiting additional training data
perform best. Remarkably, they do not perform significantly differently than the
oracles for accompaniment, suggesting that the automatic karaoke problem can
now be considered solved to a large extent, given sufficient amounts of training
data. On the contrary, vocals separation shows room for improvement.

Concerning model-based methods, we notice they perform worse, but that
among them, MELO stands above for vocal separation, while it is comparable
to others for accompaniment. For DNN approaches not using additional training
data, we notice different behaviours for vocals and accompaniment separation.
We may summarize the results by mentioning that RGT1-2, STL and MDL1 do
not behave as well as MDLT, STL1, JY1-3, WK and UHL1-2, which all behave
comparably. It is noteworthy that TAK1 and UHL2 compare well with methods
exploiting additional data for vocals separation.

This evaluation highlights a methodological question that should be investi-
gated in future campaigns, which is the relative importance of the system archi-
tecture and the amount of training data. It indeed appears that very different
architectures do behave comparably and that the gap in performance now rather
comes from additional training data, as exemplified by the difference between
UHL2 and UHL3. This confirms the importance of using standard training and
test datasets such as MUSDB18 for evaluation, and we believe that obtaining
good performance with reduced training data remains an interesting and chal-
lenging machine learning problem.
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4.3 Comparison of Systems Submitted to SiSEC-ASY 2018

As shown in Table 1, there was one submission to the task “Asynchronous record-
ings of speech mixtures” by Corey et al. [5]. This method does not resample the
microphone signals in order to separate them. Rather, it uses a separate time-
varying two-channel Wiener filter for each synchronous pair of microphones. The
remaining asynchronous microphone pairs are used to compute a speech pres-
ence probability for each source in each time-frequency bin. The speech presence
information from the remote microphone pairs allows the reference recorder to
separate more than two speech signals using a two-channel filter.

Table 1. Result for the task “Asynchronous recordings of speech mixtures”. Result by
Miyabe et al. in SiSEC2015 is also shown as a reference.

Systems Criteria 3src 4src

Realmix Sumrefs Mix Realmix Sumrefs Mix

Corey [5] SDR −4.0 −4.0 −4.1 3.1 2.9 1.7

ISR −0.1 −0.1 −0.1 7.0 6.7 5.8

SIR −2.2 −1.7 −1.9 5.4 5.0 2.4

SAR −13.2 −13.1 −12.4 7.9 7.8 6.1

Miyabe SDR 6.9 6.8 10.6 4.0 3.8 3.3

ISR 11.2 11.1 15.1 8.8 8.5 7.3

SIR 11.0 10.9 14.9 6.7 6.4 6.0

SAR 11.7 11.6 15.5 7.8 7.6 7.4

5 Conclusion

We reported our work on the organization of SiSEC 2018, that comprised the
development of a new Python version 4 for BSS Eval to assess performance,
that is fully compatible with earlier MATLAB versions and additionally allows
for time-invariant distortion filters, significantly reducing computational load.
Furthermore, we presented the new MUSDB18 dataset, that gathers 150 music
tracks with isolated stems, totaling almost 10 h of music. Finally, we also provide
open-source implementations of 3 popular oracle methods to provide various
upper bounds for performance.

Then, we reported the impact of choosing time-invariant distortion filters for
BSS Eval over time-varying ones and quickly summarized the discrepancies in
the performance of the proposed oracles methods with BSS Eval v3 and v4.

Finally, we provided an overall presentation of the scores obtained by the
participants to this year’s edition. More detailed analysis and sound excerpts
can be accessed online on the SiSEC webpage.
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Abstract. Most convolutional neural network architectures explored so
far for musical audio separation follow an autoencoder structure, where
the mixture is considered to be a corrupted version of the original source.
On the other hand, many approaches based on deep neural networks
make use of several networks with different objectives for estimating the
sources. In this paper we propose a discriminative approach based on
traditional convolutional neural network architectures for image classi-
fication and speech recognition. Our results show that this architecture
performs similarly to current state of the art approaches for separat-
ing singing voice, and that the addition of convolutional layers allows
improving separation results with respect to using only fully-connected
layers.

Keywords: Audio source separation · Convolutional neural networks

1 Introduction

The concept of musical audio is commonly used to refer to polyphonic mix-
tures of musical instrument recordings and/or electronic sounds that have been
produced and mastered for distribution. Separating such mixtures into source
streams has many interesting applications, such as remixing and upmixing [1].
In a production context, being able to adjust an already assembled mix is useful
in several situations. A mastering engineer may be able to make adjustments
to vocal levels in the order of 1–2 dB without requesting a new mix or vocal
stem from their client; or alter the perspectival position of a stream by selec-
tively applying reverb or delay; or use an isolated stream as a key signal for a
compressor. In remixing, more radical treatments might use extracted streams
as sources for processing, although this is contingent on the degree and type
of artefacts introduced by separation. In these contexts, it is important that
the raw, extracted streams sum exactly to the original mixture and would pass
what sound engineers commonly call a null sum test: inverting the phase of one
mixture and adding this to the other should result in silence. In this way, the pro-
ducer is always working from an uncompromised, original mix and—accepting
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 306–315, 2018.
https://doi.org/10.1007/978-3-319-93764-9_29
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that extracted streams will have artefacts—can judge the outcome of adjust-
ments relative to this neutral starting point. As mastering engineer Bob Olhsson
notes, “audio processing is the art of balancing subjective enhancement against
objective degradation” [2].

The success of deep learning architectures in other domains has sparked
interest in applying them to separating musical audio. Here, we are interested
in current machine learning systems for musical audio separation to the extent
that they can provide useful approximations for audio processing applications.
Most deep learning approaches rely on having training examples, which requires
consistent instrumentation labels. For this reason, many models are limited to
separating just singing voice or other specific streams, which is not so useful in
a general production context. We should also note how much work these labels
are made to do in terms of the territory they cover: for instance “vocals” could
span Stevie Wonder, Björk, and T-Pain (without even considering more extreme
examples). As such, aiming for a ‘perfect’ decomposition of sources is unrealistic,
given the need for labelled data and the complexities of production processes,
typically including non-linear effects. A compromise solution is provided by the
Demixing Secrets Dataset (DSD100) used in the MUS task of the SiSEC evalu-
ation campaign [3], where each track is consistently seen as a mix of vocals, bass
and drums, while other instruments are grouped into a “other” category. On this
basis, we take our separation to be yielding streams rather than sources that we
can think of as being vocal-like, bass-like and so forth, and take as a priority that
the sum of the streams matches exactly the original mixture. For this reason,
we adopt the well established framework of time-frequency masking [4].

The SiSEC campaign is also a good measure of the state of the art. In the
last iteration the best performance was obtained by systems using Deep Neu-
ral Networks (DNN) [5,6], either feed-forward or recurrent. Most recent DNN
approaches have been based on two-step algorithms. For example, the system in
[6] is formulated as a variant of the Expectation Maximization (EM) algorithm
where one DNN tries to separate the sources, while a second one tries to enhance
the result. A similar approach was presented in [7]. A recent system proposed in
[8] also uses two networks (a “Masker” and a “Denoiser”).

The rapid adoption of Convolutional Neural Networks (CNN) in domains
such as computer vision (including image segmentation) has fostered expecta-
tions with respect to audio source separation. However, applications of CNNs to
musical audio separation have only surfaced recently. Most approaches follow an
autoencoder structure, where the network tries to produce a de-noised version
of the input. In this case, the mixture is seen as a signal where noise has been
added to the target source. These networks follow a U-shaped structure where
the input is a slice of the spectrogram, and the output is a slice with the same
size. This means that after several downsampling layers (via convolution or max
pooling) there is a series of upsampling (often called “deconvolution” [9]) layers
that recover the original dimensions. For example, the system in [10] is composed
of an encoding step and a decoding step (using deconvolution layers) connected
by a fully-connected layer. The approach in [11,12] uses a similar system with
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upsampling layers. These systems have both been evaluated with the DSD100
dataset. Another similar system was proposed in [13] specifically for singing-voice
separation. Although it was not evaluated with the same dataset, it seems to
provide improvements with the iKala [14] dataset used for singing voice extrac-
tion in the MIREX1 evaluation challenge. However, it relies on a large private
training dataset, based on artist distribution of instrumental tracks, so it is not
clear whether it would extend to other instruments.

In this paper we investigate a different approach to CNNs for musical audio
separation, based on the classic models for image classification [15]. As opposed
to autoencoder-like approaches, our model can be seen as “discriminative”, in the
sense that the problem is modelled as a classification of time-frequency bins. This
implies adding some fully-connected layers after the convolutional layers. With
this method, we hope to combine the discriminative power of fully-connected
networks with the possibility of learning features from a wider temporal context
provided by convolutional layers. As we are interested in the potential for real-
time implementation, we limit our temporal scope to texture windows of around
200 ms. While this still requires a relatively long latency, it is much shorter
than in recent CNN-based systems based on processing spectrograms of several
seconds [13]. Each texture window is used to predict a filter for a given spectral
frame.

The rest of the paper is organized as follows. In the next section we describe
the proposed approach based on CNNs with two variants. In Sect. 3, we assess
the potential of this model in experiments with the DSD100 dataset. Finally, in
Sect. 4 we reflect on future possibilities for this work.

2 Proposed Approach

2.1 Problem Formulation

Most recent work on audio source separation is based time-frequency represen-
tations, typically the Short-Time Fourier Transform (STFT), and relies on the
assumption that the transform X of a mixture signal x at time index n and
frequency index k results from the sum of i component streams [16]:

Xn,k =
∑

i

Si
n,k (1)

As seen in the previous section, in musical audio this may not really need to
correspond to the original acoustic sources, but it is assumed that such decompo-
sition would result in useful component signals (also, this assumes that a constant
overlap-add window is used for an STFT). Audio source separation attempts to
recover an estimate of each stream Si, typically with the hope that the original
sources do not overlap in X. Hence, the most common way of extracting the
stream is by applying a time-frequency mask to X, so that

Ŝi
n,k = M i

n,kXn,k. (2)

1 http://www.music-ir.org/mirex/wiki/MIREX HOME.

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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The mask M i can be either binary or soft. Ideal binary masks, specified to be
1 when the target source dominates a given time-frequency bin and 0 otherwise,
are routinely used in the STFT domain as an upper bound of automatic music
separation, which shows that, even for such broad band signals, the components
do not overlap too much in this representation. However, in general for better-
sounding estimates, a soft mask where M i

n,k ranges between 0 and 1 is preferred.

2.2 Mask Estimation

CNNs have become the standard method for image classification and object
recognition in images. Conventional CNNs include both convolutional and fully-
connected layers. In this setting they are typically used to obtain progressively
smaller feature maps, which works for the mentioned tasks, where the output is
just a class label, or a label and a set of coordinates. Here, this combination of
convolutional and fully-connected layers is useful, given the importance of the
temporal context for estimating Mi at a given point. Using DNNs with only
fully-connected layers is problematic for this because in order to use multiple
frames as input, large numbers of parameters are required. We define the nth
input of the network as the sequence of 2c + 1 magnitude frames:

X̂n = [|xn−c|...|xn|...|xn+c|], (3)

With respect to the objective, one option is to see the separation problem as
a classification of time-frequency bins [4]. In this case, the spectrogram can be
encoded as:

Yn,k = arg max
i

(Si
n,k). (4)

Here, Y is an integer matrix that contains the index of the source with the
largest magnitude at each time-frequency bin. We would seek to estimate Ŷ so
that the mask M i

n,k for each time-frequency bin can be obtained as

M i
n,k =

⎧
⎪⎨

⎪⎩

1 if Ŷn,k = i

0 otherwise.
(5)

This setting allows us to use the popular softmax function, which we can
compute for each time-frequency bin. Our model predicts a single frame, which
means that the sequence of outputs produced by the last fully-connected layer of
the network, O, is a N ×K × I tensor which can be seen as the non-normalized
probability of source i at frequency k for frame n. The softmax function then
produces normalized probabilities:

P i
n,k =

eOn,k,i

∑I
j e

On,k,j

(6)
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The goal of the network is then to minimize the negative log likelihood for
the correct class, averaged across frequency bins:

lnll =
1
K

∑

k,
i=Yn,k

−log(P i
n,k). (7)

Such setting can be used to obtain binary masks that are guaranteed to split
the spectrogram evenly, so the estimates would pass the null sum test. However,
binary masks typically introduce audible artifacts. Alternatively, an ideal soft
mask is computed as

M i
n,k =

|Si
n,k|∑

i |Si
n,k|

. (8)

In this case, the estimate can be obtained by using a sigmoid function at the
output of the network, which is also a N ×K × I tensor:

P i
n,k =

eOn,k,i

1 + eOn,k,i
. (9)

Then the mean square error loss can be used:

lmse =
1
I

∑

i

(
1
K

∑

k

(M i
n,k − P i

n,k)2). (10)

This is equivalent to estimating a soft mask separately for each source, but
with all masks being computed simultaneously by the same network. Hence,
while the target soft masks M i

n,k are normalized to sum to one, the output of
the network is not guaranteed to do so. In order to preserve this quality, the
estimate masks need to be normalized again.

2.3 Network Architecture

As mentioned in the previous sections, the proposed architecture consists in
combining convolutional layers with a fully-connected output. This architecture
has been applied to classification and recognition tasks in speech [17] and musical
audio [18], but, to the best of our knowledge, not to musical audio separation
(note that [10] included fully-connected layers, but not at the ouptput, which
has a different interpretation). This architecture can be used to optimize both
targets described on Sect. 2.2.

Figure 1 describes the basic architecture used in our experiments. Dimen-
sionality reduction is achieved via max-pooling layers, as convolutional layers
are padded to result on outputs of the same size. Convolutional layers are con-
nected via rectified linear unit (ReLU) functions, while fully-connected layers
are connected with sigmoid functions. After the last fully-connected layer, either
a softmax function or a sigmoid activation function can be used.
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Fig. 1. Base CNN architecture

3 Evaluation

In order to assess the proposed model, we compared three different models on the
task of separating musical audio using the DSD100 dataset, roughly following
the experimental setting of the SiSEC campaign, which allows us to compare
the results to state of the art approaches. Our goal was specifically to assess the
addition of convolutional layers to a DNN network. The baseline DNN model
(dnn) was devised by removing the convolutional layers and extending the input
layer to accommodate 5 input frames. The second model (cnn1 ) included the
convolutional layers. Both were trained to optimize lmse with a sigmoid function
and soft masks. The third model (cnn2 ) was trained to optimize lnll with a
softmax output function. For each model, we extracted estimates for vocals,
bass, drums and other, the instrument categories of the dataset.

3.1 Experiment Setup

The development set, composed of 50 songs, was used for training, while the test
set (also 50 songs) was used for testing. The dataset was managed using the dsd-
tools package2. All songs were mixed to mono by averaging both channels, and
downsampled to 22050 Hz for processing. The estimates were upsampled again
for evaluation, while the reference tracks were also downmixed. Each track was
analyzed using a STFT with a window of 2048 samples (˜100 ms) and hops of
256 samples (˜10 ms). For each frame, we grouped a sequence of 11 context
frames (˜200 ms) and obtained the magnitude spectrogram of the mixture, and
both the classification target and soft masks described in Sect. 2.2. The net-
works were trained using the Adaptive Moment Estimation (ADAM) variant of
Stochastic Gradient Descent [19].

2 https://github.com/faroit/dsdtools.

https://github.com/faroit/dsdtools
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After shuffling the training set, a validation set of 20% of the data was used
to determine the number training epochs. A threshold of 5 epochs was used to
stop the training process if the loss had not decreased for the validation set
during that time. We used batch normalization [20] for each convolutional layer.
In our experience, using large enough batches this made normalizing the data
unnecessary. For the dnn model, training data was normalized to zero mean
and unit variance. We extracted the SDR, SIR and SAR measures typically
used for source separation [21]. Results for each measure and target stream
were compared using a Wilcoxon signed-rank test with Bonferroni correction.
Implementation was based on the Pytorch3 python library. The source code can
be obtained from https://github.com/flucoma/LVA-ICA-2018.

3.2 Results and Discussion

The results of the experiment are shown in Fig. 2. All pair-wise comparisons were
found to be significant (p < 0.01), with a few exceptions.

The system worked particularly well for separating vocals, with a median
SDR just above 4dB. This is similar to state-of-the art results employing multi-
ple network setups, such as [6,8], but using a single network. Also, the result for
vocals is higher than previously published methods based on CNNs [10,12]. In
addition, our system extracts estimates for multiple sources in one pass. Results
for other instruments are not as good. This may be due to the fact that early
versions of the system were evaluated for extracting of vocals. In early experi-
ments, separating the four streams improved the result for vocals, as opposed to
separation of vocals vs accompaniment. The difference may also be due to the
breadth of material that non-vocal categories encompass. Balancing the perfor-
mance between the different instruments would probably require a compromise
in terms of window size and overlap factor.

With respect to the different models, we were mainly interested in comparing
cnn1 with the other two, since dnn and cnn2 have a different architecture as well
as a different loss function. It should be noted that dnn did not have access to
the same temporal context, but since this was extended to 5 frames, the number
of parameters was higher than for the CNN models (38M vs 34M parameters).
Hence, the results show that for a very similar architecture, convolutional layers
allow increasing the temporal context seen by the network, resulting in better
performance with a small addition of trainable parameters.

Finally, it could be expected that, since it produces a binary mask, cnn2
would result in better SIR and lower SAR. This model still gives a similar overall
result (SDR) and can be possibly adapted to work in remixing applications where
artifacts would be diminished by the presence of all sources.

3 http://pytorch.org/.

https://github.com/flucoma/LVA-ICA-2018
http://pytorch.org/
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Fig. 2. Results of separation task with the Test set of the DSD100 dataset. All pair-
wise differences within each measure and target are statistically significant (p < 0.01)
except where noted (“ns”).
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4 Conclusions

In this paper we have studied the application of “traditional” CNN architectures
to separation of musical audio. Since the use of DNNs is already well established
for this task, this work can be seen as incremental, showing that the addition of
convolutional layers can improve the results of DNN architectures by allowing
access to a longer temporal context. Another advantage of these layers is that
it is easy to add additional features. We hope to study this further to keep
advancing this model. Our results show that this architecture allows achieving
state-of-the-art separation for vocals using a single-network algorithm. We plan
to investigate how to improve the results for other instruments. Some examples
of the output of our system can be found in the companion page http://www.
flucoma.org/LVA-ICA-2018/.
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Abstract. In this study we address models with latent variable in the
context of neural networks. We analyze a neural network architecture,
mixture of deep experts (MoDE), that models latent variables using
the mixture of expert paradigm. Learning the parameters of latent vari-
able models is usually done by the expectation-maximization (EM) algo-
rithm. However, it is well known that back-propagation gradient-based
algorithms are the preferred strategy for training neural networks. We
show that in the case of neural networks with latent variables, the back-
propagation algorithm is actually a recursive variant of the EM that is
more suitable for training neural networks. To demonstrate the viability
of the proposed MoDE network it is applied to the task of speech pres-
ence probability estimation, widely applicable to many speech processing
problem, e.g. speaker diarization and separation, speech enhancement
and noise reduction. Experimental results show the benefits of the pro-
posed architecture over standard fully-connected networks with the same
number of parameters.

Keywords: DNNs · Mixture of experts · Expectation-maximization

1 Introduction

The mixture of experts (MoE) model, introduced by Jacobs et al. [8,9], provides
an important paradigm for combining latent variables in discriminative models.
The objective of this framework is to describe the behavior of a certain phe-
nomenon under the assumption that there are separate processes involved in the
generation of the data under analysis. The MoE model is comprised of several
expert models and a gate model. Each of the experts provides a decision and the
gate is a latent variable that selects the relevant expert based on the input data.
Most MoE implementations are based on experts that are implemented by shal-
low models such as linear regression or logistic regression. In spite of the huge
success of deep learning, there are only a few studies that have explicitly utilized
and analyzed MoEs as an architecture component of a neural network [7,11].

Neural networks deal with the problem of making probabilistic inference
based on a given input data. In many cases, when formulating this problem, it is
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 319–328, 2018.
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natural to consider latent variables that control the network flow from the input
features to the network output and affect the final decision.

In this study, we utilize the MoE framework to define a neural network with
latent random variables. We propose a mixture of deep experts (MoDE) network
architecture where both the experts and the gating are implemented by neural
networks. The unobserved gating decision is a latent random variable which is
marginalized by the neural network in the process of obtaining the final decision.
A common technique for Maximum-Likelihood (ML) estimation of the model
parameters in the presence of latent variables is the expectation-maximization
(EM) algorithm [6]. The EM algorithm alternates between estimating the unob-
served variables given the current model parameters and refitting the model
given the estimated, complete data. In spite of the tremendous success of the
EM algorithm in parameter estimation tasks, it does not scale well when the
parametric model is corresponding to a neural network since the EM framework
requires training a neural network in each iteration. For real-world, large-scale
networks, even a single training iteration is a non-trivial challenge. Instead, the
back-propagation (BP), gradient-based, algorithm is the standard method for
training neural networks. The main contribution of this study is the establish-
ment of the link between the BP algorithm and an on-line variant of the EM
algorithm for the training of neural networks with latent variables [2,12].

As an example of the applicability of the proposed MoDE modeling and
training scheme, we apply it to the task of speech presence probability (SPP),
widely used in speech processing tasks, e.g. speaker diarization and separation
as well as speech enhancement and noise reduction. The speech signal comprises
several different acoustic states such as the phoneme identity or the coarser
distinction between voiced and unvoiced phonemes. Each such state induces
a different relationship between the speech signal and the SPP that could be
utilized to infer the SPP. In our modeling, each expert is responsible for a specific
acoustic state and the gating network is responsible to inferring the speech state
at each time frame. Unlike our previous method [3], in the current approach,
there is no need for phoneme-labeled data, since the gating (DNN) is capable of
splitting the input space in an unsupervised manner.

2 A Mixture of Deep Experts

In this section we first review the MoE framework and then use it to define
neural networks with latent variables.

The MoE model is a discriminative latent variable model that produces a
decision y given an input feature set x. We first sample an expert using a gating
function and then apply the expert to produce the output label. The index of
the selected expert is an intermediate hidden random variable denoted by z.
Formally, the MoE conditional distribution can be written as follows:

p(y|x; θ) =
m∑

i=1

p(z = i|x; θg)p(y|z = i, x; θi) (1)
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such that x is the feature, y is the classification result, z is a hidden random
variable that selects the expert that is applied and m is the number of experts.
The model parameter-set θ is composed of the parameter sets of the gating
function θg and the parameter sets θ1, . . . , θm of the m experts. A simple example
is a mixture of m linear regressions. In this case, each expert is a linear regression
model with parameters θi = {ai, bi, σ

2
i }. We first sample a hidden r.v. z from

a discrete distribution. Then, if z = i, y is sampled from a normal distribution
according to the rule: y|(x, z= i) ∼ N(y; aix + bi, σ

2
i ).

We next address the problem of learning the MoE parameters (i.e. the
parameters of the experts and the gating function) given a training dataset
(x1, y1), . . . , (xN , yN ), where N is the size of the database. The likelihood func-
tion of the MoE model parameters is:

L(θ) = L(θg, θ1, ..., θm) =
N∑

t=1

log p(yt|xt; θ). (2)

Since the selected expert used to produce yt from the feature set xt (i.e. the
value of the r.v. zt) is hidden, it is natural to apply the EM algorithm to find
the maximum-likelihood parameters [9]. The EM auxiliary function is:

Q(θ, θ̃) =
N∑

t=1

Ep(zt|xt,yt;θ̃)
(log p(yt, zt|xt; θ)) (3)

such that θ̃ is the current parameter estimate. In the E-step we apply Bayes’
rule to estimate the value of the selected expert based on the current parameter
estimate:

wti = p(zt = i|xt, yt; θ̃) =
p(yt|xt, zt = i; θ̃i)p(zt = i|xt; θ̃g)

p(yt|xt; θ̃)
t = 1, ..., N, i = 1, ...,m. (4)

The M-step decouples the parameter estimation of the different components
of the MoE model. We can optimize each of the experts and the gating function
separately since in each case there is a separate set of parameters. The updated
parameters of the gating function are obtained by maximizing the weighted
likelihood function:

Lg(θg) =
N∑

t=1

m∑

i=1

wti log p(zt = i|xt; θg) (5)

and the updated parameters of the experts are obtained by maximizing the
functions:

Li(θi) =
N∑

t=1

wti log p(yt|xt, zt = i; θi), i = 1, ...,m. (6)
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Fig. 1. A Mixture of Deep Experts (MoDE) architecture.

In this work we address the situation where both the experts and the gating
functions are implemented by DNNs. This brings the DNNs modeling power to
latent variables models. We denote this model mixture of deep experts (MoDE).
The MoDE model is expressed as follows:

pNN(y|x; θ) =
m∑

i=1

pNN(z = i|x; θg)pNN(y|z = i, x; θi) (7)

where pNN is the DNN estimation. In this model, θg is the parameter-set of the DNN
that implements the gating function and θi is the parameter-set of the DNN that
implements the i-th expert. The MoDE architecture is illustrated in Fig. 1.

To apply the EM algorithm described above to MoDE, we need to train in
the M-step both the gating and the experts neural networks using the objective
functions defined by (5) and (6), respectively. We thus iterate between computing
the posterior distribution of the latent variables at the E-step and training the
DNNs of the experts and the gating at the M-step. This approach, however,
requires training a neural network in each iteration of the EM algorithm while for
real-world, large-scale networks, even a single training iteration is a non-trivial
challenge. Another problem is that the EM algorithm is a greedy optimization
procedure that is notorious for getting stuck in local optima. This is a major
drawback in optimizing the likelihood functions of MoDEs that are highly non-
concave. Finally, the main justification of the EM algorithm is a guarantee that
the likelihood function is increased at each iteration. Here, in the M-step we train
a neural network and there is no guarantee that we find the global optimum or
even improve the likelihood compared to the previous EM iteration.

When estimating the parameters of a DNN with latent variables, we can
either focus on the latent variable aspect and use the EM algorithm or focus on
the DNN aspect and apply gradient methods via the back-propagation algorithm
which simultaneously trains all the sub-networks by directly maximizing the
likelihood function:
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L(θ) =
N∑

t=1

log

(
m∑

i=1

pNN(zt = i|xt; θg) · pNN(yt|zt = i, xt; θi)

)
. (8)

In this architecture, the experts and the gating networks are components of a
single network and are simultaneously trained with the same objective function.
It can be easily verified that the back-propagation equation for the parameter
set of the i-th expert is:

∂L

∂θi
=

N∑

t=1

wti · ∂

∂θi
log pNN(yt|zt = i, xt; θi) (9)

such that wti is the posterior distribution of the gating random variable:

wti = pNN(zt = i|xt, yt; θ) =
pNN(yt|xt, zt = i; θi)pNN(zt = i|xt; θg)

pNN(yt|xt; θ)
. (10)

In a similar way, the back-propagation equation for the parameter set of the
gating DNN is:

∂L

∂θg
=

N∑

t=1

m∑

i=1

wti · ∂

∂θg
log pNN(zt = i|xt; θg). (11)

The two algorithms (EM and BP) for training neural networks with latent vari-
ables are very similar. Expression (10) coincides with one term of auxiliary
function constituting the E-step of the EM algorithm defined in (4). The back-
propagation partial derivative w.r.t θi (9) is identical to the partial derivatives of
the function Li(θi) (6) that is optimized by the M-step and the partial derivative
w.r.t. θg coincides with the partial derivative of Lg(θg) (5). We next establish
the exact connection between the two training strategies.

There are on-line variants of the EM for latent data models with independent
observations. One of the dominant approaches to on-line EM-like estimation is
the method proposed by Titterington [12], which consists in using a stochastic
approximation algorithm, where the parameters are updated after the acquisition
of each new observation. It is a Newton-type algorithm that uses the gradient
of the incomplete-data likelihood1 weighted by the expectation of the Hessian,
namely the complete-data Fisher information matrix. A simplified variant of
this method is a first-order gradient approach where the complete data Fisher
information matrix is replaced by a scalar learning rate parameter. Applying
this approximate EM procedure is identical to the standard back-propagation
training procedure. In the case of BP, we can use a subset of the training data
(mini-batch) or even a single training example to compute the gradient. For the
case of using a single example the updating equations of the back-propagation
and the simplified Titterington’s scheme are identical:

θg ← θg + ε

m∑

i=1

wti · ∂

∂θg
log pNN(zt = i|xt; θg) (12)

1 The gradient of the incomplete-data likelihood can be calculated by the expectation
of the complete-data likelihood by the Fisher identity.
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θi ← θi + εwti · ∂

∂θi
log pNN(yt|zt = i, xt; θi), i = 1, ...,m (13)

such that t is the index of the current example, wti is defined in (10) and ε is
the learning rate.

A related study [10], analyzed the relations between the EM algorithm
and gradient-based methods for standard generative models such as mixture of
Gaussians and hidden Markov models. Here, we provide an analysis for discrim-
inative latent variable models that are implemented by a neural network. We
showed that the standard back-propagation training algorithm is essentially an
on-line variant of the EM algorithm.

3 Deep Mixture of Experts for SPP Estimation

In this section we apply the MoDE principle to a speech presence probability
(SPP) estimation task and describe the network specifics and training procedure.

Let s(n) denote a sample of speech signal at time n. Let x(n) = s(n) + v(n)
denote the observed, single microphone, noisy signal where additive noise v(n)
was added to the clean speech.

The The short-time Fourier transform (STFT) with a frame of length L of
x(n) is denoted by X(t, k), where t is the frame index and k = 0, 1, . . . , L − 1
denotes the frequency band index. Define the log-spectrum of the noisy signal at
a single time frame by x(t), such that the k-th component is xk = Log|X(t, k)|
where k = 0, . . . , L/2.

The hidden speech state z(t) corresponds to a building block of a speech
signal. Unlike our supervised approach in [3] in which each expert is specializing
in a specific phoneme, here the network splits the role of each expert in an
unsupervised manner.

All m experts in the proposed algorithm are implemented by DNNs with
the same structure. The input to each DNN is the noisy log-spectrum frame
together with 8 context frames (4 frames from the past and 4 from the future).
The network consists of 3 fully-connected hidden layers with 500 (ReLU) neurons
each. The targets to the network are the associated binary masks defined by:

B(t, k) =

{
1 xt,k > Tr(k)
0 o.w

(14)

where Tr(k) is a threshold over the log-spectrum of the clean speech signal for
the k-th frequency band. We stress that the threshold is applied here to the
ground truth of the clean signal and not to a noisy version thereof. Two values
for the threshold are set, the first for the low frequencies band and the second for
the high frequencies band. We set the thresholds such that in the low frequencies
the harmonies of the clean speech signals will be accurate (high Tr(k)), and in
the high frequencies the unvoiced patterns will be preserved (lower Tr(k)).
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The output layer that provides the soft SPP decisions is composed of L/2+1
sigmoid neurons, one for each frequency band. The SPP decision of the i-th
expert for the t-th frame and k-th frequency bin is denoted as ρi(t, k).

The architecture of the all the expert DNNs and the gating DNN are identical.
Each DNN comprises of 3 fully connected hidden layers with 500 ReLU neurons
each. Note, that the output layer of all m experts is a sigmoid function, while the
output layer of the gating DNN is a softmax function that produces the gating
distribution for the m experts. The gating (p.d.f.) is therefore:

pi(t) = p(z(t) = i|x(t); θg). (15)

The averaged SPP is obtained by a weighted average of the deep experts’ deci-
sions:

ρ(t, k) = p(B(t, k) = 1|x, θ) =
m∑

i=1

pi(t) · ρi(t, k). (16)

The proposed MoDE algorithm for SPP estimation is summarized in
Algorithm 1.

Algorithm 1. MoDE speech presence probability estimation.
Input :
– Noisy speech log-spectral vector at time t, xt.
– MoDE model parameters θ = {θ1, . . . , θm, θg}.

Output: Speech presence probability (SPP) ρ(t, k)

– Experts’ DNNs: Compute SPP decision ρi(t, k) for each expert i ∈ {1, . . . , m}
and for each time-frequency bin (t, k).

– Gating DNN: pi(t) = p(zt = i|xt; θg)
– Average Experts’ decisions: ρ(t, k) =

∑m
i=1 pi(t) · ρi(t, k)

4 Experimental Results

In the training phase clean signals drawn from the train set of the TIMIT corpus
(462-speaker train set) were contaminated with the Speech-like and Babble noises
with 2 SNRs, 5 dB and 10 dB.

To test the proposed MoDE algorithm we contaminated different speech sig-
nals with several types of noise from the NOISEX-92 database [13], namely
Speech-like, Babble, Room and Factory. The noise was added to the clean signal
drawn from the test set of the TIMIT database (24-speaker core test set), with
5 levels of (SNR) at −5 dB, 0 dB, 5 dB, 10 dB and 15 dB chosen to represent
various real-life scenarios.

The number of experts in the experiment section was set to m = 10, and thus
it is denoted here MoDE-10. We compared the proposed algorithm to the clas-
sic model-based (OMLSA) algorithm [5] with the (IMCRA) noise estimator [4]
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which is a state-of-the-art algorithm for single microphone speech enhancement.
Note, that although the OMLSA is a speech enhancement algorithm, here its
SPP estimation is tested. The default parameters of the OMLSA were set accord-
ing to [1].

(a) Mis-detection. (b) False alarm.

Fig. 2. Objective measurements of the hard decision of the compared SPPs.

Additionally, we compared the proposed MoDE algorithm to another DNN
which has a fully-connected architecture and can be viewed as a single-expert
network. We denote this network the (DSE). The DSE architecture is a single
DNN with 3 fully connected hidden layers with ReLU neurons. The output layer
was set to be a sigmoid to estimate the SPP. For a fair comparison the number
of parameters of DSE is identical to the number of the total parameters in the
proposed MoDE-10. The DSE and the MoDE were both trained with the same
database.

To evaluate the performance of the SPP estimation algorithm, hard-decision
is applied to (16):

B̂(t, k) =

{
1 ρ(t, k) > 0.5
0 otherwise

. (17)

A binary decision was also applied in other algorithms. Figure 2 depicts the
averaged mis-detection and false-alarm percentage in the four tested noise types.
It is clear that the OMLSA algorithm does not perform well, since it has high
values of mis-detection and false-alarm. It is also evident that the MoDE-10
algorithm outperforms the DSE in most SNRs in both mis-detection and false-
alarm measures.

Figure 3 depicts the results for all algorithms in a scenario with Babble noise
type with SNR=5 dB. The true binary mask is also shown for comparison in
Fig. 3c. It is evident that the proposed MoDE-10 algorithm outperforms the com-
peting OMLSA and DSE algorithms and produce results that are most similar
to the true binary mask B. As expected, the OMLSA false alarm values here are
high while the DNN-based algorithms are much better. The MoDE-10 is more
accurate than the DSE algorithm. We encircled in Fig. 3e and f areas where the
MoDE-10 detection is better than the its DSE counterpart. It is evident that
MoDE-10 reconstructs the harmonic structure in a much better way.
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(a) Clean. (b) Noisy.

(c) True binary mask B̂(t, k). (d) B̂(t, k) OMLSA.

(e) B̂(t, k) DSE. (f) B̂(t, k) MoDE-10.

Fig. 3. Performance of the evaluated algorithms in a scenario with Babble noise with
SNR= 5 dB.

5 Conclusions

In this study we addressed deep latent variable models. We proposed the MoDE
network architecture which implements latent variables in a neural networks
setup.

In this study, we showed that in the case of neural network with latent vari-
ables, BP is actually an on-line version of the EM algorithm. We demonstrated
the benefits of using latent variable in neural network addressing the problem of
speech presence estimation.
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Abstract. A main challenge in applying deep learning to music process-
ing is the availability of training data. One potential solution is Multi-
task Learning, in which the model also learns to solve related auxiliary
tasks on additional datasets to exploit their correlation. While intuitive
in principle, it can be challenging to identify related tasks and construct
the model to optimally share information between tasks. In this paper,
we explore vocal activity detection as an additional task to stabilise and
improve the performance of vocal separation. Further, we identify prob-
lematic biases specific to each dataset that could limit the generalisation
capability of separation and detection models, to which our proposed
approach is robust. Experiments show improved performance in separa-
tion as well as vocal detection compared to single-task baselines. How-
ever, we find that the commonly used Signal-to-Distortion Ratio (SDR)
metrics did not capture the improvement on non-vocal sections, indicat-
ing the need for improved evaluation methodologies.

Keywords: Singing voice separation · Vocal activity detection
Multi-task learning

1 Introduction and Related Work

Separating the singing voice from the accompaniment in music recordings is a
challenging task, with the acoustical properties of the instruments involved and
their interactions in a recording being highly complex. Most current approaches
train deep neural networks on multi-track recordings in a supervised fashion to
estimate the individual sources from a given mixture input [9,15]. While this
approach often leads to considerable improvements over previous methods, it
requires suitable input-output pairs from multi-track recordings. Unfortunately,
publicly available datasets are often rather small on the order of a few hundred
tracks. This leads to overfitting and limits overall performance.
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Informed source separation aims to circumvent this problem by providing
additional information to the separation model, e.g. the musical score [6]. This
way, the problem can be simplified, which often leads to improved results on
small, annotated datasets. On the other hand, such approaches can only be
employed if suitable side information is indeed available, which is often not the
case for musical scores. In this paper, we thus focus on a more readily available
and more easily created type of side information: vocal activity labels.

A joint separation-classification model [12] was proposed for the more gen-
eral problem of sound event detection that employs a separation network whose
output mask for each source is summarised with a mean or max operation to
detect active sound events. While similar to our approach, it is designed for weak
labels and might be more sensitive to dataset biases when training with differ-
ent separation and detection datasets due to its simple detection component.
Heittola et al. [8] use precise activity labels, but separation is used as a front-
end for detection instead of performing joint estimation. Therefore, separation
cannot be improved using mixtures with only activity labels.

To our knowledge, Chan et al. [4] provide the only work combining singing
voice separation (SVS) in particular, with singing voice detection (SVD). Vocal
activity labels are used to construct a mask, which forces the corresponding
parts of the mixture spectrogram to be modelled individually in a method based
on robust principal component analysis (RPCA). For an increase in separation
quality however, vocal activity labels are required during prediction. The labels
also have to be quite precise as a false negative label would force the vocal
estimate to be zero for vocal sections.

Schlüter [18] focusses solely on SVD, but also shows that the resulting net-
work can be used for detecting the location of the singing voice in the time-
frequency domain. This suggests it might be useful to integrate the information
contained in the activity labels into separation models to improve their perfor-
mance. A related method was introduced by Ikemiya et al. [10]. It produces a
rough estimate of the vocals in a first step. After computing the fundamental fre-
quency based on this estimate, the separation result is further refined. These two
steps are repeated until convergence. We aim for a similar yet more integrated
and joint estimation approach for the case of vocal activity labels.

Overall, vocal detection and separation are usually tackled as separate tasks
despite their commonalities. Thus, a main goal in the this paper is to explore how
such information can be exploited in training audio-only models that can jointly
detect and separate vocals. First, we use a simple approach for diversifying the
training dataset for an SVS model, and observe that its implicit assumption
that all data sources are from the same distribution is violated due to a bias
specific to each dataset. Using a multi-task learning (MTL) approach, we then
propose a model shown in Fig. 1 that performs SVS and SVD at the same time
and can better account for such biases. The model can be trained on multi-track
recordings in combination with mixtures with vocal activity labels, and yields
predictions on completely unlabelled mixtures. By allowing the model to exploit
correlations between the vocal activity labels and the source signals, performance
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is improved for both tasks compared to baseline models trained with single-task
learning (STL). While the overall improvement remained at a rather low level,
we found the effect to be quite consistent – despite the small size of the datasets
involved and their respective biases. We also found that the most commonly
used evaluation metric [20] is flawed in the sense that capturing improvements
on non-vocal sections are not captured, and propose a simple ad-hoc solution.
As an additional contribution, we discuss the dataset biases we observed in some
detail. Overall, based on these findings, we hypothesise that the joint prediction
of source estimates along with side information such as musical scores in a multi-
task setting could be a promising general direction for further research in music
source separation.

2 Proposed Approaches

As a baseline system for SVS, we implemented a variant of the U-Net described
in Sect. 3.2 and shown in Fig. 1. The approach is similar to [11,19] and outputs a
mask when given spectrogram magnitudes of a mixture excerpt. During training,
audio excerpts are randomly selected from the multi-track dataset, and converted
to a log-normalised spectrogram representation. The mean squared error (MSE)
in spectral magnitudes between source estimates from the separator and the
ground truth is used as a loss function.

2.1 Initial Approach to SVS: Using Additional Non-vocal Sections

Initially, we attempted to improve SVS performance by adding audio excerpts
from instrumental sections of the SVD dataset to the SVS training set to increase
its diversity: Standard supervised training on a multi-track dataset entails ran-
domly selecting audio excerpts from the tracks to generate batches of samples.

Fig. 1. Our multi-task model for jointly detecting and separating singing voice, given
the spectrogram of a music piece as input. Tensor shapes are given in the order of
frequency bins, time frames, and feature channels.
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We changed this procedure so that when encountering an audio excerpt with
silent vocals, it can be replaced with a randomly chosen non-vocal section from
an additional music database with vocal activity labels. The replacement occurs
with a probability of N

N+M , with N and M being the size of the SVS and SVD
dataset, respectively, to ensure non-vocal sections are effectively randomly sam-
pled from both datasets. To train from the additional non-vocal sections, we set
their target accompaniment equal to the magnitudes of the respective mixture
spectrogram, and all target magnitudes of the vocal spectrogram to zero.

The average MSE loss (see (3)) on the test set obtained when training the
same model with and without this replacement technique was used to test
whether separation performance improves. We performed the above training
procedure with three different set-ups for the SVS and SVD dataset.

In the first experiment, we used the DSD100 [14] dataset for SVS training,
testing and evaluation, and RWC [16] and Jamendo [17] as the SVD dataset.
We also included a private collection of Dubstep, Hardstyle, Jazz, Classical and
Trance music with 25 songs per genre. We found that the performance decreased
compared to purely supervised learning. A first suspicion was that a bias in the
test set might be responsible for inaccurate test performance measurements since
only DSD100 is used (see Sect. 2.2 for details).

To investigate this issue more closely, we conducted a second experiment
and additionally included the MedleyDB [2], CCMixter [13] and iKala [4] SVS
datasets in the validation and test sets. Compared to the first experiment, the
SVS training and test data is now less well matched, and the test performance
gives a more accurate picture of generalisation capability. Here performance
increased considerably using our technique, strongly indicating that a bias in
the SVS training data can be alleviated by including extra non-vocal sections.

Finally, we distributed the DSD100, MedleyDB, CCMixter and iKala
datasets in equal proportions into training, validation and test set for a more
realistic set-up in which all available multi-track data is used, but in this exper-
iment, separation performance again decreased using our approach.

These results suggest that the individual datasets are subject to different
biases in the data distribution space, to which our approach is sensitive since
it assumes that all samples come from the same distribution. These biases will
be investigated in more detail in the next section. Another shortcoming of our
approach is that we cannot learn from the additional vocal sections using this
method since we do not have the source audio available.

2.2 Dataset Bias for Singing Voice Separation and Detection

Since we are combining data from different sources, it is important to consider the
impact of dataset bias on the performance of models trained on such combined
data. We hypothesised that datasets used for SVD and SVS are each uniquely
biased, which can include properties such as the relative energy of the sources,
overall energy levels and how often vocals occur on average. We computed met-
rics for the above for the MedleyDB, DSD100, CCMixter, iKala, Jamendo and
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RWC datasets, as they are commonly used for SVD and SVS. Vocals were con-
sidered active if the average absolute amplitude in a 10 ms window exceeded
5 · 10−4. Figure 2 shows the distribution of these properties for each dataset,
where metrics have been averaged song-wise.

Fig. 2. Distribution of values for different collections of tracks, for different properties.
Outliers for MedleyDB in (b) resulting from instrumental tracks have been excluded.

Clear dataset bias manifests itself in the uneven distribution of values across
datasets. For example, iKala contains relatively loud vocals and very few instru-
mental sections, and CCMixter has louder tracks than DSD100 with more vocals
on average. Additionally, even more dataset bias could be present in features
which are more difficult to detect and quantify, such as timbre, language of the
lyrics, music genre, recording conditions or the bleed level for multi-track record-
ings. Therefore, it is very difficult to directly prevent models from overfitting to
these biases. We would like to highlight this as a critical problem for the field
of SVS and SVD, since many models are trained on a single dataset source and
thus may not generalise nearly as well as the test scores indicate.

2.3 Multi-task Learning Approach

To mitigate problems due to dataset biases, we employ a multi-task learning
(MTL) approach [3] instead. We augment the separation model with a com-
ponent that predicts vocal activity based on a hidden layer of the separation
model. We train the combined model to output the source signals in the multi-
track dataset and the vocal activity labels in the SVD dataset, respectively, with
most parameters being shared for both tasks.

This approach has multiple benefits. Firstly, predicting both outputs based
on a shared hidden representation only assumes that the source output has some
relationship with human-annotated vocal activity labels, but we do not define
it explicitly. For example, temporal inaccuracy in labels could mean that the
beginnings of vocals are annotated as non-vocal. If we force the vocal output
of the separator to be silent for all sections annotated as non-vocal, or use the
approach from Sect. 2.1, we give incorrect information to the separator. Secondly,
a different dataset bias for each task can be accounted for by the model to some
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extent with its task-specific components. Thirdly, we exploit the information
present in extra non-vocal and vocal sections. Finally, the trained model can be
used for both SVS and SVD.

For the SVS task, we use the MSE between the separator prediction fφ(m)
for a mixture excerpt m and the true sources s as the loss:

LMSE = E(m,s)∼p1
1
N

||s − fφ(m)||2 (1)

where p1 represents the multi-track dataset distribution, which is approximated
by a batch of samples, and N denotes the dimensionality of the joint source
vectors s and fφ(m). For output spectrograms with T time frames, F frequency
bins and K sources, N = T · F · K.

For the SVD task, we use the binary cross-entropy at each time frame of the
spectrogram excerpt, averaged over time and over data points:

LCE = E(m,o)∼p2
1
T

T∑

t=1

log pt
φ(ot|m) (2)

where pt
φ denotes the probability of the vocal state the model assigns to time

frame t of the audio excerpt with a total of T frames, and p2 describes the
SVD dataset distribution whose samples contain a binary vector o with a vocal
activity label ot at each spectral frame t of the source output spectrogram.

For our MTL model, we combine the two above losses using a simple weight-
ing scheme:

LMTL = αLMSE + (1 − α)LCE. (3)

We set α = 0.9 so that experimentally the losses are approximately on the
same scale during training. Although an optimisation of this hyper-parameter
might improve results further, it is omitted here due to computational cost.
We also experimented with a loss function derived from a Maximum Likelihood
objective1 , but did not obtain better performance.

3 Evaluation

Next, we describe the experimental evaluation procedure for our MTL approach.

3.1 Datasets

For the SVS dataset, we use DSD100 with 50 songs each for training and testing,
according to the predefined split. We use the Jamendo dataset for SVD, since it
predominantly contains Western Pop and Rock music, similarly to DSD100, to
avoid a large dataset bias. Jamendo’s validation and test partitions comprising

1 See ancillary files at https://arxiv.org/abs/1804.01650.

https://arxiv.org/abs/1804.01650
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30 songs are used for testing, leaving 60 songs for training. This set-up is intended
as a proof of concept of the MTL approach – in this setting even slight improve-
ments are promising, since vocal activity labels do not directly yield information
on vocal structure, and should translate to larger improvements given larger SVS
and particularly SVD datasets.

3.2 Model Architecture and Preprocessing

The audio input is converted to mono and down-sampled to 22050 Hz to reduce
dimensionality, before the magnitude spectrogram is computed from a 512-point
FFT with 50% overlap, and normalised by x → log(1 + x). Excerpts comprised
of 222 time frames each are used as input to our model shown in Fig. 1, which
consists of a base network that branches off into a separation and a detection
network.

The base network closely follows our previous implementation [19] of the
U-Net [11]. The output of an initial 3 × 3 convolution with 16 filters and ReLU
non-linearity is fed to a down-sampling block consisting of max-pooling with
size and stride two followed by a 3 × 3 convolution with 32 filters. The down-
sampling block is applied three more times, each time doubling the number of
filters, finally yielding a 18×10×256 feature map. We then use a 1D convolution
with filter size 18×1 before applying the respectively transposed convolution, and
concatenate it with the original 18 × 10 × 256 feature map to capture frequency
relationships. In the following up-sampling block, a 2×2 transposed convolution
with 128 filters is applied, and the output concatenated with the output of
the down-sampling block at the same network depth after centre-cropping it.
Lastly, a 3 × 3 convolution with 128 filters is applied. After applying this up-
sampling block another three times, each time with half as many filters for the
convolutions, the resulting 258 × 130 × 16 feature map is concatenated with the
centre-cropped input. The resulting features are input to the SVS well as the
SVD sub-network.

The output size is smaller than the input size since we use “valid” convolu-
tions that do not employ implicit zero-padding. Therefore, the mixture naturally
provides additional temporal context processed during convolution, and its mag-
nitudes are zero-padded in frequency so that the separator output has the correct
number of frequency bins. Unless otherwise stated, Leaky ReLU is used after all
convolutions as non-linearities to allow for better gradient flow.

In the SVS network, the feature map from the base architecture is trans-
formed into a filtering mask, which is multiplied point-wise with the original
mixture spectrogram magnitudes to yield the source estimates. To generate the
source audio, we use an inverse STFT using the mixture’s phase, and apply 10
iterations of the Griffin-Lim algorithm [7] to further refine the phase.

The SVD network takes the final feature map from the base architecture
and applies a single F × 1 filter, where F is the number of frequency bins, to
reduce the time-frequency feature map to a single scalar for each time step.
Application of a sigmoid non-linearity yields the probability of the presence of
singing voice at each time step.
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3.3 Experimental Set-Up and Metrics

To identify the impact of our proposed approach in comparison to solving sep-
aration and detection separately, we train and evaluate our network solely for
either SVS or SVD, before comparing to training with the multi-task loss.

Model performance is evaluated on the test dataset every 1000 iterations
and the model with the best performance is selected. Training is stopped after
10,000 iterations without performance improvement. For SVD, we use the area
under the receiver operating characteristic (AU-ROC) to evaluate performance.
For separation, we use the MSE training objective from (3) in the normalised
magnitude space, as well as the track-wise SDR, SIR, and SAR metrics [20] on
the audio signals. We select two MTL models with the best AU-ROC or MSE
value, respectively, since best performance is reached at different training stages.

3.4 Results

Table 1 shows a performance comparison of the considered models. For both
SVD and SVS, we achieve a slight improvement in both AU-ROC and MSE
performance metrics using our model variants. This is promising since the SVD
dataset is small and vocal activity labels are less informative training targets
than the vocals themselves. Therefore, larger datasets could be used in future
work to obtain larger performance increases.

Table 1. Performance comparison between SVS and SVD baseline and our approach.
Results significantly better than the comparison model (p < 0.05) in bold. Signifi-
cance of the AU-ROC difference determined with binary labels from all time frames as
samples [5]. A paired Wilcoxon signed-rank test was used for all other metrics.

Metric

AU-ROC MSE Non-voc. RMS Vocals Accompaniment

SDR SIR SAR SDR SIR SAR

Model SVD 0.9239 - - - - - - - -

SVS - 0.01865 0.0194 2.83 5.27 6.88 6.71 14.75 13.25

Ours 0.9250 0.01755 0.0155 2.86 5.56 6.23 6.69 13.24 14.11

While the MSE on the normalised spectrogram magnitudes improves by
about 6%, the mean SDR for vocals and accompaniment does not change sig-
nificantly. To find the cause, we analyse the employed implementation for SDR
computation on the DSD100 dataset2 also used in the SiSec source separation
evaluation campaign [14]. Tracks are partitioned into excerpts of 30 s duration,
using 15 s of overlap, for which a local SDR value is computed. The final SDR
is the average of the local SDR values. However, for excerpts where at least one
source is completely silent, the SDR has an undefined value of log(0) and is

2 https://github.com/faroit/dsd100mat.

https://github.com/faroit/dsd100mat
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excluded from the final SDR average, so that the model’s performance in these
sections is ignored. This is the case for 79 of 736 excerpts due to non-vocal
sections and is thus a practically relevant flaw of the evaluation metric.

More sophisticated methods such as [21] take audio perception more explicitly
into account, but presumably suffer from the same issue with silent sources, as
similar computations are used there as well. As an ad-hoc solution, we propose
computing the source estimate’s energy or ideally loudness for silent sections of
the source ground truth as a simple workaround and report it in addition to other
metrics. Finding a consistent and perceptually accurate evaluation metric is thus
an important unsolved problem, and listening tests arguably remain important
to accurately assess separation quality.

A lower average MSE combined with a stagnating SDR suggests that our
model improves especially on these non-vocal sections excluded from the SDR,
potentially because negative vocal activity labels allow the separator to detect
many different instruments as not being vocals. To test this more explicitly, we
take the vocal estimates of the baseline and our model and compute the average
RMS of the 79 excerpts excluded from SDR computation, as well as the average
output over whole songs in the DSD100 dataset. We find that our model has
less energy in its vocal output compared to the baseline, but also in the non-
vocal sections (see Table 1). This demonstrates that our model performs better
on non-vocal sections and about equally on vocal sections due to a similar SDR.

4 Conclusions

We demonstrated that jointly solving the task of singing voice detection and
singing voice separation can improve performance in both tasks and alleviates the
issue of dataset scarcity. Furthermore, we found biases specific to each dataset
that could prevent source separation and detection models from generalising
properly to unseen data. Finally, we discuss a major flaw in the most popular
evaluation metric for source separation [20] related to the performance measure-
ment in silent sections.

Therefore, further research into improved, perceptually relevant metrics is a
definite need. As a workaround, we propose additionally measuring and reporting
the loudness of the model’s source estimates for sections where the respective
source is silent. Our multi-task approach could be generalised and applied to
mixtures with pitch curve or phoneme annotations of the singing voice, or even
to whole transcriptions of musical sources (see [1]). Performance increases can
be expected to be larger especially for the latter case as correct predictions on
one task greatly simplify solving the other one.
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Abstract. In deep neural networks with convolutional layers, all the
neurons in each layer typically have the same size receptive fields (RFs)
with the same resolution. Convolutional layers with neurons that have
large RF capture global information from the input features, while layers
with neurons that have small RF size capture local details with high
resolution from the input features. In this work, we introduce novel deep
multi-resolution fully convolutional neural networks (MR-FCN), where
each layer has a range of neurons with different RF sizes to extract multi-
resolution features that capture the global and local information from its
input features. The proposed MR-FCN is applied to separate the singing
voice from mixtures of music sources. Experimental results show that
using MR-FCN improves the performance compared to feedforward deep
neural networks (DNNs) and single resolution deep fully convolutional
neural networks (FCNs) on the audio source separation problem.

Keywords: Multi-resolution features extraction
Fully convolutional neural networks · Deep learning
Audio source separation · Audio enhancement

1 Introduction

Monaural audio source separation (MASS) aims to separate audio sources from
a single (mono) audio mixture [20]. A variety of deep neural networks with con-
volutional layers have been used recently to tackle this problem [2,6,11,12,18].
One of the main differences in those works relies on using either fully convo-
lutional neural networks (FCN), where all the network layers are convolutional
layers, or networks where some of the layers are convolutional and others are
fully connected layers. The common aspect in those works is that each convolu-
tional layer is composed of a set of neurons/filters that have the same receptive
field (RF) size. The RF is the field of view of a neuron (filter in the FCN case)
in a certain layer in the network [21]. In fully connected deep neural networks
(DNNs), the output of each neuron in a certain layer depends on the entire input
to that layer, while the output of a neuron in a convolutional layer only depends

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 340–350, 2018.
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on a region of the input: this region is the RF for that neuron. The RF size is
a crucial issue in many audio and visual tasks, as the output must respond to
areas with sizes correspond to the sizes of the different objects or patterns in the
input data to extract useful information/features about each object [21]. The
size of the RF equals the size of the filters in a convolutional layer. A large filter
size captures the global structure of its input features [9,17], while a small filter
size captures the local details with high resolution but it does not capture the
global structure of its input features. Intuitively, it might be useful to have sets of
filters that can extract both the global and local details from the input features
in each layer. This might be useful in the MASS problem, since the input signal
is a mixture of different audio sources and useful features can be extracted for
certain sources in certain time-frequency resolutions which may differ from one
source to another [16].

The concept of extracting multi-resolution features has been proposed
recently for many signal processing applications with different ways of extract-
ing and combining the multi-resolution features from the input data [5,9,13,23].
In this paper, we introduce a novel multi-resolution fully convolutional neural
network (MR-FCN) model for MASS, where each layer in the MR-FCN is a
convolutional layer that is composed of different sets of filters. All filters within
a given set have the same size, which is different to the size of filters in other sets
in the same layer. Thus, in each layer there are sets of filters with large and small
sizes, which allows each layer to extract multi-resolution features that capture
the global and local information from its input data. We believe that this is the
first time that a deep neural network has been proposed with each layer com-
posed of multi-resolution filters that extract multi-resolution features from the
layer before, and the first time that the concept of extracting multi-resolution
features has been used for MASS. The inputs and outputs of the MR-FCN are
two-dimensional (2D) segments from the magnitude spectrogram of the mixed
and target source signals respectively. The MR-FCN is trained to extract useful
spectro-temporal features and patterns in different time-frequency resolutions to
separate the target source from the input mixture.

This paper is organized as follows: Sect. 2 shows a brief introduction about the
FCN and the proposed MR-FCN. The proposed approach of using MR-FCN for
MASS is presented in Sect. 3. Section 4 introduces our experiment and discusses
the results, and Sect. 5 draws conclusions and directions for future work.

