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Preface

The International Conference on Queueing Theory and Network Applications aims to
promote the knowledge and the development of high-quality research on queueing
theory and its applications in networks and other related fields. It brings together
researchers, scientists, and practitioners from over the world and offers an open forum
to share the latest important research accomplishments and challenging problems in the
area of queueing theory and network applications.

This volume contains papers selected and presented at the 13th International Con-
ference on Queueing Theory and Network Applications (QTNA 2018) held during July
25–27, 2018, in Tsukuba, Ibaraki, Japan.

QTNA 2018 was a continuation of the series of successful QTNA conferences:
QTNA 2006 (Seoul, Korea), QTNA 2007 (Kobe, Japan), QTNA 2008 (Taipei,
Taiwan), QTNA 2009 (Singapore), QTNA 2010 (Beijing, China), QTNA 2011 (Seoul,
Korea), QTNA 2012 (Kyoto, Japan), QTNA 2013 (Taichung, Taiwan), QTNA 2014
(Bellingham, USA), QTNA 2015 (Hanoi, Vietnam), QTNA 2016 (Wellington,
New Zealand), and QTNA 2017 (Qinhuangdao, China).

The conference this year was truly international, having received 57 submissions
from 23 countries and areas in five continents: Algeria, Australia, Austria, Belgium,
Bulgaria, Canada, China, Colombia, Hong Kong, Hungary, Iceland, India, Israel, Italy,
Japan, The Netherlands, Russia, South Korea, Sri Lanka, Taiwan, Turkey, USA, and
Vietnam. These papers were peer reviewed and evaluated on the quality, originality,
soundness, and significance of their contributions by the members of the Technical
Program Committee (TPC) of QTNA 2018 and external reviewers invited by the TPC.
Each paper was reviewed by at least three reviewers. After a careful selection, eight full
papers (12+ pages) and ten short papers (6–11 pages) were accepted for inclusion in
this volume of Lecture Notes in Computer Science (LNCS) published by Springer.

Furthermore, 20 papers (2–5 pages) showing on-going research were selected for
presentation at the conference and for inclusion in an electronic version of the con-
ference brochure that was distributed to all the participants of QTNA 2018.

All the papers to be presented disseminate the latest results covering up-to-date
research fields such as performance modeling and analysis of telecommunication
systems, retrial and vacation queueing models, optimization of queueing systems,
modeling of social systems, and application of machine learning in queueing models.

It was our privilege to invite Professor Benny Van Houdt to give a keynote talk and
Professor Moshe Haviv to deliver a tutorial lecture at QTNA 2018.

We would like to thank the authors of all the papers appearing in these proceedings
for their excellent contribution. Special thanks go to the co-chairs and members of the
Technical Program Committee of QTNA 2018 for their time and effort to assuring the
quality of the selected papers. We also would like to express our gratitude to the



co-chairs and members of the local Organizing Committee for their hard work
throughout the process from planning to holding the conference. Finally, we cordially
thank Springer for their support in publishing this volume.

July 2018 Yutaka Takahashi
Tuan Phung-Duc

Sabine Wittevrongel
Wuyi Yue

VI Preface
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A Priority Retrial Queue with Constant
Retrial Policy

Arnaud Devos(B), Joris Walraevens, and Herwig Bruneel

SMACS Research Group, Department of Telecommunications and Information
Processing (EA07), Ghent University - UGent,
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{arnaud.devos,joris.walraevens,herwig.bruneel}@ugent.be

Abstract. We analyse a priority queueing system with a normal queue
(high priority) and an orbit (low priority). Only the first customer in orbit
can retry during times that the queue and server are empty (constant
retrial policy). In contrast with existing literature, we assume different
service time distributions for the high- and low-priority customers. We
obtain closed-form expressions for the probability generating function of
the number of customers in queue and orbit, in steady state, and for the
Laplace Stieltjes transforms of the stationary waiting times of both type
of customers.

Keywords: Priority retrial queues · Constant retrial policy

1 Introduction

In some queueing systems, customers who find the server busy upon arrival can
decide to come back to the system after some random time. Those customers
can be visualised as being located in a virtual (retrial) queue, hereafter called
the orbit. In queueing theory, these queues are labelled as retrial queues. In
the literature, two types of retrial policies are typically identified. The first one,
called the classical retrial policy, assumes that all the customers in the orbit
retry to get access to the server. For analytical feasibility reasons, these retrials
are typically modelled as independent Poisson processes (with the same rate
for each customer). Typical examples in such a situation are call centres and
restaurant reservations. An excellent survey of these models can be found in [2].
The second policy, referred to as the constant retrial policy, assumes that only
the head of the orbit can retry for service [5]. This policy was first introduced
in [6], where a telephone exchange model with only one line is examined. In
[6], blocked customers (incoming calls) form a feedback queue (this is the orbit)
and only the customer at the head of the feedback queue can retry for service
after an exponentially distributed retrial time. A more recent application uses
a constant retrial queue to model the behaviour of call blending in call centers
[9,10]. In contrast to the classical retrial policy, the retrial times in the constant

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-319-93736-6_1
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4 A. Devos et al.

retrial policy are independent of the orbit length. Therefore, the distribution
of the retrial times does not have to be restricted to an exponential one to
obtain closed-form expressions for performance measures. In [8], a retrial queue
with constant retrial policy and general retrial times is extensively studied. The
author has obtained the stationary distribution for the orbit length, the server
state and the waiting time.

If retrial queues also possess a regular queue, priority policy occurs naturally.
Customers in the regular queue have priority over the customers in the orbit.
This means that the customer at the head of the orbit can only start retrying
when the regular queue becomes empty. If another customer arrives during a
retrial time, this customer is served and the retrial has to start over when the
regular queue becomes empty again. This priority can be non-preemptive or
preemptive. In [7], a preemptive constant retrial policy is studied. The author
has obtained the stationary distribution for the queue and orbit length, and the
waiting time of both type of customers.

In [1], a non-preemptive constant retrial policy is studied. The stationary
distributions for the queue and orbit lengths are obtained. An interesting result
from this paper, is that the distribution of the priority queue is independent
of the retrial time distribution. While in [7] it is assumed that the service time
distributions of the customers in the priority queue and customers in the orbit
are different, this is not the case in [1]. However, there might be situations
where the service time distributions are not necessary the same. It might even
be the reason why a customer joins either the queue or the orbit. For instance,
customers with a small (non-urgent) service time who face a large queue upon
arrival, are (in certain situations) more likely to join the orbit. Introducing a
regular queue also causes that the distribution of the waiting time of customers
in the orbit is harder to analyse than, for example, in [8]. Besides the difficulty of
the retrial policy, an additional difficulty arises due to the priority mechanism.
Arrivals in the regular queue during service times have to be served before the
waiting customers in the orbit.

In this paper, we generalize the model in [1] in two ways: we assume that
both type of customers have different service time distributions. Further, in
contrast with [1], we also analyse the waiting times of both type of customers.
The remainder of this paper is outlined as follows. In the next section we provide
a more detailed description of the queueing model under consideration. In Sect. 3
we analyse the steady state distribution of the queue and orbit lengths, using the
supplementary variable technique [3]. Section 4 gives a brief overview of the most
important performances measures deduced from the steady state distributions.
An extensive analysis of the waiting times is done in Sect. 5. Finally, we discuss
some numerical examples in Sect. 6.

2 Mathematical Model

We assume a queueing system with an infinite-sized queue, an infinite-sized orbit,
and one server. Class-1 and class-2 customers arrive to the system according to



A Priority Retrial Queue with Constant Retrial Policy 5

two independent Poisson processes with rate λ1 and λ2 respectively. If a new
customer arrives to the system and the server is free, he gets service immediately.
If the server is busy upon arrival, a class-1 customer waits in the queue, while
a class-2 customer joins the orbit. We assume that only the first customer in
the orbit retries to get access to the server when the queue and server are idle.
Retrial times are characterized by means of i.i.d. continuous random variables
with common cumulative distribution (cdf) R(x) and common Laplace Stieltjes
transform (LST) R∗(s). Service times of class-j customers, j = 1, 2, are specified
by i.i.d. continuous random variables with cdf Bj , LST B∗

j (s) and mean βj . We
define the arrival load as ρ � λ1β1+λ2β2. Further, we assume that service times,
retrial times and inter-arrival times are all mutually independent.

In the rest of this section we will fix notations for the rest of the paper.
We use the notation P for the probability measure, E for the expectation

operator and 1 for the indicator function.
Let N1(t) be the number of class-1 customers in the priority queue at time

t, not counting the one in the server. Similarly, let N2(t) the number of class-
2 customers in the orbit at time t. Further, we add four auxiliary processes:
C(t) = 0 when the server is idle at time t, C(t) = 1 when the server is serving
a class-1 customer at time t and C(t) = 2 when the server is serving a class-2
customer at time t. When C(t) = 0 and N2(t) > 0, ξ0(t) represents the elapsed
retrial time at time t; when C(t) = 1, ξ1(t) denotes the elapsed class-1 service
time at time t; when C(t) = 2, ξ2(t) denotes the elapsed class-2 service time
at time t. The stochastic vector {C(t), N1(t), N2(t), ξ0(t), ξ1(t), ξ2(t)} is then a
Markov Process. We assume that the stationary distribution of this stochastic
vector exists.1 Therefore we define the following limiting probabilities:

p0 = lim
t→∞P[C(t) = N1(t) = N2(t) = 0],

p
(0)
0,n(x)dx = lim

t→∞P[C(t) = 0, N1(t) = 0, N2(t) = n, x < ξ0(t) ≤ x + dx], n ≥ 1

p
(1)
i,n(x)dx = lim

t→∞P[C(t) = 1, N1(t) = i,N2(t) = n, x < ξ1(t) ≤ x + dx], i, n ≥ 0

p
(2)
i,n(x)dx = lim

t→∞P[C(t) = 2, N1(t) = i,N2(t) = n, x < ξ2(t) ≤ x + dx], i, n ≥ 0.

We also define the following probability generating functions (pgf)

P0(x, z2) =
∞∑

n=1

p
(0)
0,n(x) zn

2 , (1)

P1(x, z1, z2) =
∞∑

i=0

∞∑

n=0

p
(1)
i,n(x) zi

1z
n
2 , (2)

1 A sufficient condition for this assumption could be derived by first studying the
embedded Markov chain at departure epochs, similar as in [1]. It can be shown that
this condition turns out to be the same as the necessary stability condition we will
encounter in Sect. 3.
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P2(x, z1, z2) =
∞∑

i=0

∞∑

n=0

p
(2)
i,n(x) zi

1z
n
2 . (3)

Next, we define r̄(x) as the probability density function (pdf) of the retrial
time R, given that the retrial time is at least x. We define b̄j(x) as the pdf of
the service time of a class-j customer, given that the service time is at least x.
We thus have

r̄(x) =
R′(x)

1 − R(x)
and b̄j(x) =

B′
j(x)

1 − Bj(x)
. (4)

Let λ � λ1 +λ2 the total arrival rate to the system. Let p1 and p2 the proba-
bility that a customer is of class-1 and of class-2 respectively. These probabilities
are given by pj = λj/λ, j = 1, 2.

For further use, we define Aj(z1, z2) as the joint pgf of the class-1 and class-2
arrivals during a class-j service time and A(z1, z2) as the joint pgf of the class-1
and class-2 arrivals during a randomly chosen service time. They are calculated as

Aj(z1, z2) = B∗
j (λ1(1 − z1) + λ2(1 − z2)), (5)

A(z1, z2) = p1A1(z1, z2) + p2A2(z1, z2). (6)

In particular, we are interested in the steady-state distributions of the orbit
and queue length. We define

Q(z) = p0 +
∫ ∞

0

P0(x, z)dx, (7)

as the partial pgf of the number of customers in the orbit when the server is idle,
and

Uj(z1, z2) =
∫ ∞

0

Pj(x, z1, z2)dx, j = 1, 2, (8)

as the partial joint pgf of the number of customers in queue and orbit when the
server is serving a type-j customer.

3 Queue and Orbit Lengths

If the regular queue is non-empty, a customer from that queue is served next.
Otherwise, a customer from the orbit (if any) retries to access the server. If
his retrial time finishes before a new arrival, he is served. Otherwise, the newly
arriving customer starts service, irrespective of his type, and the customer at
the head of the orbit stops retrying until the server and the priority queue are
empty again. This leads to the following equilibrium equations
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λp0 =
∫ ∞

0

p
(1)
0,0(x)b̄1(x)dx +

∫ ∞

0

p
(2)
0,0(x)b̄2(x)dx, (9)

∂

∂x
p
(0)
0,n(x) = −(λ + r̄(x))p(0)0,n(x), n ≥ 1, (10)

∂

∂x
p
(1)
i,n(x) = −(λ + b̄1(x))p(1)i,n(x) + λ1p

(1)
i−1,n(x)1(i ≥ 1)

+ λ2p
(1)
i,n−1(x)1(n ≥ 1), i ≥ 0, n ≥ 0, (11)

∂

∂x
p
(2)
i,n(x) = −(λ + b̄2(x))p(2)i,n(x) + λ1p

(2)
i−1,n(x)1(i ≥ 1)

+ λ2p
(2)
i,n−1(x)1(n ≥ 1), i ≥ 0, n ≥ 0. (12)

The boundary conditions are

p
(0)
0,n(0) =

∫ ∞

0

p
(1)
0,n(x)b̄1(x)dx +

∫ ∞

0

p
(2)
0,n(x)b̄2(x)dx, n ≥ 1, (13)

p
(1)
i,n(0) = 1(i = 0, n = 0)λ1p0 + 1(i = 0, n > 0)λ1

∫ ∞

0

p
(0)
0,n(x)dx

+
∫ ∞

0

p
(1)
i+1,n(x)b̄1(x)dx +

∫ ∞

0

p
(2)
i+1,n(x)b̄2(x)dx, i ≥ 0, n ≥ 0, (14)

p
(2)
i,n(0) = 1(i = 0, n = 0)λ2p0 + 1(i = 0, n > 0)λ2

∫ ∞

0

p
(0)
0,n(x)dx

+ 1(i = 0)
∫ ∞

0

p
(0)
0,n+1(x)r̄(x)dx, i ≥ 0, n ≥ 0. (15)

Assuming stationarity, the equilibrium equations (10), (11) and (12) are trans-
formed to the following partial differential equations for the pgfs P0(x, z),
P1(x, z1, z2) and P2(x, z1, z2):

∂

∂x
P0(x, z2) = −(λ + r̄(x))P0(x, z2),

∂

∂x
P1(x, z1, z2) = −(λ + b̄1(x) − λ1z1 − λ2z2)P1(x, z1, z2),

∂

∂x
P2(x, z1, z2) = −(λ + b̄2(x) − λ1z1 − λ2z2)P1(x, z1, z2),

whose solutions are given by

P0(x, z2) = P0(0, z2)[1 − R(x)]e−λx, (16)

P1(x, z1, z2) = P1(0, z1, z2)[1 − B1(x)]e−(λ1(1−z1)+λ2(1−z2))x, (17)

P2(x, z1, z2) = P2(0, z1, z2)[1 − B2(x)]e−(λ1(1−z1)+λ2(1−z2))x. (18)
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In terms of the pgfs, the boundary conditions can be written as

P0(0, z2) =
∫ ∞

0

P1(x, 0, z2)b̄1(x)dx +
∫ ∞

0

P2(x, 0, z2)b̄2(x)dx − λp0, (19)

P1(0, z1, z2) = λ1p0 + λ1

∫ ∞

0

P0(x, z2)dx

+
1
z1

∫ ∞

0

[P1(x, z1, z2) − P1(x, 0, z2)]b̄1(x)dx

+
1
z1

∫ ∞

0

[P2(x, z1, z2) − P2(x, 0, z2)]b̄2(x)dx, (20)

P2(0, z1, z2) = λ2p0 + λ2

∫ ∞

0

P0(x, z2)dx +
1
z2

∫ ∞

0

P0(x, z2)r̄(x)dx, (21)

where we also used (9) in the first equation.
If we substitute (16), (17) and (18) in the previous equations and by using

(5), we get

P0(0, z2) = P1(0, 0, z2)A1(0, z2) + P2(0, 0, z2)A2(0, z2) − λp0, (22)

P1(0, z1, z2) = λ1p0 + p1(1 − R∗(λ))P0(0, z2) +
1
z1

P1(0, z1, z2)A1(z1, z2)

− 1
z1

P1(0, 0, z2)A1(0, z2) +
1
z1

P2(0, z1, z2)A2(z1, z2)

− 1
z1

P2(0, 0, z2)A2(0, z2), (23)

P2(0, z1, z2) = λ2p0 +
1
z2

[p2z2(1 − R∗(λ)) + R∗(λ)]P0(0, z2). (24)

We are left with five unknowns: p0, P0(0, z2), P1(0, z1, z2), P1(0, 0, z2) and
P2(0, 0, z2).2 First, we substitute (24) in (22) and solve for P0(0, z2),

P0(0, z2) =
z2A1(0, z2)P1(0, 0, z2) + (p2A2(0, z2) − 1)z2λp0

z2 − [p2z2 + R∗(λ)(1 − p2z2)]A2(0, z2)
. (25)

Substituting (24) in (23) and solving to P1(0, z1, z2), we can write

z2[z1 − A1(z1, z2)]P1(0, z1, z2) = {z1p1 + p2A2(z1, z2) − p2A2(0, z2)}z2λp0

+ {z2(1 − R∗(λ))[p1z1 + p2A2(z1, z2) − p2A2(0, z2)]
+R∗(λ)[A2(z1, z2) − A2(0, z2)]} P0(0, z2) − z2A1(0, z2)P1(0, 0, z2). (26)

It is well-known that f(z1) := z1 − A1(z1, z2) has one zero inside the complex
unit disk for each z2 with |z2| < 1, see for instance [12]. Call this zero Y (z2). It
can be proven that this is an analytic function inside the complex unit disk and
that Y (1) = 1, at least when the queueing system is stable. For more details, we

2 Note from Eq. (24) that P2(0, z1, z2) is independent of z1.
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refer to Appendix A in [13]. By substituting z1 by Y (z2) in (26), we find

z2A1(0, z2)P1(0, 0, z2) = {A(Y (z2), z2) − p2A2(0, z2)}z2λp0

+ {z2(1 − R∗(λ))[A(Y (z2), z2) − p2A2(0, z2)]
+ R∗(λ)[A2(Y (z2), z2) − A2(0, z2)]}P0(0, z2). (27)

Substituting the above equation into (25) yields

P0(0, z2) =
[A(Y (z2), z2) − 1]z2λp0

z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)
. (28)

Substituting Eq. (28) back into (25) and solving for P1(0, 0, z2) yields

P1(0, 0, z2) =
R∗(λ)λp0

z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)

× [1 − A(Y (z2), z2))][A2(0, z2) − z2] + [p2A2(0, z2) − 1][A2(Y (z2), z2) − z2]
A1(0, z2)

.

(29)

Inserting (28) and (29) into (26) gives

P1(0, z1, z2) =
R∗(λ)λp0

z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)

×
{

[1 − p1z1 − p2A2(z1, z2)][A2(Y (z2), z2) − z2]
z1 − A1(z1, z2)

+
[A2(z1, z2) − z2][A(Y (z2), z2) − 1]

z1 − A1(z1, z2)

}
. (30)

The forth unknown P2(0, z1, z2) is given as

P2(0, z1, z2) =
[p2z2 + p1Y (z2) − 1]R∗(λ)λp0

z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)
. (31)

Finally, the last unknown p0 can be found from the normalisation condition
Q(1) + U1(1, 1) + U2(1, 1) = 1. Using the definitions (7), (8) and the expressions
(16), (17) and (18), one easily finds

Q(z2) = p0 +
1 − R∗(λ)

λ
P0(0, z2),

Uj(z1, z2) =
1 − Aj(z1, z2)

λ1(1 − z1) + λ2(1 − z2)
Pj(0, z1, z2), j = 1, 2.

It now follows that

p0 = 1 − R∗(λ)p1 + p2
R∗(λ)

ρ. (32)

Requiring p0 > 0 leads to a necessary stability condition for the system.
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Summarized, we have obtained partial pgfs of the number of customers in the
queue and orbit when the server is either busy or idle. The complete expressions
are given by:

Q(z) =
z − A2(Y (z), z)

z − z(1 − R∗(λ))A(Y (z), z) − R∗(λ)A2(Y (z), z)

×
(

1 − R∗(λ)p1 + p2
R∗(λ)

ρ

)
R∗(λ), (33)

U1(z1, z2) =
{

[1 − p1z1 − p2A2(z1, z2)][A2(Y (z2), z2) − z2]
z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)

+
[A2(z1, z2) − z2][A(Y (z2), z2) − 1]

z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)

}

× 1 − A1(z1, z2)
z1 − A1(z1, z2)

1
1 − p1z1 − p2z2

(
1 − R∗(λ)p1 + p2

R∗(λ)
ρ

)
R∗(λ),

(34)

U2(z1, z2) =
p2z2 + p1Y (z2) − 1

z2 − z2(1 − R∗(λ))A(Y (z2), z2) − R∗(λ)A2(Y (z2), z2)

× 1 − A2(z1, z2)
1 − p1z1 − p2z2

(
1 − R∗(λ)p1 + p2

R∗(λ)
ρ

)
R∗(λ). (35)

From these three important pgfs, the marginal pgfs of the numbers of customers
in the queue and orbit are easily deduced. The pgf of N1 is given by

Q(1) + U1(z, 1) + U2(z, 1) = 1 − ρ +
1 − p1ρ − A(z, 1) + p1ρA1(z, 1)

p1[A1(z, 1) − z]
. (36)

The pgf of N1 is thus independent of the numbers of customers in the orbit ánd
the distribution of the retrial times. As mentioned before, this was also observed
in [1]. The pgf of N2 is given by

Q(z) + U1(1, z) + U2(1, z) =
p1Y (z) + p2z − 1

z − z(1 − R∗(λ))A(Y (z), z) − R∗(λ)A2(Y (z), z)

× 1
p2

(
1 − R∗(λ)p1 + p2

R∗(λ)
ρ

)
R∗(λ). (37)

4 Performance Measures

In this section we list some important performance measures of the queueing
system.

The probability that the server is empty is given by Q(1),

Q(1) = 1 − ρ, (38)

It is worth noting that this is not equal to the probability that the system is
empty, which is given by p0, see (32).
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The probability that the server is occupied by a class-j customer is given by
Uj(1, 1),

Uj(1, 1) = λjbj , j = 1, 2. (39)

The mean length of the priority queue is found by taking the first derivative
of (36), yielding

E[N1] =
λ1(λ1B

∗
1

′′(0) + λ2B
∗
2

′′(0))
2(1 − β1λ1)

. (40)

The mean orbit length is found by taking the first derivative of (37), which
leads to

E[N2] =
λ2[p2 + p1R

∗(λ)][λ1B
∗
1

′′(0) + λ2B
∗
2

′′(0)]
2(1 − λ1β1)(R∗(λ) − [p2 + R∗(λ)p1]ρ)

+
λ2[1 − R∗(λ)](p1β1 + p2β2)
R∗(λ) − [p2 + R∗(λ)p1]ρ

.

(41)

Another interesting performance measure is the mean size of the orbit when
the server is idle. This measure is given by

Q′(1) = (1 − R∗(λ))p2

× λ2(λ1B
∗
1

′′(0) + λ2B
∗
2

′′(0)) + 2(1 − λ1β1)ρ(1 − ρ)
2(1 − λ1β1)(R∗(λ) − [p2 + R∗(λ)p1]ρ)

.
(42)

5 Waiting Time

In this section we analyse the waiting times of class-1 and class-2 customers in
steady state. The waiting time of a customer starts when the customer enters
the system and ends when the customer enters the server. The waiting time of a
generic class-j customer is denoted by Wj , j = 1, 2, and its LST by W ∗

j (s). Tag
a randomly arriving class-j customer and denote him by Cj . The distribution of
the queue length and the orbit length at the arrival instant of Cj , is the same
as at an arbitrary time point because of the PASTA property.

5.1 Class-1 Customers

When C1 arrives to the system, there are three possibilities: (1) the server is
idle, (2) the server is serving a class-1 customer or (3) the server is serving a
class-2 customer.

When the server is idle, C1 gets service immediately (the priority queue must
be idle in this case) and consequently has no waiting time. Hence,

E[e−sW11{no service}] = 1 − ρ. (43)

When the server is busy, the waiting time of C1 consists of the remaining
service time of the customer currently in service and the service times of all
class-1 customers that are in the priority queue. This yields

W1 =
N1∑

k=1

B1,k + Tj , if the server is serving a class-j-customer, (44)
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where Tj , j = 1, 2, denotes the remaining service time and B1,k denotes the
service time of the k-th customer in the queue. The B1,k are i.i.d. with LST
B∗

1(s) and are independent of Tj . The distribution of the remaining service time
depends on the class of the customer being served and the elapsed service time.
Its conditional LST is given by

E[e−sTj |C = j, x < ξj ≤ x + dx] =
1

1 − Bj(x)

∫ ∞

x

e−s(y−x)dBj(y), j = 1, 2.

