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Abstract In the context of an increased bio-based economy characterized by both
reduced dependence upon imported fossil fuels and reduced greenhouse gases emis-
sions, bio-fuels and the other bio-based supply chains have reached a worldwide
expansion. Taking into account the high environmental impact of the agricultural
production and the potential conflicts among food, energy and environment, this
review provides an overview of the opportunities and constraints specifically related
to the environmental performance of different candidate lignocellulosic feedstock
in the Italian context. Peer-reviewed Life Cycle Assessment (LCA) studies were
analysed and compared on a mass basis. Several biomass-based supply chains from
wood and herbaceous residues or dedicated crops on marginal and fertile lands (under
different fertilization management) were considered. A cradle-to-farm gate attribu-
tional LCA approach was applied to assess the environmental profile and the linked
major hotspots as useful information to evaluate the most promising feedstock for
bio-energy or integrated biorefinery systems. The results have demonstrated that
short rotation forestry and medium rotation forestry cultivation systems, character-
ized by restrained mineral fertilization, can have a better environmental performance
than herbaceous crops under both standard and reduced fertilization management,
offering substantial benefits for almost all investigated impact categories.
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8.1 Introduction

The rapid growth in population and industrialization gave rise to increase the energy
demand and the dependence on fossil-based products. There is a clear scientific evi-
dence that the global change arises from human influence and it is strictly related
to the fossil fuel consumption (IPCC 2014). Therefore, the interest in developing
environmentally friendly supply chains from renewable feedstocks has considerably
increased (Forte et al. 2016). Over the last decades, the transition to a decarbonised
energy system brought to increase the bio-energy production, with an expected
growth of bio-fuels, such as bioethanol (EtOH) and biodiesel (Gomiero 2017). In this
context, the exploitation of lignocellulosic energy crops for bio-energy or other bio-
based productions are increasingly considered as a strategy to not affect food security
and reduce environmental impacts (Solinas et al. 2015). The European Union (EU)
encourages the employment of second generation feedstock, such as energy crops
or waste raw materials (Directive 2009/28/EC). In the Italian context the energy
crops have strongly grown over the last years as well, mainly driven by dedicated
subsidization policy (Bartoli et al. 2016), with a rising bio-fuel oriented policy for
greenhouse gases (GHG) and fossil energy saving in the transport sector (D. Lgs.
03/03/2011 n.28; COM15 final, 2014).

The lignocellulosic materials are considered as the promising feedstock for bio-
based industrial processes due to their chemical features and composition (Anwar
et al. 2014). Such materials are considered natural and renewable resource essential
to the functioning of modern industrial societies even if much of the lignocellulosic
biomass is still disposed of by burning (Anwar et al. 2014). This biomass can poten-
tially be converted into different high value products including bio-fuels, chemicals,
and cheap energy sources (Anwar et al. 2014; Zucaro et al. 2016a).

However, the environmental performance of bio-fuels, bio-materials and bio-
chemicals from lignocellulosic biomass, over the entire production chain, needs
to be carefully investigated. The Life Cycle Assessment (LCA) has been widely
recognized as one of the most suitable analytical approaches to deeply analyse the
environmental performance of processes or products (Bessou et al. 2013).