2 Multi-Resolution Fully Convolutional Neural Networks

In this section we first give an introduction about the fully convolutional neural
network (FCN) then we introduce the proposed MR-FCN.

2.1 Fully Convolutional Neural Networks (FCNs)

The FCN model that we propose here (Fig. 1) is somewhat similar to the con-
volutional denoising encoder-decoder (auto-encoder) network that was used in
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Fig. 1. Overview structure of a FCN that separates one target source from the mixed
signal. Each layer consists of a single set of filters with the same size followed by an
activation function. The sets of filters in the input and output layers have large filter
sizes and small number of filters. The number of filters increases and the size decreases
when getting further from the input and output layers [15]. There is symmetric in the
filter sizes and numbers of filters between the encoder and decoder sides.

[6,15], but without using either down-sampling (pooling) or up-sampling. The
encoder part in the FCN is composed of repetitions of a convolutional layer and
an activation layer. The decoder part consists of repetitions of a transpose con-
volutional layer [4] and an activation layer. Each layer in the FCN consists of
a single set of filters with the same size to extract feature maps from its input
layer, and the activation layer imposes nonlinearity to these feature maps.

The FCN can be trained from corrupted input signals and the encoder part
is used to extract noise robust features that the decoder can use to reconstruct a
cleaned-up version of the input data [15,24]. In MASS, the input mixed signal can
be seen as a sum of the target source that needs to be separated and background
noise (the other sources in the mixture). The input and output data of the FCN
are 2D signals (magnitude spectrograms) and the filtering is a 2D operator.

2.2 Multi-resolution FCN

Each layer in the FCN in Fig. 1 is composed of one set of filters that have the
same RF size. The size of the RF is a very important parameter, as the output
of each filter should respond to areas with sizes correspond to the sizes of the
different objects/patterns in the input to extract useful information/features
from the input data [21]. For example, if the size of the RF of a filter is much
bigger than the size of the input pattern, the filter may capture blurred features
from the input patterns, while if the RF of a unit is smaller than the size of the
input patterns, the output of the filter loses the global structure of the input
patterns [21].

In audio source separation problems, the spectrogram of the input mixed
signal usually contains different combinations of different spectro-temporal pat-
terns from different audio sources. There is a unique set of patterns associated
with each source in the spectrogram of their mixture, and these patterns appear
in different spectro-temporal sizes [1]. So, to use the FCN to extract useful
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Fig. 2. Overview of the proposed structure of each layer of the MR-FCN. Where Kij

denotes the number of filters with size aij × bij in set j in layer i, aij is the dimension
in the time direction of the filters, and bij is the dimension in the frequency direction
of the filters in set j and layer i. The filters in different sets have different sizes and
the filters within a set have the same size. Each set j in layer i generates Kij feature
maps. The number of feature maps that each layer i generates equal to the sum of the
number of feature maps that all the sets in layer i generate (

∑J
j=1 Kij). ReLU denotes

a rectified linear unit as an activation function.

information about the individual sources in the spectrogram of their mixture,
it might be useful to use filters with different RF sizes in each layer, where the
different RF sizes are proportional to the diversity of the spectro-temporal sizes
of the patterns in the spectrogram. Bearing these issues in mind, we propose
a MR-FCN which is the FCN shown in Fig. 1 but with multi-resolution filters
(filters with different sizes) in each layer. Thus, each layer in the MR-FCN has
sets of 2D filters. The filters in one set have the same size which is different
to the sizes of the filters in all other sets in the same layer. Each set of filters
generates feature maps with certain time-frequency resolution. Fig. 2 shows the
detailed structure for each layer in the MR-FCN. Each layer in the MR-FCN
generates multi-resolution features from its input features and also combines the
multi-resolution features from the previous layers to generate accurate patterns
that compose the structure of the underlying data.

3 MR-FCN for MASS

Given a mixture of L sources as y(t) =
∑L

l=1 sl(t), the aim of MASS is to
estimate the sources sl(t), ∀l, from the mixed signal y(t) [20]. We work here in
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the short-time Fourier transform (STFT) domain. Given the STFT of the mixed
signal y(t), the main goal is to estimate the STFT of each source in the mixture.

In this work, we propose to use as many MR-FCN as the number of sources
to be separated from the mixed signal. Each MR-FCN sees the mixed signal as
a combination of its target source and background noise. The main aim of each
MR-FCN is to separate its corresponding target source from the other back-
ground sources that exist in the mixed signal. This is a challenging task since
each MR-FCN deals with highly nonstationary background noise (other sources
in the mixture). The inputs and outputs of the MR-FCNs are 2D-segments from
the magnitude spectrograms of the mixed and target signals respectively. There-
fore, the MR-FCNs span multiple spectral frames to capture multi-resolution
spectro-temporal characteristics for each source. The number of spectral frames
that each segment has is N and the number of frequency bins is F . In this work,
F is the dimension of the whole spectral frame.

3.1 Training the MR-FCNs for Source Separation

We train each MR-FCN to map the magnitude spectrogram of the input mix-
ture into the magnitude spectrogram of its corresponding target source. Let us
assume that we have training data for the mixed signals and their corresponding
clean/target sources. Let Ytr be the magnitude spectrogram of the mixed sig-
nal and Sl be the magnitude spectrogram of the target source l. The subscript
“tr” denotes the training data. The MR-FCN that separates source l from the
mixture is trained to minimize the following cost function:

Cl =
∑

n,f

(Zl (n, f) − Sl (n, f))2 (1)

where Zl is the actual output of the last layer of the MR-FCN of source l, Sl is
the reference target output for source l, and n and f are the time and frequency
indices respectively. The input to all the MR-FCNs is the magnitude spectrogram
Ytr of the mixed signal. The input and output instants of the MR-FCNs are
2D-segments, where each segment is composed of N consecutive spectral frames
taken from the magnitude spectrograms. This allows each MR-FCN to learn
multi-resolution spectro-temporal patterns for its corresponding target source.

3.2 Testing the MR-FCNs for Source Separation

After training a MR-FCN for each source we wish to separate from the mixed
signal, the magnitude spectrogram Y of the mixed signal is passed through all
the trained MR-FCNs. The output of the MR-FCN of source l is the estimate
S̃l of the magnitude spectrogram of source l. The time domain estimate s̃l(t) is
computed using the inverse STFT of the estimate S̃l and the phase of the STFT
of the input mixture.
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4 Experiments

We applied our proposed MASS using MR-FCN approach to separate the
singing voice/vocal sources from a group of songs from the SiSEC-2015-MUS-
task dataset [14]. The dataset has 100 stereo songs with different genres and
instrumentations. To use the data for the proposed MASS approach, we con-
verted the stereo songs into mono by computing the average of the two channels
for all songs and sources in the data set. Each song is a mixture of vocals, bass,
drums, and a group of other musical instruments. We used one MR-FCN to
separate the vocal from each song.

The first 50 songs in the dataset were used as training and validation datasets,
and the last 50 songs were used for testing. The data were sampled at 44.1 kHz.
The magnitude spectrograms for the data were calculated using the STFT with
Hanning window size 2048 points and hop size of 512 points. The FFT was
computed with 2048 points and the first 1025 were used as features since they
include the conjugate of the remaining points.

The quality of the separated sources was measured using the source to dis-
tortion ratio (SDR), source to interference ratio (SIR), and source to artifact
ratio (SAR) [19]. SIR indicates how well the sources are separated based on the
remaining interference between the sources after separation. SAR indicates the
artifacts caused by the separation algorithm in the estimated separated sources.
SDR measures the overall distortion (interference and artifacts) of the separated
sources. The SDR values are usually considered as the overall performance eval-
uation for any source separation approach [19]. Achieving high SDR, SIR, and
SAR indicates good separation performance.

We compared the performance of using the proposed MR-FCN model with
the performance of using feedforward deep neural networks (DNNs) and the
(single-resolution) FCN for separating the vocal signals from each song in the
test set. For the input and output data for the MR-FCN and FCN, we chose the
number of spectral frames in each 2D-segment to be 15 frames. This means the
dimension of each input and output instant for the MR-FCN and FCN is 15 (time
frames) × 1025 (frequency bins) as in [6]. Thus, each input and output instant
(the 2D-segments from the spectrograms) spans around 209 ms of the waveforms
of the data. Each input and output instant of the DNN is a single frame of the
magnitude spectrograms of the input and output signals respectively.

4.1 Choosing the Parameters of the Models

As in many deep learning models, there are many parameters in the proposed
MR-FCN to be chosen (number of layers, filter size, and the number of filters in
each set) and usually these choices are data and application dependent. Choosing
the parameters for the FCN is also not easy. In this work, we follow the same
strategy as in [15] where the size of the filters decreases but the number of the
filters increases as we progress through the layers of the encoder part. In contrast,
we use fewer filters of increasing size as we develop through the decoder part.
For MR-FCN, the number and size of the filters in each set in each layer are
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need to be decided. We restricted ourselves in this work to use only three sets
of filters for the whole network. The first set with size 15× 39 (each filter in
this set spans around 209 ms of the waveforms and a band of frequencies around
840 Hz in the spectrogram), the second set with size 9 × 19 (each filter in this set
spans around 139 ms of the waveforms and a band of frequencies around 409 Hz
in the spectrogram), and the third set with size 5× 5 (each filter in this set spans
around 93 ms of the waveforms and a band of frequencies around 108 Hz in the
spectrogram). Which means each layer has sets of filters with three different
time-frequency resolutions. Also following the same concept in [15] for choosing
the number of filters, the layers towards the input and output layers have more
filters with large size than the layers in the middle. The layers in the middle have
more filters in the set with small filter size than the layers toward the input and
output layers. For example, the first layer in MR-FCN has a set of 12 filters with
size 15 × 39, a set of 6 filters with size 9 × 19, and a set of 6 filters with size 5× 5.
Thus, the first layer generates 24 feature maps with three different resolutions.
Each feature map is 15× 1025 (the same size of the input and output segments).

Table 1. The filter specifications and the number of filters in each layer of the FCN
and MR-FCN. For example “Conv2D[26,(15,39)]” denotes 2D convolutional layer with
26 filters and the size of each filter is 15× 39 where 15 is the size of the filter in the
time-frame direction and 39 in the frequency direction of the spectrogram.

FCN and MR-FCN model summary

The input/output data with size 15 frames and 1025 frequency bins

Layer number FCN MR-FCN

1 Conv2D[26,(15,39)] set 1 Conv2D[12,(15,39)]

set 2 Conv2D[6,(9,19)]

set 3 Conv2D[6,(5,5)]

2 Conv2D[42,(9,19)] set 1 Conv2D[8,(15,39)]

set 2 Conv2D[22,(9,19)]

set 3 Conv2D[8,(5,5)]

3 Conv2D[66,(5,5)] set 1 Conv2D[12,(15,39)]

set 2 Conv2D[12,(9,19)]

set 3 Conv2D[32,(5,5)]

4 Conv2D[42,(9,19)] set 1 Conv2D[8,(15,39)]

set 2 Conv2D[22,(9,19)]

set 3 Conv2D[8,(5,5)]

5 Conv2D[26,(15,39)] set 1 Conv2D[12,(15,39)]

set 2 Conv2D[6,(9,19)]

set 3 Conv2D[6,(5,5)]

6 Conv2D[1,(15,1025)] Conv2D[1,(15,1025)]

Total number of parameters 1,784,027 1,755,321
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To attempt to make a fair comparison between the proposed MR-FCN model
and the FCN, we adjusted the number of filters and their sizes in each layer of
both models to have total number of parameters in both models close to each
other as shown in Table 1. Table 1 shows the number of layers, the number of
filters in each layer, and the size of the filters for the FCN and MR-FCN models.
The DNN has three hidden layers, and each hidden layer has 1025 nodes. The
parameters of the DNN are tuned based on our previous work on the same
dataset [7]. The rectified linear unit (ReLU) is used as the activation function
for all the neural networks in this work. The DNN here has 4,206,600 parameters,
the FCN has 1,784,027 parameters, and the MR-FCN has 1,755,321 parameters.
This means the MR-FCN has the smallest number of parameters compared to
the FCN and the DNN.

The parameters for all the networks were initialized randomly. They were
trained using backpropagation with gradient descent optimization using Adam
[10] with parameters: β1 = 0.9, β2 = 0.999, ε = 10−8, a batch size 100, and
an initial learning rate of 0.0001 which was reduced by a factor of 10 when
the values of the cost function ceased to decrease on the validation set for 3
consecutive epochs. The maximum number of epochs was 100. We implemented
our proposed algorithm using Keras with Tensorflow backend [3].

4.2 Results

Figure 3 shows boxplots of the SDR (a), SIR (b), and SAR (c) as measured on
the vocals separated using three different deep learning models, namely DNN,
FCN, and MR-FCN. The figure also shows the SDR and SIR values of the target
vocal source in the mixed signal (denoted as Mix in Fig. 3). We did not show the
SAR of the mixed signal because it is usually very high. From the figure we can
see that the vocal signals in the input mixed signal (denoted as Mix in Fig. 3)
have very low SDR and SIR values, which shows that we are dealing with a very
challenging source separation problem.

As can be seen from Fig. 3, the three methods perform well on the SDR, SIR,
and SAR values of the separated vocal signals. The proposed MR-FCN model
outperforms the DNN and slightly outperforms the FCN in all measurements.

In the following,we consider the difference between apair ofmodels statistically
significant if p < 0.05, Wilcoxon signed-rank test [22] and Bonferroni corrected [8].
Based on the shown results in Fig. 3, the difference between each pair of models
for all the shown results of SDR is statistically significant with P values as follows.
For SDR: P (DNN,FCN) = 1.12 × 10−7, P (DNN,MR-FCN) = 1.22 × 10−7, and
P (FCN,MR-FCN) = 0.004.ForSIR:P (DNN,FCN) = 0.9,P (DNN,MR-FCN) =
0.04, and P (FCN,MR-FCN) = 4.9×10−4. For SAR: P (DNN,FCN) = 2.2×10−7,
P (DNN,MR-FCN) = 3.8 × 10−7, and P (FCN,MR-FCN) = 2.02. In particular,
the MR-FCN is statistically significantly better than FCN in SDR and SIR (p <
0.05), and statistically significantly better than DNN in all the measurements.
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Fig. 3. (a) The SDR, (b) the SIR, and (c) the SAR (values in dB) for the separated
vocal signals of using: deep fully connected feedforward neural networks (DNNs), deep
fully convolutional neural networks (FCNs), and the proposed multi-resolution fully
convolutional neural networks (MR-FCN). “Mix” denotes the input mixed signal.
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4.3 Discussion

Although the difference between the results of MR-FCN and FCN is statistically
significant (p < 0.05) in SDR and SIR, the improvement of using MR-FCN over
FCN is marginal: the mean difference between MR-FCN and FCN is less than
1 dB in SDR and SIR. We believe that the filter sizes and the number of filters
in each set should be refined to yield further improvements. These choices could
be associated with the band of frequencies that each source covers in the input
mixtures. Note that, FCN in this experiment has 28,706 more parameters than
MR-FCN. In our future work, we will investigate different choices for the filter
sizes and number of filters in each layer and each set.

5 Conclusions

In this work we proposed a new approach for monaural audio source separa-
tion (MASS). The new approach is based on using deep multi-resolution fully
convolutional neural networks (MR-FCN). The MR-FCN learns multi-resolution
patterns for each source and uses this information to separate the related com-
ponents of each source from the mixed signal. The experimental results indicate
that using MR-FCN for MASS is a promising approach and with a few number
of parameters can achieve better results than the feedforward neural networks
and the single resolution fully convolutional neural networks.

In our future work, we will investigate the possibility of applying the MR-
FCN on raw audio data (time domain signals) to extract multi-resolution time-
frequency features that can represent the input data better than the STFT
features. Some audio sources require higher resolution in time than in frequency,
and other audio sources require the opposite resolution of that. By applying
MR-FCN on the raw audio data, we hope to extract useful features for each
source according to its preferred time-frequency resolution which can improve
the performance of many audio signal processing approaches.
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Abstract. Knowing the signal-to-noise ratio of a noisy speech signal
is important since it can help improve speech applications. This paper
presents a two-stage approach for estimating the long-term signal-to-
noise ratio (SNR) of speech signals that are corrupted by background
noise. The first stage produces noise residuals from a speech separation
module. The second stage then uses the residuals and a deep neural
network (DNN) to predict long-term SNR. Traditional SNR estimation
approaches use signal processing, unsupervised learning, or computa-
tional auditory scene analysis (CASA) techniques. We propose a deep-
learning based approach, since DNNs have outperformed other tech-
niques in several speech processing tasks. We evaluate our approach
across a variety of noise types and input SNR levels, using the TIMIT
speech corpus and NOISEX-92 noise database. The results show that our
approach generalizes well in unseen noisy environments, and it outper-
forms several existing methods.

Keywords: Signal-to-noise ratio estimation · Speech separation
Deep neural networks

1 Introduction

The signal-to-noise ratio (SNR) is a strong indicator of the amount of noise
interference in a given auditory environment. Knowledge of the SNR is useful
for many speech-based applications, including hearing aids [1], automatic speech
recognition (ASR) [2] and speech enhancement [3], where it can be used to select
model parameters or optimization strategies [4]. For a given noisy speech signal,
SNR is calculated from the speech and noise components, by comparing the
energy of the speech signal to the energy of the noise. Unfortunately, in real
environments, the SNR must be estimated since access to the speech and noise
components is not possible.

There are typically two categories for SNR estimation algorithms. The first
category performs SNR estimation at the time-frequency (T-F) unit level of
a signal. This is known as instantaneous or short-time SNR [5], since SNR is
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computed over smaller time segments. In [5], short-time SNR is computed from
low-energy envelope estimates of noisy speech. In [6], a Gaussian mixture model
(GMM) is used in the log-power domain to estimate the distributions of noise
and noisy speech. The decision-directed (DD) approach estimates a priori SNR
with a weighted sum of the a priori SNR estimate of the prior frame and the
maximum likelihood SNR estimate of the current frame [7]. The accuracy of
these approaches, however, degrades when estimates are computed over long
durations.

The second category performs SNR estimation at the utterance level, referred
to as global or long-term SNR. The widely used NIST SNR estimation algorithm
uses the bimodal observation of the short-time energy histogram of noisy speech,
to infer the distributions of noise and noisy speech [8]. It then uses these dis-
tributions to calculate the peak SNR, which erroneously overestimates the true
SNR. The waveform amplitude distribution analysis (WADA) approach uses a
gamma distribution to model the amplitudes of clean or noisy speech using a
fixed shaping parameter, and a Gaussian distribution to model the background
noise [9]. WADA estimates long-term SNR by computing the maximum likeli-
hood estimate for the shaping parameter, but WADA only performs well when
the above assumptions are met, which is not always the case. Long-term SNR
is also calculated from a noise power spectral density (PSD) estimator [10] or
a clean speech PSD estimator [11]. A computational auditory scene analysis
(CASA) based approach is proposed in [12]. The algorithm uses a ideal binary
mask (IBM) to segregate noisy speech into speech dominate and noise dominate
T-F regions. The energy within each region is aggregated and used to compute
the long-term SNR. This unsupervised approach, however, relies on the ability
of the estimated IBM to correctly label T-F units as speech or noise dominate,
which does not often occur at low SNR levels. This ultimately leads to perfor-
mance degradations.

The goal of our work is to improve long-term SNR estimation of noisy speech
in many complex environments, since current approaches do not always perform
well. Unlike prior approaches, we propose a data-driven framework that uses deep
learning to perform SNR estimation. Deep neural networks (DNNs) are used,
largely due to their recent success in many speech processing tasks, including
automatic speech recognition and speech separation [13–15], where they have
outperformed alternative approaches and been shown to generalize in unseen
environments. Environmental noise plays a dominant role in degrading SNR, so
our idea is to use noise distortions as an indicator of long-term SNR. Specifically,
we propose a two-stage long-term SNR estimation framework. In the first stage,
a speech separation system separates noisy speech into enhanced speech and
noise residuals. The residuals contain mostly noise energy and can be regarded
as a reasonable noise indicator for the next stage. Then the second stage uses the
residuals to estimate the long-term SNR of noisy speech in a supervised manner.
Our results reveal that this strategy outperforms similar single- or two-stage
DNN-based approaches.
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This paper is organized as follows. A detailed description of our approach
is given in Sect. 2. Experimental results and system comparisons are given in
Sect. 3. Section 4 concludes the discussion of the proposed system.

2 System Description

The proposed two-stage long-term SNR estimation approach is shown in Fig. 1.
It consists of a speech separation stage and a SNR estimation stage. The goal of
speech separation is to separate the target speech from background interference.
We view speech separation as our first stage, but the focus of this study is to use
speech separation to assist in SNR estimation. Therefore, we investigate different
front-end speech separation approaches, namely, IBM estimation, ideal ratio
mask (IRM) estimation, complex ideal ratio masking (cIRM), and nonnegative
matrix factorization (NMF) based speech separation. Each of these stages are
described below.

Fig. 1. The architecture of the proposed long-term SNR estimation system.

2.1 Speech Separation Stage

Recent approaches perform speech separation by estimating masking-based
training targets [14,15]. These approaches estimate T-F masks from the noisy
speech signal, and use the estimated mask to separate speech from the noise:
Ŝ(k, f) = M(k, f) ∗Y (k, f), where Ŝ(k, f) denotes the short-time Fourier trans-
form (STFT) of the speech estimate, M(k, f) denotes the estimated T-F mask,
and Y (k, f) is the STFT of the noisy speech. k and f index the time and
frequency dimensions, respectively. The T-F domain speech estimate is then
converted to a time-domain estimate, ŝ(t), using overlap-add synthesis. We
investigate three different DNN-based T-F mask estimation approaches, namely
IBM [16], IRM [17] and cIRM [18] estimation, where definitions for these three
mask are shown below:

IBM(k, f) =
{

1, if |S(k, f)| > |N(k, f)|,
0, otherwise

IRM(k, f) =
( |S(k, f)|2

|S(k, f)|2 + |N(k, f)|2
)0.5

,

cIRM(k, f) =
S(k, f)
Y (k, f)

,

(1)
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|S(k, f)| and |N(k, f)| respectively denote the magnitude responses of the
clean speech and noise. The cIRM involves complex division since Y (k, f) and
S(k, f) are complex-valued numbers with real and imaginary components (e.g.
Y (k, f) = Yr(k, f) + jYi(k, f), S(k, f) = Sr(k, f) + jSi(k, f)). The IBM is a
binary matrix used to label T-F units of a signal as speech or noise dominant [16],
and it has been shown to improve speech intelligibility, but not perceptual speech
quality. An estimated IRM often outperforms an estimated IBM [15], since it
gives soft values between 0 and 1. Intuitively, the IRM represents the percent-
age of energy that can be attributed to speech at each T-F unit. Unlike the
IBM and IRM, the cIRM enhances the magnitude and phase response of speech,
since it is complex-valued. Estimated cIRMs outperform IRM-based separation
when evaluated with objective metrics and human evaluations [18]. Each T-F
masks impact on estimating long-term SNR, however, is not known, so we elect
to separately use each of them in our front-end speech separation module.

Separate DNNs are trained to estimate each of the above mentioned T-F
masks and subsequently used to perform speech separation. The structures of
the DNN match those described in [15,18], where we omit details since our focus
is on using speech separation to enhance long-term SNR estimation.

We alternatively use a NMF-based separation approach for our front-end
speech separation stage. NMF is a model-based approach that uses trained
speech and noise models (e.g. basis matrices) along with an activation matrix
to separate speech from noise [19,20]. The basis matrix represents the spec-
tral features and the activation matrix linearly combines the spectral features
to approximate a nonnegative signal. We first approximate a dictionary of clean
speech signals, D, with the product of a trained basis matrix, Wtr, and a trained
activation matrix, Htr (e.g. D ≈ WtrHtr). The basis and activation matrices are
computed using a standard multiplicative update rule that minimizes the gener-
alized Kullback-Leibler divergence between D and WtrHtr. To perform separa-
tion, the magnitude response of the speech estimate, |Ŝ(k, f)| is approximated
as the product of Wtr and a new activation matrix, Hnew, which is computed
using the same multiplicative update rule and the fixed training basis matrix.
Hence, |Ŝ| = WtrHnew. An estimate of the noise is computed and used along
with the speech estimate to form a T-F mask. This mask is then applied to the
noisy speech mixture to generate a speech estimate.

A noise residual is computed as r(t) = y(t) − ŝ(t), where it is then provided
as an input to the second stage of our approach.

2.2 Long-Term SNR Estimation Stage

We train a DNN to estimate the long-term SNR of the noisy speech signal
from the noise residual. A depiction of this DNN is shown in Fig. 2. Comple-
mentary features [21] are extracted from the residuals and they are provided as
inputs to the DNN. These features consist of amplitude modulation spectrogram
(AMS), relative spectral transform perceptual linear prediction (RASTA-PLP),
and mel-frequency cepstral coefficients (MFCC). We also add delta (Δ) features
to capture the temporal dynamics of the residual. We use the same parameter
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configuration for the complementary features as described in [18,21], since they
show success in modeling noisy speech. We tried to use log magnitude spectral
features, Gammatone frequency (GF) features and Multi-resolution Cochlea-
gram (MRCG) features separately as inputs, but they did not perform as well
as the complementary set.

The training target is the true long-term SNR of the input noisy speech,
which is calculated by the ratio of the energy of entire speech and the energy
of corresponding noise, written as SNRglobal = 10 log10(Espeech/Enoise). SNR
estimation, however, occurs at the time frame level, so we label each time frame
with this global SNR. The DNN estimates this long-term SNR in each of the 40
ms time frames of the signal. The final estimate is generated by averaging the
estimated value in each time frame. The standard back-propagation algorithm
with mean-square error cost function is used for training the DNN.

The DNN has three hidden layers where each has 512, 256, and 128 units,
respectively. We experimented with different number of layers and units per
layer, but empirical results indicate that this structure performs best. The recti-
fied linear (ReLU) activation function is used for the hidden units, while a linear
unit is used in the output layer. After DNN training, linear regression is used to
learn a linear mapping between the DNN output and the true long-term SNR.
This is often done to produce better predictions for long-term SNRs that are
unseen during training [12,22].

Fig. 2. Structure of the DNN that maps noise residuals to a SNR estimate.

3 Evaluation Results

3.1 Experimental Setup

All experiments are conducted with the TIMIT speech corpus [23] and NOISEX-92
noise database [24]. 600 TIMIT utterances are separately mixed with four noises:
speech-shaped (SSN), cafeteria (Cafe), speech-babble (Babble) and factory floor
(Factory) at 5 medium SNR levels (−6, −3, 0, 3, and 6 dB), resulting in a total of
12000 training mixtures. Random segments from the first half of each noise file is
used in generating the training mixtures. These signals are used for training the
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DNNs of two stages, and also for generating the speech and noise models of NMF
at the first stage. A separate development set is used for model selection.

Two test sets are created for evaluating the generalization performance. The
first test set mixes 200 different TIMIT utterances with the same matched noise
signals and at the same SNR levels as defined above. Additional mismatched
SNR signals are generated at unseen low SNRs (−15, −12, and −9 dB) and
unseen high SNRs (9, 12, and 15 dB), using the same matched noise signals. This
results in 8800 testing mixtures. Random segments from the second half of each
matched noise signal is used in generating these testing mixtures. The second
test set uses 200 different clean utterances that are mixed with six unmatched
noise types: cockpit, destroyer engine (Engine), machine gun (Machine), pink,
tank and white noise at 11 SNR levels ranging from −15 dB to 15 dB, in 3 dB
increments, producing 13200 testing mixtures.

The STFTs in the speech separation stage are computed using a Hanning
window length of 40 ms, a 640 point FFT and 50% overlap between adjacent
frames. Each NMF basis matrix consists of 80 basis vectors.

The accuracy of long-term SNR estimation is measured with the mean abso-
lute error (MAE) between the true SNR ti and estimated SNR t̂i of the i-th
mixture for all N testing mixtures [12].

MAE(t, t̂) =
1
N

N∑
i=1

|(ti − t̂i)| (2)

3.2 Results and Discussion

In the first stage, we separately employ and compare NMF, IBM, IRM and
cIRM-based speech separation approaches, and investigate their influence on
SNR estimation accuracy. In addition to using the residuals that result from
the above separation approaches, we separately use the true noise signal as an
input to the second DNN-stage of our approach. This assumes perfect separation
and we regard it as an ideal case, since it provides upper bound performance
capabilities.

Table 1 shows SNR estimation results in the matched noise case, but with seen
and unseen SNRs. We find that in every case the system with cIRM separation
gives the best estimation especially at low SNR conditions, and its performance
is close to the ideal case. This occurs because cIRM estimation outperforms
the other speech separation approaches, as indicated in [18]. This reveals that
improving speech separation performance can clearly improve SNR estimation
accuracy. Note that the average PESQ performance is 1.81 for noisy speech, 1.88
for NMF, 1.92 for IBM, 2.23 for IRM and 2.41 for cIRM separation. Although not
trained in the system, the MAE performance at high SNRs achieves the lowest
average error across all approaches. This occurs because separation performance
in low SNR conditions is relatively not as good as in high SNR environments.
Also notice that the performance in the unseen case is approximately the same
as the seen training case on average, which indicates that the proposed approach
generalizes well in unseen SNR environments.
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Table 1. Avg. MAE for estimating seen and unseen SNR levels of matched noise types,
when applying different separation approaches.

SNR level Ideal NMF IBM IRM cIRM

Seen medium 1.78 4.38 4.98 3.83 1.85

Unseen high 1.42 2.77 2.33 1.96 1.64

Unseen low 1.34 5.93 9.15 4.85 2.01

All 1.56 4.36 5.39 3.60 1.86

Table 2. Avg. MAE for SNR estimation under matched and unmatched noise condi-
tions. The average is across all SNRs.

Noise type NMF IBM IRM cIRM

Matched 4.36 5.39 3.60 1.86

Unmatched 4.27 4.60 4.08 3.91

All 4.31 4.92 3.89 3.09

To further evaluate the generalization performance of our system, we test in
matched and unmatched noise conditions. The average MAE of 11 SNR levels,
ranging from −15 dB to 15 dB with a 3 dB step size, is reported for each
noise type, see Table 2. Not surprisingly, cIRM estimation outperforms the other
approaches across matched and unmatched noise conditions.

Our approach applies linear regression to the DNN output since this can
expand the SNR prediction range, which is initially limited by the range of
input SNRs that are used for training. Figure 3 shows MAE results when linear
regression is and is not applied to the DNN output. Notice that the average MAE
of NMF, IRM and cIRM reduce by 0.7, 0.6 and 1.1 dB, respectively, when linear
regression is applied, which shows that linear mapping improves performance.

We evaluate the importance of the speech separation stage by extracting fea-
tures directly from the noisy speech and then by training the SNR-estimation
DNN with the noisy speech features (e.g. no separation is performed). When this
is done, SNR estimation is much worse, as it does not follow the trend of input

Fig. 3. Avg. MAE score when linear mapping is and is not applied.
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SNRs as shown in Fig. 4 (left). Alternatively, we calculate SNR directly from
the speech estimate and noise residual that are produced by the speech separa-
tion stage in order to determine how important the second stage is to long-term
SNR estimation. Hence, the SNR estimation DNN is not used. These estima-
tion results are severely worse than our proposed two-stage approach, see Fig. 4
(right). This occurs because the separation stage incorrectly places some speech
energy in the estimated noise signal and noise energy in the estimated speech
signal. The second SNR estimation DNN helps overcome this problem. Both
experiments indicate that DNN-based speech separation followed by a SNR-
estimation DNN is preferred.

Fig. 4. Left: SNR estimation results with (e.g. residuals) and without (e.g. mixture)
speech separation. Right: Avg. MAE when SNR is estimated directly from the speech
and noise estimates from the speech separation stage.

Furthermore, we compare our system with four state-of-the-art long-term SNR
estimation methods. The first algorithm is WADA [9], which has been proven to
significantly outperform NIST [8]. The second method (e.g. Noise PSD) estimates
long-term SNR by calculating the ratio of noisy speech power and the estimated
noise PSD across all time frames and frequency bins [10]. Similarly, the third algo-
rithm (e.g. Speech PSD) uses an MMSE estimator to estimate the PSD of clean
speech. The energy ratio of speech PSD and noisy speech power is used to estimate
SNR [11]. The last comparison approach is a CASA-based approach that uses an
estimated IBM to identify the speech-dominate and noise-dominate T-F units in a
unsupervised manner [12]. The estimated IBM is then used to approximate speech
and noise energies for SNR calculation. Since the proposed system with cIRM sep-
aration shows advantages over other separation approaches, it is used in the com-
parison and is denoted as P -cIRM.

As shown in Table 3, P -cIRM achieves the lowest MAE under matched noise
conditions, and it is better by about 0.7 dB compared to the CASA approach.
Compared to noise PSD and speech PSD, it is better by 4 dB and 2.8 dB,
respectively. P -cIRM works well in unmatched noise conditions, but it is slightly
outperformed by the CASA-based approach. When evaluating by SNR, P -cIRM
shows comparative advantages over WADA, noise PSD, speech PSD, and CASA.
In low SNR levels, P -cIRM improves by 2.5 dB compared to CASA, which also
has a SNR transformation process to reduce estimation errors in low SNR con-
ditions. P -cIRM also outperforms CASA at high SNRs as well. Performance for
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Table 3. Comparison of the proposed system with other SNR estimation methods. ∗

indicates that the SNR was not seen during training.

Method Mat. Noise Unmat. Noise High∗ Medium Low∗

WADA 8.563 10.09 8.439 6.370 13.37

Noise PSD 5.866 7.274 5.911 2.581 11.28

Speech PSD 4.737 6.513 5.274 2.349 7.530

CASA 2.599 3.777 2.703 1.912 5.170

P -cIRM 1.864 3.913 2.359 2.131 2.596

the CASA-based approach depends on whether it can correctly label speech and
noise regions, which does not always occur at low SNRs. WADA leads to poor
estimation results, since its assumption on noisy speech and noise distributions
are not satisfied. Similarly, noise PSD and speech PSD assume Gaussian distri-
butions for the noise and speech. When the background noise is non-stationary
or in very low SNR levels, both noise PSD and speech PSD make relative large
estimation errors, and their results are not comparable to our best performing
systems.

4 Conclusion

We propose a two-stage DNN-based approach for estimating long-term SNR.
The first stage generates a noise residual, and the second stage uses the resid-
ual and a DNN to predict long-term SNR. The results show that our proposed
approach accurately estimates long-term SNR residuals when compared to alter-
native options and existing unsupervised approaches, even when tested in seen
and unseen testing environments.

The results further indicate that applying better separation algorithms will
obtain lower mean absolute errors. Note that our system has two independent
stages. Any state-of-the-art speech separation algorithm can be used in the first
stage, and more sophisticated deep learning networks can also be used in the
second stage to potentially produce more accurate estimation results.
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Abstract. Given binaural features as input, such as interaural level dif-
ference and interaural phase difference, Deep Neural Networks (DNNs)
have been recently used to localize sound sources in a mixture of speech
signals and/or noise, and to create time-frequency masks for the esti-
mation of the sound sources in reverberant rooms. Here, we explore a
more advanced system, where feed-forward DNNs are replaced by Con-
volutional Neural Networks (CNNs). In addition, the adjacent frames
of each time frame (occurring before and after this frame) are used to
exploit contextual information, thus improving the localization and sep-
aration for each source. The quality of the separation results is evaluated
in terms of Signal to Distortion Ratio (SDR).

Keywords: Convolutional Neural Networks
Binaural cues · Reverberant rooms · Speech separation
Contextual information

1 Introduction

Sound source separation has been studied for a long time, with implementing
methodologies such as independent component analysis [1], computational audi-
tory scene analysis [2], and non-negative matrix factorization [3]. More recently,
Deep Neural Networks (DNNs) [4] and Convolutional Neural Networks (CNNs)
[5] have shown state-of-the-art performance in source separation [6–8]. This paper
studies the problem of separating two speakers in rooms with different reverbera-
tion, which is a common scenario in real life. A target speech signal, correspond-
ing to the main speaker, is disturbed by an interferer speaker, located in variable
positions. This problem has already been studied in [8], where the target speech is
separated by generating a time-frequency (T-F) mask, which is obtained by train-
ing a DNN by using binaural spatial cues such as Mixing Vectors (MV), Interaural
Level Difference (ILD) and Interaural Phase Difference (IPD). The methods have
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 361–371, 2018.
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limitations for more reverberant rooms, in particular when the training room used
is different from the room used in the testing set. In recent years, different types of
approaches have been developed to overcome these issues. In [9], the introduction
of spectral features such as the Log-Power Spectra (LPS) along the spatial cues,
proved to be useful where one of the two speakers is replaced with noise. The last
layer of the DNN is a softmax classifier, which estimates the Directions Of Arrival
(DOAs) of the sources. This information is used to build a soft-mask for the target
source. In [10,11], the soft-mask is directly estimated through a regression app-
roach by training a single DNN.

Other neural network structures, such as CNNs, are neural networks designed
to process data in the form of multiple arrays (such as images with three colours
channels) and contain convolutional and pooling layers [5]. CNNs have been used
to estimate the DOA for speech separation in [12] and trained using synthesized
noise signals, but recorded with a four-microphones array.

In this paper, we present a system that is able to perform source localiza-
tion and source separation. Here, the relatively simple system of DNNs already
introduced by Yu et al. in [8] is upgraded to a deeper system based on CNNs, in
order to exploit the increased computational power available in modern GPUs,
aiming for a better separation quality. In addition, contextual frame expanding
[10] is introduced, which uses the information from neighbouring time frames
before and after a given time frame. This gives a better estimation of each T-F
point of the soft-mask because the DOA is estimated by checking if a speaker is
still active in the time frames around the one that has been estimated.

The remainder of the paper is organized as follows. Section 2 introduces the
proposed method, including the overall CNN architecture employed, the low-level
feature extraction for the CNN input, and the output in the training stage and
the system implementation. Section 3 describes how the soft-masks are generated
starting from the output of each CNN. Experimental results are presented in
Sect. 4, where evaluations are performed and analyses are given, followed by
conclusions of our findings and insights for future work in Sect. 5.

2 Proposed Method

2.1 System Overview

A system of CNNs, shown in Fig. 1, is used to localize the direction of one or
more speakers in a speech mixture. This system integrates the information from
several CNNs, each one trained with the information from a narrow frequency
band. The outputs are then merged together to get soft-masks, which are used to
retrieve the speech source from the audio mixture, as shown in Fig. 1. The Short-
Time Fourier Transform (STFT) on the left and right channels is calculated. The
results are two spectrograms XL(m, f) and XR(m, f), where m = 1, · · · ,M and
f = 1, · · · , F are the time frame and frequency bin indices respectively. For
each T-F point, low-level features (i.e. ILD and IPD) are calculated and used
to train the CNNs. These features will be introduced in more detail in Sect. 2.2.
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Fig. 1. Diagram of the system architecture using CNNs.

The low-level features are arranged into N blocks, each one containing the infor-
mation from a small group of frequency bins and the output is a probability
mask containing the information from just a narrow frequency band. Each of
the N = 128 blocks, labelled n, includes K = 8 frequency bins in the range
((n−1)K +1, · · · , nK), small enough to reduce losses in resolution in the result-
ing probability output mask, where K = F/N and N is the number of CNNs.
Each block is used as the input of a different CNN for the training stage, each
output is a softmax classifier, which gives the probability for a sound source to
come from one of the possible J DOAs, so it contains J values between 0 and
1. As explained in Sect. 3, a series of soft-masks can be generated by stacking
all the CNNs outputs, one for each test set j and by ungrouping each block
into 8 frequency bins. The binaural soft-masks are multiplied element-wise by
the mixture spectrograms and, after applying the inverse STFT (ISTFT), the
target source can be recovered.

2.2 Low-Level Features

The binaural features used are IPD and ILD, have been already introduced for
sound localization in [9,10]. They are used to derive high-level features which
are easy to classify. IPD and ILD are the phase and the amplitude difference
between the left and the right channels. By putting them in one vector, one can
obtain, for each T-F unit:

x(m, f) = [ILD(m, f), IPD(m, f)]T .
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Each ũ(m, f) is grouped into N blocks along the frequency bins, which represents
the input vector of each CNN:

x(n,m) =
[
xT (m, (n − 1)K + 1), · · · ,xT (m,nK)

]T
.

3 Soft-Masks Construction

An output mask is created by exploiting the contextual time frame information
from the neighbouring frames. A number of time frames τ is selected before
and after a given central time frame τ0 ∈ 1 · · · M , where M is the number of
time frames in the spectrogram. Each group of frames is thus composed of C =
2×τ +1 time frames. This operation is looped for all the τ0 ∈ 1 · · · M . All the M
groups are concatenated and each frequency band is fed into a different CNN for
training. In the output, the central time frames τ0 are selected and concatenated
to generate a probability mask with the correct size M . The probability mask for
each CNN looks like the one shown in Fig. 2(a), representing the DOA probability
as a function of the time frame. By averaging over all the time frames and the
frequency bands, the highest value indicates the most probable DOA. The next
step is selecting the entire row corresponding to the highest DOA probability.
This row represents the target soft-mask for that specific frequency band. As last
step, all the probability masks are stacked in order to build the T-F soft-mask
for the target speech, shown in Fig. 2(b).

(a) Example of probability mask for
one of the 128 CNNs.

(b) Target soft-mask.

Fig. 2. Probability mask and soft-mask.

4 Experiments

4.1 Experimental Setup

Binaural audio recordings are created by convolving a speech recording with
Binaural Room Impulse Responses (BRIRs), captured in real echoic rooms [13].
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Fig. 3. The experimental setup.

The BRIRs dataset was recorded around a half-circular grid, ranging from −90◦

to 90◦ with steps of 10◦, for a total of J = 19 DOAs. A dummy head located
at the center of a given reverberant room has been used, with left and right
microphones, as shown in Fig. 3. The training set has been produced by using
speech samples from the TIMIT dataset, containing recordings of sentences from
different male and female speakers, sampled at fs = 16 kHz, high enough for
our task. The training samples are randomly selected single reverberant speech
recordings, 8 males and 8 female speakers, recorded at 19 different DOAs, each
one being ≈2 s long. For the testing set, the same experimental setup and param-
eters as in [8] have been used. Two different speakers, named the target and the
interferer, have been randomly selected from the TIMIT database for the two
genders and mixed, for a total of 15 reverberant speech mixtures for each DOA,
≈2.3 s long each. The experimental setup is shown in Fig. 3. Both the target and
interferer are located 1.5 m away from the dummy head, and the three objects
have the same height. The amount of reverberation depends on the parameters
of the room selected, listed in Table 1, where room ‘A’ is less reverberant and
‘D’ more reverberant. The STFT is performed where the Hann window is set
to 2048 (128 ms) samples with 75% overlap between the neighbouring windows,
so the resulting training and testing samples are 75 time frames long each. The
parameters for each CNN in Fig. 4, are found empirically and gave the best
performance in our experiments. The first part of the CNN is used for features
learning. There is a convolutional input layer with 32 feature maps, kernel size
(3, 3), batch normalization, followed by a max pooling layer with pooling size
(2, 2) (or (1, 1) for τ = 0, to keep the right dimensions) and a 10% dropout
layer. The second part is for classification. We used a 1024 neurons dense layer,
with batch normalization and 10% dropout. The output is another dense layer
with 19 neurons. The rectified linear activation function has been used for both
the convolutional and the hidden dense layer, while the softmax is used in the
output. The number of epochs is set between 60 and 200, the batch size is set
to 200 and the cost-function is the categorical cross-entropy.

4.2 Signal to Distortion Ratios (SDRs) Evaluation

Figures 5 and 6 show the Signal to Distortion Ratios (SDRs) evaluation for
the target fixed at 0◦ or −90◦, for variable positions of the interferer speaker.
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Fig. 4. Structure of a CNN.

Table 1. Rooms acoustic properties.

Room Type ITDG (ms) DRR (dB) T60 (s)

A Medium office 8.73 6.09 0.32

D Large seminar room 21.6 6.12 0.89

The dots indicate the average SDR over the test set at each DOA and are con-
nected by continuous lines, dashed lines are the correspondent standard devia-
tion. The cases where the interferer is in the range [0◦,+90◦] will be omitted for
a better visualization of the plots. When target and interferer are aligned (i.e.
from the same direction), it is virtually impossible to separate the two speakers
by using spatial features only, so they have been excluded from the plots as well.

In Figs. 5 and 6, the system named CNNs τ = 0 has been trained and tested
without using any contextual information from the neighbouring time frames,
while CNNs with τ = 1 and τ = 3 include τ contextual frames before and after
each time frame. The last system, named DNNs, is a three dense layers DNNs
system, similar to the one tested by Yu et al. in [8], here included as a baseline.
The average improvement over all the DOAs compared to the baseline system,
ΔSDR, is shown in Table 2.

Table 2. Average improvement on the SDRs for the CNNs at different τ compared to
the DNNs baseline.

Target Train Test ΔSDR(τ = 0) (dB) ΔSDR(τ = 1) (dB) ΔSDR(τ = 3) (dB)

0◦ A A −0.58 +0.25 −1.32

0◦ D D +0.74 +1.24 +0.61

0◦ A D +0.03 −0.13 −1.41

0◦ D A +1.41 +0.79 −0.92

−90◦ A A −2.03 +0.80 +0.23

−90◦ D D −2.12 +1.63 +1.89

−90◦ A D −0.09 −1.61 −1.82

−90◦ D A +0.10 +0.60 +0.84
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(a) SDRs evaluation: train room A, test room A, target at 0◦.

(b) SDRs evaluation: train room D, test room D, target at 0◦.

(c) SDRs evaluation: train room A, test room D, target at 0◦.

(d) SDRs evaluation: train room D, test room A, target at 0◦.

Fig. 5. SDR plotted against the DOA, target at 0◦.
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(a) SDRs evaluation: train room A, test room A, target at −90◦.

(b) SDRs evaluation: train room D, test room D, target at −90◦.

(c) SDRs evaluation: train room A, test room D, target at −90◦.

(d) SDRs evaluation: train room D, test room A, target at −90◦.

Fig. 6. SDR plotted against the DOA, target at −90◦.
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Figures 5(a) and (b) show the cases in which the room used for training and
testing is the same. For room ‘A’, the CNNs with τ = 1 system performs the
best among the four systems tested, with ΔSDR ≈ 0.25 dB. The SDRs are
in the range ≈ [10,13] dB in Fig. 5(a) for τ = 1, giving a very good separation
quality on the listening tests. The SDRs decrease while the interferer approaches
0◦, because the binaural features contain less information when the differences in
level and phase between left and right microphones are small. For room ‘D’, the
CNNs with τ = 1 give optimal results, as shown in Fig. 5(b), with ΔSDR ≈ 1.23
dB. The SDRs are in ≈[6,10] dB, a good separation quality for a room with such
a high reverberation level. The standard deviation, which is on average ≈3 dB,
highly depends on the gender selection of the mixtures. In fact, where the speech
recordings are from speakers of different genders, the frequency overlap is less
compared to the case of same gender speakers, which means they are easier for
the CNNs to localize.

Figures 5(c) and (d) show the cases where the training and testing room do
not match. In this case, all the four systems perform slightly worse than the case
in which training and testing rooms are the same, as they need to adapt to a type
of reverberation that was not included in the training data. Figure 5(c) shows
that DNNs and the CNNs with τ = 0 and τ = 1 have similar performances.
Instead, in Fig. 5(d), the τ = 0 CNNs system has the best separation quality,
with ΔSDR ≈ 1.41 dB. Both in Fig. 5(c) and (d), the CNNs with τ = 3 give by
far the worst performance.

In all the Fig. 6 the target is fixed at −90◦. In Figs. 6(a) and (b), training and
testing rooms are the same. In Fig. 6(a) again, the case with τ = 1 shows the best
performance, with ΔSDR ≈ 0.71 dB and SDRs in ≈ [3,6] dB. In Fig. 6(b), unlike
Fig. 6(a), the case τ = 3 performs slightly better than τ = 1, with ΔSDR ≈ 1.68
dB and SDRs in ≈ [0,3] dB. In both cases, τ = 0 gives by far the worst separation
results, suggesting that the contextual information improves the system in the
localization task, especially in challenging scenarios when the target is located
at wide angles. In the cases of room mismatch, plotted in Figs. 6(c) and (d), all
the four systems have difficulty in retrieving the target, with SDRs on average
below 0 dB.

5 Conclusions and Future Work

We presented a system of CNNs trained with binaural features and contextual
information from the neighbouring time frames, where we used the outputs to
build T-F masks. We applied these masks to speech mixtures to retrieve a target
speaker. A system with a three dense layers DNNs had already been successfully
tested for the same task in [8], showing some limitations, especially when the
reverberation time of the testing room is long. As can be seen in Table 2, the
systems of DNNs and CNNs with no contextual information, can be considered
complementary, the separation quality depending on the training and testing
rooms parameters. In general, when some contextual information is introduced,
the CNNs outperform the DNNs baseline. In particular, when a small τ is chosen,
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optimal results can be obtained, as summarized in Table 2. A possible explana-
tion could be that introducing a large amount of contextual frames might include
frames belonging to the interferer speaker, resulting in degradation in separa-
tion performance. Other works, such as [11], where a DNN is used for speech
enhancement, suggest the use of a larger amount of contextual information, but
they show how this is strictly related to the amount of training data, the neu-
ral network used and the task at hand. We have also tested the CNNs in more
extreme conditions. In particular, when the target is fixed at −90◦, its con-
tribution arriving at the far-side ear is attenuated as compared to that of the
near-side ear, which makes the separation task more challenging. Moreover, test-
ing the networks in mismatched conditions, where the CNNs have to adapt to a
new type of reverberation, in addition to the target located at wider angles, is a
very challenging scenario, as shown in Figs. 6(c) and (d). Listening tests indicate
that the target source is not separated, suggesting that none of the four systems
tested has been effective.

As a future work, we believe that introducing the information from a regression
model, along with the classification model presented in this paper, could further
improve the separation performance, especially in rooms with longer reverbera-
tions and when the target is placed at wider angles. Moreover, we want to extend
the system for the underdetermined case, with more interferer speakers.

Acknowledgements. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme (FP7-PEOPLE-2013-ITN)
under grant agreement no 607290 SpaRTaN.
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Abstract. The presence of a corresponding talking face has been shown
to significantly improve speech intelligibility in noisy conditions and for
hearing impaired population. In this paper, we present a system that
can generate landmark points of a talking face from an acoustic speech
in real time. The system uses a long short-term memory (LSTM) network
and is trained on frontal videos of 27 different speakers with automat-
ically extracted face landmarks. After training, it can produce talking
face landmarks from the acoustic speech of unseen speakers and utter-
ances. The training phase contains three key steps. We first transform
landmarks of the first video frame to pin the two eye points into two
predefined locations and apply the same transformation on all of the fol-
lowing video frames. We then remove the identity information by trans-
forming the landmarks into a mean face shape across the entire training
dataset. Finally, we train an LSTM network that takes the first- and
second-order temporal differences of the log-mel spectrogram as input to
predict face landmarks in each frame. We evaluate our system using the
mean-squared error (MSE) loss of landmarks of lips between predicted
and ground-truth landmarks as well as their first- and second-order tem-
poral differences. We further evaluate our system by conducting subjec-
tive tests, where the subjects try to distinguish the real and fake videos
of talking face landmarks. Both tests show promising results.

Keywords: Visual generation · Face landmarks
Audio-visual models · LSTM

1 Introduction

Speech is a natural way of communication, and understanding speech is essen-
tial in daily life. The auditory system, however, is not the only sensory sys-
tem involved in understanding speech. The visual cues from a talker’s face and
articulators (lips, teeth, tongue) are also important for speech comprehension.
Trained professionals are able to understand what is being said by purely looking
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at lip movements (lip reading) [9]. For ordinary people and the hearing impaired
population, the presence of visual signals of speech has been shown to signifi-
cantly improve speech comprehension, even if the visual signals are synthetic [14].
The benefits of adding the visual speech signals are more pronounced when the
acoustic signal is degraded, due to background noise, communication channel
distortion, and reverberation.

In many scenarios such as telephony, however, speech communication is still
acoustical. The absence of the visual modality can be due to the lack of cameras,
the limited bandwidth of communication channels, or privacy concerns. One way
to improve speech comprehension in these scenarios is to synthesize a talking
face from the acoustic speech in real time at the receiver’s side. A key challenge
of this approach is to make sure that the generated visual signals, especially
the lip movements, well coordinate with the acoustic signals, as otherwise more
confusions will be introduced.

In this paper, we propose to use a long short-term memory (LSTM) net-
work to generate landmarks of a talking face from acoustic speech. This network
is trained on frontal videos of 27 different speakers of the Grid audio-visual
corpus [6], with the face landmarks extracted using the Dlib toolkit [13]. The
network takes the first- and second-order temporal differences of the log-mel
spectra as the input, and outputs the x and y coordinates of 68 landmark points.
To help the network capture the audio-visual coordination instead of the varia-
tion of face shapes across different people, we transform all training landmarks
to those of a mean face across all talkers in the training set. After training,
the network is able to generate face landmarks from an unseen utterance of an
unseen talker. Objective evaluations of the generation quality are conducted on
the LDC Audiovisual Database of Spoken American English dataset [18], which
will be referred as the LDC dataset in the remaining of the paper. Subjective
evaluation is also conducted to ask evaluators to distinguish speech videos with
ground-truth and generated landmarks. Both the objective and subjective eval-
uations achieve promising results. The code and pre-trained talking face models
are released to the community1.

The remaining of the paper is structured as follows: Sect. 2 describes the
related work. Section 3 describes the data and pre-processing steps. The architec-
ture of the network is described in Sect. 4. Objective and Subjective evaluations
are presented in Sects. 4.1 and 4.2. Finally, Sect. 5 concludes the paper.

2 Related Work

Generating a talking head automatically has been a great interest in the research
community. Some researchers focused on text-driven generation [3,10,22,23].
These methods map phonemes to talking face images. Compared to text, voice
signals are surface-level signals that are more difficult to parse. Besides, voices
of the same text show large variations across speakers, accents, emotions, and
the recording environments. On the other hand, speech signals provide richer
1 http://www.ece.rochester.edu/projects/air/projects/talkingface.html.

http://www.ece.rochester.edu/projects/air/projects/talkingface.html


374 S. E. Eskimez et al.

cues for generating natural talking faces. For text, any plausible face image
sequence is sufficient to establish natural communication. For speech, it must
be a plausible sequence that matches the speech audio. Therefore, text-driven
generation and speech-driven generation are different problems and may require
different approaches.

There exist a few approaches to speech-driven talking face generation. Early
work in this field mostly used Hidden Markov Models (HMM) to model the
correspondence between speech and facial movements [2,4,7,8,20,24,25]. One
of the notable early work, Voice Puppetry [2], proposed an HMM-based talking
face generation that is driven by only speech signal. In another work, Cosker
et al. [7,8] proposed a hierarchical model that animates sub-areas of the face
independently from speech and merges them into a full talking face video. Xie
et al. [24] proposed coupled HMMs (cHMMs) to model audio-visual asynchrony.
Choi et al. [4] and Terissi et. al [20] used HMM inversion (HMMI) to estimate
the visual parameters from speech. Zhang et al. [25] used a DNN to map speech
features into HMM states, which further maps to generated faces.

In recent years, a few DNN-based approaches have also been proposed. Suwa-
janakorn et al. [19] designed an LSTM network to generate photo-realistic talking
face videos of a target identity directly from speech. Their system requires several
hours of face videos of the specific target identity, which greatly limits its appli-
cation in many practical scenarios. Chung et al. [5] proposed a convolutional
neural network (CNN) system to generate a photo-realistic talking face video
from speech and a single face image of the target identity. Compared to [19], the
reduction from several hours of face videos to a single face image for learning
the target identity is a great advance.

While end-to-end speech-to-face-video generation is very useful in many sce-
narios, the main limitation of this approach is the lack of freedom for further
manipulation of the generated face video. For example, within a generated video,
one may want to vary the gestures, facial expressions, and lighting conditions, all
of which can be relatively independent of the content of the speech. These end-
to-end systems cannot accommodate such manipulations unless they can take
these factors as additional inputs. However, that would significantly increase the
amount and diversity of data required for training the systems.

A modular design that separates the generation of key parameters and the
fine details of generated face images is more flexible for such manipulations.
Ideally, the key parameters should just respond to the speech content, while
the fine details should incorporate all other non-speech-content related factors.
Pham et al. [16] adopted a modular design: the system first maps speech features
to 3D deformable shape and rotation parameters using an LSTM network, and
then generates a 3D animated face in real-time from the predicted parameters.
In [17], they further improved this approach by replacing speech features with
raw waveforms as the input and replacing the LSTM network with a convolu-
tional architecture. However, compared to face landmarks used in our proposed
approach, these shape and rotation parameters are less intuitive, and the map-
ping from these parameters to a certain gesture or facial expression is less clear.
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Fig. 1. Examples of extracted face landmarks from the training talking face videos.
Certain landmarks are connected to make the shape of the face easier to recognize.
The first row shows unprocessed landmarks of five unique talkers. The second row
shows their landmarks after outer-eye-corner alignment. The third row shows their
landmarks after alignment and the removal of identity information.

In addition, the landmarks generated by our system are for a normalized mean
face instead of a certain target identity. This also helps remove factors that are
not directly related to the voice.

3 Proposed Method

In this section, we describe our method to generate talking face landmarks. First,
we extract face landmarks and align them across different speakers and transform
their shapes into the mean shape to remove the identity information. We extract
the first and second order temporal difference of the log-mel spectrogram and
use them as the input to our system. Finally, we train an LSTM network to
generate the face landmarks from the speech features.

3.1 Training Data and Feature Extraction

We employ the audio-visual GRID dataset [6] to train our system. There are
in total 16 female and 18 male native English speakers, each of which has 1000
utterances that are 3 s long. The sentences are structured to contain a command,
a color, a preposition, a letter, a digit, and an adverb, for example, “set blue at
C5 please”.