(45)
Hence, using (44), it follows that for j = 1, 2, i, n ∈ N and x > 0:

E[e−sW1 |C = j,N1 = i,N2 = n, x < ξj ≤ x + dx]

= B∗
1(s)i

(
1

1 − Bj(x)

∫ ∞

x

e−s(y−x)dBj(y)
)

.(46)

Averaging over all possible i, n and x, we find

E[e−sW11{service class-j}]

=
∫ ∞

0

∞∑

i=0

∞∑

n=0

B∗
1(s)i

(
1

1 − Bj(x)

∫ ∞

x

e−s(y−x)dBj(y)
)

p
(j)
i,n(x)dx

=
∫ ∞

0

(
1

1 − Bj(x)

∫ ∞

x

e−s(y−x)dBj(y)
)

Pj(x,B∗
1(s), 1)dx

= Pj(0, B∗
1(s), 1)

∫ ∞

0

∫ ∞

x

e−s(y−x)e−λ1(1−B∗
1 (s))xdBj(y) dx

= Pj(0, B∗
1(s), 1)

∫ ∞

0

e−sy

∫ y

0

e(s−λ1(1−B∗
1 (s)))xdx dBj(y)

=
Pj(0, B∗

1(s), 1)[Aj(B∗
1(s), 1) − B∗

j (s)]
s − λ1(1 − B∗

1(s))
. (47)

The full expressions can be found by using (30):

E[e−sW11{service class-1}] =
λ1(B∗

1(s) − 1)(1 − ρ) + λ2[A2(B∗
1(s), 1) − 1]

B∗
1(s) − A1(B∗

1(s), 1)

× A1(B∗
1(s), 1) − B∗

1(s)
s − λ1(1 − B∗

1(s))
, (48)

and by using (31):

E[e−sW11{service class-2}] = λ2
A2(B∗

1(s), 1) − B∗
2(s)

s − λ1(1 − B∗
1(s))

. (49)
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We can now calculate the LST of W1:

W ∗
1 (s) � E[e−sW1 ]

= E[e−sW11{no service}] + E[e−sW11{service class-1}]

+ E[e−sW11{service class-2}]
= 1 − ρ

+
λ1(B∗

1(s) − 1)(1 − ρ) + λ2[A2(B∗
1(s), 1) − 1]

B∗
1(s) − A1(B∗

1(s), 1)
A1(B∗

1(s), 1) − B∗
1(s)

s − λ1(1 − B∗
1(s))

+ λ2
A2(B∗

1(s), 1) − B∗
2(s)

s − λ1(1 − B∗
1(s))

. (50)

One can verify that

E[W1] =
λ1B

∗
1

′′(0) + λ2B
∗
2

′′(0)
2(1 − λ1β1)

, (51)

which is in accordance with Little’s Law.

5.2 Class-2 Customers

Because of the priority mechanism, finding an expression for W ∗
2 (s) is more

involved. Class-1 and class-2 arrivals during retrial times have to be served before
C2. Moreover, class-1 arrivals during service times while C2 is in the orbit have
to be served before C2 as well. This difficulty leads to the concept of “sub-
busy periods” [11]. We will define two kinds of sub-busy periods, i.e., sub-busy
periods initiated by class-1 customers and sub-busy periods initiated by class-2
customers.

The sub-busy period initiated by a class-1 customer starts at the time instant
he enters the server and ends when the number of class-1 customers in the system
is decreased by 1 for the first time.

The second type - a sub-busy period initiated by a class-2 packet - starts at
the time instant the initiating class-2 customers enters the server and ends at
the beginning of which a new class-2 customer can start to retrial (if any).

Denote the LST of a type-j sub-busy period as V ∗
j (s), j = 1, 2. The LST can

be expressed as the following functional equations:

V ∗
j (s) = B∗

j (s + λ1(1 − V ∗
1 (s))), j = 1, 2. (52)

This can be understood as follows. Denote by Vj a type-j busy period and Bj the
service time of the customer initiating the sub-busy period. Suppose that when
the service starts, there are m customers in the queue. During Bj , a number
of class-1 customers may arrive, say ã1. Hence, the number of customers in the
queue at the end of the service is equal to m+ ã1 − 1. The sub-busy period ends
when there are for the first time m − 1 customers in the queue. To achieve this,
one needs ã1 additional sub-busy periods. One can thus write

Vj = Bj +
ã1∑

k=1

V1,k. (53)
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The V1,k are i.i.d. and have LST V ∗
1 (s). Equation (52) then follows by taking the

LST of (53), taking into account that ã1 is the number of arrivals during Bj .
We distinguish again three possibilities when C2 arrives to the system: (1)

the server is free, (2) the server is occupied by a class-1 customer or (3) the
server is occupied by a class-2 customer.

When the server is free, C2 gets immediate access to the server and has no
waiting time. Hence,

E[e−sW21{no service}] = 1 − ρ. (54)

When the server is busy, the waiting time of C2 consists of the remaining service
time of the customer currently in service, the sub-busy periods initiated by the
class-1 arrival during that remaining service time, the sub-busy period initiated
by the class-1 customers in the queue, the effective retrial times3 of the class-2
customers in the orbit, the sub-busy periods initiated by the class-2 customers
in the orbit, and the effective retrial time of C2. This yields,

W2 = Tj +
a(Tj)∑

k=1

V1,k +
N1∑

k=1

V1,k +
N2∑

k=1

(V2,k + Gk) + G, (55)

where Tj , j = 1, 2, denotes the remaining service time and a(Tj) the number
of class-1 arrivals during Tj . Vj,k denotes the k-th sub-busy period initiated by
the k-th class-j customer and Gk the effective retrial time of the k-th class-2
customer in the orbit. Finally, G denotes the effective retrial time of C2.

It is clear that the lengths of the sub-busy periods initiated by class-j cus-
tomers are i.i.d. and thus all have the same LST V ∗

j (s), j = 1, 2. Because the
retrial times are assumed i.i.d., the same holds for the effective retrial times,
thus they all have the same LST G∗(s).

Apart from the first two terms in (55), all random variables are independent,
for given values of N1 and N2. It holds, for j = 1, 2,

E

[
e

−s

(
Tj+

∑a
(Tj)

k=1 V1,k

)∣∣∣C = j, x < ξj ≤ x + dx

]

=
1

1 − Bj(x)

∫ ∞

x

e−(s+λ1(1−V ∗
1 (s)))(y−x)dBj(y).(56)

We now concentrate on the effective retrial time of a random class-2 customer.
The effective retrial time of a class-2 customer equals the initial retrial time if
no arrivals occur during his retrial time or equals the time of an unsuccessful
attempt plus a sub busy period and the remaining effective retrial time after
this attempt, if this is not the case. That is,

G =

⎧
⎪⎨

⎪⎩

S no arrivals during retrial time,
F + V1 + G̃ retrial interrupted by a class-1 arrival,
F + V2 + G̃ retrial interrupted by a class-2 arrival.

(57)

3 The effective retrial time of class-2 customer starts when the customer is for the first
time the head of the orbit and ends when he enters the server.
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Here G and G̃ denote the effective retrial time and the remaining effective retrial
time after an unsuccessful attempt. Because the retrial time is resampled after
an unsuccessful attempt, G and G̃ have the same distribution. S denotes the
successful retrial time and F denotes the time of an unsuccessful retrial. The
distribution of F is independent of the type of the arriving customers that inter-
rupts it, because the minimum of two exponentially distributed random variables
is independent of which one of the two is the minimum [4, Chap. 2]. The reason
why we make a distinction in the type of customer that interrupted the retrial
time, is because the initiated sub-busy period distribution depends on this type.

Due to the competition of two exponentials with rate λj , j = 1, 2 and a
general retrial time, it follows that

P[no arrivals during retrial] = R∗(λ),
P[retrial interrupted by a class-1 arrival] = p1(1 − R∗(λ)),
P[retrial interrupted by a class-2 arrival] = p2(1 − R∗(λ)).

Let T be an exponential with rate λ and R a general retrial time. The cdf of
a successful retrial time can be found as

P[R ≤ t|R < T ] =

∫ t

0
e−λydR(y)
R∗(λ)

.

The LST of this distribution is then given as

S∗(s) � E[e−sR|R < T ] =
R∗(λ + s)

R∗(λ)
. (58)

The cdf of an interrupted retrial time is

P[T ≤ t|T < R] =

∫ t

0
λe−λy(1 − R(y))dy

(1 − R∗(λ))
,

which leads to

F ∗(s) � E[e−sT |T < R] =
λ(1 − R∗(λ + s))

(s + λ)(1 − R∗(λ))
. (59)

Taking the LST of (57), using the previous expressions and solving for G∗(s)
yields

G∗(s) =
(s + λ)R∗(λ + s)

s + λ − [1 − R∗(λ + s)][λ1V ∗
1 (s) + λ2V ∗

2 (s)]
. (60)

So far, we have obtained every distribution which occurs in (55). It holds for
j = 1, 2, i, n ∈ N, x > 0:

E[e−sW2 |C = j,N1 = i,N2 = n, x < ξj ≤ x + dx]

=
(

1
1 − Bj(x)

∫ ∞

x

e−(s+λ1(1−V ∗
1 (s)))(y−x)dBj(y)

)

× V ∗
1 (s)i[G∗(s)V ∗

2 (s)]nG∗(s). (61)
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Averaging over all possible i, n and x, we find, in a similar way as (47),

E[e−sW21{service class-j}] =
G∗(s)Pj (0, V ∗

1 (s), V ∗
2 (s)G∗(s))

s − λ2(1 − V ∗
2 (s)G∗(s))

× [Aj(V ∗
1 (s), V ∗

2 (s)G∗(s)) − V ∗
j (s)]. (62)

We can now calculate the LST of W2,

W ∗
2 (s) � E[e−sW2 ]

= E[e−sW21{no-service}] + E[e−sW21{service class-1}]

+ E[e−sW21{service class-2}]
= 1 − ρ

+
G∗(s)P1 (0, V ∗

1 (s), V ∗
2 (s)G∗(s))

s − λ2(1 − V ∗
2 (s)G∗(s))

[A1(V ∗
1 (s), V ∗

2 (s)G∗(s)) − V ∗
1 (s)]

+
G∗(s)P2(0, V ∗

1 (s), V ∗
2 (s)G∗(s))

s − λ2(1 − V ∗
2 (s)G∗(s))

[A2(V ∗
1 (s), V ∗

2 (s)G∗(s)) − V ∗
2 (s)].

(63)

One can again verify Little’s Law:

E[W2] =
[p2 + p1R

∗(λ)][λ1B
∗
1

′′(0) + λ2B
∗
2

′′(0)]
2(1 − λ1β1)(R∗(λ) − [p2 + R∗(λ)p1]ρ)

+
[1 − R∗(λ)](p1β1 + p2β2)
R∗(λ) − [p2 + R∗(λ)p1]ρ

. (64)

6 Numerical Examples

To conclude this paper, we discuss some numerical examples. We will specifically
focus on the influence of the service times and the retrial policy.

We assume the service times of type-1 customers to be exponentially dis-
tributed with mean β1, i.e.

B∗
1(s) = (1 + β1s)−1. (65)

In order to study the influence of different service times, we assume the service
times of type-2 customers to be of the gamma type with shape parameter 1/2
and mean β2, i.e.

B∗
2(s) = (1 + 2β2s)

−1/2
. (66)

The reason for this distribution is twofold. The first reason is to have two different
service time distributions. The second reason is to have a coefficient of variation4

that is bigger than one, which is equal to
√

2. The coefficient of variation for
B∗

1(s) obviously equals one.
4 The coefficient of variation of a distribution is defined as the ratio of the standard

deviation to the mean.



A Priority Retrial Queue with Constant Retrial Policy 17

Next, we suppose the retrial times follow an Erlang distribution of order two
and rate ν > 0, i.e.

R∗(s) =
(

ν

ν + s

)2

. (67)

Finally, we define α as the fraction of class-1 customers load in the overall traffic
mix, i.e.,

α =
λ1β1

ρ
, (68)

with ρ = λ1β1 + λ2β2 as before.

Fig. 1. Mean values of the queue and orbit lengths versus the mean class-2 service
times (ρ = 0.7, β1 = 1 and ν = 3).

Figures 1 and 2 show the mean queue length and mean orbit length, and the
mean waiting times respectively versus the mean service time of class-2 customers
with ρ = 0.7, β1 = 1, ν = 3 and α = 0.25, 0.5 and 0.75. From Fig. 1, it can be
seen that the mean queue length increases linearly, while the mean orbit length
decreases with increasing β2. The decrease of the mean orbit length is caused
by the decrease of λ2 when β2 increases (ρ is kept constant), hence less class-
2 customers arrive to the system. The increase in the mean queue length can
be explained as follows. When β2 increases, more class-1 customers will arrive
during the time periods that a class-2 customer is being served. Due to the
non-preemptive priority policy, arriving class-1 customers cannot interrupt the
service of class-2 customers. Hence, they have to wait until this class-2 customer
leaves the system, which results in a larger mean queue length.
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Fig. 2. Mean values of the waiting times versus the mean class-2 service times (ρ = 0.7,
β1 = 1 and ν = 3).

Looking at Fig. 2, we observe that the (mean) waiting time of class-2 cus-
tomers first decreases and then increases, for increasing β2. This effect is due to
the retrial policy. To understand this, we present in Fig. 3 the same model as in
Fig. 2, but where the retrial times are zero, i.e. R∗(s) = 1. In this way, we obtain
the ordinary non-preemptive priority queueing model because class-2 customers
do not have to retrial any more when the server gets empty. Obviously, the
mean waiting times for class-1 customers are the same in both figures, because
the waiting time distribution of class-1 is independent of the retrial distribu-
tion. The decrease for small β2 observed in Fig. 2 can be explained as follows.
For very small β2, λ2 is large and hence the orbit size is high (as observed in
Fig. 1). All these class-2 customers have a small service time, but their retrial
time is not necessary small. This actually depends on the retrial rate ν. Also,
the probability of a successful retrial, i.e. R∗(λ1 + λ2), decreases as λ2 increases
(for fixed λ1). This can be seen by taking the first derivative of (67). Conse-
quently, new class-2 arrivals will face a large waiting time when β2 is very small.
If β2 increases, λ2 decreases, which results in a decrease for the waiting time
for class-2 customers because less customers have to retrial. This positive effect
continues until β2 achieves a critical value and from there, the negative effect of
longer service times dominates the positive effect of less customers.

We now repeat the same experiment, with varying mean service time of class-
1 customers while keeping the mean service time of class-2 customers fixed.
We set ρ = 0.65, ν = 3, β2 = 1 and α = 0.25, 0.5 and 0.75. Figure 4 shows
the mean queue length and mean orbit length versus the mean service time of
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Fig. 3. Mean values of the waiting times versus the mean class-2 service times (ρ = 0.7,
β1 = 1 and R∗(s) = 1).

Fig. 4. Mean values of the queue and orbit lengths versus the mean class-1 service
times (ρ = 0.65, β2 = 1 and ν = 3).
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class-1 customers. The reason why the mean queue length slightly decreases as
β1 increases is due to decreasing λ1 for increasing β1. Apart from very small
values of β1, the mean orbit size strongly increases as β1 because the server
will be less available. The opposite effect for (very) small values can again be
explained by the previous discussion.

Fig. 5. Mean values of the waiting times versus the mean class-1 service times (ρ = 0.65,
β2 = 1 and ν = 3.)

The influence of the mean service time of class-1 customers on the waiting
times is shown in Fig. 5. One can observe that the minimum in the upper curves
is much sharper than in the previous example.

7 Conclusion

In this paper, we analysed a priority retrial queue for a constant retrial policy
and different service time distributions. The supplementary variable technique
was used to obtain partial pgfs for the number of customers in the orbit when
the server is idle and the joint number of customers in queue and orbit when the
server is serving a type-1 customer, respectively a type-2 customer. The LST
of the stationary waiting times of both type of customers is obtained. Using
numerical examples, we illustrated the influence of the service times and the
retrial policy on the mean queue length, the mean orbit length and the mean
waiting times respectively.
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An interesting future research direction is the analysis of the asymptotic
behaviour of type-2 customers and compare these results with the asymptotics
for the corresponding model in the classical retrial setting.

Acknowledgments. The authors wish to thank Tuan Phung-Duc and Dieter Claeys
for preliminary discussions about the model in this paper.
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Abstract. In this paper, we apply a regenerative approach to reprove
some recent steady-state results [1,8,9] for an orbit-queue (also known as
retrial queue with a constant retrial rate) with outgoing calls. Stability
conditions are discussed as well. Moreover, some generalizations of the
model are also considered.

Keywords: Stability condition · Retrial system · Classical discipline
Outgoing calls · Regenerative approach · General service time

1 Introduction

1.1 Motivation and Related Work

In call centers with the callback option, customers (incoming calls) who cannot
connect immediately with the operator, register their number to be called back
in a later time [2]. Since these customers are not present at the call center, they
cannot be picked up immediately when the operator is available. Instead, even
when the operator becomes available, some seeking time is needed to access
a registered customer. In what follows, we assume that registered customers
stay in an orbit-queue. The seeking process can be done either manually by the
operator or automatically by a machine. Furthermore, apart from incoming calls,
the operator may make outgoing calls in its idle time. An outgoing call may be
referred to as a private job of the operator or a real call to a customer outside. It
should be noted that in case the seeking mechanism is carried out by a machine,
the operator may not be aware of the presence of registered customers in the
orbit-queue. Thus, the operator may make an outgoing call even when there
are some registered customers in the orbit-queue. Furthermore, even in the case
the operator is aware of registered customers in the orbit-queue, he may also
make outgoing calls if the outgoing calls are more urgent and/or important than
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 22–32, 2018.
https://doi.org/10.1007/978-3-319-93736-6_2
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incoming calls. The same phenomenon is also observed in various service systems
where a ticket is issued upon the arrival of a customer who cannot be served
immediately. The customer will be called in a later time when the server is
available.

Motivated by this real situation, a single server queueing system with an
orbit-queue has been proposed and analyzed in [8,9] under pure Markovian set-
tings, i.e., the arrival process of incoming calls is Poisson and the service time
distributions of incoming and outgoing calls are exponential. The orbit-queue
(also called the orbit in the literature) corresponds to the queue for registered
customers in call centers. Recently, Aissani and Phung-Duc [1] have analyzed
the single server model with arbitrarily distributed incoming calls and outgoing
calls and Poisson input of incoming calls. The analysis of [1] is based on the
balance equations for the underlying Markov process of the system. They have
obtained explicit formulae for the generating functions of the joint queue-length
distribution and exact formulae for the mean orbit sizes.

1.2 Contribution of the Current Paper

In this paper, using a much simpler alternative approach, we obtain some explicit
performance measures such as the distribution of the state of the server, the
probability of an empty system etc. for the model in [1]. Furthermore, the method
is applied to obtain some performance measures for the multiple server model
and the single server model with the general renewal input.

More precisely, the contribution of this work is two-fold. First of all, we apply
the regenerative methodology to reprove some important performance results
established for this model in previous works [1,8,9]. We emphasize that the new
proofs in general are much simpler. However, not all the results obtained in [1,8,
9] can be regenerated by the analysis of this paper. It is the feature of the applied
methodology: it does not use detailed balance equations describing the dynamics
of the process, unlike the approach based on the Kolmogorov equations for the
corresponding Markov process. On the other hand, the regenerative approach is
not limited by the framework of Markov processes, and allows to analyze much
wider class of queueing processes though in less detail. We emphasize that the
full power of the regenerative methodology is demonstrated by stability analysis,
but it will not be elaborate in this paper.

1.3 Organization of the Paper

The paper is organized as follows. The model is described in Sect. 2, where also
basic notation is given. In Sect. 3, we first prove main results for single server
system with one class of the outgoing calls. Then, we consider the multiclass
system, and finally, the system with m parallel servers. In Sect. 4, we discuss
sufficient stability conditions. In particular, we give stability condition for the
model with two classes of outgoing calls with general service times.



24 E. Morozov and T. Phung-Duc

2 Description of the Model

We consider a single-server retrial queue with two-way communication. Primary
incoming calls (customers) arrive at the server (or operator) according to a Pois-
son process with instants {tn, n ≥ 1} with rate λ ∈ (0, ∞). Incoming calls find-
ing an idle server receive service immediately. The service times of the incoming
calls {Sn, n ≥ 1} are independent identically distributed (iid) with a general
distribution with mean ES =: 1/μ < ∞ (Here and in what follows, we omit the
serial index to denote a generic element of an iid sequence).

In case of a busy server, the incoming call enters an orbit. Within the orbit,
a constant retrial policy is applied, i.e., the arrival rate of calls from the orbit is
μ0 (if the orbit is not-empty) and independent of the number customers being in
the orbit. In other words, retrial attempts follow exponential distribution with
rate μ0 (we denote this random variable exp(μ0)). A constant retrial rate occurs
when customers form a FCFS queue in the orbit, and only the customer at the
head of the queue can request service. Another option is that the system has a
control mechanism allowing to keep a constant summary retrial rate regardless
of the number of orbital calls, although these calls may make the retrial attempts
independently.

We consider the case where the server makes outgoing calls in its idle time.
More precisely, when the server is idle for an exponentially distributed time with
rate γ1, it makes an outgoing call. It is equivalent to that outgoing calls arrive at
the server according to a Poisson process with rate γ1 and if the server is busy
upon arrival of an outgoing call, the outgoing call is lost. As a result, after the
completion of each service, the next action of the server is determined by the
competition of three events, i.e., an arrival of a fresh incoming call, a retrial of
an incoming call from the orbit queue (if the orbit is not empty) and an arrival
of an outgoing call.

The service times of outgoing calls {S
(1)
n , n ≥ 1} are iid with a general

distribution with mean ES(1) =: 1/μ1 < ∞.
For simplicity, we assume zero initial state: the 1st customer arrives in the idle

system at instant t = 0. In interval [0, t), we denote V (t) the sum of the service
times of all incoming customers arriving in the system and all outgoing calls, B(t)
the busy time of the server, I(t) the idle time of the server, that is B(t) + I(t) = t.
Denote N(t) the number of orbital customers and W (t) the workload (remaining
work) in orbit queue at instant t−. Let S(t) be the remaining service time at
instant t−, i.e. the time the current customer, being in server, departs server. (By
definition, S(t) = 0 if Q(t) = 0). We consider the following basic one-dimensional
non-Markovian process X(t) := N(t) + Q(t), t ≥ 0, where Q(t) ∈ {0, 1} is the
number of calls in the server at instant t−. We emphasize that a reduction of the
dimension of a basic process is a crucial advantage of the regenerative approach.
Denote X(tn) = Xn, n ≥ 1. Put T0 = 0 and define recursively,

Tn+1 = inf
(
tk > Tn : Xk = 0

)
, n ≥ 0.
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It is easy to see that {Tn} are classical regenerations of the basic process X,
with the iid regeneration periods Tn+1 − Tn (and with generic period T ). It is
well-known (for instance, [3]) that if the mean generic period ET < ∞ then
the process {X(t)} (and the basic system) is positive recurrent and (because
the input flow is Poisson) the steady-state distribution of the process {X(t)}
(and other related regenerative processes) exists. In other words, there exists
the weak limit X(t) ⇒ X. (The critical role of the requirement ET < ∞ for
stability analysis is discussed in detail in [4]). We first assume positive recurrent
case, ET < ∞, and later on discuss in brief stability conditions which imply this
basic requirement.

Denote the following stationary probabilities: the server is idle P0; the server
is busy Pb = 1 − P0; the server is busy by an incoming call P(0)

b ; the server is
busy by an outgoing call P(1)

b ; the system (orbit and server) is empty, P0,0; and
finally, the stationary probability that server is empty and orbit is busy, P0, b. As
we mentioned above, positive recurrence implies the existence of these station-
ary probabilities. For instance, limt→∞ P(X(t) = 0) = P0,0, limt→∞ P(Q(t) =
0, N(t) > 0) = P0, b. Also denote

ρ =
λ

μ
, σ =

γ1
μ1

.

Below we obtain, by a simple regenerative approach, some important steady-
state performance measures of the model which have been found in [8,9] by the
detailed Kolmogorov equations approach, for pure Markovian setting.

3 Stability Analysis

3.1 One Class of Outgoing Calls

Using the regenerative approach, we below prove the following results which
have been proved in [8] for pure Markovian model by Kolmogorov equations
approach.

Theorem 1. The stationary probabilities satisfy the following relations:

P0 =
1 − ρ

1 + σ
= 1 − Pb; (1)

P
(0)
b = ρ; (2)

P
(1)
b = σ

1 − ρ

1 + σ
; (3)

Pb = P
(0)
b + P

(1)
b =

σ + ρ

1 + σ
; (4)

P0, 0 =
1 − λ/μ0[ρ + σ + μ0/μ]

1 + σ
; (5)

P0, b = σ
λ

μ0

(1 − ρ)
(1 + σ)

. (6)
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Proof. Denote A0(t) the number of incoming arrivals in [0, t), and let A1(I(t))
be the number of the outgoing calls which appear during (summary) idle period
I(t) of server in period [0, t). Also denote W0(t) the remaining work in orbit at
instant t. We note that the amount of work V (t) generated (in interval [0, t))
by the outgoing calls and incoming customers, equals the sum of the remaining
work (W0(t) + S(t)) and the work which departs system in interval [0, t). The
latter in turns equals the busy time B(t) in interval [0, t). Thus we obtain the
following balance equation:

V (t) =
A0(t)∑
i=1

Si +
A1(I(t))∑

i=1

S
(1)
i

= S(t) + W0(t) + t − I(t). (7)

We note that the remaining service time S(t) may relate both to the incoming
call and outgoing call, however in either case S(t) = o(t) (see [5]) and, because
of the positive recurrence, W0(t) = o(t), t → ∞ with probability 1 (w. p. 1) as
well (see [6] and [10]). Moreover, by the Strong Law of Large Numbers (SLLN)
for the renewal process, w.p.1,

lim
t→∞

A0(t)
t

= λ, lim
t→∞

1
A0(t)

A0(t)∑
i=1

Si =
1
μ

, lim
t→∞

A1(t)
t

= γ1. (8)

In addition, by the positive recurrence, the following limits exist

lim
t→∞

I(t)
t

= P0 = lim
t→∞P(Q(t) = 0) = P(Q = 0), (9)

where Q denotes the stationary number of calls in the server. Note that the
first limit in (9) holds w.p.1 because I(t) is a cumulative process with positive
recurrent embedded process of regenerations [10].

