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Abstract In recent years, there has been growing interest in third-generation bio-
fuels, i.e., fuels from algal biomass. Considering microalgae, the production and
transformation processes are currently under study by researchers across the world,
as microalgae appear to be a promising alternative to meet our sustainability goals
in the energy sector. Considering the Life Cycle Assessment (LCA) applied to bio-
fuels from microalgae, a number of studies have been published to date, covering a
wide geographical range and analyzing several process configurations. This chapter
presents the microalgae-to-biofuel process and a review of the published LCA studies
in the field. The findings show that the majority of these studies do not have access
to primary data but only to secondary data sources. Most studies do not consider the
whole process, but only some of the process stages, thus limiting the relevance of
the results to the specific context to which they refer. Only about half of the stud-
ies reviewed consider the impacts of water and land use, and only two present a
detailed analysis of the economic and social impacts. For this reason, further efforts
are still necessary in order to obtain a comprehensive sustainability assessment of
this potential solution to the energy problem.
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10.1 Introduction

It is a common belief that the development of green fuel technologies with low
CO, emissions can help meet global energy requirements in a more sustainable
fashion, reducing our over-reliance on fossil fuels, which currently meet 80% of the
world’s energy demand (Medeiros et al. 2013). In this context, growing evidence has
illustrated the high potential for biofuels to improve the sustainability of the energy
sector, especially for those countries and regions where fossil fuel availability is
limited (Stephens et al. 2010).

For this reason, the exploitation of biomass for energy, and particularly liquid
biofuels for use in transport, have been of increasing interest to policymakers, even
though first- and second-generation biofuels, based on the use of crops, have received
criticism (Crutzen et al. 2008), primarily associated with the use of energy crops and
fertile land that generally lead to higher environmental impacts and to an increase in
crops prices.

Among the different biomass feedstocks, microalgae has shown great potential
as a sustainable feedstock for biofuels (also referred to as third generation biofuels),
particularly for biodiesel, especially because microalgae are highly efficient lipid
producers (Rickman et al. 2013; Leite et al. 2013). In particular, the lipid content
of microalgae may reach up to 70% on an algal biomass dry weight basis mainly
depending on species and cultivation conditions (Banerjee et al. 2002)."

Microalgal feedstocks have been investigated for different applications and prod-
ucts and several technologies have been proposed and investigated for the commercial
production and transformation of microalgae (Grierson et al. 2013; Campbell et al.
2011). Nonetheless, the sustainability of the commercial production of microalgae-
based biodiesel has yet to be proven, both from the environmental and economic
point of view. The most promising directions that researchers have identified points
to year-round cultivation, the ability to use wastewater as a nutrient source, higher
solar energy yields and minimal use of arable land (Batan et al. 2011; Dismukes et al.
2008; Williams and Inman 2009). Moreover, it should be noted that microalgae can
be cultivated in both salt and fresh water environments, and they are suited to areas
where the cultivation of crops could be marginal, challenging, or expensive (Hiibel
et al. 2015).

In this chapter, after having introduced the process for the production of biodiesel
from microalgae and having analyzed the alternative technological pathways for the
different steps of the process, we present a literature review on the environmental
performance of microalgae in the production of biodiesel. The review highlights
the lack of primary data and high production costs as the main weaknesses, while

IChlorella Vulgaris, with standard Nitrogen fraction, has a lipid content of 175 g/kg with a low
heating value of 17.5 MJ/kg.
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a promising solution seems to be the use of co-products or by-products from other
industrial processes.

10.2 The Microalgae-to-Biodiesel

The process for the production and exploitation of biodiesel from microalgae gen-
erally follows the scheme outlined in Fig. 10.1 and consists of seven main steps that
can employ different technologies/chemicals/processes.