At the present time, the enhanced use of biomass is strictly connected to the
widespread opinion that bio-based products are less pollutant than their fossil-
counterparts and do not contribute to net CO, emissions. The pertinent scientific
literature shows controversial results and highlights the crop phase as the major
environmental hotspot of several bio-based supply chains (Forte et al. 2017; Zucaro
etal. 2017), due to the farming managements (Mila i Canals et al. 2006; Bessou et al.
2013) and the site-specific conditions for the local emissions (Bessou et al. 2013). For
this reason, the environmental performance of dedicated crops or residues biomass
should be subject to a constant evaluation and monitoring in site-specific conditions
for effective territorial environmental friendly bio-based strategies. In this regard,
in the Italian context, preliminary studies were carried out comparing the environ-
mental performance of different oleaginous biomasses (Cocco et al. 2014; Forleo
et al. 2017), whilst there is a lack of comprehensive evaluation of the environmental
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profile of alternative lignocellulosic feedstock for bio-energy/biorefinery purposes.
The present work is a literature review of peer-reviewed articles on the LCA of lig-
nocellulosic biomass (dedicated and residual ones) referred to the Italian context.
Specifically, different lignocellulosic biomass productions were analysed and com-
pared by means of a cradle-to-farm gate attributional LCA approach to assess the
environmental profile and the related major hotspots for the largest number of impact
categories. All the resulting information will serve as a useful base to identify the
main environmental pros and cons of lignocellulosic bio-based routes in the Italian
context.

8.2 Methodological Issues

8.2.1 Papers Selection and Clustering

This review was designed to summarize and critically address the LCA studies for
lignocellulosic biomass production for bio-based supply chains in the Italian con-
text. Scientific literature, published in the last 10 years, was investigated through
the following e-resources: Scopus, Google Scholar and Sciencedirect. Afterwards,
this work focused only on the full attributional LCA studies applied to biomass-
based supply chains published in peer-reviewed journals or in peer-reviewed confer-
ence proceedings, with a specific focus on the crop phase. The selected studies are
reported in Table 8.1, associating an identification number, consistently used thought
all figures, to each work and summarizing the most relevant information about key
parameters such as: (i) the biomass feedstock, (ii) the type of land used, (iii) the
functional unit (FU), (iv) the system boundaries, (v) allocation procedures, (vi) the
applied impact assessment methods (IAM) and (vii) the linked analysed impacts. For
the present review, the selected system boundaries were from cradle-to-farm gate and
the FU was set to 1 kg of total lignocellulosic dry biomass production (thought the
specific crop life cycles), since the biomass yield is a key parameter influencing
the environmental performance of the farm systems and the whole bio-based supply
chains (Bosco et al. 2016). In order to standardize and properly compare the different
studies, when necessary the FU was converted to the selected one and the results were
extrapolated to match the cradle-to-farm gate system boundary. Additionally, since
the choice of the life cycle IAM was not always consistent among the selected studies
(Table 8.1), to extensively discuss the results for the largest available number of LCA
impact categories, the authors re-elaborated, by means of SimaPro 8.2.0 software
(Pré 2018), the results from their own studies (Forte et al. 2015, 2016, 2017; Zucaro
etal. 2015, 2016a, b, 2018) moving from the ReCiPe to the ILCD or CML methods.
The cumulative energy demand (CED) was also evaluated applying the single-issue
method to the data available by the authors. All data were clustered in the following
three groups: (i) woody lignocellulosic biomass through short and medium rotation
forestry (SRF-MRF), (ii) perennial herbaceous crops, (iii) annual herbaceous crops.
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The only available data for agricultural straw residues (herbaceous, straw) was kept
separate. In this regard, the results by the ILCD IAM allowed the comparison of envi-
ronmental impacts among all the three groups (SRF-MRF, herbaceous perennial and
herbaceous annual); whilst the results by the CML IAM provided a further specific
focus on potential differences between herbaceous perennial and annual feedstock
(see Table 8.1 and Sect. 8.2.2 for additional details).

8.2.2 Statistical Analysis

Statistical analyses were performed using the Sigma Plot package (Sigma Plot 2012).
The ANOVA ‘One Way Analysis of Variance’ test (p <0.05) was used to check signif-
icant differences among: (i) the environmental impacts of the SRF-MREF, herbaceous
perennial and herbaceous annual feedstock by the ILCD IAM; (ii) the key agro-
nomic input (N, P and K fertilizers and diesel) required per 1 kg of dry SRF-MREF,
herbaceous perennial and annual biomass produced. The t-test (p <0.05) was used to
further investigate the impacts of the perennial herbaceous crops versus the annual
herbaceous feedstocks through the CML IAM. For each feedstock, the relationships
among the environmental impacts and the key agronomic parameters (N, P and K
fertilizers and diesel input per 1 kg of dry biomass) were investigated through the
Pearson Product-Moment Test and linear regression analysis.