Then, by (8) and (9), we obtain w.p.1,

V (t)
t

=
A0(t)

t

1
A0(t)

A0(t)∑
i=1

Si +
A1(I(t))

I(t)
I(t)
t

∑A1(I(t))
i=1 S

(1)
i

A1(I(t))

→ ρ + σP0, t → ∞. (10)

On the other hand,

lim
t→∞

1
t

(
S(t) + W0(t) + t − I(t)

)
= 1 − P0. (11)

Now (1) follows from (7)–(11). To establish (2), we write down the following
balance equation for the work V0(t) which incoming customers bring in the
system in interval [0, t):

V0(t) = S0(t) + B0(t) + W0(t), (12)
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where S0(t) is the remaining service time of an incoming call, provided it is in
the server (S0(t) = 0, if the server is free or serves an outgoing call), and B0(t)
is the busy time the server devotes to incoming calls in interval [0, t). Note
that, as above, S0(t) = W0(t) = o(t) w.p.1. Because V0(t) =

∑A0(t)
i=1 Si, then (2)

immediately follows from (12) and the following relations hold w.p.1:

V0(t)
t

→ ρ,
B0(t)

t
→ P

(0)
b , t → ∞.

To find P0, b, we denote D0(t) the number of retrial calls which would depart the
orbit in [0, t) provided the server devotes all its time to these calls. Note that
the actual number of the incoming calls which join the orbit in interval [0, t)
stochastically equals A0(B(t)). (Indeed we use here the property of the Poisson
input). Then we have the following balance relation between the number of
incoming calls joint to orbit and the number of retrial calls departed orbit, in
interval [0, t):

A0(B(t)) = N(t) + D0(L(t)), (13)

where
L(t) := {t : N(t) > 0, Q(t) = 0}

is the summary time when the orbit is busy while server is free, allowing suc-
cessful retrial attempts. Note that this representation is again correct due to
Poisson inputs formed by the incoming calls and the retrial calls attempting to
enter server. By the stationarity, N(t) = o(t), and we have

lim
t→∞

1
t
A0(B(t)) = λPb; (14)

lim
t→∞

1
t
(N(t) + D0(L(t))) = μ0P0,b, (15)

where we take into account that, by the SLLN for the renewal process D0,

D0(L(t))
L(t)

→ μ0,

and that there exists the limit

lim
t→∞

L(t)
t

= P0,b.

Finally, we write

P0,0 = P0 − P0,b =
1

1 + σ
[1 − ρ − λ

μ0
(σ + ρ)], (16)

which is equivalent to (5). �
Now, we consider the stability condition.
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Let Nn be the orbit size just after the nth departure from the system, then the
server is free at this instant, and we denote it Qn = 0. It is easy to see that {Nn}
is the Markov chain. Assumed positive recurrence of the basic process implies
also the existence of the stationary distribution of this chain. In particular, there
exists the stationary probability (in evident notation)

lim
n→∞P(Nn = 0, Qn = 0) = P0, 0.

Now it is clear that the necessary stability condition of the original model is
P0,0 > 0.

Thus we obtain the following necessary stability condition of the model under
consideration.

Corollary. If the original model with general service times (both for incoming
and outgoing calls) is stable (positive recurrent) then

ρ +
λ

μ0
(σ + ρ) < 1. (17)

It is easy to see that it is the same stability condition which has been proved in
[1,8].

We recall the definition of the classical retrial policy [7]. In this case the retrial
rate depends on the orbit size. In the simplest case, the rate is proportional to
the orbit size. In other words, if μ0 is individual retrial rate of each call and orbit
size equals n then summary retrial rate equals μ0 n. Also we note that stability
criterion of this model is ρ < 1 and does not include the retrial rate, see for
instant, [7]. A careful analysis of the above given proof allows to conclude that
some of the obtained results stay valid also for this retrial model with classical
retrial policy. Namely, the following statement holds.

Theorem 2. The statements (1)–(4) stay valid for the retrial system with clas-
sical retrial policy.

3.2 M Classes of Outgoing Calls

The analysis of the stationary regime developed above can be easily extended to
the same single-server system with Poisson incoming calls with rate λ and with
an arbitrary number M of classes of the outgoing calls, denoted by 1, . . . ,M .
Denote {S

(k)
i } the iid service times of class-k outgoing calls with rate γk, and iid

service times {S
(k)
i } with rate μk = 1/ES(k), k = 1, . . . ,M . If we denote by Ak(t)

the renewal process (number of calls) generated by the outgoing calls interval
[0, t), then the actual number of outgoing calls appeared in interval [0, t), is
(stochastically) equivalent to Ak(I(t)), where, recall, I(t) is the empty time of
server in [0, t]. In this case, keeping remaining notation, the balance equation
(7) transforms to

V (t) =
A0(t)∑
i=1

Si +
M∑
k=1

Ak(I(t))∑
i=1

S
(k)
i = S(t) + W0(t) + t − I(t), (18)
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where now the remaining service time S(t) may relate to any class-i outgoing
call, i = 1, . . . ,M . Denote σk = γk/μk, k = 1, . . . ,M . Then, as above in (7)–(11),
we obtain that the stationary idle probability of the server is

P0 =
1 − ρ

1 +
∑M

k=1 σk

= 1 − Pb. (19)

For M = 2 this expression coincides with that is given in [9]. Also the same
analysis as above gives the following expression for the stationary probability
that server is busy by an incoming call P

(0)
b = ρ, which, as easy to check, is

the same expression as in [9], p. 473. Finally, the summary work generated by
class-k outgoing calls, in interval [0, t) is

Vk(t) :=
Ak(I(t))∑

i=1

S
(k)
i , k = 1, . . . , M.

On the other hand, because the outgoing calls cannot be accumulated, the work
Vk(t) coincides with the busy time of the server devoted to class-k outgoing calls,
in [0, t). Then we obtain the following expression for the stationary probability
P
(k)
b that server is occupied by a class-k outgoing call (cf. (10)):

P
(k)
b = lim

t→∞
1
t

Ak(I(t))∑
i=1

S
(k)
i = σkP0, k = 1, . . . ,M. (20)

For M = 2, this expression is the same that is given in [9], p. 473. Then it follows
from (20) that the stationary busy probability of server is

Pb =
M∑
k=0

P
(k)
b =

∑M
k=1 σk + ρ

1 +
∑M

k=1 σk

, (21)

and it is consistent with (19).
We emphasize that analysis above holds true for general renewal process of

the incoming calls and general service time both incoming and outgoing calls. At
the same time, exponentiality of the retrial times and the time between outgoing
calls are being critically important for our analysis. It is reflected in the upper
summation index Ak(I(t)) in (18) and in the term D0(L(t)) in (13), where we, to
obtain summary idle time I(t) in general couple together different periods of the
idle time of server. The same is done to obtain the summary time L(t). It is well-
known that such transformation preserves the property of Poisson process, that
is Ak(I(t)) is equivalent to the number of the class-k outgoing calls appearing
in interval [0, I(t)), provided the server devotes all its time to these calls.

3.3 Multiserver System

If the retrial system has m parallel stochastically identical servers, then previous
analysis allows easily to obtain stationary idle probability P

(o)
0 of an arbitrary
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server. To this end, denote Ii(t) the idle time of server i in interval [0, t], i =
1, . . . ,m. Then the summary idle time in interval [0, t] equals I(t) =

∑m
i=1 Ii(t),

and balance equation for (18) for the summary work transforms to the following
balance equation

V (t) =
A0(t)∑
i=1

S
(1)
i +

M∑
k=1

Ak(I(t))∑
i=1

S
(k)
i = S(t) + W0(t) + mt − I(t), (22)

where S(t) is now the sum of the remaining service times in all servers, at instant
t. Assume that the system is stable (positive recurrent), and denote the limit

lim
t→∞

Ii(t)
t

=: P(o)
0 , i = 1, . . . , m,

which, because servers are identical, is independent of the server number i. Then
we obtain in limit from (22) that

ρ +
m∑

k=1

σkP
(o)
0 = m − mP

(o)
0 , (23)

and thus the stationary idle probability of an arbitrary server equals

P
(o)
0 =

m − ρ

m +
∑M

k=1 σk

. (24)

Define Qi(t) = 1 if server i is idle at instant t, and Qi(t) = 0, otherwise, then

Ii(t) =
∫ t

0

Qi(u)du, i = 1, . . . ,m,

and it follows that

lim
t→∞

I(t)
t

= lim
t→∞

∑m
i=1 Ii(t)

t
= mP

(o)
0

is the mean stationary number of empty servers.

4 Sufficient Stability Condition

In this section, we discuss in brief sufficient stability condition of the model. It
has been obtained in [1] that condition

ρ +
λ

μ0
ρ +

λγ1
μ1μ0

< 1, (25)

is necessary for stability of two-way communication retrial system with one class
of outgoing calls. Moreover, it has been noted that, visually, this condition is
sufficient for stability as well. We now give an interpretation of this condition
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which allows to conjecture that (25) is a negative drift condition for the basic
queue size process. This in turns implies that (25) is indeed stability criterion.

Consider first the model without outgoing calls. Evidently, because in this
case σ = 0 then the necessary stability condition becomes (cf. (17))

ρ +
λ

μ0
ρ < 1. (26)

To formulate negative drift condition for the workload, we must take into account
that each new incoming call brings in the system the mean work equals ES
and moreover, after each departure the server stays idle an exponential time,
exp(μ0), with rate μ0. In other words, within each interarrival time, 1/μ0 is the
lost capacity between departure and new attempt, provided server is busy, and
hence new call joins orbit. It shows that the negative drift condition will be of
the following form:

λ
(
ES + E[I(Q > 0) exp(μ0)]

)
< 1, (27)

where I is indicator function, Q is the stationary state of the server, in particular,
EI(Q > 0) = Pb = ρ. It is seen that (27) coincides with (26).

Now we allow (one) class of outgoing calls (see Sect. 3.1). In this case, to
obtain negative drift (sufficient stability condition), we must take into account
the lost capacity of the server (or lost working time) because of the outgoing
calls. To this end, we note that with the probability

q =
γ1

γ1 + μ0
,

server is captured by an outgoing call for the (mean) service time 1/μ1. Then,
with probability q2, it happens two times, etc. Thus, the total mean time devoted
to outgoing calls between departure of a retrial call and the next successive
attempt, equals γ1/(μ1μ0). Adding it to l.h.s. of (26), we obtain the following
condition

ρ +
λ

μ0
ρ +

λγ1
μ1μ0

< 1, (28)

which coincides with condition (17). For M = 2 classes we obtain, by analogy,
the following negative drift condition:

ρ +
λ

μ0
ρ + λ

[ γ1
μ1(γ2 + μ0)

+
γ2

μ2(γ1 + μ0)

]
< 1. (29)

Continuing in such a way, we can write down stability condition for M classes
of the outgoing calls. However, we leave complete and strict analysis of stability
criterion for this general case for a future work.
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5 Conclusion

In this paper, we present a new regenerative proof of some recent steady-state
performance results for a two-way communication retrial queueing model with
constant retrial rate [1,8,9] obtained earlier by Kolmogorov equations approach.
Also we deduce necessary stability condition and discuss sufficient condition as
well. Moreover, some generalizations of the model are also considered.
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Abstract. A retrial queueing model is considered with Poisson input
and an unlimited number of servers. At any epoch only a finite number
of the servers are active, the others are called dormant. An active server
is always in one of two possible states, idle or busy. When upon arrival
of a customer at least one of the active servers is idle, the newly arrived
customer goes into service immediately, making the idle server busy.
When at an arrival epoch all active servers are busy, the decision must
be made to send the newly arrived customer into orbit, or to activate a
dormant server for immediate service of the arrived customer. Customers
in orbit try to reenter the system after an exponentially distributed retrial
time. At service completion epochs the decision must be made to keep
the newly become idle server active, or to make this server dormant.
The service times of the customers are independent and have a Coxian-2
distribution. Given specific costs for activating servers, keeping servers
active and a holding cost for customers staying in orbit, the problem is
when to activate and shut down servers in order to minimize the long-
run average cost per unit time. Using Markov decision theory an efficient
algorithm is discussed for calculating an optimal policy.

Keywords: Retrial model · Semi-Markov decision model
Fictitious decision epochs

1 Introduction

In recent years we have seen a considerable increase in the number of call cen-
ters. Both private companies and governmental institutions use these centers for
answering questions from their customers. As a consequence, a lot of research
has been undertaken to study the random behavior of these call centers. Not sur-
prisingly, queueing theory plays a dominant role in this research. Starting with
Erlang’s Loss model, many papers have been written in which besides lost calls,
also retrials and abandonments have been incorporated. For a tutorial overview
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we refer to [4,6] and the references therein. A nice introductory paper on aban-
donments is [8] in which the so-called Palm/Erlang-A model is discussed. For
the impact of retrials on call center performance we refer to [1]. The main topic
in call center research is to find a balance between service quality, expressed
e.g. in waiting-time characteristics, and the cost of operation, expressed e.g. in
the number of active servers. Hence, the so-called ‘staffing problem’ is a cen-
tral topic in most of the call center literature. Formulated in the terminology of
queueing theory, this problem can be described as follows. Given all the relevant
parameters for some multi-server queueing model in which customers have the
option to abandon the system after not having been served within some ran-
dom time, and/or to retry entrance to the system some random time later after
an unsuccessful arrival, the question is how many active servers (agents) must
be available to guarantee a required balance between service quality and oper-
ational cost. The given parameters of the queueing model include the arrival
rate, the service rate, the abandonment rate and the retrial rate. The design
parameter is the number of agents. Taking a model with all parameter values
fixed as a starting point, most papers give a descriptive analysis for the steady-
state behavior of the system. Due to their complexity these models often do not
allow for a practically feasible exact solution. This is a fortiori the case for the
transient behavior of the systems and/or when parameters are time-dependent.
To cope with this intractability, all kinds of approximations are considered, such
as fluid and diffusion approximations, e.g. see [7]. We will not give an extensive
overview of all the research on call centers done so far, but the point we want to
make is that most of this research is descriptive in character: the steady-state or
transient behavior of the models is studied for a set of given parameters. Much
less attention has been dedicated to finding dynamic operational policies as a
solution for the staffing problem.

So, instead of giving a descriptive analysis of some queueing model with a
fixed number of servers, we propose to study the staffing problem as a dynamic
optimization problem: let the number of active servers depend on the current
congestion of the system, expressed in the number of busy servers and the num-
ber of waiting customers, and increase or decrease the number of active servers
depending on instantaneous changes of the congestion as a consequence of an
arrival, a departure or an abandonment. To pursue this idea of dynamic man-
power planning, we propose to study a retrial multi-server queueing model with
an adaptable number of servers. To limit the calculational burden, we do not
consider abandonments in this paper, but we want to underline that abandon-
ments can be easily incorporated in the model, if one wishes to do so. For this
retrial model, to be described in detail below, we will use Markov decision theory
to calculate an operating policy, for which a subtle balance between the costs of
congestion and the operational costs is minimized.

In a standard retrial model (see [2,3] for monographs on retrial queues) cus-
tomers who find all servers busy try to enter the system some time later. We say
that the customer goes into orbit. Nowadays it is very common that the system
knows at any time how many customers are in orbit (we can simply register
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unsuccessful calls). So, this information can be used in the determination of the
number of active servers. In our model the number of servers is unlimited but at
any moment only a finite number is active (the others are called dormant), and
this number is under control of the management of the system. Hence, we con-
sider a multi-server retrial queueing system with a controllable number of active
servers, who can be idle or busy. When upon arrival of a customer no idle server
is available, a choice must be made to activate a dormant server, or send the
newly arrived customer into orbit. Upon a service completion it must be decided
to shut down an active idle server (i.e. make him dormant), or keep him active
for possible new arrivals. Of course, these decisions must be guided by some opti-
mization criterion, i.e. a cost structure must be introduced in the model. Given
this cost structure, the problem is to find the strategy for activating and shutting
down servers, for which the long-run average cost per unit time is minimal. This
strategy is a so-called stationary dynamic strategy, i.e. the decisions prescribed
by the strategy take into account all the relevant information available at the
decision epochs, not more and not less, in other words, the decisions are based
on the complete state description of the system. By choosing a specific stochastic
structure with respect to the probability distributions involved, we can describe
our problem in terms of a semi-Markov decision model. A straightforward appli-
cation of a standard algorithm from Markov decision theory is not feasible here,
due to the large state space. By introducing so-called fictitious decision epochs
we will show how to overcome this obstacle.

In Sect. 2 the queueing model is described in detail. Section 3 describes a
semi-Markov decision model and the value-iteration algorithm to calculate the
optimal policy for which the long-run average cost per unit time is minimal. In
Sect. 4 some numerical results are given.

2 Description of the Model

We consider a queueing model with retrials and a controllable number of active
servers. The number of servers is unlimited, but at any epoch only a finite number
of servers is active, either idle or busy. The non-active servers are called dormant.
For idle servers linear operating costs α per server per unit time are incurred,
whereas for busy servers these costs are γ per server per unit time (γ > α).
Customers arrive at the system according to a Poisson process with rate λ. Each
customer requires a service time denoted by the generic variable S, and the
service times of different customers are independent. To observe the influence
of the variability of the service times S (expressed via the squared coefficient
of variation C2

S) on the optimal strategies and the long-run average cost, we
model the service times S with a Coxian-2 distribution with parameters b, μ1

and μ2 with 0 < b < 1 and μ1 < μ2. We recall here that this says that S is, with
probability b, distributed as a sum of two independent exponential phases, say
S1 and S2 with mean 1/μ1 and 1/μ2, respectively, and with probability 1 − b, S
is distributed as one exponential phase S1 with mean 1/μ1. As we will see in the
next section, the Coxian-2 distribution is a very convenient choice for the service
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times, due to the memoryless property of the exponential phases. Also it is easy
to fit a Coxian-2 distribution when only the first two moments are given (see
[11] for further details). When upon arrival of a customer at least one idle server
is available, the customer immediately starts its service, reducing the number
of idle servers by one. When no idle server is present, either the newly arrived
customer goes into orbit, or a dormant server is activated to serve the customer
immediately. Activating a dormant server requires a set-up cost K. Customers in
orbit try to enter the system again after an exponentially distributed retrial time
R with mean 1/ν. The different retrial times are independent. For customers in
orbit linear holding costs h per customer per unit time are incurred. At service
completion epochs the choice must be made between keeping the server active
(in the idle state) or making him dormant. So, the question is when to activate
a dormant server upon an arrival and when to shut down an active server upon
a departure, in order to minimize the long-run average cost per unit time.

To calculate this optimal policy, in the next section we will formulate the
model as a semi-Markov decision model. To avoid the problem of an infinite
state space we will give our analysis for a truncated model, i.e. we limit the
number of available servers to a finite number C and the maximum number
of customers allowed to be in orbit will be taken M . A customer in orbit is
considered to stay in orbit until he is accepted for service. So, to complete the
description of the truncated model, we must specify precisely what to do upon
arrivals and departures in the boundary situations:

– New arrivals who find M customers in orbit and less than C servers busy will
always be accepted,

– An arrival from orbit will always be accepted when M customers are in orbit
and less than C servers are busy,

– New arrivals who find M customers in orbit and C servers busy are rejected,
– An arrival from orbit will stay in orbit when upon arrival C servers are busy,
– New arrivals who find C servers busy and less than M customers in orbit are

always sent to orbit,

By taking C and M sufficiently large the fraction of customers which will be
rejected is negligible, so our numerical results will be valid for the non-truncated
model as well.

3 The Semi-Markov Decision Model

We assume that the reader is acquainted with the concepts of Markov decision
theory (see [10,11] for thorough introductions to this subject), so we will not
give an extensive description of the building blocks of a semi-Markov decision
model. We just recall that we have to specify a state space S, action sets A(s) for
each state s ∈ S, a matrix of transition probabilities p[s′|s, a] for s′, s ∈ S and
a ∈ A(s), expected one-step costs η[s, a] for s ∈ S and a ∈ A(s), and the expected
sojourn times τ [s, a] for each state s ∈ S and a ∈ A(s). All these building
blocks will now be specified for the controllable queueing model described in the
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previous section. To describe a semi-Markov decision model with a sparse matrix
of transition probabilities, it is very convenient to introduce so-called fictitious
decision epochs (see [9,11]). According to the model description the only decision
epochs are the arrival epochs at which no idle server is present and the epochs
of service completion. To guarantee a sparse matrix of transition probabilities,
we include all arrival epochs, and phase completion epochs of service times as
decision epochs as well. At these latter epochs no real decision is made, we just
leave the system as it is. We denote this ‘no action’ decision by 0. At service
completion epochs two decisions are possible, shut down the server who has just
become idle (denoted by −1), or leave the system as it is (again denoted by 0).
At arrival epochs we leave the system as it is, when an idle server is available.
A real decision has to be made only when all active servers are busy. Then we
can send the newly arrived job into orbit (denoted by 0), or we can activate
a dormant server (denoted by 1). At this point it will be clear why our choice
for Coxian service times is so convenient: due to the exponential phases of the
service time it is sufficient to know whether a service is in its first phase or in its
second phase, and this enables a simple description of the state of the system,
as we will see next. In fact we can introduce the following state description at
the decision epochs,

(i, j1, j2, k, e), i = 0, 1, . . . ; j1, j2 = 0, 1, . . . ; k = 0, 1, . . . ; e = 0, 1,−1,−2,

with the following interpretation

– i is the number of idle servers,
– j1 is the number busy servers in the first service phase,
– j2 is the number busy servers in the second service phase,
– k is the number of jobs in orbit,
– e describes the type of event that occurred: e = 0 denotes a new arrival (from

the Poisson stream), e = 1 denotes an arrival from the orbit, e = −1 stands
for a phase completion of an ongoing service time, which leads to the next
phase of this service time, and e = −2 stands for the completion of a service
time.

We emphasize that the numbers i, j1, j2, k always refer to the numbers just after
the ‘event’ e has occurred, but before the decision is made. Specifically, a cus-
tomer in orbit is considered to stay in orbit until he is accepted for service.
Notice that not all combinations (i, j1, j2, k, e) refer to real states, e.g. the states
(0, j1, j2, k,−2) do not exist because upon a departure (e = −2) at least one
server must be idle.

Next, we will specify the elements of the semi-Markov decision model

(S, {A(s), s ∈ S}, {τ [s, a], s ∈ S, a ∈ A(s)}, {η[s, a], s ∈ S, a ∈ A(s)},

{p[t|s, a], s, t ∈ S, a ∈ A(s)}),

which describes the retrial queueing model with a variable number of active
servers. As already indicated above, the state space S is taken as



38 R. Nobel

S = {(i, j1, j2, k, e) | i = 0, 1, . . . ; j1, j2 = 0, 1, . . . ; i+j1+j2 ≤ C; k = 0, 1, . . . ,M ;

e = 0, 1,−1,−2}.

The action sets A(s) are very simple. At each service completion epoch the
decision must be made to shut down an idle server or to leave the system as it is.
When at an arrival epoch no idle servers are available the decision must be made
to switch on a dormant server or send the newly arrived job into orbit. Because
we do not allow more than M customers in orbit, we always accept an arriving
customer when M customers are in orbit, unless the number of active servers is
C. In the latter case we reject primary customers from the Poisson stream and
leave the arriving customers from orbit in orbit until the number of busy servers
has dropped below C. These remarks lead to the following action sets.

A(i, j1, j2, k,−2) = {0,−1}, i = 1, 2, . . . ; j1, j2, k = 0, 1, 2, . . . ,

A(0, j1, j2, k, e) = {0, 1}, e = 0, 1; j1, j2 = 0, 1, . . . ; j1 + j2 < C;
k = e, 1, 2, . . . ,M − 1,

A(0, j1, j2,M, e) = {1}, e = 0, 1; j1, j2 = 0, 1, . . . ; j1 + j2 < C,

A(0, j1, j2, k, e) = {0}, e = 0, 1; j1, j2 = 0, 1, . . . ; j1 + j2 = C;
k = e, 1, 2, . . . ,M,

A(i, j1, j2, k, e) = {0}, e = 0, 1; i = 1, 2, . . . ; j1, j2 = 0, 1, . . . ;
k = e, 1, 2, . . . ,

A(i, j1, j2, k,−1) = {0}, i, j1, j2, k = 0, 1, . . . .