During cultivation, microalgae are grown in water (or wastewater) and supplied
with nutrients, such as nitrogen and phosphorus, and a carbon source, mainly coming
from inorganic CO,. For microalgal cultivation, two alternative technologies have
traditionally been employed: open ponds, i.e., shallow oval ponds exposed to air
and light, which are likely to have lower operating costs, despite having higher net
energy ratios and lower productivity rates (Collet et al. 2011; Chisti 2007); and pho-
tobioreactors, i.e., enclosed chambers for microalgal growth subjected to natural or
(in northern climates) artificial light. These generally have higher operating costs and
productivity. The use of wastewater throughout the process seems to be a promising
manner to improve the environmental and economic sustainability of algae cultiva-
tion (Shrestha et al. 2013; Ficara et al. 2014; Ge and Champagne 2016). Similarly,
flue gas from industrial sites (e.g., cement plants, power generation plants, etc.) has
been evaluated as a potential source of CO, (Ge and Champagne 2016; Collotta
et al. 2016). For this reason, the co-location of microalgal production facilities with
wastewater treatment plants (or anaerobic digestion facilities), providing access to
nutrients, waste energy and CO,, could maximize the use of waste resources in an
integrated resource management approach and increase the techno-economic feasi-
bility of the overall process (Collotta et al. 2016, 2017b, 2018; Davis et al. 2016;
Slade and Bauen 2013; Powers and Baliga 2010).

For the harvesting, which brings algae concentration from about 0.2% to about
20%, different pathways are also utilized. The most commonly considered is floc-
culation (stimulating the formation of solids flocs within the microalgal slurry) and
centrifugation, and sometimes in combination (Collotta et al. 2017a; Lardon et al.
2009). The energy required for harvesting could be decreased through process inno-
vations; for example, increasing PO,4 concentration in the growth medium can lead
to a phenomenon called auto-flocculation in which the microalgae aggregate in flocs
and then precipitate from the culture medium (Clarens et al. 2011). Other approaches
have explored the harvesting phase, adopting the high pressure CO,, without requir-
ing the addition of coagulants, in order to separate algae from suspension (Lee et al.
2015).

Dewatering is an important stage as it is an energy-intensive process. This stage is
often required to increase the percentage of algal biomass from about 20% to 90-95%,
depending on the lipid extraction process requirements. A variety of technologies
have been explored for this step including belt dryers, solar and steam dryers, natural
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Fig. 10.1 Generalized scheme for the microalgae-to-biodiesel system

gas dryers and co-combustion with coal (Powers and Baliga 2010; Clarens et al.
2011; Lardon et al. 2009; Stephenson et al. 2010; Yang et al. 2011).

Different approaches are also used for the lipid extraction phase, the separation
of lipids from the remainder of the biomass, which generally employ a solvent or
co-solvent system, supercritical CO,, and in some cases a prior or simultaneous
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cell disruption technique such as drill pressing, (Brentner et al. 2011) or dry de-
gumming (Cox et al. 2014), microwave, sonication, freezing, etc. (Harris et al. 2018).
More advanced approaches currently under exploration include the use of switchable
hydrophilicity solvents (SHS) at room temperature (Boyd et al. 2012), the CO,
expanded methanol approach (Paudel et al. 2015) or liquid CO,, which present better
lipid extraction yields (Paudel et al. 2015).

In the transesterification phase, lipids and alcohols are transformed into methyl or
ethyl esters and glycerol. This reaction can be driven with esterification, sonication
with a direct esterification and the Honeywell UOP™ process, which involves hydro-
genation to produce synthetic hydrocarbons followed by selective hydrocracking and
distillation (Brentner et al. 2011; Cox et al. 2014). Direct transesterification can also
be adopted, which using supercritical conditions combine the lipid extraction and
transesterification in a single phase with wet biomass (Brentner et al. 2011).

