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Abstract. In an effort to improve the energy efficiency of cloud data
centers, in this paper, we propose a clustered Virtual Machine (VM)
allocation strategy based on an N -threshold sleep-mode in which all the
VMs in a cloud data center are clustered into two modules. The VMs
in Module I are always awake, whereas the VMs in Module II will go
to sleep under a light traffic load. When the number of waiting requests
reaches or exceeds the threshold N , sleeping VMs will resume process-
ing requests independently after their corresponding sleep timers expire.
Accordingly, we establish an N -policy partially asynchronous multiple
vacations queueing model, and derive the energy saving rate of the sys-
tem. Numerical results are provided to show the efficiency of the proposed
strategy in reducing energy consumption.
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1 Introduction

According to the current “Cisco Global Cloud Index”, more than four fifths
of the workload in data centers will be handled in cloud data centers by 2019
[1]. As a result, energy efficiency is becoming increasingly important in a cloud
environment [2].

The use of a sleep mode improves energy efficiency in cloud data centers [3].
In [4], Duan et al. proposed a dynamic idle interval prediction scheme that could
estimate the future idle interval length of a CPU and thereby choose the most
cost-effective sleep state to minimize the energy consumption during runtime. In
[5], Chou et al. proposed a fine-grain power management scheme for data center
workloads. This scheme dynamically postponed the processing of some requests,
created longer idle periods and promoted the use of a deeper sleep mode. In

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 124–132, 2018.
https://doi.org/10.1007/978-3-319-93736-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93736-6_9&domain=pdf


A Clustered VM Allocation Strategy over Cloud Environment 125

[6], Luo et al. proposed a dynamic adaptive scheduling algorithm based on flow
preemption and power-aware routing. This algorithm saved energy by decreasing
the ratio of low utilization devices and putting more devices into sleep mode. In
the literature mentioned above, we note that a sleep mode was only applied to
a Physical Machine (PM) rather than a Virtual Machine (VM).

In this paper, taking advantage of virtualization technology in cloud com-
puting, we propose a clustered VM allocation strategy based on an N -threshold
sleep-mode, and build an N -policy partially asynchronous multiple vacations
queueing model. Then, we evaluate the system performance in terms of the
energy saving rate of the system, both mathematically and numerically.

The rest of this paper is organized as follows. In Sect. 2, we propose a clustered
VM allocation strategy based on an N -threshold sleep-mode in a cloud environ-
ment and build a system model accordingly. In Sect. 3, we analyze the system
model using the method of matrix geometric solution. In Sect. 4, we derive the
energy saving rate of the system. With numerical experiments, we investigate
the system performance with the proposed strategy in Sect. 5. Finally, Sect. 6
concludes the whole paper.

2 VM Allocation Strategy and System Model

In this section, to improve the energy efficiency in a cloud environment, we
first propose a clustered VM allocation strategy based on an N -threshold sleep-
mode. Then, we develop an N -policy partially asynchronous multiple vacations
queueing model to analyze the system with the proposed strategy.

2.1 VM Allocation Strategy

We note that additional energy will be consumed when the VM frequently
switches from the sleep state to the awake state, and the system performance
will be degraded when all the VMs are put in an imposed sleep-mode. To get
around this problem, a clustered VM allocation strategy based on an N -threshold
sleep-mode is proposed.

All the VMs in a cloud data center are clustered into two modules, namely,
Module I and Module II. The VMs in Module I stay awake and operate on
a higher speed. The VMs in Module II will go to sleep independently when
there are no requests in the system buffer. At the end of a sleep period, if the
requests gathered in the system buffer reaches or exceeds a certain value, namely
threshold N , the corresponding VM in Module II will wake up independently
and operate on a lower speed. Otherwise, the VM in Module II will restart a
sleep timer and begin another sleep period.

In the proposed strategy, all the VMs are dominated by a control server, in
which several sleep timers, a request counter, and a VM scheduler are deployed.
Each sleep timer determines the time length of a sleep period. The request
counter records the number of the requests waiting in the system buffer. Based
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on the sleep timers and the request counter, the VM scheduler adjusts the system
state.

In Fig. 1, we demonstrate the workflow of VMs with the clustered VM allo-
cation strategy based on an N -threshold sleep-mode.

Fig. 1. The workflow diagram of a VM with the proposed strategy.

2.2 System Model

Regarding a request as a customer, a VM as an independent server, and a sleep
period as a vacation, we model the proposed strategy as an N -policy partially
asynchronous multiple vacations queueing model.