For the one-step transition probabilities p[s′|s, a], denoting the conditional prob-
ability that, given action a is taken in state s, at the next decision epoch the
state is s′, we first consider the real decision epochs, i.e. the service comple-
tion epochs, and the arrival epochs when no idle server is available. Firstly, we
give the one-step transition probabilities given that a service completion has
occurred. So the decision a is either 0 (keep all idle servers active) or −1 (switch
off an idle server).

p[(i + a, j1, j2, k, 0) | (i, j1, j2, k,−2), a] =
λ

λ + j1μ1 + j2μ2 + kν
,

p[(i + a, j1, j2, k, 1) | (i, j1, j2, k,−2), a] =
kν

λ + j1μ1 + j2μ2 + kν
,

p[(i + a, j1 − 1, j2 + 1, k,−1) | (i, j1, j2, k,−2), a] =
bj1μ1

λ + j1μ1 + j2μ2 + kν
,

p[(i + a + 1, j1 − 1, j2, k,−2) | (i, j1, j2, k,−2), a] =
(1 − b)j1μ1

λ + j1μ1 + j2μ2 + kν
,

p[(i + a + 1, j1, j2 − 1, k,−2) | (i, j1, j2, k,−2), a] =
j2μ2

λ + j1μ1 + j2μ2 + kν
.

Of course, the third and fourth transition is only possible when j1 > 0, and the
last transition requires that j2 > 0.
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Next, we write down these probabilities given that an arrival has taken place,
a primary arrival (e = 0) or an arrival from orbit (e = 1), and no idle servers
are present. Now, the decision a = 0 stands for ‘send (keep) he arrived customer
(in) to orbit’ and a = 1 denotes ‘switch on a dormant server’.

p[(0, j1 + a, j2, k + 1 − a − e, 0) | (0, j1, j2, k, e), a] =
λ

N (j1, j2, k, e, a)
,

p[(0, j1 + a, j2, k + 1 − a − e, 1) | (0, j1, j2, k, e), a] =
(k + 1 − a − e)ν
N (j1, j2, k, e, a)

,

p[(0, j1 + a − 1, j2 + 1, k + 1 − a − e,−1) | (0, j1, j2, k, e), a] =
b(j1 + a)μ1

N (j1, j2, k, e, a)
,

p[(1, j1 + a − 1, j2, k + 1 − a − e,−2) | (0, j1, j2, k, e), a] =
(1 − b)(j1 + a)μ1

N (j1, j2, k, e, a)
,

p[(1, j1 + a, j2 − 1, k + 1 − a − e,−2) | (0, j1, j2, k, e), a] =
j2μ2

N (j1, j2, k, e, a)
,

where N (j1, j2, k, e, a) := λ+(j1 + a)μ1 + j2μ2 +(k +1− a− e)ν is the common
denominator.

Similarly, we can treat the fictitious decision epochs, the arrival epochs with
i > 0 idle servers available, and the phase completion epochs. The only decision
is now 0 (leave the system as it is).

p[(i − 1, j1 + 1, j2, k − e, 0) | (i, j1, j2, k, e), 0] =
λ

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
,

p[(i − 1, j1 + 1, j2, k − e, 1) | (i, j1, j2, k, e), 0] =
(k − e)ν

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
,

p[(i − 1, j1, j2 + 1, k − e,−1) | (i, j1, j2, k, e), 0] =
b(j1 + 1)μ1

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
,

p[(i, j1, j2, k − e,−2) | (i, j1, j2, k, e), 0] =
(1 − b)(j1 + 1)μ1

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
,

p[(i, j1 + 1, j2 − 1, k − e,−2) | (i, j1, j2, k, e), 0] =
j2μ2

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
,

p[(i, j1, j2, k, 0) | (i, j1, j2, k,−1), 0] =
λ

λ + j1μ1 + j2μ2 + kν
,

p[(i, j1, j2, k, 1) | (i, j1, j2, k,−1), 0] =
kν

λ + j1μ1 + j2μ2 + kν
,

p[(i, j1 − 1, j2 + 1, k,−1) | (i, j1, j2, k,−1), 0] =
bj1μ1

λ + j1μ1 + j2μ2 + kν
,

p[(i + 1, j1 − 1, j2, k,−2) | (i, j1, j2, k,−1), 0] =
(1 − b)j1μ1

λ + j1μ1 + j2μ2 + kν
,

p[(i + 1, j1, j2 − 1, k,−2) | (i, j1, j2, k,−1), 0] =
j2μ2

λ + j1μ1 + j2μ2 + kν
.

Next, we consider the boundary cases, i.e. the number of customers in orbit is
M and/or the number of busy servers is C. First, we look at arrivals finding M



40 R. Nobel

customers in orbit and less than C servers busy (j1 + j2 < C). As stated above
in this case we always accept a new customer.

p[(0, j1 + 1, j2, M − e, 0) | (0, j1, j2, M, e), 1] =
λ

λ + (j1 + 1)μ1 + j2μ2 + (M − e)ν
,

p[(0, j1 + 1, j2, M − e, 1) | (0, j1, j2, M, e), 1] =
(M − e)ν

λ + (j1 + 1)μ1 + j2μ2 + (M − e)ν
,

p[(0, j1, j2 + 1, M − e,−1) | (0, j1, j2, M, e), 1] =
b(j1 + 1)μ1

λ + (j1 + 1)μ1 + j2μ2 + (M − e)ν
,

p[(1, j1, j2, M − e,−2) | (0, j1, j2, M, e), 1] =
(1 − b)(j1 + 1)μ1

λ + (j1 + 1)μ1 + j2μ2 + (M − e)ν
,

p[(1, j1, j2 − 1, M − e,−2) | (0, j1, j2, M, e), 1] =
j2μ2

λ + (j1 + 1)μ1 + j2μ2 + (M − e)ν
,

Now we consider arrivals who find C servers busy (so j1 + j2 = C) and less than
M customers in orbit. They are always sent into orbit.

p[(0, j1, j2, k + 1 − e, 0) | (0, j1, j2, k, e), 0] =
λ

λ + j1μ1 + j2μ2 + (k + 1 − e)ν
,

p[(0, j1 + 1, j2, k + 1 − e, 1) | (0, j1, j2, k, e), 0] =
(k + 1 − e)ν

λ + j1μ1 + j2μ2 + (k + 1 − e)ν
,

p[(0, j1 − 1, j2 + 1, k + 1 − e,−1) | (0, j1, j2, k, e), 0] =
bj1μ1

λ + j1μ1 + j2μ2 + (k + 1 − e)ν
,

p[(1, j1 − 1, j2, k + 1 − e,−2) | (0, j1, j2, k, e), 0] =
(1 − b)j1μ1

λ + j1μ1 + j2μ2 + (k + 1 − e)ν
,

p[(1, j1, j2 − 1, k + 1 − e,−2) | (0, j1, j2, k, e), 0] =
j2μ2

λ + j1μ1 + j2μ2 + (k + 1 − e)ν
.

Finally, we look at arrival epochs when C servers are busy and M customers are
in orbit. Then new arrival are rejected and arrivals from orbit stay in orbit. So
we get, (j1 + j2 = C, e = 0, 1)

p[(0, j1, j2,M, 0) | (0, j1, j2,M, e), 0] =
λ

λ + j1μ1 + j2μ2 + Mν
,

p[(0, j1, j2,M, 1) | (0, j1, j2,M, e), 0] =
Mν

λ + j1μ1 + j2μ2 + Mν
,

p[(0, j1 − 1, j2 + 1,M,−1) | (0, j1, j2,M, e), 0] =
bj1μ1

λ + j1μ1 + j2μ2 + Mν
,

p[(1, j1 − 1, j2,M,−2) | (0, j1, j2,M, e), 0] =
(1 − b)j1μ1

λ + j1μ1 + j2μ2 + Mν
,

p[(1, j1, j2 − 1,M,−2) | (0, j1, j2,M, e), 0] =
j2μ2

λ + j1μ1 + j2μ2 + Mν
.
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Let us next consider the τ [s, a], i.e. the expected time until the next decision
epoch given that in state s action a is chosen.

τ [(i, j1, j2, k, e), 0] =
1

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
, i = 1, 2, . . . ,

τ [(0, j1, j2, k, e), a] =
1

λ + (j1 + a)μ1 + j2μ2 + (k + 1 − a − e)ν
, a = 0, 1,

τ [(i, j1, j2, k,−1), 0] =
1

λ + j1μ1 + j2μ2 + kν
, i = 0, 1, 2, . . . ,

τ [(i, j1, j2, k,−2), a] =
1

λ + j1μ1 + j2μ2 + kν
, i = 1, 2, . . . , a = 0,−1.

To complete the formulation of the Markov-decision model we must specify the
costs η[s, a], i.e., the total expected costs incurred until the next decision epoch
when in state s action a is taken. We give a few examples.

η[(i, j1, j2, k, e), 0] =
(i − 1)α + (j1 + 1 + j2)γ + (k − e)h

λ + (j1 + 1)μ1 + j2μ2 + (k − e)ν
, i = 1, 2, . . . ,

η[(0, j1, j2, k, e), a] = aK +
(j1 + a + j2)γ + (k + 1 − a − e)h

λ + (j1 + a)μ1 + j2μ2 + (k + 1 − a − e)ν
,

η[(i, j1, j2, k,−1), 0] =
iα + (j1 + j2)γ + kh

λ + j1μ1 + j2μ2 + kν
, i = 0, 1, 2, . . . ,

η[(i, j1, j2, k,−2), a] =
(i + a)α + (j1 + j2)γ + kh

λ + j1μ1 + j2μ2 + kν
, i = 1, 2, . . . ; a = 0,−1.

Once all the elements of the Markov-decision model are known, we can use the
value-iteration algorithm to calculate the optimal switching strategy. We give the
formulation of the algorithm in general terms (see [11] for any further details).
First choose a positive number τ with τ ≤ mins,a τs(a) and a tolerance number
ε, e.g., ε = 10−6.

INIT. For all s ∈ S, choose nonnegative numbers W0(s) with W0(s) ≤
mina{η[s, a]/τ [s, a]}. Let n := 1.

LOOP. For all s ∈ S, calculate

Wn(s) = min
a∈A(s)

⎡
⎣η[s, a]

τ [s, a]
+

τ

τ [s, a]

∑
t∈S

p[t | s, a]Wn−1(t) +

{
1− τ

τ [s, a]

}
Wn−1(s)

⎤
⎦ ,

and let Dn(s) ∈ A(s) be the action that minimizes the right-hand side.
EVAL. Compute the bounds,

mn = min
s∈S

{Wn(s) − Wn−1(s)}, Mn = max
s∈S

{Wn(s) − Wn−1(s)}.

TEST. If Mn − mn ≤ εmn then STOP with the resulting policy Dn, else n :=
n + 1 and go to LOOP.

This algorithm returns after say n iterations a stationary policy D∗
n that min-

imizes the long-run average costs per unit time. The (approximate) minimal
average costs is calculated as g∗ = (mn + Mn)/2.
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4 Numerical Results

In this section we will present some numerical results. Because there are many
parameters which can be varied we must make a selection. To start, we have
chosen to keep the arrival rate and the mean service time constant and we
vary only the retrial rate, and the squared coefficient of variation of the service
time (we used Gamma normalization for fitting the parameters of the Coxian-2
distribution; see [11] for the details how to choose the parameters b, μ1 and μ2

to guarantee a given mean and squared coefficient of variation). Because the
mathematical state-description is more detailed than any reasonable physical
state-description, we present a natural heuristic policy, with the corresponding
cost, besides the optimal solution. To explain the heuristics, notice that the
mathematical state-description in our model contains the phases of the ongoing
services which cannot be observed physically. Because in practice we only observe
the number of idle servers i, the number of busy servers j, and, by registration,
the number in orbit k (in other words on occurrence of the event e the physical
state is (i, j, k, e)), we must base our decisions on this information for all different
mathematical states (i, j1, j2, k, e) with j1+j2 = j. So, we are forced to select one
decision in all these latter states, whereas the (mathematically) optimal policy
may prescribe different decisions for these states. We have chosen a kind of
democratic heuristic rule, defined as follows. When in the majority of the states
(i, j1, j2, k, e) decision a is the optimal decision, then we prescribe this decision in
all corresponding physical states (i, j, k, e) with j = j1+j2). In Tables 1 and 2 we
present the minimal cost and the corresponding heuristic cost for the following
parameter values,

λ = 3, E[S] = 2, h = 10, α = 20, γ = 25, K = 500.

In Table 1 the holding cost for staying in the orbit h = 10 and in Table 2 we have
chosen h = 1. We vary the retrial rate ν and the squared coefficient of variation

Table 1. Minimal and heuristic cost for λ = 3, E[S] = 2, h = 10, α = 20, γ = 25,
K = 500.

ν\C2
S 0.6 0.8 1 2 4 8

0.25 228.53 229.03 229.53 231.76 234.61 234.55

228.53 229.03 229.53 231.81 235.15 239.44

0.5 216.13 217.18 218.14 221.87 225.43 226.36

216.16 217.19 218.14 222.00 226.73 231.20

1 207.94 209.05 210.08 214.34 218.90 220.38

207.96 209.05 210.08 214.44 220.06 226.17

2 203.63 204.71 205.72 210.02 214.94 216.32

203.66 204.71 205.72 210.12 215.84 222.98

4 200.72 202.35 203.38 207.62 212.65 213.72

200.74 202.36 203.38 207.69 214.24 220.36
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Table 2. Minimal and heuristic cost for λ = 3, E[S] = 2, h = 1, α = 20, γ = 25,
K = 500.

ν\C2
S 0.6 0.8 1 2 4 8

0.25 192.15 193.24 194.22 197.97 201.89 203.98

192.19 193.26 194.22 198.20 202.72 205.43

0.5 184.09 185.37 186.55 191.14 196.16 199.01

184.13 185.40 186.55 191.40 196.80 200.73

1 179.61 180.87 182.05 186.94 192.56 195.57

179.64 180.87 182.05 187.11 193.08 197.30

2 177.36 178.53 179.67 184.56 190.43 193.36

177.38 178.54 179.67 184.69 190.90 195.31

4 176.05 177.33 178.42 183.25 189.15 192.02

176.12 177.33 178.42 183.37 189.82 193.98

Table 3. Primary arivals strategy C2
S = 1, ν = 4, h = 1, α = 20, γ = 25, K = 500.

act \ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 4. Departures strategy C2
S = 1, ν = 4, h = 1, α = 20, γ = 25, K = 500.

act \ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

of the service time C2
S . Notice that the difference between the optimal cost and

the (democratic) heuristic cost is negligible for C2
s ≤ 1. This difference turns out

to be significant only for high holding costs and very irregular service times.
To give an idea of the ‘form’ of the strategies for turning on and off servers

we present both the primary arrival strategy and one departure strategy for a
specific choice of the parameters. In Tables 3 and 4 we present these optimal
(heuristic) strategies for exponential service and in Tables 5 and 6 for very irreg-
ular service times (C2

S = 8). In these tables the number of customers in orbit is
presented horizontally and the number of active servers vertically. Notice that
in the tables for the arrival strategies the active servers are all busy (otherwise
there is nothing to decide), but for the departure strategies the decisions are
not based on the number of active servers alone; we also need to know how
many servers are busy. So, for each specific number of active servers, say i, to
be complete we should present i rows, i.e. one row for each possible number of
idle servers. To avoid such an overwhelming amount of information in one table,
in Tables 5 and 6 we have made the choice to show only the decisions for the
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Table 5. Primary Arrivals STRATEGY C2
S = 8, ν = 4, h = 1, α = 20, γ = 25,

K = 500.

act \ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

situation that half of the active servers is idle. Finally, in these tables a ‘0’ stands
for ‘leave the system as it is’, so for the arrival strategies: send the newly arrived
customer into orbit, and for the departure strategies ‘keep the server just become
idle active’, and a ‘1’ for ‘turning on a dormant server’ (arrival) and ‘turning off
an idle server’ (departure). We see from these tables that the policies are rather
insensitive for the squared coefficient of variation of the service time, whereas
the associated costs are quite different (see Table 2, for C2

S = 1, i.e. exponen-
tially distributed service times, the minimal costs are 178.42, and for C2

S = 8,
ceteris paribus, 193.98). This fact, that optimal policies are rather robust for the
variability of the service time, is a well-known phenomenon in the literature on
controlled queueing systems. But we can add as an interesting conclusion that
the optimal strategies become more conservative as C2

S becomes larger, i.e. the
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Table 6. DEPARTURES STRATEGY C2
S = 8, ν = 4, h = 1, α = 20, γ = 25,

K = 500.

act \ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

11 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

system is less eager to switch on/off a server for larger values of C2
S than for

smaller values of C2
S .
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Advances in Services Innovations, pp. 17–45. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-29860-1 2

9. Nobel, R.D., Bekker, R.: Optimal control for two queues with one switching server.
In: Proceedings of the National Conference on Mathematical and Computational
Models, PSG College of Technology, Coimbatore, India, pp. 21–33, 27–28 December
2001

10. Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)
11. Tijms, H.C.: A First Course in Stochastic Models. Wiley, New York (2003)

https://doi.org/10.1007/978-3-540-29860-1_2
https://doi.org/10.1007/978-3-540-29860-1_2


Queueing Models with Variants of
Service



Controllable Capacity Queue
with Synchronous Constant Service

Time and Loss

Zsolt Saffer1(B), Karl Grill1, and Wuyi Yue2

1 Institute of Statistics and Mathematical Methods in Economics,
Vienna University of Technology, Vienna, Austria

{zsolt.saffer,karl.grill}@tuwien.ac.at
2 Department of Intelligence and Informatics, Konan University,

Kobe 658-8501, Japan
yue@konan-u.ac.jp

Abstract. In this paper we analyze a queue, in which the number of
active servers can be controlled by means of probabilities specifying the
dependency of the number of active servers on the actual number of cus-
tomers and the number of active servers. We call this queue as control-
lable capacity queue. The service time is constant and the concurrently
served customers are served in syncronized manner. The active number
of servers can be incremented, decremented or kept unchanged at the
ends of service time according to the given probabilities. The system has
no buffer for long-term customer waiting, it is a loss system. Such sys-
tem could be relevant in modeling Machine-To-Machine communication
systems, in which the resources are limited.

We provide explicit form results for the joint and marginal distribu-
tions of the number of servers and the number of customers on PGF level.
We give the condition of the stability and also provide the expressions
of the most important system measures including the mean stationary
number of servers, the mean stationary number of customers and the
blocking probability.

Keywords: Queueing theory · Control of queues
State dependent number of servers · Variable number of servers

1 Introduction

Controlling of available server capacity is a natural demand in the areas, which
can be modelled by queueing systems, like modern telecommunication systems,
manufacturing systems, call centers. More recent application areas include base
station aggregating traffic in Machine-To-Machine communication [1] or Intelli-
gent transportation systems [2].

Capacity can be modelled on various manner, like time slice, variable number
of work units the system can perform, service rate of model with exponential
c© Springer International Publishing AG, part of Springer Nature 2018
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service time or by the number of active servers. The idea of using capacity
as time slice is motivated by Data Frame based Media Access Control (MAC)
protocols, in which a scheduling mechanism allocates only a portion of time
to the uplink data transmission of a target subscriber station. The dynamical
change of capacity based on this approach has been analyzed in [3]. The approach
for capacity as variable number of work units the system can perform has been
presented by Bruneel et al. in [4], in which they also provide an analysis of
dynamical change of such capacity. The above works consider the dynamical
change of capacity, but not the control of it.

Several works can be found in the literature on control of service rate as
capacity, which put the capacity modeling in the context of M/M queueing
system. A fundamental work on such service rate control is [5], in which the
capacity control is realized by letting the service rate depend on the number
of customers in the system. This dependency specifies the service rate to be
proportional to the power of the number of customers. In the paper [6] the
authors study M/M/s queueing system, in which the number of servers can vary
between a lower limit and an upper limit. In the work [7] the authors study a
control schema, in which the number of active servers increases when the queue
grows by k customers and decreases accordingly. To the best knowledge of the
authors no work is available on controlling the number of servers in a queueing
system with non-exponentially distributed service time.

In this paper in contrast to the above references we consider the control of the
number of servers in a queue with constant service time. The number of active
servers depends on the actual number of customers and the number of active
servers and it can be controlled by means of probabilities specifying these depen-
dency. We call this queue as controllable capacity queue. The concurrently served
customers are served in syncronized manner. The active number of servers can
be incremented, decremented or kept unchanged at the ends of service time with
some tunable probabilities specifying the dependency of the number of active
servers on the actual number of customers in the system and the actual number
of active servers. This controllable capacity queue has no buffer for long-term
customer waiting, therefore it is a loss system. Such system could be relevant in
modeling network nodes with microcontroller having limited resources, like e.g.
in Machine-To-Machine communication systems or in Wireless Sensor Networks.

We characterize the model by a bivariate discrete-time Markov chain
(DTMC) embedded at end epochs of the customer service. Utilizing both the
tridiagonal structure in the one and the M/D like structure in the other dimen-
sions of the DTMC, we perform a stationary analysis of the model by apply-
ing probability generating function (PGF) techniques. We derive explicit form
results for the joint and marginal distributions of the number of servers and the
number of customers on PGF level. We give the condition of the stability and
also provide the expressions of the most important system measures including
the mean stationary number of servers, the mean stationary number of customers
and the blocking probability.
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The rest of the paper is organized as follows. In Sect. 2 we give the detailed
description of the model and establish the embedded DTMC of the system.
Preliminary stationary results are provided in Sect. 3. The major part of the
stationary analysis follows in Sect. 4, which includes the derivation of the PGFs of
the joint and marginal distributions and the stability criterion. Section 5 presents
the expression of the system measures. Final remarks closes the work in Sect. 6.

2 Model and Notation

In this section we give a detailed description of the model and then we establish
an embedded DTMC for this model.

2.1 Model Description

We consider a queue with controllable capacity, where the capacity is realized
by the number of servers. Customers arrive to the system according to Poisson
process with parameter 0 < λ < ∞. The customer service time is constant and it
is denoted by s, for which 0 < s < ∞ holds. The concurrently served customers
are served in syncronized manner, which means that their service starts at the
same time and s time later ends also at the same time. The number of servers can
be changed at each time when the service period finishes. It can be incremented,
decremented or kept unchanged with some probabilities depending on the actual
number of customers and servers. The number of servers, m is unlimited, but
there is always at least one active server, also in the case when there is no
customer present in the system, i.e. 1 ≤ m. The model has no buffer for long-term
customer waiting, i.e. waiting longer than one customer service time, therefore it
is a loss system. However the system includes temporary buffers for making the
accumulation of the customers during the actual service period possible. If the
system has m active servers then the maximum number of customers allowed to
be accumulated is m+1 due to the potential increment of the number of servers
at the end of the actual service period. We assume that the arrival process, the
customer service time and the change of the number of servers are mutually
independent.

Let q(m, k) be the probability of decrementing the number of servers at end
of service period, when there are m active servers and the number of customers
in the system is k, for m ≥ 2 and k ≥ 0. Similarly let r(m, k) stand for the
probability of inccrementing the number of servers at end of service period,
when there are m active servers and the number of customers in the system is
k, for m ≥ 1 and k ≥ 0. These probabilities are given in the form

q(m, k) = (1 − δm)γk, (1)
r(m, k) = α(1 − q(m, k)) = α

(
1 − (1 − δm)γk

)
, k = 0, . . . ,m,

where 0 < α ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ δ < 1.

This rule provides a simple control on the probabilities of decrementing, incre-
menting and keeping unchanged the number of servers in terms of parameters
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γ, δ and α. The construction of the forms in (1) ensures that 0 ≤ q(m, k) ≤ 1
and 0 ≤ r(m, k) ≤ 1, i.e. they are probabilities. The parameter γ implements a
control objective depending on the number of customer. The higher the number
of customers and closer to m, the lower (higher) the probability of decrement-
ing (incrementing) the number of servers. On the other hand the parameter δ
implements a control objective depending on the number of servers. The higher
the number of servers, the more important to decrease or keeping unchanged
the number of servers and hence higher (lower) the probability of decrementing
(incrementing) the number of servers. The parameter α controls the probability
of no change in the number of servers, which is given as

1 − (r(m, k) + q(m, k)) = 1 − (α + (1 − α)q(m, k)) = (1 − α)(1 − q(m, k)),

which is always between 0 and 1, since 0 ≤ α, q(m, k) ≤ 1.
We assume that the model is stable. For the stability condition see Sub-

sect. 4.2. In the following we call the model in short form as controllable capacity
queue.

2.2 Formulating an Embedded DTMC

Let td(n) stands for the end of the n-th customer service, for n ≥ 1. Let td+(n)
and td−(n) be the epoch just after and just before the end of the n-th customer
service, respectively. Furthermore let td−−(n) be the epoch just before the epoch
td−(n). The exact order of the events in the system related to the end of the
n-th customer service can be seen in Fig. 1.

Fig. 1. The order of events related to the end of the n-th customer service

Remark 1. This order would correspond to early arrival system (EAS) in the
discrete-time queueing model, in which this order of arrival and departure would
eliminate the need for having temporary buffer.

We consider the evolution of the system at the td+(n) epochs, n ≥ 1. Let
M(t) and N(t) stand for the number of servers and the number of customers
in the system at time t > 0. Then the process (M(td+(n)), N(td+(n)), n ≥ 1)
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is a bivariate Markov chain embedded at epochs just after the end of the n-th
customer service. The transition probability matrix of this embedded DTMC,
P can be given by the help of block matrices. Let the main index of matrix P
be the number of servers (m) and let the index inside of the block matrices be
the number of customers (n). Then the transition probability matrix P can be
given in terms of the model parameters as

P =

⎛

⎜
⎜
⎜
⎝

(I − DI
1)A1,1 DI

1A1,2 0 0 . . .
DD

2 A2,1 (I − DD
2 − DI

2)A2,2 DI
2A2,3 0 . . .