The videos are provided in two resolutions, low (360× 288) and high
(720× 576). In this work, we use the high-resolution videos. The videos use
a frame rate of 25 frames per second (FPS), resulting in 75 frames for each
video. The speech audio signal is extracted from the video with a sampling rate
of 44.1 kHz.

We extract 68 face landmark points (x and y coordinates) using the DLIB
library [13] from each frame for each video in the dataset. Examples are shown
in the first row of Fig. 1. We calculate 64 bin log-mel spectra of the speech
signal covering the entire frequency range using a 40 ms hanning window without
any overlap to match the video frame rate. We then calculate the first- and
second-order temporal differences of the log-mel spectra and use them as the
input (128-d feature sequence) to our network. We experimented using log-mel
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spectrogram with and without its first- and second-order derivatives as input
to our network. The generated mouth for many speech utterances in these two
setups, however, were almost always open even in silent segments, and the lip
movements were less prominent than the current system. The first- and second-
order temporal differences of the log-mel spectrogram may show less variations
on the same syllable uttered by different speakers, and the mismatch problem is
less pronounced.

3.2 Face Landmark Alignment

Since the talking face may appear in different regions with different sizes in
different videos, we need to align them to reduce the complexity of training
data. To do so, we follow the procedure described in [15] to simply pin the two
outer corners of the eyes in the first frame of each video to two fixed locations,
(180, 200) and (420, 200) in the image coordinate system, through an 6 DOF
affine transformation. We then transform all of the landmarks in all video frames
with the same transformation. Note that we do not align each video frame using
their own affine transformation separately because we find that the eye-corner-
based alignment is sensitive to eye blinks, which often results in zoom in/out
effects of the transformed face shape. Also note that our approach assumes that
the head does not move significantly within a video, as otherwise, the same affine
transformation would not be able to align faces in different frames. The second
row of Fig. 1 shows several examples of the aligned face landmarks.

3.3 Removing Identity Information from Landmarks

After alignment, faces of different speakers are of a similar size and general
location; however, their shapes are still different as well as their mouth locations.
This identity-related variation may pose challenges to the network for capturing
the relation between speech and lip movement, especially when the amount and
diversity of training data are small. Therefore, we propose to remove the identity
information from the landmarks before training the network.

To do so, we apply the following steps. First, we calculate the mean face
shape by averaging all aligned landmark locations across the entire training
set. Second, for each face landmark sequence, we calculate the affine transform
between the mean shape and the first frame of the sequence. Third, we calculate
the difference between the current frame and the first frame and multiply with
the scaling coefficients obtained from the second step with the result obtained
in the third step. Finally, we add the mean shape to results obtained in fourth
step to obtain the face landmark sequence that has no identity. The third row
of Fig. 1 shows several examples of landmarks with the identity removed.

3.4 LSTM Network

Our proposed network, as shown in Fig. 2, uses four long short-term memory
(LSTM) [12] layers with a sigmoid activation function. At each time step, the
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Fig. 2. The LSTM network architecture for generating landmarks of a talking face
from the first and second order temporal differences of the log-mel spectrogram. hl

t are
the hidden layers, where t is the time step and l is the hidden layer index. yt are the
output face landmarks for the time step t.

input to the network is the first and second order temporal differences of the log-
mel spectra of the current and the previous N frames. This provides short-term
contextual information. The output is the predicted the x and y coordinates of
face landmarks of the current frame (if no delay is added) or a previous frame (if
a delay is added as described below). The reason for adding delay is because lips
often move before the sound is produced. With a little delay, the network is able
to “hear into the future” and can better prepare for those lip movements. The
generated lip movements tend to be smoother. The amount of delay we introduce
is between 1 (40 ms) and 5 frames (200 ms). This turns out to be enough for good
generation results and is still tolerable in real-time speech communication.

During training, we use dropout between each layer and between recurrent
connections, with a rate of 0.2. We use Adam optimizer to train our network.
The training sequences are all 75 frames long. We set the batch size to 128
sequences and the learning rate to 0.001. Our network minimizes the following
mean squared error (MSE) objective function JMSE ,

JMSE = 1
N

N∑

t
‖st − ŝt‖2 , (1)

where s and ŝ are the x and y coordinates of ground-truth (GT) and predicted
(PD) face landmarks sequences, respectively. N is the number of samples.

Finally, the predicted landmarks are further processed in order to fix the
eye corner points to fixed points as described in Sect. 3.2, which produces more
stable talking face landmarks.

Due to causality constraints, the bidirectional LSTM network is not con-
sidered in our experiments. We have also experimented with fully connected
architecture instead of LSTM. However, the resulting face landmarks often show
sudden jumps between frames, which looks unnatural. This is due to not having
temporal connections in the architecture.
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Fig. 3. Pair-wise comparison between ground-truth landmarks (black solid lines) and
generated landmarks (red dotted lines) on unseen talkers and sentences. The second
image shows a failure case for “oh” sound. (Color figure online)

Table 1. Objective evaluation results for different system configurations. The models
are named according to the amount of delay and contextual information. For example,
“D40-C5” describes a model trained with 40 ms delay and 5 frames of context. The
lower value means better results, where the ideal result is zero.

RMSE RMSE First Diff RMSE Second Diff

D0-C3 0.0954 0.0045 0.0073

D0-C5 0.0945 0.0042 0.0071

D40-C3 0.0932 0.0039 0.0068

D40-C5 0.0921 0.0032 0.0065

D80-C3 0.0946 0.0044 0.0072

D80-C5 0.0944 0.0043 0.0069

4 Experiments

We conduct our objective and subjective evaluations on a totally different audio-
visual dataset, the LDC dataset [18]. It contains 10 female and 4 male speakers,
where each speaker provides 94 samples, totaling to 1316 utterances. The dura-
tion of the videos is arbitrary, and the resolution of the samples are 720× 480.
Since the frame rate of the videos is higher than the Grid dataset used to train
our system, we resampled the videos to the same frame rate of 25 FPS. The
vocabulary of the LDC dataset is much larger than that of the Grid dataset.
There are various words and sentences from TIMIT sentences [11], Northwest-
ern University Auditory Test No. 6 [21], and Central Institute for the Deaf (CID)
Everyday Sentences [1]. The audio stream is provided at 48 kHz sampling rate,
which we down-sampled to 44.1 kHz. Figure 3 shows examples of ground-truth
and generated face landmarks in the first and second row, respectively. Examples
of generated videos are publicly accessible2.

4.1 Objective Evaluation

We report the root-mean-squared error (RMSE) results between the ground-truth
(GT) and predicted (PD) face landmarks according to Eq. 1. The landmarks scale
2 http://www.ece.rochester.edu/projects/air/projects/talkingface.html.

http://www.ece.rochester.edu/projects/air/projects/talkingface.html
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are between 0 and 1, therefore RMSE value of 0.01 approximately equivalent to 1%
error. We also report the RMSE of the first and second order temporal differences
of the GT and PD face landmarks to assess the movement. We report the results in
Table 1. These results serve as a way of model selection. The best model according
to these results is the model that has 40 ms delay and 5 frames of context infor-
mation (D40-C5). We selected this model to conduct the subjective evaluations,
which are described in the next section.

4.2 Subjective Evaluation

We conducted subjective tests to determine if our system can generate realistic
face landmarks. 17 naive volunteer evaluators who are graduate students at the
University of Rochester participated in the test. The test presented 25 real land-
mark videos and 25 generated landmark videos in a randomized order to each
evaluator and asked the evaluator to label whether each presented video was real
or fake. Each video was presented twice in the randomized video sequence. The
real landmark videos were created from randomly selected LDC videos. Land-
marks were extracted and aligned, and the identity information was removed,
according to Sect. 3. Fake videos were generated from the audio signals of another
25 randomly selected LDC videos. The GT landmarks were noisy; hence we also
added Gaussian noise to the PD landmarks to make them look more like the GT
landmarks. In addition to a binary decision, the evaluators were asked to report
their confidence level of each decision, between 0 and 100%.

Fig. 4. Subjective evaluation results. The mean accuracy score and its standard devi-
ation are averaged over all subjects. The mean confidence scores and their standard
deviations are averaged over all subjects and videos.

The mean accuracy score of the evaluators are shown in Fig. 4, along with the
overall mean confidence score and the mean confidence score for the correctly
and incorrectly predicted samples. The results show that the evaluators struggled
to distinguish real and generated samples, as the accuracy is 42.01% which is
even below chance (50%). Another interesting observation of this test is that the
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mean confidence score for accurately determined samples is lower than that for
inaccurately determined samples. This suggests that the evaluators had a higher
classification accuracy when they were more cautious. Another outcome is that
the mean confidence score on answers for generated samples is more than the
confidence score on answers for the ground truth samples.

5 Conclusion

In this work, we present a method to generate talking face landmarks from
speech. We extract face landmarks from the Grid corpus, align them across
different speakers, and transform their shapes into the mean shape to remove
the identity information. The LSTM network predicts the face landmarks from
the first and second order temporal differences of the log-mel spectrogram from
any arbitrary voice. The network can produce face landmarks that look natural
for the given speech input. The main limitation of this network is that it cannot
produce “oh” and “oo” sounds right. We plan to balance the phonetic content
of the dataset to enable the network to produce all phonemes correctly in our
future work. We will evaluate the system against noise, and improve it to obtain
a noise-resilient system in our future work. We report objective and subjective
evaluation results that are promising. We release the code and example videos
to the community.
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Abstract. In underwater acoustics, wave propagation can be greatly
disrupted by random fluctuations in the ocean environment. In partic-
ular, phase measurements of the complex pressure field can be heavily
noisy and can defeat conventional direction-of-arrival (DOA) estimation
algorithms.

In this paper, we propose a new Bayesian approach to address such
phase noise through an informative prior on the measurements. This is
combined to a sparse assumption on the directions of arrival to achieve
a highly-resolved estimation and integrated into a message-propagation
algorithm referred to as the “paSAMP” algorithm (for Phase-Aware
Swept Approximate Message Passing). Our algorithm can be seen as an
extension of the recent phase-retrieval algorithm “prSAMP” to phase-
aware priors.

Experiments on simulated data mimicking real environments demon-
strate that paSAMP outperform conventional approaches (e.g. classic
beamforming) in terms of DOA estimation. paSAMP also proves to be
more robust to additive noise than other variational methods (e.g. based
on mean-field approximation).

Keywords: DOA estimation · Sparse representation
Bayesian estimation · Variational Bayesian approximations
Message passing algorithms

1 Introduction

Common to many applications such as SONAR, RADAR, and telecommunica-
tions, direction-of-arrival (DOA) estimation aims at locating one or more sources
emitting in some propagation media. Various methods have been proposed to
address this problem. They can be distinguished by the assumptions made on
the propagating medium and sources.

The beamforming approach [1] constitutes the most famous approach. As
it implicitly assumes the noise to be Gaussian and additive, it leads to poor
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estimation performance for complex phase perturbations. The so-called “high-
resolution” techniques consider additional assumptions over the number or the
nature of the sources. This is the case of the well-known MUSIC method [2].
MUSIC assumes the number of sources to be known and the separability of the
sub-spaces where the noise and the signal live. More recently, “compressive”
beamforming approaches proposed e.g. in [3] benefit from an explicit sparse
model on the sources.

While all the previously cited approaches rely on an additive Gaussian noise
model, recent work has focused on the integration of phase-noise models better
accounting for complex propagation processes. Such approaches aim to take into
account the wave-front distortion occurring when waves travel through fluctuat-
ing media. This is of key interest for a wide range of application fields including as
underwater acoustics [4,5] or atmospheric sound propagation [6,7]. These contri-
butions mainly relate to recent advances in phase recovery (see e.g. [8–11]) and the
use of informative priors on the missing phases. In this respect, we can mention
the Bayesian approach “paVBEM” based on a mean-field approximation [12].

Here, we further explore a variational Bayesian approach. Knowing that
higher-order approximations and associated message-passing algorithms outper-
form mean-field approximations for a wide range of inverse problems [13], we
propose a novel approach based on the “swept approximate message passing”
(SwAMP) algorithm introduced in [14]. Our algorithm is proven to be more
robust to additive noise and multiplicative phase noise than previous approaches
using phase-aware priors such as the paVBEM approach [12] and those using
non-informative phase priors [9].

2 Problem Statement

In this section, we recall the Bayesian modeling introduced in [12], which we
shall follow throughout of this paper, and introduce the estimation problem we
propose to solve.

2.1 Observation Model

Our objective is to design an algorithm able to recover the directions of arrival of
a few waves, despite a structured phase-noisy environment, exploiting one single
temporal snapshot on a uniform linear sensor array. In underwater acoustics,
this noise is mainly due to internal waves, changing the local sound-speed (see
e.g. [4]). These internal waves and their impact on the acoustic measurements
have been studied in different works (see [4,5]), which leads to a statistical
characterization of the phase noise.
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In this context, we propose the following observation model: we consider a
linear antenna composed of N regularly-spaced sensors and assume that the
received signal at sensor n can be expressed as

yn = ejθn

M∑

m=1

dnmxm + ωn, (1)

where θn stands for the phase noise due to the propagation through the fluctu-
ating medium and ωn an additive noise. The scalar dnm is the n-th element of
the steering vector dm = [ej 2π

λ Δ sin(φm) . . . ej 2π
λ ΔN sin(φm)]T where the φm’s are

some potential angles of arrival, Δ is the distance between two adjacent sensors
and λ is the wavelength of the propagation waves.

Within model (1), at each sensor of the antenna, we assume that the received
field is a combination of a few waves arriving from different angles φm. The DOA
estimation problem then consists in identifying the positions of the non-zero coef-
ficients in x � [x1 . . . xM ]T . In underwater acoustics, the phase noise considered
in (1) is well-suited to characterize phase perturbations of the wave front in a
fluctuating ocean [5], especially in the case of the so-called “partially saturated”
propagation regime defined in [4]. This regime focuses on far-field propagation
at high frequency with no multipath. In this case, amplitude variations of the
measured acoustic field can be neglected regarding the high sensibility to a struc-
tured phase-noise. Note that a similar fluctuation regime has been also identified
in atmospheric sound propagation (see [7]).

2.2 Bayesian Formulation of the Problem

We address the estimation of x from the measurements y � [y1, . . . , yN ]T in
the presence of (unknown) additive noise ω � [ω1, . . . , ωN ]T and multiplicative
phase noise θ � [θ1, . . . , θN ]T . To solve this problem, we consider a Bayesian
framework and define some prior assumptions on the different variables in (1).

A first assumption is set on the number of sources (i.e. the non-zero coeffi-
cients in x) that we suppose to be small in front of the number of sensors. To
take into account this sparse hypothesis, we adopt a Bernoulli-Gaussian model
∀m ∈ {1, . . . ,M}

p(xm) = ρ CN (xm;mx, σ2
x) + (1 − ρ)δ0(xm), (2)

where ρ is the Bernoulli parameter and equals the probability for xm to be non-
zero1, CN (xm;mx, σ2

x) stands for the circular complex Gaussian distribution
with mean mx and variance σ2

x, and δ0(xm) for the Dirac distribution. The
Bernoulli-Gaussian model is widely used when considering Bayesian inference
methods for sparsity-constrained problems (see e.g. [15,16]).

Previous studies of the statistical characterization of fluctuation phenomena
[4,5] provide the basis for the definition of a phase-noise prior. In underwater

1 We assume the Bernoulli parameter to be the same for each m ∈ {1, . . . , M}.
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acoustics, [4,5] exhibited and characterized the existence of a spatial correlation
of the measured field all along the antenna. To account for the resulting coherence
length, we consider a Markovian model as

p(θn|θn−1) = N (θn;β θn−1, σ
2
θ), ∀n ∈ {2, . . . , N}, (3)

p(θ1) = N (θ1; 0, σ2
1), (4)

with β ∈ R+. Variance σ2
θ is related to the coherence length and accounts for the

strength of the fluctuations. As an example, a large σ2
θ models strong fluctuations

of the medium and results in a small coherence length, such that the phase noise
varies widely from a sensor to the neighboring ones.

We also introduce an additive noise ω to account for the combination of a large
number of random parasitic phenomena. Based on the central limit theorem, we
consider with a classic zero-mean Gaussian distribution with variance σ2.

Overall, our Bayesian formulation leads to the following Minimum Mean
Square Error (MMSE) problem:

x̂ = argmin
x̃

∫

x

||x − x̃||22 p(x|y)dx (5)

where p(x|y) =
∫

θ
p(x,θ|y)dθ.

To solve efficiently this problem, we propose to exploit a variational Bayesian
inference strategy, that approximates the posterior joint distribution p(x,θ|y) by
a distribution having a suitable factorization. In [12], a mean-field approximation
p(x,θ|y) � q(θ)

∏M
m=1 q(xm) was considered. Here, we address a different type

of factorization, called the Bethe approximation, relating to the “approximate
message passing” (AMP) algorithms [13]. This approximation exploits higher-
order terms which result in better estimation performance [13].

We motivate and detail our approach in the next section.

3 The “paSAMP” Algorithm

In this section, we motivate and present the novel algorithm proposed to solve
problem (5).

3.1 Motivation and Main Principles of the Approach

AMP algorithms have been considered for a few years as a serious solution to
linear problems under sparsity constraints. First considered in the sole case of
i.i.d (sub-)Gaussian matrices, they have been recently extended to random but
more general matrices by the “vector approximate message passing” (VAMP)
algorithm [17] and to highly correlated matrices by the “swept approximate
message passing” (SwAMP) approach [14]. Both methods aim at alleviating the
convergence issues of AMP (notably highlighted in [18]) due to its parallel update
structure.
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Algorithm 1. paSAMP Algorithm
Input: y, D, σ2, ρ, σ2

x, μθ, Σθ, Tmax

Define:
gout,n � 1

Σzn
(EZ|Y,P {zn|yn, μzn , Σzn} − μzn)

g′
out,n � 1

Σzn
(
(varZ|Y,P {zn|yn,μzn ,Σzn })

Σzn
− 1)

gin,m � EX|Y {xm|μxm , Σxm}
g′

in,m � varX|Y {xm|μxm , Σxm}
1: while t < Tmax do
2: for n = 1 . . . N do
3: ẑn(t) =

∑M
m=1 dnmam(t)

4: Σ1
zn

(t + 1) =
∑M

m=1 |dnm|2vm(t)
5: μ1

zn
(t + 1) = ẑn(t) − Σ1

zn
(t)gout,n

6: end for
7: for m = permute[1 . . . M ] do
8: Σxm(t + 1) = (− ∑N

n=1 |dnm|2g′
out,n)−1

9: μxm(t + 1) = am(t) + Σxm(t + 1)
∑N

n=1 dnmgout,n

10: vm(t + 1) = Σxm(t + 1)g′
in,m

11: am(t + 1) = gin,m

12: for n = 1 . . . N do
13: Σm+1

zn
(t + 1) = Σm

zn
(t + 1) + |dnm|2(vm(t + 1) − vm(t))

14: μm+1
zn

(t + 1) = μm
zn

(t + 1) + dnm(am(t + 1) − am(t))
−gout,n(t)(Σm+1

zn
(t + 1) − Σm

zn
(t + 1))

15: end for
16: update σ2 according to [12]
17: update [θmn , Σθn ] according to (14−15)
18: end for
19: end while
20: Output: {x̂m = am(Tmax)}m

AMP, VAMP and SwAMP have been extended to generalized but
component-wise measurement models [14,19,20]. They have been then success-
fully applied to the phase recovery task where θn ∼ U [0, 2π], ∀n ∈ {1, . . . , N},
giving raise to the so-called “prGAMP” [21], “prVAMP” [10] and “prSAMP” [9]
algorithms. In particular, the latter was shown to outperform other state-of-the-
art algorithms among which the mean-field approximation [8].

The prSAMP algorithm constitutes thus a promising approach for our DOA
estimation2 problem (5). However, here, the phases θn’s are spatially-correlated
(as represented in the Markov model). This prevents us from a direct application
of prSAMP.

We thus propose an iterative algorithm based on the two following mathe-
matical derivations:

(i) the extension of prSAMP to a i.i.d. Gaussian prior on the phases,

2 Note in addition that the DOA estimation problem involves a highly-correlated
matrix. This further motivates a SwAMP-like approach.



390 G. Beaumont et al.

(ii) the use of a mean-field approximation to estimate the (Gaussian) posterior
distribution on the phases.

We detail both aspects in the next two sub-sections. In the following, we refer
to the proposed procedure as “paSAMP” for “phase-aware SwAMP algorithm”.
The pseudo-code of paSAMP is presented in Algorithm 1.

3.2 Extension of PrSAMP to i.i.d Gaussian phases

AMP algorithms are based on the propagation of two types of messages: the
“outgoing” messages and the “ingoing” messages from and to variables’ nodes
{xm}m={1...M}. These messages are derived here for the prior distributions
attached to the considered problem, namely (2) and (3) and (4)3. We first focus
on the “outgoing messages”.

Considering zn �
∑M

m=1 dnmxm, ∀n ∈ {1, . . . , N}, we assume that the zn’s
follow Gaussian distributions with means μzn

and variances Σzn
as linear combi-

nations of xm’s following Bernoulli-Gaussian distributions. By integrating over
θn and resorting4 to an identification with a Von Mises distribution [22], we can
write the moments of the posterior distribution as

EZ|Y {zn|yn, μzn
,Σzn

} =
Σzn

σ2 + Σzn

R0

(
1

Σz
θ

)
yne−jμz

θn +
σ2

σ2 + Σzn

μzn
, (6)

varZ|Y {zn|yn, μzn
,Σzn

} =
|Σzn

yne−jμz
θn + μzn

σ2|2
|σ2 + Σzn

|2 R0

(
1

Σz
θ

)
+

Σzn
σ2

σ2 + Σzn

− EZ|Y {zn|yn, μzn
,Σzn

}2, (7)

with
1

Σz
θ

=
1
α

+
1

Σθn

, μz
θn

=
− arg(y∗

nμzn )
α + μθn

Σθn

1
α + 1

Σθn

, α =
Σzn

+ σ2

|yn||μzn
| ,

μθn
(resp. Σθn

) is the marginalized posterior mean (resp. variance) of the phase
noise θn as discussed in the next section, and R0(·) = I1(·)

I0(·) where In(·) is the
modified Bessel function of the first kind at order n. We refer the reader to our
technical report [23] which details the derivations of the computations.

Regarding the “ingoing” messages, which carry the prior information on the
{xm}m={1...M}, the Bernoulli-Gaussian case has already been considered within
the AMP context, in particular in [15]. Similarly to the “outgoing” messages, the
moments of the “ingoing” messages resort to intermediary parameters μxm

and
Σxm

resp. homogeneous to the mean and variance of a Gaussian distribution:

EX|Y (xm|μxm
,Σxm

) =
ρ
√

2πν2

Znor
e
− |mx−μxm |2

2(σ2+Σxm ) γ, (8)

varX|Y (xm|μxm
,Σxm

) =
ρ
√

2πν2

Znor
e
− |mx−μxm |2

2(σ2+Σxm ) |γ2 + ν2| − EX|Y (xm|μxm
,Σxm

)2

(9)

3 We refer the reader to papers [9,14] for a more general presentation of the approach.
4 We justify and develop this point in the technical report [23].
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with

Znor = ρ
√

2πν2e
− |mx−μxm |2

2(σ2+Σxm ) + (1 − ρ)e− |μxm |2
2Σxm , (10)

γ =
σ2μxm

+ Σxm
mx

Σxm
+ σ2

, ν2 =
σ2Σxm

Σxm
+ σ2

. (11)

We implement those calculations to paSAMP as new definitions of the two func-
tions gin and g′

in defined in the pseudo-code Algorithm1. We remind the reader
that, as an extended implementation of the SwAMP algorithm, the paSAMP
algorithm will conserve the structure described in [9,14]. For sake of clarity, we
use the notations introduced in [21] except for the scalar dnm.

3.3 Mean-Field Approximation for the Phase Noise

The above expressions call on the knowledge of the moments of the posterior
distribution on θ. To simplify the latter computation, we propose in this step to
resort to a mean-field approximation. Following a similar reasoning as in [12],
we get

q(θ) = N (θ;μθ,Σθ), (12)

where Σ−1
θ = Λ−1

θ + diag
(

2
σ2

|η|
)

, (13)

μθ = Σθ

(
diag

(
2
σ2

|η|
)

arg(η)
)

, (14)

with ηn = yn

∑M
m=1 d∗

nmE∗
X|Y {xm|μxm

,Σxm
}, the nth element in η (|η| stands

here for the element-wise absolute value of η and .∗ for the complex conjugate),
and Λ−1

θ is the precision matrix attached to the prior distribution (4) on θ, i.e.

Λ−1
θ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
σ2
1

+ β2

σ2
θ

− β
σ2

θ
0 0

− β
σ2

θ

1+β2

σ2
θ

. . . 0

0
. . . . . . − β

σ2
θ

0 0 − β
σ2

θ

1
σ2

θ

⎞

⎟⎟⎟⎟⎟⎟⎠
. (15)

Note that since the distribution q(θ) is Gaussian, marginals q(θn) used in
the previous “prSAMP-step” of the algorithm come as

q(θn) = N (θn;μθn
,Σθn

) (16)

where μθn
(resp. Σθn

) is the nth element in μθ (resp. in the diagonal of Σθn
).

Finally, following [12], we insert an estimation of the variance σ2 of the addi-
tive noise as a maximization step of an Expectation-Maximization (EM) algo-
rithm. Due to space limitation, we omit here the derivation of the computation,
but we refer again the reader to our technical report [23].
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Fig. 1. Evolution of the (averaged) normalized correlation as a function of the vari-
ance σ2 for K = 2 (left) and K = 5 (right), Comparison of the performance
of conventional (delay-and-sum) beamforming (triangle mark), “prSAMP” (diamond
mark), “paVBEM”(circle mark) and “paSAMP” (square mark). Experiments show
that “paSAMP” provides better results and successfully integrates the phase noisy
observation model.

4 Numerical Experiments

In this section, we perform a quantitative and qualitative evaluation of the pro-
posed approach with respect to state-of-the-art algorithms.

We consider the problem of the identification of the directions of arrival of
K plane waves from an antenna composed of N = 256 sensors. We assume
that the angles of the K incident waves can be written as φk = π

2 + ik
π
50 with

ik ∈ [1, 50]. A set of M = 50 steering vectors is defined from a set of angles
{φi = −π + i π

50}i∈{1,...,50} and the choice of the parameter λ/Δ = 4. For each
of the K incident waves, the coefficient xik

is initialized with mx = 0.5 + j0.5,
ρ = K/M and σ2

x = 0.1. Finally, we set the following parameters for the phase
Markov model (3): σ2

0 = 10, σ2
θ = 0.1 and β = 0.8. This corresponds to a

situation where we have a high uncertainty on the initial value but a physical
link between two space-consecutive angle measurements is taken into account.

We compare the performance of the following 4 different algorithms: (i) the
standard beamforming introduced in [1] (dashed black curve, triangle mark);
(ii) the prSAMP algorithm proposed in [9] as a solution to the phase retrieval
problem (continuous black curve, diamond mark); (iii) the paVBEM procedure
proposed in [12] exploiting the same prior models (dashed red curve, circle mark);
(iv) the paSAMP algorithm described in Sect. 3 (continuous blue curve, square
mark). To evaluate the performance of these procedures, we consider the nor-
malized correlation between the ground truth x and its reconstruction x̂, that is
|xH x̂|

‖x‖‖x̂‖ , as a function of the additive noise variance σ2. This quantity is averaged
over 100 realizations for each point of simulation.

The results achieved by the 4 procedures are presented in Fig. 1, resp. for
K = 2 (left) and K = 5 (right) sources. In both cases, we see that the conven-
tional beamforming and the prSAMP algorithm fail to reconstruct x properly.
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These results illustrate the benefits of carefully accounting for the phase noise
in fluctuating environments. We can also notice the superiority of paSAMP over
its mean-field counterpart paVBEM, especially in presence of a strong additive
noise. This comes in the continuity of previous work [9], where prSAMP proved
to outperform prVBEM. Finally, it is interesting to compare the performance of
both paSAMP and paVBEM algorithms with regard to the number of sources.
Both achieve better performance when confronting to K = 5 sources than to
K = 2 sources. As mentioned in [12], this behavior is typical for the phase
retrieval problems, where the loss information on the phases can be compensated
by a larger number of sources. In addition, we observe that the performance gap
between paSAMP and paVBEM tends to increase with the number of sources.
This is in accordance with previous work [13] demonstrating the relevance of
the Bethe approximation over the mean-field approximation when the signal to
recover exhibits a low sparsity (i.e. a high number of non-zero coefficients).

5 Conclusion

We have presented here a novel AMP algorithm able to perform DOA estimation
in a corrupted phase-noisy environment. This approach exploits both a sparsity
prior on the sources and a structured prior on the phase noise. Compared to
state-of-the-art algorithms, the approach presents a good behaviour illustrating
a successful inclusion of the different assumptions. In particular, it outperforms
a recent algorithm dealing with the same DOA estimation problem in fluctuating
environments. Future work will include further assessment on real data.

Acknowledgment. The authors thank Boshra Rajaei for sharing her MATLAB
implementation of the prSAMP algorithm.
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4. Dashen, R., Flatté, S.M., Munk, W.H., Watson, K.M., Zachariasen, F.: Sound
Transmission Through a Fluctuating Ocean. Cambridge University Press, London
(2010)

5. Colosi, J.A.: Sound Propogation Through the Stochastic Ocean. Cambridge Uni-
versity Press, Cambridge (2016)

6. Cheinet, S., Ehrhardt, L., Juve, D., Blanc-Benon, P.: Unified modeling of turbu-
lence effects on sound propagation. J. Acoust. Soc. Am. 132, 2198–2209 (2012)

7. Ehrhardt, L., Cheinet, S., Juve, D., Blanc-Benon, P.: Evaluating a linearized Euler
equations model for strong turbulence effects on sound propagation. J. Acoust.
Soc. Am. 133, 1922–1933 (2013)



394 G. Beaumont et al.

8. Dremeau, A., Krzakala F.: Phase recovery from a Bayesian point of view: the
variational approach. In: Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3661–3665 (2015)

9. Rajaei, B., Gigan, S., Krzakala, F., Daudet, L.: Robust phase retrieval with the
swept approximate message passing (prSAMP) algorithm. IPOL 7, 43–55 (2016)

10. Metzler, C.A., Sharma, M.K., Nagesh, S., Baraniuk, R.G., Cossairt, O., Veer-
araghavan, A.: Coherent inverse scattering via transmission matrices: efficient
phase retrieval algorithms and a public dataset. In: Proceedings of the IEEE Inter-
national Conference on Computational Photography, pp. 1–16 (2017)

11. Waldspurger, I., d’Aspremont, A., Mallat, S.: Phase recovery, maxcut and complex
semidefinite programming. Math. Program. 149, 47–81 (2015)

12. Dremeau, A., Herzet, C.: DOA estimation in structured phase noisy environments:
technical report (2016)

13. Krzakala, F., Manoel, A., Tramel, E.W., Zdeborova, L.: Variational free energies
for compressed sensing. In: 2014 Proceedings of the IEEE International Symposium
on Information Theory (ISIT), pp. 1499–1503 (2014)

14. Manoel, A., Krzakala, F., Tramel, E., Zdeborova, L.: Swept approximate message
passing for sparse estimation. In: Proceedings of the 32nd International Conference
on Machine Learning (ICML-15), pp. 1123–1132 (2015)

15. Vila, J., Schniter, P.: Expectation-maximization Bernoulli-Gaussian approximate
message passing. In: Proceedings of the Signals, Systems and Computers (ASILO-
MAR), pp. 799–803 (2011)

16. Soussen, C., Idier, J., Brie, D., Duan, J.: From Bernoulli-Gaussian deconvolution
to sparse signal restoration. IEEE Trans. Signal Process. 59, 4572–4584 (2011)

17. Rangan, S., Schniter, P., Fletcher, A.K. : Vector approximate message passing. In:
Proceedings of the IEEE International Symposium on Information Theory (ISIT),
pp. 1588–1592 (2017)

18. Caltagirone, F., Zdeborova, L., Krzakala, F.: On convergence of approximate mes-
sage passing. In: Proceedings of the IEEE International Symposium on Information
Theory (ISIT), pp. 1812–1816 (2014)

19. Rangan, S.: Generalized approximate message passing for estimation with random
linear mixing. In: Proceedings of the IEEE Internationnal Symposium on Informa-
tion Theory (ISIT), pp. 2168–2172 (2011)

20. Schniter, P., Rangan, S., Fletcher, A.K.: Vector approximate message passing for
the generalized linear model. In: Asilomar Conference on Signals, Systems and
Computers, pp. 1525–1529 (2016)

21. Schniter, P., Rangan, S.: Compressive phase retrieval via generalized approximate
message passing. IEEE Trans. Signal Process. 63, 1043–1055 (2015)

22. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, Chichester (2009)
23. Beaumont, G., Fablet, R., Dremeau, A.: DOA estimation in fluctuating envi-

ronments: an approximate message-passing approach. Technical report (2018).
https://hal.archives-ouvertes.fr/hal-01624855v4/document

https://hal.archives-ouvertes.fr/hal-01624855v4/document


An Expectation-Maximization Approach
to Tuning Generalized Vector
Approximate Message Passing

Christopher A. Metzler1(B), Philip Schniter2, and Richard G. Baraniuk1

1 Department of Electrical and Computer Engineering, Rice University,
6100 Main Street, Houston, TX 77005, USA

cam6@rice.edu
2 Department of Electrical and Computer Engineering, The Ohio State University,

2015 Neil Avenue, Columbus, OH 43210, USA

Abstract. Generalized Vector Approximate Message Passing (GVAMP)
is an efficient iterative algorithm for approximately minimum-mean-
squared-error estimation of a random vector x ∼ px(x) from general-
ized linear measurements, i.e., measurements of the form y = Q(z) where
z = Ax with known A, and Q(·) is a noisy, potentially nonlinear, com-
ponentwise function. Problems of this form show up in numerous appli-
cations, including robust regression, binary classification, quantized com-
pressive sensing, and phase retrieval. In some cases, the prior px and/or
channel Q(·) depend on unknown deterministic parameters θ, which pre-
vents a direct application of GVAMP. In this paper we propose a way to
combine expectation maximization (EM) with GVAMP to jointly esti-
mate x and θ. We then demonstrate how EM-GVAMP can solve the phase
retrieval problem with unknown measurement-noise variance.

Keywords: Expectation maximization · Generalized linear model
Compressive sensing · Phase retrieval

1 Introduction

We consider the problem of estimating a random vector x ∈ R
N from observa-

tions y ∈ R
M generated as shown in Fig. 1, which is known as the generalized

linear model (GLM) [1]. Under this model, x has a prior density px and y
obeys a likelihood function of the form p(y|x) = py|z(y|Ax), where A ∈ R

M×N

is a known linear transform and z � Ax are hidden transform outputs. The
conditional density py|z can be interpreted as a probabilistic measurement chan-
nel that accepts a vector z and outputs a random vector y. Although we have
assumed real-valued quantities for the sake of simplicity, it is straightforward to
generalize the methods in this paper to complex-valued quantities.

The GLM has many applications in statistics, computer science, and engi-
neering. For example, in statistical regression, A and y contain experimental
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 395–406, 2018.
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x ∼ px A py|zz y

Unknown
input

Linear
transform

Measurement
channel

Observed
measurement

Fig. 1. Generalized Linear Model (GLM): An unknown random vector x is observed
through a linear transform A followed by a probabilistic measurement channel py|z,
yielding the measured vector y.

features and outcomes, respectively, and x are coefficients that best predict y
from A. The relationship between y and the optimal scores z = Ax is then
characterized by py|z. In imaging-related inverse problems, x is an image to
recover, A is often Fourier-based, and py|z models the sensor(s). In communi-
cations problems, x may be a vector of discrete symbols to recover, in which
case A is a function of the modulation/demodulation scheme and the propa-
gation physics. Or, x may contain propagation-channel parameters to recover,
in which case A is a function of the modulation/demodulation scheme and the
pilot symbols. In both cases, py|z models receiver hardware and interference.

Below we give some examples of the measurement channels py|z that are
encountered in these applications.

– Regression often models y = z+w with additive noise w, and so py|z(y|z) =
pw(y− z), where pw is the density of w. The “standard linear model” treats
w as additive white Gaussian noise (AWGN) but is not robust to outliers.
Robust methods typically use heavy-tailed models for w.

– Binary linear classification can be modeled using ym = sgn(zm +wm), where
sgn(v) = 1 for v ≥ 0 and sgn(v) = −1 for v < 0, and wm are errors. Gaussian
wm yields the “probit” model and logistic wm yields the “logistic” model.

– Quantized compressive sensing models ym = Q(zm + wm), where Q(·) is a
scalar quantizer and wm is additive, often AWGN.

– Phase retrieval models ym = |zm| in the noiseless case, where zn ∈ C. When
noise is present, one approach is to model ym = |zm + wm| with wm ∈ C and
another is to model ym = |zm|2 + wm with real-valued wm.

In this work, we focus on the case that the prior px and the likelihood py|z
depend on parameters θ that are apriori unknown. For example, the prior px
might be Bernoulli-Gaussian with unknown sparsity rate and variance, and the
likelihood might involve an additive noise of an unknown variance. We are inter-
ested in jointly estimating x and θ from y, where θ are treated as deterministic.
In particular, we aim to compute the ML estimate of θ and the MMSE estimate
of x under θ = ̂θML:

̂θML = arg max
θ

p(y;θ) (1a)

x̂MMSE = E{x|y; ̂θML}, (1b)

sometimes referred to as the “empirical Bayesian” approach.
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For most priors and likelihoods of interest, exact computation of the condi-
tional mean in (1b) is intractable. Thus we might settle for an approximation of
the MMSE estimate x̂MMSE. In the case that A is well modeled as a realization of
a large rotationally invariant random matrix, the generalized vector approximate
message passing (GVAMP) algorithm [2] is a computationally efficient approach
to approximate-MMSE inference under the GLM in Fig. 1. In the large system
limit (i.e., M,N → ∞ with M/N → δ ∈ (0, 1)), it is rigorously characterized by
state-evolution whose fixed points, when unique, are Bayes optimal [3].

For the special case of an AWGN likelihood, i.e., py|z(y|z) = N (y; z, νwI) for
some νw > 0, GVAMP reduces to the simpler VAMP algorithm [4]. By merging
VAMP with expectation maximization (EM) [5], one obtains the “EM-VAMP”
approach [6] to the empirical-Bayesian estimation problem (1). In fact, with large
right-rotationally invariant A, EM-VAMP is rigorously characterized by state-
evolution [7]. Furthermore, under some identifiability conditions, it is possible
to show that EM-VAMP yields an asymptotically efficient estimate of θ.

In this paper, we propose a way to merge EM and GVAMP to tackle
GLMs of the form discussed above. This yields, for example, a way to han-
dle phase retrieval with unknown measurement-noise variance. The proposed
“EM-GVAMP” approach is described in the next section.

2 EM-GVAMP

In the sequel we assume a GLM of the form

p(y|z;θz) =
M
∏

i=1

p(yi|zi;θz), z = Ax, p(x;θx) =
N
∏

j=1

p(xj ;θx), (2)

where θ � [θx,θz] are unknown deterministic parameters, and where z ∈ R
M

and x ∈ R
N .

2.1 The EM Algorithm

Recalling the empirical-Bayesian methodology (1), the maximum-likelihood esti-
mate of θ given y can be written as

̂θ = arg min
θ

{ − ln p(y;θ)
}

, (3)

where

p(y;θ) =
∫

p(y, z,x;θ) dzdx =
∫

p(y|z,x;θ)p(z,x;θ) dzdx

=
∫

p(y|z;θz)δ(z − Ax)p(x;θx) dzdx. (4)
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Although p(y;θ) is difficult to work with directly, the expectation-maximization
(EM) algorithm [8] offers an alternative. There, the idea is to write

− ln p(y;θ) = J(b;θ) − D(b ‖ p(x|y;θ)) (5)

for an arbitrary belief b(x), where D(·‖·) is KL divergence,

J(b;θ) � D(b ‖ p(x;θx)) + D(b ‖ p(y|x;θz)) + H(b) (6)

is known as the Gibbs free energy, and H(b) is the entropy of b. Because
D(b ‖ p(x|y;θ)) ≥ 0 for any b, we have that J(b;θ) is an upper bound on
− ln p(y;θ), the quantity that ML seeks to minimize. Thus, if it is tractable
to construct and minimize J(b;θ), it makes sense to iterate the following two
steps (over k = 1, 2, . . . ):

E step: bk(x) = p(x|y; ̂θ
k
) (7)

M step: ̂θ
k+1

= arg min
θ

J(bk;θ) = arg min
θ

D(bk ‖ p(x;θx)) + D(bk ‖ p(y|x;θz)),

(8)

which together constitute the EM algorithm. The “E” step creates an upper
bound on − ln p(y;θ) that is tight at θ = ̂θ

k
, and the “M” step finds the estimate

of θ that minimizes this bound.
Unfortunately, however, the posterior density required by the E-step (7),

p(x|y;θ) =
p(x;θx)p(y|x;θz)

p(y;θ)
=

p(x;θx)
∫

p(y|z;θz)δ(z − Ax) dz
∫

p(x;θx)p(y|z;θz)δ(z − Ax) dzdx
, (9)

is difficult to compute due to the high-dimensional integration. Thus we con-
sider an approximation afforded by the GVAMP algorithm [2]. For this, we first
reparameterize the GLM (2) as a standard linear model (SLM).

2.2 An SLM Equivalent

The GLM (2) can be written as an SLM using the following formulation:

y = Ax+w with y � 0, A �
[
A −IM

]
, x �

[
x
z

]
, w ∼ N (0, εIM ) s.t. ε → 0. (10)

Here, x is apriori independent of z; the dependence between x and z manifests
only aposteriori, i.e., after the measurement y is observed. For x, we assign
the prior p(x;θx), and for z we assign the improper (i.e., unnormalized) prior
p(y|z;θz). The lack of normalization will not be an issue in GVAMP, because
the “prior” p(y|z;θz) is used only to compute posteriors of the form

p(z|y; p̂, τ,θz) ∝ p(y|z;θz)N (z; p̂, I/τ), (11)
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which are well defined because the right side is always integrable over z.
Let us first consider direct ML estimation of θ in the above SLM. The

θ-likelihood function is

p(y;θ) =
∫

p(y,x;θ) dx =
∫

p(y|x)p(x;θ) dx =
∫

N (y;Ax, εI)p(x;θ) dx

=
∫

N (z;Ax, εI)
︸ ︷︷ ︸

→ δ(z − Ax)

p(x;θx)p(y|z;θz) dxdz, (12)

which is consistent with (4) as ε → 0. Likewise, for any belief b(x), we can upper
bound the negative log-likelihood by a Gibbs free energy J̄(b;θ) of the form

J̄(b;θ) � D(b ‖ p(x;θ)) + D(b ‖ p(y|x)) + H(b), (13)

since − ln p(y;θ) = J̄(b;θ) − D(b ‖ p(x|y;θ)) with D(b ‖ p(x|y;θ)) ≥ 0. The
corresponding EM algorithm is

E step: bk(x) = p(x|y; ̂θ
k
) (14)

M step: ̂θ
k+1

= arg min
θ

J̄(bk;θ) = arg min
θ

D(bk ‖ p(x;θ)). (15)

As before, the posterior density required by the E-step (14)

p(x|y;θ) =
p(x;θ)p(y|x)

p(y;θ)
=

p(x;θx)p(y|z;θz)δ(z − Ax)
∫

p(x;θx)p(y|z;θz)δ(z − Ax) dzdx
, (16)

is difficult to compute due to the high-dimensional integral. Thus we consider an
approximation afforded by the GVAMP algorithm [2], as described in the next
section.

2.3 GVAMP

Recall that the exact posterior can (in principle) be found by solving the varia-
tional optimization problem

p(x|y;θ) = arg min
b

D(b ‖ p(x|y;θ)) (17)

= arg min
b

J̄(b;θ) (18)

= arg min
b

D(b ‖ p(x;θ)) + D(b ‖ p(y|x)) + H(b), (19)

where (18) follows from J̄(b;θ) = D(b ‖ p(x|y;θ)) − ln p(y;θ) and (19) follows
from (13). But since the posterior computation problem is NP hard in general,
(19) is no more tractable than any other approach. The GVAMP algorithm com-
putes a posterior approximation using the expectation-consistent (EC) method
[9,10]. In this application of EC, we first split b(x) into three copies, i.e.,

p(x|y;θ) = arg min
b1=b2=q

D(b1 ‖ p(x;θ)) + D(b2 ‖ p(y|x)) + H(q), (20)
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and then relax the density-matching constraint b1 = b2 = q to a moment-
matching constraint:

p(x|y;θ) ≈ arg min
b1,b2,q

D(b1 ‖ p(x;θ)) + D(b2 ‖ p(y|x)) + H(q) (21)

s.t. E[x|b1] = E[x|b2] = E[x|q] and tr2{Cov[x|b1]}
= tr2{Cov[x|b2]} = tr2{Cov[x|q]}, (22)

where E[x|bi] and Cov[x|bi] denote the expectation and covariance of x under
x ∼ bi(x), and where

tr2

([

A B
BT C

])

�
[

tr(A)
tr(C)

]

for A ∈ R
N×N and C ∈ R

M×M . (23)

Essentially, tr2{Cov[x]} separately computes the trace of the covariance of x
and the trace of the covariance of z. The right side of (21) yields three different
approximations of the posterior:

b1(x;θ) ∝ p(x;θ)N
(

x;
[

r1
p1

]

,

[

IN/γ1
IM/τ1

])

(24)

b2(x;θ) ∝ p(y|x)N
(

x;
[

r2
p2

]

,

[

IN/γ2
IM/τ2

])

(25)

q(x;θ) ∝ N
(

x;
[

x̂
ẑ

]

,

[

IN/η
IM/ζ

])

, (26)

where the form of (24)–(26) can be deduced by analyzing the stationary points
of the Lagrangian of (21), as shown in [9].

The GVAMP algorithm is an iterative approach to finding the values of
r1, γ1,p1, τ1, r2, γ2,p2, γ2, x̂, η, ẑ, ζ under which the three beliefs in (24)–(26)
obey the moment constraints in (21). When A is large and rotationally invari-
ant, GVAMP is rigorously characterized by a state evolution [3]. Empirically, we
find that the algorithm converges quickly in this scenario (e.g., on the order of
10 iterations).

Note that the values of r1, γ1,p1, τ1, r2, γ2,p2, γ2, x̂, η, ẑ, ζ that satisfy the
moment constraints are interdependent, and thus they all depend on the assumed
value of θ through (24).

2.4 EM-GVAMP

Recall that our current motivation for using GVAMP is to compute an approxi-
mation to the posterior bk(x) = p(x|y; ̂θ

k
) in the EM algorithm (14) and (15). Of

the three posterior approximations produced by GVAMP, the Gaussian approx-
imation from (26) is the simplest to use for this purpose. Plugging the Gaussian
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approximation into (14) and (15) yields

E step: bk(x) = N
(

x;
[

x̂k

ẑk

]

,

[

IN/ηk

IM/ζk

])

found via GVAMP with θ = ̂θ
k

(27)

M step: ̂θ
k+1

= arg min
θ

D(bk ‖ p(x;θ)). (28)

The difference between the EM algorithm (14), (15) and the EM algorithm (27)
and (28) is that, in the former case, the bound is tight at each EM iteration k,
whereas in the latter case the bound is only approximately tight.

Due to the form of bk(x) in (27), the M-step is relatively easy to compute:

̂θ
k+1

= arg min
θ

D(bk ‖ p(x;θ)) (29)

= arg min
θ

D
(N (x; x̂k, IN/ηk)N (z; ẑk, IM/ζk)

∥

∥ p(x;θx)p(y|z;θz)
)

(30)

= arg max
θ

∫

N (x; x̂k, IN/ηk) ln p(x;θx) dx

+
∫

N (z; ẑk, IN/ζk) ln p(y|z;θz) dz (31)

= arg max
θ

N
∑

j=1

∫

N (xj ; x̂k
j , 1/ηk) ln p(xj ;θx) dxj

+
M
∑

i=1

∫

N (zi; ẑk
i , 1/ζk) ln p(yi|zi;θz) dzi. (32)

The resulting (̂θ
k+1

x , ̂θ
k+1

z ) are necessarily values of (θx,θz) that zero the gradient
of the right side of (32) with respect to θx and to θz.

3 Application to Noise-Variance Estimation in Phase
Retrieval

In this section we will demonstrate how the EM procedure can be used to esti-
mate noise variances in the context of phase retrieval. Noise variance estimation
in this setting has also been performed in [11,12]. The below derivation is related
to, but distinct from, these previous works.

Phase retrieval is a problem that can be formulated in the GLM setting [11],
allowing application of the GVAMP algorithm [13]. We denote the special case
of GVAMP applied to phase retrieval as prVAMP.

One way to model the ith measured intensity yi is via

yi =
∣

∣zi + wi

∣

∣ for i.i.d. wi ∼ N (0, νw), (33)

where zi, wi ∈ C and N (wi;μ, ν) = 1
πν exp(−|wi − μ|2/ν) represents a circular

complex-Gaussian density with mean μ ∈ C and variance ν > 0. In this case, the
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measurement noise variance νw may be unknown in practice, and so we might
try to estimate it using the methods described in this report. In that case, the
unknown z-likelihood parameters “θz” reduce to νw. In the sequel, we will use
the notation νw instead of θz.

It was shown [11] that, under (33), the zi-likelihood function p(yi|zi; νw) takes
the form

p(yi|zi; νw) = 1yi≥0 yi

∫ 2π

0

N (yie
jθi ; zi, νw) dθi (34)

=
2yi

νw
exp

(

−y2
i + |zi|2

νw

)

I0

(

2yi|zi|
νw

)

1yi≥0, (35)

where I0(·) is the 0th-order modified Bessel function of the first kind. If we view
p(yi|zi; νw) as a density on yi, then yi is Rician (conditional on zi). Note that θi

above denotes the (hidden) phase on zi + wi; it should not be confused with the
statistical parameters θ described earlier in this paper.

From (32), we see that the EM estimate ν̂k+1
w of νw must obey

0 =
∂

∂νw

M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk) ln p(yi|zi; ν̂k+1

w ) dzi (36)

=
M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk)

∂

∂νw
ln

∫ 2π

0

N (yie
jθi ; zi, ν̂

k+1
w ) dθi dzi (37)

=
M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk)

∫ 2π

0
∂

∂νw
N (yie

jθi ; zi, ν̂
k+1
w ) dθi

∫ 2π

0
N (yiejθ′

i ; zi, ν̂
k+1
w ) dθ′

i

dzi. (38)

Plugging in the derivative expression (see [14])

∂

∂νw
N (yie

jθi ; zi, ν̂
k+1
w ) =

N (yie
jθi ; zi, ν̂

k+1
w )

2(ν̂k+1
w )2

(|yie
jθi − zi|2 − ν̂k+1

w

)

(39)

into (38) and multiplying both sides by 2(ν̂k+1
w )2, we find

ν̂k+1
w =

1
M

M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk)

∫ 2π

0
|yie

jθi − zi|2N (yie
jθi ; zi, ν̂

k+1
w ) dθi

∫ 2π

0
N (yiejθ′

i ; zi, ν̂
k+1
w ) dθ′

i

dzi

(40)

=
1
M

M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk)

∫ 2π

0

|yie
jθi − zi|2p(θi; zi, ν̂

k+1
w ) dθi dzi (41)

with the newly defined pdf

p(θi; zi, ν̂
k+1
w ) � N (yie

jθi ; zi, ν̂
k+1
w )

∫ 2π

0
N (yiejθ′

i ; zi, ν̂
k+1
w ) dθ′

i

∝ exp
(

− |zi − yie
jθi |2

ν̂k+1
w

)

(42)

∝ exp
(

κi cos(θi − φi)
)

for κi � 2|zi|yi

ν̂k+1
w

, (43)
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where φi denotes the phase of zi. The expression (43) identifies this pdf as a von
Mises distribution [15], which can be stated in normalized form as

p(θi; zi, ν̂
k+1
w ) =

exp(κi cos(θi − φi))
2πI0(κi)

. (44)

Expanding the quadratic in (41) and plugging in (44), we get

ν̂k+1
w =

1
M

M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk)

(

y2
i + |zi|2

− 2yi|zi|
∫ 2π

0

cos(θi − φi)
exp(κi cos(θi − φi))

2πI0(κi)
dθi

)

dzi (45)

=
1
M

M
∑

i=1

∫

C

N (zi; ẑk
i , 1/ζk)

(

y2
i + |zi|2 − 2yi|zi|R0

(

2|zi|yi

ν̂k+1
w

))

dzi, (46)

where R0(·) is the modified Bessel function ratio R0(κi) � I1(κi)/I0(κi) and
(46) follows from [16, 9.6.19].

Simplifying approximations of (46) could be taken as needed. For example,
in the high-SNR case, the expansion R0(κ) = 1 − 1

2κ − 1
8κ2 − 1

8κ3 + o(κ−3) from
[17, Lemma 5] could be used to justify

R0(κ) ≈ 1 − 1
2κ

, (47)

which, when applied to (46), yields

ν̂k+1
w ≈ 2

M

M
∑

i=1

∫

C

(

yi − |zi|
)2N (zi; ẑk

i , 1/ζk) dzi. (48)

Approximation (48) can be reduced to an expression that involves the mean of
a Rician distribution. In particular, using zi = ρie

jφi , the integral in (48) can
be converted to polar coordinates as follows:

∫ ∞

0

(

yi − ρi

)2
∫ 2π

0

N (ρie
jφi ; ẑk

i , 1/ζk) dφiρi

︸ ︷︷ ︸

2ρi

1/ζk
exp

(

−ρ2i + |ẑk
i |2

1/ζk

)

I0

(

2ρi|ẑk
i |

1/ζk

)

1ρi≥0

dρi = y2
i − 2yiE[ρi] + E[ρ2i ], (49)

where, for the expectations, ρi has the Ricean density under the brace. For this
density, it is known that

E[ρi] =
√

π

4ζk
L1/2

(−ζk|ẑk
i |2) (50)

E[ρ2i ] = 1/ζk + |ẑk
i |2, (51)
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(a) σ2
w = 100 (b) σ2

w = 75

(c) σ2
w = 50 (d) σ2

w = 25

Fig. 2. Reconstruction errors (left subplots) and estimates of σ2
w (right subplots) with

different initial estimates of σw
2. The EM procedure is capable of estimating the true

noise variance over a range of operating conditions. Using this estimate of the noise
variance incrementally improves recovery accuracy.

where the Laguerre polynomial L1/2(x) can be computed as

L1/2(x) = exp
(x

2

) [

(1 − x)I0
(

−x

2

)

− xI1

(

−x

2

)]

. (52)

Note that, for reasons of numerical precision, exp(x/2)Id(−x/2) is computed
using “besseli(d,−x/2,1)” in Matlab, not “exp(x/2).*besseli(d,−x/2).”

4 Simulations

In this section, we demonstrate the effectiveness of the EM procedure in sim-
ulation. In particular, we show how EM can approximately recover the noise
variance even when initialized by estimates far from the ground truth. This in
turn enables improved signal reconstruction when the noise variance is apriori
unknown.

We set up our simulations as follows. We aim to recover an i.i.d. circular
Gaussian random vector x ∈ C

n, with variance
√

2, from phaseless noisy mea-
surements of the form y = |Ax + w|. Our measurement matrix A is 8192 × 1024
and the elements of A are i.i.d. circular Gaussian with variance

√
2. The elements

of the noise vector w also follow an i.i.d. circular Gaussian distribution, but with
variance σ2

w. We test the cases of σ2
w = 100, σ2

w = 75, σ2
w = 50, and σ2

w = 25.
prVAMP was provided with initial estimates of σ2

w ranging from 1% to 10× the
true variance. Using these initializations, we reconstructed the signal with and
without the EM procedure.

Figure 2 presents our reconstructions. The results demonstrate that EM can
be used to estimate σ2

w. Moreover, it shows that this estimate lets prVAMP
accurately reconstruct the signal even when σw is not known apriori.
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Code demonstrating the EM procedure will be made available at http://
gampmatlab.wikia.com/wiki/Generalized Approximate Message Passing.

5 Conclusion

This paper combines EM and GVAMP to estimate the unknown channel param-
eters associated with GLMs. This in turn enables GVAMP to estimate signals
from their generalized linear measurements. In this paper we applied the pro-
posed technique to phase retrieval and showed that it is effective at estimating
unknown noise variances, thus enabling noise robust phase retrieval over a range
of operating conditions.
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Abstract. In recent years, there has been a renaissance of research on
the role of the spectral phase in single-channel speech enhancement. One
of the recent proposals is to not only estimate the clean speech phase
but also use this phase estimate as an additional source of information
to facilitate the estimation of the clean speech magnitude. To assess
the potential benefit of such approaches, in this paper we systemati-
cally explore in which situations additional information about the clean
speech phase is most valuable. For this, we compare the performance of
phase-aware and phase-blind clean speech estimators in different noise
scenarios, i.e. at different signal to noise ratios (SNRs) and for noise
sources with different degrees of stationarity. Interestingly, the results
indicate that the greatest benefits can be achieved in situations where
conventional magnitude-only speech enhancement is most challenging,
namely in highly non-stationary noises at low SNRs.