The transportation phase is the last step before biofuel usage and is generally
implemented using trucks or pipelines, depending on the volumes produced and/or
location of the plant. Production facilities should be placed at the most convenient
location, for instance close to end users, close to the feedstock supply or close to a
cement plant (as a source of CO,) or a wastewater treatment plant (as a source of
water and nutrients) (Stephenson et al. 2010; Powers and Baliga 2010; Collotta et al.
2016, 2018; Batan et al. 2016).

Finally, the end-use of the energy product is considered. Baseline comparisons
between bio-based product (e.g., biodiesel, biojet) and their petroleum-based coun-
terparts suggest that the impact of some substitutions—for instance, replacing coal-
fired electricity—may lead to more significant environmental offsets than others
(U.S. Energy Information Administration 2016). Understanding the end-use of the
microalgae-based energy product is essential to understanding the overall impact of
the system.

10.3 Literature Review of the LCA Studies on Biodiesel
from Microalgae

The application of the Life Cycle Assessment (LCA) methodology to the production
of biodiesel from microalgae is an ongoing endeavor, and the results obtained are
affected by a high level of uncertainty, mainly because of the lack of large-scale
production facilities and, consequently, because of the scarcity of primary data.

In this review, 24 LCA studies analyzing microalgae-to-energy systems have
been identified and reviewed. Table 10.1 summarizes the main characteristics of
these studies. As it can be seen, only 6 of the studies have used primary data for the
life cycle inventory, while the majority have used sensitivity analyses to reduce the
impact of uncertainty on the results. Nine studies evaluated systems in the European
Union, but none are located in Italy.
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As it can be seen from Table 10.2, the upstream process stages are included in
the system boundaries in almost all of the studies considered (the cultivation phase
is always considered), while the downstream stages are more frequently neglected,
especially for what concern the use of the residual biomass, the transportation of the
biofuel and its use. This result is particularly relevant, since a number of studies have
shown the importance of the definition of system boundaries (Tillman et al. 1994).

The impact categories or indicators considered in the LCA studies under review
are shown in Table 10.3.

Since the production of biofuels from microalgae is often cited as a solution to
the climate change problem, (Medeiros et al. 2013) it is not unexpected that Global
Warming Potential (GWP), which is representative of the combined emissions of
several greenhouse gases (primarily CO,, N,O, CHy), is quantified in almost all of
the studies (22 of 23).

Within the biofuel life cycle, greenhouse gases mainly come from fossil fuel
combustion for the generation of electricity and heat; the use of fuels for prod-
uct transportation; and the manufacturing and use of chemicals in the process. Other
GWP-related impact factors have also been noted in the studies under review, includ-
ing energy use (10 studies), fossil resource depletion (6 studies), and abiotic depletion
(consumption of natural but non-renewable resources—4 studies).

Greenhouse gas emissions are primarily related to energy consumption in the
harvesting, dewatering/drying, lipid extraction, and transesterification phases. Some
studies argue that harvesting and dewatering could contribute up to 20-30% of opera-
tional costs (Uduman et al. 2010; Grima et al. 2003), while other studies identified the
lipid extraction and transesterification phases as having the highest energy demands
(Khoo et al. 2011).

Given the relevance of energy use, it also has to be highlighted that the related
impact factors change significantly with a changing energy mix (Itten et al. 2012), and
thus depend on the country or region where the specific study is located. Moreover,
it is evident that a microalgae-to-energy system that utilizes waste heat, or derives
electricity from an onsite anaerobic digestion plant, could substantially reduce fossil
greenhouse gases emissions and likely decrease overall operational costs.