0 DD
3 A3,2 (I − DD

3 − DI
3)A3,3 DI

3A3,4 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎠

. (2)

The matrices DD
m for m ≥ 2 and DI

m for m ≥ 1 are (m + 1) × (m + 1) diagonal
block matrices, which are given as

DD
m =

⎛

⎜
⎜
⎜
⎝

q(m, 0) 0 0 . . .
0 q(m, 1) 0 . . .
...

...
...

. . .
0 0 . . . q(m,m)

⎞

⎟
⎟
⎟
⎠

, DI
m =

⎛

⎜
⎜
⎜
⎝

r(m, 0) 0 0 . . .
0 r(m, 1) 0 . . .
...

...
...

. . .
0 0 . . . r(m,m)

⎞

⎟
⎟
⎟
⎠

.

The matrices Am,m+i for m ≥ 1 and i = −1, 0, 1 are (m + 1) × (m + 1 + i)
block matrices representing the probabilities of the number of arrivals during
the transition m ⇒ (m + i) in the number of servers, i.e. during which the
number of servers changes from m to (m + i) and they are given as

Am,m =

⎛

⎜
⎜
⎜
⎝

a0 . . . am−1 a+
m

a0 . . . am−1 a+
m

...
. . .

...
...

a0 . . . am−1 a+
m

⎞

⎟
⎟
⎟
⎠

,

Am,m−1 =

⎛

⎜
⎜
⎜
⎝

a0 . . . am−2 a+
m−1

a0 . . . am−2 a+
m−1

...
. . .

...
...

a0 . . . am−2 a+
m−1

⎞

⎟
⎟
⎟
⎠

, Am,m+1 =

⎛

⎜
⎜
⎜
⎝

a0 . . . am a+
m+1

a0 . . . am a+
m+1

...
. . .

...
...

a0 . . . am a+
m+1

⎞

⎟
⎟
⎟
⎠

,

where the probabilities ak for k ≥ 0 and a+
m for m ≥ 1 are given as

ak = P (k arrivals during service time of length s) =
(λs)k

k!
e−λs,

a+
m =

∞∑

k=m

ak.

We define the PGF am(z) as

am(z) =
m−1∑

k=0

akzk + a+
mzm, |z| ≤ 1,m ≥ 1.
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For the PGF a(z), a(k) denotes its k-th derivative at z = 1 for k ≥ 1, i.e.,
a(k) = dk

dzk a(z)|z=1.

3 Preliminary Stationary Results

In this section we provide several preliminary results, which

– on one hand give some insight into the behavior of the system and
– on other hand constitute the base for the derivation of the main results.

Let pm,k(td+(n)) be the probability that the system is in state (m, k) at time
td+(n), i.e. there are m active servers and k customers in the system, for m ≥ 1,
k ≥ 0 and n ≥ 1. We define the stationary probabilities pm,k as

pm,k = lim
n→∞ pm,k(td+(n)), m ≥ 1, k ≥ 0.

We also define the stationary probability vectors pm as

pm = (pm,0, . . . , pm,m), m ≥ 1.

Based on the transition probability matrix (2) the stationary equations of the
embedded DTMC can be formulated as

p1(I − DI
1)A11 + p2DD

2 A21 = p1, (3)
pm−1DI

m−1Am−1,m + pm(I − DD
m − DI

m)Am,m

+ pm+1DD
m+1Am+1,m = pm, m ≥ 2.

Let the vector zm be defined as

zm = (1, z, . . . , zm), |z| ≤ 1,m ≥ 1.

Multiplying the equations of (3) by zm from right gives the scalar form stationary
equations of the embedded DTMC as

1∑

k=0

p1,k (1 − r(1, k)) a1(z) +

2∑

k=0

p2,kq(2, k)a1(z) =

1∑

k=0

p1,kzk. (4)

m−1∑

k=0

pm−1,kr(m − 1, k)am(z) +

m∑

k=0

pm,k (1 − q(m, k) − r(m, k)) am(z)

+

m+1∑

k=0

pm+1,kq(m + 1, k)am(z) =

m∑

k=0

pm,kzk, m ≥ 2.

Proposition 1 (Balance equation). A balance equation holds in the stable
controllable capacity queue as

m+1∑

k=0

pm+1,kq(m + 1, k) =
m∑

k=0

pm,kr(m, k), m ≥ 1. (5)
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Proof. Setting z = 1 in the second relation of (4) and rearrangement yields

m+1∑

k=0

pm+1,kq(m + 1, k) −
m∑

k=0

pm,kq(m, k)

=
m∑

k=0

pm,kr(m, k) −
m−1∑

k=0

pm−1,kr(m − 1, k), m ≥ 2. (6)

Summing up (6) for m = 2, . . . , i gives

i∑

m=2

(
m+1∑

k=0

pm+1,kq(m + 1, k) −
m∑

k=0

pm,kq(m, k)

)

=
i∑

m=2

(
m∑

k=0

pm,kr(m, k) −
m−1∑

k=0

pm−1,kr(m − 1, k)

)

, m ≥ 2,

which can be rearranged as

i+1∑

k=0

pi+1,kq(i + 1, k) −
2∑

k=0

p2,kq(2, k) =
i∑

m=2

pi,kr(i, k) −
1∑

k=0

p1,kr(1, k). (7)

Expressing
∑2

k=0 p2,kq(2, k) from the first relation of (4) for z = 1, applying it
in (7), rearranging it and observing that it holds also for m = 1 results in the
statement of the proposition. ��
Remark 2. The reason of existence such a kind of balance equation for the con-
trollable capacity queue model is that the structure of the scalar stationary
equations, (4) are similar to that of the birth-death process.

We introduce the following PGFs

pm(z) =
m∑

k=0

pm,kzk, |z| ≤ 1,m ≥ 1.

p(u, z) =
∞∑

m=1

pm(z)um−1 =
∞∑

m=1

m∑

k=0

pm,kzkum−1, |u| ≤ 1, |z| ≤ 1.

Theorem 1. In the stable controllable capacity queue the joint distribution of
the number of servers and the number of customers is determined by the marginal
distribution of the servers as

pm(z) = pm(1)am(z), m ≥ 1. (8)



58 Z. Saffer et al.

Proof. Setting z = 0 in (4) and rearrangement gives

1∑

k=0

p1,k (1 − r(1, k)) +
2∑

k=0

p2,kq(2, k) =
p1,0

a0
, (9)

m−1∑

k=0

pm−1,kr(m − 1, k) +
m∑

k=0

pm,k (1 − q(m, k) − r(m, k))

+
m+1∑

k=0

pm+1,kq(m + 1, k) =
pm,0

a0
, m ≥ 2.

Comparing (9) to (4) yields

pm,0

a0
am(z) =

m∑

k=0

pm,kzk, m ≥ 1. (10)

Setting z = 1 in (10) gives

pm,0

a0
=

m∑

k=0

pm,k, m ≥ 1. (11)

Now combining (11) and (10) results in

m∑

k=0

pm,kzk =
m∑

k=0

pm,kam(z), m ≥ 1. (12)

The statement of the theorem comes by applying the PGF notations in (12). ��

4 The Stationary Distribution of the Number of Servers
and the Number of Customers

In this section we present the main result, the joint stationary distribution of
the number of servers and the number of customers. Afterwards we derive the
stability criterion of the model and the marginal stationary distributions.

4.1 The Joint Stationary Distribution of the Number of Servers
and the Number of Customers

Lemma 1. The following relations hold in the controllable capacity queue

m∑

k=0

pm,kq(m, k) = (1 − δm)pm(γ), (13)

m∑

k=0

pm,kr(m, k) = α (pm(1) − (1 − δm)pm(γ)) , m ≥ 1.
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Proof. Applying the defining relations (1) in
∑m

k=0 pm,kq(m, k) and
∑m

k=0

pm,kr(m, k) gives

m∑

k=0

pm,kq(m, k) =
m∑

k=0

pm,k(1 − δm)γk = (1 − δm)
m∑

k=0

pm,kγk, (14)

m∑

k=0

pm,kr(m, k) =
m∑

k=0

pm,kα
(
1 − (1 − δm)γk

)

= α
m∑

k=0

pm,k − α(1 − δm)
m∑

k=0

pm,kγk.

The lemma comes by applying the PGF notations in (14). ��
Theorem 2. The PGF of the joint distribution of the number of servers and
number of customers, with respect to the number of customers in the stable con-
trollable capacity queue is given as

pm(z) =
am(z)
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

, m ≥ 1. (15)

Proof. Applying the relations of Lemma 1 in (5) gives

(1 − δm+1)pm+1(γ) = α (pm(1) − (1 − δm)pm(γ)) , m ≥ 1. (16)

Multiplying (16) by am(z) and applying (8) in it leads to

(1 − δm+1)pm+1(γ)am(z) = α (pm(1)am(z) − (1 − δm)pm(γ)am(z)) (17)
= α (pm(z) − (1 − δm)pm(γ)am(z)) , m ≥ 1.

Utilizing that γ lies in the convergence range of z, |z| ≤ 1, we set z = γ in (17),
which yields

(1 − δm+1)pm+1(γ)am(γ) = α (pm(γ) − (1 − δm)pm(γ)am(γ)) , m ≥ 1. (18)

Rearranging (18) gives the expression of pm+1(γ) in terms of pm(γ) as

pm+1(γ) =
α (1 − (1 − δm)am(γ))

(1 − δm+1)am(γ)
pm(γ). (19)

Solving (19) by recursive substitution for m = 1, . . . results in the expression of
pm(γ) in terms of the unknown constant p1(γ) as

pm(γ) = p1(γ)
m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)
. (20)
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Expressing pm(1) from (16) gives

pm(1) = (1 − δm)pm(γ) +
(1 − δm+1)pm+1(γ)

α
, m ≥ 1. (21)

Now we apply (20) in (21) and perform rearrangement, which leads to

pm(1) = p1(γ) ∗
(
(1 − δm)

m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)
+

(1 − δm+1)

α

m∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)

)

= p1(γ)

(
(1 − δm) +

(1 − δm+1)

α

α (1 − (1 − δm)am(γ))

(1 − δm+1)am(γ)

) m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)

= p1(γ)
1

am(γ)

m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)
, m ≥ 1. (22)

Applying (22) in the statement of Theorem 1 results in the expression of the
PGF of the joint distribution of the number of servers and number of customers,
with respect to the number of customers as

pm(z) = p1(γ)
am(z)
am(γ)

m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)
, m ≥ 1. (23)

The unknown constant p1(γ) in (23) can be determined from the normalization
condition as

1 =
∞∑

m=1

pm(1) = p1(γ)
∞∑

m=1

1
am(γ)

m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)
,

from which
p1(γ) =

1
∑∞

m=1
1

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (24)

The statement of the theorem comes by applying (24) in (23). ��
Corollary 1. The joint PGF of the joint distribution of the number of servers
and number of customers in the stable controllable capacity queue is given as

p(u, z) =

∑∞
m=1 um−1 am(z)

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (25)

Proof. The statement of the corollary comes by taking the PGF of (15) with
respect to m. ��



M/D/c/c Control Queue with Synchronous Service 61

4.2 Stability

Corollary 2. The necessary and sufficient condition of the stability of the con-
trollable capacity queue is given as

∞∑

m=1

1
am(γ)

m−1∏

i=1

α
(
1 − (1 − δi)ai(γ)

)

(1 − δi+1)ai(γ)
< ∞. (26)

Proof. It can be seen from (25) that if its denominator is finite then pm,k for
m ≥ 1 and n ≥ 0 is a probability distribution and vica versa. ��
The dependency on parameters λ and s are captured implicitly via ai(γ) in the
above stability condition.

4.3 Marginal Stationary Distributions

The PGF of the marginal stationary distribution of the number of servers and
the number of customers can be obtained from (25) by setting z = 1 and u = 1
in it, respectively.

Corollary 3. The PGF of the marginal distribution of the number of servers in
the stable controllable capacity queue is given as

p(u, 1) =

∑∞
m=1 um−1 1

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (27)

Corollary 4. The PGF of the marginal distribution of the number of customers
in the stable controllable capacity queue is given as

p(1, z) =

∑∞
m=1

am(z)
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (28)

5 System Measures

In this section we provide formulas for the most important system measures
including the mean stationary number of servers, the mean stationary number
of customers and the blocking probability.

5.1 Mean Stationary Number of the Servers and the Customers

The stationary number of the servers at the embedded epochs is given as

M = lim
n→∞ M(td+(n)).
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Similarly the stationary number of the customers at the embedded epochs is
given as

N = lim
n→∞ N(td+(n)).

The expression of the mean stationary number of servers and mean number of
customers can be obtained from (25) by taking δp(u,1)

δu

∣
∣
∣
u=1

and δp(1,z)
δz

∣
∣
∣
z=1

of it,
respectively.

Corollary 5. The mean stationary number of servers in the stable controllable
capacity queue is given as

E[M ] =

∑∞
m=1(m − 1) 1

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (29)

Corollary 6. The mean stationary number of customers in the stable control-
lable capacity queue is given as

E[N ] =

∑∞
m=1

a(1)
m (1)

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (30)

5.2 Blocking Probability

We define the conditional probability bm as the probability that the number of
arrivals during the targeted service time ≥ m + 1, given that the number of
arrivals during the targeted service time ≥ m, for m ≥ 1.
The probability bm can be given as

bm =
a+

m+1

a+
m

. (31)

Utilizing the independency of the arrival process of the change of the number of
servers, the blocking probability pb can be computed as

pb =
∞∑

m=1

bmpm,m. (32)

Theorem 3. The blocking probability in the stable controllable capacity queue
can be expressed as

pb =

∑∞
m=1

a+
m+1

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (33)
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Proof. The probabilities pm,m can be computed form (10) by taking 1
m!

d
dzm

∣
∣
z=1

on it, which gives

pm,m =
a+

m

a0
pm,0, m ≥ 1. (34)

The probabilities pm,0 are computed from (15) by setting z = 0 leading to

pm,0 =
a0

am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

, m ≥ 1. (35)

Applying (35), (34) and (31) in (32) results in

pb =

∑∞
m=1

a+
m+1

a+
m

a+
m

a0

a0
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

∑∞
m=1

1
am(γ)

∏m−1
i=1

α(1−(1−δi)ai(γ))
(1−δi+1)ai(γ)

. (36)

The statement of the theorem comes by rearranging (36). ��

6 Final Remarks

This work is intended to be extended in several directions including

– establishing cost model and performing optimization,
– generalizing the model to vacation model.

It is a topic of future research to analyze the loss-free counterpart of the consid-
ered model.
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Abstract. We present the study of a non-classical discrete-time queue-
ing model in which the customers each request a variable amount of
service, called their “service demand”, from a server which is able to
execute a variable amount of work, called its “service capacity”, during
each time slot. We assume that the numbers of arrivals in consecutive
time slots and the service demands of consecutive customers form two
independent and identically distributed sequences. However, we allow the
service capacities in consecutive time slots to be correlated according to
a discrete-batch Markovian process. We study this model analytically
and obtain an expression for the probability generating function of the
delay of an arbitrary customer in steady state. The results are illustrated
with several numerical examples.

Keywords: Discrete-time queueing theory · Service demands
Correlated service capacities · Discrete-batch Markovian service process

1 Introduction

In classical queueing theory, queueing phenomena where customers require vary-
ing amounts of work from the server(s) are often modeled using the concept of
“service time”, where the service time of a customer is the amount of time that
a server needs to fully process that customer. It is then commonly assumed that
the service times of the consecutive customers are independent from each other.

However, in many queueing phenomena this assumption may not hold.
Indeed, the service time of a customer is usually determined by two underly-
ing quantities: the amount of work that the customer requires from the server,
which we refer to as the “service demand” of that customer, and the speed
with which the server can process this work. The assumption that service times
form an independent and identically distributed (i.i.d.) sequence generally breaks
down into assuming that both these service demands and the service speeds are
uncorrelated from customer to customer.

The first of these two assumptions, i.e., that the service demands of sub-
sequent customers are independent of each other, is valid for many queueing
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 64–85, 2018.
https://doi.org/10.1007/978-3-319-93736-6_5
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phenomena. For example, in most brick-and-mortar stores there is little correla-
tion between the length of the shopping list of one customer entering that store
and that of the next. However, the second assumption, i.e., that the speed with
which subsequent customers are served is also uncorrelated, is often not valid. If
the cashier at a register is working slowly, it is likely that the next person served
at that register will also receive slower service.

Other examples of queueing phenomena where there is little correlation in the
service demands while the speed with which a server processes two consecutive
customers is usually correlated are web services where the available processing
power fluctuates due to background processes or shared hosting, wireless com-
munication channels where the available bandwidth fluctuates over time due
to interference and varying conditions (see e.g. [1,2]), manufacturing facilities
where the production capacity varies over time due to maintenance and repairs
(see e.g. [3,4]), etc.

While there is some research in the scientific literature about continuous-time
queueing models with both variable service demands and variable rates of service
(see e.g. [5–7]), discrete-time queueing models with variable service demands
and capacities have received comparatively little attention. In this paper, we will
model these queueing phenomena using a discrete-time queueing model, meaning
time is divided into evenly spaced time slots. The number of work units that the
server can execute in a given slot is referred to as the “service capacity” of the
server during that time slot, which we assume to be a non-negative integer. The
service demands of all customers are assumed to be (positive) integer numbers
of work units as well. We assume that available service capacity is never wasted,
i.e., in one time slot multiple customers may be served if there is enough service
capacity to do so. Similarly, if the available service capacity is not enough to fully
serve the customer in service, the server can execute some of the work units of
the service demand of that customer so that these work units do not need to be
executed again in a later slot. For more details about the queueing model, see
Sect. 2.

There have been multiple papers in the literature studying this non-classical
queueing model, with varying restrictions on the distribution of the service capac-
ities in a given time slot. In [8,9], results were obtained for geometrically dis-
tributed service capacities, while in [10,11], the service capacity was assumed
to be constant, i.e., the same in all time slots. In [12], the distribution of the
service capacities was assumed to have finite support, while in [13,14] the service
capacities were assumed to follow a phase-type distribution. However, in all of
these studies, the service capacities were assumed to be independent from slot to
slot. In this paper, we allow the service capacities to be correlated by assuming
that they follow a discrete-batch Markovian process, which is most commonly
used to describe the number of arriving customers in consecutive time slots, and
is then usually called the discrete-batch Markovian arrival process (D-BMAP),
see e.g. [15].

This paper is organized as follows. In Sect. 2 we describe the mathematical
queueing model under study, as well as the notation used in its analysis. Then, in
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Sect. 3, we study a special case of the queueing model where the service demands
are assumed to be equal to 1 work unit. The results obtained for this special case
are then used in Sect. 4, where we obtain results for the probability generating
function (pgf) of the delay of an arbitrary customer in steady state, and in Sect. 5,
we describe how to evaluate the mean and other moments of this customer delay.
In Sect. 6, we illustrate the model using several numerical examples, and finally
Sect. 7 gives a brief conclusion of the paper. AppendixA outlines how models
with phase-type vacations can be studied, as they are a special case of the model
studied in this paper.

2 Queueing Model and Notation

In this section, we give a formal description of the queueing model studied in
this paper, as well as the mathematical notation used in its analysis. The studied
queueing model is a discrete-time model, i.e., time is divided into discrete fixed-
length intervals, referred to as (time) slots. During each time slot, a random
number of customers arrive to the queue. The number of customers arriving
in slot k is denoted by Ak. The sequence A1, A2, ... is assumed to be an i.i.d.
sequence with common pgf A(z). The mean number of customers arriving per
slot is denoted by λ � A′(1).

Each customer requires a certain amount of service from the server referred
to as the service demand of that customer. The service demand of customer k is
assumed to consist of an integer number of work units and is denoted by Sk. The
sequence S1, S2, ... forms an i.i.d. sequence with pgf S(z) and mean τ � S′(1).

There is one server in the queueing system. During each time slot it is able
to execute an integer number of work units, referred to as the service capacity
of the server during that time slot. The service capacity during slot k is denoted
by Rk. These Rk work units of service capacity are always executed in a work-
conserving manner, i.e., if Rk is larger than the (remaining) service demand
of the customer in service, then the next customer immediately begins service
(during the same slot). The only exception to this is that arriving customers can
never receive any service during their arrival slot, i.e., the system is a late-arrival
system with delayed access (LAS-DA). If Rk is less than the remaining service
demand of the customer in service, then the remaining service demand of that
customer decreases by Rk and the service of that customer simply continues in
the next slot.

The service capacities are not uncorrelated from slot to slot. Instead, they
depend on a background Markov chain with m states. The state of that Markov
chain during slot k is denoted by Tk, with 0 ≤ Tk ≤ m − 1. We assume that
the sequence T1, T2, ... forms an irreducible and aperiodic discrete-time Markov
chain. Its transition matrix is denoted by R(1) and the equilibrium distribution
of this Markov chain is denoted by the row-vector π. It is well-known that π is
the unique probability row-vector satisfying

πR(1) = π. (1)
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The service capacity Rk during slot k is completely determined by Tk and Tk+1.
In particular, the service process is entirely defined by the probabilities P (Rk =
n, Tk+1 = j|Tk = i), which are the same for all k. We can gather all these
probabilities in a single matrix generating function R(z), whose (i, j)th entry is
given by

[R(z)]i,j �
∞∑

n=0

P (Rk = n, Tk+1 = j|Tk = i)zn.

Note that this definition is consistent with the earlier definition of the transition
matrix R(1) of the background Markov chain. The mean service capacity in an
arbitrary slot in steady state, which we denote by μ, can be found as πR′(1)1T ,
where 1T denotes the column vector [1 1 ... 1]T of the appropriate dimension
depending on the context (here m). We assume that the mean service capacity
μ in steady state is larger than the mean total service demand λτ of all cus-
tomers arriving in an arbitrary slot in steady state, i.e., we assume that the load
ρ � λτ/μ is smaller than 1. We also assume that all elements of [R(z)]i,j are
polynomial functions, which is the case if there is a maximum service capacity
that the server cannot exceed.

The number of customers in the system (i.e., the “system content”) at the
start of slot k is denoted by Bk. The steady-state pgf of Bk as k → ∞ is denoted
B(z). To account for the correlation between the system content and the state
of the background Markov chain, we also define the partial pgfs

[B(z)]j = lim
k→∞

E[zBkI(Tk = j)], (2)

where I(...) is the indicator function. Together, these m partial pgfs form the
row vector B(z). Note that the sum of all elements of B(z) is equal to the pgf
of the system content at the start of an arbitrary slot in steady state, which is
denoted as B(z).

3 Service Demands of 1 Work Unit

In this section, we study a special case of the queueing model specified in the
previous section. Namely, we study the case where all service demands are equal
to 1 work unit, i.e., S(z) = z. The results of this analysis will turn out to be useful
in the subsequent sections. Additionally, this special case is noteworthy in its
own right, since it is equivalent to the discrete-time GeoX/DBMSP/1 classical
queueing model. In this special case, the customers are served according to a
discrete-time batch Markovian service process (DBMSP), which is analogous
to the well-known discrete-time batch Markovian arrival process (DBMAP, see
e.g. [15]). A version of the GeoX/DBMSP/1 queuing model with finite buffer
space was studied in [16]. To the best of our knowledge, no results for the pgf of
the steady-state system content of GeoX/DBMSP/1 queues with infinite buffer
space have been reported in the literature.
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In this special case, there is a very simple system equation relating Bk+1 to
Bk, namely

Bk+1 = (Bk − Rk)+ + Ak, (3)

where (X)+ denotes max(X, 0). Indeed, each work unit of service capacity corre-
sponds to exactly one customer leaving the system, if there is one. To emphasize
that the results obtained in this section are only valid for the special case of
service demands of 1 work unit, we will in this section use the notation˜on all
variables relating to the system content, e.g., Bk and B(z) will be denoted B̃k

and B̃(z) respectively, and Ak and A(z) are denoted Ãk and Ã(z). For example,
the Eq. (3) above is rewritten as

B̃k+1 = (B̃k − Rk)+ + Ak. (4)

Similarly, we rewrite Eq. (2) as

[B̃(z)]j = lim
k→∞

E[zB̃kI(Tk = j)]

= lim
k→∞

∞∑

n=0

m∑

i=1

E[zB̃kI(Tk = j, Tk−1 = i, B̃k−1 = n)]

= lim
k→∞

∞∑

n=0

m∑

i=1

E[zB̃kI(Tk = j)|Tk−1 = i, B̃k−1 = n]

· P (Tk−1 = i, B̃k−1 = n). (5)

The factor E[zB̃kI(Tk = j)|Tk−1 = i, B̃k−1 = n] in the above equation can
be rewritten using Eq. (4) as

E[zB̃kI(Tk = j)|Tk−1 = i, B̃k−1 = n]

= E[z(n−Rk−1)
++Ãk−1I(Tk = j)|Tk−1 = i, B̃k−1 = n]

= Ã(z)E[z(n−Rk−1)
+
I(Tk = j)|Tk−1 = i], (6)

due to the independence of Ãk−1, B̃k−1, and (Tk, Rk−1) when given Tk−1.
To continue, we use the inversion formula for probability generating func-

tions, which states that for a random variable X with pgf X(z) with radius of
convergence RX ,

P (X = n) =
1

2πı

∮

L

X(ζ)
ζn+1

dζ, (7)

where ı indicates the imaginary unit and L is any counterclockwise contour
around the origin where ∀ζ ∈ L : |ζ| < RX . Using this, we can now rewrite (6)
further as
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E[zB̃kI(Tk = j)|Tk−1 = i, B̃k−1 = n]

= Ã(z)

⎛

⎝
n−1∑

l=0

zn−lP (Tk = j, Rk−1 = l|Tk−1 = i)

+
∞∑

l=n

P (Rk−1 = l, Tk = j|Tk−1 = i)

⎞

⎠

=
Ã(z)
2πı

⎛

⎝
n−1∑

l=0

zn−l

∮

L

[R(ζ)]i,j
ζl+1

dζ +
∞∑

l=n

∮

L

[R(ζ)]i,j
ζl+1

dζ

⎞

⎠ , (8)

where L is any counterclockwise contour around the origin where ∀ζ ∈ L : |ζ| <
RR, in which RR denotes the minimum of the radii of convergence of all elements
of R(z).