In this system model, the numbers of the VMs in Module I and Module
II are denoted as c and d, respectively. The arrival intervals of requests are
assumed to follow an exponential distribution with parameter λ (λ > 0). The
service times of requests processed in Module I and in Module II are assumed
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to follow exponential distributions with parameters μ1 (μ1 > 0) and μ2 (0 <
μ2 < μ1), respectively. Furthermore, the sleep timer length is assumed to follow
an exponential distribution with parameter θ (θ > 0). Here, the parameter θ is
called the sleeping parameter.

The system model is described with an infinite buffer capacity. Let S(t) =
i, i ∈ {0, 1, . . .} be the total number of requests in the system at instant t. S(t) is
also called the system level. Let J(t) = j, j ∈ {0, 1, . . . , d} be the number of busy
VMs in Module II at instant t. J(t) is also called the system stage. Based on
the assumptions above, {S(t), J(t), t ≥ 0} can be regarded as a two-dimensional
continuous time Markov chain (CTMC).

We define πi,j as the steady-state probability distribution of the system model
for the system level being equal to i and the system stage being equal to j.

We define πi as the steady-state probability distribution when the system
level is i. The steady-state probability distribution Π of the two-dimensional
CTMC is composed of πi (i ≥ 0). Π is given as follows:

Π = (π0,π1, . . .). (1)

3 Model Analysis

Based on the system level, the one-step state transition rate matrix Q of the two-
dimensional CTMC {(S(t), J(t)), t ≥ 0} can be written in a block-tridiagonal
form as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C0

B1 A1 C1

. . . . . . . . .
Bc Ac Cc

Bc+1 Ac+1 C c+1

. . . . . . . . .
Bc+d Ac+d C

B Ac+d+1 C
. . . . . . . . .

B Ac+d+N−1 C
B A C

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the one-step state transition rate matrix Q , the sub-matrices Bk are
repeated forever starting from the system level (c + d + 1), the sub-matrices
Ak are repeated forever starting from the system level (c + d + N), and the
sub-matrices C k are repeated forever starting from the system level (c + d).
The repetitive sub-matrices Bk, Ak and C k are represented by B , A and C ,
respectively.
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Bk (k = 1, 2, . . . , c), Bk (k = c+1, c+2, . . . , c+ d) and B (k = c+ d+1, c+
d+2, . . .) are the one-step state transition rate sub-matrices for the system level
k decreasing by one.

Bk = kμ1, k = 1, 2, . . . , c,

Bk =

⎛
⎜⎜⎜⎜⎜⎝

cμ1

cμ1 + μ2

. . .
cμ1 + (x − 1)μ2

cμ1 + xμ2

⎞
⎟⎟⎟⎟⎟⎠

, k = c + x, x = 1, 2, . . . , d,

B = diag (cμ1, cμ1 + μ2, . . . , cμ1 + dμ2) , k = c + x, x = d + 1, d + 2, . . . .

Ak (k = 1, 2, . . . , c), Ak (k = c + 1, c + 2, . . . , c + d + N − 1) and A (k =
c+d+N, c+d+N +1, . . .) are the one step state transition rate sub-matrices for
the system level k remaining fixed. For convenience of presentation, we introduce
hy (hy = λ + cμ1 + yμ2, 0 � y � d) to simplify the sub-matrices Ak and A.

Ak = −(λ + kμ1), k = 0, 1, . . . , c,

Ak = diag (−h0,−h1, . . . ,−hx) , k = c + x, x = 1, 2, . . . ,min{N, d} − 1.

For the case of N > d,

Ak = diag (−h0,−h1, . . . ,−hd) , k = c + x, x = d, d + 1, . . . , N − 1.

For the case of N � d,

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h0 − dθ dθ
. . . . . .

−hx−N − (d − (x − N))θ (d − (x − N))θ
−hx−N 0

. . . . . .
−hx−1 0

−hx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = c + x, x = N,N + 1, . . . , d − 1.
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Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h0 − dθ dθ
. . . . . .

−hx−N − (d − (x − N))θ (d − (x − N))θ
−hx−N 0

. . . . . .
−hd−1 0

−hd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = c + x, x = max{N, d},max{d,N} + 1, . . . , d + N − 1.

A =

⎛
⎜⎜⎜⎜⎜⎝

−h0 − dθ dθ
−h1 − (d − 1)θ (d − 1)θ

. . . . . .
−hd−1 − θ θ

−hd

⎞
⎟⎟⎟⎟⎟⎠

,

k = c + x, x = d + N, d + N + 1, . . . .

Ck (k = 1, 2, . . . , c), Ck (k = c + 1, c + 2, . . . , c + d − 1) and C (k = c + d, c +
d+1, . . .) are the one-step state transition rate sub-matrices for the system level
k increasing by one.

Ck = λ, k = 0, 1, . . . , c,

C k =

⎛
⎜⎜⎜⎜⎜⎝

λ 0
λ 0

. . .
...