With reference to the land and water requirements, also important when evaluat-
ing microalgal production systems, it has to be noted that water availability, which
is dependent upon geographic location, is often the most critical issue affecting the
feasibility of the process and its operational costs. While both fresh and salt water
can theoretically be used; however, fresh water allows for a reduction in operational
costs since, in the case of seawater, salts have to be extracted via processes such
as evaporation, for example (Gendy and El-Temtamy 2013). In addition, sunlight
potential and temperature of the location have been shown to influence the produc-
tivity of algae cultivation systems in terms of growth rate (Medeiros et al. 2013). The
need for sunny days also defines the potential land requirements for algal production
in outdoor environments, as in the case of open raceways ponds (Malik et al. 2015).
In particular, in countries or regions with high land costs, open pond cultivation
may become unfeasible, unless it can be located within existing industrial facilities.
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Table 10.2 Production stages and processes included in selected LCAs

Process steps Technology/chemical LCA papers
Cultivation Open raceway ponds (ORP) 1,2,3,14, 18
Photobioreactor (PBR) 3,4,5,6,7,8,9,10, 11, 12, 13,
14,15, 16, 17, 18, 19, 20, 21, 22,
23
Harvesting Flocculation 3,5,6, 10, 14, 15, 18, 19, 20, 21,
22,23
Filtration 3, 10, 20, 21,
Natural/gravity settling 6,7,8,13,23
Mechanical press 15
Dissolved air flotation 4,13,22
Dewatering Centrifugation 1,2,3,5,7,8, 11,12, 13, 14, 17,
18, 20, 22, 23
Dryers 1,6,11,15,17,19, 22
Homoginization 14, 18

Lipid extraction

Hexane (+methanol/ethanol)

1,2,4,6,11,12,13, 14, 15,17,
18,19, 22

Supercritical CO, 3,22
Other 3,11, 12,23
Transesterification Methanol + ROH 1,2,3,4,6.13, 14, 15,17, 18, 19,
21,22
Methanol + Acid 2,3,21
Supercritical methanol 3
Honeywell UOP™ 12
Other 3,16, 23

Residual biomass use

Anaerobic digestion, CH4-energy

3,6,7,8,11,12,17, 18, 22,23

Animal feed

12,17

Soil amendments 6
Landfill 3,6,22
Other 9,13,22
Transportation Truck 9,10, 11, 18, 19
Conveyor 2
Biofuel use Biodiesel 3,4,6,15,18, 19
Biojet 12
Combustion/co-generation 6,7,23
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Table 10.3 Impact categories utilized in reviewed LCAs

Impact category/indicator LCA papers

Global warming potential 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 16,
17,18, 19, 20, 21, 22, 23

Ozone depletion 7,8,9,10,11, 15,19, 23

Human toxicity 7,8,9,10,11, 15,19

Photochemical oxidation 1,7,8,9,10, 11, 15, 19

Ionizing radiation 7,8,9,10, 11, 15

Acidification 1,7,8,9,10, 11, 15, 19

Eutrophifcation 3,5,7,8,9,10, 11, 12, 15,17, 19

Respiratory effects 19

Ecotoxicity 12,19

Marine toxicity 15

‘Water use 1,3,5,6,12, 18, 21, 23

Land use 1,3,5,7,8,9,10, 11, 12, 13, 15,23

Energy use 1,2,3,5,6,12, 14, 16, 17, 20, 22, 23

Abiotic depletion 1,7,8,9,10, 11, 13, 15, 18, 19, 23

Life cycle costs 4,20

Economic stimulus of microalgae-to-energy 16

Unemployment index 4

Full-time equivalent workers required (FTE) 16

Moreover, cultivation on arable land may raise concerns regarding impacts on food
supply.

Although water and land use are clearly important impact factors to consider,
only 13 of 24 studies under review included land use, eight examined water use and
12 considered eutrophication. This would suggest that water and land use are not
monitored as regularly as greenhouse gas emissions, probably because of a paucity
of data or a limited understanding of their importance.