We may now interchange the order of the infinite summation over l and the
integration over L in (8) (i.e., the infinite summation of the contour integral is
equal to the contour integral of the infinite summation) if the infinite series in
the resulting integrand converges uniformly. This is the case if ∀ζ ∈ L : |1/ζ| < 1.
If we restrict L to be any contour where that is the case, we may write

E[zB̃kI(Tk = j)|Tk−1 = i, B̃k−1 = n]

=
Ã(z)
2πı

(
z

∮

L

[R(ζ)]i,j
ζn

(zζ)n − 1
zζ − 1

dζ +
∮

L

[R(ζ)]i,j
ζn

1
ζ − 1

dζ

)

=
Ã(z)
2πı

∮

L

[R(ζ)]i,j
zn+1(ζ − 1) + ζ−n(z − 1)

(zζ − 1)(ζ − 1)
dζ.

Next, we substitute this back into (5). In the resulting equation, we may
swap the summation over n with the contour integral over L if |z| < RB̃ and
∀ζ ∈ L : |1/ζ| < RB̃. If we restrict L further so that this is also the case, we
may write

[B̃(z)]j =
m∑

i=1

Ã(z)
2πı

∮

L

[R(ζ)]i,j
z[B̃(z)]i(ζ − 1) + [B̃(1/ζ)]i(z − 1)

(zζ − 1)(ζ − 1)
dζ

=
Ã(z)
2πı

∮

L

[
zB̃(z)
zζ − 1

R(ζ)

]

j

dζ +
Ã(z)(z − 1)

2πı

∮

L

[
B̃(1/ζ)R(ζ)

(zζ − 1)(ζ − 1)

]

j

dζ.

(9)

The last step is only valid of 1/z is not on the contour L, so we further restrict
L so that 1/z does not lie on it. It is, however, not specified whether this point
1/z, which is a pole of both integrands in (9), lies inside or outside L. With
the restrictions we have placed on L so far, i.e., that that L must be a counter-
clockwise contour around the origin where ∀ζ ∈ L : 1/RB̃ < 1 < |ζ| < RR and
ζ �= 1/z, it is possible that some of the contours that satisfy all these conditions
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(called “valid” contours) have 1/z as an interior point while others don’t. If
|z| < 1, we can always guarantee that a valid contour exists that doesn’t encircle
1/z, while if |z| ≥ 1, any valid contour must encircle 1/z. In the sequel we will
show the detailed derivation of B̃(z) for the case where |z| < 1, choosing L to
be a valid contour that doesn’t encircle 1/z. It is easily verified that if |z| ≥ 1,
a similar derivation leads to the same expression for B̃(z). This derivation is by
itself however not very interesting, so it is omitted here.

In the case where |z| < 1 and where the contour L does not encircle 1/z, the
integrand in the first term on the right-hand side of (9) does not have any poles
inside L, so

Ã(z)
2πı

∮

L

[
zB̃(z)
zζ − 1

R(ζ)

]

j

dζ = 0. (10)

The integrand in the second term, however, does have poles inside L. These poles
are the poles of the elements of B̃(1/ζ), which we don’t know yet. We therefore
perform the substitution ζ = 1/ξ (which yields a factor −1/ξ2 in the integrand)
but still integrate in the counterclockwise sense (which yields an extra factor
−1). Denoting the new counterclockwise integration path as L′, we rewrite the
second term of the right-hand side of (9) as

A(z)(z − 1)
2πı

∮

L

[
B̃(1/ζ)R(ζ)

(zζ − 1)(ζ − 1)

]

j

dζ =
A(z)(z − 1)

2πı

∮

L′

[
B̃(ξ)R(1/ξ)

(z − ξ)(1 − ξ)

]

j

dξ

(11)

The poles of the new integrand inside L′ are ξ = z and the poles of the elements
of R(1/ξ) on the jth column. We denote the set of these latter poles as [SR]j .
If z /∈ [SR]j , the residue of the integrand at ξ = z is given by

Res
ξ→z

[
B̃(ξ)R(1/ξ)

(z − ξ)(1 − ξ)

]

j

=
[B̃(z)R(1/z)]j

z − 1

and the residue at a pole ξ = ξ∗ with multiplicity mξ∗ is given by

Res
ξ→ξ∗

[
B̃(ξ)R(1/ξ)

(z − ξ)(1 − ξ)

]

j

=
1

(mξ∗ − 1)!
lim

ξ→ξ∗

dmξ∗ −1

dξmξ∗ −1 (ξ − ξ∗)mξ∗ [B̃(ξ)R(1/ξ)]j
(z − ξ)(1 − ξ)

=
mξ∗∑

n=1

c̃ξ∗,n,j

(z − ξ∗)n
, (12)

for some constants c̃ξ∗,n,j .
Substituting this and (10) back into (9) and using Cauchy’s residue theorem,

we get for z /∈ [SR]j ,

[B̃(z)]j = Ã(z)[B̃(z)R(1/z)]j + Ã(z)(z − 1)[C̃(z)]j . (13)
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Here C̃(z) is the row vector defined as

[C̃(z)]j =
∑

ξ∗∈[SR]j

mξ∗∑

n=1

c̃ξ∗,n,j

(z − ξ∗)n
=

fj(z)∏
ξ∗∈[SR]j

(z − ξ∗)mξ∗ ,

for some polynomial fj(z) with degree equal to mR,j −1, where mR,j is the sum
of all the multiplicities of all the poles in [SR]j . If mR,j = 0 then fj(z) = 0. If
we rewrite the polynomial fj(z) as

fj(z) = C̃jZj(z),

where

C̃j =
[
c̃j,0 c̃j,1 c̃j,2 . . . c̃j,mR,j−1

]
, Zj(z) =

[
1 z z2 . . . zmR,j−1

]T
,

then we can rewrite C̃(z) as

C̃(z) = C̃Z(z)P(z)−1, (14)

where C̃ denotes the row vector
[
C̃1 C̃2 . . . C̃m

]
, Z(z) denotes the block-

diagonal matrix diag(Z1,Z2, . . . ,Zm) and P(z) denotes the diagonal matrix

P(z) = diag

⎛

⎝
∏

ξ∗∈[SR]1

(z − ξ∗)mξ∗ ,
∏

ξ∗∈[SR]2

(z − ξ∗)mξ∗ , . . . ,
∏

ξ∗∈[SR]m

(z − ξ∗)mξ∗

⎞

⎠ .

Combining the result of [B̃(z)]j from Eq. (13) for each of the m values of j
into one matrix equation, we find

B̃(z) = Ã(z)B̃(z)R(1/z) + Ã(z)(z − 1)C̃(z).

Solving for B̃(z) and using (14), we get

B̃(z) = Ã(z)(z − 1)C̃Z(z)P(z)−1
(
I − Ã(z)R(1/z)

)−1
, (15)

or equivalently,

B̃(z) = Ã(z)(z − 1)C̃Z(z)
adj(P(z) − Ã(z)R(1/z)P(z))
det(P(z) − Ã(z)R(1/z)P(z))

. (16)

All that remains now is the determination of the mR � mR,1 + ... + mR,m

unknown constants in C̃. For this, we will use the following theorem:

Theorem 1 (Matrix version of Rouché’s theorem). Let F(z) and G(z) be
two analytic m × m matrix-valued functions inside and on a Cauchy contour Γ .
If F(z) is not singular on Γ and

||F−1(z)G(z)|| < 1 ∀ z ∈ Γ or ||G(z)F−1(z)|| < 1 ∀ z ∈ Γ,

where || · || denotes the operator norm, then F(z) + G(z) is not singular on Γ ,
and F(z) has the same number of singularities (i.e., roots of detF(z), counting
with multiplicity) as F(z) + G(z) inside Γ .



72 M. De Muynck et al.

Proof. See Sect. 5.3 of [17].

Using this theorem with F(z) = P(z) and G(z) = −Ã(z)R(1/z)P(z) and Γ
a circle with radius 1 + ε around the origin, it can be shown that det(P(z) −
Ã(z)R(1/z)P(z)) has the same number of zeros inside or on the unit circle as
det(P(z)) (counting with multiplicity). It is easy to see that this number of zeros
is equal to mR, since all the zeros of det(P(z)) lie inside or on the unit circle.
We denote the set of the zeros of det(P(z) − Ã(z)R(1/z)P(z)) as SB̃. It is easy
to see that 1 ∈ SB̃, because R(1) is a stochastic matrix, so I−R(1) is singular.

Since each element of B̃(z) is a partial pgf, it must remain bounded inside
and on the unit circle. Therefore, the numerator of (16) must become 0 with the
same multiplicity as well, where 0 is the row vector [0 0 ... 0] of the appropriate
dimension (here m). This implies that for each z∗ ∈ SB̃ with z∗ �= 1,

C̃Z(z∗) adj
(
P(z∗) − Ã(z∗)R(1/z∗)P(z∗)

)
= 0. (17)

If z∗ is a zero of multiplicity n > 1, then this also implies that the 1st, 2nd,
..., (n − 1)th derivatives of the numerator of (16) must become 0. Since these
(n− 1)th order derivatives do not simplify further in the general case, they need
to be studied on an ad hoc basis. Luckily, in most practical examples the zeros
SB̃ do have multiplicity 1, so in the remainder of this paper we will assume that
the zeros SB̃ are indeed distinct, i.e., they have multiplicity 1. See [18, Appendix
A] for a more detailed explanation on a similar problem.

For each z∗ ∈ SB̃, the expression (17) gives us m linear equations for the
unknown constants in the matrix C̃. Unfortunately, it turns out that these
m equations are all linearly dependent, so each z∗ only contributes 1 linearly
independent equation. Since z∗ = 1 does not contribute a linear equation (the
numerator of (16) vanishes at z = 1 regardless of the value of C̃), we now have
|SB̃|−1 independent equations. We can obtain one final equation by considering
the normalization condition, i.e., B̃(1) = B̃(1)1T = 1. Using l’Hôpital’s rule and
Jacobi’s formula, we obtain

C̃Z(1) adjP(1) adj
(
I − R(1)

)
1T = (18)

tr
(
adjP(1) adj(I − R(1))

(
P′(1) − Ã′(1)R(1)P(1) + R′(1)P(1) − R(1)P′(1)

))
.

This equation in addition to one of the equations from (17) for each of the
z∗ ∈ SB̃, z∗ �= 1 together form a set of |SB̃| linearly independent equations for
the mR = |SB̃| unknown constants in C̃, from which C̃ can be determined. Then
B̃(z) follows immediately from (16), and B̃(z) follows immediately from that by
B̃(z) = B̃(z)1T .

4 Customer Delay

In this section, we will derive an expression for the pgf D(z) of the delay DC

experienced by an arbitrary customer C in steady state, under a FCFS scheduling
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discipline. We will do this in two steps. Informally, we will first measure the delay
“in work units”, and then in time slots. More formally, we will first study the
minimum number VC of work units that need to be executed by the server before
the arbitrary customer C can leave the system, i.e., the sum of all (remaining)
service demands of all customers in the queue minus the service demands of the
customers behind customer C in the queue at the beginning of the slot after the
arrival slot of customer C. We refer to this quantity VC as the unfinished work
observed by customer C. In a second step, we will use this distribution to derive
an expression for the pgf of the delay DC experienced by customer C.

4.1 Unfinished Work Observed by a Customer

As indicated, we will start by deriving an expression for the pgf V (z) of the
unfinished work VC observed by an arbitrary customer C in steady state. Since in
the later sections, the dependency between VC and the states of the background
Markov chain will also be important, for j = 1, ...,m we define the partial pgf

[V(z)]j = E[zVC I(TKC+1 = j)],

where slot KC denotes the arrival slot of customer C. Together, these m partial
pgfs form the row vector V(z), from which the pgf V (z) can easily be found as
V (z) = V(z)1T .

Consider first a specific customer C, not necessarily in steady state. The
unfinished work VC observed by the Cth customer is the sum of three indepen-
dent random variables:

1. The number of work units present in the system at the beginning of the
arrival slot of customer C that are still not executed at the start of the next
slot. This first part is given by (UKC

− RKC
)+, where Uk denotes the total

unfinished work at the start of a slot k.
2. The total service demand of all customers that arrive during slot KC but

“before” customer C (i.e., having service priority over customer C). If we
denote the number of those customers as FC , then the second part of the
unfinished work VC is given by

∑FC

n=1 SC−n.
3. The service demand of customer C itself. Per definition this is given by SC .

In summary we have that

VC = (UKC
− RKC

)+ +
FC∑

n=1

SC−n + SC .

We therefore find that

E[zVC I(TKC+1 = j)] = E[z(UKC
−RKC

)++
∑FC

n=1 SC−n+SC I(TKC+1 = j)]

= E[z(UKC
−RKC

)+I(TKC+1 = j)] F (S(z)) S(z), (19)

where F (z) is the pgf of FC , which is the same for all C. In the last step we used
the fact that the service times of the customers are i.i.d. and that the number
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of customers arriving in slot KC and their service times are independent of
UKC

, RKC
and TKC+1. It is well known (see e.g. [19]) that for a system with

uncorrelated arrivals, F (z) is given by

F (z) =
A(z) − 1

A′(1)(z − 1)
. (20)

The first factor in (19) can be calculated from the system equation for Uk, i.e.,

Uk+1 = (Uk − Rk)+ +
Ak∑

n=1

Sk,n,

where Sk,n denotes the service demand of the nth customer arriving in slot k.
This equation implies that

E[zUk+1I(Tk+1 = j)] = E[z(Uk−Rk)
+
I(Tk+1 = j)]A(S(z)),

where we again used the fact that both the arrival process and the service
demands are uncorrelated. Substituting this result into (19) and considering
an arbitrary customer C in steady state, we find

[V(z)]j =
[U(z)]j
A(S(z))

A(S(z)) − 1
A′(1)(S(z) − 1)

S(z),

where [U(z)]j = limk→∞ E[zUkI(Tk = j)].
An expression for the partial pgfs [U(z)]j can be found using the techniques

from Sect. 3. Indeed, the total unfinished work in a system where the arrivals and
service demands have pgfs A(z) and S(z) respectively has the same distribution
as the number of customers in a system where the arrivals have pgf A(S(z)) and
all service demands are equal to 1 work unit. The special case of service demands
of one work unit is exactly what was studied in Sect. 3. The row vector U(z)
can therefore be found from the expression (15) for B̃(z) with the substitution
Ã(z) = A(S(z)). This leads to

V(z) =
S(z)
A′(1)

A(S(z)) − 1
S(z) − 1

(z − 1)CZ(z)P(z)−1
(
I − A(S(z))R(1/z)

)−1
, (21)

where C can be determined in the same way as C̃ in Sect. 3, and Z(z) and P(z)
are exactly the same as in Sect. 3, as they only depend on R(z).

4.2 Delay

Since VC is the minimum number of work units that need to be executed by the
server before the customer C can leave the system, there is a straightforward
relationship between VC and the delay DC experienced by customer C. Specif-
ically, the customer C will have left the system if and only if the cumulative
service capacity since customer C entered the system (not counting its arrival
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slot) is at least VC . So, again denoting the arrival slot of customer C by KC , we
have that

RKC+1 + RKC+2 + ... + RKC+n ≥ VC ⇔ DC ≤ n. (22)

Therefore, for each n, the following equality holds:

P (R(n)
C ≥ VC) = P (DC ≤ n), (23)

where R
(n)
C denotes RKC+1 + ... + RKC+n. Multiplying by zn and summing over

all n, we then get

∞∑

n=0

P (R(n)
C ≥ VC)zn =

∞∑

n=0

P (DC ≤ n)zn. (24)

The right-hand side of (24) is easily rewritten as

∞∑

n=0

P (DC ≤ n)zn =
∞∑

n=0

n∑

k=0

P (DC = k)zn

=
∞∑

k=0

P (DC = k)
zk

1 − z

=
D(z)
1 − z

. (25)

Substituting (25) into (24), we get

D(z) = (1 − z)
∞∑

n=0

∞∑

j=0

∞∑

k=j

P (VC = j, R
(n)
C = k)zn

= (1 − z)
∞∑

n=0

m∑

i=1

∞∑

j=0

∞∑

k=j

P (R(n)
C = k|TKC+1 = i)P (VC = j, TKC+1 = i)zn

(26)

since R
(n)
C is independent of VC when given TKC+1. Indeed, the cumulative

service capacity R
(n)
C depends only on the state of the Markov chain in slots

≥ KC +1, while the unfinished work VC observed by customer C is independent
from those states when given the state in slot KC + 1.

Given TKC+1 = i, the random variable R
(n)
C in (26) has a very simple condi-

tional pgf. It can easily be checked using induction that

E[zR
(n)
C I(TKC+n+1 = j)|TKC+1 = i] = [R(z)n]i,j . (27)

Summing over j = 1, ...,m, we thus find that the conditional pgf of R
(n)
C given

TKC+1 = i is simply the ith element of the column vector R(z)n1T .
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To use this pgf in (26), we again make use of the inversion formula for
probability-generating functions. This leads to

D(z) =
1 − z

2πı

∞∑

n=0

m∑

i=1

∞∑

j=0

∞∑

k=j

∮

L

[R(ζ)n1T ]i
ζk+1

P (VC = j, TKC+1 = i)zn dζ,

where L is any counterclockwise contour around the origin for which no point
on L is further from the origin than the minimum of the the radii of convergence
of all elements of R(ζ)n1T . We may “swap” the above infinite summations over
n and k with the contour integral over L if the infinite series in the resulting
integrand would be uniformly convergent. This is the case if ∀ζ ∈ L : |1/ζ| < 1
and the spectral radius of zR(ζ) is smaller than 1. We will therefore in the sequel
consider those L for which these conditions are true. In fact, since the operator
norm of a matrix is never smaller than the spectral radius (by definition), we
will only consider those L for which ||zR(ζ)|| < 1,∀ζ ∈ L. Then we may write

D(z) =
1 − z

2πı

m∑

i=1

∞∑

j=0

∮

L

[(I − zR(ζ))−11T ]i
ζj(ζ − 1)

P (VC = j, TKC+1 = i) dζ.

Similarly, if we further restrict L to be a contour where ∀ζ ∈ L : |1/ζ| <
R[V]i , i = 1, ...,m, then we may swap the infinite summation over j with the
contour integral over L, and we obtain

D(z) =
1 − z

2πı

∮

L

V(1/ζ) (I − zR(ζ))−11T

ζ − 1
dζ. (28)

At this point it is worth considering which poles of the integrand of (28) lie
inside L. Due to our choice of L, it is easily seen that the simple pole at ζ = 1
lies inside L, as do all poles of all elements of V(1/ζ). It remains to be seen
which singularities of I−zR(ζ) lie inside L. Applying Theorem 1 with F(ζ) = I,
G(ζ) = −zR(ζ) and Γ = L shows that I − zR(ζ) has no singularities inside L.
Note in particular that I − zR(0) is not singular.

We now substitute ζ = 1/ξ in (28) (which yields a factor −1/ξ2 in the
integrand) and invert the integration path L into L′ but still integrate in the
counterclockwise sense (which yields an extra factor −1, since the inversion of
L is a clockwise path) and obtain

D(z) =
1 − z

2πı

∮

L′

V(ξ) (I − zR(1/ξ))−11T

ξ(1 − ξ)
dξ. (29)

The poles of the integrand of (29) inside L′ are now only the singularities of
I − zR(1/ξ). Note that the simple zero of the denominator at ξ = 0 does not
cause a pole, because V(0) = 0, as the unfinished work observed by a customer
upon arrival can never by 0, since it at least contains the service demand of
that customer. Additionally, I − zR(1/ξ) is not singular for ξ → 0 either, since
that would imply that the polynomial det(I − zR(ζ)) → 0 as ζ → ∞, which is
impossible, as det(I − zR(ζ)) is a polynomial in ζ.
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To evaluate (29), we use Cauchy’s residue theorem and find

D(z) = (1 − z)
∑

αk(z)∈α(z)

Res
ξ→αk(z)

[
V(ξ) (I − zR(1/ξ))−11T

ξ(1 − ξ)

]

= (1 − z)
∑

αk(z)∈α(z)

1
(mk − 1)!

lim
ξ→αk(z)

dmk−1

dξmk−1
(ξ − αk(z))mk

· V(ξ) (I − zR(1/ξ))−11T

ξ(1 − ξ)
, (30)

where α(z) is the set of ξ for which I− zR(1/ξ) is singular and mk denotes the
multiplicity of the kth singularity (i.e., the multiplicity of the kth root of the
determinant). These αk(z) are the multiplicative inverses of the roots for ζ of

det(I − zR(ζ)) = 0, (31)

since det(I − zR(ζ)) does not approach 0 for neither ζ → 0 (as I − zR(0) is
not singular) nor ζ → ∞ (as shown earlier). Since det(I − zR(ζ)) is a polyno-
mial, these αk(z) and mk can for any particular z therefore easily be calculated
numerically. Unfortunately, if some of the mk are greater than 1, then (30) is
not straightforward to calculate. Luckily, there are only “very few” z for which
that is the case: it can be shown that the set of z for which at least 1 of the mk

is greater than 1 forms an isolated set (see e.g. the appendix of [12] for a proof
for a similar problem on a similar queueing model). For all other z, we can use
l’Hôpital’s rule and Jacobi’s formula to simplify (30) to

D(z) =
z − 1

z

∑

αk(z)∈ α(z)

αk(z)
αk(z) − 1

· V(αk(z)) adj(I − zR(1/αk(z)))1T

tr
(
adj(I − zR(1/αk(z))) R′(1/αk(z))

) .

(32)

Substituting the expression (21) for V(z) in this equation does not lead to any
substantial simplifications, so this is our final expression for the pgf D(z) of the
steady-state customer delay.

To summarize, in order to calculate D(z) for any given value of z, first for
each j = 1, ...,m, the set [SR]j should be calculated. This is the set of poles for
ζ of the elements of R(1/ζ) on the jth column. Then SB̃ should be calculated,
which is the set of the zeros for ζ of det(P(ζ) − A(S(ζ))R(1/ζ)P(ζ)). Then the
system of linear equations given by Eqs. (17) and (18) (with Ã(z) replaced by
A(S(z))) should be solved to determine the vector C. Finally, the zeros for ζ of
det(I− zR(ζ)) should be calculated, as the αk(z) are the inverses of these zeros
(see (31)). Then V(z) and D(z) follow from Eqs. (21) and (32) respectively.

5 Mean Customer Delay

From the expression (32) for the pgf D(z), several characteristics of the steady-
state customer delay may be derived, including the mean and other moments.
In this section, we briefly describe how this may be done.
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It is well known that the mean of a random variable is equal to the derivative
of its pgf at z = 1. Therefore the mean customer delay is simply equal to D′(1).
However, to evaluate the derivative of D(z), the derivative of αk(z) needs to be
known. To find this, we first note that due to the fact that the αk(z) are the
multiplicative inverses of the roots for ζ of Eq. (31), it holds that

det(I − zR(1/αk(z))) = 0, (33)

for all z. Differentiating both sides of the above equation with respect to z and
using Jacobi’s rule, we find that

tr

⎛

⎝adj(I − zR(1/αk(z)))

(
R(1/αk(z)) − zR′(1/αk(z))

α′
k(z)

α2
k(z)

)⎞

⎠ = 0. (34)

Using (33), we can simplify this to

tr

⎛

⎝adj(I − zR(1/αk(z)))

(
I − z2R′(1/αk(z))

α′
k(z)

α2
k(z)

)⎞

⎠ = 0. (35)

From this, we find the following expression for α′
k(z):

α′
k(z) =

α2
k(z) tr

(
adj(I − zR(1/αk(z)))

)

z2 tr
(
adj(I − zR(1/αk(z))) R′(1/αk(z))

) . (36)

Using the above equation, an expression for D′(1) may be obtained by sim-
ply deriving the expression (32) for D(z) and using L’Hôpital’s rule. However,
this is a tedious and error-prone but nevertheless straightforward calculation.
To evaluate D′(1) numerically for any specific choice of A(z), S(z) and R(z),
an analytical expression for D′(1) is in fact not needed, and a finite difference
method may be used instead, where the expression (32) for D(z) is used directly.
That is, D′(1) can be approximated very accurately by (D(1+ ε)−D(1− ε))/2ε
for very small ε. In case there are difficulties with numerical precision (which can
occur if the matrix R(z) is large and/or contains one or more polynomials of a
high degree), then either a higher-order finite difference method can be used (see
e.g. [20]), or floating-point numbers with greater precision than the standard 32-
or 64-bit floating point numbers can be used.