Keywords: Phase · Speech enhancement · Noise reduction

1 Introduction

The enhancement of speech that is corrupted by noise is a long-standing research
topic that has seen many new ideas and improvements over the last decades.
In this paper, we focus on single-channel speech enhancement, i.e. approaches
that are applied to a single microphone signal or to the output of a multichan-
nel preprocessing stage. Specifically, we consider minimum mean square error
(MMSE) optimal Bayesian estimators of the clean speech in the short-time dis-
crete Fourier transform (STFT) domain. Well-known examples of this class of
estimators are the Wiener filter and Ephraim and Malah’s short-time spectral
amplitude estimator (STSA) [2]. Over the years, numerous improvements have
been proposed, including the use of super-Gaussian speech priors [4,21] and/or
different optimization criteria [1,3,28]. See e.g. [13] for a concise overview. What
the vast majority of mainstream approaches have in common is that they are
magnitude-centric, meaning that the spectral phase is neither used as a source
of information nor is the noise corrupted spectral phase enhanced, which is fre-
quently justified by the statement that the enhancement of the spectral phase
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 407–416, 2018.
https://doi.org/10.1007/978-3-319-93764-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93764-9_38&domain=pdf
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is unimportant [27]. However, contrary to the widespread believe at the time,
more recent studies, including [9,24], showed that the spectral phase is indeed
important for speech enhancement. These findings sparked a renewed interest in
the estimation of the clean speech spectral phase for speech enhancement, e.g.
[10,16,22].

With the availability of phase estimates, also the interest in how these phase
estimates can best be utilized has risen. A straight forward way is to simply
exchange the noisy phase with the phase estimate and combine it with a clean
speech magnitude estimate that has been obtained with an existing of-the-shelf
estimator. A more elaborate way to utilize the newly available phase estimate is
to use it as an additional source of information that facilitates the estimation of
the clean speech magnitudes [8,18] or even the complex-valued coefficients [6].
We denote such approaches as being phase-aware, while conventional magnitude-
centric approaches like the Wiener filter or the STSA are considered phase-blind.

Phase-aware approaches have been shown to be capable of generally outper-
forming their phase-blind counterparts in terms of instrumental measures, e.g. in
[8,18,23], and also by means of formal listening experiments [17]. To assess the
potential of phase-aware speech enhancement in more detail, in this paper we sys-
tematically investigate in which acoustic situations it provides the largest bene-
fits. For this, we directly compare the performance of two phase-aware estimators
based on [6,18] to that of their phase-blind counterparts, namely the STSA and
the Wiener filter, at different SNRs and for noise sources with different degrees
of stationarity. First, we consider pink noise and modulate it with an increasing
modulation frequency, which allows us to adjust the amount of non-stationarity
in a very controlled way. As a second, practically very relevant example, we use
babble noise, where the non-stationarity is adjusted by deliberately changing the
number of talkers. The results indicate that the greatest benefits can be achieved
in situations where conventional phase-blind speech enhancement is most chal-
lenging, i.e. in highly non-stationary noises at low SNRs.

2 Signal Model and Notation

In each time-frequency point of the STFT domain we have a additive superpo-
sition of mutually independent speech and noise,

Y = S + V = AejΦ
S

+ DejΦ
V

= RejΦ
Y

, (1)

where Y , S, and V denote the complex coefficients of the observed noisy speech,
the desired clean speech, and the additive noise, respectively. The spectral phases
are denoted by ΦY , ΦS , and ΦV , while the spectral magnitudes are denoted by
R, A, and D. Here we make the common assumption that the noise coefficients
V follow a circular symmetric zero-mean complex Gaussian distribution with a
power spectral density (PSD) of σ2

V, where the circular symmetry implicates a
uniformly distributed noise phase ΦV . The PSD of speech is denoted as σ2

S . We
use the hat-symbol to distinguish estimates from their true counterparts, i.e. ̂S
is an estimate of S.
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3 Conventional Phase-Blind Clean Speech Estimation

Commonly, MMSE estimators of the clean speech S, or more generally any
function f(S), are derived by finding the expected value of f(S) given the noisy
observation and the PSDs of speech and noise:

̂f(S) = E
(

f(S) | Y, σ2
S , σ2

V

)

=

∞
∫

0

2π
∫

0

f(S)p
(

A,ΦS | Y, σ2
S , σ2

V

)

dΦS dA (2)

=

∫ ∞
0

∫ 2π

0
f(S)p

(

y|A,ΦS , σ2
V

)

p
(

A | σ2
S

)

p
(

ΦS
)

dΦSdA
∫ ∞
0

∫ 2π

0
p(y|A,ΦS , σ2

V) p(A | σ2
S) p(ΦS) dΦSdA

, (3)

where the second line is obtained by applying Bayes’ rule. For complex Gaussian
noise, the likelihood is given as p

(

y|A,ΦS , σ2
V

)

= N (

S, σ2
V

)

, see e.g. [2]. For a
uniform phase prior, i.e. p

(

ΦS
)

= 1/(2π) for ΦS ∈ [−π, π), Eq. (3) has been
solved analytically for different magnitude priors p

(

A | σ2
S

)

and functions f(S).
Assuming a Rayleigh distribution for p

(

A | σ2
S

)

, for instance, the Wiener filter is
obtained as the MMSE optimal estimator of the complex clean speech coefficients
(f(S) = S) and Ephraim and Malah’s STSA as the MMSE optimal estimators
of the clean speech magnitudes (f(S) = A). Also more elaborate super-Gaussian
clean speech estimators have been derived via (3) by using, e.g., a χ distribution
[1] or a generalized gamma distribution [4] for p

(

A | σ2
S

)

with different functions
f(S). However, in all these approaches the phase prior p

(

ΦS
)

is modeled as a
uniform distribution, which implies that the complex clean speech coefficients are
circularly-complex distributed. Without any prior information about the clean
speech spectral phase, the uniform distribution is indeed a reasonable assumption
that is supported by long term histogram data [4].

4 Phase-Aware Clean Speech Estimation

In contrast to the conventional phase-blind approaches discussed above, phase-
aware estimators such as the ones in [6,8,18] assume that besides the speech and
noise PSDs also a prior estimate of the clean speech spectral phase is available.
Such a phase estimate can be obtained from the noisy signal for instance based
on a harmonic model such as in [16,22] or using an iterative approach similar to
Griffin and Lim [12] and its successors [19,25]. To derive MMSE optimal phase-
aware estimators, we propose to compute the expected value of f(S) conditioned
not only on Y , σ2

S , and σ2
V as for conventional estimators, but also on the prior

phase estimate ̂ΦS [6,8,18]:

̂f(S) = E
(

f(S) | Y, σ2
S , σ2

V, ̂ΦS
)

(4)

=

∫ ∞
0

∫ 2π

0
f(S)p

(

y|A,ΦS , σ2
V

)

p
(

A | σ2
S

)

p
(

ΦS |̂ΦS
)

dΦSdA

∫ ∞
0

∫ 2π

0
p(y|A,ΦS , σ2

V) p(A | σ2
S) p

(

ΦS |̂ΦS
)

dΦSdA
, (5)
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where the second line is again obtained using Bayes’ rule and making only mild
assumptions. Comparing the phase-aware estimator in (5) and the phase-blind
estimator in (3), it can be seen that the only difference is the replacement of
p
(

ΦS
)

by p
(

ΦS |̂ΦS
)

. If the prior phase estimate ̂ΦS is informative, the true

clean speech phase ΦS does not follow a uniform distribution anymore. Instead,
p
(

ΦS |̂ΦS
)

reflects uncertain information about the true clean speech phase.

Similar to [6,18] we employ a von Mises distribution with mean direction ̂ΦS to
model this uncertainty in the prior phase estimate:

p
(

ΦS |̂ΦS
)

= exp
(

κ cos
(

ΦS − ̂ΦS
))

/ (2πI0(κ)) , (6)

where κ is the concentration parameter and I0(·) is the modified Bessel function
of the first kind and zeroth-order. Examples for p

(

ΦS |̂ΦS
)

for ̂ΦS = 0 and differ-
ent concentration parameters κ are presented in Fig. 1. The larger κ, the more
p
(

ΦS |̂ΦS
)

is concentrated around the prior phase estimate ̂ΦS . Accordingly, ̂ΦS

is modeled as an increasingly accurate estimate of the true clean speech phase
ΦS . For the extreme case of κ → ∞, the distribution reduces to a single peak at
̂ΦS , i.e. the prior phase estimate is assumed to be exactly the true clean speech
phase ΦS . On the contrary, the lower κ, the wider p

(

ΦS |̂ΦS
)

, which corresponds

to modeling less accurate prior estimates. For κ = 0, p
(

ΦS |̂ΦS
)

reduces to a

uniform distribution and the prior phase estimate ̂ΦS does not provide any useful
information about the true phase ΦS , i.e. p

(

ΦS | ̂ΦS
)

= p
(

ΦS
)

. In this special
case, the phase-aware estimator in (5) degenerates to a conventional phase-blind
estimator similar to (3).

von Mises PDF

ΦS [rad/π]

p
Φ
S

|Φ
S

-1 -0.5 0 0.5 10
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κ = 0
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κ = ∞

Fig. 1. Von Mises distribution for p
(
ΦS |Φ̂S

)
with a mean direction of Φ̂S = 0 and an

increasing concentration parameter κ.
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Very general super-Gaussian phase-aware estimators of the clean speech
spectral magnitudes f(S) = Aβ and the complex clean speech coefficients
f(S)=AβejΦ

S

have been derived in [6,18] by solving (5) using a flexible χ dis-
tribution for the magnitude prior p

(

A | σ2
S

)

. The magnitude estimator uses the

prior phase estimate ̂ΦS only to facilitate the estimation of the clean speech mag-
nitude. Similar to the phase-blind estimators, the spectral phase is not modified
and the estimated magnitude is combined with the noisy phase ΦY to obtain the
final estimate. The complex estimator, however, not only enhances the spectral
magnitude but also jointly enhances the spectral phase.

For simplicity, in this paper we consider only two special cases of the general
phase-aware estimators in [6,18]. Specifically, we set β = 1, i.e. we estimate
f(S)=AejΦ

S

=S and f(S)=A, and choose the parameter of the χ distribution
such that it reduces to a Rayleigh distribution. Both, the simplified estimator of
the clean speech coefficients f(S)=S as well as the simplified estimator of the
clean speech magnitudes f(S) = A have well-known phase-blind counterparts:
If the prior phase estimate is assumed to provide no useful information, i.e.
κ = 0, it has been shown in [18] that the simplified estimator of S reduces
to the Wiener filter, while the simplified magnitude estimators reduces to the
STSA [2]. This direct relation between phase-aware and well-known phase-blind
estimators allow to investigate the effects of phase-aware speech enhancement in
isolation. We denote the simplified phase-aware magnitude estimator (f(S) = A)
as PAM and the simplified phase-aware complex estimator (f(S) = S) as PAC.

5 Evaluation

In this section, we evaluate in which acoustic scenarios phase-aware speech
enhancement is most beneficial. For this, the two simplified phase-aware clean
speech estimators are compared to their respective phase-blind counterparts.
Specifically, we compare Ephraim and Malah’s STSA [2] to the PAM and the
conventional Wiener filter to the PAC. The evaluation is performed on 128 gen-
der balanced utterances taken from the TIMIT database [5] at a sampling rate
of 16 kHz. In the first part, the clean speech utterances are deteriorated by sta-
tionary pink noise and pink noise modulated with an increasing modulation
frequency, i.e. 0.5 Hz, 1 Hz, and 2 Hz. This allows us to investigate how the per-
formance of phase-aware speech enhancement depends on the non-stationarity of
the noise in a very controlled manner. Furthermore, to assess the influence of the
SNR on phase-aware speech enhancement, this experiment is conducted for two
SNRs, namely 0 dB and 10 dB. We present three measures: global SNR, raw
wideband ‘Perceptual Evaluation of Speech Quality’ (WB-PESQ) scores [15],
and raw ‘Short-Time Objective Intelligibility Measure’ (STOI) values [26].

As a less controlled but practically very relevant example, in the second
experiment we deteriorate the clean speech utterances with babble noise, where
the amount of non-stationarity is controlled by the number of speakers. The noise
is created by randomly superimposing TIMIT sentences that have not been used
as clean speech material, with the number of speakers ranging from 40, which
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represents the most stationary example, to a single competing talker as the most
non-stationary noise.

In both experiments, the STFT representation is obtained with a segment
length of 32 ms and a segment shift of 8 ms with a square-root Hann window
for spectral analysis and synthesis without zero padding. The speech PSD is
estimated using the decision-directed approach [2] with a smoothing parameter of
0.96. The noise PSD is estimated via [7]. The maximum attenuation in each time
frequency point is set to −15 dB, which is a common way to reduce artifacts in the
enhanced signal by introducing a residual noise floor. To assess the full potential
of phase-aware speech enhancement without the shortcomings of current phase
estimators, here the true clean speech phase ΦS is provided as the prior phase
estimate ̂ΦS . The concentration parameter in (6) is accordingly set to κ → ∞.
Please note that for this specific choice of κ, the only difference between PAM
and PAC is that PAC combines the magnitude estimate with the noisy phase,
while PAC uses the prior phase ̂ΦS . In practice, the clean speech phase is however
not available. Therefore, we finally also present results for the case that the prior
phase is blindly estimated via [16] to further confirm the outcome of the oracle
experiments.

5.1 Modulated Pink Noise

In Fig. 2, we present global SNR, WB-PESQ, and STOI for pink noise with
an increasing amount of non-stationarity. For a better accessibility, we do not
present absolute values but rather the improvement of the phase-aware estimator
over its conventional phase-blind counterpart. First, it can be seen that the ben-
efit of phase-aware speech enhancement is generally larger at low SNRs (top)
than at higher SNRs (bottom). Second, independent of the SNR, the benefit
of phase-aware speech enhancement increases with increasing non-stationarity.
Generally, in non-stationary noises at low SNRs, speech enhancement is most
challenging, specifically because the estimation of the speech PSD σ2

S and the
noise PSD σ2

V becomes increasingly difficult. For instance, most noise PSD esti-
mators, including minimum statistics [20] and the estimator based on speech
presence probability [7] that is employed here, rely on the assumption that noise
is more stationary than speech. Such approaches consequently become less accu-
rate for highly non-stationary noise. This is also reflected in an increasing log
distortion error [14]

LOG−Errseg = mean

∣

∣

∣

∣

∣

10 log10
σ2

V

̂σ2
V

∣

∣

∣

∣

∣

, (7)

where the mean is taken over all time-frequency points. In the noise-only case,
LOG−Errseg gradually increases from 1.5 for stationary pink noise to 3.1 for
pink noise modulated with 2 Hz. See e.g. [7,14] for a more detailed discussion on
this topic.

Since the conventional phase-blind estimators (3) rely solely on the PSD esti-
mates, PSD estimation errors propagate through to the final estimate, leading to
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noise leakage and/or speech distortions. These artifacts can substantially reduce
the speech enhancement performance. The fact that phase-aware speech enhance-
ment provides the most benefit specifically in these situations highlights its rele-
vance and potential. Furthermore, comparing the complex estimator PAC to the
magnitude estimator PAM it can be seen that the phase enhancement of PAC leads
to an additional improvement in all three measures and all acoustic situations.

The consistently small gains in STOI at 10 dB SNR on the bottom right
of Fig. 2 can be explained by the fact that the speech intelligibility, which is
predicted by STOI, is already close to 100% even for the noisy signal at high
SNRs. Thus there is only little room for improvement.
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Fig. 2. Improvement of the phase-aware estimators over their respective phase-blind
counterparts in SNR, WB-PESQ, and STOI for pink noise modulated with an increas-
ing modulation frequency, representing an increasing degree of non-stationarity. SNR:
0 dB (top) and 10 dB (bottom).

5.2 Babble Noise

In Fig. 3, we present the results for babble noise with a varying number of talkers.
The fewer talkers the noise is comprised of, the less stationary it is. Similar to the
first experiment in Fig. 2, the benefit of phase-aware speech enhancement is most
prominent in highly non-stationary noise at low SNRs. The largest improvements
are achieved for 5-talker babble noise, while a for a single interfering talker
the improvement in WB-PESQ and STOI is somewhat lower, especially for the
complex estimator PAC.

Finally, in Fig. 4, we present results that are achieved when the prior phase
̂ΦS is estimated blindly on the noisy signal Y via [16]. No oracle information is
used. Although the improvements are substantially smaller than for the oracle
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Fig. 3. Improvement of the phase-aware estimators over their respective phase-blind
counterparts in SNR, WB-PESQ, and STOI for babble noise with a decreasing number
of talkers, representing an increasing degree of non-stationarity. SNR: 0 dB (top) and
10 dB (bottom).
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Fig. 4. Improvement of the phase-aware estimators over their respective phase-blind
counterparts in SNR, WB-PESQ, and STOI for babble noise with a decreasing number
of talkers at 0 dB SNR. The prior phase is blindly estimated via [16].

experiment in Fig. 3, similar trends can be observed. While the improvement in
STOI is generally small, SNR and WB-PESQ improvements are again the largest
for the highly non-stationary 5-talker babble. The reduced performance for the
single competing talker is likely a consequence of the phase estimation process:
In [16], the spectral phase of voiced speech is estimated based on a harmonic
signal model, which in turn relies on a fundamental frequency estimate obtained
via [11]. For a single competing talker at 0 dB SNR, estimating the fundamental
frequency only of the desired speaker becomes extremely challenging. Thus the
prior phase estimate can strongly deviate from the true clean speech phase in
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this situation and might even resemble the phase of the competing talker at
times, which limits the overall speech enhancement performance.

While the impressive performance gains for the oracle experiments in Figs. 2
and 3 clearly highlight the potential of phase-aware speech enhancement, the cur-
rent gap between the oracle performance and the one in Fig. 4 makes research into
more robust and accurate phase estimation techniques a relevant and promising
topic for single-channel speech enhancement.

6 Conclusions

In this paper, we investigated in which situations additional information of the
clean speech phase is most valuable. The results show that the greatest ben-
efits can be achieved in situations where conventional magnitude-only speech
enhancement is most challenging, namely in highly non-stationary noises at low
SNRs. The current gap between the optimal performance of phase-aware speech
enhancement and the performance obtained using blindly estimated prior phases
highlight the importance of ongoing research into robust and accurate phase esti-
mation techniques.
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Abstract. We address the problem of phase inpainting, i.e. the recon-
struction of partially-missing phases in linear measurements. We thus
aim at reconstructing missing phases of some complex coefficients assum-
ing that the phases of the other coefficients as well as the modulus of
all coefficients are known. The mathematical formulation of the inverse
problem is first described and then, three methods are proposed: a first
one based on the well known Griffin and Lim algorithm and two other
ones based on positive semidefinite programming (SDP) optimization
methods namely PhaseLift and PhaseCut, that are extended to the case
of partial phase knowledge. The three derived algorithms are tested with
measurements from a short-time Fourier transform (STFT) in two sit-
uations: the case where the missing data are distributed uniformly and
indepedently at random and the case where they constitute holes with
a given width. Results show that the knowledge of a subset of phases
contributes to improve the signal reconstruction and to shorten the con-
vergence of the optimization process.

Keywords: Audio · Time-frequency · Missing data · Inpainting
Phase reconstruction · SDP optimization
Short-time Fourier transform · PhaseLift · PhaseCut

1 Introduction

Time-frequency inpainting is an inverse problem where the goal is to estimate
a subset of masked coefficients in a time-frequency complex-valued matrix from
the observation of the remaining coefficients. A natural strategy consists in per-
forming a spectrogram inpainting stage, where the amplitude of the missing
coefficients are estimated, followed by a phase inpainting stage, where the miss-
ing phases are estimated. While spectrogram inpainting has been addressed in
several works [11,13,18], phase inpainting has not been addressed by advanced
methods and thus remains a challenge. Indeed, phase reconstruction is known to
be a difficult task generally posed as a non-convex problem. Many works have
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been proposed to reconstruct the phase of all the time-frequency coefficients
from their amplitude and may be extended to the phase inpainting problem. A
first set of phase reconstruction methods relies on alternate projections [7–10]
among which the Griffin and Lim (GL) algorithm [10] is widely used in audio
processing. Its success may be due to the simplicity of its implementation and
the low computational cost of its iterations. However, its performance is limited
by a slow convergene towards a local minimum. Higher reconstruction perfor-
mance has been reached by semidefinite programming (SDP) approaches, at the
cost of much higher time and space complexities. In particular, PhaseLift [4] and
PhaseCut [19] methods have been proposed for any linear operator and further
studies [3,12] have established their good performance in the case of the short-
time Fourier transform (STFT). While yet other phase reconstruction algorithms
have been recently proposed [1,5,6,14–17], we focus on extending original GL
and SDP approaches to phase inpainting.

The organization of the paper is as follows. In Sect. 2, the phase inpaint-
ing problem is formalized and we propose three dedicated algorithms: Griffin
and Lim for phase inpainting (GLI), PhaseLift for phase inpainting (PLI) and
PhaseCut for phase inpainting (PCI). These three algorithms are the extensions
of existing algorithms, in which we add the knowledge of the partially observed
phases. While the algorithms are introduced in the general case of any linear
operator, Sect. 3 is dedicated to their specific implementation with the STFT
operator. In Sect. 4, some experiments in small dimensions with various ratios
of missing data and several mask shapes illustrate their performance and their
limitations. Finally, conclusions and perspectives are drawn in Sect. 5.

2 Proposed Phase Inpainting Algorithms

2.1 Phase Inpainting Problem

For a signal x ∈ C
N , we consider K complex linear measurements Ax =

[〈ak,x〉]Kk=1 ∈ C
K where a1, . . . ,aK ∈ C

N and A = [a1, . . . ,aK ]H . While the
specific case of the STFT operator is used in Sects. 3 and 4, the general case of any
linear operator is addressed throughout Sect. 2. We assume that we observe both
themagnitude and the phase of a subset ofmeasurementswhile only themagnitude
of the remaining measurements is available. The location of these subsets is given
by a binary mask m ∈ {0, 1}K : m [k] = 1 if both the magnitude and the phase of
measurement k are known and m [k] = 0 if only its magnitude is known.

Throughout the document we will adopt the following notations: for b ∈ C
K

∠b denotes its phase, b̄ its conjugate. For m ∈ {0, 1}K , ¬ denotes the negation.
Denoting by supp (m) the support of m, let b ∈ C

K be the vector containing
the fully known coefficients b[k] for k ∈ supp (m), and the known amplitudes
b[k] for k ∈ supp (¬m). Then the phase inpainting problem is given by

Find x ∈ C
N s.t.

{
〈ak,x〉 = b[k],∀k ∈ supp (m)
|〈ak,x〉| = b[k],∀k supp (¬m)

(1)
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2.2 Griffin and Lim Algorithm for Phase Inpainting (GLI)

We propose an extension of the Griffin and Lim algorithm [10] to solve approx-
imately problem (1) by taking into account the known phases. The algorithm is
described in Algorithm 1, ◦ denoting the Hadamard product. It mainly relies on
alternating a projection onto the span of the linear operator using projector Πa

and a projection onto the known magnitude and phase constraints. The initial-
ization of this algorithm may be done with random phases for coefficients with
unknown phase.

Algorithm 1. Griffin and Lim algorithm for phase inpainting (GLI)
Require:

binary mask m ∈ {0, 1}K

observation b ∈ C
K such that

{
b[k] ∈ C, ∀k ∈ supp (m) (fully known coefficients)

b[k] ∈ [0, ∞[, ∀k ∈ supp (¬m) (known magnitudes)

projector onto the span of the linear operator Πa

initial phases ϕ0 ∈ [0, 2π[K

number of iterations niter

Output: complete estimated measurements y(niter)

ϕ ← m ◦ ∠b + (1 − m) ◦ ϕ0 ∀k ∈ supp (m)
y(0) ← b ◦ exp (ıϕ) ∀k ∈ supp (¬m)
for i ∈ {1, 2, . . . , niter} do

z(i) ← Πa
(
y(i−1)

)
ϕ(i) ← m ◦ ∠b + (1 − m) ◦ ∠z(i) {Project onto phase constraints}
y(i) ← b ◦ exp(ıϕ(i)) {Project onto magnitude constraints}

end for

2.3 PhaseLift for Phase Inpainting (PLI)

The second proposed approach is based on lifting and SDP. The quadratic con-
straints in problem (1) become linear by means of a projection in a large dimen-
sional space where the variable is a semidefinite positive matrix X � 0. The
PhaseLift method [4] is adapted in order to address phase inpainting, which
results in Proposition 1.

Proposition 1. With notations of problem (1), let Alk = alaH
k for l, k ∈

{1, . . . , K}. Using the lifting X = xxH , problem (1) is equivalent to:

min
X∈CN×N

Rank(X) s.t.

⎧⎪⎨
⎪⎩

Trace(AlkX) = b[k]b̄[l], ∀l, k ∈ supp (m)
Trace(AkkX) = b2[k], ∀k ∈ supp (¬m)
X � 0

(2)

and can be relaxed as :

min
X∈CN×N

Trace(X) s.t.

⎧⎪⎨
⎪⎩

Trace(AlkX) = b[k]b̄[l], ∀l, k ∈ supp (m)
Trace(AkkX) = b2[k], ∀k ∈ supp (¬m)
X � 0

(3)
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Proof. The proof can be conducted in three steps:

1. Assume that x satisfies (1). For k, l ∈ supp (m), the phase constraint is
obtained by considering that

b[k]b̄[l] = Trace(aH
k xxHal) = Trace(alaH

k xxH) = Trace(AlkX)

For k ∈ supp (¬m), the magnitude constraint is obtained similarly.
2. Problem (1) can then be reformulated as

Find X ∈ C
N×N s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Trace(AlkX) = b[k]b̄[l], ∀l, k ∈ supp (m)
Trace(AkkX) = b2[k], ∀k ∈ supp (¬m)
Rank(X) = 1
X � 0

which is equivalent to problem (2).
3. Since the rank is not convex, one may finally relax the rank by the nuclear

norm to obtain Problem (3). �

Formulation (3) is called PhaseLift for phase inpainting (PLI). The objective
function and equality constraints are linear and the domain X � 0 is a convex
cone. One may notice that only phase differences appear, in the first contraint,
to exploit the known phases. In the particular case supp (m) = ∅, the original
PhaseLift problem [4] is obtained.

Finally, from the solution X of problem (3), x can be estimated as
√

λmaxzmax

where zmax is the eigenvector associated with the largest eigenvalue λmax of X.
In order to solve the PLI problem (3), we use Matlab toolbox TFOCS [2]. Two

solvers may be used: solver sSDP that performs trace minimization under linear
constraints as in (3), or solver TraceLS that solves unconstrained problems of
the form minX�0 λ Trace(X) + 1

2‖A(X) − β‖2 with

A : X �→
[
vec

(
[Trace(AlkX)]l,k∈supp(m )

)
[Trace(AkkX)]k∈supp(¬m )

]
, β =

[
vec

([
b[k]b̄[l]

]
l,k∈supp(m )

)
[b[k]]k∈supp(¬m )

]
.

(4)

2.4 PhaseCut for Phase Inpainting (PCI)

The third and last proposed algorithm is also an SDP optimization algorithm,
namely PhaseCut for phase inpainting (PCI), which is an extension of the orig-
inal PhaseCut designed for phase retrieval [19].

As in [19], problem (1) is reformulated by explicitly splitting the amplitude
and phase variables, so that one may optimize only on the phase vector u ∈ C

K

such that ∀k, |u [k] | = 1. We use the lifting U = uuH to obtain Proposition 2.
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Proposition 2. Using notations of problem (1), let Γ = Diag(cH)(I −
AA†)Diag(c) with c ∈ C

K is defined by c[k] = |b[k]| ,∀k. Then problem (1)
is equivalent to

min
U∈CK×K

Trace(UΓ ) s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Diag(U) = 1

U[k1, k2] = b[k1]
|b[k1]|

b̄[k2]
|b[k2]| ,∀k1, k2 ∈ supp (m)

Rank (U) = 1
U � 0

(5)

and may be relaxed into a convex problem by dropping the rank constraint as

min
U∈CK×K

Trace(UΓ ) s.t.

⎧⎪⎨
⎪⎩

Diag(U) = 1

U[k1, k2] = b[k1]
|b[k1]|

b̄[k2]
|b[k2]| ,∀k1, k2 ∈ supp (m)

U � 0

(6)

Proof. Using the amplitude vector c and the phase vector u, problem (1)
becomes

Find x ∈ C
N ,u ∈ C

K s.t.

⎧⎪⎨
⎪⎩

Ax = Diag(c)u
u [k] = eı∠b[k] ∀k ∈ supp (m)
|u [k] | = 1 ∀k

(7)

which is equivalent to

min
x∈CN ,u∈[0,2π [ K

‖Ax − Diag(c)u‖2
2 s.t.

{
u [k] = eı∠b[k]∀k ∈ supp (m)
|u [k] | = 1 ∀k

(8)
Given that Ax = Diag(c)u implies x = A†Diag(c)u, then ‖Ax − Diag(c)u

‖2
2 = uHΓu, thus (8) is equivalent to (5) which can be relaxed into (6). �

Formulation (6) is called PhaseCut for phase inpainting (PCI). As for PLI,
phase differences appear in the constraints that involve known phases. In the
particular case where all phases are unknown (supp (m) = ∅), contraints
U[k1, k2] = b[k1]

|b[k1]|
b̄[k2]

|b[k2]| disappear and the original PhaseCut problem [19] is
obtained x.

Finally, from the solution U of problem (6), signal x is estimated as
x = A†Diag(c)eı∠umax where umax is an eigenvector associated to the largest
eigenvalue of U.

In order to solve PCI problem (6), we adapt the block coordinate descent
algorithm proposed in [19] from [20], as given in Algorithm 2. By picking coor-
dinates i in supp (m) instead of {1, . . . , K}, all unknown coefficients in U, and
only them, are updated.
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Algorithm 2. PhaseCut for phase inpainting (PCI) : BCD algorithm
Require:

binary mask m ∈ {0, 1}K

observation b ∈ C
K such that

{
b[k] ∈ C, ∀k ∈ supp (m ) (fully known coefficients)

b[k] ∈ [0, ∞[, ∀k ∈ supp (¬m ) (known magnitudes)

number of iterations niter
barrier parameter ν > 0

Output: U ∈ C
K×K

{Initialization}
c ← m ◦ b + (1 − m ) ◦ b

Γ ← Diag(cH)(I − AA†)Diag(c)

for 1 ≤ k, l, ≤ K,U [k, l] ←

⎧⎪⎨
⎪⎩

1 if k = l
b[k]
|b[k]|

b̄[l]
|b[l]| if k, l ∈ supp (m )

0 otherwise

{Main loop}
for niter iterations do

pick i ∈ {1, . . . , K} \supp (m )

x ← Uic,ic Γic,i and γ ← xHΓic,i

Uic,i,U
H
ic,i ←

{
−

√
1−ν

γ x if γ > 0

0 otherwise
end for

3 Implementation Issues Specific to the STFT

Phase Inpainting Problem with STFT Measurements. The STFT of a sig-
nal x ∈ C

N is defined for frame index t ∈ {0, . . . , T − 1} and frequency
index ν ∈ {0, . . . , F − 1} as STFT[t, ν] = 〈x,at,ν〉 = aH

t,νx where at,ν =[
w[n − th]e2ıπ ν

F n
]N−1

n=0
∈ C

K , w being the analysis window and h the so-called
hop size between two successive frames. Hence the K = FT measurements
are indexed by k = (t, ν): measurements may be seen equivalently either as a
doubly-indexed vector or as a matrix. A simple reshaping operation can be used
to switch between representations, and with a small abuse of notations, both
of them are used without explicit distinction in this paper. The STFT phase
inpainting problem in time-frequency is thus given by

Find x ∈ C
N s.t.

{
〈x,at,ν〉 = b[t, ν], ∀ (t, ν) ∈ supp (m)
|〈x,at,ν〉| = b[t, ν], ∀ (t, ν) ∈ supp (¬m)

(9)

GLI Implementation. The GLI algorithm is obtained by setting Πa : y �→
STFT

(
STFT−1 (y)

)
where STFT−1 is the (pseudo-)inverse operator for the

STFT computed from the canonical dual window of w.

PLI Implementation. We used solver TraceLS of TFOCS library, which
happened to be faster than solver sSDP. The implementation of the
direct operator A defined in (4) and of its adjoint can be more efficient
using fast Fourier transforms (FFT) as follows. We have Trace(AlkX) =(
STFTrow

(
STFTcol(X)

))H

[k, l] for k, l ∈ {1, . . . , K}, where STFTrow(X)
denotes the STFT on the columns of X and STFTcol(X) the STFT on the
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rows of X. Hence one may compute A (X) from only 2N STFT’s. By denot-
ing by k0 = #supp (m) the number of known phases, the adjoint operator

A∗ : C
k2
0+K−k0 → C

N×N is such that A∗(y) =
(
STFT∗

row

(
STFT∗

col(Y)
))H

where STFT∗ is the adjoint of the STFT operator and Y ∈ C
K×K is defined by

Y(m,m) = reshape(y(1 : k2
0), k0, k0) and Y(∼ m,∼ m) = Diag(y(k2

0+1 : K)).
It thus requires 2K calls to STFT∗.

PCI Implementation. Each iteration of Algorithm 2 for PCI requires K calls to
one direct STFT and one inverse STFT, using FFT’s.

4 Experiments

All experiences are available on mad.lis-lab.fr. Experiments in small dimensions
are conducted on a signal with length N = 128 composed of the sum of two linear
chirps with normalized frequency ranges (0, 0.8) and (0.8, 0.6), a dirac located at
sample 64 and white Gaussian noise at a signal-to-noise ratio of 10 dB. The STFT
is generated with a Hann window with length 16, a hop size of 8 samples (i.e.,
T = 16 frames) and F = 32 frequency bins, resulting in K = 512 measurement
in a 32 × 16 time-frequency matrix. In a first experiment, masks for missing
phases are generated randomly and uniformly among the measures, with various
ratios of missing phases. In a second experiment, the ratio of missing phases is
fixed at 30% and missing phases are grouped in holes of a given width, with
randomly distributed centers, the widths varying between 1 and 9 coefficients.
Figure 1 illustrates the STFT of the signal and of one generated mask.

Fig. 1. Spectrogram of the signal (left, smoothed with T = F = 128; middle, with
T = 16 and F = 32 as set in the experiment) and example of a mask with random
holes of width 5 in black (right).

Algorithms are used with the following settings. For GLI, niter = 6000. For
PLI, λ = 10−30 and TFOCS is used with a maximum of 5000 iterations, no restart,
tol = 10−10. For PCI, ν = 10−14 and niter = 105. A baseline approach is also used,
denoted as Random Phase Inpainting (RPI) and consisting in filling the missing
phases by drawing random values independently and uniformely in [0, 2π [ .

http://mad.lis-lab.fr
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Performance is assessed in terms of relative reconstruction error up to a global
phase shift, defined by EdB(x, x̂) = 20 log10 minθ

‖x−eıθx̂‖2
‖x‖2

where x denotes the
original signal and x̂ the reconstructed one.

Results are shown in Fig. 2, where the reconstruction errors from all meth-
ods can be compared, as a function of the ratio of missing phases, for each
experiment. The known phases clearly contribute to improve the signal recon-
struction. For isolated missing phases (left figure), one can see that below 40%
missing phases, GLI and PCI achieves perfect reconstruction while PLI performs
very good but not perfect. Beyond 40% missing phases, SDP methods PLI and
PCI perform better than GLI, with a much better performance for PLI. For
holes with a larger width at 30% missing phases (right figure), one can see that
GLI may achieve poor reconstruction due to local minima. SDP methods offer
very good performance, with a reconstruction error generally below −50 dB.

Fig. 2. Reconstruction error as a function of the ratio of missing phases randomly
distributed (left) or, for 30% missing phases, as a function of the width of randomly
distributed holes (right).

The convergence and running time of each method have been checked as fol-
lows. For GLI, it was checked visually and manually that the algorithm converges
before the maximum number of iterations, with a running time lower than one
second for each call. For PLI, similarly, it has been checked that the algorithm
stops before the maximum number of iterations is reached, with a running time
up to 6 h for one call when the number of missing phases is large. For PCI, con-
vergence may be observed in Fig. 3 by representing the reconstruction error as a
function of the iterations. As for PLI, the running time until convergence is all
the more reduced as many phases are known, lasting about 4 h for 105 iterations.
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Fig. 3. Illustration of the convergence of PCI by representing the reconstruction error
as a function of the iterations in the same two settings as in Fig. 2.

5 Conclusion and Perspectives

We have considered the phase inpainting problem in which a subset of mea-
surements have missing phases that must be recovered. We have proposed three
dedicated algorithms, which are extensions of existing algorithms, namely Griffin
and Lim, PhaseLift and PhaseCut, adapted to the phase inpainting problem by
incorporating the partial phase information as constraints in the optimization
process. Those algorithms have been implemented using fast transforms in the
case of the STFT. Experiments in small dimensions confirm that SDP methods
perform better than Griffin and Lim algorithm, in particular when the problem
is difficult (more unknown phases, larger holes). Even if those methods are very
time consuming, it also appears that the knowledge of a subset of phases result
in a faster convergence.

Experiments may be extended to the noisy case where only approximate
values are available known phases and amplitudes. Time and space complexity of
SDP approaches being very large, they cannot be applied to typical audio signals
for which dimensions are higher than those used in the proposed experiments.
In order to benefit from SDP results, one may investigate the adaptation of
SDP algorithms to process only a local time-frequency region instead of the
whole STFT matrix. Other algorithms may be designed for phase inpainting.
In particular, some recent contributions to phase retrieval [1,5,6,14–17] may be
adapted and may give good performance without the computational limits of
SDP methods.
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Abstract. The state of the art in audio declipping has currently been
achieved by SPADE (SParse Audio DEclipper) algorithm by Kitić et al.
Until now, the synthesis/sparse variant, S-SPADE, has been considered
significantly slower than its analysis/cosparse counterpart, A-SPADE.
It turns out that the opposite is true: by exploiting a recent projection
lemma, individual iterations of both algorithms can be made equally
computationally expensive, while S-SPADE tends to require consider-
ably fewer iterations to converge. In this paper, the two algorithms are
compared across a range of parameters such as the window length, win-
dow overlap and redundancy of the transform. The experiments show
that although S-SPADE typically converges faster, the average perfor-
mance in terms of restoration quality is not superior to A-SPADE.

Keywords: Clipping · Declipping · Audio · Sparse
Cosparse · SPADE · Projection · Restoration

1 Introduction

Clipping is a non-linear form of signal distortion which appears in the context of
signal acquisition, processing or transmission. In general, clipping occurs when
the signal amplitude gets outside of the allowed dynamic range. Along with
missing samples and additive noise, clipping is one of the most common types
of audio signal degradation. Not only does clipping have a negative effect on
perceived audio quality [35], it also degrades the accuracy of automatic speech
recognition [19,25,34]. This motivates a restoration task usually termed declip-
ping, i.e. the recovery of signal samples that originally lay outside the recognized
range.

In this work, we concentrate on the case of the so-called hard clip degradation,
where the waveform of the signal is simply truncated such that the signal value

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 429–445, 2018.
https://doi.org/10.1007/978-3-319-93764-9_40
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cannot leave the interval [−θc, θc]. If the vector x ∈ R
N denotes the original

discrete-time signal, then the respective hard-clipped signal is

y[n] =
{
x[n] for |x[n]| < θc,
θc · sgn(x[n]) for |x[n]| ≥ θc,

(1)

i.e. hard clipping acts elementwise, wasting information in the peaks of x that
exceed the clipping threshold θc.

In the past, several attempts were made to perform declipping. Since declip-
ping is inherently ill-posed, any method attacking the problem must introduce an
assumption about the signal. As a short review of the field, we mention a method
based on autoregressive signal modelling [21], a method based on the knowledge
of the original signal bandwidth [1], statistical approaches [15,17], and simple,
even if not quite effective algorithms in [11,26,32]. The quality of restoration
was significantly elevated when models involving the sparsity of the audio signal
were introduced. In such models, it is assumed that there is a transform which
either approximates the signal well using a low number of nonzero coefficients
(the synthesis/sparse model), or the transform applied to the signal produces
a low number of nonzero coefficients (the analysis/cosparse model) [8,13,27].
Suitable transform are usually time-frequency operators such as the Discrete
Fourier Transform (DFT), the Discrete Cosine Transform (DCT), or the Dis-
crete Gabor Transform (DGT), also known as the Short-time Fourier Transform
(STFT) [9,14,18].

The very first method for sparse declipping was published in [2]; it was based
on the greedy approximation of a signal within the reliable (i.e. not clipped)
parts. Many alternative approaches appeared after this successful paper, such as
in [36] that brought convex optimization into play, or in [33] where the authors
forced a structure into the sparse coefficients (known as “structured” or “social”
sparsity). Article [12] shows that the introduction of a psychoacoustic masking
model (although very simple) improves the perceived quality of the restored
signal. Besides [6], which relies on non-negative matrix factorization, all the
mentioned papers process the signal from the synthesis viewpoint. More recently,
a series of papers have considered the declipping problem from the analysis side
as well [22–24], while [24] is considered a state-of-the-art declipper.

In this paper, we show that using a novel projection lemma we were able to
derive a synthesis-based algorithm which is even faster than the analysis-based
algorithm in [24]. Our experiments show that our algorithm, nevertheless, does
not outperform the analysis version in terms of quality of restoration.

In Sect. 2, the declipping problem is formalized. Then in Sect. 3, the two
versions of the SPADE algorithm [24] are reviewed, and the new projection
lemma is exploited to develop a fast synthesis-based algorithm. Sect. 4 reports
on experiments that have been run.

2 Problem Formulation

Assume that a signal x ∈ R
N has been clipped according to (1). We observe

the clipped signal y ∈ R
N . We suppose that it is possible to divide the signal
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samples into three sets R, H and L, which correspond to “reliable” samples and
samples that have been clipped to the “high” and “low” clipping thresholds,
respectively. To select only samples of a specific set, linear restriction operators
MR, MH and ML will be used. Note that if these sets are not known in advance,
they can be trivially induced from the particular values of y.

Denote the declipped signal by x̂. While performing any declipping algorithm,
it is natural to enforce that the samples MRx̂ match the reliable samples MRy.
The authors of the C-IHT algorithm [22] call this approach consistent. Our
approach obeys full consistency, meaning that in addition, the samples MHx̂
should lie at or above θc and the samples from MLx̂ should not lie above −θc.
These requirements are formalized by defining a set of signals Γ , consistent with
the three conditions:

Γ = Γ (y) = {x̂ | MRx̂ = MRy,MHx̂ ≥ θc,MLx̂ ≤ −θc}. (2)

In line with the recent literature, the fact that many musical signals are
sparse with respect to a (time-)frequency transform will be exploited. To put it
in words, one would like to find signal x̂ that is the most sparse among all signals
belonging to the consistency set Γ . The state of the art declipping results are
achieved by the SPADE algorithm, which will be described in the next section.
It comes in two variants, based on either the synthesis (sparse) or the analysis
(cosparse) understanding of “sparsity” [27].

3 The SPADE Algorithm

SPADE (SParse Audio DEclipper) [24] is a heuristic declipping algorithm,
approximating the solution of the following non-convex, NP-hard synthesis- or
analysis-regularized inverse problems:

min
x,z

‖z‖0 s. t. x ∈ Γ (y) and ‖x − Dz‖2 ≤ ε, (3)

min
x,z

‖z‖0 s. t. x ∈ Γ (y) and ‖Ax − z‖2 ≤ ε. (4)

Here ‖z‖0 is the �0 pseudonorm measuring the sparsity, i.e. counting the nonzero
elements of z. The �2 constraint delimits the distance between the estimate and
its sparse approximation. The linear operator D : CP �→ R

N is the synthesis
operator, with N ≤ P ; if regarded as a matrix in (3), it takes coefficients z and
forms the signal as the linear combination of its columns. Matrix D is often called
the dictionary [8]. In (4), the analysis operator A : R

N �→ C
P is considered,

which analyses the signal and produces its transform coefficients. In order to be
able to compare the two approaches, we naturally restrict ourselves to the case
when the operators are mutually adjoint, A = D∗.

Note that problems (3) and (4) both seek the signal and its coefficients simul-
taneously and that both of them fall into a common, recently introduced general
signal restoration framework, see [16]. Both A and D are assumed full rank,
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N , and both formulations produce equal results when D is a unitary operator
A = D−1 (the same will hold for the approximate solutions by SPADE).

It should be noted that in SPADE, the above optimization problems are
solved frame-by-frame, i.e. the signal is segmented into possibly overlapping
time chunks, and windowed. Problems (3) and (4) are then solved individually
on each such segment, and the output is formed using a common overlap-add
procedure. This allows real-time processing, and at the same time the time-
frequency structure of the processing is preserved. Specifically, the windowed
(I)DFT is used in place of the operators A and D, possibly with frequency
oversampling [9].

SPADE addresses the above two problems by a modified ADMM algorithm
[5,7] resulting in the synthesis SPADE (S-SPADE) as shown in Algorithm 1, and
the analysis SPADE (A-SPADE) as given in Algorithm 2.

Algorithm 1. S-SPADE
Require: D,y, MR, MH, ML, s, r, ε

1 ẑ(0) = D∗y,u(0) = 0, i = 1, k = s

2 z̄(i) = Hk

(
ẑ(i−1) + u(i−1)

)

3 ẑ(i) = arg minz ‖z − z̄(i) + u(i−1)‖2
2

s.t. Dz ∈ Γ

4 if ‖ẑ(i) − z̄(i)‖2 ≤ ε then
5 terminate
6 else

7 u(i) = u(i−1) + ẑ(i) − z̄(i)

8 i ← i + 1
9 if imod r = 0 then

10 k ← k + s
11 end
12 go to 2

13 end

14 return x̂ = Dẑ(i)

Algorithm 2. A-SPADE
Require: A,y, MR, MH, ML, s, r, ε

1 x̂(0) = y,u(0) = 0, i = 1, k = s

2 z̄(i) = Hk

(
Ax̂(i−1) + u(i−1)

)

3 x̂(i) = arg minx ‖Ax − z̄(i) + u(i−1)‖2
2

s.t. x ∈ Γ

4 if ‖Ax̂(i) − z̄(i)‖2 ≤ ε then
5 terminate
6 else

7 u(i) = u(i−1) + Ax̂(i) − z̄(i)

8 i ← i + 1
9 if imod r = 0 then

10 k ← k + s
11 end
12 go to 2

13 end

14 return x̂ = x̂(i)

Both SPADE algorithms rely on two principal steps. The first of them is the
hard thresholding Hk. This operator enforces sparsity by setting all but k largest
components of the input vector to zero. In practice, the sparsity k of signals is
unknown, therefore SPADE performs sparsity relaxation: in every r-th iteration
the variable k is incremented by s until the constraint embodied by the �2 norm
is smaller than ε. The second main step is the projection onto Γ in order to keep
the consistency given by (2) and will be discussed in the following.

3.1 Projection in A-SPADE

The projection in SPADE (row 3 in both Algorithms 1 and 2) constitutes the
computationally most demanding step. For general A and D, such projections
are achievable only via iterative algorithms.

The projection in A-SPADE is written as an optimization problem where
one has to find a consistent signal x such that its analysis coefficients Ax are
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the closest possible with respect to the given (z̄(i) −u(i−1)). The authors of [24]
exploit the advantage that when A∗ is a tight Parseval frame, i.e. A∗A = DD∗ =
DA are all identity operators [9], then the projection can be done elementwise
in the time domain, such that

x̂(i) = projΓ
(
A∗(z̄(i) − u(i−1))

)
(5)

where projΓ is the operator of orthogonal projection onto a convex set Γ , in our
case defined as

[projΓ (w)]n =

⎧⎪⎨
⎪⎩

[y]n for n ∈ R,

max{[w]n, θc} for n ∈ H,

min{[w]n,−θc} for n ∈ L,

(6)

where [·]n denotes the n-th element of a vector.
We now rewrite the projection into a more convenient form. Let R̃ denote the

extended real line, i.e. R̃ = R∪ {−∞,∞}. Define the lower and upper bounding
vectors bL,bH ∈ R̃ such that

[bL]n =

⎧⎪⎨
⎪⎩

[y]n for n ∈ R,

θc for n ∈ H,

−∞ for n ∈ L,

[bH]n =

⎧⎪⎨
⎪⎩

[y]n for n ∈ R,

∞ for n ∈ H,

−θc for n ∈ L.

(7)

Recognizing that the multidimensional interval [bL,bH] matches the set of fea-
sible solutions (2), specifically Γ = {x |bL ≤ x ≤ bH}, the final A-SPADE
projection formula (5) can be written as

x̂(i) = proj[bL,bH] (A
∗v) with v = z̄(i) − u(i−1). (8)

The projection onto the interval can be implemented as

proj[bL,bH](w) = min{max{bL,w},bH}, (9)

with the min and max functions returning pairwise extremes element by element.
Note that restricting to the Parseval tight frames in applications is not an

issue [3,4,20,24,28,30,31].

3.2 Projection in S-SPADE

For S-SPADE the situation is different. The projection has to be done in the
domain of coefficients. The authors of [24] claim that the projection needs to
be computed iteratively and that a somewhat efficient implementation can be
achieved with D forming a tight Parseval frame. Still, [24] reports many times
higher computational time for S-SPADE compared to A-SPADE.

We will show that it is possible to use an explicit formula to compute the
projection in S-SPADE, making the two algorithms identical from the point of
view of complexity per iteration. Our goal is to find the optimizer

ẑ(i) = arg min
z

‖(z̄(i) − u(i−1)) − z‖22 s.t. Dz ∈ Γ. (10)
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The following lemma can be found in several variations, see, for example, [29] or
[10]. We introduce a real-setting version for simplicity.

Lemma: Let the operator D : R
P �→ R

N , N ≤ P , full-rank, DD� identity.
Let the multidimensional interval bounds bL,bH ∈ R̃

N , bL ≤ bH. Then the
projection of a vector v ∈ R

N , respectively denoted and defined by

proj{x |Dx∈[bL,bH]}(v) := arg min
u

‖v − u‖2 s.t. Du ∈ [bL,bH],

can be evaluated as

proj{x |Dx∈[bL,bH]}(v) = v − D�
(
Dv − proj[bL,bH](Dv)

)
. (11)

In our application, we will need a complex D with a special (time-)frequency
structure. Indeed, our D will be the synthesis operator of (possibly redundant)
discrete Fourier and Gabor tight frames [9]. In such cases, it is only necessary to
substitute D� by D∗ in (11). The proof of such an extended lemma, however,
gets much more involved by switching to the complex case, and therefore we
omit it for simplicity of presentation, as we plan to publish it in a separate
paper (currently in preparation).

Using bL and bH as defined above, the projection (10) can be written as

ẑ(i) = v − D∗
(
Dv − proj[bL,bH](Dv)

)
with v = z̄(i) − u(i−1). (12)

3.3 Comparing Computational Complexity

In both SPADE algorithms, the computational cost is dominated by the analysis
and synthesis operators. Returning to Algorithms 1 and 2, we see that A-SPADE
requires one analysis in step 2 and one synthesis in the projection (5). In the case
of S-SPADE, the projection is the only demanding calculation, and according
to the new formula (12), it requires one synthesis and one analysis. This shows
that per iteration, the two algorithms are equally demanding. This breaks down
the disadvantage of S-SPADE as presented in [24].

4 Experiments and Results

Experiments are designed to compare A-SPADE and S-SPADE algorithms in
terms of quality of restoration and computational time. The quality of restora-
tion is evaluated using ΔSDR, which expresses the signal-to-distortion ratio
improvement, according to the following formula:

ΔSDR = SDR(x, x̂) − SDR(x,y) (13)

where x represents the original signal (known in our study), y is the clipped
signal and x̂ is the reconstructed signal, while the SDR itself is defined as

SDR(u,v) = 10 log10
‖u‖22

‖u − v‖22
[dB]. (14)
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The results below are usually presented in average ΔSDR values, taking the
arithmetic mean of the particular values from all the tested audio signals in dB.

The advantage of using ΔSDR over the plain SDR is that the ΔSDR value
remains the same irrespective of whether the SDR is computed on the whole
signal or on the clipped samples only. (This can be easily shown directly from
(13), using the fact that our algorithms are consistent, i.e. the reliable samples
of the recovered signal and of the clipped signal match.)

Experiments were performed on five audio samples with an approximate
duration of 5 s at a sampling frequency of 16 kHz. These excerpts were thoroughly
selected to be diverse enough in tonal content and in sparsity with respect to the
time-frequency transform. As a preprocessing step, the signals under considera-
tion were peak-normalized and then artificially clipped using multiple clipping
thresholds, θc ∈ {0.1, 0.2, . . . , 0.9}. The algorithms were implemented in MAT-
LAB R2017a and ran on a PC with Intel i7-3770, 16 GB RAM in single thread
mode.

Note that some authors [16,22–24] evaluate the quality of restoration depend-
ing on the input SDR, while in this paper we plot the results against the clipping
threshold θc. To get a notion of their relationship, we attach Table 1 which shows
both the θc and the average input SDR values.

Table 1. Average SDR values for a particular clipping threshold θc computed on the
test signals as a whole and on the clipped samples only.

θc [–] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SDR [dB] whole
signal

3.71 7.49 11.40 15.54 20.15 25.32 31.44 38.74 48.11

SDR [dB] clipped
samples

3.46 6.30 8.68 10.78 13.16 15.22 18.04 20.37 23.63

Although the original SPADE algorithms [24] were purely designed to process
individual windowed time-frames, one after another, we also include an exper-
iment using SPADE on the whole signal, considering the DGT coefficients all
at once (Sect. 4.1). Then in Sect. 4.2, the classical SPADE setup is investigated,
and in later sections the influence of the window length, transform redundancy
and window overlap is considered. Note that in this paper, the term redundancy
specifies the rate of oversampling in the frequency domain—for example, using
an oversampled Fourier analysis with 2048 frequency channels applied to a signal
of length 1024 means redundancy 2.

4.1 SPADE Applied to Whole Signal

Figure 1 presents the SDR improvement (ΔSDR) for signals processed with
SPADE as a whole. The relaxation parameters of both algorithms are set to
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r = 1, s = 100 and ε = 0.1. In this experiment, the most common DGT declip-
ping setting such as 1024-sample-long Hann window and 75% overlap is used,
although according to Sect. 4.3 such setting favors the analysis approach, which
performs better with shorter windows. Redundancy levels 1, 2 and 4 are achieved
by setting the number of frequency channels M to 1024, 2048 and 4096. The
black line in Fig. 1 denotes the result of S-SPADE with redundancy 1. However,
this is identical to A-SPADE results with the same redundancy—in such a case,
D−1 = A and the algorithms perform equally (see Sect. 3).

An iteration of S-SPADE is typically slightly slower (approximately by 2%)
than an iteration of A-SPADE. However, in general, S-SPADE needs fewer iter-
ations to converge. The algorithm is considered converged if the condition on
row 4 in both Algorithms 1 and 2 gets fulfilled, i.e. the termination function
falls under a prescribed ε. Figure 2 presents the computation times; it is clear
that S-SPADE converges significantly faster than A-SPADE does, especially at
higher redundancies. The average course of the termination function is presented
in Fig. 7.
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Fig. 1. Declipping performance in terms of ΔSDR performed on the whole signal.

4.2 SPADE with Signal Segmentation

The disadvantage of the approach in Sect. 4.1 is that the largest time-frequency
coefficients are selected from the whole signal, and the placement of the coef-
ficients over time is not taken into account. This can easily result in selecting
a group of significant coefficients from a short time period and ignoring coeffi-
cients that are significant rather locally. Thus, (as will be confirmed by experi-
ments) it is more beneficial to process the signal with SPADE block by block.

For this experiment, the relaxation parameters are set according to the origi-
nal paper [24], i.e. r = 1, s = 1 and ε = 0.1. The transform parameters are set as
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Fig. 2. Average computational times for declipping performed on the whole signal.

in the previous experiment, i.e. the sliding Hann window 1024 samples long with
75% overlap and DFT with redundancy 1, 2 and 4 is used in each time-block.

Figure 3 presents ΔSDR results of both the A-SPADE and S-SPADE
algorithms with processing by blocks. Even in this experiment, A-SPADE per-
forms slightly better but it is worth repeating that the choice of the window
length suits better the A-SPADE. Interestingly, A-SPADE performs somewhat
better with more redundant DFT, while S-SPADE, on the contrary, performs
best with no redundancy at all.
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Fig. 3. Declipping performance in terms of ΔSDR performed with signal segmentation.
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Apart from the overall performance, we also evaluated the two algorithms
locally—we wanted to know whether A-SPADE or S-SPADE better recovers the
signal within a short time range. Figures 4 and 5 demonstrate SDR results on
two audio signals using the Hann window 1024 samples long with 75% overlap
and DFT with redundancy 2. For each 2048-sample-long block we computed two
corresponding SDR values, which are represented by a marker in the scatter plot.
For clarity, we only used clipping thresholds from 0.1 to 0.5. The SDR values
were computed using formula (14) on the whole signals; computing SDRs on
clipped samples would only reflect in a pure shift of axes in the scatter plot.
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Fig. 4. Scatter plot of SDR values for both S-SPADE and A-SPADE computed locally
on sliding blocks 2048 samples long. It is clear that in most time chunks, A-SPADE
results are better than those of S-SPADE. Results shown here are for the acoustic guitar
signal, but nevertheless such a scatter plot is obtained for most of our test signals.

When redundancy 1 is used, the two algorithms perform identically, and they
also terminate after the same number of iterations. In light of this, computation
times presented in Fig. 6 show that in such a case, A-SPADE is marginally faster.
For more redundant transforms, S-SPADE needs fewer iterations to fulfill the
termination criterion and its solution is obtained more quickly.

Figure 7 presents the average course of the termination function (row 4 in
both Algorithm 1 and 2). For S-SPADE, this function decreases faster, causing
the whole algorithm to converge in fewer iterations.