8.3 Results and Discussion

Figure 8.1a shows a significantly lower impact in terms of Climate Change (CC) for
the woody biomass compared to both the herbaceous perennial and annual feedstocks,
likely linked to the combined effect of the restrained fertilizer inputs (Table 8.2) and
the higher biomass yield related to the whole crop life time of willow and poplar crops
compared to the herbaceous cultivations. Indeed, SRF-MRF crops are characterized
by a higher nitrogen-use efficiency and a reduced use N-fertilizer input (often applied
only as organic N in the pre-plant phase) (Banacetti et al. 2012, 2016; Djomo et al.
2015). Otherwise, notwithstanding the CC impact resulted linearly related to the K,
P fertilizers and diesel input (Table 8.3), no clear separation was observed among
the groups in relation to these parameters, due to comparable fertilization schemes
and fuel consumption patterns (linked to the high mechanization for the biomass
collection) for woody and herbaceous crops.

The inclusion of the soil carbon dynamic in the GHG inventory might amplify the
outcome of comparative analyses between perennial (herbaceous) and annual crops
(Bessou et al. 2013), since the former are usually recognized to entail a potential long-
term soil carbon storage (SCS) thanks to: (i) a longer C turnover of the more extensive
rooting systems (Monti and Zatta 2009); (ii) limited soil management (planting and
related tillage, to be shared for the whole lifetime) (Monti et al. 2009); (iii) a reduced
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Fig. 8.1 a CC, b CED and ¢ AP impacts of the different lignocellulosic feedstock. The inset table
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shows the results of the ANOVA-one way analysis of variance (p <0.05)
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Table 8.2 Kruskal-wallis one way analysis of variance on ranks (p <0.05) for the key agronomic
input (N, P and K fertilizer and diesel) required per 1 kg of dry biomass produced through SRF-MRF,

herbaceous perennial and herbaceous annual cultivations

N-fertilizer input (kg kg

-1

of dry biomass)

Cluster Number Median 25% 75%
SRF-MRF 12 0.000234 0.00223 0.00323
Herbaceous, 23 0.00522 0.00381 0.00667
perennial

Herbaceous, 7 0.00667 0.00428 0.00811
annual

All pairwise multiple comparison procedures (Dunn’s method, p<0.05)

SRF-MREF versus Herbaceous, Yes

perennial

SRF-MREF versus Herbaceou, Yes

annual

Herbaceous, perennial versus No

Herbaceou, annual

P-fertilizer input (kg kg~ of dry biomass)—p = 0.978

Cluster Number Median 25% 75%
SRF-MRF 12 0.000297 0.000252 0.000297
Herbaceous, 23 0.000416 0.0000483 0.00107
perennial

Herbaceous, 7 0.000554 0.000 0.00164
annual

K-fertilizer input (kg kg*1 of dry biomass)—p = 0.197

Cluster Number Median 25% 75%
SRF-MRF 12 0.00109 0.00084 0.00109
Herbaceous, 23 0.000178 0.000 0.000985
perennial

Herbaceous, 7 0.00046 0.000 0.00254
annual

Diesel input (kg kg~! of dry biomass)—p = 0.249

Cluster Number Median 25% 75%
SRF-MRF 12 0.00499 0.0024 0.0326
Herbaceous, 23 0.00415 0.00308 0.0064
perennial

Herbaceous, 7 0.00825 0.00612 0.0102

annual
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Table 8.3 Significant correlations among analysed environmental impacts and key N, K, P and
diesel inputs per kg of dry biomass produced (pearson product-moment test)