Determining the value of higher-order moments of the customer delay
requires determining the value of higher-order derivatives of D(z) at z = 1.
In theory, these can be obtained in the same way as the first derivative D′(1),
where expressions for higher-order derivatives of αk(z) may be found by repeat-
edly differentiating both sides of equation (36). However, the expressions involved
become longer for each higher-order derivative. To determine the probability that
the customer delay in an arbitrary slot in steady state is equal to a certain num-
ber, a numerical inversion method such as the one by Abate and Whitt [21] may
be used.
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6 Numerical Examples and Discussion

In this section, we present several illustrative numerical examples to demon-
strate the behavior of the queueing model. Due to our assumption that the
arrival process is uncorrelated, the most natural choice for the distribution of
the number of arrivals per time slot is the Poisson distribution with parameter
λ, i.e., A(z) = eλ(z−1). This arrival process is indeed what we will use in all of
the numerical examples in this paper. All figures in this section were verified
against Monte-Carlo simulations over 106 time slots.

In our first numerical example, we study the impact of the degree of cor-
relation between the service capacities during consecutive slots on the mean
customer delay in steady state. To this end, we consider a server whose service
capacity can change by at most 1 from one slot to the next. The probabilities
for the service capacity to increase or decrease are both equal to a certain value
α ∈ (0, 0.5), with the exception that when the service capacity is 4, it can-
not increase further, effectively constraining the service capacity to always be
between 0 and 4 (inclusive). This gives the following expression for R(z):

R(z) =

⎡

⎢⎢⎢⎢⎣

1 − α αz 0 0 0
α (1 − 2α)z αz2 0 0
0 αz (1 − 2α)z2 αz3 0
0 0 αz2 (1 − 2α)z3 αz4

0 0 0 αz3 (1 − α)z4

⎤

⎥⎥⎥⎥⎦
. (37)

The steady-state distribution of the service capacity is the same for all values of
α and the mean service capacity is 2. However, as α decreases, the correlation
between the service capacities in two consecutive slots increases.

Figure 1 shows the mean customer delay in steady state versus α for three
different distributions of the service demand, namely geometric, uniform between
1 and 5 (inclusive), and deterministic, all with mean service demand 3. The
arrival rate λ was taken to be 0.5, so that the traffic load is equal to 0.75. As can
be seen from Fig. 1, the impact of α, and therefore of the degree of correlation
between the service capacities in consecutive slots, on the mean customer delay
is much greater than the specific distribution of the service demand.

For our second numerical example, we illustrate that vacations with phase-
type length are simply a special case of our model, as discussed in more detail
in AppendixA.

We consider a server that during the time slots where it is not in vacation has
a service capacity with pgf R̂(z), independently from slot to slot. However, at
the end of each slot, with probability 0.1 a vacation starts with shifted negative
binomially distributed length with parameters r = 5 and p = 0.8. This leads to
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Fig. 1. Mean customer delay versus the parameter α for various distributions of the
service demand.

the following expression for R(z):

R(z) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.8 0 0 0 0
0 0.2 0.8 0 0 0
0 0 0.2 0.8 0 0
0 0 0 0.2 0.8 0
0 0 0 0 0.2 0.8

0.1R̂(z) 0 0 0 0 0.9R̂(z)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(38)

In Fig. 2, we show the mean customer delay versus the load ρ for this model
for various choices of R̂(z), all with mean non-vacation service capacity R̂′(1) =
10. This makes the mean service capacity μ in an arbitrarily chosen slot equal
to approximately 6.15, implying that service is available approximately 61.5% of
the time. Service demands are equal to 5 work units per customer. For reference,
the mean customer delay for the server without any vacations and with uniformly
distributed service capacities (between 0 and 20, inclusive) is also shown.

As can be seen in Fig. 2, distributions of the (non-vacation) service capacity
with higher variance lead to a higher mean customer delay for all traffic intensi-
ties, as would be expected. However, for all traffic loads the server that doesn’t
experience vacations has a much lower mean customer delay than all the servers
that do, despite the fact that the variance of the service capacity in each individ-
ual time slot is relatively high. So in this example it can again be seen that the
degree of correlation between service capacities in consecutive slots has a larger
impact on the mean customer demand than the variance of the service capacity
distribution in each individual slot.

In our third and final numerical example, we study the impact machine
defects and repairs have on the performance of a system. We consider a server
that consists of two independent components, A and B. During each time slot,
a working component can break with probability β, and a broken component
may be repaired with probability γ. However, if both components are broken,



General Service Demands and Correlated Service Capacities 81

Fig. 2. Mean customer delay versus the load ρ for a server with vacations, with various
distributions of the (non-vacation) service capacity. For reference, a server with uniform
service capacities without vacations is also shown.

only one component may be repaired. Component A is chosen with probability
α while component B is chosen with probability 1 − α. Component A adds a
service capacity with pgf R̂A,0(z) while broken and R̂A,1(z) while working, while
component B adds service capacities with pgfs R̂B,0(z) and R̂B,1(z) respectively.
This leads to the following expression for R(z):

R(z) =

⎡

⎢⎢⎣

(1 − γ) γα γ(1 − α) 0
β(1 − γ) (1 − β)(1 − γ) βγ (1 − β)γ
(1 − γ)β γβ (1 − γ)(1 − β) γ(1 − β)

β2 (1 − β)β β(1 − β) (1 − β)2

⎤

⎥⎥⎦

·

⎡

⎢⎢⎢⎣

R̂A,0(z)R̂B,0(z) 0 0 0
0 R̂A,1(z)R̂B,0(z) 0 0
0 0 R̂A,0(z)R̂B,1(z) 0
0 0 0 R̂A,1(z)R̂B,1(z)

⎤

⎥⎥⎥⎦ .

The following values were chosen for R̂A,0(z), R̂A,1(z), R̂B,0(z), and R̂B,1(z):

R̂A,0(z) = 0.9 + 0.1z R̂B,0(z) = 0.9 + 0.1z

R̂A,1(z) = z3 R̂B,1(z) =
1
7
(1 + z + · · · + z6)

Both components add a mean service capacity of 3 when working and 0.1
when broken, but the service capacity added by component B clearly has a higher
variance. Service demands are simply equal to 3 work units per customer.

The mean customer delay versus the arrival rate λ for this system is shown
in Fig. 3 for various combinations of α, β and γ. A first thing to note is that the
impact of α on the mean delay is relatively small, implying that the choice of
which component to repair when both are broken is not very important, despite
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Fig. 3. Mean customer delay versus the arrival rate λ for a server with two components,
each breaking with probability β and being repaired with probability γ in any slot. Only
one component may be repaired per slot, component A is chosen with probability α.

the fact that while working component A always adds exactly enough service
capacity to the system to serve one additional customer, while the contribution
of component B is more subject to randomness.

The impact of parameters β and γ is more significant, as these parameters
determine the fraction of time that machines are defect or working. The compo-
nents in the server with β = 0.2 and γ = 0.1 are defect a lower fraction of the
time compared to those in the server with β = 0.6 and γ = 0.2, leading to an
overall mean service capacity of 1.54 and 1.14 respectively. Due to this higher
mean steady-state service capacity, the server with β = 0.2 and γ = 0.1 is stable
for higher traffic loads. However, for low traffic loads it can be seen that the
server with β = 0.6 and γ = 0.2 has lower mean delay, despite the fact that it
has a lower mean service capacity. This is because the parameters β and γ also
influence how quickly the components break and get repaired. As the compo-
nents break and are repaired more quickly, the correlation between the service
demands in consecutive slots decreases, so does the mean service demand.

In conclusion, as in our previous numerical examples we again find that the
impact of the variance of the service capacities in each individual slot, which is
mostly controlled by the parameter α, is smaller than the impact of the corre-
lation between service capacities in consecutive slots, which is mostly controlled
by the parameters β and γ.

7 Conclusion

In this paper, we studied a non-classical queueing model where the customers
have variable service demands and the server has a service capacity that also
varies from slot to slot. Our main result was an expression for the pgf of the
customer delay in steady state.
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Unlike previous studies on this non-classical model, which analyzed more
and more general service-capacity distributions while assuming independence
between the service capacities from slot to slot, the service capacities in this
paper were allowed to be correlated according to a discrete batch Markovian
process. By studying several numerical examples, we found the impact of the
correlation between service capacities in consecutive slots on the mean customer
delay to be consistently larger than that of the variance of the service capacity
in each individual slot.

Appendix

A Vacations as a Special Case of the Model

As mentioned in our second numerical example in Sect. 6, vacations with phase-
type length are simply a special case of the queuing model, and therefore do not
need to be modeled separately. Indeed, consider a server for which the service
capacities (without vacations) are described by the matrix generating function
R̂(z) but which can at the end of every (non-vacation) slot start a vacation with
probability p with a duration that follows the discrete phase-type PHd(τ ,T)
distribution, i.e., the lengths of the vacations follow the same distribution as the
number of steps it takes for the Markov chain with transition (block) matrix

[
T (I − T)1
0 1

]
, (39)

to go from an initial state sampled from a distribution described by the (row) vec-
tor τ to the absorbing state. During the vacations, the available service capacity
is 0.

There are several possibilities for what happens to the state of the ser-
vice capacity’s background Markov chain during vacations. If this background
Markov chain simply keeps advancing as normal, then the system with vacations
is a special case of our model where the matrix generating function of the service
time is given by the block matrix

R(z) =

[
T ⊗ R̂(1) (I − T)1 ⊗ R̂(1)
pτ ⊗ R̂(z) (1 − p)R̂(z)

]
, (40)

where ⊗ denotes the Kronecker product. Indeed, if the background Markov chain
is in state am+ b, with 0 ≤ b ≤ m− 1, then that corresponds to the background
Markov chain of the server without vacations being in state b, while a corresponds
to the phase of the vacation that the server is currently in (if any).

A second possibility is if the state of the background Markov chain of the
server is paused during vacations. In that case only a small modification of the
expression for R(z) is required, and we get

R(z) =

[
T ⊗ I (I − T)1 ⊗ I

pτ ⊗ R̂(z) (1 − p)R̂(z)

]
. (41)
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A third possibility is if the state of the background Markov chain after a
vacation is independent of the state before the vacation, and is instead simply
equal to n with probability [κ]n. Then R(z) is given by

R(z) =

[
T (I − T)1 ⊗ κ

pτ (1 − p)R̂(z)

]
. (42)
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3 Department of Networked Systems and Services, Budapest University

of Technology and Economics, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
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Abstract. In this paper we provide an analysis for fluid polling models
with Markov modulated load and gated discipline. The fluid arrival to
the stations is modulated by a common continuous-time Markov chain.
The fluid is removed at the stations during the service period by a station
dependent constant rate.

We build partly on the methods used previously in the analysis of
fluid vacation models with gated discipline. We establish steady-state
relationships on Laplace transform level regarding the joint distribution
of the fluid levels at the stations and the state of the modulating Markov
chain among different characteristic epochs including start and end of
the service at each station. We derive the steady-state vector Laplace
transform of the fluid levels at the stations at arbitrary epoch and its
mean.

Keywords: Queueing theory · Fluid model · Polling system
Gated discipline

1 Introduction

In fluid queueing models the work arrives on a continuous manner, i.e., fluid
flows into the buffer instead of customer arrivals. Such models can be used as
the limit for the workload in the analysis of regular queueing systems, for example
in Heavy-Traffic (HT) analysis or stability analysis [1,2].

The Markov modulated fluid queues have been analyzed by several authors
using matrix analytic methods, see, e.g., [3,4].

The first paper relevant to fluid polling model is the paper from Czerniak and
Yechiali [5]. They analyzed a fluid polling model with constant load and service
rate. The only non-deterministic part of their model is the switchover time.

Fluid vacation models with Markov modulated load have been analyzed in
the subsequent papers [6–8]. The authors studied the fluid vacation models with
c© Springer International Publishing AG, part of Springer Nature 2018
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gated discipline and with exhaustive discipline under negative fluid rate during
service. The analysis of the exhaustive fluid vacation model has been extended
to the case of the non-negative fluid rate during service in [9].

This work is a natural continuation of the above research line on fluid vacation
models in which we extend the analysis of fluid gated vacation model to the
corresponding fluid polling system. The contribution of this work is the extension
of the analysis of fluid gated vacation model with Markov modulated load to the
fluid polling system. However, we build only partly on the methods used in the
analysis of fluid vacation model with gated discipline. We establish steady-state
relationships on Laplace transform (LT) level regarding the joint distribution of
the fluid levels at the stations and the state of the modulating Markov chain
among different characteristic epochs, like start and end of the service at each
station. We derive the steady-state vector LT of the fluid levels at the stations
at arbitrary epoch and its mean.

The rest of the paper is organized as follows. Section 2 gives the description
and the stability criterion of the model. The analysis of the steady-state fluid
levels at characteristic epochs follows in Sect. 3. Section 4 provides the analysis
of the steady-state fluid levels at arbitrary epoch and its mean.

2 Model and Notation

2.1 Model Description

We consider a fluid polling model with Markov modulated load and gated dis-
cipline. The polling system consists of N stations. Each station has an infinite
fluid buffer.

A common continuous-time Markov chain (CTMC) (Ω(t) for t ≥ 0) with
state space Ω = {1, . . . , L} modulates the arriving fluid flows at the station. The
generator of this background CTMC is denoted by Q. The input fluid rates at
station i are specified by diagonal fluid input rate matrix Ri, for i ∈ {1, . . . , N}.
If the background CTMC is in state j (Ω(t) = j) then fluid flows into the
buffer of station i at rate ri(j) for j ∈ {1, . . . , L} and i ∈ {1, . . . , N}. When
the server visits station i it removes fluid from its fluid buffer at finite rate
di > 0 for i ∈ {1, . . . , N}. Consequently, when the server visits station i and
the overall Markov chain is in state j (Ω(t) = j) then the fluid level of the
buffer of station i changes at rate ri(j) − di otherwise it changes at rate ri(j)
due to the lack of service. The length of the server’s visit at station i in the
polling model is determined by the service discipline applied at that station. In
this work we consider the gated discipline. Under gated discipline only the fluid
is removed during the server visit at station i, which is present at the station
already upon the server arrival. The cycle time (or simple cycle) is the time
between two consecutive visits of the server to the same station. In this paper,
if not stated otherwise then we understand the station index i as mod(N), i.e.
whenever it reaches N it continues by 1. The switchover time from station i to the
next station in the consecutive cycles is independent and identically distributed
(i.i.d.). The probability distribution function (pdf) of the switchover time from
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station i, the corresponding Laplace transform (LT) and mean is denoted by
σi(t) and σ∗

i (s), σi, respectively. We consider non-zero switchover-times model,
and we use the notation σ =

∑N
i=1 σi. We set the following assumptions on the

fluid polling model:

– A.1 The generator matrix Q of the modulating CTMC is irreducible.
– A.2 The fluid rates ri(j) are positive and finite, i.e. ri(j > 0 for j ∈ {1, . . . , L}

and i ∈ {1, . . . , N}.

Remark 1. The case of independent fluid inputs is also included by the approach
with one common modulating CTMC as special case. In that case Q = ⊕N

i=1Q̂i

and Ri = (⊗i−1
k=1I) ⊗ R̂i ⊗ (⊗N

k=i+1I), where Q̂i and R̂i denote the independent
generator and the fluid input rate matrix of station i, for i ∈ {1, . . . , N}, and ⊗
and ⊕ denote the Kronecker product and Kronecker sum operations, respectively.

Let π be the stationary probability vector of the modulating Markov chain.
Due to assumption A.1, πQ = 0 and πe = 1 uniquely determine π, where e is
the L × 1 unit column vector. The stationary fluid flow rate and the utilization
at station i, λi and ρi, respectively, can be given for i ∈ {1, . . . , N} as

λi = πRie and ρi =
λi

di
, (1)

and the total utilization is

ρ =
N∑

i=1

ρi. (2)

The arrival instant of the server to station i is called i-polling epoch. Similarly,
the time instant when the server departs from station i is called i-departure
epoch.

For the j, l element of the matrix Z the notation Zj,l is used. Further-
more, [zi]j denote the j-th element of vector zi. When there is a set of ran-
dom variables characterized by one (two) parameters, e.g., Yn (Yk,n), then the
n (k, n) element of its vector (matrix) LT is E(e−sYn) (E(e−sYk,n)). When
X∗(v), Re(v) ≥ 0 is a matrix LT, X(k) denotes its k-th (k ≥ 1) moment, i.e.,
X(k) = (−1)k dk

dsk X∗(v)|v=0 and X denotes its value at s = 0, i.e., X = X∗(0).
Similarly when x∗(v), Re(v) ≤ 0 is a vector LT, x(k) denotes its k-th (k ≥ 1)
moment, i.e., x(k) = (−1)k dk

dsk x∗(v)|v=0 and x denotes its value at s = 0, i.e.,
x = x∗(0).

2.2 Stability

We apply a workload argument to get a necessary condition of the stability. The
amount of work flowing to station i during a time unit is equal to its utilization,
ρi. The necessary condition of the stability is that the total amount of work
flowing to all stations during a time unit must be less than the work-amount of
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that time unit, which is 1. Therefore the necessary condition of the stability is
given as

ρ < 1. (3)

Remark 2. If the system would limit the work which could be done on average,
i.e., when less then 1 work-amount could be done during a time unit, then
further restrictions were needed for the sufficiency. However, the gated discipline
is “unlimited”, since it does not set any load-independent limit on the work-
amount, which could be performed during a service period. Therefore the above
necessary condition is also a sufficient one for the stability of the system.

3 The Steady-State Fluid Levels at Polling Epochs

3.1 Transient Analysis of the Accumulated Fluid

In this section, we consider the joint distribution of the accumulated amount of
fluid entering into the individual stations during time t ≥ 0. We derive the joint
LT of the accumulated fluid levels flowed into the stations and the state of the
common modulated Markov chain as a function of time.

Let Yi(t) ∈ R
+ denote the accumulated amount of fluid entering into station

i until time t for i ∈ {1, . . . , N}. Using the notation ȳ = (y1, . . . , yN ) let the
transition density matrix A(t, ȳ) be composed by its elements Aj,k(t, ȳ) as

Aj,k(t, ȳ) =
∂

∂y1
. . .

∂

∂yN

Pr(Ω(t) = k, Y1(t) < y1, . . . YN (t) < yN |Ω(0) = j, Y1(0) = . . . = YN (0) = 0).

The fluid level is zero at each station i at t = 0 (Yi(0) = 0) with probability 1.
Hence the transition density matrix for t = 0 is given as

A(0, y1, . . . , yN ) = δ(y1) . . . δ(yN )I, (4)

where δ(y) denotes the unit impulse function at y = 0, whose LT is 1. Furthermore
the accumulated amount of fluids are greater than zero for t > 0 at every stations
(Yi(t) > 0, for i ∈ {1, . . . , N}) due to assumption A.2. It follows that

A(t, y1, . . . , yi−1, 0, yi+1, . . . , yN ) = 0, t > 0, i ∈ {1, . . . , N}, (5)

where 0 denotes the L×L zero matrix. We also use the notation v̄ = (v1, . . . , vN )
and we define several LTs of matrix A(t, ȳ) as

A∗(s, ȳ) =
∫ ∞

t=0

A(t, y1, . . . , yN )e−stdt,

AN∗(t, v̄) =
∫ ∞

y1=0

. . .

∫ ∞

yN=0

A(t, y1, . . . , yN )e−v1y1 . . . e−vN yN dyN . . . dy1,

A(N+1)∗(s, v̄) =
∫ ∞

y1=0

. . .

∫ ∞

yN=0

A∗(s, y1, . . . , yN )e−v1y1 . . . e−vN yN dyN . . . dy1,
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and

A(N)∗(s, v1, . . . , vi−1, 0, vi+1, . . . , vN ) =
∫ ∞

y1=0

. . .

∫ ∞

yi−1=0

∫ ∞

yi+1=0

. . .

∫ ∞

yN=0

A∗(s, y1, . . . , yi−1, 0, yi+1 . . . yN )

e−v1y1 . . . e−vi−1yi−1e−vi+1yi+1 . . . e−vN yN dyN . . . dyi+1dyi−1 . . . dy1,

where the coefficients of ∗ in the superscript of matrix A denotes the number
of LTs.

Proposition 1. In the fluid polling model the joint matrix LT of the accumu-
lated amount of fluid entering in interval (0, t] can be expressed as

A(N)∗(t, v̄) = e−t(∑N
i=1 Rivi−Q). (6)

Proof. The Markov process {Ω(t), Y1(t), . . . , YN (t)} describes a homogenous first
order fluid model. Its transient behavior can be characterized by forward Kol-
mogorov equations as

∂

∂t
A(t, ȳ) +

∂

∂y1
A(t, ȳ)R1 + . . . +

∂

∂yN
A(t, ȳ)RN = A(t, ȳ)Q. (7)

and with initial conditions (4) and (5). Taking the LT of (7) with respect to t
yields

A∗(s, ȳ)s − A(0, ȳ) +
∂

∂y1
A∗(s, ȳ)R1 + . . . +

∂

∂yN
A∗(s, ȳ)RN = A∗(s, ȳ)Q.(8)

Now taking the LT of (8) with respect to y1, . . . , yN we have

A(N+1)∗(s, v̄)s − A(N)∗(0, v̄)

+
(
A(N+1)∗(s, v̄)v1 − A(N)∗(s, 0, v2, . . . , vN )

)
R1 + . . .

+
(
A(N+1)∗(s, v̄)vN − A(N)∗(s, v1, . . . , vN−1, 0)

)
RN

= A(N+1)∗(s, v̄)Q. (9)

Applying (4) and (5) in (9) gives

A(N+1)∗(s, v̄)s − I + A(N+1)∗(s, v̄)R1v1 + . . . + A(N+1)∗(s, v̄)RNvN

= A(N+1)∗(s, v̄)Q. (10)

After rearranging (10) we get

A(N+1)∗(s, v̄) = (Is + R1v1 + . . . + RNvN − Q)−1
. (11)

Taking the inverse Laplace transform of (11) with respect to s results in the
statement of the proposition.
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3.2 The Governing Equations of the System at Polling
and Departure Epochs

Let Xi(t) ∈ R
+ denote the actual level of the fluid buffer at station i at time

t for i ∈ {1, . . . , N}. Let tfi (	) be the time of the i-polling epoch in the 	-th
cycle for 	 ≥ 1 and i = {1, . . . , N}. We use the notation x̄ = (x1, . . . , xN ). We
define the joint densities of the fluid levels at the stations and the state of the
modulating Markov chain at the i-polling epoch in the 	-th cycle, for 	 ≥ 1 and
i = {1, . . . , N}, the 1 × L vector fi(	, x̄) by its elements as

[fi(	, x̄)]j =
∂

∂x1
. . .

∂

∂xN

Pr(Ω(tfi (	)) = j,X1(t
f
i (	)) < x1, . . . XN (tfi (	)) < xN ), j ∈ Ω.

The steady-state counterpart of the vector fi(	, x̄) is defined as

fi(x̄) = lim
�→∞

fi(	, x̄),

and its LT is given as

f (N)∗
i (v̄) =

∫ ∞

x1=0

. . .

∫ ∞

xN=0

fi(x̄)e−v1x1 . . . e−vN xN dxN . . . dx1.

Analogously let tmi (	) be the time of the i-departure epoch in the 	-th cycle
for 	 ≥ 1 and i = {1, . . . , N}. We define the joint densities of the fluid levels at
the stations and the state of the modulating Markov chain at the i-departure
epoch in the 	-th cycle, for 	 ≥ 1 and i = {1, . . . , N}, the 1 × L vector mi(	, x̄)
by its elements as

[mi(	, x̄)]j =
∂

∂x1
. . .

∂

∂xN

Pr(Ω(tmi (	)) = j,X1(tmi (	)) < x1, . . . XN (tmi (	)) < xN ), j ∈ Ω.

The steady-state joint densities of the fluid levels at the stations and the state
of the modulating Markov chain at the i-departure epoch are defined as

mi(x̄) = lim
�→∞

mi(	, x̄),

and its LT is given as

m(N)∗
i (v̄) =

∫ ∞

x1=0

. . .

∫ ∞

xN=0

mi(x̄)e−v1x1 . . . e−vN xN dxN . . . dx1.

We define a notation for substituting the multivariate L×L matrix function
H(v̄) into the defining integral of the LT f (N)∗

i (v̄) as

f (N)∗
i (v1, . . . , vi−1,H(v̄), vi+1, . . . , vN ) = (12)

∫ ∞

x1=0

. . .

∫ ∞

xN=0

fi(x̄)e−v1x1 . . . e−vi−1xi−1e−H(v̄)xie−vi+1xi+1 . . . e−vN xN dxN . . . dx1.
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Theorem 1. The governing equations of the stable fluid polling model with gated
discipline in terms of the steady-state joint vector LTs of the fluid levels at the
stations at the i-polling and i-departure epochs for i ∈ {1, . . . , N} are given as

– for the transition fi → mi

m(N)∗
i (v̄) = f (N)∗

i (v1, . . . , vi−1,

∑N
i=1 Rivi − Q

di
, vi+1, . . . , vN ), (13)

– and for the transition mi → fi+1

f (N)∗
i+1 (v̄) = m(N)∗

i (v̄))σ∗
i (

N∑

i=1

Rivi − Q). (14)

Proof. Due to the gated service discipline the fluid level at station i at i-
departure epoch equals the level of the fluid arriving during the service duration
of station i. The fluid level at stations j 	= i at i-departure epoch is the sum of
the fluid level at the previous i-polling epoch and the fluid arrived in between. If
the fluid level at station i at i-polling epoch equals ξi > 0 then service duration
is ξi

di
due to the gated discipline. Accordingly we can express [mi(x̄)]k as

[mi(x̄)]k =
L∑

j=1

∫ ∞

ξi=0

∫ x1

y1=0

. . .