4.3 Window Length

In many declipping algorithms where processing by blocks or via STFT is done,
such as [2,22,23,33], the usual block (or window) length is set to 1024 samples.
This experiment is designed to compare both SPADE algorithms depending
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Fig. 5. Scatter plot of SDR values for both S-SPADE and A-SPADE computed locally
on sliding blocks 2048 samples long. More than half the time chunks resulted in markers
below the identity line, indicating that S-SPADE returned better results. The audiosig-
nal used here is a heavy metal song; note that it was hard to find a signal with such
a scatter plot. The result may seem optimistic for S-SPADE—however considering that
already the input signal has been clipped on purpose (as is commonly done in this music
genre, making the signal far from being sparse), it in turn means that the A-SPADE
in effect outperforms the S-SPADE again.
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Fig. 6. Declipping performance in terms of average computational time performed
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on selected window length. Signals are processed block by block similarly to the
previous experiment, except that the redundancy of the DFT is 2 and the length
of the sliding window is set to 512, 1024, 2048 and 4096 samples. In all four cases,
the window overlap is fixed to 75%.

Figures 8 and 9 present ΔSDR results depending on the window length for
A-SPADE and S-SPADE respectively. For the analysis approach, the length
of 2048 samples seems to give the best results for most clipping thresholds.
When using shorter (512 samples) or longer (4096 samples) windows, the SDR
performance drops down approximately by 2 dB. On the other hand, according
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Fig. 7. Average course of the termination function during iterations for redundancy 2.
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Fig. 8. Declipping performance of A-SPADE in terms of ΔSDR for different window
lengths.
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Fig. 9. Declipping performance of S-SPADE in terms of ΔSDR for different window
lengths.

to Fig. 9 the synthesis approach performs better with longer windows. The length
of 2048 samples seems to be optimal for S-SPADE as well, but the 4096-sample-
long window performs by 2 dB better than the 1024 long one.

As far as the computation time is concerned, a longer window means longer
computation time. Average computational times for the window lengths 512,
1024, 2048 and 4096 are listed in Table 2.

Table 2. Average computation times in seconds depending on window length using
overcomplete DFT with redundancy 2.

Window length 512 1024 2048 4096

A-SPADE 53 68 104 207

S-SPADE 34 41 60 115

4.4 Window Overlap

Window overlap is also an important parameter of the transform; it affects not
only the quality of restoration but also the computational time. Therefore, in this
experiment, the restoration quality depending on window overlap is explored.
As in the previous experiment, DFT with redundancy 2 and Hann window 1024
samples long is used.

Figure 10 shows an expectable fact that the bigger the overlap is set, the
better in terms of SDR the results are produced. In line with the results given
above, A-SPADE performs slightly better than S-SPADE due to the chosen win-
dow length. More interestingly, the performance of the synthesis version drops
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Fig. 10. Declipping performance in terms of ΔSDR for different window overlaps.

significantly when the overlap is set to 25%. Thus, for a good reconstruction, it
is necessary to set the window overlap at least to 50% of the window length.

Table 3 shows the average computation times for overlaps of 25, 50 and 75%
of the window length. We note that an overlap larger than 75% further increases
the computation time but does not bring much improvement in terms of SDR
(these facts are not shown).

Table 3. Average computation times in seconds depending on window overlap.

Overlap 25% 50% 75%

A-SPADE 22 34 68

S-SPADE 14 21 41

5 Implementation

Developing the idea of reproducible research, we make our Matlab codes publicly
available. The bundle is downloadable from URL http://www.utko.feec.vutbr.cz/
∼rajmic/software/aspade vs sspade.zip. The main file of the SPADE package is
a batch file declipping main.m, reading the audio, normalizing and clipping the
signal by calling hard clip.m. It is possible to set transform parameters, such
as the window length, overlap, window type, and the transform redundancy.

To process signals block-by-block, spade segmentation.m is used. This func-
tion performs signal padding, dividing into blocks, multiplying by the analysis
window and, after processing, multiplying by the synthesis window and folding

http://www.utko.feec.vutbr.cz/~rajmic/software/aspade_vs_sspade.zip
http://www.utko.feec.vutbr.cz/~rajmic/software/aspade_vs_sspade.zip
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blocks back together (in the common “overlap-add” manner). The SPADE algo-
rithm itself is implemented in two m-files: aspade.m for the analysis version and
sspade.m for the synthesis version.

Recall that the spectrum of a real signal is provided with the complex-
conjugate structure. Hard thresholding, performed by hard thresholding.m,
takes therefore the oversampled spectrum and thresholds the respective pairs
of complex entries, in order to keep the signal real. Projections onto the set of
feasible solutions are implemented in two m-files. Projection in the time domain
for A-SPADE according to (6) is implemented in proj time.m. S-SPADE uses
proj parse frame.m according to (11).

6 Conclusion

We exploited a novel projection lemma to speed up the synthesis version of
declipping algorithm SPADE. Use the explicit projection formula, the computa-
tional cost, dominated by synthesis and analysis operators, is identical for both
versions (per iteration). However, S-SPADE needs fewer iterations to converge,
thus turning it to be significantly faster than A-SPADE. As a result, S-SPADE
is preferable in real-time processing. On average, A-SPADE performs better in
terms of ΔSDR than S-SPADE does.

Experiments involving the parameters of the DGT/DFT show that the opti-
mal window size differs for the algorithms. Whereas A-SPADE performs best
with shorter windows, S-SPADE, on the contrary, prefers slightly longer win-
dows. The influence of the window overlap is not negligible either—we have
shown that the bigger the overlap is, the better the restoration results are
obtained, in both algorithms.

Unfortunately, our results for S-SPADE differ from what the original paper
[24] reports. The authors of [24] claim that S-SPADE performs slightly better
than A-SPADE does in terms of ΔSDR, and also that S-SPADE performs best
with redundancy 4. Our results indicate quite the opposite; in particular, our
S-SPADE performs worse in terms of ΔSDR and performs best when redundancy
is set to 1.

Our future work will be to investigate in greater depth the differences between
the synthesis and the analysis model (and their influence on audio restoration
methods). We also believe that introducing a psychoacoustic model could lead
to higher declipping quality.
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Abstract. Clipping, or saturation, is a common nonlinear distortion in
signal processing. Recently, declipping techniques have been proposed
based on sparse decomposition of the clipped signals on a fixed dictio-
nary, with additional constraints on the amplitude of the clipped samples.
Here we propose a dictionary learning approach, where the dictionary
is directly learned from the clipped measurements. We propose a soft-
consistency metric that minimizes the distance to a convex feasibility
set, and takes into account our knowledge about the clipping process.
We then propose a gradient descent-based dictionary learning algorithm
that minimizes the proposed metric, and is thus consistent with the clip-
ping measurement. Experiments show that the proposed algorithm out-
performs other dictionary learning algorithms applied to clipped signals.
We also show that learning the dictionary directly from the clipped sig-
nals outperforms consistent sparse coding with a fixed dictionary.

1 Introduction

Clipping is a common nonlinear distortion in analog and digital systems, that
often happens due to dynamic range limitations. When the signal energy is
too high, the waveform is truncated above a certain level, and samples above
that level are lost. Declipping is the task of recovering the clipped samples
from the surrounding, unclipped samples. Early strategies to recover a clipped
signal include autoregressive modelling [1], bandwidth limited models [2], or
Bayesian estimation [3]. More recently, sparsity-based declipping techniques have
attracted a lot of interest. The idea is that the original signal can be sparsely
represented using a known dictionary of atoms. Declipping can be treated as
a simple signal inpainting problem, i.e. by discarding the clipped samples and
solving a sparse decomposition problem on the unclipped samples [4]. However
it was noted in [4,5] that the reconstruction can be greatly improved by using
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extra information in the reconstruction process: indeed, we know that the clipped
samples should have an amplitude that is greater than the clipping threshold.
Several approaches have been proposed in the literature in order to enforce clip-
ping consistency, i.e. taking into account the clipping threshold. Sparse decom-
position with amplitude constraints were proposed in [4–9], and solved using a
two-step algorithm [4], Alternating Direction Method of Multipliers (ADMM)
[6,10], or using general purpose convex optimization toolboxes [7–9,11]. However
these approaches can be computationally intensive, and possibly non robust to
measurement noise. Smooth regularizers were proposed in [12,13], which lead
to simple unconstrained cost functions, and can be optimized using variants of
well known algorithms such as Iterative Hard Thresholding (IHT) or Iterative
Shrinkage/Thresholding (ISTA). Additional information has also been used, such
as perceptual weights [8], social sparsity priors [13], or multichannel data [14].

Sparsity-based declipping techniques proposed in the literature use fixed dic-
tionaries such as discrete cosine transform (DCT) or Gabor. However, dictio-
nary learning has proved to perform better in a variety of signal reconstruction
tasks, such as denoising [15] or inpainting [16]. Well known dictionary learn-
ing algorithms have been proposed for denoising or inpainting [15–17], however
dictionary learning from clipped measurements has not been addressed in the lit-
erature. In this paper we propose a dictionary learning algorithm that is able to
learn directly from nonlinearly clipped measurements. We formulate the declip-
ping problem as a problem of minimizing the distance between a sparse signal
and a convex feasibility set. This provides a convex and smooth cost function
which generalizes the Euclidean distance commonly used in sparse coding and
dictionary learning. We then propose a gradient-descent based sparse coding
and dictionary learning algorithm, that takes into account our knowledge about
the clipping process. Experiments show that the proposed consistent dictionary
learning algorithm performs better on the task of declipping than state-of-the
art dictionary learning algorithms for signal inpainting. We also show that the
proposed consistent dictionary learning improves the reconstruction, compared
to consistent sparse coding with a fixed dictionary.

The paper is organized as follows: in Sect. 2 we briefly give an overview of
sparsity-based declipping techniques, and of dictionary learning. In Sect. 3 we
propose a new formulation of the declipping problem, and a consistent dictionary
learning algorithm for signal declipping. Experiments are presented in Sect. 4,
before the conclusion is drawn.

2 Background

2.1 Signal Declipping

Let x ∈ R
N be a clean input signal, and y ∈ R

N its clipped measurement. In this
paper we consider the case of hard clipping, where each sample yi is measured as:
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yi =

⎧
⎪⎨

⎪⎩

θ+ if xi ≥ θ+

θ− if xi ≤ θ−

xi otherwise,
(1)

where θ+ > 0 and θ− < 0 are positive and negative clipping thresholds respec-
tively, and xi is the input sample. This can be written in vector form as:

y = Mr x + θ+ Mc+ 1 + θ− Mc- 1, (2)

where 1 is the all-ones vector in R
N , and Mr,Mc+ and Mc- are diagonal sensing

matrices in {0, 1}N×N that define the reliable, positive and negative clipped
samples respectively. These matrices can be estimated by detecting samples that
have reached the clipping threshold, e.g. [Mc+]i,i = 1 if yi = θ+, or 0 otherwise.
Since the clipped samples are missing, a simple way to treat declipping is to
formulate it as an inpainting problem, i.e. a problem of interpolating missing
samples [4]. Assuming that the original signal can be sparsely represented in a
known dictionary D ∈ R

N×M , the inpainting problem can be formulated as:

min
α∈RM

‖Mr(y − Dα)‖22 s.t. ‖α ‖0 ≤ K, (3)

where ‖.‖0 is the �0 pseudo-norm, and K is a parameter that controls the sparsity
level. Eq. (3) is a classical sparse coding problem, which can be solved using well
known algorithms like IHT [18]. However, we can use extra information about
the clipping process. Indeed, we know that the clipped samples should have an
amplitude that is above (resp. below) the clipping threshold θ+ (resp. θ−). This
can be enforced using amplitude constraints in the reconstruction process [4,5]:

min
α∈RM

‖Mr(y − Dα)‖22 s.t.

⎧
⎪⎨

⎪⎩

‖α ‖0 ≤ K

Mc+ Dα � θ+ Mc+ 1
Mc- Dα � θ− Mc- 1

(4)

Equation (4) is a difficult non-convex and constrained optimization problem,
which cannot be readily solved using off-the-shelf sparse decomposition solvers
such as IHT. A two-step algorithm was proposed in [4], where the support of
non-zero atoms is first estimated using (3), and the signal is then estimated
using a constrained least squares on the estimated support. However, the sup-
port selection does not take into account the clipping constraints and is thus
suboptimal. A similar constraint-based formulation was proposed in [6]:

min
α∈RM

‖α ‖0 + 1C(y)(Dα), (5)

where 1C(y) is the indicator function of the set C(y), and:

C(y) � {x|Mr y = Mr x,Mc+ x � Mc+ y,Mc- x � Mc- y} (6)

is the set of feasible signals, i.e. the set of signals that are consistent with
the observation y. The authors in [6] proposed an ADMM based algorithm
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to solve (5). The ADMM-based declipper [6] leads to good performance, but
proves to be computationally expensive since it involves non-orthogonal pro-
jections which need to be computed iteratively1. Similar �1-based constrained
formulation were also proposed in [7–9], and solved using general purpose con-
vex optimization toolboxes [11], which can also be time consuming. Moreover,
constrained formulation like (5) might not be robust to measurement noise, as
will be discussed in the experimental section. Several authors proposed to enforce
consistency with the clipped samples in a more tractable way. A smooth regu-
larizer that penalizes clipped samples was proposed in [12]:

min
α∈RM

‖Mr(y − Dα)‖22 + ‖Mc+(θ+1 − Dα)+‖22
+‖Mc-(θ−1 − Dα)−‖22 s.t. ‖α ‖0 ≤ K,

(7)

where (u)+ = max(0, u) and (u)− = −(−u)+. Since the cost in (7) is smooth,
gradient-based sparse coding algorithms can easily be extended to the clipping
consistent model (7). A consistent IHT was proposed in [12] in order to enforce
clipping consistency. A similar formulation with an �1 norm was proposed in
[13] along with ISTA-like algorithms. Although the algorithm in [12] did not
perform as well as the ADMM based declipper [6], the soft consistency met-
ric in (7) provides a simple, unconstrained way to enforce consistency with
the clipped samples. Moreover, simple iterative thresholding algorithms can be
derived, which are computationally faster than solving constrained optimization
problems like (5).

2.2 Dictionary Learning

Previously mentioned declipping techniques use fixed dictionaries, such as DCT
or Gabor. However in many applications, learning a dictionary that is adaptive to
the data has proved to lead to much better signal estimates [15,16]. A dictionary
learning problem (from clean signals) is often formulated as [19]:

min
D∈D,αt

∑

t

‖xt − Dαt ‖22 s.t. ∀t, ‖αt ‖0 ≤ K (8)

where {xt}1...T is a collection of T signals in R
N . The dictionary is often con-

strained to be in D = {D ∈ R
N×M |∀i, ‖di‖2 ≤ 1} in order to avoid scaling ambi-

guity [19]. Many dictionary learning algorithms have been proposed to learn from
clean or noisy data, such as MOD [17] or K-SVD [15]. In the case of inpainting,
a weighted K-SVD (wK-SVD) has been proposed in order to deal with missing
samples [16]. Dictionary learning from nonlinearly clipped data has not been
addressed in the literature. Since dictionary learning usually alternates between
several iterations of sparse coding and dictionary update over large datasets, a

1 An analysis sparsity version of (5) was also proposed in [6], which proved to be
computationally more tractable. In this paper we focus on the synthesis sparsity
model, and leave the analysis sparsity counterpart for future work.
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computationally tractable and stable formulation is needed. In the next section,
we propose a soft data-consistency metric, that provides a simple optimization
problem for dictionary learning. We then propose a consistent dictionary learning
algorithm that is able to learn from the clipped measurements.

3 Consistent Dictionary Learning for Signal Declipping

3.1 Proposed Problem Formulation

We first reformulate declipping as a problem of minimizing the distance between
the approximated signal, and the feasible set C(yt) defined in (6):

min
D∈D,αt

∑

t

d(Dαt, C(yt))2 s.t. ∀t, ‖αt ‖0 ≤ K, (9)

where d(x, C(y)) is the Euclidean distance between x and the set C(y), defined as:

d(x, C(y)) = min
z∈C(y)

‖x − z‖2. (10)

The formulation (9) thus enforces the estimated signals to be “close” to their
feasibility sets C(yt) in a Euclidean-distance sense, unlike the formulation in (5)
which constrains the signals to be exactly in C(yt). We thus have proposed here
a problem of minimizing the distance to a set, which differs from classical sparse
coding and dictionary learning approaches which minimize the distance to a
point in R

N . Using (9) and (10), can further be reformulated as a “min-min”
problem:

min
D∈D,αt

∑

t

min
z∈C(yt)

‖Dαt −z‖22 s.t. ∀t, ‖αt ‖0 ≤ K. (11)

Note that as a minimum of a family of convex functions ‖.‖2 over a non-empty
and convex set C(y), d(x, C(y)) is a convex cost function [20, Sect. 3.2.5]. More-
over, using Danskin’s Min-Max theorem ([21, Theorem 4.1], originally proposed
in [22]), it can be shown that d(x, C(y))2 is differentiable with gradient [23]:

∇xd(x, C(y))2 = 2(x − ΠC(y)(x)), (12)

where ΠC(y)(x) is the Euclidean projection of x onto C(y). The proposed formu-
lation in (9) is thus a problem of minimizing a smooth and convex cost function,
with a sparsity constraint, which is similar to the classical dictionary learning
problem (8). The proposed cost function thus generalizes the linear least-squares
commonly used in sparse coding and dictionary learning.

3.2 Algorithm

We propose a simple gradient descent-based algorithm, which we present in Algo-
rithm1. The proposed algorithm alternates between a sparse coding step and
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a dictionary update step. Similarly to IHT, the sparse coding step alternates
between gradient descent (13) and a hard thresholding (14). The dictionary is
updated using projected gradient descent (15). ni and μi (i = 1, 2) are parame-
ters that control the number of gradient descent steps and step sizes respectively.

Algorithm 1. Dictionary learning for declipping
Require: {yt}1...T , D

0, n1, n2, μ1, μ2

initialize: D ← D0, αt ← 0
while stopping criterion not reached do

for t = 1...T do � Sparse coding step
for i = 1, ..., n1 do

αt ← αt +μ1D
T (ΠC(yt)(Dαt) − Dαt) (13)

αt ← HK(αt) (14)

for j = 1, ..., n2 do � Dictionary update step

D ← ΠD
(
D+ μ2

∑

t

(ΠC(yt)(Dαt) − Dαt)αT
t

)
(15)

return D̂, {α̂t}1...T

3.3 Computation of the Residuals, and Interpretation

Algorithm 1 involves the computation of residuals ΠC(y)(Dα) − Dα at every
step. These residuals can be easily computed in closed form. It can be easily
verified that the projection operator ΠC(y) is computed as:

ΠC(y)(x) = Mr y + Mc+ max(y,x) + Mc- min(y,x). (16)
Note that this is a simple 1-dimensional orthogonal projection, that can be
computed at a negligible cost. The residuals can be computed as:

ΠC(y)(Dα) −Dα = Mr(y −Dα) +Mc+(y −Dα)+ +Mc-(y −Dα)−. (17)

This also shows that the proposed soft-consistency metric (9) can be written in
closed form as:

d(Dα, C(y))2 =‖Mr(y − Dα)‖22 + ‖Mc+(y − Dα)+‖22
+ ‖Mc-(y − Dα)−‖22,

(18)

which (noticing that Mc+ y = θ+ Mc+ 1) is the same as the cost (7) used in
[12,13]. The proposed approach is thus a different way to motivate the soft-
consistency metric (7), and the sparse coding step in Algorithm1 is equivalent
to the “consistent IHT” [12]. Note also that when no sample is clipped, we
have C(y) = {y}, d(Dα, C(y))2 = ‖Dα −y‖22, and ΠC(y)(Dα) = y. Thus
(9) becomes a classical dictionary learning problem, and Algorithm1 a classical
dictionary learning algorithm. The proposed method is thus a generalization of
dictionary learning to nonlinearly clipped measurements.
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4 Evaluation

We evaluate the performance of the proposed algorithm on audio declipping
tasks2. The test set consists of 10 speech and 10 music signals of 10 s each,
sampled at 16 kHz. The signals were processed with Hamming windows of size
N = 256 samples, with 75% overlap, for a total of approximately T = 2500
frames per signal. The dictionary learning algorithm was initialized with a DCT
dictionary of M = 512 atoms, and the sparse coefficients initialized to zero.
Each gradient descent step was then initialized with a warm restart strategy, i.e.
using the estimate from the previous iteration [19]. We performed 50 iterations of
gradient descent, with 20 iterations for each inner sparse coding and dictionary
update step. The gradient descent steps were chosen as μ1 = 1/‖D‖22 and μ2 =
1/‖A‖22 (with A = [α1, ...,αT ]), and updated at each iteration using the current
estimates D and A. When no noise is present, the estimated signals x̂ can
be re-projected on the set {x|Mr x = Mr y} as a final step,in order to avoid
approximation errors. The quality of the estimated signal can then be evaluated
using the signal to distortion ratio (SDR) computed on the clipped samples:
SDRc(x̂,x) = 20 log ‖(Mc+ +Mc-)x‖2

‖(Mc+ +Mc-)(x−x̂)‖2
.
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Fig. 1. Comparison with state-of-the-art dictionary learning algorithms

Figure 1 shows the performance of the proposed consistent dictionary learn-
ing (DL) algorithm compared to other dictionary learning algorithms for inpaint-
ing. We show the average performance for different clipping levels, ranging from
severe clip (SDR = 1 dB) to light clip (SDR = 19 dB). As a baseline, we show the
performance of IHT, computed on the unclipped samples and with a fixed DCT
dictionary. We show the performance of two dictionary learning algorithms com-
puted on the unclipped samples: a gradient descent-based algorithm similar to

2 The MATLAB code and some examples are available at http://www.cvssp.org/
Personal/LucasRencker/software.html.

http://www.cvssp.org/Personal/LucasRencker/software.html
http://www.cvssp.org/Personal/LucasRencker/software.html


Consistent Dictionary Learning for Signal Declipping 453

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
Speech

0 5 10 15 20
0

1

2

3

4

5

6
Music

Fig. 2. Comparison with state-of-the-art declipping algorithms
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Fig. 3. Robustness to measurement noise

Algorithm 1, and wK-SVD which achieved state-of-the art performance in signal
inpainting [16]. Although these two algorithms slightly improve the reconstruc-
tion compared to IHT, the overall performance is quiet poor. Consistent IHT [12]
clearly outperforms methods that discard clipped samples. The proposed con-
sistent DL algorithm further improves the reconstruction, with an improvement
of up to 3dB in the case of speech signals. This shows that learning the dictio-
nary directly from the clipped signals outperforms fixed dictionaries, and that
the learned dictionary generalizes well to the clipped samples. Note also that
while standard dictionary learning algorithms fail to improve the reconstruction
when the data is heavily clipped (SDR ≤ 5 dB), the proposed dictionary learning
algorithm is still able to improve compared to consistent IHT with fixed DCT.
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Figure 2 shows the performance comparison with other declipping algorithms
proposed in the literature. We compare with consistent IHT, the �1-constrained
formulation proposed in [9] solved using CVX [11], and the �0-constrained formu-
lation (5) solved using the ADMM-based algorithm proposed in [6], considered
as the current state-of-the-art. All �0-based algorithms were computed with a
fixed K = 32, except the ADMM algorithm which we have found does not con-
verge when K is fixed. We have thus implemented ADMM with the adaptive
sparsity strategy proposed in [6], which might favor it. Although the proposed
consistent DL algorithm does not match ADMM’s performance on average, our
algorithm bridges the gap between consistent IHT and ADMM, and outperforms
ADMM in the case of music signals when SDR ≥ 12dB. However as shown in the
next experiment, the proposed algorithm is more robust to measurement noise.
Figure 3 shows the reconstruction performance for signals contaminated with
additive Gaussian noise with variance σ2, and clipped at θ = 0.3. Figure 3 shows
that algorithms based on soft-consistency metric such as consistent IHT or the
proposed algorithm are more robust to noise than constrained-based formula-
tion. In particular, the proposed algorithm outperforms every other algorithms
for noise levels above 0.01 in speech, and 0.03 in music. From a computational
point of view, consistent IHT takes about 5 s to process a 10 s signal, the pro-
posed consistent DL and ADMM about 2–3 min, and CVX about an hour.

5 Conclusion

We proposed a smooth and convex cost function for signal declipping, and a
dictionary learning algorithm that is able to learn from clipped measurements.
The proposed algorithm outperforms classical dictionary learning algorithms,
and improves the declipping performance compared to consistent sparse coding
with a fixed dictionary. The proposed algorithm is simple and efficient, and the
model proposed in (9) could potentially be applied to other nonlinear measure-
ments, such as quantization or 1-bit measurements, which will be addressed in a
future publication. Analysis sparsity has shown promising results in [6], so future
work will also investigate analysis dictionary learning for declipping.
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Abstract. A new dictionary learning model is introduced where the dic-
tionary matrix is constrained as a sum of R Kronecker products of K
terms. It offers a more compact representation and requires fewer training
data than the general dictionary learning model, while generalizing Tucker
dictionary learning. The proposed Higher Order Sum of Kroneckers model
can be computed by merging dictionary learning approaches with the ten-
sor Canonic Polyadic Decomposition. Experiments on image denoising
illustrate the advantages of the proposed approach.
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1 Introduction

Multi-dimensional data arise in a large variety of applications such as telecommu-
nications, biomedical sciences, image and video processing to name a few [10].

Explicitly accounting for this tensorial structure of the data can be more
advantageous than relying on its vectorized version and losing the original neigh-
boring relations, besides providing more efficient and economic representation
and subsequent processing. The Kronecker product structure arises naturally
when dealing with multi-dimensional (tensorial) data, since it manages to recover
the underlying tensorial nature of vectorized data samples. Indeed, when applied
to a vectorized tensor, each composing factor of a Kronecker-structured linear
operator acts independently on each mode of the data. Conveniently, such oper-
ators are more compact to store and can be applied much more efficiently than
their unstructured counterpart.

Nevertheless, relatively little attention has been paid to exploiting this type
of structure on representation learning methods such as dictionary learning
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algorithms, which aim at obtaining a set of explanatory variables (the dictio-
nary) capable of sparsely approximating an input dataset. Conventional meth-
ods impose no particular structure to the dictionary matrix learned from the
vectorized input samples, therefore completely disregarding a potential multi-
dimensional characteristic of the data.

In this paper, we provide a novel method to induce a generalized version of
the Kronecker structure on the dictionary (namely, a sum of Kronecker prod-
ucts). To this end, we draw a parallel between the problem of approximating an
arbitrary linear operator by a Kronecker-structured one and the low-rank tensor
approximation problem.

The learned dictionary is constrained to the following structure:

D=
R∑

r=1

Dr
1 ⊗ · · · ⊗ Dr

K =
R∑

r=1

K⊗

k=1

Dr
k;

which we refer to as a rank-R K-Kronecker-structured matrix (or simply (R,K)-
KS and even K-KS when R = 1). In [17] R is referred to as the separation rank.
As we will see in Sect. 1.1, this structure may lead to significant memory and
computational savings when compared to an unstructured matrix. At the same
time, because we allow sums of several Kronecker terms, we make the structure
more flexible thus increasing its approximation capabilities with respect to the
conventional Tucker dictionary model [4].

1.1 Motivations

The quest for Kronecker-structured linear operators has various motivations
besides the suitability to multi-dimensional signals: (1) reduced computational
complexity; (2) diminished memory requirements and (3) smaller sample com-
plexity on learning applications.

The complexity savings on matrix-vector multiplications are explained as
follows. For an (n × m) K-KS matrix D = DK ⊗ · · · ⊗ D1 with factors Dk ∈
R

nk×mk , n =
∏K

k=1 nk and m =
∏K

k=1 mk, the matrix-vector product Dx can
be rewritten as

y = (DK ⊗ · · · ⊗ D1)x → Y = X ×1 D1 ×2 · · · ×K DK (1)

where Y ∈ R
n1×···×nK and X ∈ R

m1×···×mK are the tensorized versions of
y ∈ R

n1...nK and x ∈ R
m1...mK respectively [10] and ×k denotes the mode-k

tensor matrix product. In other words, it comes down to multiplying each factor
by the corresponding mode on the tensorized version X of the vector x.

Since the composing factors Dk are much smaller than D, the total com-
plexity for computing (1) can be significantly smaller than the usual O(nm). In
particular, when the factors are all square (i.e. nk =mk∀k) the total number of
operations is given by (

∏K
k=1 nk)(

∑K
k=1 nk) [16] compared to (

∏K
k=1 nk)2 oper-

ations for an unstructured matrix of the same size. For a sum of R Kronecker
products, the mentioned complexity is simply multiplied by R.
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In addition, the total storage cost for the structured operator is proportional
to (

∑K
k=1 nkmk) instead of (

∏K
k=1 nkmk). Similarly, recent studies [15] on the

minimax risk for the dictionary identifiability problem showed that the necessary
number of samples for reliable reconstruction, up to a given mean squared error,
of a KS dictionary within its local neighborhood scales with (m

∑K
k=1 nkmk)

compared to (m
∏K

k=1 nkmk) for unstructured dictionaries of the same size [9].

1.2 Related Work

The Kronecker structure was introduced in the Dictionary Learning domain
by [8,13] both addressing only 2-dimensional data (i.e. 2-KS dictionaries). The
model was extended to the 3rd-order (3-KS dictionaries) [12,19] and even for an
arbitrary tensor order [4,7] based on the Tucker decomposition, a model coined
as Tucker Dictionary Learning. However, none of these works include a sum of
Kronecker terms. Even though the formulation in [7] would allow it, they restrict
their analysis to the rank-one (R = 1) case.

The sum of Kronecker products model was initially explored in the covari-
ance estimation community [3,17] and was recently used in [5] as an extension
of the existing Kronecker-structured dictionaries. But once again, these works
addressed only the 2nd-order case (K = 2). We now extend [5] for an arbitrary
tensor order, thus allowing for both R ≥ 1 and K ≥ 2. An advantage of our app-
roach w.r.t [5,7] is that here we can choose the desired number of summing terms
beforehand without needing to empirically adjust a regularization parameter.

Finally, similarly to what is introduced in this manuscript, Bastelier et al.
have recently discussed factorizations strategies for (R, K)-KS matrices, but with
the goal of preserving the data structure and thus resorting to orthogonality
constraints [2].

1.3 Notation

Throughout this document, we denote ⊗ the Kronecker Product and ◦ the outer
product. Matrices (resp. tensors) are represented by bold uppercase (resp. under-
scored) letters and the (i, j)th entry of a matrix D is denoted d(i, j). The vector-
ization operation, denoted vec(·), consists in stacking the columns of a matrix
and unvec(·) stands for the converse operation.

2 A Dictionary Learning Algorithm for Tensorial Data

2.1 (R, K)-KS Dictionary Learning Model

Given a training data set in a tensor format Y, a naive approach to learn a
dictionary from Y is to rearrange its entries into a matrix and apply a workhorse
two-way dictionary learning algorithm. However, such a matricization of Y erases
mode-wise information, such as the 2D structure of images or color information.
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In [5], we have derived a dictionary learning algorithm for dictionaries as sums
of 2-Kronecker products, which account for the two-way structure of the original
training data. We now wish to extend this approach to tensors Y of any order.
For this, we constrain the learned dictionary to be (R,K)-Kronecker-structured.

The dictionary learning model may be computed by solving the following
minimization problem:

min
D∈CR

K , X

1
2
‖Y − DX‖2F + g(X) (2)

where CR
K denotes the set of all (R,K)-KS matrices of size (n × m) and the

training data, arranged as the columns of the matrix Y ∈ R
n×N , is to be

approximated as the product between the dictionary D ∈ R
n×m and the sparse

representation matrix X ∈ R
m×N . The sparsity of the columns of X is enforced

by the penalty function g (classical examples are the �0 and �1 norms). We also
impose the columns of the dictionary to have unit �2-norm.

Provided that the rank can be set to arbitrarily large values, any linear oper-
ator D may actually be written as a (R, K)-KS matrix [17]. On the other hand,
a K-KS matrix has a very specific structure that may not be appropriate for
learning a good dictionary in a generic scenario. Therefore, for small rank val-
ues, the proposed approach may be understood as a trade-off between precision
and complexity, storage and robustness to small training sets.

2.2 Dictionary Learning Algorithm

Following the literature, we employ a sub-optimal alternating minimization strat-
egy to tackle problem (2). Since the problem is not jointly convex, there are no
optimality guarantees for this classical approach. At each step, respectively dic-
tionary update and sparse coding, we optimize with respect to one variable, resp.
D and X, while fixing the other. The procedure is repeated Nit times.

The sparse coding step can be performed by any existing sparse regression
algorithm. In our experiments we use the OMP [11] algorithm.

The difficulty in computing (2) lies in the (R, K)-KS structure imposed on
D. In fact, in Sects. 3 and 4, we show that this constraint is equivalent to impos-
ing a Canonical Polyadic Decomposition model on a rearranged tensor RK(D)
obtained from dictionary D. Therefore, for the dictionary update step, we pro-
pose a projected gradient algorithm, where the projection onto the set of CR

K

(set of matrices written as a sum of R K-Kronecker products) is approximated
by the CPD algorithm applied to the rearranged tensor RK(D) as shown in
Algorithm 1. The projection step is detailed in Sect. 4.

The step-size γt is determined with a backtracking line search. For accelera-
tion purposes, the CPD can be initialized with the results of the previous itera-
tion. Finally, note that the column normalization (line 5) can break the imposed
structure. This is not a real concern, since the normalization coefficients can be
stored separately, implying only m additional products in a matrix-vector oper-
ation. Put differently, it is equivalent to storing a dictionary in the form DΣ
where Σ is a diagonal matrix containing the inverse norm of each column of D.
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Algorithm 1. D = DictionaryUpdate(Y,X, R,n,m)
1: Initialize D0, t = 0
2: while ‖Dt+1 − Dt‖F > tol do
3: Dt+1 = Dt − γt(DtX−Y)XT � Gradient step
4: Dt+1 = HO-SuKroApprox(Dt+1, R,n,m) � Projection into CR

K

5: Normalize columns of D

3 Rearrangement: Transforming a K-Kronecker-
Structured Matrix into a Low-Rank Tensor
of Order K

This section introduces a rearrangement from a matrix to a multidimensional
array that links the inference of the Kronecker structure for matrices to the
low-rank approximation problem for multidimensional arrays i.e. higher-order
tensors.

3.1 The Second Order Case

Consider a matrix D ∈ R
n1n2×m1m2 such that D = D1 ⊗ D2, where D1 ∈

R
n1×m1 and D2∈R

n2×m2 . Then one can define an operator R2 : Rn1n2×m1m2 →
R

n2m2×n1m1 which rearranges the elements of D in such way that the output
Dπ = R2(D) is a rank-1 matrix [18] given by

Dπ = R2(D) = vec(D2) vec(D1)T = vec(D2) ◦ vec(D1) (3)

It consists in vectorizing the jth-block in D to form the jth-column of R(D),
running through the blocks column-wise. This process is illustrated in Fig. 1.

Fig. 1. Rearrangement operation

Since the isomorphism R2 is linear, when applied to a (R, 2)-KS matrix
D=

∑R
r=1 Dr

1 ⊗ Dr
2, it outputs a rank-R matrix Dπ =

∑R
r=1 vec(Dr

2) ◦ vec(Dr
1).

3.2 Generalizing to Higher Order

Now, suppose a K-KS matrix D∈R
n1n2...nK×m1m2...mK given by

D = D1 ⊗ · · · ⊗ DK =
K⊗

k=1

Dk (4)
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with Dk ∈R
nk×mk for k ∈ {1, . . . ,K}.

We can generalize the rearrangement operator R2 (for 2-KS matrices) to an
operator RK : Rn1n2...nK×m1m2...mK → R

nKmK×···×n1m1 (for K-KS matrices)
in a recursive manner. For this, let’s suppose RK−1 known, such that

D =
K⊗

k=2

Dk ⇒ Dπ = RK−1(D) = vec(DK) ◦ · · · ◦ vec(D2), (5)

which outputs a (K−1)th-order rank-1 tensor for an input (K−1)-KS matrix,
and try to define RK from it.

Note that we can rewrite D = D1 ⊗ (D2 ⊗ · · · ⊗ DK) which means that D is
composed of n1 by m1 blocks given by d1(i, j) (D2 ⊗ · · · ⊗ DK) in which we can
directly apply RK−1. If we again run through all these blocks columnwise apply-
ing RK−1 and stacking the resulting (K−1)th-order tensors along dimension K,
we will obtain a (K)-order rank-1 tensor given by:

Dπ = RK(D) = (vec(DK) ◦ · · · ◦ vec(D2)) ◦ vec(D1)

Therefore, we can define a recursive algorithm to calculate RK which has
R2 defined in Sect. 3.1 as a base case. Actually, we can go even further and
decompose R2 recursively in the exact same way, in which case the base case R1

becomes a simple vectorization operation. The described procedure is illustrated
in Fig. 2 for the particular case of K =3.

Fig. 2. Rearrangement operation RK for K =3.

Just like in Sect. 3.1, note that for an input (R,K)-KS matrix, the rear-
rangement outputs a sum of R rank-1 tensors with factors vec(Di) sorted in the
reverse lexicographic order: Dπ =

∑R
r=1 vec(Dr

K) ◦ · · · ◦ vec(Dr
1).

3.3 Inverse Rearrangement

The inverse rearrangement R−1
K consists simply in switching the input and out-

put indexes of the previous operator so to yield D = R−1
K (Dπ). In practical

terms, the resulting recursive algorithm consists in progressively reconstructing
the blocks of D from their vectorized versions in Dπ. The base case is now a
matricization (unvec) operation.
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4 From SVD to CPD

Let D ∈ R
n×m and consider the following constrained approximation problem:

min
D̂∈CR

K

‖D̂ − D‖2F (6)

With the help of the rearrangement operators defined in Sect. 3, the task of
approximating any given matrix D comes down to low-rank approximation of
the Kth-order rearranged tensor Dπ = RK(D).

When the targeted structure is a (sum of) 2-Kronecker product(s), i.e. K =2,
we are interested in the low-rank approximation of Dπ = R2(D) which is still
a matrix (2nd-order tensor). This is easily achieved – and also optimally, from
Eckart-Young theorem – via the SVD.

The task gets harder if we want to generalize to a (sum of) K-Kronecker
product(s), since a low-rank approximation of an order-K tensor Dπ = RK(D) is
required. In this work, we propose to use the a Canonical Polyadic Decomposition
(CPD) [10] to approximate the tensor Dπ with a sum of R rank-one tensors.

{d̂r

k}r={1,...,R}
k={1,...,K} = CPD(Dπ, R) such that D̂

π
=

R∑

r=1

d̂
r

K ◦ · · · ◦ d̂
r

1 (7)

We can see that each composing D̂r
k can be obtained from the correspond-

ing vector d̂
r

k through a simple matricization operation: D̂r
k = unvec(d̂

r

k). The
resulting approximation is thus a (R,K)-KS matrix with factors D̂r

k.
The proposed procedure to obtain D̂ and its factors D̂r

k is summarized in
Algorithm 2, which we call HO-SuKro (Higher Order Sum of Kroneckers)
Approximation algorithm. It is parametrized by the targeted rank R and two
vectors n = [n1, . . . , nK ] and m = [m1, . . . ,mK ] with (nk × mk) being the
dimensions of the k-th factor D̂r

k (∀r ∈ {1, . . . , R}), such that n =
∏K

k=1 nk and
m =

∏K
k=1 mk.

Algorithm 2.
[
D̂ , {D̂r

k}r={1,...,R}
k={1,...,K}

]
= HO-SuKroApprox(D, R,n,m)

1: RK(D) = Rearrange(D,n,m) � Rearranging input matrix

2: {d̂r

k}r={1,...,R}
k={1,...,K} = CPD(RK(D), R) � CPD on rearranged tensor

3: {D̂r
k}r={1,...,R}

k={1,...,K} = unvec(d̂
r

k) � Recovering factors D̂r
k

4: return
[
D̂ =

∑R
r=1 D̂

r
1 ⊗ · · · ⊗ D̂r

K , {D̂r
k}r={1,...,R}

k={1,...,K}
]
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5 Experiments

To evaluate the proposed dictionary learning algorithm, we have performed some
color image denoising experiments following the set-up introduced in [6]. The test
images, 512×512×3 color images, are corrupted by a white Gaussian noise with
different standard deviations σ. In these experiments we thus have K = 3.

The dictionary is trained from a set of vectorized (6 × 6 × 3)-pixel patches
extracted uniformly from the noisy image itself and then used to reconstruct all
overlapping patches with a one-pixel step. The denoised image is obtained by
averaging the pixel values of the overlapping patches. The simulation parameters
are as follows: sample dimension (n) is 108 (with n1 × n2 × n3 = 6 × 6 × 3),
number of atoms (m) is 864 with m1 × m2 × m3 = 12 × 12 × 6), number of
training samples (N) is 4 × 104, convergence tolerance (tol) is ‖D‖F × 10−4 and
number of iterations (Nit) is 20.

The sparse coding step is performed by the OMP algorithm. The
PSNR of the reconstructed images are evaluated as follows: PSNR =
2552Npx/

(∑Npx

i=1 (yi−ŷi)2
)

where 255 is the maximum pixel value, Npx is the
total number of pixels on the input image, yi and ŷi are respectively the i-th
pixel value on the input and reconstructed image. The results are averaged over
five noise realizations.

Figure 3 shows the denoised image PSNR (in dB) as a function of the number
of Kronecker summing terms in the dictionary (i.e. the rank R of the rearranged
tensor). We compare our results to an unstructured dictionary with the same size
learned by the K-SVD [1] algorithm and to the 3D-ODCT analytic dictionary,
which is actually a 3-Kronecker dictionary as well (although not trained from
the data). 3D-ODCT is also used for initializing the proposed HO-SuKro1.
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Fig. 3. PSNR vs. number of separable terms (R) for the mandrill image.

Compared to the fixed 3D-ODCT dictionary, our algorithm achieves consid-
erably better denoising results, even for one single separable term (R = 1) which

1 The 1-D n×m overcomplete DCT dictionary, as defined in [14], is a cropped version
of the orthogonal m × m DCT matrix. The K-dimensional ODCT is the Kronecker
product of K 1-D ODCT.
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is the exact same structure as the 3D-ODCT. It remains slightly inferior to a K-
SVD dictionary in most cases, but with the advantage of the reduced application
complexity due to the Kronecker structure (see Table 1). The chosen structure
proved well suited to this kind of application, since its introduction compromised
very little the performance. Actually, it even enhanced the denoising capabilities
in higher noise scenarios, which we attribute to an overfitting prevention due to
the structure constraint. The addition of separable terms tends to improve the
performance until a certain point after which it saturates – or even deteriorates
at higher noise, indicating the onset of overfitting.

Table 1 shows the theoretical complexity savings provided by the Kronecker
structure for matrix vector operations as well as its storage cost compared to an
unstructured dictionary. The gains are around one and two orders of magnitude
in this case. Obviously, for the complexity gains to be observed in practice, the
matrix-vector multiplications should be performed according to Eq. (1).

Table 1. Complexity costs (for matrix-vector multiplications) and storage costsa.

HO-SuKro Unstructured Ratio
(Unstructured/HO-SuKro)

Complexity (# operations) 12960 × R 186624 14.4/R

Storage (# parameters) 162 × R 93312 576/R
aComplexity cost for HO-SuKro is trivially obtained considering Eq. (1). Storage cost
is the total number of elements in all factors: R(

∑
k nkmk).

In Fig. 4 we evaluate the robustness of the learning algorithm to a reduction
on the training set size. It shows the ΔPSNR, defined as the difference with
respect to the PSNR obtained by ODCT.
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Fig. 4. PSNR vs. Number of training samples for the mandrill image.

Note that the Kronecker-structured dictionaries become more competitive as
the size of the training set decreases, to the point of consistently outperforming
K-SVD for small enough training sets. This result goes in line with the theoretical
results in [15] suggesting a smaller sample complexity for KS dictionaries.
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6 Conclusion

To improve on storage, robustness to sample size and computational complex-
ity, a new dictionary learning model was introduced where the dictionary is
constrained as a sum of R Kronecker products of K terms. Such a constraint
arises naturally when the original data are contained in a Kth-order tensor,
such as a collection of color images. We have drawn a parallel between this sum
of Kroneckers constraint and the tensor Canonical Polyadic Decomposition, the
latter being used as a projection algorithm for imposing the structure constraint.
Encouraging results are shown on color image denoising, and future works will
focus on properly exploiting the Kronecker structure to accelerate the training
phase of the dictionary, which is currently quite time consuming (about one
order of magnitude slower than the K-SVD, as a comparison). Nevertheless, it
remains interesting for cases where the dictionary is to be repeatedly applied
afterwards.
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Abstract. We investigate the optimization of two probabilistic gener-
ative models with binary latent variables using a novel variational EM
approach. The approach distinguishes itself from previous variational
approaches by using latent states as variational parameters. Here we
use efficient and general purpose sampling procedures to vary the latent
states, and investigate the “black box” applicability of the resulting opti-
mization approach. For general purpose applicability, samples are drawn
from approximate marginal distributions as well as from the prior distri-
bution of the considered generative model. As such, sampling is defined
in a generic form with no analytical derivations required. As a proof of
concept, we then apply the novel procedure (A) to Binary Sparse Cod-
ing (a model with continuous observables), and (B) to basic Sigmoid
Belief Networks (which are models with binary observables). Numerical
experiments verify that the investigated approach efficiently as well as
effectively increases a variational free energy objective without requiring
any additional analytical steps.

Keywords: Maximum likelihood · Variational EM
Generative models

1 Introduction

The use of expectation maximization (EM) for advanced probabilistic data mod-
els requires approximations because exact E-steps (computing full posteriors) are
typically intractable. Many models of recent interest have binary latents [1–4], and
for such models these intractabilities are primarily computational: exact E-steps
can be computed but they scale exponentially with the number of latents. To over-
come intractabilities for models with binary latents there are typically two types
of approaches applied: sampling approaches or variational EM with the latter hav-
ing been dominated by factored variational approaches in the past [e.g. 5]. Varia-
tional approaches and sampling have also often been combined [4,6–8] to leverage
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the advantages of both methods. However, given a generative model, both approx-
imations require often cumbersome derivations either to obtain efficient posterior
samplers or to obtain update equations for variational parameter optimization.
The question how procedures can be defined that automatize the development of
learning algorithms for generative models has therefore shifted into the focus of
recent research [4,9–12]. In this paper, we make use of truncated approximations
to EM which have repeatedly been applied before [4,13,14]. Here we show how
novel theoretical results on truncated variational distributions [15] can be used
to couple variational EM and sampling exceptionally tightly. This coupling then
enables “black box” applicability.

2 Truncated Posteriors and Sampling

Let us consider generative models with H binary latent variables, s = (s1, . . . , sH)
with sh ∈ {0, 1}. Let p(s,y |Θ) be a model’s joint probability with Θ denoting
its parameters. Truncated approximations have been motivated by the observa-
tion that the exponentially large sums over states required for expectation values
w.r.t. posteriors are typically dominated by summands corresponding to very few
states. If for a given data point y (n) these few states are contained in a set K(n)

, we
can define a posterior approximation as follows [e.g., as in 4,13]:

q(n)(s;K, Θ) =
p(s |y (n), Θ) δ(s ∈ K(n)

)
∑

s ′∈K(n) p(s ′ |y (n), Θ)
, (1)

where δ(s ∈ K(n)
) = 1 if K(n)

contains s and zero otherwise. It is straight-
forward to derive expectation values w.r.t. these approximate posteriors simply
by inserting (1) into the definition of expectation values and by multiplying
numerator and denominator by p(y (n) |Θ), which yields:

〈g(s)〉q(n) =

∑
s∈K(n) p(s,y (n) |Θ) g(s)

∑
s ′∈K(n) p(s ′,y (n) |Θ)

(2)

where g(s) is a function of the hidden variables. As the dominating summands
are different for each data point y (n), the sets K(n)

are different. If a set K(n)

now contains those states s which dominate the sums over the joints w.r.t. the
exact posterior, then Eq. 2 is a very accurate approximation.

Truncated posterior approximations have successfully been applied to a num-
ber of elementary and more advanced generative models, and they do not suffer
from potential biases introduced by posterior independence assumptions. Pre-
viously, the sets K(n)

were defined based on sparsity assumptions and/or latent
preselection [13,16]. The approach followed here, in contrast, uses sets K(n)

which
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contain samples from model and data dependent distributions. By treating the
truncated distribution (1) as variational distributions within a free energy frame-
work [15], we can then derive efficient procedures to update the samples in K(n)

such that the variational free energy is always monotonically increased. For this
we use the following theoretical results: (A) We use that the M-step equations
remain unchanged if instead of full posteriors the truncated posteriors (1) are
used; (B) We make use of the result that after each M-step the free energy
corresponding to truncated variational distributions is given by the following
simplified and computationally tractable form:

F(K, Θ) =
∑

n log
( ∑

s∈K(n) p(s,y (n) |Θ)
)
, (3)

where K = (K(1), . . . ,K(N)). The variational E-step then consists of finding a
set Knew which increases F(K, Θ) w.r.t. K. For any larger scale multiple-cause
model we can not exhaustively iterate through all latent states. We therefore here
seek to find new sets K̃ using sampling such that the free energy is increased:
F(K̃, Θ) > F(K, Θ). To keep the computational demand limited, we will take
the sets K and K̃ to be of constant size after each E-step by demanding |K(n) | =
|K̃(n)| = S for all n (where S can be relatively small for most data). Instead of
explicitly computing and comparing the free-energies (3) for K and K̃, we can
use a comparison of joint probabilities p(s, y (n) |Θ) as a criterion for free energy
increase. The following can be shown [15]:

For a replacement of s ∈ K(n)
by a new state snew �∈ K(n)

the free energy
F(K, Θ) is increased if and only if

p(snew, y (n) |Θ) > p(s, y (n) |Θ) , (4)

Algorithm 1. Sampling-based TV-E-step

for n = 1, . . . , N do

draw M samples s ∼ p
(n)
var(s);

define K(n)

new to contain all M samples;
set K(n)

= K(n) ∪ K(n)

new;
remove those (|K(n) | − S) samples s ∈ K(n)

with the lowest p(s, y (n) |Θ);

i.e., the free energy is
guaranteed to increase if
we replace, e.g., the state
with the lowest joint in
K(n)

by a newly sampled
state snew �∈ K(n)

with
a higher joint. Instead of
comparing single joints,
a computationally more
efficient procedure is to
use batches of many newly sampled states, and then to use criterion (4) to
increase F(K, Θ) as much as possible. Such a procedure is given by Algorithm1:
For each datum n, we first draw M new samples from a yet to be specified dis-
tribution p

(n)
var(s). These samples are then united with the states already in K(n)

.
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Of this union, we then take the S states with highest joints to define the new
state set K(n)

. The last step selects because of (4) the best possible subset of the
union. Furthermore, the selection of the S states with largest joints can be solved
by selection algorithms of linear time complexity, i.e., in O(M + S) time in our
case. Instead of selecting the S largest joints, we can also remove the (|K(n) |−S)
lowest ones (last line in Algorithm 1). For any distribution p

(n)
var(s), Algorithm 1

is guaranteed to monotonically increase the free energy F(K, Θ) w.r.t. K.

3 Posterior, Prior, and Marginal Sampling

While the partial E-step of Algorithm1 monotonically increases the free energy
for any distribution p

(n)
var(s) used for sampling, the specific choice for p

(n)
var(s) is

of central importance for the efficiency of the procedure. If the distribution is
not chosen well, any significant increase of F(K, Θ) may require unreasonable
amounts of time, e.g., because new samples which increase F(K, Θ) are sampled
too infrequently. By considering Algorithm1, the requirement for p

(n)
var(Θ) is to

provide samples with high joint probability p(s, y (n) |Θ) for a given y (n). The
first distribution that comes to mind for p

(n)
var(Θ) is the posterior distribution

p(s |y (n), Θ). Samples form the posterior are likely to have high posterior mass
and therefore high joint mass relative to the other states because all states
share the same normalizer p(y (n) |Θ). On the downside, however, sampling from
the posterior may not be an easy task for models with binary latents and a
relatively high dimensionality as we intend to aim at here. Furthermore, the
derivation of posterior samplers requires additional analytical efforts for any new
generative model we apply the procedure to, and requires potentially additional
design choices such as definitions of proposal distributions. All these points are
contrary to our goal of a ‘black box’ procedure which is applicable as generally
and generically as possible. Instead, we therefore seek distributions p

(n)
var(Θ) for

Algorithm 1 that can efficiently optimize the free energy but that can be defined
without requiring model-specific analytical derivations. Candidates for p

(n)
var(Θ)

are consequently the prior distribution of the given generative model, p(s |Θ),
or the marginal distribution. A prior sampler is usually directly given by the
generative model but may have the disadvantage that finally new samples only
very rarely increase the free energy because the prior sampler is independent of
a given data point (only the average over data points has high posterior mass).
Marginal samplers, on the other hand, are data driven but the computation of
activation probabilities p(sh = 1 |y (n), Θ) is unfortunately not computationally
efficient. To obtain data-driven but efficient samplers, we will for our purposes,
therefore, use approximate marginal samplers.

1st Approximation. First observe that we can obtain an efficiently computable
approximation to a marginal sampler by using the truncated distributions q(n)(s)
in (1) themselves. For binary latents sh we can approximate:

p(sh = 1 |y (n), Θ) = 〈sh〉p(s | y (n),Θ) ≈ 〈sh〉q(n)(s) , and (5)
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accordingly p(sh = 0 |y (n), Θ). Because of the arguments given above the expec-
tations (2) w.r.t. q(n)(s) are efficiently computable using (2) with g(s) = s.
Using (5) we can consequently define for each latent h an approximation of the
marginal p(sh = 1 |y (n), Θ). Given a directed generative model, no derivations
are required to efficiently generate samples from this approximation because
the joint probabilities to estimate p(sh = 1 |y (n), Θ) using (2) can directly be
computed. The truncated marginal sampler defined by Eq. 5 becomes increas-
ingly similar to an exact marginal sampler the better the truncated distributions
approximate the exact posteriors.

2nd Approximation. To further improve efficiency and convergence times, we
optionally apply a second approximation by using the approximate marginal
distributions (Eq. 5) as target objective for a parametric function fh(y (n);Λ)
which approximates the truncated marginal. A parametric function from data
to marginal probabilities of the latents has the advantage of modeling data simi-
larities by mapping similar data to similar marginal distributions. The mapping
incorporates information across the data points, which can facilitate training
and, e.g., avoids more expensive K(n)

updates of some data points due to bad
initialization. The mapping fh(y (n);Λ) is estimated with the training data and
the current approximate marginal qmar(sh = 1 |y, Θ) defined by (5) with (2).
For simplicity, we use a Multi-Layer Perceptron (MLP) for the function mapping
and trained with cross-entropy. We use a generic MLP with one hidden layer. As
such, the MLP itself is independent of the generative model considered but opti-
mized for the generic truncated approximation (5) which contains the model’s
joint. The idea of using a parametric function to approximate expectations w.r.t.
intractable posteriors is an often applied technique [e.g., 17,18, and refs therein].

Algorithm 2. TVS.

initialize model parameters Θ;
for all n init K(n)

such that |K(n) | = S;
set Mp; (# samples from prior distribution)
set Mq; (# samples from marginal distr.)
repeat

update Mp and Mq (sampler adjustment)
for (n = 1, . . . , N) do

draw Mp samples from p(s | Θ) → K(n)

p ;

draw Mq samples from q
(n)
mar(s; Θ) → K(n)

q ;

K(n)
= K(n) ∪ K(n)

p ∪ K(n)

q ;
remove those (|K(n) | − S) elements
s ∈ K(n)

with lowest p(s,y (n) |Θ);

K = (K(1), . . . ,K(N));
use M-steps with (2) to change Θ;

until Θ has sufficiently converged ;

For our experiments
we combine prior and
(approx.) marginal sam-
pling to suggest new
variational states. The
easy to use prior sam-
plers are not data driven
and rather represent
exploration. Marginal
sampling, on the other
hand, is rather an
exploitation strategy that
produces good results
when sufficiently much
from the data is already
known. Mixing the two
has turned out best
for our purposes. Poste-
rior samplers do require
additional derivations but,
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to our experience so far, are also not necessarily better than combined
prior/marginal sampling in optimizing the free energy.

Before we consider concrete generative models, let us summarize the general
novel procedure in the form of the pseudo code given by Algorithm2. First, we
have to initialize the model parameters Θ and the sets K(n)

. While initializing
Θ can be done as for other EM approaches, one option for an initialization of
K(n)

would be the use of samples from the prior given Θ (more details are given
below). The inner loop (the variational E-step) of Algorithm2 is then based on a
mix of prior and marginal samplers, and each of these samplers is directly defined
in terms of a considered generative model, no model-specific derivations are used.
The same does not apply for the M-step but we will consider two examples how
this point can be addressed: (A) either by using well-known standard M-step
or (B) by applying automatic differentiation. Algorithm2 will be referred to as
truncated variational sampling (TVS).

4 Applications of TVS

Exemplarily, we consider two generative models which are complementary in
many aspects.

Binary Sparse Coding. In the first example we will consider dictionary learn-
ing – a typical application domain of variational EM approaches and sampling
approaches in general. Probabilistic sparse coding models are not computa-
tionally tractable and common approximations such as maximum a-posteriori
approximations can result in suboptimal solutions. Factored variational EM as
well as sampling approaches have therefore been routinely applied to sparse cod-
ing. Of particular interest for our purposes are sparse coding models with discrete
or semi-discrete latents [e.g. 1,4,19,20], where binary sparse coding [BSC; 19,20]
represents an elementary example.