Impact N-fertilizer (kg | P-fertilizer (kg K-fertilizer (kg | Diesel (kg kggdl)
Kepa) Kend) keog)

CC (kg CO, 0.752%%* (27) 0.613%** (26) 0.439* (27) 0.823*** (27)

€q kg_bd)

CED (MJ kg™py) | 0.832%%* (22) 0.821#%% (22)

POF (kg 0.624* (14) 0.542% (14)

NMVOC eq

kegy )

OD (kg 0.813%*** (23) 0.636%* (23) 0.826%*** (23)

CFC-11 eq kgg))

PM (kg PM2.5 eq | 0.752%* (14) 0.753** (14)

kegy)

TE (molc N eq 0.666%** (14) 0.620* (14)

kggy )

*p <0.05; **p <0.01; ***p <0.001. Sample size in parentheses

risk of soil erosion (Angelini et al. 2009); (iv) an increase in soil carbon content
and biodiversity (Angelini et al. 2009). Although there is a general consensus on
the importance of the below-ground biomass in withdrawing C from the atmosphere
(Monti and Zatta 2009) only few studies provided quantitative data on roots of energy
crops and the possible plant CO, uptake (Monti and Zatta 2009). Therefore, in this
review the direct estimate of SCS were not included. For the perennial-giant reed
(GR) crop preliminary measures of SCS have highlighted a potential clime change
mitigation showing in some cases a net sink of atmospheric CO, (Forte et al. 2015;
Zucaro et al. 2018).

The results achieved from the evaluation of the CED impact category underlined
a significant difference between dedicated woody crops and annual herbaceous crops
(Fig. 8.1b). The differences between the SRF-MRF group and herbaceous perennial
or between herbaceous perennial and annual were not significant (Fig. 8.1b). In the
first case the result was affected by the poplar feedstock cropped in Bagni di Tivoli
(see Table 8.1 for additional details), subjected to an annual cultivation management
comparable to the herbaceous perennial crops. For the second case, the GR cultivation
on marginal soil (point 20, Table 8.1), in spite of higher rates of N fertilization,
produced less than half biomass respect to the same GR crop on fertile soil (Bosco
etal.2016). This finding underlined that the high energy demand requested to produce
fertilizers might not significantly affect long-term productivity (Cadoux et al. 2014;
Djomo et al. 2015).

Table 8.3 shows a linear dependency between the CED impact and the required
inputs of N-fertilizer and diesel per kg of dry biomass produced, with an average high-
estimpact for the annual feedstock according to the average highest fuel consumption
(Table 8.2). In this regard, the amount of fertilizers and choice of mechanical harvest
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Fig. 8.2 AP of the 0.005 T7-Test
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yard can largely affect the depletion of fossil resources (Bosco et al. 2016; Zucaro
et al. 2018).

For the Acidification potential (AP), the statistical results by the ILCD methods
(Fig. 8.1c) show significant differences between the SRF-MRF and the herbaceous
groups (both annual and perennial), highlighting much lower impacts for woody
crops. The comparative analysis by the CML method (Fig. 8.2) confirms the slight
(not significant) differences between the AP impact generated by the herbaceous
perennial and annual crops. Relevant tradeoffs may occur in the assessment of AP
impacts with both IAMs, due to no clear assessment of Direct Field Emissions (DFE)
as highlighted by several authors (Forte et al. 2015; Mbonimpa et al. 2016). Specif-
ically, comparing the same crops in some of the reviewed papers (Monti et al. 2009;
Fazio and Monti 2011) the contributions of both N fertilization and harvest opera-
tions were on the whole lower compared to the average share highlighted in the other
studies (Forte et al. 2015; Zucaro et al. 2018). This was most likely due to differences
in the DFE included and the chosen calculation methodology (Bessou et al. 2013;
Forte et al. 2015); however only some of the studies at the national level reported
the detailed accounting procedure of each DFE analysed (Forte et al. 2015, 2016;
Bosco et al. 2016; Zucaro et al. 2016a, 2018). Therefore, no positive correlations
emerged between the main hotspot inputs (fertilizers and diesel consumption) and
the linked target AP impacts. Nevertheless, as highlighted by some authors (Forte
etal. 2015 and Zucaro et al. 2018) the volatilized ammonia (NH3) emissions, linked to
N fertilization practices, highly influenced (up to 70-75%) the acidification impacts.