10.3.1 Economic and Social Impact Assessment

One clear issue that emerges from the analysis of the LCA studies is that several
process developments are still required for the production of algal biofuels to be eco-
nomically viable. In fact, while many have speculated that biofuels from microalgae
bring to environmental benefits, at the same time they have been presented to have a
low economic feasibility due to the high costs associated with dewatering and lipid
extraction (Campbell et al. 2011).
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However, in any case, most studies have drawn from bench-scale operations,
because of the absence of commercial facilities, and few of the analyses have assessed
the potential economic impacts process scale-up. The integration of capital and oper-
ating costs would represent a key complement to the environmental impact assess-
ment and, it would also be beneficial to consider the effects of specific policy mea-
sures, such as renewable fuel mandates, carbon pricing, or excise tax exemptions.

Three the 24 LCA studies reviewed have incorporated some economic considera-
tions, and one in particular presented an innovative hybrid LCA model that integrated
economic and social analyses along the supply chain (Malik etal. 2015). The life cycle
costing methodology was used in one of the studies (Campbell et al. 2011), which
defined a quite comprehensive model for tracking total production cost, including not
only plant facility and main operational costs, but also items often neglected, such
as the costs associated with research and development, design, failures, contribution
margin loss, corrective and preventive maintenance and plant final disposal.

Other studies estimated the impact of increased or decreased water volume or
arable land use on the production costs (Li et al. 2008; Borowitzka and Moheimani
2015) or the feasibility of using regional waste streams as resources (CO,, wastewater
and waste heat) for the algae cultivation. (Collotta et al. 2016).

With reference to the social impact assessment of biofuels from microalgae, two
studies adopted their use as an impact category to track. In particular, one study
(Brentner et al. 2011) examines employment through the unemployment index, while
the other simply tracked the full-time workers required to operate the designed sys-
tem (Malik et al. 2015). These studies suggested a higher number of employees for
microalgae-to-energy systems compared to comparable food and nutraceutical pro-
duction (10 employees) as well as conventional crude oil production facilities (29
employees). The implication is that the effect that microalgae-to-energy facilities
may have on host communities, given the labor force demand derived by this plant,
should be considered for a complete analysis. Although this is a first step towards
the assessment of the social sustainability of biofuels from microalgae, to have a
comprehensive and more reliable assessment, other factors need to be included, such
as human rights, labor conditions and health and safety benefits, as well as corruption
and their effects on the legal system (Ekener-Petersen et al. 2014).

10.4 Conclusions

In recent years, many advances have been achieved through the research and devel-
opment of microalgae-to-energy systems. The LCA methodology, as an eco-design
tool, can provide a relevant contribution to guiding this development towards sus-
tainability direction.

Considering the state of the art regarding the application of LCA to biofuels
from microalgae, one of the clearest evidences is the heterogeneity of the system
boundaries adopted. In particular, the review highlighted a wide range of process
configurations. Few of the LCAs currently published in this field consider the full
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range of process stages, most of them investigating five or fewer stages, with the most
commonly omitted stages involving the transportation of biofuel to end users and end
product use. Although such studies can give a relevant contribution in the specific
context to which they refer, they are generally limited in contributing to evaluations
of the environmental impacts of an integrated microalgae-to-energy scenario.

Another relevant aspect to highlight is that many LCAs have focused primarily on
GWP (as measured via greenhouse gas emissions), while water and land use, highly
significant in microalgal production systems, were not nearly as well quantified and
analyzed in the selected studies. This is likely due to the fact that researchers have
focused on the potential for microalgae-to-energy systems to meet global warming
challenges. However, an important lack of primary and secondary data have been
highlighted in these systems. Moreover water depletion remains an important topic
to investigate for future commercial applications.

Finally, it should also be noted that, for the most part, published LCAs do not take
into account the economic and social impacts of microalgae-to-energy systems. In
fact, only two studies introduced some aspects of the economic and social benefits
of biodiesel production. Although the integration of economic and social considera-
tions in the sustainability assessment of microalgae-to-energy systems still presents a
high level of uncertainty, due to their early technological development stage, a com-
prehensive sustainability assessment is crucial both to provide an impetus for the
development and deployment of these technologies, and to give reliable profitability
assessment.
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