BSC assumes independent and identically distributed (iid) binary latent vari-
ables following a Bernoulli prior distribution, and it uses a Gaussian noise model:

p(s |Θ) =
∏H

h=1 πsh (1 − π)1−sh , p(y | s, Θ) = N (y;Ws, σ21) , (6)

where π ∈ [0, 1] and where Θ = (π,W, σ2) is the set of model parameters.
As TVS is an approximate EM approach, let us first consider exact EM which

seeks parameters Θ that optimize the data likelihood for the BSC data model
(6). Parameter update equations are canonically derived and given by [e.g. 20]:

π = 1
N

∑N
n=1

∑H
h=1〈sh〉qn ,W =

(∑N
n=1 y

(n)〈s〉T
qn

)( ∑N
n=1〈ssT 〉qn

)−1

(7)

σ2 = 1
ND

∑N
n=1〈‖y (n) − Ws‖2〉qn (8)

where the qn are equal to the exact posteriors for exact EM, qn = p(s |y (n), Θ).
A standard variational EM approach for BSC would now replace these pos-

teriors by variational distributions qn. Applications of (mean-field) variational
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distributions as, e.g., applied by [19], entails (A) a choice which family of distri-
butions to use; and (B) additional derivations in order to derive update equations
for the introduced variational parameters. Also the application of sampling based
approaches would require derivations. The same is not the case for the applica-
tion of TVS (Algorithm 2). In order to obtain a TVS learning algorithm for BSC,
we do (for the update equations) just have to replace the expectation values in
Eqs. 7 to 8 by (2). For the E-step, we then use the generative model description
(Eq. 6) in order to update the sets K(n)

using prior and approximate marginal
distributions as described by Algorithm2.

Artificial Data. Firstly, we verify and study the novel approach using artificial
data generated by the BSC data model using ground-truth generating param-
eters Θgt. We use H = 10 latent variables, sh, sampled independently by a
Bernoulli distribution parameterized by πgt = 0.2. We set the ground truth
parameters for the dictionary matrix, W ∈ R

D×H , to appear like vertical and
horizontal bars [compare 20] when rasterized to 5 × 5 images, see Fig. 1, with
a value of 10 for a pixel that belongs to the bar and 0 for a pixel that belongs
to the background. We linearly combine the latent variables with the dictionary
elements to generate a D = 25-dimensional datapoint, y, to which we add mean-
free Gaussian noise with standard deviation σgt = 2.0. In this way we generate
N = 10 000 datapoints that form our artificial dataset. We now use TVS for
BSC to fit another instance of the BSC model to the generated data. The model
is initialized with a noise parameter σ equal to the average standard deviation of

Fig. 1. Linear Bars Test. A. A subset of the generated datapoints. B. The evolu-
tion of the dictionary over TVS iterations. Note that permutations of the dictionary
elements would yield the same likelihood. C. The ground truth dictionary. D. The evo-
lution of free energy over TVS iterations plotted next to the exact log-likelihood (left).
Evolution of the model standard deviation plotted next to the ground truth (middle).
Evolution of the expected number of active units πH plotted against the ground truth
(right).
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each observation in the data y(n), the prior parameter is initialized as π = 1/H
were the latent variable H = 10 is maintained from the generating model. We
initialize the columns of the dictionary matrix with the mean datapoint plus
mean Gaussian samples with a standard deviation σ/4.

We train the model using the TVS algorithm for 200 TV-EM iterations main-
taining the number of variational states at |K(n) | = S = 64 for all datapoints
throughout the duration of the training. We use Mq = 32 samples drawn from
the marginal distribution (only 1st approximation) and Mp = 32 samples drawn
from the prior to vary K according to Algorithm 2. The evolution of the param-
eters during training is presented in Fig. 1. We were able to extract very precise
estimates of the ground truth parameters of the dataset. Convergence is faster
for the dictionary elements W while we finally also achieve very good estimates
for the noise scale σ and prior π. We also appear to achieve a very close approxi-
mation of the exact log-likelihood using the truncated free energy (Fig. 1), which
shows that our free energy bound is very tight for this data.

Image Patches. For training, we now use N = 100 000 patches of size D =
16×16 from a subset of the Van Hateren image dataset [21] that excludes images
containing artificial structures. We used the same preprocessing as in [22]. We
trained BSC with TVS for 2000 EM iterations and used a sampler adjustment
(see Algorithm 2): the first 100 iterations used Mp = 200 samples from the prior
and Mq = 0 samples from the marginal distribution (only 1st approximation);
from iteration 100 to iteration 200 we then linearly decreased the number of prior
samples to Mp = 0 and increased the number of marginal samples to Mq = 200
(at all times Mp +Mq = 200). Figure 2 shows the basis functions W to converge
to represent, e.g., Gabor functions [compare 20].

Fig. 2. Image Patches. A. The dictionary at convergence. B. The evolution of the
free energy over TVS iterations. C. The evolution of the model standard deviation
over TVS iterations. D. Evolution of the expected number of active units πH over
TVS iterations.
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Sigmoid Belief Networks. The second example we will consider here is a typ-
ical representative of a Bayesian Network: Sigmoid Believe Networks [SBNs; 23].
While sparse coding approaches are applied to continuous (Gaussian distributed)
observed variables, SBNs have binary observed and hidden variables. A further
difference is that SBNs require gradients for parameter updates (partial M-steps),
while parameter updates of sparse coding models including BSC have well-known
updates that fully maximize a corresponding free energy (full M-steps). SBNs thus
serve as an example complementary to BSC, and are well suited for our purposes
of studying generality and effectiveness of TVS.

For simplicity, we will here consider an SBN with the same graphical model
architecture as BSC: one observed and one hidden layer. The SBN generative
model is then given by:

p(sh) =
∏

h πsh

h (1 − πh)(1−sh), p(y|s) =
∏

d gyd

d (1 − gd)(1−yd) (9)

where πh parameterizes the prior distribution and where gd = σ(
∑

h Wdhsh+bd)
is a post-linear non-linearity with sigmoid function σ.

In general, inference for SBNs is challenging because of potentially complex
dependencies among its variables. Because of this, direct applications of standard
variational approaches [e.g. 23] are challenging, and also popular recent varia-
tional methods applying reparameterization [24,25] are not directly applicable.
Also (variational) sampling approaches require additional mechanisms, e.g., the
score function based approach needs to reduce the variance of estimations [3].

Artificial Data. As for BSC, the optimization of SBNs by applying Algorithm2
does not require additional derivations. We again first use a bars test as for BSC
but the linearly superimposed bars now go through the sigmoid function and
produce binary representations, i.e., generation according to (9). We optimized
an SBN with H = 10 hidden units on N = 2000 data points of such a bars test.

Fig. 3. Application of a shallow SBN with TVS to artificial data (bars test). A Ten
examples of the training data points. B Visualization of the learned weight matrix W
of the shallow SBN. All bars are discovered, one for each hidden unit. C Learning curve
of the free energy. The dashed green line shows the true log likelihood of the SBN with
the parameters used for generating the training data.
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For Algorithm 2 we used |K(n) | = S = 50 and very few samples for variation were
found sufficient (Mq = Mp = 5). Results are shown in Fig. 3. The free energy
(3) converges to even somewhat higher values than the (here still computable)
ground-truth likelihood because of the limited size of training data.

Table 1. Comparison of different models with two layers and different numbers of
latents H on binarized MNIST. (∗) taken from [2], (�) from [3], (†) from [26], (‡)
from [27]. For TVS the final free energy on the test set can directly be computed by
iterating the TV-E-step. The right column reports these values as the estimated test
log-likelihood (log-LL). Hence, for TVS the log-LL values are a lower bound estimation
while results by [26,27] are from Monte Carlo estimations (and not necessarily lower
bounds). For SBNs with 200 hidden units, we observed that TVS slightly out-performs
NVIL, and its performance is comparable to RWS. The results of [2] can not directly
serve as a comparison of variational approaches (additional knowledge in the form of
sparse priors were used).

Model H Approx. log-LL

SBN (TVS) 100 −121.91

SBN (TVS) 200 −111.23

SBN (Gibbs)∗ 200 −94.3

SBN (VB)∗ 200 −117.0

SBN (NVIL)� 200 −113.1

SBN (WS)† 200 −120.7

SBN (RWS)† 200 −103.1

SBN (AIR)‡ 200 −100.9

Binarized MNIST. Finally we apply SBNs to the Binarized MNIST dataset
(downloaded from [28], converted as in [29]). We used Algorithm 2 with |K(n) | =
S = 50, Mp = 10, Mq = 20 (no sampler adjustment) and truncated marginal dis-
tributions approximated using an MLP with one hidden layer of 500 hidden units
and tanh activation (2nd Approximation). Table 1 compares SBNs optimized by
TVS with other models and optimization approaches.

5 Conclusion

The TVS approach studied here is different from previous approaches [6,9–12]
as it does not rely on a parametric form of a variational distribution which is
then, e.g., sampled from to estimate parameter updates. In contrast, for TVS,
the drawn samples themselves define the variational distribution and act as its
variational parameters. Changing the used samples changes the variational dis-
tribution. TVS is thus by definition directly coupling sampling and variational
EM which in conjunction with its ‘black box’ applicability is the main contri-
bution of this study. One benefit of the tight coupling seems to be that none of
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the diverse variance reduction techniques (which were central to BBVI or NVIL)
are required. TVS can thus be considered as the most directly applicable ‘black
box’ approach. We have here shown a proof of concept. More advanced models
and further algorithmic improvments will be the subject of future studies.
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Abstract. Structured low-rank approximation is used in model reduc-
tion, system identification, and signal processing to find low-complexity
models from data. The rank constraint imposes the condition that the
approximation has bounded complexity and the optimization criterion
aims to find the best match between the data—a trajectory of the
system—and the approximation. In some applications, however, the data
is sub-sampled from a trajectory, which poses the problem of sparse
approximation using the low-rank prior. This paper considers a modified
Hankel structured low-rank approximation problem where the observed
data is a linear transformation of a system’s trajectory with reduced
dimension. We reformulate this problem as a Hankel structured low-rank
approximation with missing data and propose a solution methods based
on the variable projections principle. We compare the Hankel structured
low-rank approximation approach with the classical sparsity inducing
method of �1-norm regularization. The �1-norm regularization method is
effective for sum-of-exponentials modeling with a large number of sam-
ples, however, it is not suitable for damped system identification.

Keywords: Low-rank approximation · Hankel structure
Sparse approximation · Missing data estimation
Sum-of-exponentials modeling · �1-norm regularization

1 Introduction

The problem considered is defined as follows: Given

– full row rank matrix A ∈ R
ng × np with ng < np,

– vector of measurements b,
– structure specification S : Rnp → R

m×n, and
– rank constraint r,
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minimize over p̂ ‖b − Ap̂‖2
subject to rank

(

S (p̂)
) ≤ r.

(1)

The measurements b are obtained as

b = Ap̄ +˜b,

where p̄ is a vector that we aim to estimate (the “true value”) and ˜b is zero
mean Gaussian measurement noise with covariance matrix that is a multiple of
the identity. The prior knowledge that makes the estimation of p̄ a well posed
problem is that it is sparse in the sense that the matrix S (p̄) has low rank:

rank
(

S (p̄)
) ≤ r. (2)

Therefore, we impose the low-rank prior knowledge on the estimate p̂ in prob-
lem (1).

Problem (1) is a structured low-rank approximation problem. Its novel ele-
ment with respect to related problems considered in the literature [1–4,8,10] is
that a subset of ng samples are observed. In structured low-rank approximation
problem formulations considered in the literature, all np samples are available
for the estimation of p̄. Our main result, presented in Sect. 2, is a reformula-
tion of problem (1) as an equivalent structured low-rank approximation problem
with missing data [8]. Section 3 presents a solution method based on the variable
projection principle [5].

Section 4 considers the special case of (1) when the structure S is Hankel.
Hankel structured low-rank approximation has applications in computer algebra,
system theory, and signal processing. In the case of a Hankel matrix structure,
the rank constraint (2) is equivalent to the constraint that the to-be-estimated
vector p̄ satisfies a recursive relation [6,7]

a0pt + a1pt+1 + · · · + arpt+r = 0, for t = 1, . . . , np − r.

Equivalently, (p̄1, . . . , p̄np
) is a sum-of-polynomials-times-damped-exponentials

discrete-time signal [9]. In system theoretic terms, (p̄1, . . . , p̄np
) is the output

of a discrete-time autonomous linear time-invariant system of order at most
r. Therefore, (1) can be viewed as the problem of identifying an autonomous
linear time-invariant system from partial noisy measurements that are a linear
transformation of a system’s output.

We compare the approach of solving the autonomous linear time-invariant
system identification problem via (1) with method based on �1-norm regular-
ization. This latter approach imposes sparsity on the frequency domain repre-
sentation of the signal. Indeed, an r-sparse frequency domain signal is a sum of
r complex exponentials in the time-domain. However, the frequencies are con-
strained to belong to the grid { kω0 | k ∈ Z }, where ω0 := 2π/np. Therefore,
the accuracy of the �1-norm regularization method for autonomous linear time-
invariant system identification is limited. Another essential difference between
(1) and the �1-norm approach is that the �1-norm approach can not deal with
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damped exponentials and polynomials. Indeed, damping gives rise to “skirts” in
the frequency domain, so that the signal is no longer k-sparse in the frequency
domain, however, it is sparse in the sense of (2). Section 5 shows numerical exam-
ples.

2 Link to Missing Data Estimation

We use the notation p1:ng for the subvector
[

p1 · · · png

]� consisting of the first
ng elements of p.

Theorem 1. Problem (1) is equivalent to the structured low-rank approximation
problem with missing values

minimize over p̂′ ‖b − p̂′
1:ng

‖2
subject to rank

(

S ′(p̂′)
)

,
(3)

where
S ′(·) := S (V ·) and p̂′ = V −1p̂,

with a nonsingular matrix V , such that AV =
[

Ing
0
]

.

Proof. Using the change of variables p̂′ = V −1p̂, where V is a nonsingular matrix,
problem (1) becomes

minimize over p̂′ ‖b − A′p̂′‖2
subject to rank

(

S ′(p̂′)
) ≤ r,

(4)

where A′ = AV and S ′(·) := S (V ·). By the full row rank assumption, we can
choose V , so that

A′ = AV =
[

Ing 0
]

. (5)

With this choice of V , problem (4) becomes (3).

Note that if the original structure S is affine, the new structure S ′ is also
affine.

Example 1. Let A consists of the first ng rows of the np × np discrete cosine
transform matrix C. Since C is orthonormal, we have that V = C� satisfies
condition (5). The change of variables p̂′ = V �p̂ then transforms the problem
into the frequency domain.

3 Solution Method

Next, we present a local optimization method for solving problem (3). First, we
represent the rank constraints in the kernel form

rank
(

S (p̂)
) ≤ r ⇐⇒ there is R ∈ R

(m−r)× m, such that
RS (p̂) = 0 and R is full row rank. (6)
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Then, we use the variable projection principle to eliminate p̂, which results in a
nonlinear least-squares in R.

Representing the constraint of (3) in the kernel form (6), leads to the double
minimization problem

minimize over R ∈ R
(m−r)× m f(R) subject to R is full row rank, (7)

where
f(R) := min

p̂
‖p − p̂‖2 subject to RS (p̂) = 0. (8)

The computation of f(R), called “inner” minimization, is over the estimate p̂ of p.
The minimization over the kernel parameter R ∈ R

(m−r)×m is called “outer”.
The inner minimization problem is a projection of the columns of S (p) onto
the model B := ker(R). Note that, the projection depends on the parameter R,
which is the variable in the outer minimization problem. Thus, the name “vari-
able projection”.

The general linear structure

S : Rnp → R
m × n, S (p̂) =

np
∑

k=1

Skp̂k (9)

is specified by the np matrices S1, . . . , Snp
∈ R

m × n. Let

S :=
[

vec(S1) · · · vec(Snp
)
] ∈ R

mn × np ,

so that
vec

(

S (p̂)
)

= Sp̂, or S (p̂) = vec−1(Sp̂). (10)

Define the change of variables

p̂ �→ Δp = p − p̂.

Then, the constraint of the optimization problem becomes

RS (p̂) = 0 ⇐⇒ RS (p − Δp) = 0
⇐⇒ RS (p) − RS (Δp) = 0

⇐⇒ vec
(

RS (Δp)
)

= vec
(

RS (p)
)

⇐⇒ [

vec(RS1) · · · vec(RSnp
)
]

︸ ︷︷ ︸

G(R)

Δp = G(R)p
︸ ︷︷ ︸

h(R)

⇐⇒ G(R)Δp = h(R).

Assuming that
np ≤ (m − r)n (11)

the inner minimization problem (8) with respect to the new variable Δp is a
generalized linear least norm problem

f(R) = min
Δp

‖Δp1:ng‖2 subject to G(R)Δp = h(R). (12)
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(12) is not a standard least norm problem due to the presence of missing data
(or equivalently singularity of the cost function), however, it has an analytic
solution [8, Theorem 2.1].

For the outer minimization problem in (7), i.e., the minimization of M over R,
subject to the constraint that R is full row rank, we use general purpose con-
strained local optimization methods [11], representing the full row rank con-
straint as RR� = Im−r. This is a nonconvex optimization problem, so that
there is no guarantee that a globally optimal solution is found.

4 Hankel Structured Sparse Approximation Problems
and �1-norm Regularization

In this section, we consider the special case of problem (1) when the structure
S is Hankel

Hm(p) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p1 p2 p3 · · · pnp−m+1

p2 p3 . .
.

pnp−m+2

p3 . .
.

pnp−m+3

...
...

pm pm+1 · · · · · · pnp

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

By the result of Theorem 1, problem (1) is a Hankel structured low-rank approx-
imation with missing data. In turn, Hankel structured low-rank approximation is
a linear time-invariant system identification problem with missing data. There-
fore, equivalently, we consider a problem of system identification with missing
data.

An alternative approach for missing data estimation with sparsity prior is �1-
norm regularization. Sparsity of a signal in the frequency domain means that the
signal is a sum of a few exponentials. In the paper, we consider real-valued time-
domain signals, so that the frequency domain signal has an additional symmetry
property.

A signal that is a sum of n-complex exponentials can be represented as an
output of an autonomous linear time-invariant system of order n. Alternatively,
such a signal can be represented as the impulse response of a n-th order lin-
ear time-invariant system. Representing exactly or approximately a given signal
as an output of an autonomous linear time-invariant system or as the impulse
response of an input/output linear time-invariant system are fundamental prob-
lems in system theory and system identification.

Next, we explain the similarities and differences between sparse approxima-
tion by �1-norm minimization in the frequency domain and sparse approximation
by Hankel structured low-rank approximation. The underlying assumption for
the �1-norm minimization problem is that the data b is generated as

b = Dx +˜b, (14)
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where D is a ng × np matrix with ng < np, x is k-sparse with k 	 np, and ˜b
is a zero mean Gaussian random vector with covariance matrix σ2I. Moreover,
it is assumed that D consists of the first ng rows of the inverse discrete cosine
transform matrix C�. Due to the properties of D (submatrix of the inverse
discrete cosine transform) and x (k-sparse vector), b̄ := Dx is a sum of k cosines
with frequencies on the grid

0
2π

np
, 1

2π

np
, 2

2π

np
, . . . (np − 1)

2π

np
. (15)

Assuming that enough observations are available, namely

ng ≥ 2r + 1, where r := 2k,

the Hankel matrix Hr+1(b̄) with r + 1 rows and ng − r columns, constructed
from b̄ has rank r. Vice versa,

rank
(

Hr+1(b̄)
) ≤ r (16)

implies that b̄ is a sum of at most 2n polynomials-times-damped-exponentials.
Note that (16) does not impose a constraint that the frequencies are on (15);

they can be any real numbers in the interval [0, 2π). Also (16) allows damped
cosines while the model b̄ = Dx does not allow damping. Therefore, (16) is not
equivalent to b̄ = Dx with x k-sparse. For large values of np, (15) approximates
“well” the interval [0, 2π).

5 Numerical Examples

In this section we consider the Hankel structured low-rank approximation prob-
lem

minimize over ̂b ‖b − Ap̂‖2
subject to rank

(

Hr+1(p̂)
) ≤ r

(17)

First, we specialize the variable projections method described in Sect. 3 to the
Hankel structured case and demonstrate on a simulation example that the result-
ing algorithm allows us to separate signal from noise. Then, we compare numer-
ically the variable projections method with the �1-norm regularization method
in setup of (14).

Autonomous System Identification from Data With Missing Values

In the case of Hankel structure (13), the matrices Sk in (9) are

S1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 · · · 0
0 1 0 · · · 0
1 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, . . . ,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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and the G(R) matrix in (12) is

G(R) =

⎡

⎢

⎢

⎢

⎣

R0 R1 · · · Rr

R0 R1 · · · Rr

. . .
. . .

. . .

R0 R1 · · · Rr

⎤

⎥

⎥

⎥

⎦

,

where all missing elements are zeros. Fast (O(np)) implementation of the variable
projection algorithm, taking into account the structure of G(R) for the cost
function and Jacobian evaluation is presented in [12].

Example 2. A random second order (r = 2) autonomous linear time-invariant
system is generated in Matlab by the function drss and a random trajectory p̄
of the system with np = 50 samples is then generated. The sampling matrix A is
[

Ing 0
]

, where ng = 20, i.e., only the first 40% of the samples of p̄ are observed.
Finally, zero mean, white, Gaussian noise with standard deviation s is added to
the true samples.

Figure 1 shows the relative estimation error

e := ‖b̄ − p̂1:ng‖2/‖b̄‖2
from a Monte Carlo experiment with standard deviations varying in the interval
[0, 0.1] (signal-to-noise ratio varying from 46 dB to infinity). The result shows
that the low-rank prior allows us to filters noise from the data. Indeed, the error
e in using the noisy data (solid black line) is higher and increases faster than
the error e in using the estimate p̂ (the solution of problem (3) obtained with
the variable projections algorithm).

Moreover, it can be shown that in the simulation setup of the example, the
solution of problem (1) gives the maximum likelihood estimator, so that it is
statistically optimal.

Comparison with the �1-norm Regularization Method
In this section, we consider data generated from the compressive sensing

model (14) with np = 100, ng = 20, k = 2, and noise standard deviation s = 0.1.
The true data p̄ is a sum of two sines with frequencies on the grid (15). With
this simulation setup, the �1-norm regularization method recovers the correct
frequencies with 100% success rate.

The low-rank constraint (2) with Hankel structured matrix and rank n = 4
imposes the weaker prior that the signal is a sum-of-damped exponentials, i.e.,
damping is allowed and the frequencies are not assumed to be on the grid (15).
Nevertheless, in the above simulation example the estimator defined by problem
(17) also recovers the correct frequencies with 100% success rate.

Both the �1-norm regularization method and (17) fail when the number of
given samples ng is decreased and/or the noise standard deviation s is increased.
The �1-norm regularization method fails for a smaller number of samples and
at a higher noise standard deviation s. The reader can reproduce the reported
results by downloading the SLRA package (http://slra.github.io/) and http://
homepages.vub.ac.be/∼imarkovs/software/ica18.tar.

http://slra.github.io/
http://homepages.vub.ac.be/{~}imarkovs/software/ica18.tar
http://homepages.vub.ac.be/{~}imarkovs/software/ica18.tar
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Fig. 1. The maximum likelihood (ML) estimator obtained by solving problem (1) with
the variable projections algorithm (blue dashed line) improves the relative estimation
error in comparison with the use of the raw noisy data (black solid line). (Color figure
online)
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Abstract. In this paper, we propose a probabilistic sparse non-negative
matrix factorization model that extends a recently proposed variational
Bayesian non-negative matrix factorization model to explicitly account
for sparsity. We assess the influence of imposing sparsity within a proba-
bilistic framework on either the loading matrix, score matrix, or both and
further contrast the influence of imposing an exponential or truncated
normal distribution as prior. The probabilistic methods are compared to
conventional maximum likelihood based NMF and sparse NMF on three
image datasets; (1) A (synthetic) swimmer dataset, (2) The CBCL face
dataset, and (3) The MNIST handwritten digits dataset. We find that
the probabilistic sparse NMF is able to automatically learn the level of
sparsity and find that the existing probabilistic NMF as well as the pro-
posed probabilistic sparse NMF prunes inactive components and thereby
automatically learns a suitable number of components. We further find
that accounting for sparsity can provide more part based representations
but for the probabilistic modeling the choice of priors and how sparsity
is imposed can have a strong influence on the extracted representations.

Keywords: Non-negative matrix factorization · Sparsity
Bayesian modeling · Sparse non-negative matrix factorization

1 Introduction

Non-negative matrix factorization (NMF) also denoted positive matrix factor-
ization [1] has become a popular feature extraction tool due to its easy inter-
pretable part based representations [2]. NMF is based on the decomposition
XI×J ≈ W I×DHD×J in which the elements of both W and H are non-negative,
i.e. wid ≥ 0∀i, d and hdj ≥ 0∀d, j. Several procedures for fitting the parameters
in NMF have been proposed. For the least squares NMF objective ‖X −WH‖2F
this includes multiplicative update [3], active sets [4], projected gradient [5], and
component-wise updating [6,7].

Unfortunately, NMF is not in general unique [8,9]. In particular, if the data
does not sufficiently span the positive orthant multiple non-negative representa-
tions may equally well represent the data and the representation is not guaran-
teed to be part based. In order to provide part based representation and alleviate
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 488–498, 2018.
https://doi.org/10.1007/978-3-319-93764-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93764-9_45&domain=pdf
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issues of non-unique representations sparsity in the NMF model has been pro-
posed. This includes fixing each of the extracted feature representation to a given
sparsity level (quantified by sparseness(wd) =

√
I−‖wd‖1/‖wd‖2√

I−1
) [10] or regular-

izing the NMF objective by a sparsity promoting penalty such as the �1-norm,
i.e. minimizing the objective ‖X −WH‖2F +λ‖W ‖1, keeping either the norm of
each component of H fixed or regularizing by the �2-norm squared corresponding
to imposing a Gaussian prior (c.f. [11]). Unfortunately, these sparse approaches
require a user defined tuning of the sparsity level or degree of regularization λ.

Whereas initial work on NMF was based on maximum-likelihood estimation
the NMF model has been advanced to probabilistic modeling. This includes
for the least squares objective (i.e., Gaussian noise assumption) probabilistic
inference based on Markov-Chain Monte-Carlo [12,13] and variational Bayesian
inference [14]. Benefits of probabilistic NMF includes quantifying the number of
components [12,15,16] and accounting for parameter uncertainty and noise.

Within the variational Bayesian framework we propose several formulations
of probabilistic sparse non-negative matrix factorization (psNMF) and inves-
tigate their ability to promote part based representations. Neither sparsity nor
priors based on truncated normal factors were investigated in the context of vari-
ational inference by [14]. The approach to enforcing sparsity is inspired by [17]
where sparsity was considered on one factor in probabilistic PCA. In contrast,
we investigate non-negative factors and the effect of modeling sparsity on one
or both factors and two ways of constraining the dense factor (infinity norm or
unit variance prior). On three image datasets we contrast the proposed psNMF
to conventional NMF (c.f. [18]) and the recently proposed variational Bayesian
NMF [14] as well as to sparse NMF tuned through fixed sparsity degrees [10]
and conventional user defined levels of regularization [11].

2 Methods

Bayesian inference aim to identify the posterior distribution of parameters θ =
{W,H, . . .} given the data X, i.e. P (θ|X). The exact posterior is in general
intractable and this paper relies on variational Bayesian inference (c.f. [19]) to
approximate P (θ|X). VB uses a set of simpler distributions Q(θ) to obtain a
lowerbound on the evidence (ELBO), i.e. log P (X) ≥

∫
θ

Q(θ) log P (X,θ)
Q(θ) dθ =

L(Q) where Q(θ) are chosen such that L(Q) is tractable. VB identifies a local
optimum of the (variational) posterior distribution by maximizing the ELBO.

2.1 Probabilistic Non-negative Matrix Factorization

Recently, variational inference for probabilistic NMF assuming Gaussian noise
was proposed in [14] assuming exponential distributions on the factors. We
presently consider this model as well as the corresponding model assuming trun-
cated normal distribution as priors. The generative model of the considered
probabilistic non-negative matrix factorization is specified as:
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λd ∼Gamma (αλ, βλ) , (1)

wid |λd ∼ T N
(
0, λ−1

d , 0,∞
)

or wid|λd ∼ Exponential
(
λ−1

d

)
, (2)

hdj |λd ∼ T N
(
0, λ−1

d , 0,∞
)

or hdj |λd ∼ Exponential
(
λ−1

d

)
, (3)

τ ∼ Gamma (ατ , βτ ) , xj |W,hj , τ ∼ N
(
xj |Whj , τ

−1II

)
. (4)

Where the reconstruction error xj −Whj follows a normal distribution with
noise precision (inverse variance) τ . Each component of W and H (i.e. wd,hd)
shares a common prior λd used to infer the scale of a component, see also [14].
Note λd represents the precision or rate for the truncated normal and exponential
distribution, respectively. This prior can be used for model order selection and
is commonly called an automatic relevance determination (ARD) prior. The
posterior distribution of θ = {W,H, τ, {λd}d=1,2,...,D} is inferred from the data
X while the shape α� and rate β� of the Gamma distributions are fixed. In
absence of a priori information, weak priors are specified (c.f. α� = β� = 10−4),
thereby the distribution of τ and λd are determined primarily from the data.

2.2 Probabilistic Sparse Non-negative Matrix Factorization

Probabilistic modeling can be used to automatically infer the sparsity pattern
and level, as supported by the data. The Bayesian framework facilitates sparse
modeling through the prior distribution of the factor matrices (W, H), along
with a (hyper-)prior distribution on its parameters. In the context of probabilis-
tic sparse principal component analysis, [17] proposed using either a Laplace,
Gamma or Jeffrey’s distribution as an element-wise ARD prior for obtaining a
sparse representation. Inspired by [17], we propose the probabilistic sparse NMF
(psNMF) by placing a sparsity enforcing prior on each element of the associated
factor (W, H). For conciseness, this is presently shown for the truncated normal
formulation. A sparse representation may be desired in either W, H or both.
Below we specify the generation of W, H when both factors are sparse,

λ
(W)
id ∼ Gamma

(
α
(W)
λ , β

(W)
λ

)
, wid|λ(W)

id ∼ T N
(

0,
(
λ
(W)
id

)−1

, 0,∞
)

,

λ
(H)
dj ∼ Gamma

(
α
(H)
λ , β

(H)
λ

)
, hdj |λ(H)

dj ∼ T N
(

0,
(
λ
(H)
dj

)−1

, 0,∞
)

. (5)

When only one factor is sparse (e.g. W), the scale of the other factor (e.g.
H) should be fixed to avoid scale ambiguity in the solution. We consider two
approaches; (1) Using a truncated normal distribution with unit variance as a
regularizer. (2) Restricting the maximum value of the factor to 1 (e.g., con-
straining according to the infinity-norm ||H||∞ ≤ 1) using a Uniform(0,1) prior
distribution. The generative model for psNMF with sparsity on one factor is,

λ
(W)
id ∼ Gamma

(
α
(W)
λ , β

(W)
λ

)
, wid|λ(W)

id ∼ T N
(

0,
(
λ
(W)
id

)−1

, 0,∞
)

,

hdj ∼ T N (0, 1, 0,∞) or hdj ∼ Uniform(0, 1). (6)
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If H is sparse and W is dense, the distributions are switched. The psNMF
models with exponential factors are found by changing T N (0, λ�, 0,∞) to
Exponential(λ�).

2.3 Variational Distributions and Update Rules

The exact posterior distribution P (θ|X) is intractable, thus its variational
approximation Q(θ|X) is used instead. The Q-distributions are chosen to fac-
torize over parameters, i.e. Q(θ) =

∏
i Q(θi), called a mean-field approximation.

For psNMF with sparsity on both factors,

Q(θ|X) =

I∏

i=1

D∏

d=1

T N
(
wid|μwid , σ2

wid
, 0, ∞

)
Gamma

(
λ
(W)
id |α̃

λ
(W)
id

, β̃
λ
(W)
id

)
(7)

J∏

j=1

D∏

d=1

T N
(
hdj |μhdj , σ

2
hdj

, 0, ∞
)

Gamma

(
λ
(H)
dj |α̃

λ
(H)
dj

, β̃
λ
(H)
dj

)
Gamma

(
τ |α̃τ , β̃τ

)
.

Due to the Gaussian noise assumption, Q(W) and Q(H) follow a truncated
normal distribution, regardless of whether P (W) or P (H) is truncated normal or
exponential distributed. Variational update rules are determined using Eq. (13)
from [19] and results are shown below when both W and H are sparse,

σ2
wid

=
(

〈 τ 〉
〈
hdh�

d

〉
+

〈
λ
(W)
id

〉 )−1

, (8)

μwid
= σ2
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〈 τ 〉

⎛

⎝ 〈hd 〉
〈
x�

i

〉
−

∑

d′ �=d

〈wid′ 〉
〈
hdh�

d′
〉
⎞

⎠ , (9)

σ2
hdj

=
(

〈 τ 〉
〈
w�

d wd

〉
+

〈
λ
(H)
dj

〉)−1

, (10)

μhdj
= σ2
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〈 τ 〉
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⎝
〈
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〉
〈xj 〉 −

∑
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d wd′
〉
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β̃τ = βτ +
1
2

·
(
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(
X�X

)
+ trace

( 〈
W�W

〉 〈
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− 2 · trace
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) )
, α̃τ = ατ +
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(H)
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+
1
2

〈
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〉
, (14)

where 〈 · 〉 is the expected value under the variational distribution, i.e. E[·]Q(θ).
The psNMF model reduces to pNMF [14] with truncated normal priors when
λ is placed on the columns and shared between the factors, i.e.

α̃λd
=αλd

+
I + J

2
, β̃λd

= βλd
+

1
2

I∑

i=1

〈
w2

id

〉
+

1
2

J∑

j=1

〈
h2

dj

〉
. (15)
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Changing P (W) from a truncated normal to an exponential distribution
determines whether the prior affects μ or σ of Q(W). The exponential distri-
bution affects the former (see Eq. (16)) while the truncated normal distribution
affects the latter (see Eqs. (8) and (9)).

μwid
=σ2

wid

⎛

⎝ 〈 τ 〉

⎛

⎝ 〈hd 〉
〈
x�

i

〉
−

∑
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〈wid′ 〉
〈
hdh�

d′
〉
⎞

⎠ −
〈

λ
(W)
i,d

〉
⎞

⎠

σ2
wid

=
(
〈 τ 〉

〈
hdh�

d

〉 )−1
. (16)

Matlab implementations of the above models can be found at: https://github.
com/JesperLH/psNMF-LVA2018.

3 Results and Discussion

We investigate the influence on the estimated components with respect to conven-
tional NMF using the implementation of [18] restricted to exclusively use HALS
updating, sparse NMF (sparseness imposed on W) optimizing for an explicit
sparsity level γ (see [10]), denoted PH-sNMF(γ) or penalizing model complex-
ity by λ||wd||1 and η||H||2F . Sparsity is here implicitly controlled by varying λ =
10−2, 100, 102 and fixing η = 1. We used the implementation sparsenmfnnls
from [11], denoted YA-sNMF(λ). For probabilistic modeling, we considered spar-
sity imposed on either W, H, or both, denoted psNMF(S,·), psNMF(·, S) and
psNMF(S, S), respectively. The dense factor is modeled using either a uniform
Uniform(0, 1) or by fixing the rate of the exponential or precision of truncated
normal distribution to 1, denoted as psNMF(·, Inf) and psNMF(·, I), respectively.
When non-negativity is modeled by the exponential distribution the suffix (Exp)
is added, e.g. psNMF(Exp). All models were run for 200 iterations and restarted 20
times to mitigate the effects of local optima. For each model, the restart achieving
the lowest root mean square error (RMSE) or highest ELBO (probabilistic models)
is shown.

3.1 Noisy Swimmer Dataset

The swimmer dataset [8] consists of J = 256 images (32 × 32 pixels, I = 1024),
each constructed with a static torso region and four limbs. There are four pos-
sible articulations for each limb and all possible combinations (44 = 256) are
constructed. To investigate the benefit of accounting for noise in probabilistic
modeling we consider a noisy variant of the swimmer data with additive white
noise. The noise variance is set such that the signal-to-noise ratio (SNR) is 5
decibels (SNR = 5 dB), i.e. more signal than noise. The SNRdB is defined as
SNRdB = 10 log10(

Powersignal

Powernoise
), where Power� is the sum of squared elements.

The non-probabilistic NMF and PH-sNMF methods are unable to find the
underlyingparts based representationdue to an incorrectmodel order and thepres-
ence of noise, see Fig. 1. The best non-probabilistic method is YA-sNMF(λ = 102)

https://github.com/JesperLH/psNMF-LVA2018
https://github.com/JesperLH/psNMF-LVA2018
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which mostly separates the articulations including the (invariant) torso as a sep-
arate component. The size of the subspace D = 16 is correctly identified, but the
right leg is not separated correctly. Setting λ correctly is extremely important as
λ = 1 identifies too many and λ = 102 too few components.

NMF

RMSE=0.13

PH-sNMF (0.30)

RMSE=0.57

PH-sNMF (0.50)

RMSE=0.40

PH-sNMF (0.70)

RMSE=0.21

PH-sNMF (0.90)

RMSE=1.12
pNMF (tNormal)

ELBO=-7.9e+05 , RMSE=0.11

pNMF (Exp)

ELBO=-8.7e+05 , RMSE=0.10

YA-sNMF (1.0e-02)

RMSE=0.13

YA-sNMF (1.0e+00)

RMSE=0.13

YA-sNMF (1.0e+02)

RMSE=0.18
psNMF (S, Inf)

ELBO=-9.6e+05 , RMSE=0.09

psNMF (S, I)

ELBO=-9.6e+05 , RMSE=0.09

psNMF (Inf, S)

ELBO=-8.9e+05 , RMSE=0.33

psNMF (I, S)

ELBO=-8.3e+05 , RMSE=0.11

psNMF (S, S)

ELBO=-1.0e+06 , RMSE=0.10
psNMF (Exp) (S, Inf)

ELBO=-1.1e+06 , RMSE=0.09

psNMF (Exp) (S, I)

ELBO=-1.1e+06 , RMSE=0.10

psNMF (Exp) (Inf, S)

ELBO=-8.9e+05 , RMSE=0.32

psNMF (Exp) (I, S)

ELBO=-8.2e+05 , RMSE=0.09

psNMF (Exp) (S, S)

ELBO=-1.1e+06 , RMSE=0.09

Fig. 1. Noisy Swimmer Dataset (SNR = 5 dB): The RMSE error of Xnoiseless ≈ WH
is given for all methods, where W and H have been estimated from Xnoisy.

The probabilistic methods pNMF, psNMF(I,S) and psNMF(S,I) based both
on the truncated normal distribution and exponential prior are barely affected
by the noise and correctly identify a representation using D� = 16 components
with the torso either placed across the different articulations or alongth with
the articulation of one of the limbs (pNMF(Exp) and psNMF(Exp)(I,S)). When
using the uniform distribution and sparsity on W the torso is separated out as
a 17th component. The representation estimated by psNMF(Inf, S) stand out,
as the estimated components resemble actual data points. We attribute this to
the uniform distribution apriori having equal support on the entire [0; 1] interval
whereas the truncated normal and exponential priors favor inactive pixels mak-
ing these differences of the priors when facing limited observations, i.e. I >> J
highly influential on the extracted components. For sparsity on both W and H,
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the representation of psNMF is similar to NMF and YA-NMF(0.01). The evi-
dence lowerbound (ELBO) identifies pNMF as the most likely model, followed by
psNMF(Exp)(I, S) and when inspecting the RMSE in Fig. 1 we observe that the
probabilistic models in general provide a better reconstruction of the noise-free
data than the conventional NMF and sparse NMF procedures while automati-
cally identifying a suitable number of components.

3.2 MIT CBCL Face Dataset

Lee and Seung [2] used a variant of the CBCL Face Database1 for illustrating
how NMF finds a part based representation. The dataset consists of 2429 aligned
facial images of size 19 × 19 pixels. Each image is normalized to have 0.25 mean
and standard deviation, then clipped to [0, 1]. The images are then vectorized
and stacked into a data matrix X361×2429.

In Fig. 2, a parts based representation comparable to [2] is found by all mod-
els, except for PH-sNMF and YA-sNMF(102). For PH-sNMF the sparsity level
clearly affects the identified components. In contrast, implicit sparsity (YA-
sNMF) results in an NMF like parts based representation. Increasing penal-
ization prunes components, but setting λ = 102 removes valuable information.
While similar solutions are found, the probabilistic NMF finds a model order of
D = 46 whereas ordinary NMF uses all the available components (D = 49).

A probabilistic approach to sparsity automatically identifies the sparsity pat-
tern, as shown in Fig. 2. There is little difference between using unit variance (I)
or the infinity norm constraint or switching between the exponential and trun-
cated normal formulation. The main differences arise from which factors sparsity
is imposed upon. If sparsity is enforced on the pixel mode, i.e. W, the extracted
component images become more sparse. In contrast, sparsity on H results in
denser component images as the model seek to use as few components as possi-
ble in H thereby providing a sparse reconstruction. The ELBO identifies pNMF
as the most likely model, followed by psNMF with sparsity on W. The least
likely model is psNMF with sparsity on both W and H. The lack of support for
sparsity is unsurprising, as a part based representation is already achieved by
NMF and pruning by pNMF.

For D = 49, psNMF, psNMF(S,Inf), psNMF(Exp)(S,Inf) and YA-sNMF(102)
prune the number of components to be 46, 48, 47 and 5, respectively. If D =
100 (results not shown), then pNMF(Exp), psNMF(S, I), psNMF(Exp)(S, I) and
YA-sNMF(1) also prunes the number of components (to be 88, 62, 83 and 89).
This shows the truncated normal formulation identifies a smaller basis (but with
denser components) than its exponential counterpart. Neither NMF, PH-sNMF or
psNMF with sparsity on H or both factors prune any components.

1 CBCL Face Database #1 MIT Center For Biological and Computation Learn-
ing http://www.ai.mit.edu/projects/cbcl. A copy is available at http://www.ai.mit.
edu/projects/cbcl.old/software-datasets/faces.tar.gz.

http://www.ai.mit.edu/projects/cbcl
http://www.ai.mit.edu/projects/cbcl.old/software-datasets/faces.tar.gz
http://www.ai.mit.edu/projects/cbcl.old/software-datasets/faces.tar.gz
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NMF

RMSE = 0.20

PH-sNMF (0.40)

RMSE = 0.26

PH-sNMF (0.60)

RMSE = 0.23

PH-sNMF (0.80)

RMSE = 0.24

PH-sNMF (0.90)

RMSE = 0.35
pNMF (tNormal)

ELBO = 7.48e+05

pNMF (Exp)

ELBO = 6.28e+05

YA-sNMF (1.0e-02)

RMSE = 0.20

YA-sNMF (1.0e+00)

RMSE = 0.21

YA-sNMF (1.0e+02)

RMSE = 0.42
psNMF (S, Inf)

ELBO = 6.16e+05

psNMF (S, I)

ELBO = 6.33e+05

psNMF (Inf, S)

ELBO = -9.06e+04

psNMF (I, S)

ELBO = -9.46e+04

psNMF (S, S)

ELBO = -1.74e+05
psNMF (Exp) (S, Inf)

ELBO = 6.38e+05

psNMF (Exp) (S, I)

ELBO = 6.69e+05

psNMF (Exp) (Inf, S)

ELBO = -2.38e+05

psNMF (Exp) (I, S)

ELBO = -2.51e+05

psNMF (Exp) (S, S)

ELBO = -2.84e+05

Fig. 2. The CBCL face database.

3.3 Handwritten Digits

The MNIST dataset [20] contains a training set of 60,000 gray-scale images
(28 × 28 pixels) of handwritten digits (0–9). The images are individually vector-
ized and then stacked into a data matrix X784×60,000. Similar solutions are iden-
tified by NMF, PH-sNMF(0.90) and YA-sNMF (with varying sparsity), where
small strokes represented the underlying subspace, see Fig. 3. The strokes of PH-
sNMF(0.90) and YA-sNMF are more sharply defined than those of NMF due to
the enforced sparsity. In contrast to YA-sNMF, the sparsity setting of PH-sNMF
greatly affect the estimated subspace.

The probabilistic models find representations similar to the non-probabilistic
methods. The methods without sparsity or sparsity only on W prunes inac-
tive components. Again the truncated normal formulation identifies a smaller
basis (but with denser components) than the exponential formulation. Simi-
larly, using Uniform(0, 1) over unit precision/rate identifies a smaller but denser
basis. The ELBO points to psNMF(Exp)(S,I) as the most likely model followed
by psNMF(Exp). When sparsity is enforced on H or both factors, the identi-
fied subspace is similar to that of NMF and YA-sNMF. No components, even if
D = 100 (not shown), are pruned using these formulations.



496 J. L. Hinrich and M. Mørup

NMF

RMSE = 0.39

PH-sNMF (0.30)

RMSE = 0.60

PH-sNMF (0.48)

RMSE = 0.52

PH-sNMF (0.70)

RMSE = 0.46

PH-sNMF (0.90)

RMSE = 0.40
pNMF (tNormal)

ELBO = 1.33e+07

pNMF (Exp)

ELBO = 1.79e+07

YA-sNMF (1.0e-02)

RMSE = 0.39

YA-sNMF (1.0e+00)

RMSE = 0.39

YA-sNMF (1.0e+02)

RMSE = 0.39
psNMF (S, Inf)

ELBO = 8.81e+06

psNMF (S, I)

ELBO = 1.17e+07

psNMF (Inf, S)

ELBO = 3.17e+06

psNMF (I, S)

ELBO = 3.06e+06

psNMF (S, S)

ELBO = 2.99e+06
psNMF (Exp) (S, Inf)

ELBO = 8.41e+06

psNMF (Exp) (S, I)

ELBO = 1.86e+07

psNMF (Exp) (Inf, S)

ELBO = 8.05e+04

psNMF (Exp) (I, S)

ELBO = 6.67e+04

psNMF (Exp) (S, S)

ELBO = -8.63e+04

Fig. 3. Handwritten digits (MNIST) dataset.

4 Conclusion

We introduced the probabilistic sparse non-negative matrix factorization
(psNMF) model based on variational Bayesian inference which in contrast to
conventional sparse NMF is able to automatically tune the level of sparsity.
The influence of priors and specification of sparsity on either W, H or both
was investigated on three datasets and compared to NMF, sparse NMF with
explicit (PH-sNMF) or implicit sparsity (YA-sNMF) and the recently proposed
probabilistic NMF based on variational inference [14].

For the noisy Swimmer data, the probabilistic methods were able to deter-
mine a suitable model order identifying all 16 articulations and potentially the
torso as a separate additional component. Facing a limited number of obser-
vations compared to image pixels we further observed that the specification
of priors heavily influenced the results. For the CBCL face data we found the
conventional and probabilistic sparse NMF resulted in similar part based repre-
sentations regardless of how sparsity was imposed and priors specified, whereas
the result of the MNIST data was heavily influenced by how the priors and
sparsity was specified. Here imposing sparsity on W resulted in fewer yet less
part based but denser components than imposing sparsity on H. We further
observed differences in the extracted components using the truncated normal
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distribution and the exponential prior where the truncated normal distribution
in general extracted fewer more dense components. In contrast to existing sparse
NMF relying on a user defined a priori specification of sparsity level or tuning of
the regularization, we found that the probabilistic sparse NMF admitted auto-
matic tuning of regularization. However, as the extracted components in some
cases were heavily influenced by the specification of priors and how sparsity was
imposed the ELBO may here provide an important quantitative tool for selecting
between the different probabilistic model specifications to determine a suitable
representation of data in terms of its constituting parts.
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Abstract. Independent Component Analysis (ICA) can be used to
model gene expression data as an action of a set of statistically indepen-
dent hidden factors. The ICA analysis with a downstream component
analysis was successfully applied to transcriptomic data previously in
order to decompose bulk transcriptomic data into interpretable hidden
factors. Some of these factors reflect the presence of an immune infil-
trate in the tumor environment. However, no foremost studies focused
on reproducibility of the ICA-based immune-related signal in the tumor
transcriptome. In this work, we use ICA to detect immune signals in six
independent transcriptomic datasets. We observe several strongly repro-
ducible immune-related signals when ICA is applied in sufficiently high-
dimensional space (close to one hundred). Interestingly, we can interpret
these signals as cell-type specific signals reflecting a presence of T-cells,
B-cells and myeloid cells, which are of high interest in the field of oncoim-
munology. Further quantification of these signals in tumoral transcrip-
tomes has a therapeutic potential.

Keywords: Blind source separation · Unsupervised learning
Genomic data analysis · Cancer · Immunology

1 Introduction

In many fields of science (biology, technology, sociology) observations on a stud-
ied system represent complex mixtures of signals of various origins. It is known
that tumors are engulfed in a complex microenvironment (TME) that critically
impacts progression and response to therapy. In the light of recent findings [1],
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many cancer biologists believe that the state of tumor microenvironment (in par-
ticular, the composition of immune system-related cells) defines the long-term
effect of the cancer treatment.

In biological systems information is coded in a form of DNA that do not
vary a lot between different individuals of the same species. In order to trigger a
function in an organism, a part of the DNA is transcribed to RNA, depending on
the intrinsic and extrinsic factors, and after additional modification messenger
RNA (mRNA) is translated into a protein (i.e. digestive enzyme) that fulfill a
role in the organism. The mRNA information (also called transcriptome) can be
captured with experimental methods at high throughput (transcriptomics) and
provides an approximation of the state of the studied system (i.e. a tissue).

Given the way transcriptomic data is collected, in the resulting dataset, for
each observation or sample, the measured transcripts’ expression (a putative
gene expression that is transcribed to mRNA, and before it is translated to a
protein) level is affected by a mixture of signals coming from various sources.
Thus, we adopt a hypothesis that a transcriptome is a mixture of different signals
(that can be biological or technical), including cell-type specific signals.

Recent works [2–4] showed that expression data from complex tissues (such
as tumor microenvironment) can be used to estimate the cell-specific expres-
sion profiles of the main cellular components present in a tumor sample. This
methodology is based on a linear model of a mixture of signals and their interac-
tion and termed cell-type deconvolution. The mentioned methods take advantage
of the prior knowledge (and, at the same time, heavily depend) on the specific
transcriptomic signatures (characteristic genes and their weights) of cell types
composing TME; therefore, they fall into supervised learning category.

A methodology using an unsupervised data decomposition was applied, so
far, in the context of tumor clonality deconvolution by Roman et al. [5]. Some
attempts were made to apply Non-negative Matrix factorization to transcrip-
tomic data as well. However, they were either applied in very simplified context
of in vitro cell mixtures [6] or without a specific focus on the immune signals [7].

In our work, we propose to apply an unsupervised method that will decom-
pose mixture into hidden sources, which will be as independent as possible,
based uniquely on data structure and without any prior knowledge. For this
purpose, we apply Independent Component Analysis (ICA) [8] that solves blind
source separation problem. ICA defines a new coordinate system in the multi-
dimensional space such that the distributions of the data point projections on
the new axes become as mutually independent as possible. To achieve this, the
standard approach is maximizing the non-gaussianity of the data point projec-
tion distributions.

As a result of ICA, conventionally, data matrix X can be approximated:
X ≈ AS, where X is a matrix of data of size m × n, A is a m × k matrix,
k < m and S is k × n matrix [9]. In our pipeline, input data matrix n × m
(n genes/probes in rows and m samples in columns) is first transposed before
applying ICA to m × n. Thus columns of A (m × k) can be named components
(m-dimensional vectors) of mixing proportions for each sample m. The S matrix
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(k × n) is transposed to n × k where rows are projections of data vectors onto
the components (a k-dimensional vector for each of n data points).

ICA has been applied for the analysis of transcriptomic data for blind separa-
tion of biological, environmental and technical factors affecting gene expression
[9–13].

The interpretation of the results of any matrix factorization-based method
applied to transcriptomics data is done by the analysis of the resulting pairs
of metagenes and metasamples, associated to each component and represented
by sets of weights for all genes and all samples, respectively [7,9]. Standard
statistical tests applied to these vectors can then relate a component to a ref-
erence gene set (e.g., cell cycle genes), or to clinical annotations accompanying
the transcriptomic study (e.g., tumor grade). The application of ICA to multiple
expression datasets has been shown to uncover insightful knowledge about cancer
biology [11,14]. In [11] a large multi-cancer ICA-based metaanalysis of transcrip-
tomic data defined a set of metagenes associated with factors that are univer-
sal for many cancer types. Metagenes associated with cell cycle, inflammation,
mitochondria function, GC-content, gender, basal-like cancer types reflected the
intrinsic cancer cell properties.

In our previous work, we introduced a ranking of independent components
based on their stability in multiple independent components computation runs
and define a distinguished number of components (Most Stable Transcriptome
Dimension, MSTD) corresponding to the point of the qualitative change of the
stability profile [15].

However, an interesting observation can be made employing a number of com-
ponents going far beyond the MSTD (M � MSTD), that we call here overde-
composition. Applying this approach, one can discover more specific components
that remain reproducible between independent datasets. In this work, we present
results of overdecomposition with focus on the fine decomposition of the immune
signal into cell-type specific signals.

In this analysis, we used a set of six independent breast cancer transcriptomic
datasets (BRCATCGA [16], METABRIC [17], BRCACIT [18], BRCABEK [19],
BRCAWAN [20] and BRCABCR [21]) to evaluate a detectability and a repro-
ductibility of the immune cell-type related signal. Each dataset contains gene
expression measured in breast tumor biopsy for a number of patients. Therefore
each measured gene expression here can be a mix of expression from different cells:
tumor cells, stroma cells (fibroblasts), immune cells or normal connective tissue.

Throughout this publication we employ terms: stability, conservation and
reproductibility that we define as follows. Stability of an independent component,
in terms of varying the initial starts of the ICA algorithm, is a measure of internal
compactness of a cluster of matched independent components produced in multi-
ple ICA runs for the same dataset and with the same parameter set but with ran-
dom initialization. Conservation of an independent component in terms of choos-
ing various orders of the ICA decomposition is a correlation between matched
components computed in two ICA decompositions of different orders (reduced
data dimensions) for the same dataset. Reproducibility of an independent
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component is an (average) correlation between the components that can be
matched after applying the ICA method using the same parameter set but for dif-
ferent datasets. We claim that if a component is reproduced between the datasets
of the same cancer type, then it can be considered a reliable signal less affected
by technical dataset peculiarities. If the component is reproduced in datasets from
many cancer types, then it can be assumed to represent a universal cancerogenesis
mechanism, such as cell cycle or infiltration by immune cells.

2 Methods

2.1 ICA Overdecompostion Procedure

Our pipeline can be described as follows. Started with six public transcrip-
tomic data of breast cancer, we apply the fastICA algorithm [8] accompanied
by the icasso package [22] to improve the components estimation and to rank
the components based on their stability. In order to run the analysis we used
open source BIODICA tool (ICA applied to BIOlogical Data), available from
https://github.com/LabBandSB/BIODICA. It provides both a command line
and a user-friendly Graphical User Interface (GUI) for high-performance ICA
analysis, including bootstraping and further stability analysis. It also allows the
computation of MSTD index, introduced in [15]. BIODICA software links to
downstream analysis enabling the interpretation of components, such as stan-
dard statistical methods, i.e. enrichment test, and non-standard methods, such
as using projection on top of molecular maps (InfoSigMap, [23]). The down-
stream analysis was not exhaustively employed in this publication as we focused
on specific immune signals.

ICA was applied to each transcriptomic dataset separately. For each analyzed
transcriptomic dataset, we computed M independent components (ICs), using
pow3 nonlinearity and symmetrical approach to the decomposition. The number
of dimensions was set to 100 (M = 100) as it is significantly greater than MSTD
for these datasets (that is in the order of M = 30). Each component of the
resulting S matrix was oriented in the direction of its heavy tail, being defined
as the tail with the maximum sum of absolute weight values, so that it always
has the positive sign.

2.2 Interpretation of Components

In order to confirm that we can recover expected known signals performing
the overdecomposition procedure, we correlate reference metagenes with the S
matrix. Correlations are performed on common genes for each component and
metagene. The result was graphically represented using R package ggplot2 [24].
An interpretation is assigned to a component only if its assignment is recipro-
cal. In our analysis reciprocity is defined as follows. Given correlations between
the set of metagenes M = {M1, ...,Mm} and S matrix S = {IC1, ..., ICN},
if Si = argmaxk(corr(Mj , Sk)) and Mj = argmaxk(corr(Si,Mk)), then Si

https://github.com/LabBandSB/BIODICA
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and Mj are reciprocal. In this way, the breast cancer metagenes were matched
against the following set of previosuly defined metagenes [11] - reference meta-
genes: MYOFIBROBLASTS, BLCAPATHWAYS, STRESS, GC CONTENT,
SMOOTH MUSCLE, MITOCHONDRIAL TRANSLATION, INTERFERON,
BASALLIKE, CELLCYCLE, UROTHERIALDIFF. Details about construction
of reference metagenes and their interpretation can be found in Biton et al. 2014
[11]. The correlation plot was visualized in Cytoscape 2.8 [25].

2.3 Selecting Immune-Related Components

In order to preselect immune-related signals, we focused on all Independent Com-
ponents (ICs) with Pearson correlation > 0.1 between IMMUNE metagene and
ICs (columns of the S matrix). The interpretation was given using Fisher exact
test on 100 top-ranked genes of each of the preselected components and Immgen
[26] signatures containing in total 6467 genes of six immune cell types: αβT-
cells, γδT-cells, B-cells, CD+, Myeloid cells, NK cells and four non-immune cell
types: Fetal-Liver, Stem cells, Stromal cells and Pasmocytoid, 241241 signatures
in total, each of 480 genes in average.

2.4 Comparing Independent Components from Different Datasets

Following the methodology developed previously in [11], the metagenes com-
puted in two independent datasets were compared by computing a Pearson
correlation coefficient between their corresponding gene weights. Since each
dataset can contain a different set of genes, the correlation is computed on the
genes which are common for a pair of datasets. Note that this common set of
genes can be different for different pairs of datasets. The same correlation-based
comparison was done with previously defined and annotated metagenes. In all
correlation-based comparisons, the absolute value of the correlation coefficient
was used.