The results achieved for ozone depletion (OD) were shown in Fig. 8.3a. For both
investigated IAMs, ILCD and CML, the OD impact was measured in kg CFC-11 eq.
For this reason, the results were processed and presented together. The OD results
show significant differences (Fig. 8.3a) among groups due to the higher dependency
on the use of fertilizers and diesel consumption (Table 8.3) mainly linked to the
upstream halocarbures emissions (Zucaro et al. 2018). Indeed, the constrained use



132 A. Zucaro et al.

of mineral fertilizers for woody crops (Table 8.2) has produced a lower OD impact,
linearly related to the N-fertilizer input (Table 8.3).

The results achieved for Photochemical Ozone Formation (POF) category
(Fig. 8.3b) did not show a significant difference among clusters. The average POF
value for woody crops was less than the herbaceous one. Indeed, whilst for the
woody crops the mechanization of field operations (reaching almost 90% of impact)
has been detected as the main responsible of POF impact (Bacenetti et al. 2016),
for the perennial and annual crops the total POF impact was influenced by both
upstream (from fertilizer and agricultural machinery productions) and downstream
(from machinery on-field operations) emissions (Forte et al. 2017). The POF regres-
sion analysis (Table 8.3) highlighted the importance of upstream NO, emissions
emitted during fertilizer manufacturing showing a linear dependency in the use of P
and K fertilizers. These results showed the importance in the assessment of the whole
production chain, underlining how the different accounting of the indirect emissions
might produce marked differences in the results evaluation.

The investigation of particular matter (PM) impact category pointed out a net
separation among the investigated clusters (Fig. 8.3c). Nevertheless, the differences
between herbaceous crops were not significant (Fig. 8.3c), also in this case due
to the overlapping crop management for both perennial and annual lignocellulosic
feedstocks. The PM correlation diagrams (Table 8.3) shows a clear dependence by:
(1) the increase of N-fertilizer, mainly related to ammonia (NH3) volatilization, due
to the specific NH3 emission factor (DFE calculation) and the scheduled fertilization
rates (Bacenetti et al. 2016; Forte et al. 2017), (ii) the use of diesel in the agricultural
machinery (reaching in same case 40-60% of PM impact) (Table 8.3). Therefore,
more reliable estimate of NH; emissions from Mediterranean cropped lands (Sanz-
Cobena et al. 2008) as well as the monitoring of the on-field mechanization (Zucaro
et al. 2015) would be very beneficial.

The eutrophication potential (EP) was largely affected by the fertilizer application
(Monti et al. 2009; Bacenetti et al. 2016; Zucaro et al. 2018) and to a lower extent by
the sulphur dioxide emissions from the combustion of diesel fuel (Gonzalez-Garcia
etal. 2013). In the ILCD method three different EP impact categories are considered:
terrestrial (TE), freshwater (FE) and marine (ME) (Fig. 8.4).

For TE significant differences among SRF-MRF and the perennial and annual
lignocellulosic clusters were highlighted (Fig. 8.4a). TE values for woody crops were
lower than the TE impact generated by both herbaceous crops mainly due to the lower
fertilizer inputs. TE impacts were driven by the N-fertilizer input (Table 8.3), due to
the key role of NH;3 emissions (about 90%). Also the agricultural mechanization tuned
the TE impact (Table 8.3) as highlighted by Bacenetti et al. (2016) and Gonzélez-
Garcia et al. (2013).