λ 0
λ 0

⎞
⎟⎟⎟⎟⎟⎠

, k = c + x, x = 1, 2, . . . , d − 1,

C = diag (λ, λ, . . . , λ) , k = c + x, x = d, d + 1, . . . .

Obviously, the state transitions of the CTMC occur only between adjacent
system levels. The two-dimensional CTMC {S(t), J(t), t ≥ 0} can be seen as a
type of Quasi Birth-and-Death (QBD) process.

To analyze the QBD process {S(t), J(t), t ≥ 0} by using the matrix geometric
solution method, we need to solve for the minimal non-negative solution of the
matrix quadratic equation R2B +RA+C = 0. This solution is called the rate
matrix R.

Based on the discussions above, we find that the sub-matrices B , A and C
are upper-triangular matrices. So, the rate matrix R must be an upper-triangular
matrix, and can be explicitly determined.
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Applying the Gauss-Seidel method [7], we can obtain πi (i = 0, 1, . . . , c+d+
N). Based on the matrix geometric solution form πi = πc+d+NRi−(c+d+N), i ≥
c + d + N, we can obtain πi (i = c + d + N + 1, c + d + N + 2, . . .).

4 Performance Measures

We define the energy saving rate of the system as the energy conservation per unit
time. Energy saving rate of the system is a measure to compare the total energy
consumption in our proposed strategy and that in the conventional strategy.
Based on the steady-state probability distribution of the system model given in
Sect. 3, the energy saving rate E of the system with our proposed strategy is
given as follows:

E = E1 − (E2 + E3) (2)

where E1 is the energy saving rate during the sleep period, E2 and E3 are the
additional energy consumption rates caused by a request-migration and by a
listening at the boundary of the sleep period.

E1 = (ω − ωs)
∞∑
i=0

d∑
j=0

(d − j)πij ,

E2 = ωm

c+d∑
i=c+1

d∑
j=1

cμ1πij ,

E3 = ωl

∞∑
i=0

d∑
j=0

θ(d − j)πij

where ω (ω > 0) is the energy consumption per unit time for a busy VM in
Module II. ωs (ωs > 0) is the energy consumption per unit time for a sleeping
VM in Module II. ωm (ωm > 0) is the energy consumption for each request-
migration. ωl (ωl > 0) is the energy consumption for each listening.

5 Numerical Experiments

In order to quantify the impact of the sleeping parameter on the energy saving
rate of the system for the different number of the VMs in Module II and the
different thresholds N , we provide numerical experiments. Referencing to [8], we
set the experimental parameters as follows: c + d = 50, λ = 7.00 (requests/ms),
μ1 = 0.20 (requests/ms), μ2 = 0.10 (requests/ms), ω = 0.50 mW, ωs = 0.10
mW, ωm = 0.50 mW and ωl = 0.15 mW.

Figure 2 examines the influence of the sleeping parameter θ on the energy
saving rate E of the system for the different number d of the VMs in Module II
and the different thresholds N .

From Fig. 2(a), we notice that when the sleeping parameter θ and the thresh-
old N are given, a larger number d of the VMs in Module II will lead to a higher
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Fig. 2. Energy saving rate E of the system.

energy saving rate E of the system. As the number of the VMs in Module II
increases, more VMs have the opportunity to take a sleep, so the energy saving
rate of the system improves.

From Fig. 2(b), we notice that when the sleeping parameter θ and the number
d of the VMs in Module II are given, a bigger threshold N will lead to a higher
energy saving rate E of the system. The higher the threshold N is, the later a
VM in Module II will wake up from sleeping, so the VMs in Module II will stay
in the sleep state for longer. This results in a higher energy saving rate of the
system.

Combining Figs. 2(a) and 2(b), we also observe that for any number d of the
VMs in Module II and any value for threshold N , the energy saving rate E of
the system decreases as the sleeping parameter θ increases. On the one hand,
the larger the sleeping parameter is, the shorter the time length of a sleep period
is, and the later a VM in Module II will wake up from sleeping, so less energy
will be saved. On the other hand, the larger the sleeping parameter is, the more
frequently the VM in Module II listens to the system buffer, so additional energy
will be consumed. Therefore, the energy saving rate of the system will decrease.

6 Conclusions

In this paper, we proposed a clustered VM allocation strategy. Considering an
N -threshold sleep-mode with the proposed strategy, we established an N -policy
partially asynchronous multiple vacations queueing model. The queueing model
quantified the effects of the number of VMs in Module II, the threshold N and the
sleeping parameter on the energy saving rate of the system. In future research,
we aim to extend our study to investigate the average latency of requests and
to optimize the proposed strategy by making trade-offs between different per-
formance measures.
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