3 Results

3.1 Most of Known Metagenes Can Be Found in Overdecomposed
Datasets

In all six overdecomposed datasets of breast cancer, we could find major refer-
ence metagenes [11]. As an example, we present results for METABRIC dataset
[17] (Fig. 1) where we can observe correlations between metagenes and all 100
ICs. For some metagenes (MYOFIBROBLASTS, INTERFERON, MITOCHON-
DRIAL TRANSLATION, CELL CYCLE), there is only one reciprocal and
strongly (>0.3) correlated component, which can be understood as a good signal
reproducibility. Some other as STRESS, BASALLIKE and SMOOTH MUSCLE
can have two similarly correlated components. This is probably due to compo-
nent split in higher-order decomposition. Importantly, reference metagenes were
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defined in significantly lower dimensional space (M = 25) and as a result of
high-dimensional decomposition, these signals are decomposed to more specific
sources that can still be interpreted in biological terms. For few components, no
strong correlations with metagenes were found (UROTHELIALDIFFERENTI-
ATION and BLCPATHWAYS). As these metagenes are more specific to Bladder
cancer, we can consider them as negative control here. Also, GC Content and
IMMUNE metagenes have several corresponding components. The IMMUNE
metagene is considered here as a special case as we can find several components
correlated to it and, in addition, their interpretation can be interesting for bio-
logical applications. We investigate more about the immune-related components
in the Subsect. 3.3.

3.2 Reproducibility of the Signals in Breast Cancer Datasets

It would be reasonable to expect that the main biological signals are character-
istic for a given cancer type. Thus, they should be the same when one studies
molecular profiles of different independent cohorts of patients. For this reason,
we expect that for multiple datasets related to the same cancer type, the ICA
decompositions should be somewhat similar; hence, reciprocally matching each
other.

We correlated the ICA overdecompositions of all six datasets with each other
and with the forementioned metagenes [11]. One can notice from the correlation
graph (Fig. 2A), that some pseudo-cliques characterized with strong correlation
coefficient (thick edges) and reciprocal (green) edges are present in the mass of
low correlation coefficients edges. If the edges with correlation coefficient < 0.4
are filtered out, we can better visualize a collection of pseudo-cliques (Fig. 2B).
Some of those pseudo-cliques are connected to a metagene and can be given an
interpretation directly, some others would need a further investigation of the
gene signature in order to attribute a meaning to them. We can see that in some
pseudo-cliques not all datasets are represented. It may suggest that some sig-
nals, still reproducible, are not representative for all datasets. In order to explain,
why a signal is missing, one should first interpret the signal, then try to under-
stand the similarities or differences of samples based on provided metadata.
From our previous analysis [11], the components that do not find reciprocity
(absent from the pseudo-cliques) are either dataset specific or they correspond
to unknown batch effects that cannot be guessed without an additional knowl-
edge. It is remarkable that despite overdecompostion, the metagenes conceived in
lower-dimensional space are highly conserved and reproducible, which suggests
the overdecompostion does not diminish strong signals conceived in “optimal”
dimensional space (i.e. MSTD). Of note, these datasets were produced using
various technologies of transcriptomic profiling.

3.3 Three Pseudo-cliques Related to Three Immune Cell Types

To better understand the reproductibility of the immune-related signal, we
extracted only components correlated with IMMUNE > 0.1. Hence, we obtain
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three strongly connected cliques (Fig. 3) and some disconnected components.
We interpreted each of the ICs with an enrichment test. The results of Fisher
exact test indicate mainly three cell types T-cell, B-cell and Myeloid cells with
a p-value < 0.05 as indicated in the Fig. 3. While T-cell and Myeloid cell are
indicated with very high certainty, the B-cell signal seems to be more complex.
The results of the enrichment test for the B-cell component are less explicit
as among the most enriched pathways, different cell types (T-cells and Natu-
ral Killers) are listed together with dominating B-cell signal. However, this can
be explained by functional and phenotypic similarities between NK and B cells
[27]. Also, T cell and B cell as they are both lymphocytes, they share common
features. It is worth highlighting that definition of cell type signature is a part
of ongoing debate [28] and here we use them as an indicator of possible signal
definitions. Also, some ICs belonging to one pseudo-clique are correlated (with
lower coefficients) with ICs from another pseudo-clique (i.e. BRCABCR IC2). It
may suggest an inclination of the signal towards the other phenotype. As far as
components not included in pseudo-cliques are concerned, through interpretation
BRCACIT IC42 can be associated with B cells, METABRIC IC28 with Myeloid
cells, BRCAWAN IC68 and BRCABEK IC27 with T-cells. Thus, the correlations
of the disconnected components, even though they are low, they are most prob-
ably not spurious. Some other components not included in the pseudo-cliques
like BRCAWAN IC28 and BRCABCR IC19 seem to contain stroma elements.
It would be worth understanding more deeply the nature of each signal and
interpret in terms of biological functions or sub-phenotypes.

4 Discussion

The overdecomposition of six breast cancer datasets, where different normaliza-
tion methods and different transcriptome profiling platforms were used, showed
that even in high order blind source separation, the ICA-based analysis can
be reproducible between datasets. Moreover, the most stable signals are con-
served and not affected by the number of dimensions. Interestingly, for some
signals we can observe a split into more specific signals that can still be inter-
preted in biological terms. In the case of the immune-related signals, it allows
robust reproduction of three main signals that form pseudo-cliques on the corre-
lations graph in the Fig. 3. This result let us believe that ICA allows separation
of signals in cancer transcriptomes in an unsupervised manner and detect the
most represented immune cell-types. We found highly interesting that techni-
cally non-stable signal is found reproducible and interpretable in the six breast
cancer datasets.

The question about the choice of ICA over other available blind source sep-
aration methods can be asked. We address this question more extensively in
a publication in preparation comparing NMF, ICA and PCA for transcriptome
BSS. From our expertise (unpublished data) NMF applied to transcriptomes can
effectively separate sources and their proportions (proven in controlled mixtures
of different cell types or tissues). However, when NMF was applied to noisy tumor
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Fig. 1. Correlations between 11 metagenes [11] and 100 independent com-
ponents of METABRIC dataset [17]. Each panel shows correlation coefficients
between a given metagene and 100 ICs of METABRIC, the components are ordered
in the same manner for all panels from 1 to 100 in a circle. For a high correlation
coefficient, the point is red, for low, it is blue (see legend). (Color figure online)
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Fig. 2. Correlation plot of six tumor datasets and the reference metagenes
[11] A- Correlation graph between decompositions into 100 ICs of the six transcriptomic
datasets and the 11 reference metagenes. The IMMUNE metagene and related ICs
in encircled; B - collection of pseudo-cliques extracted from the correlation graph A
through filtering out edges of the Pearson correlation coefficient < 0.4. They were
split in two groups, the ones that are directly interpretable via their correlation with
a metagene and cliques that are not related to any known metagene; The thickness
of edges is proportional to the Pearson correlation coefficients, green color indicates
reciprocity of edges, colors of nodes indicate dataset (see legend). (Color figure online)

transcriptomes, obtained source profiles were not highly reproducible between
different datasets. Our unpublished research showed that NMF profiles are highly
affected by mean gene expression. Therefore, NMF decomposition applied to
breast cancer transcriptomes followed by correlation of obtained profiles did not
reveal meaningful pseudo-cliques as the ICA-based analysis discussed in this
article.

In order to translate our findings into real biomedical application, more time
should be dedicated to analyze ICA signatures in details, to report their similar-
ities and differences. As well as, this analysis could be applied in a pan-cancer
manner to observe the reproducibility of the signal among different tumor types.
Such an analysis would possibly identify components and/or genes linked with
patients’ survival or response to treatment and eventually, use them to compose
a predictive score for tumor immune therapy outcome.
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Fig. 3. Correlation graph of ICs correlated with IMMUNE metagene > 0.1.
Three pseudo-cliques are encircled and labeled according to the results of Fisher exact
test. The thickness of edges is proportional to the Pearson correlation coefficients, green
color indicates reciprocal edges, colors of nodes indicate dataset (see legend). (Color
figure online)

5 Conclusions

We applied overcomposition into one hundred components of six transcriptomic
datasets using Independent Components Analysis, a blind source separation
algorithm. We used a known collection of ranked ICA-derived genetic signatures
(that we call reference metagenes) to conclude that most of the signals are con-
served in the higher dimensions. We noticed that some of the components split
into more specific signals. Our correlation analysis of the ICA overdecomposi-
tons of the transcriptomes stated that majority of components are reproducible
between datasets. Our more focused investigation of immune-related ICs demon-
strated that three cell types can be named: T-cell, B-cell and myeloid cells as a
reproducible source signal in the breast cancer datasets. Further interpretation
of those cell-type related genomic signatures can find application in immuno-
oncology therapeutics as predictive biomarkers for immunotherapies.
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Abstract. The Deep Brain Stimulation (DBS) is a surgical procedure
efficient to relieve symptoms of some neurodegenerative disease like the
Parkinson’s disease (PD). However, apply permanently the deep brain
stimulation due to the lack of possible control lead to several side effects.
Recent studies shown the detection of High-Voltage Spindles (HVS) in
local field potentials is an interesting way to predict the arrival of symp-
toms in PD people. The complexity of signals and the short time lag
between the apparition of HVS and the arrival of symptoms make it nec-
essary to have a fast and robust model to classify the presence of HVS
(Y = 1) or not (Y = −1) and to apply the DBS only when needed. In
this paper, we focus on a Gaussian process model. It consists to estimate
the latent variable f of the probit model: Pr(Y = 1|input) = Φ(f(input))
with Φ the distribution function of the standard normal distribution.

Keywords: Deep learning · Gaussian processes · Autoencoder
Classification · High-Voltage Spindle · Parkinson diseases

1 Introduction

The Parkinson’s disease (PD) is a progressive neurodegenerative disease. The
depletion of the dopamine in the basal ganglia network leads to several symptoms
like rigidity, posture instability, slow motion or pain for example. The expectation
of the number of PD victims in Asian countries is 6.17 millions in 2030 [2]. The
deep brain stimulation (DBS) is a surgical procedure used to relieve disabling
neurological symptoms for diseases like PD [9]. A high-frequency stimulation
signal (around 130 Hz) is continuously applied to a deep-brain region called the
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subthalamic nucleus (STN) to relieve the symptoms. The main drawback of
the DBS is the absence of any control on stimulation to minimize side effects. In
addition, contemporary DBS implant requires another surgery to replace battery
every 6 or 7 years.

Recent studies show we can predict the arrival of PD symptoms by the detec-
tion of high-voltages spindles (HVS) in recorded signals in local field potentials
(LFPs) [1]. The HVS signals as e.g. in Fig. 1 are synchronous spike-and-wave
patterns in LFPs oscillating in the 5–13 Hz frequency band. Suppressing HVS
signals is found useful for delaying the progress of PD and deleting symptoms.
Being able to detect HVS make possible the realization of a closed-loop system
to control the DBS. However the diffusion of signals in the brain is nonlinear
and there is only few milliseconds between the HVS wave and the apparition
of PD symptoms. Hence a fast and robust model is needed for real time HVS
detection and to apply the high frequency signal only when it is needed.

Fig. 1. Signals recorded in LFPs in two different representations. HVS are located
between 2.5 and 5 s. HVS are characterized by a fundamental frequency between 5 and
13Hz.

In this paper, the PD rat model is used. Data are collected from eight intra-
cortical channels from different cortical regions. In this paper, we investigate
performance of the Gaussian Process (GP) [3] for the detection of HVS. The
GP model is a Bayesian network with continuous variables. Bayesian network
model relations of causality between variables and in our study, data collected
are the result of a diffusion of signals between neurons in the brain. Moreover,
relations between variables model by a GP are nonlinear. Section 2 presents how
data are collected and the preprocessing of data. Details of the model are devel-
oped in Sect. 3. The two last sections give main results and discuss some future
improvement and other possible approaches.
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2 Data Collection

2.1 Data Acquisition and Data Preparation

The PD rat model has been used to develop and evaluate the results. The descrip-
tion of the procedure to extract data is given in [8, sect. 2].

Table 1. List of brain region where LFPs signals were recorded.

Notation Region name

M1D Layer 5b of the primary motor cortex

M1U Layer 2/3 of the primary motor cortex

M2D Layer 5b of the secondary motor cortex

M2U Layer 2/3 of the secondary motor cortex

SD Layer 5b of the primary somatosensory cortex

SU Layer 2/3 of the primary somatosensory cortex

STRI Dorsal region of striatum

THAL Ventrolateral thalamus

The LFPs were recorded from eight different brain regions listed in Table 1.
The frequency sampling of signals was 1 kHz and the recording duration of one
session was 60 s (60,000 samples). Several sessions have been recorded on PD
rats.

GP classifier is a model which requires a supervised learning.

Fig. 2. PSD mean as a function of time for channels M1D, M2D, M1U and M2U. The
red line represent the ground truth: if 3

4
of signal magnitude is above the threshold,

then we consider we detect the presence of the HVS. (Color figure online)

The data preparation step consists to construct feature signals from collected
data to train the model and feature signals for testing the model.
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The data preparation step consists to construct feature signals from collected
data to train the model and feature signals for testing the model.

Fig. 3. Result of the classification on the four same channels. Channels MD2 and MU2
are zoomed to observe with more precision the switch of state HVS/no HVS and reverse

One 60 s session has been used for the training step and the other session
has been used for the testing step. The preprocessing step is the same for the
two data sets. HVS wave’s fundamental frequency is between 5 and 13 Hz and,
according to observations in Fig. 1b, harmonics of HVSs are visible around 30 Hz.
High frequencies noises and continuous components of signals were deleted with
a second order Butterworth filter between 1 and 200 Hz while preserving much
of the HVS frequency content. Each channel was normalized independently from
each other (zero mean and unit variance).

Then we define the prediction class vector Yn∀n for the training set and the
testing set. The presence of HVS is characterized by the apparition of spike-and-
wave patterns with a fundamental frequency between 5 and 13 Hz. We estimate
the Power Spectral Density (PSD) with a periodogram using the Hanning win-
dow with a 500 ms time window each 100 ms. Then by computing the PSD mean
between 5 and 13 Hz and performing an interpolation, we plot the PSD mean
between 5–13 Hz as a function of time (see Fig. 2). We then defined our ground
truth by thresholding our observations above at least one quarter of the signal
magnitude.

Result are given in Figs. 2 and 3.

3 Model

3.1 Gaussian Process Classifier

A closed-loop DBS system delivers the stimulation only when needed.
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Mathematically this consists to build a two-class classifier C capable to iden-
tify the presence or the absence of HVS. The available information for the clas-
sification are the values of the R channels and p previous signal values for each
channel. Let Xn ∈ R

R×(p+1) denotes the concatenated feature vector recorded
between times n and n − p and Yn ∈ {−1, 1} be the associated output of the
supervised classifier. Suppose also the database is shared in a training set for
which Yn is known and a test set for which Yn is unknown. The aim of the model
is to estimate Yn from new observations Xn.

We note in the following D = {Xn, Yn}n∈[1,N ] the training set with X =
{Xn}n∈[1,N ] being independent randomly selected input observations and Y =
{Yn}n∈[1,N ] the associated output decision respectively. The GP classifier focus
on modeling the posterior probabilities by defining the latent variables fn =
f(Xn).

The model used here is the probit model: Pr(Y = 1|X) = Φ(f(X)) where
Φ denotes the cumulative density function of the standard normal distribution.
The likelihood of the probit model with independent observations and given
f = {f(X(n))}n∈[1,N ] is:

p(Y |f) =
N∏

n=1

p(Yn|fn) =
N∏

n=1

Φ(Ynfn). (1)

In a GP, f is a stochastic process which associates a zero mean normal random
value for an input X(n). For the training set D we have p(f |X,Θ) ∼ N (0,CN )
where Θ is a set of hyper-parameters and CN is a covariance matrix modelized
with a squared exponential and a Gaussian noise [7]:

CN (Xi,Xj) = θ20 exp

⎛

⎝−1
2

dim(Xi)∑

n=1

(X(n)
i − X

(n)
j )2

λ2
n

⎞

⎠ + θ21δ(Xi,Xj). (2)

X
(n)
i is the nth component of Xi and δ(·) is the Kronecker delta. The set of hyper-

parameters Θ is composed of
{
θ1, θ2, {λn}n∈[1,N ]

}
. Baye’s posterior probability

rule of the latent variable f with Θ known can be written:

p(f |D, Θ) =
p(Y |f)p(f |X,Θ)

p(D|Θ)
=

N (f |0,CN )
p(D|Θ)

N∏

n=1

Φ(Ynfn). (3)

With the marginalization of Eq. (3) for a new observation XN+1 we obtain:

Pr(fN+1|D, Θ,XN+1) =
∫

Pr(fN+1|f,X,Θ,XN+1) Pr(f |D, Θ)df, (4)

and the expectation of the Eq. 4 gives:

Pr(YN+1|D, Θ, XN+1) =

∫
Pr(YN+1|fN+1) Pr(fN+1|D, Θ, XN+1)dfN+1 (5)
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We model the posterior probability q(f |D, Θ) ∼ N (m,A) to compute Pr(YN+1 =
1|D, Θ,XN+1). And then, for a new observation N + 1, we can show that the
posterior probability of fN+1 is q(fN+1|D, Θ,XN+1) ∼ N (μ, σ) with:

{
μ = kTC−1

N m,

σ2 = κ − kT (C−1
N − C−1

N AC−1
N )k.

(6)

where k = (CN (X1,XN+1), . . . ,CN (XN ,XN+1))
T is the covariance function

vector between each observation of the training set and the new observation
XN+1 and κ = CN (XN+1,XN+1) = θ20 + θ21 is the variance of XN+1.

With the approximation of Pr(f |D, Θ), Eq. (5) becomes:

Pr(YN+1 = 1|D,Θ,XN+1) = Φ

(
μ√

1 + σ2

)
(7)

Training a GP consist to find Θ, m and A. We can learn Θ by computing
the log-likelihood of the log posterior probability log q(Y |X,Θ) Eq. 8 (see [7,
Chapter 5]) and his gradient in function of Θ.

log q(Y |X,Θ) = −1
2
fTC−1

N f + log p(Y |f) − 1
2

log det
(
I + W

1
2CNW

1
2

)
(8)

With W = −Δf log p(Y |f) (Hessian) and f such the unormalized log likelihood
log p(f |D, Θ) is maximized:

log p(f |D, Θ) = log p(Y |f) + log p(f |X)

= log p(Y |f) − 1
2
fTC−1

N f − 1
2

log det (CN ) − N

2
log 2π.

(9)

For a given Θ, we can find m = arg maxf log p(f |D, Θ) by using the
Newton’s method. Equations 10 and 11 give the gradient and the hessian of
log p(f |D, Θ), respectively.

∇f log p(f |D, Θ) = ∇f log p(Y |f) − C−1
N f. (10)

Δf log p(f |D, Θ) = Δf log p(Y |f) − C−1
N . (11)

The maximization of logp(f |D, Θ) makes use of the first and second order partial
derivation of log p(Y |F ) in function of fi.

∂

∂fi
log p(Y |f) =

Yiφ(fi)
Φ(Yifi)

. (12)

∂2

∂f2
i

log p(Y |f) = − φ(fi)2

Φ(Yifi)2
− Yifiφ(fi)

Φ(Yifi)
. (13)

where φ(.) is the density function of the standard normal distribution. Learning
m allow to compute Eq. 8 and their gradient in function of Θ. We implement a
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gradient descent search of the optimum Θ∗ that leads to the following iterative
algorithm:

Θ(k+1) = Θ(k) − αk∇Θ log q(Y |X,Θ)). (14)

But Eq. (14) requires to inverse the N × N matrix CN at each iteration which
can be time consuming for a large number of observations. Once m and Θ found,
we can compute A =

(
C−1

N + W
)−1

.
Finally, the GP classifier is learned by identifying the covariance matrix

between observations CN as a function of the hyper-parameters Θ, the mean
vector m is learning for each iteration of Θ then and the covariance matrix A is
deduced.

Once the learning is done, the prediction step consists to compute the
covariance vector k between the new observation XN+1 and the training set
X and then estimates the probability Pr(YN+1 = 1|D, Θ,XN+1). If Pr(YN+1 =
1|D, Θ,XN+1) > 0.5 then YN+1 = 1 and YN+1 = −1 else.

3.2 Input autoencoding

Learning the model consist in two step: learning the hyper-parameters Θ and
learning the parameters of q(fN+1|D, Θ,XN+1). HVS have a fundamental fre-
quency between 5 and 13 Hz. With a the maximal period of 200 ms. Choosing
p = 199 to have at least one period of the signal leads to a model with high
dimensions: the input size of Xn is then (p + 1) × R = 1600 and Θ has 1602
parameters. To reduce the dimensionality of the input vector Xn (which makes
it difficult to use for real time applications) we use an autoencoder (see Fig. 4).
This autoencoder consists in a 3 layers neural network that compresses input
data onto the hidden layer. We present to the input and the output layers the
same input vector Xn. The activation function of the hidden layer is sigmöıdal
function s(·) that permits nonlinear combination of the inputs:

s(xj) =
1

1 + exp(−bj − ∑
i wijxi)

(15)

where (x1, . . . , xp)T is the input vector. Learning this autoencoder consists to
find biases bj and weights wij of the input neurons. The output layer has to
be the closest possible to the input layer. The training algorithm is the scaled
conjugate gradient [5] using the mean square error with L2 sparsity regularized
loss function [6].

Figure 4 gives an example of result for a number of observations N = 500
and the size of the autoencoder H = 10. The sensitivity and the specificity (see
Sect. 4) are, respectively, 82.92% and 99.31%.

4 Experimental Results

Detection of HVS has been applied on different rats with various set of param-
eters for the learning stage such as the number of observations N or the size of
the hidden layer of the autoencoder H.
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The small the parameters, the lower the number of parameters: learning the
model and use it become very fast by reducing the dimensionality. Choosing N
small means taking the risk to have not enough or representative observations.

For each rat, one signal session record has been used for the learning step and
an other session has been used for the testing step. The criteria of performance
for models are the sensitivity Se = TP/(TP + FN) and the specificity Sp =
TN/(TN + FP ), with TP is the number of true positive, TN is the number
of true negative, FN is the number of false negative and FP is the number of
false positive. The sensitivity gives the true positive rate: the number of correct
detection under the number of correct detection and miss. The specificity give
the true negative rate: the number of correct non detection under the number of
correct non detection and false detection. We reproduce 5 times for each set of
parameters the learning and the testing stages and compute the mean and the
variance of Se and Sc to verify the performance and the robustness, regarding
random sampling.

Fig. 4. (4a) autoencoder neural network: input ad output layer dimensions equally set
to (p + 1) × R. HAE is the size of the hidden layer (parameters). (4b): upper plot is
Pr(YN+1 = 1|D, Θ, XN+1) as a function of time. Figures below are two among five
channels of the testing set. Green line marks the ground-truth defined in the prepro-
cessing step. The red line is the decision made by the GP classifier. The lower figure
zoomed on a HVS. (Color figure online)

Results are summarized in Table 2. Data collection for each rat is different:
the rat 2 provides data from channels M1U, M1D, SU and SD; rat 3 provides
data from channels M1U, M1D, STRI and SD; rat 1 provides data from all
channels1.

1 See Table 1 as a reminder.
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Table 2. Result of the experience. N is the number of observations used from the
training set. H is the size of the hidden layer of the encoder. Variance equal to .0000
in the table mean the value is less than 10−4. Bold numbers highlight most relevant
results.

N H Rat number 1 Rat number 2 Rat number 3

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

mean var mean var mean var mean var mean var mean var

50 10 .58 .0192 .88 .0161 .63 .0370 .47 .0596 .23 .0159 .83 .0082

50 30 .63 .0095 .96 .0031 .69 .0099 .57 .0212 .04 .0039 .97 .0019

50 50 .62 .0058 .97 .0008 .68 .0672 .52 .1624 .12 .0053 .91 .0056

50 100 .62 .0050 .96 .0013 .46 .0384 .78 .0531 .10 .0168 .93 .0047

200 10 .82 .0021 .95 .0016 .61 .0082 .56 .0044 .24 .0195 .86 .0061

200 30 .81 .0016 .90 .0032 .70 .0088 .71 .0087 .25 .0274 .82 .0128

200 50 .81 .0006 .91 .0097 .71 .0016 .73 .0057 .13 .0257 .90 .0173

200 100 .60 .0126 .96 .0097 .61 .0367 .82 .0104 .01 .0001 .99 .0000

500 10 .85 .0010 .98 .0001 .67 .0003 .65 .0036 .14 .0242 .94 .0043

500 30 .82 .0019 .95 .0006 .70 .0044 .67 .0043 .25 .0083 .86 .0028

500 50 .83 .0012 .89 .0005 .70 .0026 .68 .0017 .21 .0220 .85 .0141

500 100 .74 .0226 .94 .0054 .76 .0029 .70 .0005 .85 .0032 .85 .0027

Lavielle and Teysseires [4] design an unsupervised approach for changepoint
detection which models data within a segment as multivariate Gaussian with
known covariance. But the mean can change from segment to segment. See Fig.
as an illustration. Besides the fact the change point algorithm is not real time
and needs to set the number of points in advance, the changepoint detection can
detect HVS with an advance of 62 ± 6.55 samples but of 82 ± 32.3 samples for
the Gaussian Process.

Fig. 5. Unsupervised change point detection: 30 points only.

5 Discussion and Conclusion

Table 2 highlights some tendencies in the parameters. First, the number of obser-
vations is critical for fine sensitivity and specificity. Taking too little oservation
can alter the overall knowledge of the system : in this case the variance is often
more important for N = 50 than for bigger N . But too much data leads to big
with covariance matrices too long to calculate. Increasing H (hidden layer num-
ber of neurons) increases the sensitivity but decreases the specificity: the model
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tends to detect HVS all the time. On the opposite for small H we compress a
lot of data by taking the risk to loose information. A large hidden layer better
preserves the information but (i) the problem becomes hard to optimize (too
much parameters) (ii) learning the model become time-consuming.

Results for rat 2 and 3 are not as fine as the first rat. By looking closely step
by step signals of the two rats it appear that the intensity of the noise is much
more important than in signals of the first rat. Means over channels of signal-to-
ratio of the three rats are respectively, 35 decibels, 14 decibels and 10 decibels.
Moreover, in rat 2 and 3, appearance of signals differs according to the various
channels: some HVS do not appear in all channel which make the preprocessing
step not relevant for those two rats. This is why results of rat 2 and 3 are not
reliable to conclude with a high confidence level about the robustness of the
model.

In a future work, we will develop an approach based on unsupervised learn-
ing model because by defining ourselves the groundtruth we may have missed
some complex features in the signal which could have helped for predicting HVS.
Restricted Boltzmann Machines is a promising stochastic model which, by explor-
ing latent variables could find such hidden features.
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Abstract. Long-lasting periodic sensory stimulation is increasingly
used in neuroscience to study, using electroencephalography (EEG), the
cortical processes underlying perception in different modalities. This kind
of stimulation can elicit synchronized periodic activity at the stimulation
frequency in neuronal populations responding to the stimulus, referred to
as a steady-state response (SSR). While the frequency analysis of EEG
recordings is particularly well suited to capture this activity, it is limited
by the intrinsic noisy nature of EEG signals and the low signal-to-noise
ratio (SNR) of some responses. This paper compares and adapts spa-
tial filtering methods for periodicity maximization to enhance the SNR
of periodic EEG responses, a key condition to generalize their use as a
research or clinical tool. This approach uncovers both temporal dynam-
ics and spatial topographic patterns of SSRs, and is validated using EEG
data from 15 healthy subjects exposed to periodic cool and warm stimuli.

Keywords: Periodic Component Analysis · Spatial filtering
Generalized Rayleigh quotient · EEG · Thermal stimulation
Steady-states

1 Introduction

Understanding the neural mechanisms underlying human perception of stim-
uli from different modalities, such as visual, auditory, tactile or nociceptive, is
a challenging issue in neuroscience. In this context, scalp electroencephalogra-
phy (EEG) is particularly suited to record brain activity, as it is non-invasive
and directly measures neuronal activity with a high temporal resolution of
the millisecond order. Meanwhile, most studies consider brief sensory stimuli,
lasting less than one second and eliciting well-known event-related potentials
(ERPs) [10]. However, the recording of neural responses to long-lasting periodic
c© Springer International Publishing AG, part of Springer Nature 2018
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stimulation is increasingly proposed in several works as an alternative to probe
sensory perception [2], since it reveals new aspects of the sensory information
processing [8]. Such long-lasting stimuli indeed induce a periodic activity at the
stimulation frequency in some neuronal populations. This so-called steady-state
response (SSR) can usually be recorded with multichannel EEG.

One of the main advantages of the aforementioned periodic stimuli is that the
signal-to-noise ratio (SNR) of the SSR is usually higher in the frequency domain
compared to the time domain. Therefore, most neuroscience works up to now
use frequency analyses to highlight the SSR features. The EEG time course
and frequency transform at some specific electrodes can be studied, as well as
the distribution across the scalp of the signal amplitude at the stimulation fre-
quency. Although these approaches provide direct measures of the signal peri-
odicity, their efficiency is limited when the SNR is low. For instance, this is the
case with nociceptive SSRs generated from infrared laser stimulation [3]. In the
meantime, whereas linear filtering methods have been successfully developed in
the context of brain-computer interfaces (BCI) to classify steady-state visually
evoked-potentials (SSVEP) [9,15], they were surprisingly not yet adapted to
extract, interpret and characterize the EEG activity related to different peri-
odic stimuli. Indeed, while the optimized filters can lead to high classification
accuracies, their spatial patterns may also refine the analysis of SSRs.

In this context, this paper compares filtering methods maximizing the peri-
odicity of the extracted components to study and, more importantly, interpret
the cortical processing of periodic stimuli. The filters are constrained to be lin-
ear, thereby defining meaningful topographic patterns of the associated compo-
nents. We propose to adapt four spatial filtering methods to enhance the SNR
of SSRs. The two first methods are derived from a measure of periodicity in
the time domain, first introduced by Saul and Allen [14]. This approach, called
Periodic Component Analysis (πCA), was initially used to extract periodic com-
ponents from speech signals. Variants have been developed, handling for instance
non-strictly periodic signals such as the electrocardiogram [12]. A third method
is based on Canonical Correlation Analysis (CCA) between the multichannel
EEG signals and a relevant reference periodic signal [9]. Finally, the last method
directly optimizes the spectral concentration of the filtered signals at the funda-
mental stimulation frequency and its harmonics.

This paper is organized as follows. Section 2 defines the compared methods in
the context of our application. Section 3 presents empirical results validating the
proposed methods on an EEG data set collected on 15 healthy subjects. Finally,
Sect. 4 concludes and presents further perspectives.

2 Methods

This section introduces four methods aiming at extracting periodic components
by filtering a noisy multidimensional signal x(t) ∈ R

C , assumed to have a zero-
mean (i.e.

∑
t x(t) = 0). Since the ultimate goal is to interpret the links between

these components and the original signals, the spatial filters are constrained
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to be linear and will be denoted by vectors w ∈ R
C . These filters are opti-

mized to define a maximally periodic component s(t) := wTx(t) of fundamental
frequency f1 and corresponding fundamental period T1 = 1/f1. Once an opti-
mal filter is found by optimizing a cost function F , a second optimal filter can
be found, leading to a component in the orthogonal subspace of the first one.
A matrix W ∈ R

C×d is hence recursively built, whose columns are the filters
ranked in decreasing order of periodicity of the filtered components as measured
by F , which determines d ≤ C. Pseudo-inverting the matrix WT ∈ R

d×C then
estimates patterns of activity of the extracted components. Each filtered signal
indeed has a fixed projection across the components of x: writing the linear for-
ward model as x(t) = Au(t), with u(t) ∈ R

d×1 the periodic sources, estimates
WT ≈ A−1 are derived; the first column of (WT )−1 approximates the spatial
pattern of the first estimated source signal u1(t) [11].

2.1 Periodic Component Analysis

Periodic Component Analysis (πCA) [14] defines an optimal linear filter by min-
imizing a scale-invariant periodicity measure of the filtered signal s(t) = wTx(t):

wπ1 = arg min
w

{

Fπ1(w) =
∑

t |s(t + T1) − s(t)|2
∑

t |s(t)|2 =
wT Ax(T1)w
wT Cx(0)w

}

, (1)

where Ax(T1) = Et{(x(t + T1) − x(t)) (x(t + T1) − x(t))T } and Cx(τ) =
Et{x(t + τ)x(t)T }. The minimization of this generalized Rayleigh quotient is
solved by the generalized eigenvalue decomposition (GEVD) of the matrix pair
(Ax(T1), Cx(0)). These two matrices being symmetric, the matrix of generalized
eigenvectors W sorted in decreasing order of magnitude of the associated gen-
eralized eigenvalues gives the components WTx(t) ranked in decreasing order of
periodicity [4].

2.2 Periodic Component Analysis Variant

Another periodicity measure can alternatively be optimized as:

wπ2 = arg max
w

{

Fπ2(w) =
∑

t |s(t + T1) · s(t)|
∑

t |s(t)|2 =
wT Cx(T1)w
wT Cx(0)w

}

. (2)

This defines a variant [12] of πCA, denoted here by πCA2. This problem can be
similarly solved by a GEVD of the matrices (Cx(T1), Cx(0)). It is noteworthy
that whenever Cx(T1) is symmetric, Ax(T1) = 2 · (Cx(0) − Cx(T1)) and (2) is
hence equivalent to (1). For any real-world signal x however, Cx(T1) is unlikely
to be symmetric. Therefore (1) and (2) will typically not define the same fil-
ters. Since (1) seems more generally suited for periodicity maximization, πCA is
expected to outperform πCA2 in the current application.
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2.3 Canonical Correlation Analysis

Another approach to extract periodic components from a multidimensional sig-
nal is based on Canonical Correlation Analysis (CCA) [5]. The principle is to
maximize the correlation between a filtered signal and a linear combination of
the components of a reference signal y(t), with the same length as x. In our
setting, the components of y are defined from the Fourier series of a periodic sig-
nal of fundamental frequency f1: y(t) = (sin(2πf1t) cos(2πf1t) sin(2π2f1t) . . .
sin(2πNhf1t) cos(2πNhf1t))T , where Nh is a parameter indicating the number
of accounted harmonics [9]. The CCA optimization problem is

(wπ3,wπ3−y) = arg max
w,wy

⎧
⎨

⎩
Fπ3(w,wy) =

wT Cx;ywy√
wT Cx(0)w · wT

y Cy(0)wy

⎫
⎬

⎭
, (3)

where Cx;y = Et{x(t)y(t)T }. Only the optimal filter wπ3 is interesting in our
context. The filter wπ3−y being also optimized, (3) amounts finding the filtered
signal wT

π3x(t) which is maximally correlated with an arbitrary periodic signal
whose frequency content is limited to Nhf1. The solution to (3) is obtained by
diagonalizing Cx;y, Cx(0) and Cy(0) using only two matrices W and Wy with
the filters in their columns [7].

2.4 Spectral Contrast Maximization

Spectral contrast maximization (SCM) consists in maximizing the magnitude
of some frequency components of the filtered signal, with respect to the whole
spectrum energy [13]. It is recommended when the searched components are
more easily separable in the frequency domain, i.e. when the frequency band
to amplify is known a priori. Let S(f) := Ff{s(t)} = wT Ff{x(t)} = wT X(f)
denotes the Fourier transform of the filtered signal at frequency f . The optimal
SCM filter is then defined as

wπ4 = arg max
w

{

Fπ4(w) =
Ef∈ν{|S(f)|2}
Ef∈μ{|S(f)|2} =

wT Sxw
wT Cx(0)w

}

, (4)

with ν := {±f1,±2f1, . . . ,±Nhf1} the set of considered frequencies, μ
the whole frequency range (the Nyquist band for discrete signals), Sx :=
Ef∈ν{X(f)X(f)∗} and using the Parseval’s identity at the denominator. The
set ν contains negative frequencies to ensure the realness of the cross-spectrum
matrix Sx. Again, Nh is the number of harmonics to consider, including the
fundamental frequency. This problem is solved using the GEVD of (Sx, Cx(0)).

Although the two last methods are formulated differently, they are intrinsi-
cally related. Indeed, CCA maximizes the correlation of the filtered signal with
an arbitrary sum of sines and cosines at the harmonic frequencies, while SCM
maximizes the Fourier amplitudes of the filtered signal at the same frequencies.
In both cases, normalization ensures a scale-invariance of the solutions.
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3 Processing EEG Signals

The comparison of the performances of the methods introduced in Sect. 2 is
conducted on an EEG data set, which is first described in Sect. 3.1. Section 3.2
defines the quality criterion employed to quantitatively compare the methods,
and Sect. 3.3 finally summarizes the results.

3.1 Experimental Setting

We recorded scalp EEG on 15 healthy subjects to whom we applied sinusoidal
stimulations with a thermal cutaneous stimulator (TCS) in 4 different conditions,
as shown in Fig. 1: warm and cool with either a fixed or a variable active surface
along the stimulation cycles. Five distinct zones of the TCS stimulation surface
could indeed be controlled independently. These 4 conditions were chosen in
order to determine, for both warm and cool stimuli, whether alternating the
position of the active surface along the stimulation cycles could improve the
SNR of the induced SSR. Varying the active surface is indeed likely to limit the
response habituation, which can for instance be due to skin receptor fatigue.
Each stimulus consisted in a 0.2 Hz sinusoidal waveform lasting 15 periods (i.e.
75 s) and was applied to the right forearm. Each subject received 12 trials from
each condition, leading to 48 trials in total presented in a randomized order.
To reduce artifacts, these 12 trials are averaged for each condition. The EEG
was sampled at 1000 Hz and recorded using 64 electrodes placed on the scalp
according to the international 10/10 system. All signals were high-pass filtered
above 0.05 Hz to remove slow drifts (4th order zero-phase Butterworth filter).
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Fig. 1. Stimulation temperature profiles (only two thirds of the whole stimulus length
of 75 s are shown for readability). Zi means ‘zone i’ of the stimulator. w1 and w2 (resp.
c1 and c2) indicate the two warm (resp. cool) conditions with a variable and fixed
stimulation surface.

3.2 Quality Measure

In order to assess the quality of an extracted component, we define a periodicity
measure for a given unidimensional signal y(t) and fundamental frequency f1.
First, since each frequency amplitude |Y (f)| is affected by some background
noise, the average amplitude at 10 neighboring frequencies (5 higher and 5 lower)
is removed from each frequency amplitude [8], resulting in a noise-subtracted
spectrum YNS(f) ∈ R. Then, the periodicity measure is defined as
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Mπ(y) = 100 ·
∑�fs/(2·f1)�

k=1 YNS(k · f1)∑
f |Y (f)| , (5)

with fs the sampling frequency. In addition to accounting for the background
noise, this measure is normalized with respect to the total signal amplitude. A
positive (resp. negative) Mπ suggests that the spectrum amplitude of y contains
local maxima (resp. minima) on average at the harmonics k ·f1. It is noteworthy
that the components extracted using the methods from Sect. 2 should maximize
this measure. Meanwhile, these methods are constrained to produce a linear
filtering of the original signals, thereby providing topographical patterns of the
extracted components which can be interpreted.

3.3 Periodic Components Extraction

Before analyzing the results obtained with the methods described in Sect. 2, we
can observe whether the periodic components are visible in the raw EEG signals.
The topographies of the Fourier transforms at f1 = 0.2 Hz, shown in Fig. 2,
suggest that the periodic components seem to be most prominent at centro-
frontal electrodes, and in particular at FCZ (see Fig. 2b). The periodicity of the
EEG signal at this location will hence be compared to the periodicity of filtered
signals. The EEG time courses averaged over the stimulation periods as well as
the spectra at this electrode are shown in Figs. 3 and 4 for all subjects. In both
figures, the periodicity is visible for the warm conditions, while it is less clear
for the cool ones, especially when the stimulation surface is fixed (condition c2).
The average over the periods highlights more easily the periodic structure in the
EEG, and in particular gives an estimate of the latency between the temperature
and EEG peaks.

-0.5

0

0.5

1

FCZ

Fig. 2. Scalp topographies of (a) the group-level average noise-subtracted spectrum
amplitudes at f1 = 0.2 Hz and (b) the position of the FCZ electrode.

Performances of the periodicity-maximization methods are given in Table 1.
First, the filter obtained from πCA, wπ1, outperforms the performances reached
by wπ2. The poor results of wπ2 can partly be explained by the cross-channel
symmetry hypothesis used to derive Fπ2 from Fπ1. Importantly, all filtering
methods except πCA2 lead to a filtered signal with an improved periodicity
compared to the raw EEG signal at FCZ, even when this raw signal is hardly



530 D. Mulders et al.

Fig. 3. EEG time courses averaged over the stimulation periods, at electrode FCZ for
all 4 conditions. There is one curve per subject and the group-level average is in bold,
with intervals of ± one standard deviation around the mean delimited with dotted
lines. Dashed lines indicate the stimulation temperature.

Fig. 4. EEG frequency spectrum at electrode FCZ for each subject and the 4 condi-
tions. The group-level average is in bold. A star indicates significativity of the noise-
subtracted peaks (Sect. 3.2) at k · f1 = k · 0.2 Hz (paired t-test vs 0).

periodic, such as for condition c2 for instance, which corresponds to cool stim-
ulations with a fixed stimulation surface. Two values of the parameter Nh are
shown for CCA and SCM, chosen according to an analysis of the method perfor-
mances as a function of Nh, not depicted here for space limitations. This analysis
revealed a saturating increase of the performances which was consistent for all
the conditions: as long as Nh is chosen higher than approximately 8, Mπ has
almost reached a plateau. The results of this table also indicate that:

• the SS responses obtained when stimulating the forearm with a variable sur-
face (conditions w1 and c1) exhibit a more pronounced periodicity compared
to the stimuli applied with a fixed surface (w2 and c2). The periodicity mea-
sure indeed shows this difference for almost all the filtered and raw signals.

• CCA and SCM extract the same periodic components (for all signals). This is
not very surprising regarding the similarity between these two methods that
was discussed in Sect. 2; a deeper algorithmic comparison is left for future
works.

• performances of CCA and SCM are improved when the number of harmonics
is increased, for all conditions. This further motivates the idea of extracting
periodic non sinusoidal components instead of analyzing raw EEG frequency
spectra: a single spatial pattern can regroup information from several har-
monics.
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The spatial patterns and filters obtained with the best filtering method (SCM
with Nh = 10) are shown in Fig. 5. These spatial patterns indicate the distribu-
tion of the most periodic component across the scalp. The spatial filters on the
other hand have more intricate scalp topographies than their associated patterns
as they need to cancel the other interfering (noise) components [1]. In addition,
the associated component time courses, averaged over the stimulation periods,
and their Fourier transforms are given in Figs. 6 and 7, the y-scales of the latter
differing from Fig. 4. These two last figures show the high periodicity of the fil-
tered signals. This is in striking contrast with the raw signals at FCZ, especially
for condition c2 depicted in Fig. 3d (with its spectrum in Fig. 4d), where no clear
periodicity was visible. However, all methods rank, according to Mπ, the compo-
nents for each condition (i.e. the entries in each column of Table 1) in almost the
same order as the FCZ signals (i.e. first column of Table 1), which encourages the
valid interpretation of the filtered signal. Further validation will be conducted
to ensure that the periodic amplified activity indeed reflects stimulation-related
patterns. The average curves from Fig. 6 are also interesting as they show the
time lag between the temperature peaks and the extracted part of the SSR.
In particular, we observe a longer time lag for both warm conditions compared
to the cool ones. This is in accordance with the fact that cool stimuli activate
thinly-myelinated Aδ fibers [6], while the employed warm periodic stimuli most
probably activate unmyelinated C fibers with slower conduction velocities [3].

Table 1. Mean(std) for the 15 subjects of the periodicity measure Mπ of the compo-
nents extracted with the periodicity-maximization methods of Sect. 2. For each stimu-
lation type (row), the best performances are in bold. Italic characters indicate that the
corresponding signal is not significantly less periodic than the best one of the same row.
Significativity is computed with paired t-tests and is adjusted for multiple comparisons
using the Holm-Bonferroni correction.

FCZ signal πCA πCA2 CCA SCM

Nh = 1 Nh = 10 Nh = 1 Nh = 10

w1 1.02(0.49) 1.60(1.72) −0.12(0.19) 2.84(1.20) 3.04(1.15) 2.84(1.20) 3.04(1.15)

w2 0.80(0.51) 1.50(1.65) −0.12(0.18) 2.70(0.96) 2.93(1.01) 2.70(0.96) 2.93(1.01)

c1 0.19(0.24) 0.39(0.40) −0.12(0.11) 1.99(0.56) 2.17(0.57) 1.99(0.56) 2.17(0.57)

c2 0.06(0.31) 0.44(0.51) −0.11(0.14) 1.88(0.41) 2.03(0.47) 1.88(0.41) 2.03(0.47)

Fig. 5. Group-level average spatial patterns and spatial filters (defined at the beginning
of Sect. 2) of the first component extracted with SCM (Nh = 10).
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Fig. 6. Average over the stimulation periods of the optimal component extracted with
SCM (Nh = 10). There is one curve per subject and the group-level average is in bold,
with intervals of ± one standard deviation around the mean delimited with dotted
lines. Dashed lines indicate the stimulation temperature.

Fig. 7. Frequency spectrum of the components extracted with SCM (Nh = 10) for
each subject. The group-level average is in bold. A star indicates significativity of the
noise-subtracted peaks (Sect. 3.2) at k · 0.2 Hz (paired t-test vs 0).

4 Conclusions and Perspectives

This paper suggests employing spatial filters to enhance the SNR of EEG
responses elicited by periodic sensory stimulation. Four approaches are detailed
and compared on an EEG data set recorded on 15 healthy subjects exposed
to four different kinds of long lasting sinusoidal thermal stimuli. We show that
these methods are able to extract periodic components from signals which do
not necessarily exhibit a pronounced temporal periodicity. The estimated spatial
activity patterns as well as the component time courses can hence characterize
the steady-state responses.

As to further perspectives, the filtering methods considered in this work have
been applied to the EEG signals averaged over the trials, enhancing their phase-
locked components. Studying the periodic responses on a trial-basis, possibly
using tensor methods, would enable determining whether and to which extent
phase variability across trials affects the observed SSR. Another line of work
is related to the analysis of the multiple suboptimal components, in terms of
periodicity, extracted by the linear filters defined in Sect. 2. Whereas this paper
focuses on the periodicity and spatial patterns of the optimal component identi-
fied by each method, it is very likely that the linear space spanned by the spatial
patterns reflecting stimulation-related activity is more than one-dimensional in
the studied EEG data. The considered linear filters moreover cannot compen-
sate some phase changes across channels reflecting the propagation of the SSR
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within brain regions. This hence suggests analyzing the links between the time
dynamics of different filtered components and their spatial localization on the
scalp.
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Scientifique - FNRS. The authors gratefully thank Prof. Christian Jutten for insightful
discussions.
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Abstract. This research temporally explores absence epileptic seizures
using depth cortical data recorded from different layers of the somatosen-
sory cortex of Genetic Absence Epilepsy Rats from Strasbourg (GAERS).
We characterize the recorded absence seizures by a linear combination
of a few static and dynamic sources. Retrieving these sources from the
recorded absence seizures is the main target of this study which helps us
uncover the temporal evolution of absence seizures. The method used in
this study provides an interesting and original solution to the classical
data denoising consisting in removing the background activity and clean-
ing the data. The obtained results show the presence of a static source
and a few specific dynamic sources during the recorded absence seizures.
It is also shown that the sources have similar origins in different GAERS.

Keywords: Absence seizure · Static and dynamic source
Static and dynamic structure · Temporal evolution

1 Introduction

Absence epilepsy is a form of epilepsy which is accompanied by appearance of
sudden absence seizures in different regions of the brain [12]. Recent studies
about the origin of absence seizures in the brain show that one region of the
somatosensory cortex starts absence seizures, and after a few cycles, a circuit
between the somatosensory cortex and the thalamus continues absence seizures
[4,10]. In order to locally investigate the starting region of absence seizures,
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i.e., the somatosensory cortex, a data set was acquired at Grenoble Institute of
Neurosciences (GIN) from different layers of the somatosensory cortex of Genetic
Absence Epilepsy Rats from Strasbourg (GAERS) [12]. In this research, we
investigate the temporal evolution of absence seizures using the recorded data.

Temporal analysis of absence seizures has attracted a lot of attention during
the last decade [2,3,9]. As one of the major works, [2] studies the temporal
behavior of the sources generating the absence seizures using the intracranial
EEG (iEEG) data recorded from different regions of GAERS brain. At first, blind
source separation methods [7] are applied on sliding time windows of the data.
Then, the obtained sources are compared in different time windows using cross
correlation criterion. It is shown that the sources become more stationary after
a short delay from absence seizures onset [2]. The temporal analysis of absence
seizures has also been performed in humans suffering from absence epilepsy, and
it is shown that the cortical activations occur earlier than thalamic activations
during absence seizures [11].

In [1], a sequence of Markovian states is assigned to the time windows of an
absence seizure, and a few substates are considered for each state. Then, hidden
Markov model (HMM) is applied on the data and the states and their substates
are extracted. The obtained results show that there are a few common substates
among the states indicating the presence of some background activities during
absence seizures.

Based on the results obtained in [1], we model the absence seizures by a
linear combination of the static and dynamic sources. The static sources show
the background epileptic activities, and the dynamic sources are supplementary
to the static sources in producing the absence seizures. The static sources have a
fixed structure with respect to the recording electrode, while the dynamic sources
may have a variable structure. We propose a method to extract these sources
and their structures from the data, and then, we analyze the temporal evolution
of the absence seizures based on the extracted results. The proposed method also
provides an interesting solution to the classical electroencephalography (EEG)
denoising consisting in removing the EEG background activity and cleaning the
EEG epileptic data.

2 Materials

2.1 Data

An electrode with n = 16 sensors was vertically implanted in the somatosensory
cortex of four GAERS rats, and extracellular field potentials were recorded. The
distance between each pair of adjacent sensors and the sampling rate are 150µm
and 20KHz, respectively.

Spikes are the most important epileptic events during absence seizures. Since
the data were acquired locally, the spikes approximately appear in different chan-
nels simultaneously. In fact, when a spike appears, we have a spike time window
consisting of 16 spikes as shown in Fig. 1. Therefore, each absence seizure can be
considered as a train of spike time windows. Our model for the absence seizures
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Fig. 1. Recording electrode (left), an absence seizure (center) and a spike time window
(right).

is defined based on the spike time windows, which can be detected and aligned
following the proposed method in [13] and [6], respectively.

2.2 Model for Absence Seizures

Due to the quasi-static assumption of Maxwell’s laws, we assume that the sensors
on the electrode record the instantaneous linear mixture of the sources located
around the electrode. We categorize the sources into the static and dynamic
sources [1]. The static sources contribute in the generation of the data in all of
the spike time windows and have a fixed structure, while the dynamic sources
participate in some of the spike time windows and do not have a fixed structure.
Figure 2 shows the schematic diagrams of the considered model for four spike
time windows.

2.3 Problem Formulation

Consider an absence seizure with K spike time windows. Each spike time window
X(k) ∈ IRn×L consists the data of n = 16 channels for L = 1750 samples (87.5 ms)
[1,12]. According to the considered model, X(k) is expressed as follows:

X(k) = AS(k) + B(k)U(k) + N(k) (1)

where A ∈ IRn×ns and S(k) ∈ IRns×L show the static structure and the static
sources, respectively. ns denotes the number of static sources. If we assume
n
(k)
d dynamic sources are active in the kth spike time window, B(k) ∈ IRn×n

(k)
d

and U(k) ∈ IRn
(k)
d ×L represent the dynamic structure and the dynamic sources,

respectively. Finally, N(k) ∈ IRn×L is considered the noise matrix with indepen-
dent and identically distributed (i.i.d.) and zero-mean Gaussian entries. There-
fore, the entries of the noise matrix are independent, and each entry has N (0, σ2

0)
distribution.
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Fig. 2. The static sources and the dynamic sources are respectively shown in the left
and right sides of the sensors for four consecutive spike time windows. The static sources
have a static structure while the dynamic sources can move over time windows.

We also consider the following assumptions:

(A1) Due to the scaling ambiguity [7], we must put some constraints on A or
S(k), and also B(k) or U(k). We assume that the columns of A are unit norm,
and the dynamic sources are unit power in each spike time window.
(A2) All of the sources are considered uncorrelated in each spike time window.
In fact, we assume that there is no linear relationship among the sources.
(A3) Since the dynamic sources may only appear in one spike time window, we
need more information to extract them [7]. Therefore, we assume the dynamic
sources are also statistically independent in each spike time window.
(A4) Due to identifiability issues [7], we assume that the number of sources
is less than the number of sensors, and the concatenation of the static and
the dynamic structure [A B(k)] leads to a full rank matrix for all of the spike
time windows.

Now, the problem definition is complete. The set of unknown parameters is
as follows:

Θ = {A, ns ,

K⋃

k=1

{S(k), n
(k)
d , B(k),U(k)}} (2)

Based on the observations X(k) (k = 1, 2, ...,K) and the considered assumptions,
Θ must be estimated.
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3 Proposed Method

At first, we estimate the number of sources. Then, the static structure and
the dynamic sources are obtained. Finally, the static sources and the dynamic
structures are extracted.

3.1 Number of Sources

Since there is no prior information about the number of static sources (ns), we
obtain the results for different ns. Then, we select the one which has the best
biophysiological interpretation (e.g., the shape of the sources must be smooth).
Therefore, we assume ns is fixed and known.

For estimating n
(k)
d , based on the considered assumptions, we express the

autocorrelation matrix of the observations R(k)
x ∈ IRn×n in each spike time

window as follows:

R(k)
x = AR(k)

s AT + B(k)R(k)
u B(k)T + R(k)

n (3)

where R(k)
s ∈ IRns×ns shows the autocorrelation matrix of the static sources.

According to (A2), it is a diagonal matrix, and its diagonal entries may change
in different spike time windows because the static sources can be non-stationary.
R(k)

u ∈ IRn
(k)
d ×n

(k)
d represents the autocorrelation matrix of the dynamic sources,

and it is equal to I (the identity matrix) according to (A1) and (A2). Finally,
R(k)

n ∈ IRn×n is the autocorrelation matrix of noise which is equal to σ2
0I.

The total number of sources in each spike time window, and hence n
(k)
d , are

obtained by calculating the eigen decomposition of R(k)
x and thresholding the

eigenvalues following the method proposed in [8].

3.2 Static Structure

We minimize the following objective function to find the static structure [7]:

f(Θ) =
K∑

k=1

‖R(k)
x − AR(k)

s AT − B(k)R(k)
u B(k)T

︸ ︷︷ ︸
R

(k)
d

‖2F (4)

Here, we just focus on estimating {A,
K⋃

k=1

{R(k)
s ,R(k)

d }}. Although R(k)
s and R(k)

d

are not important parameters, but they must be obtained during the optimiza-
tion. According to the explained assumptions, the following constraints must
also be considered in the optimization:

c1 : diag(ATA) = I,

c2 : rank(R(k)
s ) = ns, R(k)

s = diag(R(k)
s ), R(k)

s � 0,

c3 : rank(R(k)
d ) = n

(k)
d , R(k)

d � 0, k = 1, 2, ...,K (5)
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where diag(.) makes the non-diagonal entries of a matrix equal to zero, rank(.)
represents the rank of a matrix, and . � 0 shows that a matrix is positive
semidefinite. We use alternating minimization to solve the proposed constrained
optimization problem. The minimization with respect to A, R(k)

s and R(k)
d can

respectively be performed using gradient-projection (GP), non-negative least
square (NNLS) and eigen decomposition methods [5].

3.3 Dynamic Sources

Once the static structure is obtained, we can use the concept of singular value
decomposition (SVD) to find the null space of A and omit the static sources in
each spike time window. Assuming V ∈ IRn×(n−ns) spans the null space of A,
we left multiply both sides of (1) by VT :

VTX(k)
︸ ︷︷ ︸

X′(k)

= VTAS(k)
︸ ︷︷ ︸

0

+VTB(k)
︸ ︷︷ ︸

B′(k)

U(k) + VTN(k)
︸ ︷︷ ︸

N′(k)

(6)

where X
′(k) ∈ IR(n−ns)×L, B

′(k) ∈ IR(n−ns)×n
(k)
d and N

′(k) ∈ IR(n−ns)×L can
be considered the new data, the new dynamic structure and new noise, respec-
tively. Since the dynamic sources are statistically independent according to (A3),
we can use the proposed independent component analysis (ICA) method in [8]
to estimate the dynamic sources. It should be mentioned that the number of
dynamic sources n

(k)
d has been already estimated in each spike time window,

B
′(k) is not equal to zero according to (A4), and each column of N

′(k) has
N (0, σ2

0I) distribution.

3.4 Static Sources and Dynamic Structures

According to (1), since the entries of noise are Gaussian and independent, mini-
mizing the following objective function leads to finding the maximum likelihood
estimation of the static sources and the dynamic structure in each spike time
window:

g(S(k),B(k)) = ‖X(k) − AS(k) − B(k)U(k)‖2F (7)

We can simply minimize this objective function using alternation minimization.
By extracting the static sources and the dynamic structures in all of the spike

time windows, all of the parameters are determined.

4 Experimental Results

We apply the proposed method on the absence seizures for different number of
static sources. The best results are extracted by considering ns = 1 in all of the
absence seizures. In fact, when we consider ns > 1, the sources become non-
smooth and incomprehensible. The estimated number of dynamic sources is also
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equal to one (n(k)
d = 1) for all of the spike time windows. An absence seizure with

K = 390 spike time windows from the first rat is considered to show the results.
The obtained results for all of the spike time windows are shown in Fig. 3. The
static sources and the dynamic structures are normalized to better show the
results. The obtained static sources are similar and they can be considered as
one cluster. The center of this cluster, which is the average of the static sources,
is shown in red in Fig. 3.