The FE values for SRF-MREF cluster were higher than the FE impact generated by
the herbaceous crops (Fig. 8.4b). For the annual and perennial herbaceous crops the P-
fertilization (when applicable, see Table 8.1 for details) was the highest contribution
(Forte et al. 2015). The difference between woody crops and perennial herbaceous
was significant (Fig. 8.4b) showing a clear separation of the two clusters, but only for
FE the SRF-MRF group displayed higher impact than the perennial one. Currently
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Fig. 8.3 a OD, b POF and ¢ PM impacts of the different lignocellulosic feedstock. The inset table
shows the results of the ANOVA-one way analysis of variance (p <0.05)
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Fig. 8.4 a TE, b FE and ¢ ME impacts of the different lignocellulosic feedstock. The inset table
shows the results of the ANOVA-one way analysis of variance (p <0.05)
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the higher variability in the estimation of site-specific factors for P discharge and
diffuse N emissions from soil to aquatic ecosystems (nitrate, NO3;~ leaching) may
produce significant errors in the calculation of FE impact (Ortiz-Reyes and Anex
2018). The correct estimates of P discharges and nitrate losses to groundwater via
leaching are a key challenge to be achieved.

Both emissions are dependent on local conditions, transport mechanisms, soil
P concentrations, conservation measures such as managed riparian zones, and how
fertilizer is incorporated into the soil (Ortiz-Reyes and Anex 2018). Therefore, also
for this impact category the strongly dependency on agricultural management (e.g.
fertilization rates) as well as on site-specific soil and climate conditions (Brentrup
et al. 2004) requires appropriate DFE calculation procedure (Brentrup et al. 2004;
Ortiz-Reyes and Anex 2018).

The combined effects of NH; emissions and the risk of nitrate losses considerably
affected the ME impact (Forte et al. 2017; Zucaro et al. 2018) but also the mecha-
nization of on-field operations cannot be neglected (Bacenetti et al. 2012; Forte et al.
2015). Nevertheless, the results of ME highlighted a less impact for willows and
poplar crops compared to the other investigated lignocellulosic production showing
not significant differences among groups (Fig. 8.4c¢).

The evaluation of EP impact category with CML method is shown in Fig. 8.5.
The results achieved by the t-Test highlighted similar EP results for all investigated
lignocellulosic herbaceous crops due to the comparable fertilization management.
Two points are stand out: (i) the fibre sorghum cultivated in marginal land (point
18 Fig. 8.5 and Table 8.1) as combined results by the NHj volatilization after urea
supply and the upstream and downstream emissions related to phosphorus input
(Zucaro et al. 2015) and (ii) the GR cultivation on marginal soil (point 20 Fig. 8.5
and Table 8.1) producing about 170% higher EP impact compared to the same crop
in fertile soil (Bosco et al. 2016). This finding highlighted the key role of biomass
yield that can be considered as the main driver of environmental results of crop phase
(Bacenetti et al. 2012; Bosco et al. 2016).
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8.4 Concluding Remarks

The main findings achieved in this review can be useful for operators and stake-
holders involved in the implementation of new bio-based supply chains, in particular
regarding the choice of the best lignocellulosic feedstock to use from both a pro-
ductive and an environmental point of view. Different management intensities have
highlighted different environmental performance within the same group and in the
cultivation of the same crop in different soils (marginal versus fertile). The choice of
an applied method depends on the scope and objective of the study and the account-
ing of its limitations in results interpretation should be always discussed. Similarly,
the calculation of the DFE emission needs to be clearly assessed considering the
crop- and site- specific characteristics. The final outcome of this review has prelimi-
narily highlighted for the investigated impact categories the SRF and MRF crops as
the most promising lignocellulosic feedstock to supply bio-energy and/or biorefin-
ery networks. Nevertheless, to routinely assess the environmental sustainability of
bio-based processes a transparent environmental life cycle standardized procedure
should be achieved.
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