Fig. 3. The obtained results for an absence seizure with K = 390 spike time windows
(Color figure online).

It seems that the dynamic sources can also be partitioned into a few clusters.
If we apply k-means clustering on the extracted dynamic sources, three clusters
are obtained as shown in Fig. 4. The corresponding dynamic structures of each
cluster are also shown in Fig. 4.

Based on the obtained results, we can conclude that the linear superposition
of a static source with one of three dynamic sources generates the spike time
windows of the absence seizure as shown in Fig. 5.

Since there is a specific dynamic source in each spike time window, a sequence
of clusters can be assigned to the absence seizure as shown in Fig. 6. It can be
observed that the second dynamic source disappears in the end of the absence
seizure, thus, it is an unstable source.

The same results are obtained when we apply the proposed method on other
absence seizures of the first rat. For other rats, the obtained static structure and
centers of clusters for the dynamic structures are similar to the results of the first
rat, and there is also an unstable dynamic source, but the centers of clusters for
the static and dynamic sources are different. For instance, the obtained centers
of clusters for the absence seizures of the second rat are shown in Fig. 7.
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Fig. 4. There are three kinds of dynamic sources during absence seizures.

Fig. 5. The linear combination of a static source with one of three kinds of dynamic
sources generates the spike time windows of absence seizures. MUX stands for multi-
plexer, that just allows one source to pass.

Fig. 6. Sequence of clusters for an absence seizure with K = 390 spike time windows.
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Fig. 7. The obtained centers of clusters for the second rat.

By comparing Fig. 7 with Figs. 3 and 4, we observe that the corresponding
structures are the same in the first and second rats. The correlation coefficient
for the corresponding static structures and centers of clusters for the dynamic
structures in the first and second rats are respectively equal to 0.99, 0.97, 0.98
and 0.95. Therefore, we can conclude that the origins of the sources are similar
in the rats, however, the propagated signals from the origins are different.

We also cross validate the obtained results by computing the reconstruction
error. The spike time windows of each absence seizure (X(k)) are reconstructed
(X̂(k)) using the obtained results in other absence seizures (i.e., the static struc-
ture + the centers of cluster for dynamic structures, static sources, and dynamic
sources). Then, the relative reconstruction error is calculated as follows:

Er =
1
K

K∑

k=1

‖X̂(k) − X(k)‖2F
‖X(k)‖2F

(8)

The obtained relative reconstruction errors for five absence seizures of the first
rat are reported in Table 1. The errors in other rats have the same order of
magnitude as the first rat which show the accuracy and generality of the proposed
model and the obtained results for the recorded absence seizures.

Table 1. Relative reconstruction error for five absence seizures of the first rat. The
absence seizures respectively consist of K1 = 87, K2 = 94, K3 = 95, K4 = 88 and
K5 = 390 spike time windows.

Training on Testing on

Seizure 1 2 3 4 5

1 0.05 0.11 0.13 0.12 0.09

2 0.07 0.06 0.10 0.09 0.08

3 0.08 0.11 0.06 0.10 0.09

4 0.10 0.09 0.10 0.08 0.10

5 0.09 0.10 0.11 0.12 0.03
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5 Conclusion and Future Work

We analyzed the temporal evolution of absence epileptic seizures using the data
recorded from different layers of the somatosensory cortex of GAERS rats. We
showed that the linear combination of a static source and one of three (two
stable + one unstable) dynamic sources generates the spike time windows of
recorded absence seizures. It was also shown that the origin of the sources are
similar in the rats, but the propagated signals are different. The concentration
of this study was on the temporal evolution of the recorded absence seizures. In
the future work, we will investigate the spatial characterization of the data, and
provide a comprehensible spatio-temporal analysis of absence seizures.
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Abstract. Nonnegative matrix factorization (NMF) has been well-
known as a powerful spectral model for audio signals. Existing work,
including ours, has investigated the use of generic source spectral mod-
els (GSSM) based on NMF for single-channel audio source separation and
shown its efficiency in different settings. This paper extends the work to
multichannel case where the GSSM is combined with the source spatial
covariance model within a unified Gaussian modeling framework. Espe-
cially, unlike a conventional combination where the estimated variances
of each source are further constrained by NMF separately, we propose to
constrain the total variances of all sources altogether and found a better
separation performance. We present the expectation-maximization (EM)
algorithm for the parameter estimation. We demonstrate the effective-
ness of the proposed approach by using a benchmark dataset provided
within the 2016 Signal Separation Evaluation Campaign.

Keywords: Multichannel audio source separation
Generic spectral model · Nonnegative matrix factorization
Spatial covariance model · Gaussian modeling

1 Introduction

Audio source separation, which aims at separating individual sound sources from
their mixture, is crucial in many practical applications such as speech enhance-
ment, sound post-production, and robotics. Despite numerous efforts in the past
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 547–557, 2018.
https://doi.org/10.1007/978-3-319-93764-9_50
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decades, its performance in real-world conditions is still far from perfect [1]. To
improve the separation performance, depending on specific scenario where cer-
tain side information can be known, a range of informed source separation algo-
rithms has been proposed in the literature [2]. Such side information can be e.g.,
score associated with musical sources [3], text associated with spoken speeches
[4], motion associated with audio-visual objects in a video [5], or deformed ref-
erences [6]. Following this trend, very abstract semantic information just about
the type of audio source (e.g., if a source in the mixture is speech, musical instru-
ment, or environmental sound) has been used to create a universal speech model
in [7] or the universal sound class model in [8]. Exploiting this idea, we have
investigated the use of generic speech and noise model for single-channel speech
separation in [9] and shown its promising result. Further more, we have proposed
to combine the block sparsity constraint investigated in [7] with the component
sparsity constraint presented in [8] in a common formulation so as to take into
account the advantage of both of them.

It is interesting to note that most cited work above [3–5,7–9] considered only
a single channel case, where the mixtures are mono, and exploited non-negative
matrix factorization (NMF) [10,11] to model the spectral characteristics of audio
sources. When more recording channels are available, multichannel source sepa-
ration algorithm should be considered as it allows to exploit important informa-
tion about the spatial locations of the sources. Such additional information has
been shown to greatly improve the separation performance. To date, the spatial
cues can be modeled by e.g., the interchannel time difference and interchan-
nel intensity difference [12], the rank-1 mixing vector in the frequency domain
[13,14], or the full-rank spatial covariance matrix in Gaussian modeling frame-
work [15,16]. In this paper, we present an extension of our previous work [9]
to multichannel case where the NMF-based GSSM is combined with the pow-
erful full-rank spatial covariance model in a Gaussian modeling paradigm [15].
Note that the combination of NMF with such spatial covariance model has been
investigated in several works [16–18]. However, our work is different from [17,18]
in the sense that we use the pre-trained GSSM so as the intermediate source
variances are better constrained. As consequence, the overall algorithm is much
less sensitive to the parameter initialization and it does not suffer from the well-
known permutation problem. Our work is also different from [16] as we exploit
the mixed group sparsity constraint in the optimization algorithm in order to
automatically select the most representative spectral components in the GSSM.
Especially, unlike all existing approaches [16–18] where the estimated variances
of each source are independently constrained by NMF, we propose to constrain
the total variances of all sources altogether so as the parameters are estimated
in a more global consistent way.

The structure of the rest of the paper is as follows. We introduce the problem
formulation and modeling in Sect. 2. We then present the proposed multichannel
algorithm with the details of parameter estimation in Sect. 3. The effectiveness
of the proposed approach are validated in Sect. 4. Finally we conclude in Sect. 5.
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2 Problem Formulation and Modeling

Let us denote by cj(t) ∈ R
I×1 the contribution of j-th source, j = 1, 2, ..., J , to an

array of I microphones, and x(t) =
∑J

j=1 cj(t) the mixture signal. The objective
of source separation is to estimate cj(t) given x(t). As most source separation
algorithms operate in the frequency domain, we denote by cj(n, f) and x(n, f)
the short-term Fourier transform (STFT) of cj(t) and x(t), respectively, where
n = 1, 2, .., N presents time frame index and f = 1, 2, ..., F the frequency bin
index. The mixing model in the frequency domain writes:

x(n, f) =
J∑

j=1

cj(n, f). (1)

2.1 General Gaussian Modeling Framework

We consider the nonstationary Gaussian modeling framework [15], where cj(n, f)
is modeled as a zero-mean complex Gaussian random vector cj(n, f) ∼
Nc(0,Σj(n, f)). Here 0 denotes a I × 1 vector of zeros, and the covariance
matrix Σj(n, f) is factorized as

Σj(n, f) = vj(n, f)Rj(f), (2)

where vj(n, f) are scalar time-dependent variances encoding the spectro-
temporal power of the sources and Rj(f) are time-independent I × I spatial
covariance matrices encoding their spatial characteristics. Under the assumption
that the source images are statistically independent, the mixture vector x(n, f)
also follows a zero-mean multivariate complex Gaussian distribution with the
covariance matrix computed as

Σx(n, f) =
J∑

j=1

vj(n, f)Rj(f). (3)

Denoting by Σ̂x(n, f) = E(x(n, f)xH(n, f)) the empirical covariance matrix,
which can be numerically computed by local averaging over neighborhoods of
(n, f) [15,16] the negative log-likelihood is computed as

L(θ) =
∑

n,f

tr
(
Σ−1

x (n, f)Σ̂x(n, f)
)

+ log det
(
πΣx(n, f)

)
, (4)

where det() presents the matrix determinant. Under this model, the parameters
{vj(n, f),Rj(f)}j,n,f can be estimated in the Maximum likelihood (ML) sense by
minimizing L(θ). Then the STFT coefficients of the source images are obtained in
the minimum mean square error (MMSE) sense by multichannel Wiener filtering
as

ĉj(n, f) = vj(n, f)Rj(f)Σ−1
x (n, f)x(n, f). (5)

Finally, the estimated time-domain source images ĉj(t) can be obtained by per-
forming the inverse STFT of ĉj(n, f).
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2.2 NMF-Based Spectral Model

As mentioned earlier, NMF has been widely applied to single channel audio
source separation where the spectrogam of the mixture is factorized by two
smaller matrices known as the spectral dictionary and the activation [11]. When
adapting NMF to the considered Gaussian modeling framework, the nonnegative
source variance vj(n, f) can be approximated as

vj(n, f) ≈ v̂j(n, f) =
Kj∑

k=1

wjfkhjkn, (6)

where wjfk is an entry of the spectral basis matrix Wj ∈ R
F×Kj

+ , hjkn is an
entry of the activation matrix Hj ∈ R

Kj×N
+ , and Kj the number of latent com-

ponents in the NMF model to model the j-th source. Given the matrix of the
source variances Vj = {vj(n, f)}n,f ∈ R

F×N
+ , the corresponding NMF parame-

ters can be estimated by minimizing the Itakura-Saito divergence, which offers
scale invariant property, as

min
Hj≥0,Wj≥0

D(Vj‖WjHj), (7)

where D(Vj‖WjHj) =
∑N

n=1

∑F
f=1 dIS

(
vj(n, f)‖v̂j(n, f)

)
, and dIS(x‖y) = x

y −
log(xy ) − 1.

The parameters {Wj ,Hj} are usually initialized with random non-negative
values and are iteratively updated via the well-known multiplicative update
(MU) rules [10,11]. To our best knowledge, this NMF formulation for the source
variances within the presenting Gaussian modeling framework was first presented
in [17], and then further discussed in [18].

3 Proposed Approach

We will first introduce the GSSM construction in Sect. 3.1. We then discuss the
novel GSSM fitting with a sparsity constraint in Sect. 3.2. Finally, we present the
derived EM algorithm in Sect. 3.3. Note that we focus on NMF as spectral model
in this paper, however the whole idea of the proposed approach can actually be
used for other spectral models than NMF.

3.1 GSSM Construction

We assume that the types of sources in the mixture are known and some examples
of them are available. This is actually feasible in practice as we often know at
least what type of target signal to extract from a recording, e.g., in the speech
enhancement usecase, one target source is speech and another is noise. Let the
spectrogram of p-th example of the j-th source spj (t) be denoted by Vp

j . First,
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Vp
j is used to learn a corresponding NMF spectral dictionary, denoted by Wp

j ,
by optimizing the criterion similarly to (7):

min
Hp

j ≥0,Wp
j ≥0

D(Vp
j‖Wp

jH
p
j ) (8)

where Hp
j is the time activation matrix. Given Wp

j for all examples p = 1, ..., Pj

of the j-th source, the GSSM for the j-th source is constructed as

Uj = [W1
j , . . . ,W

Pj

j ], (9)

then the GSSM for all the sources is computed by

U = [U1, . . . ,UJ ]. (10)

As an example for speech and noise separation, in practical implementation
we may need several speech examples from different male voices and female
voices (e.g., P1 = 4), and several examples of different types of noise such as
those from outdoor environment, cafeteria, waterfall, street (e.g., P2 = 5).

3.2 GSSM Fitting with Mixed Group Sparsity Constraint

The GSSM for all sources U constructed in (10) becomes a large matrix when the
number of examples Pj for each source increases, and it is actually a redundant
dictionary since different examples may share similar spectral patterns. Thus in
the NMF model fitting, sparsity constraint is naturally needed so as to automat-
ically select only a subset of U which represents the sources in the mixture [19].
In other words, the model-based spectrogram of the mixture Ṽ =

∑J
j=1 Vj is

decomposed by solving the following optimization problem

min
H≥0

D(Ṽ‖UH) + λΩ(H) (11)

where Ω(H) presents a penalty function imposing sparsity on the activation
matrix H ∈ R

K×N
+ , and λ is a trade-off parameter determining the contribution

of the penalty. Note that unlike existing approaches [16–18] where the matrix
of the estimated variances of each source Vj was constrained by NMF indepen-
dently as (7), we propose here to constrain the matrix of the total variances of
all sources Ṽ altogether by (11). This can be seen as an additional NMF-based
separation step applied on the source variances, while the existing works does
not perform any additional separation of the variances, but more like denois-
ing of the already separated variances. In our recent work [9] we investigated a
general form for the penalty function as

Ω(H) = α

G∑

g=1

log(ε + ‖Hg‖1) + (1 − α)
K∑

k=1

log(ε + ‖hk‖1). (12)

The first term on the right-hand side of Eq. (12) presents the block sparsity-
inducing penalty (which enforces the activation of relevant examples only while
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omitting irrelevant ones since their corresponding activation block in H will likely
converge to zero), the second term presents the component sparsity-inducing
penalty (which enforces the activation of relevant components in U only), α ∈
[0, 1] weights the contribution of each term. In (12), hk ∈ R

1×N
+ is a row (or

component) of H, Hg is a subset of H representing the activation coefficients
for g-th block, G is the total number of blocks, ε is a non-zero constant (i.e.,
set by 3 ∗ 10−6 in our experiment), and ‖.‖1 denotes �1-norm operator (i.e., the
maximum absolute column sum of the matrix). In the considered setting, a block
represents one training example for a source and G is the total number of used
examples (i.e., G =

∑J
j=1 Pj).

By putting (12) into (11), we have a complete criterion for estimating H given
Ṽ and the pre-trained spectral model U. The derived MU rule for updating H
is presented in [9] and summarized in the Algorithm 1, where Yg is a uniform
matrix of the same size as Hg and zk a uniform row vector of the same size
as hk.

3.3 Proposed Multichannel Algorithm

Within the presenting Gaussian modeling framework, EM algorithm has been
derived to estimate the parameters {vj(n, f),Rj(f)}j,n,f by considering the set
of hidden STFT coeffients of all the source images {cj(n, f)}n,f as the com-
plete data. In the E-step, the Wiener filter Qj(n, f) and the expected covatiance
Σ̂j(n, f) of the spatial images of the j-th source are computed. Then in the
M-step, Rj(f) and vj(n, f) are updated by minimizing (4), which gives close-
form solution. The detail of this EM derivation can be found in [15,18]. For
the proposed approach as far as the GSSM concerned, the E-step of EM algo-
rithm remains the same. In the M-step, we additionally perform the optimization
defined in (11) by MU rules so as the estimated intermediate source variance
vj(n, f) is further updated with the supervision of the GSSM. The detail of EM
algorithm for the parameter estimation is summarized in Algorithm1.

4 Experiments

4.1 Dataset and Settings

We validated the performance of the proposed algorithm in a popular but very
important speech enhancement usecase where we knew already two types of
sources in the mixture: speech and noise. For a better comparison with the state
of the art, we used the benchmark development dataset of the “Two-channel
mixtures of speech and real-world background noise” (BGN) task1 within the
SiSEC 2016 [1]. This devset contained stereo mixtures of 10 second duration and
16 KHz sampling rate. They were mixed from male/female speeches and noises
recorded from six different public environments: cafeteria (Ca), square (Sq), and
subway (Su). Overall there were nine mixtures of two sources: three with Ca
1 https://sisec.inria.fr/sisec-2016/bgn-2016/.

https://sisec.inria.fr/sisec-2016/bgn-2016/


Multichannel Audio Source Separation Exploiting NMF-Based GSSM 553

Algorithm 1. EM algorithm for the parameter update
// E-step (perform calculation for all j, n, f):
Σj(n, f) = vj(n, f)Rj(f) // equation (2)
Σx(n, f) =

∑J
j=1 vj(n, f)Rj(f) // equation (3)

Qj(n, f) = Σj(n, f)Σ−1
x (n, f)

Σ̂j(n, f) = Qj(n, f)Σ̂x(n, f)QH
j (n, f) +

(
I − Qj(n, f)

)
Σj(n, f)

// M-step (perform calculation for all j, n, f)

Rj(f) = 1
N

∑N
n=1

1
vj(n,f)

Σ̂j(n, f) // update Rj(f)

vj(n, f) = 1
I
tr(R−1

j (f)Σ̂j(n, f)) // update vj(n, f)

Vj = {vj(n, f)}n,f

Ṽ =
∑J

j=1 Vj

// Perform NMF in the M-step to further constrain source spectra by the GSSM
for iter = 1, ..., MU-iteration do

for g = 1, ..., G do
Yg ← 1

ε+‖Hg‖1

end for
Y = [YT

1 , . . . ,YT
G]T

for k = 1, ..., K do
zk ← 1

ε+‖hk‖1
end for
Z = [zT

1 , . . . , zT
K ]T

V̂ = UH

H ← H �
(

UT ( ˜V� ̂V.−2)

UT ( ̂V.−1)+λ(αY+(1−α)Z)

). 12
// MU rule

end for

vj(n, f) = [UjHj ]n,f // updating constrained spectra

noise, four with Sq noise, and two with Su noise. The signal-to-noise ratio was
drawn randomly per mixture between −17 and +12 dB by the dataset creators.

For training the GSSM for speech and noise, we took one male voice and two
female voices from the SiSEC 20152. These three speech examples were also 10-s
long. Five noise training examples were extracted from the Diverse Environments
Multichannel Acoustic Noise Database (DEMAND)3. Again they were 10-s long
and contained three types of environmental noise: cafeteria, square, metro. We
made sure that these examples used for GSSM training are different from those
in the devset, which were used for testing. The number of NMF components in
Wp

j for each speech example was set to 32, while that for noise example was
16, and each Wp

j was obtained after 20 MU iterations. Other parameter settings
were as follows. The STFT window length of 50% overlapping was 1024. The
spatial covariance matrix Rj(f) for noise was initialized following the diffuse

2 https://sisec.inria.fr/sisec-2015/2015-underdetermined-speech-and-music-
mixtures/.

3 http://parole.loria.fr/DEMAND/.

https://sisec.inria.fr/sisec-2015/2015-underdetermined-speech-and-music-mixtures/
https://sisec.inria.fr/sisec-2015/2015-underdetermined-speech-and-music-mixtures/
http://parole.loria.fr/DEMAND/
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model, while Rj(f) for speech was initialized following the direct+diffuse model
[15] assuming the direction-of-arrival (DoA) for speech source is 90◦. For testing,
we firstly varied the number of EM and MU iterations and found that generally
the convergence obtained after about 10 iterations. Specifically, the best result
was obtained by 15 EM iterations and 10 MU iterations. The trade-off parameter
λ determining the contribution of the sparsity-inducing penalty in (11) and the
factor α weighting the contribution of each penalty term in (12) were tested with
different values: λ = {1, 10, 25, 50, 100, 200, 500}, α = {0, 0.2, 0.4, 0.6, 0.8, 1} and
we found that the algorithm is less sensitive to the choice of α, while more
sensitive to the choice of λ and λ > 10 decreases the separation performance.
The best choice for these parameters are λ = 10, α = 0.2.

4.2 Comparison Results

We compare the speech separation performance of the proposed approach with
several state of the art and baseline algorithms as follows:

– Liu’s method: the algorithm performed Time Difference of Arrival (TDOA)
clustering based on GCC-PHAT and participated to the same SiSEC 2016
campaign [1]. The separation results were submitted by the authors and eval-
uated by the SiSEC organizers.

– Wood’s method [20]: this algorithm firstly applied NMF to the magnitude
spectrograms of the mixtures with channels concatenated in time. Each dic-
tionary atom was then clustered to either the speech or the noise according
to its spatial origin. Again the separation results for devset were submitted
to the SiSEC 2016 campaign and evaluated by the SiSEC organizers.

– Arberet’s method [17]: using the similar Gaussian modeling framework, the
algorithm further constrained the estimated source variances by unsupervised
NMF where the parameters were obtained by optimizing the criterion (7)
in the M-step of EM algorithm instead of (11) like us. Such optimization
criterion was implemented by Ozerov et al. in [18].

– Baseline 1: the presenting GSSM + full-rank spatial covariance approach but
there is no sparsity constraint in (11) (i.e., λ = 0). This is to investigate the
importance of the sparsity constraint (12) in the GSSM fitting.

– Baseline 2: the presenting GSSM + full-rank spatial covariance approach but
the estimated variances of each source Vj are further constrained by NMF
where the corresponding activation matrix Hj obtained by optimizing the
following criterion:

min
Hj≥0

D(Vj‖UjHj) + λΩ(Hj) (13)

We submitted results obtained by this method to the SiSEC 2016 BGN task
and obtained the best performance among other submitting methods in term
of the overall signal-to-distortion (SDR) ratio [1].
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– Proposed method: the presenting GSSM + full-rank spatial covariance app-
roach where the matrix of the total variances of all sources Ṽ is constrained by
NMF and the activation matrix is obtained by optimizing (11). EM algorithm
for the corresponding parameter updates is present in Algorithm1.

The separation performance (for speech source only) for all approaches was eval-
uated by the signal-to-distortion ratio (SDR), the signal-to-interference ratio
(SIR), the signal-to-artifacts ratio (SAR), and the source image-to-spatial dis-
tortion ratio (ISR), measured in dB [21]. These values are shown in Table 1 where
the higher the better.

Table 1. Average speech separation performance obtained on the devset of the BGN
task of SiSEC 2016. Results for Liu’s method and Wood’s method were submitted by
the authors [1].

Methods SDR SIR SAR ISR

Liu’s method −7.0 −1.4 15.0 3.1

Wood’s method [20] 1.9 3.6 3.7 5.1

Arberet’s method [17,18] 4.4 4.6 12.1 15.9

Baseline 1 (No sparsity constraint) 0.4 −1.1 9.5 8.3

Baseline 2 (λ = 10, α = 0.2) 7.4 8.9 12.7 11.3

Proposed method (λ = 10, α = 0.2) 7.7 10.7 11.6 13.9

It is interesting to see that the result obtained by the Baseline 1 is lower than
that of Arberet’s method, even the former used the pre-trained GSSM while the
later was completely unsupervised. It reveals that the GSSM itself is redundant
and contains some irrelevant spectral patterns with the actual sources in the
mixture. Thus constraining the source variances by the GSSM without a rel-
evant spectral pattern selection guided by the sparsity penalty is even worse
than unsupervised NMF case where the spectral patterns were randomly initial-
ized and then updated by MU rules. The importance of such sparsity penalty is
explicitly confirmed by the fact that the result obtained by the Baseline 2 was
far more better than that of the Baseline 1. It is also not surprising to see that
the Baseline 2 clearly outperforms Arberet’s method as the former exploited
additional information about the types of sources in the mixtures so as to learn
the GSSM in advance. We also tested the case where the small size dictionary
obtained by jointly decomposing all training examples for the target signal, but
the performance was lower than the Baseline 2. Finally, the proposed method
offers the best separation performance in terms of SDR and SIR, the two impor-
tant criteria. This confirms the effectiveness of the proposed approach where the
GSSM is successfully combined with the spatial covariance model in a unified
Gaussian modeling framework. Furthermore, the benefit of the new criterion
(11) compared to the conventional one (13) for the NMF parameter estimation
is supported. Our further analysis, which is not described here due to the lack
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of space, shows in addition that with such new criterion, the algorithm is less
sensitive to the parameter initialization and the choice of hyper-parameters λ
and α as compared to the Baseline 2.

5 Conclusion

We have presented a novel multichannel audio source separation algorithm,
which exploits the use of generic source spectral model within the well-
established Gaussian modeling framework. Such redundant GSSM can be easily
learned from source examples by NMF and shown to be very useful in guiding
the source separation. Especially, we have proposed a new optimization crite-
rion in order to better constrain the intermediate source variances estimated in
each EM iteration. Experiment with a benchmark dataset from the SiSEC 2016
campaign has confirmed the effectiveness of the proposed approach compared to
both the state of the art and the baselines. Motivated by the GSSM, future work
can be devoted to extending the current approach so as to exploit in addition
the use of a generic spatial covariance model, which remains to be defined.
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Abstract. Object-based audio has the potential to enable multime-
dia content to be tailored to individual listeners and their reproduc-
tion equipment. In general, object-based production assumes that the
objects—the assets comprising the scene—are free of noise and inter-
ference. However, there are many applications in which signal separa-
tion could be useful to an object-based audio workflow, e.g., extract-
ing individual objects from channel-based recordings or legacy content,
or recording a sound scene with a single microphone array. This paper
describes the application and evaluation of blind source separation (BSS)
for sound recording in a hybrid channel-based and object-based work-
flow, in which BSS-estimated objects are mixed with the original stereo
recording. A subjective experiment was conducted using simultaneously
spoken speech recorded with omnidirectional microphones in a reverber-
ant room. Listeners mixed a BSS-extracted speech object into the scene
to make the quieter talker clearer, while retaining acceptable audio qual-
ity, compared to the raw stereo recording. Objective evaluations show
that the relative short-term objective intelligibility and speech quality
scores increase using BSS. Further objective evaluations are used to dis-
cuss the influence of the BSS method on the remixing scenario; the sce-
nario shown by human listeners to be useful in object-based audio is the
worst-case scenario among those tested.

1 Introduction

Research into blind source separation (BSS), where an estimate of a clean audio
source can be obtained knowing only a mixture of sounds, has been active for
many years. Generally, the performance of such approaches has been evaluated
in terms of the quality of the estimated audio signal after processing, suppression
of interference, and absence of artefacts, using tools such as BSS Eval [21] and
PEASS [3]. However, in remixing, where the estimated audio signal is combined
with other audio before being presented to the listener, some separation artefacts
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 558–567, 2018.
https://doi.org/10.1007/978-3-319-93764-9_51
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may be masked, increasing the utility for source separation techniques in contexts
such as broadcast where high-quality content is required.

Opportunities for source separation are also emerging in the context of object-
based audio. Here, instead of content being mastered for a particular production
format, a set of audio objects is transmitted. Audio objects usually comprise a
single ‘clean’ audio channel and corresponding metadata that describe how the
audio should ideally be rendered for the end user. Object-based audio allows for
customisation of content to each listener’s reproduction setup, and personalisa-
tion of content to their personal preferences. However, clean audio objects may
not always be available. In this paper, we investigate applications of BSS for
clean object estimation in the context of an object-based workflow.

Other recent work has also sought to exploit the potential for using BSS
as part of a remix. In [12], perceptual model results were used to show that
the speech quality achieved by remixing estimated sources was higher than
the quality of the estimated sources in isolation. In [20], subjective tests were
conducted to investigate the extent to which users were satisfied by personal-
ising object-based content, with a source separation scenario considered. The
MARuSS (Musical Audio Repurposing using Source Separation) project has
worked on the problem of musical remix and upmix using deep learning-based
BSS [16], including separation of vocals from the remainder of the mix [18], and
perceptual evaluation of BSS in the context of remixing [17,22].

The work described in this paper extends the work by Coleman et al. [2,
Sect. VII.C] in three ways. First, we investigate two additional BSS algorithms;
second, we extend the presentation and discussion of the objective metrics; third,
we evaluate the effects of remixing both talkers instead of just the quieter talker
as in [2]. The paper is organised as follows. In Sect. 2, we motivate the use of
source separation in the context of an object-based production workflow and
present the background theory for the BSS approaches implemented. In Sect. 3,
we present the results of subjective and objective experiments for speech stimuli.
Finally, in Sect. 4 we conclude.

2 Background

In this section, the application scenario for BSS in object-based audio is
described, and the BSS methods under test are briefly introduced.

2.1 Object-Based Production Workflow

An object-based scene is composed of a number of audio signals, together with
metadata describing how they should be rendered for the end user. Tradition-
ally, it is assumed that the audio signals are clean, that is, not contaminated
with artefacts or interference from other sources. Then, in a standard object-
based workflow, metadata would be manually authored by the sound designer
in post-production. This process is time consuming, both in terms of capturing
the required source signals and authoring the metadata. Consequently, a new
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workflow stage of objectification has recently been proposed [2], wherein audio
objects and their metadata are estimated from audio and video signals that may
form part of the final audible production or may serve purely as production aids.

Although a strictly object-based production would encode each individual
sound source as an object, a commonly used pragmatic approach is to mix close
microphone object signals with a channel-based capture of the entire scene. This
enables opportunities for editing, remixing or personalising content (compared to
a traditional channel-based broadcast of the same mix) and is supported in cur-
rent standards [4,7]. Furthermore, if close microphone signals are not available
(for example, if there is limited time to set up equipment), BSS can potentially
be used to estimate the object signals. In this case, remixing can still take place
in post-production. Coleman et al. [2] explored two use-cases for audio separa-
tion algorithms in object-based production (BSS for speech; beamforming for
music). The analysis of the results from the speech use case is extended here.

2.2 Blind Source Separation Methods

Three BSS methods are considered in this paper. The first is a traditional
time-frequency (TF) masking method statistically-characterised with a Gaus-
sian mixture model (GMM), where binaural features of inter-aural level differ-
ence (ILD) and inter-aural phase difference (IPD) are exploited to iteratively
refine the GMM parameters for the separation mask generation [13]. We denote
this method as “Mandel”. The second uses similar principles, yet takes into
account ILD and IPD as well as mixing vector features [1], and is denoted as
“Alinaghi”. Unlike the above methods, with unsupervised learning processes,
the third method is based on deep neural networks (DNNs), where the com-
monly used spectral features and non-linearly-transformed binaural spatial fea-
tures are fed into a hybrid DNN structure, consisting of convolutional layers
and fully-connected layers [11]. The spatial features are iteratively refined using
the DNN output. This method is denoted as “Liu”. The training process for
Liu was performed on a simulated data set lasting around 12 h in a reverberant
room (RT60 640 ms). It is noteworthy that the mixing scenario for training the
DNN used in Liu does not correspond to the conditions of the data recorded for
the experiments reported in this paper: the talker positions, microphones, and
balance between dominant and interfering speakers were all different.

3 Experiments

To investigate the utility of BSS to enable object-based remix of stereo speech
content, listening tests were conducted, and objective scores were obtained using
predictive perceptual models and signal-based metrics. In this section, the setup
for each experiment is described and the results are presented and discussed.
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3.1 Speech Stimuli

Performances were recorded in a large recording studio (dimensions 14.55 × 17.08
× 6.50 m; RT60 1.1 s) using a number of microphone techniques [5]. TIMIT sen-
tences [6] spoken simultaneously by two talkers were recorded with a pair of
high-quality omnidirectional microphones, 18 cm apart, approximately 4 m from
the talkers. Lapel microphone signals were also recorded, to provide close ref-
erence signals for the objective evaluation. In the stereo recording, one talker
was 4.6 dB louder than the other, according to the relative estimated signal-to-
interference ratios (SIRs) calculated by BSS Eval [21]. Therefore, for the sub-
jective tests, the application scenario was to estimate the speech uttered by the
quieter talker, i.e., to allow the talker at −4.6 dB SIR to be better level-balanced
in post-production.

3.2 Subjective Evaluation

Listening tests were conducted using a standardized “0+5+0” surround setup [8]
with Genelec 8020B loudspeakers in an acoustically-treated listening room (RT60
conforming to ITU recommendation BS.1116-3 [10] above 400 Hz). In the sub-
jective experiment (also reported by Coleman et al. [2]), listeners were presented
with the stereo recording (left and right signals rendered directly to ±30◦) and a
BSS-estimated object extracted by Mandel’s method. They were asked to “adjust
the slider [controlling the extracted object level] until the target talker is as clear
and easy to understand as possible, whilst ensuring that the overall audio qual-
ity remains at an acceptable level (compared to the reference).” The BSS object
was rendered at azimuths {0,15,30◦}, with three repeats, giving nine ratings per
listener. Additionally, a threshold of audibility was determined: listeners were
presented with the same stimulus (object at 0◦) and asked to “adjust the [object]
level to the point immediately before the mix is different to the reference.” This
part also included three repeats. Ten experienced listeners completed the tests, of
whom seven were native English speakers. The results are shown as boxplots for
each participant (showing the range of the data, the quartiles, and medians with
95% confidence notches) in Fig. 1. It can be seen that for most participants, the
thresholds of audibility and acceptability are significantly different. The results
of participant 5 were removed from further analysis due to the large variance
in threshold judgements. The results from the remaining participants were nor-
mally distributed, both for audibility (Lilliefors test, p = 0.08) and acceptability
(Lilliefors test, p > 0.50). The mean mixing level averaged over azimuth (0.2 dB
relative to the reference) differed significantly from the threshold of audibility
(−14.9 dB) according to a two-sample t-test (t = 9.73, p < 0.01). There is there-
fore a region (15 dB range) in which the BSS-extracted object is audible and
makes the target talker clearer, while maintaining acceptable quality. An anal-
ysis of variance (ANOVA) showed no significant effects of azimuth (F = 0.85,
p = 0.43) or repeat (F = 0.98, p = 0.38) on the acceptability threshold.
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Fig. 1. Box plots of perceptual thresholds of audibility and acceptability, for remix-
ing Talker 2 (estimated by Mandel’s method). Notches show 95% confidence intervals
around the median [14].

3.3 Objective Evaluation

Objective evaluation was conducted to support the listening test analysis. The
objective evaluation employed two metrics: short-time objective intelligibility
(STOI) [19], in the range [0,1], which predicts speech intelligibility; and percep-
tual evaluation of speech quality (PESQ) [15], in the range [−0.5, 4.5], which
predicts speech quality. The mono sum of the stereo reference, mixed with the
extracted speech object at relative levels in the range ±20 dB, was presented
to the models. Prior to processing, all signals were downsampled to 16 kHz and
each test mixture was loudness-matched to the reference lapel microphone signal
using a Matlab implementation of [9]. Objective scores were calculated as the
average of scores obtained individually for each sentence in the recording (four
clips with average duration 3.2 s for Talker 2 as target; five clips with average
duration 2.7 s for Talker 1 as target). Relative STOI and PESQ scores (target
talker score − interfering talker score) were calculated for Mandel (corresponding
to the subjective experiment described above), Alinaghi, and Liu.

The STOI scores are plotted in Fig. 2 for Talker 1 (left) and Talker 2 (right).
The −0.1 relative STOI score for the target talker in the original stereo record-
ing (relative SIR −4.6 dB) confirms that the interfering talker is more intelligi-
ble than the target talker before mixing the extracted object into the scene. By
increasing the object’s level in the mixture, the relative STOI scores increase.
At the mean mixing level determined in the subjective tests using Mandel’s
method, the relative scores are both positive, implying that introducing the
separated speech into the mix has resulted in an enhancement in speech intel-
ligibility. Moreover, Mandel’s method, as tested subjectively, performed worst
among the three methods tested. For both talkers, Alinaghi was predicted to
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Fig. 2. Relative STOI scores, where STOIAB denotes the score for target Talker A
when adjusting the level of Talker B. The mixture score (�) and object-only scores for
each method (�) are also marked.

give the greatest improvement in speech intelligibility; Liu was ranked second
while improving upon Mandel.

The PESQ scores are plotted in Fig. 3 for Talker 1 (left) and Talker 2 (right).
For all methods, and both Talkers, the relative PESQ scores increase with mixing
level, implying that the separated speech is closer to the reference lapel micro-
phone signal than the mixture. However, the subjective results indicate that the
relative PESQ score does not fully convey the listening experience of the remixed
speech, because the listeners identified a threshold of acceptability above which
the target quality was not acceptable. For the PESQ scores, Mandel also per-
forms worst among the methods tested. Alinaghi performs best for Talker 2,
and well for Talker 1, although the relative scores for Liu are best for Talker 1
above a mix level of 0 dB. This performance is analysed further in terms of the
signal-based metrics discussed below.

The objective evaluation was extended by obtaining the signal-to-
interference, -artefact, and -distortion ratios (SIR, SAR, and SDR respectively)
for each method, at each remix level, for both talkers. These results are plotted
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Fig. 3. Relative PESQ scores, where PESQAB denotes the score for target Talker A
when adjusting the level of Talker B. The mixture score (�) and object-only scores for
each method (�) are also marked.
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in Fig. 4 for Talker 1 (left) and Talker 2 (right). Scores are absolute (i.e., only
the target talker is taken into account). The SIR scores show that Mandel per-
forms worst among the methods tested. For Talker 2, Liu is close to Mandel
but slightly better, while Alinaghi performs over twice as well. The scores for
Talker 1 are higher overall. Liu and Alinaghi give similar performance, but Liu
exceeds Alinaghi for mix levels above 0 dB. These trends closely mirror the rel-
ative PESQ scores shown in Fig. 3, suggesting that SIR is the dominant signal
property contributing to the relative PESQ scores.

The SAR scores have different trends for each talker. For Talker 2 (quieter in
original mix), the SAR decreases with mix level, which may explain why listeners
found there to a trade off between speech intelligibility and target quality. On the
other hand, SAR actually increases with mix level for Talker 1 (apart from Liu,
which remains approximately stable with mix level). Thus, if Mandel or Alinaghi
were applied to remix Talker 1, the thresholds of acceptable quality would likely
be higher than those reported in the subjective tests described above. Finally,
the SDR scores for each method and talker increase with mix level, with Alinaghi
outperforming Mandel and Liu in each case.
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Fig. 4. Signal-based evaluations of SIR (top row), SAR (middle), and SDR (middle),
adjusting the level for Talker 1 (left) and Talker 2 (right). The mixture score (�) and
object-only scores for each method (�) are also marked.
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4 Conclusions

Subjective and objective results were presented to evaluate the performance of
speech remixing, enabled by BSS. Such remixing has applications in object-based
audio, where a producer may wish to make adjustments to a mix not facilitated
by the available microphone signals, or an object-based renderer may adjust a
mix based on a listener’s personal preference or accessibility settings. The sub-
jective scores showed that, in a challenging scenario with two interfering talkers,
the quieter talker could be made clearer by mixing in an object estimated by
BSS, while retaining acceptable audio quality. STOI, an objective perceptual
model, was used to verify that the relative speech intelligibility increased with
mix level. The SAR for Talker 2 for Mandel’s method (corresponding to the sub-
jective test scenario) reduced with mix level, which could explain why listeners
felt that the quality degraded after the mean acceptability threshold at a mix
level of 0.2 dB.

Further predictions of speech intelligibility, quality, and signal-based metrics
of SIR, SAR and SDR suggested that the scenario considered for the subjec-
tive tests was the worst case among the two talkers and the three tested BSS
algorithms (Mandel, Alinaghi, and Liu). In particular, the objective metrics sug-
gested that Alinaghi may perform well compared to Mandel. Furthermore, as
the DNN in Liu was trained on binaural features (including ILD), yet omnidi-
rectional microphones were used here, the method would likely perform better
if the training conditions were closer to the application example studied.

Further work should investigate whether the perceptual acceptability thresh-
olds increase for the other methods tested. Other aspects not tested here
that could be developed in future include respatialisation of BSS-estimated
sources, and the applications to other sound sources, e.g. musical instruments.
Finally, the possibility of creating an object-based scene with only BSS-extracted
sources (i.e., no underlying channel-based recording) could be investigated. In [2,
Sect. III.C], we made some informal comments about this scenario; in general the
BSS-extraction allows for respatialization and some level control of the mixed
sources, but degradations in the target quality due to the BSS are more exposed.
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Abstract. This work proposes the application of independent compo-
nent analysis to the problem of ranking different alternatives by consid-
ering criteria that are not necessarily statistically independent. In this
case, the observed data (the criteria values for all alternatives) can be
modeled as mixtures of latent variables. Therefore, in the proposed app-
roach, we perform ranking by means of the TOPSIS approach and based
on the independent components extracted from the collected decision
data. Numerical experiments attest the usefulness of the proposed app-
roach, as they show that working with latent variables leads to better
results compared to already existing methods.
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1 Introduction

Many practical situations in multicriteria decision making (MCDM) consist in
obtaining a ranking of a set of alternatives based on their evaluation according
to a set of criteria [1,2]. The main difference between the existing methods that
perform ranking in MCDM is related to the criteria aggregation procedure. For
instance, a natural way to perform aggregation is to consider a simple weighted
sum [2] for all criteria and for a given alternative. Another strategy can be found
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in TOPSIS method (TOPSIS stands for Technique for Order Preferences by
Similarity to an Ideal Solution) [3]. In this method, one firstly defines a positive
and a negative ideal alternative. Then, aggregation for a given alternative is done
by calculating the Euclidean distances between the alternative under evaluation
and the (positive and negative) ideal alternatives.

The original versions of the aforementioned approaches do not take into
account any relation among criteria, which may lead to biased results in the
aggregation step. Indeed, if, for instance, there are two criteria strongly corre-
lated which are governed by a latent factor, then such a latent factor will have
a strong influence on the aggregation step. In view of this inconvenient, there
are some methods that try to deal with possible relations among the observed
criteria [4–8]. Among them, an interesting approach is an extended version of
TOPSIS [5,7,8]. In this version, instead of considering the Euclidean distance
in the aggregation step, one applies the Mahalanobis distance. Therefore, the
calculation of the distance measure takes into account the covariance matrix
among criteria.

However, a question that arises is whether the information about the covari-
ance among criteria is sufficient to mitigate the biased effect of dependent crite-
ria. Motivated by this question, this paper proposes a novel three-step procedure
to deal with correlated criteria in decision making problems. In the first step of
our proposal, we formulate the problem as a Blind Source Separation (BSS) [9]
problem and apply an Independent Component Analysis (ICA) method to esti-
mate the latent variables. The second step comprises the elimination of permu-
tation and/or scale ambiguities provided by ICA. In the third step, we perform
the TOPSIS approach based on the Euclidean distance on the estimated latent
variables in order to obtain a global evaluation of the alternatives, thus allowing
a final ranking. Aiming at verifying the proposed ICA-TOPSIS approach, we
performed numerical experiments on synthetic data and compared the results
obtained by our approach and the TOPSIS based on Mahalanobis distance.

The rest of this paper is organized as follows. Section 2 discusses the main
theoretical aspects about multicriteria decision making and blind source separa-
tion problems. Then, in Sect. 3, we present the proposed ICA-TOPSIS approach.
The numerical experiments are described in Sect. 4. Finally, in Sect. 5, we present
our conclusions and future perspectives.

2 Theoretical Background

This section presents the theoretical aspects involved in multicriteria decision
making and blind source separations problems.

2.1 Multicriteria Decision Making Problems and TOPSIS Method

The most relevant problems in MCDM consist in ranking a set of K alternatives
(A = [A1, A2, . . . , AK ]) based on a set of M criteria (C = [C1, C2, . . . , CM ]). For
each alternative Ai, vi,j represents its evaluation with respect to the criterion Cj .
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Therefore, in a MCDM problem, we often face with the following decision matrix
(or decision data):

V =

C1 C2 . . . CM

A1

A2

...
AK

⎡
⎢⎢⎢⎣

v1,1 v1,2 . . . v1,M
v2,1 v2,2 . . . v2,M
...

...
. . .

...
vK,1 vK,2 . . . vK,M

⎤
⎥⎥⎥⎦ .

(1)

Based on the decision matrix V and the set of weights w = [w1, w2, . . . , wM ],
which represent the “importance” of criterion Cj in the decision problem, the
goal is to aggregate vi,j , j = 1, . . . ,M in order to obtain a global evaluation for
each alternative Ai and, then, to establish a ranking.

Several methods have been developed to deal with MCDM problems. Among
them, a widely used one is the TOPSIS, developed by Hwang and Yoon [3]. The
main idea of this method is to determine the ranking based on the distances
between each alternative and the (positive and negative) ideal solutions, as will
be described in the sequel. The following steps describe the algorithm1:

1. The first step comprises the normalization of each evaluation vi,j , given by

ri,j =
vi,j√∑K
i=1 v2

i,j

, i = 1, . . . ,K, j = 1, . . . ,M. (2)

2. Based on ri,j , we calculate the weighted normalized evaluation, given by

pi,j = wjri,j , i = 1, . . . , K, j = 1, . . . ,M. (3)

3. In this step, we determine the positive ideal solution (PIS) and the negative
ideal solution (NIS), given by

PIS = p+ =
{
p+1 , p+2 , . . . , p+M

}
, (4)

where p+j = max{pi,j |1 ≤ i ≤ K}, j = 1, . . . , M , and

NIS = p− =
{
p−
1 , p−

2 , . . . , p−
M

}
, (5)

where p−
j = min{pi,j |1 ≤ i ≤ K}, j = 1, . . . ,M .

4. Given PIS and NIS derived in the last step, we calculate the distances (using
Euclidean distance) from each evaluation vector pi = [pi,1, pi,2, . . . , pi,M ] rep-
resenting alternative Ai and both ideal solutions, described as follows:

D+
i =

√
(pi − p+)T (pi − p+), i = 1, . . . , K (6)

and
D−

i =
√

(pi − p−)T (pi − p−), i = 1, . . . ,K. (7)

1 We considered in this paper that all the criteria are to be maximized, i.e. the larger
the better. However, if there are criteria to be minimized in the problem, some simple
adaptations must be incorporated in the algorithm steps. For further details, please
see [3].
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5. In the last step, we determine the similarity measure of each alternative Ai

to the ideal solutions, given by

ui =
D−

i

D+
i + D−

i

, i = 1, . . . ,K, (8)

and derive the ranking according to ui in descending order.

In this approach, one may note that the criteria are aggregated without
taking into account any interaction between them. For example, in scenarios
in which the criteria are correlated, i.e. they are composed by a combination
of latent variables, disregarding the interaction may lead to biased results. In
this context, an extended version of TOPSIS was proposed [7,8], which takes
into account the Mahalanobis distance [10] (instead of Euclidean distance) and,
therefore, exploit the covariance among criteria. In this version, the distances
calculated in step 4 are given by

DM+
i =

√
(ri − r+)T ΔTΣ−1Δ (ri − r+), i = 1, . . . ,K (9)

and
DM−

i =
√

(ri − r−)T ΔTΣ−1Δ (ri − r−), i = 1, . . . ,K, (10)

where ri = [ri,1, ri,2, . . . , ri,M ], r+ and r− are, respectively, the positive and
the negative ideal solutions derived from the normalized data R = (ri,j)K×M ,
Δ = diag (w1, w2, . . . , wM ) is the diagonal matrix whose elements are composed
by the weights w and Σ ∈ R

M×M is the covariance matrix of R. The similarity
measure is calculated as described in step 5.

2.2 Blind Source Separation Problems and Independent Component
Analysis

Let us suppose a set of signal sources s(k) = [s1(k), s2(k), . . . , sN (k)] that were
linearly mixed according to

x(k) = As(k) + g(k), (11)

where A ∈ R
M×N is the mixing matrix, x(k) = [x1(k), x2(k), . . . , xM (k)] is the

set of mixed signals and g(k) = [g1(k), g2(k), . . . , gM (k)] is an additive white
Gaussian noise (AWGN). In this linear case, BSS problems consist in retrieving
the signal sources s(k) based only on the observed mixed data x(k), i.e. without
the knowledge of both s(k) and mixing matrix A [9]. This can be achieved
by adjusting a separating matrix B ∈ R

N×M that provides a set of estimates
y(k) = [y1(k), y2(k), . . . , yN (k)], given by

y(k) = Bx(k), (12)

which should be as close as possible from s(k). In this scenario, the separat-
ing matrix B should converge to the inverse of the unknown mixing matrix A.
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However, given the permutation and scaling ambiguities inherent in BSS meth-
ods [9], B may not be exactly the inverse of A. As will be discussed latter on
this paper, we made some assumptions on the problem in order to avoid these
inconveniences.

There are several approaches used to deal with BSS problems. A common
one, called ICA, is based on the assumption that the sources are i.i.d. (indepen-
dent and identically distributed) and non-Gaussian. Given the mixing process
expressed in (11), the observed sources are not independent anymore but close to
Gaussian. Therefore, a simplified strategy to recover signal sources that are sta-
tistically independent is to formulate an optimization problem in which the cost
function leads to the minimization of a Gaussian measure (e.g. kurtosis or negen-
tropy) of the retrieved signals. An algorithm that is based on these assumptions
is known as FastICA [11]. Another method that is used in BSS problems is the
Infomax, proposed by Bell and Sejnowski [12]. This method, as demonstrated
by Cardoso [13], is closed-related to the maximum likelihood approach, which
estimate the separating matrix B from the distribution of x(k). Both strategies
will be used in our experiments.

3 The Proposed ICA-TOPSIS Approach

In several problems in MCDM the criteria are dependent. For example, consider
the case of determining a ranking of K students evaluated according to their
grades in sociology, mathematics and physics2. It is possible that both grades
in mathematics and physics are correlated criteria, since they usually measure
similar competences. Therefore, the aggregation based on the collected data may
lead to biased results. In this case, one may think that a proper analysis should
be made in the latent variables l(k) = [l1(k), l2(k), . . . , lN (k)]T associated with
the collected data V through the mixing process

VT = Al(k) + g(k), (13)

where A ∈ R
M×N represents the mixing process acting on the latent variables

l(k) and g(k) = [g1(k), g2(k), . . . , gM (k)] is an additive white Gaussian noise
(AWGN). One may note that Eq. (13) is similar to (11), with l(k) and VT rep-
resenting, respectively, the set of signal sources and the mixed signals. Therefore,
aiming at performing the MCDM analysis on the latent variables, as mentioned
in Sect. 1, the application of Mahalanobis distance in TOPSIS approach may
not be sufficient to deal with dependent criteria, since only the information of
covariance among criteria is taken into account.

In this context, this paper proposes to deal with the problem of dependent
criteria in MCDM applying an ICA-TOPSIS approach, which comprises three
steps. In the first one, we formulate a BSS problem whose aim is to recover
the latent variables based on the mixed decision data V. In this formulation,

2 It is worth mentioning that this MCDM problem is addressed by other works in the
literature [4,14].
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we consider that the number of criteria is equal to the number of latent vari-
ables, which leads to the determined case M = N in BSS. Therefore, after
estimating the separating matrix B, we obtain the estimated latent variables
l̂(k) = [l̂1(k), l̂2(k), . . . , l̂N (k)]T , given by

l̂(k) = BVT , (14)

similarly as described in (12).
The second step comprises the adjustment of the estimated latent variables in

order to avoid permutation and/or scale ambiguities. In this procedure, we made
the assumption that the diagonal elements in the mixing matrix A is positive
and greater, in absolute value, than all the off-diagonal elements in the same
row, i.e. each latent variable has a positive majority influence in each mixed
criterion. Therefore, based on the separating matrix B and, consequently, on
the estimated mixing matrix Â = B−1, we perform the following adjustment3:

– For the first row in Â, we find the column q in which the greater absolute
value is located. Therefore, we permute the first and the q columns of Â. In
order to correctly resetting the estimated latent variables, we also permute
the first and the q estimates. After repeating this procedure for all rows in Â,
we obtain the estimated mixing matrix partially adjusted ÂAdjp and avoid
the permutation ambiguity provided by the BSS method.

– Based on the assumption that the diagonal elements in the mixing matrix A
is positive, if a diagonal element q′ of ÂAdjp is negative, we multiply all the
elements in the same column of q′ by −1. This leads to the signal inversion of
the estimated latent variable l̂q′ , since Eq. (13) needs to be valid. After veri-
fying all the diagonal elements of ÂAdjp and performing the signal changes,
we obtain the final adjusted estimated mixing matrix ÂAdjf and avoid the
scale ambiguity provided by the −1 factor.

In order to illustrated these adjustments, suppose that we achieve the esti-
mated mixing matrix

Â =
[

1.52 −2, 95
2.01 0.85

]

associated with the retrieved sources l̂(k) = [l̂1(k), l̂2(k)]T . Based on our assump-
tions, the first adjustment leads to

ÂAdjp =
[−2.95 1.52

0.85 2.01

]
,

and to the retrieved sources partially adjusted l̂Adjp(k) = [l̂2(k), l̂1(k)]. One may
note the permutation of both columns. In the second adjustment, we obtain

ÂAdjf =
[

2.95 1.52
−0.85 2.01

]

3 It is worth mentioning that the scale ambiguity provided by a positive factor or a
negative factor different from −1 is automatically mitigated in the normalization
step of TOPSIS.
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and l̂Adjf (k) = [−l̂2(k), l̂1(k)], which corrects the signal of the retrieved sources.
After performing the ICA and eliminating the ambiguities, the third step of

the proposed approach comprises the application of TOPSIS based on Euclidean
distance in l̂Adjf (k) and the ranking determination.

4 Numerical Experiments

Aiming at verifying the application of the proposed ICA-TOPSIS approach to
deal with dependent criteria in MCDM problems, we performed numerical exper-
iments based on synthetic data and compared the results with the ones provided
by existing methods. The next section describes the considered data and the
obtained results.

4.1 Data Generation

In this paper, we performed the experiments based on a decision data com-
prised by 100 alternatives and 2 criteria, both with the same importance
(w1 = w2 = 0.5). The latent variables were randomly generated according to
a uniform distribution in the range [0, 1]. In order to derive the “collected”
observed data V, we considered the mixing matrix

A =
[

1.00 −0.15
0.30 1.00

]

and the mixing process described in (11), in which s(k) and x(k) represent the
latent variables and the observed data V, respectively. Moreover, the additive
noise was applied considering a Signal-to-Noise Ratio (SNR), given by

SNR = 10 log10
σ2
signal

σ2
noise

, (15)

where σ2
signal and σ2

noise are, respectively, the signal power and the noise power,
in the range (0, 50].

4.2 Comparison Between the Considered Approaches

In order to verify the application of the proposal, we first generate the latent
variables and derive the ranking according to the original TOPSIS method (based
on Euclidean distance). This ranking is considered as the correct one, since it
is obtained directly from the (unknown) latent variables. Therefore, we perform
the mixing process and, given the mixed observed data, we apply the proposed
ICA-TOPSIS approach (based on FastICA and Infomax algorithms), the original
TOPSIS and the TOPSIS based on Mahalanobis distance. The obtained results
are compared according to a performance index called normalized Kendall tau
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distance [15], which calculates the percentage of pairwise disagreements between
two rankings. This measure is defined by

τ =
ND

K(K − 1)/2
, (16)

where ND is the number of pairwise disagreements between the rankings and K
is the number of alternatives. Therefore, τ close to zero indicates that there is
no disagreement between the two rankings, i.e. the obtained ranking is the same
that the correct one provided by the original TOPSIS method applied on the
latent variables.

Figure 1 presents the Kendall tau distance for each considered method and
SNR value (averaged over 1000 realizations). One may note that the TOPSIS
based on Mahalanobis distance improves the original version of this method,
leading to lower values of τ . However, the best results were obtained applying
the ICA-TOPSIS, specially for SNR values greater than 25 dB. In terms of the
FastICA and Infomax algorithms, the former achieved a better performance.

Fig. 1. Comparison of the Kendall tau distances for the original TOPSIS based
on Euclidean distance (TOPSIS-E), the TOPSIS based on Mahalanobis distance
(TOPSIS-M) and the proposed approach (with FastICA and Infomax).

5 Conclusions and Perspectives

Dependent criteria is an important issue in multicriteria decision making. In
order to deal with this problem, several methods has been developed, such as
the TOPSIS based on Mahalanobis distance. In this work, we presented prelim-
inaries discussions on a novel approach used to mitigate biased results provided
by dependent criteria. This approach, called ICA-TOPSIS, comprises the appli-
cation of independent component analysis in order to extract the latent variables
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from the observed decision data and, then, the use of the original TOPSIS to
derive the ranking based on the retrieved independent data.

Based on the MCDM scenario considered in this work and the obtained
results, one may remark that the proposed ICA-TOPSIS approach leads to bet-
ter results compared to the methods found in the literature. For instance, our
proposal achieved lower Kendall tau values compared to the TOPSIS based on
Mahalanobis distance, which is used in several works in the literature. A pos-
sible explanation for this result is that the ICA methods exploit the indepen-
dence among criteria, which is stronger than the covariance information used in
TOPSIS based on Mahalanobis distance. Since we consider a MCDM problem
comprised by a mixture of latent variables, our proposal can better mitigate the
biased effect of the criteria dependence.

It is worth mentioning that this work presented initial results on the appli-
cation of ICA-TOPSIS approach to deal with MCDM problems. Future works
comprise a further understanding on this proposal, especially on the latent vari-
able estimation step. Different numbers of criteria and alternatives will also be
considered in new experiments. Moreover, we aim at verifying the performance
of the proposed approach on decision problems based on real data.
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