∫ xi−1

yi−1=0

∫ xi+1

yi+1=0

. . .

∫ xN

yN=0

[fi(x1 − y1, . . . , xi−1 − yi−1, ξi, xi+1 − yi+1, . . . , xN − yN )]j

Ajk(
ξi

di
, y1, . . . , yi−1, xi, yi+1, . . . , yN )dyN . . . dyi+1dyi−1 . . . dy1dξi.

Changing to vector and matrix notation results in

mi(x̄) =
∫ ∞

ξi=0

∫ x1

y1=0

. . .

∫ xi−1

yi−1=0

∫ xi+1

yi+1=0

. . .

∫ xN

yN=0

fi(x1 − y1, . . . , xi−1 − yi−1, ξi, xi+1 − yi+1, . . . , xN − yN )

A(
ξi

di
, y1, . . . , yi−1, xi, yi+1, . . . , yN )dyN . . . dyi+1dyi−1 . . . dy1dξi.

Using the convolution property of the LT, the LT of mi(x̄) with respect to x̄
can be given as

m(N)∗
i (v̄) =

∫ ∞

ξi=0

f (N−1)∗
i (v1, . . . , vi−1, ξi, vi+1, . . . , vN )A(N)∗(

ξi

di
, v̄)dξi. (15)

Applying (6) in (15) yields

m(N)∗
i (v̄)=

∫ ∞

ξi=0

f (N−1)∗
i (v1, . . . , vi−1, ξi, vi+1, . . . , vN )e− ξi

di
(∑N

i=1 Rivi−Q)dξi. (16)

The first statement of the theorem comes by observing that the right hand side
of (16) is an LT with respect to ξi and applying the notation (12).
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The fluid level at any station j at i + 1-polling epoch is the sum of the
fluid level at the previous i-departure epoch and the fluid arrived in between.
Therefore we have

[fi+1(x̄)]k =
L∑

j=1

∫ ∞

t=0

∫ x1

y1=0

. . .

∫ xN

yN=0

[mi(x1 − y1, . . . , xN − yN )]j

Ajk(t, y1, . . . , yN )σi(t)dyN . . . dy1dt. (17)

Changing (17) to matrix notation and using the convolution property of LT
we get

f (N)∗
i+1 (v̄) =

∫ ∞

t=0

m(N)∗
i (v̄)A(N)∗(t, v̄)σi(t)dt. (18)

Applying (6) in (18) and rearrangement leads to

f (N)∗
i+1 (v̄) = m(N)∗

i (v̄))
∫ ∞

t=0

e−t(∑N
i=1 Rivi−Q)σi(t)dt. (19)

The second statement of the theorem comes by observing that on the r.h.s. of
(19) there is an LT with respect to t. 
�

3.3 The Steady-State Vector Moments of the Fluid Levels
at Polling Epochs

Corollary 1. The relation for the transition fi → fi+1, for i ∈ {1, . . . , N} in
the stable fluid polling model with gated discipline are given as

f (N)∗
i+1 (v̄) = f (N)∗

i (v1, . . . , vi−1,

∑N
i=1 Rivi − Q

di
, vi+1, . . . , vN ) σ∗

i (
N∑

i=1

Rivi − Q),

(20)

Proof. The corollary comes by applying (13) in (14). 
�
We define the joint moments of the fluid levels at the stations as

f (j1,...,jN )
i = (−1)

∑N
m=1 jm

∂j1

∂vj1
1

. . .
∂jN

∂vjN

N

f (N)∗
i (v1, . . . , vN )

∣
∣
∣
∣
∣
v1=···=vN=0

.

Furthermore, we define the following quantities

H(j1,...,jN )
k = (−1)

∑N
m=1 jm

1
k!

∂j1

∂vj1
1

. . .
∂jN

∂vjN

N

(
Q − ∑N

i=1 Rivi

di

)k
∣
∣
∣
∣
∣
∣
v1=···=vN=0

σ
(j1,...,jN )
i = (−1)

∑N
m=1 jm

∂j1

∂vj1
1

. . .
∂jN

∂vjN

N

σ∗
i (

N∑

i=1

Rivi − Q)

∣
∣
∣
∣
∣
v1=···=vN=0
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Corollary 2. The joint moments of the fluid levels at the stations can be deter-
mined from the following approximate system of linear equations

f
(j1,...,jN )
i+1 =

∑

j1,1+...+j1,3=j1

( j1

j1,1, j1,2, j1,3

)
. . .

∑

jN,1+...+jN,3=jN

( jN

jN,1, jN,2, jN,3

)

K−ji,1∑

k=0

f
(j1,1,...,ji−1,1,ji,1+k,ji+1,1,...,jN,1)

i H
(j1,2,...,jN,2)

k σ
(j1,3,...,jN,3)

i , (21)

where j1, . . . , jN = 0, . . . K and i ∈ {1, . . . , N}.
Proof. Taking (−1)

∑N
m=1 jm ∂j1

∂v
j1
1

. . . ∂jN

∂v
jN
N

on (20) and setting v1 = · · · = vN = 0

gives

f
(j1,...,jN )
i+1 =(−1)

∑N
m=1 jm

∂j1

∂vj1
1

. . .
∂jN

∂vjN
N

∫ ∞

yi=0

f
(N−1)∗
i (v1, . . . , vi−1, yi, vi+1, . . . , vN )

e
−yi

∑N
i=1 Rivi−Q

di dyi σ∗
i (

N∑
i=1

Rivi −Q)

∣∣∣∣∣
v1=···=vN=0

. (22)

Rearranging (22) leads to

f (j1,...,jN )
i+1 =(−1)

∑N
m=1 jm

∂j1

∂vj1
1

. . .
∂jN

∂vjN

N

∫ ∞

yi=0

f (N−1)∗
i (v1, . . . , vi−1, yi, vi+1, . . . , vN )

∞∑

k=0

yk
i

k!

(
Q − ∑N

i=1 Rivi

di

)k

dyi σ∗
i (

N∑

i=1

Rivi − Q)

∣
∣
∣
∣
∣
v1=···=vN=0

= (−1)
∑N

m=1 jm
∂j1

∂vj1
1

. . .
∂jN

∂vjN

N

∞∑

k=0

(−1)k ∂k

∂vk
i

f (N)∗
i (v1, . . . , vN )

1
k!

(
Q − ∑N

i=1 Rivi

di

)k

σ∗
i (

N∑

i=1

Rivi − Q)

∣
∣
∣
∣
∣
v1=···=vN=0

=
∑

j1,1+...+j1,3=j1

(
j1

j1,1, j1,2, j1,3

)

. . .
∑

jN,1+...+jN,3=jN

(
jN

jN,1, jN,2, jN,3

)

∞∑

k=0

f (j1,1,...,ji−1,1,ji,1+k,ji+1,1,...,jN,1)
i H(j1,2,...,jN,2)

k σ
(j1,3,...,jN,3)
i . (23)

The statement of the corollary comes by applying a truncation at K in the order
of the moments. 
�

The truncation applied in corollary 2 assumes that all the moments f (j1,...,jN )
i ,

in which jm > K at least for one m = 1, . . . , N , can be neglected. The number
of unknowns and the number of equations in the system of linear Eq. (21) is
N(K + 1)N .
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4 The Steady-State Fluid Levels at Arbitrary Epoch

4.1 Equilibrium Relationships

Let s̃i(	) the service time at station i in the 	-th cycle. The steady-state service
time at station i and its mean is defined as

s̃i = lim
k→∞

∑k
�=1 s̃i(	)

k
and si = lim

k→∞
E[

∑k
�=1 s̃i(	)]
k

,

respectively. Similarly let c̃i(	) the cycle time between two consecutive visit to
station i in the 	-th cycle. The steady state cycle time at station i, and its mean
is defined as

c̃i = lim
k→∞

∑k
�=1 c̃i(	)

k
and ci = lim

k→∞
E[

∑k
�=1 c̃i(	)]
k

,

respectively. It follows from the definitions of ci and si that

ci = σ +
N∑

j=1

sj , and hence c = ci, i ∈ {1, . . . , N}. (24)

Let Λi(t) be the accumulated fluid flowed into the buffer of station i in
interval (0, t]. The steady state mean amount of fluid, which flows into the buffer
of station i during one cycle, ai, is defined as

ai = lim
k→∞

E[
∑k

�=1 Λi(t
f
i (	 + 1)) − Λi(t

f
i (	))]

k
.

The right hand side of this definition can be rearranged as

lim
k→∞

E[
∑k

�=1 Λi(t
f
i (	 + 1)) − Λi(t

f
i (	))]

E[
∑k

�=1 c̃i(	)]
lim

k→∞
E[

∑k
�=1 c̃i(	)]
k

and thus we get

ai = λic, i ∈ {1, . . . , N}. (25)

Corollary 3. In the stable fluid non-zero switchover-times polling model the
steady-state mean cycle time can be expressed as

c =
σ

1 − ρ
. (26)

Proof. We apply a classical statistical equilibrium argumenting, see e.g. in [10].
The stable model is in statistical equilibrium, which implies that the mean
amount of fluid flowing into the buffer of station i during a cycle equals the
mean amount of fluid removed at station i during the same cycle, which equals
sidi. Putting them together yields

ai = sidi. (27)
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Applying (25) in (27) and expressing si from it leads to

si =
λi

di
c. (28)

Applying (28) in (24) and changing to the notation of utilizations results in

ci = σ +
N∑

j=1

ρjc. (29)

Rearranging (29) gives the statement. 
�
Remark 3. The relations (24), (25) and (26) are valid independently of the used
service discipline and hence they have more general validity scope.

4.2 The Steady-State Moments of the Service Time at Station i

The steady state pdf of the service time at station i, si(t), and the corresponding
LT, s∗

i (v), for t ≥ 0 are defined as

si(t) = lim
k→∞

d

dt

E[
∑k

�=1 1(s̃i(�)<t)]
k

, and s∗
i (v) =

∫ ∞

t=0

si(t)e−stdt,

where 1(con) denotes the indicator of condition “con”.
Let fi(xi) and f∗

i (v) stand for steady-state vector density of the fluid level at
station i at i-polling epoch and its LT, respectively. They can be obtained from
fi(x̄) and f (N)∗

i (v̄) as

fi(xi) =
∫ ∞

x1=0

. . .

∫ ∞

xi−1=0

∫ ∞

xi+1=0

. . .

∫ ∞

xN=0

fi(x̄) dxN . . . dxi+1dxi−1 . . . dx1,

f∗
i (v) = f (N)∗

i (v̄)
∣
∣
∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.

Theorem 2. In the stable fluid non-zero switchover-times polling model with
gated discipline the steady-state LT of the service time at station i can be
expressed as

s∗
i (v) = f∗

i (
v

di
)e, i ∈ {1, . . . , N}. (30)

Proof. If the fluid level at station i is xi at i-polling epoch then the service time
at station i is xi

di
. Therefore the steady-state LT of the service time at station i

can be obtained as

s∗
i (v) =

∫ ∞

xi=0

fi(xi)e
−v

xi
di dxie, (31)

which can be rearranged as (30). 
�
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Corollary 4. In the stable fluid non-zero switchover-times polling model with
gated discipline the steady-state moments of the service time at station i are
given as

s
(k)
i =

1
dk

i

f (k)i e, k ≥ 1, i ∈ {1, . . . , N}. (32)

Proof. Taking the k-th derivative of (30) with respect to v at v = 0 and multi-
plying it by (−1)k results in the statement. 
�

4.3 The Steady-State Joint Vector LT of the Fluid Levels at the
Stations at Arbitrary Epoch

The steady-state joint density of the fluid levels at the stations and the state of
the modulating Markov chain at an arbitrary epoch, the 1 × L row vector q(x̄)
is defined by its j-th element as

[q(x̄)]j = lim
t→∞

∂

∂x1
. . .

∂

∂xN
Pr(Ω(t) = j,X1(t) < x1, . . . XN (t) < xN ), j ∈ Ω,

and its LT with respect to x̄ can be given as

q(N)∗(v̄) =
∫ ∞

x1=0

. . .

∫ ∞

xN=0

q(x̄)e−v1x1 . . . e−vN xN dxN . . . dx1.

Moreover, let ej = (0, . . . , 0, 1, 0, . . . , 0) be the 1 × L vector with 1 at the j-th
position. Then the 1 × L indicator vector 1(Ω(t)) is defined as

1(Ω(t)) =
L∑

j=1

1(Ω(t)=j)ej .

We use the following notation

f (N−1)∗
i (v1, . . . , vi−1, xi, vi+1, . . . , vN ) =

∫ ∞

x1=0

. . .

∫ ∞

xi−1=0

∫ ∞

xi+1=0

. . .

∫ ∞

xN=0

fi(x̄) e−v1x1 . . . e−vi−1xi−1e−vi+1xi+1 . . . e−vN xN dxN . . . dxi+1dxi−1 . . . dx1.

Theorem 3. In the stable fluid non-zero switchover-times polling model with
gated discipline the following relation holds for the steady-state joint vector LT
of the fluid levels at the stations at arbitrary epoch:

q(N)∗(v̄)

⎛

⎝
N∑

j=1

Rjvj − Q

⎞

⎠ = (33)

1
c

N∑

i=1

[

divi

(
f (N)∗
i (v̄) − m(N)∗

i (v̄)
)

⎛

⎝
∑

j �=i

Rjvj + (Ri − diI) vi − Q

⎞

⎠

−1 ]

.
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Proof. The fluid levels at the stations at arbitrary epoch can be expressed by
the help of the fluid levels at the last i-polling epoch on LT level by utilizing
the transient behavior of the arrived fluid (relation (6)) and taking into account
that it can fall either in service or switchover period as well as its position in the
actual period. Thus it is enough to average over a polling cycle for determining
the behavior at arbitrary epoch.

Therefore q(N)∗(v̄) is given by

q(N)∗(v̄) =
E[

∫ c̃1
t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]
E[c̃1]

(34)

=
∑N

i=1 E[
∫ s̃i

t=0
e− ∑N

j=1 Xj(t)vj1(Ω(t))dt] +
∑N

i=1 E[
∫ σ̃i

t=0
e− ∑N

j=1 Xj(t)vj1(Ω(t))dt]
c

.

The fluid level at time t at station i in the service time of station i is the
sum of the remaining fluid level, ξ − tdi, and the fluid level arrived during t. The
fluid level at time t at other stations, i.e., j 	= i in the service time of station i is
the sum of the fluid level at the begin of the service time and the fluid amount
arrived during t.

Taking into account the state change of the modulating CTMC from 0 to t

the LT term E[
∫ s̃i

t=0
e− ∑N

j=1 Xj(t)vj1(Ω(t))dt] can be given as

E[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt] (35)

=
∫ ∞

ξ=0

e−(ξ−tdi)vif (N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

A(N)∗(t, v̄)dtdξ

=
∫ ∞

ξ=0

e−ξvif (N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

etdiviA(N)∗(t, v̄)dtdξ.

Applying (6) in (35) and rearrangement gives

E[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt] =

∫ ∞

ξ=0

e−ξvif (N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

e−t(∑
j �=i Rjvj+(Ri−diI)vi−Q)dtdξ. (36)

The internal integral can be evaluated by means of a relation, which can be
obtained by the help of the Taylor-expansion of eZt, and is given by

∫ x

t=0

e−ZtdtZ = (I − e−Zx). (37)
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Applying (37) in (36) and rearrangement yields

E[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

⎛

⎝
∑

j �=i

Rjvj + (Ri − diI) vi − Q

⎞

⎠ (38)

=
∫ ∞

ξ=0

e−ξvif (N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

(
I − e

− ξ
di

(∑
j �=i Rjvj+(Ri−diI)vi−Q)

)
dξ.

Rearrangement and applying (13) in (38) leads to

E[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

⎛

⎝
∑

j �=i

Rjvj + (Ri − diI) vi − Q

⎞

⎠ (39)

= f (N)∗
i (v̄) − f (N)∗

i (v1, . . . , vi−1,

∑N
i=1 Rivi − Q

di
, vi+1, . . . , vN )

= f (N)∗
i (v̄) − m(N)∗

i (v̄).

Further rearranging of (39) yields

E[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

⎛

⎝
N∑

j=1

Rjvj − Q

⎞

⎠ (40)

= f (N)∗
i (v̄) − m(N)∗

i (v̄) + diviE[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt].

Now we consider the term E[
∫ σ̃i

t=0
e− ∑N

j=1 Xj(t)vj1(Ω(t))dt]. The fluid level at time
t at station j, j ∈ {1, . . . , N}, in the switchover time after the service of station
i is the sum of the fluid level at station j at start of the switchover time, and
the fluid level arrived during t. Taking into account the state change of the
modulating CTMC from 0 to t the LT term E[

∫ σ̃i

t=0
e− ∑N

j=1 Xj(t)vj1(Ω(t))dt] can
be given as

E[
∫ σ̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]=m(N)∗

i (v̄)
∫ ∞

τ=0

∫ τ

t=0

A(N)∗(t, v̄)dt σ(τ) dτ. (41)

Applying (6) in (41) yields

E[
∫ σ̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

= m(N)∗
i (v̄)

∫ ∞

τ=0

∫ τ

t=0

e−t(∑N
j=1 Rjvj−Q)dt σ(τ) dτ. (42)
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We apply again (37), now in (42), which gives

E[
∫ σ̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

⎛

⎝
N∑

j=1

Rjvj − Q

⎞

⎠ = (43)

m(N)∗
i (v̄)

∫ ∞

τ=0

(
I − e−τ(∑N

j=1 Rjvj−Q)
)

σ(τ) dτ.

Rearranging (42) and applying (14) in it gives the relation for
E[

∫ σ̃i

t=0
e− ∑N

j=1 Xj(t)vj1(Ω(t))dt] as

E[
∫ σ̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

⎛

⎝
N∑

j=1

Rjvj − Q

⎞

⎠ (44)

= m(N)∗
i (v̄)

⎛

⎝I − σ∗
i

⎛

⎝
N∑

j=1

Rjvj − Q

⎞

⎠

⎞

⎠ = m(N)∗
i (v̄) − f (N)∗

i+1 (v̄).

Using (40) and (44) in (34) and rearranging gives

q(N)∗(v̄)

⎛

⎝
N∑

j=1

Rjvj − Q

⎞

⎠

=
1
c

( N∑

i=1

(

f (N)∗
i (v̄) − m(N)∗

i (v̄) + diviE[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]

)

+
N∑

i=1

(
m(N)∗

i (v̄) − f (N)∗
i+1 (v̄)

) )

=
1
c

N∑

i=1

diviE[
∫ s̃i

t=0

e− ∑N
j=1 Xj(t)vj1(Ω(t))dt]. (45)

The statement of the theorem comes by applying (39) in (45). 
�
Let q∗

i (v) denote the steady-state vector LT of the fluid level at station i at
arbitrary epoch. q∗

i (v) can be obtained as

q∗
i (v) = q(N)∗(v̄)

∣
∣
∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.

Let mi(xi) and m∗
i (v) stand for steady-state vector density of the fluid level

at station i at i-departure epoch and its LT, respectively. They can be obtained
from mi(x̄) and m(N)∗

i (v̄) as

mi(xi) =
∫ ∞

x1=0

. . .

∫ ∞

xi−1=0

∫ ∞

xi+1=0

. . .

∫ ∞

xN=0

mi(x̄) dxN . . . dxi+1dxi−1 . . . dx1,

m∗
i (v) = m(N)∗

i (v̄)
∣
∣
∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.
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Corollary 5. In the stable fluid non-zero switchover-times polling model with
gated discipline the following relation holds for the steady-state vector LT of the
fluid level at station i at arbitrary epoch:

q∗
i (v) (Riv − Q) ((Ri − diI) v − Q) =

1
c
div (f∗

i (v) − m∗
i (v)) . (46)

Proof. The statement comes by setting v1 = . . . = vi−1 = vi+1 = . . . = vN =
0, vi = v in (33). 
�
Remark 4. The relation (46) holds also for fluid vacation model with gated dis-
cipline (see (61) in [6]).

Corollary 6. In the stable fluid non-zero switchover-times polling model with
gated discipline the steady-state vector mean of the fluid level at station i at
arbitrary epoch can be determined as

q(1)
i =

1
6λi(λi − di)

r(3)eπ

− 1
2(λi − di)

r(2)
1
λi

(

I − 1
(λi − di)

eπ(Ri − diI)
)

× (Q + eπ)−1 (Ri − diI)eπ

− 1
2(λi − di)

r(2)eπ (Q + eπ)−1

(
Rieπ

λi
− I

)

(47)

+r(1) (Q + eπ)−1

(
1

(λi − di)
(Ri − diI)eπ − I

)

×
( −1

λi(λi − di)
(Ri − diI) (Q + eπ)−1 (Ri − diI)eπ

+ (Q + eπ)−1 (
Rieπ

λi
− I)

)

+πRi (Q + eπ)−1

(
Rieπ

λi
− I

)

.

where c is given by (26) and r(1), r(2) and r(3) are given by

r(1) = −di

c
(f − m),

r(2) = −2di

c
(f (1) − m(1)),

r(3) = −3di

c
(f (2) − m(2)).

Proof. The proof of the statement can be found in [6] (proof of Corollary 6). 
�
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Abstract. The performance of service units might depend on various
randomly changing environmental effects. It is quite often the case that
these effects varies on different time scales. In this paper we consider short
and long scale service variability, where the short scale variability affects
the instantaneous service speed of the service unit and the large scale
effect is defined by a modulating background Markov chain. The main
modelling challenge is that the considered short and long range variation
results randomness along different axes, the short scale variability along
the time axis and the long scale variability along the work axis. The work
presents mostly simulation results; the mathematical setup for analytical
results is provided, but the actual analysis is subject to future research.

Keywords: Short and long term service variability · Brownian motion
Markov modulation · Performance analysis

1 Introduction

Service speed variability is a problem that has been measured in many practical
application scenario. For example in [3], it has been observed for vehicular traffic.
More recently this problem has been recognized in data-center [2]. The effect of
variability was also studied in [1] with application to video-streaming. Most of the
previous literature however, focused only on large-time scale variability, where
Markov-modulating models represent the random effect of the environment. All
of those models can be handled with matrix analytic methods, summarized e.g.,
by Latouche and Ramaswami in [4].
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The variation in the service speed can be modelled by dividing the amount
of job to be executed into “infinitesimal quantities of work to be done” and con-
sider the “speed at which this infinitesimal work is performed”, i.e., the random
amount of time needed to execute the infinitesimal amount of work. Then, if a
model that defines how speed changes over time, the complete system can be
modelled in a straight-forward way where the amount of work increases grad-
ually along the analysis and the time required to execute the given amount of
work is a random process.

If the service process depends on a time dependent random process, e.g., on
a modulating background CTMC representing the environmental state, whose
“clock” evolves according to the time, then the natural performance analysis is
based on the gradually increasing time and randomly varying time dependent
environment state.

However, in many real applications, variability is not easily predictable
and works at different time-scales. Modulating CTMCs (whose “clock” evolves
according to the time) works very well to model variability where the parame-
ters of the job execution remains constant for a longer random period of time,
and there are few jumps during the execution of one job. Apart of this large
scale variability, in this work, we focus also on variability that occurs at much
smaller time scales, where the execution speeds changes thousands, if not mil-
lions, of times during the execution of the main job, and combine it with the
more classical modulation that works on a larger time scale.

The remainder of this paper is structured as follows. In Sect. 2 we start with
considering only the small time-scale variability. In Sect. 3 we additionally intro-
duce also the large time-scale variability. The effects of the considered variability
is studied in Sect. 4 through numerical examples, and Sect. 5 concludes the paper.

2 Small Time-Scale Variability

In this section, we omit the large time-scale variability and instead focus only on
small time-scale variability. So assume that the environmental state is unchanged
for now.

We introduce a second order fluid model for the short time-scale variability:
assuming that a job is composed of quantums of size Δx, each such quantum is
served in a random amount of time with distribution N(μΔx, σ2Δx) (with μ >
0). Assuming that the service times of the different quantums are independent,
the progress of service is modeled by a Brownian motion B(x) with parameters
μ and σ2. We emphasize that in this model, the Brownian motion corresponds to
the time required to service a job as a function of the size of the job (see Fig. 1).
A job of size x thus requires a random time T with distribution N(μx, σ2x),

whose probability density function is e
− (t−μx)2

2xσ2√
2πxσ2 . Note that a Brownian motion

may take negative values as well, which does not make sense physically, but,
since μ > 0, for macroscopic values of w, the probability that T is negative is
negligible.
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Fig. 1. The time T required to service a job as a function of the job size W

We focus on the service of a job in a queue whose work requirement, W , is
generally distributed according to probability density function fW (x).

Using the second order fluid model assumption, the probability density func-
tion of the service time of a job, denoted by fT (t), can be computed as:

fT (t) =
∫ ∞

0

fW (x) · e− (t−μx)2

2xσ2

√
2πxσ2

dx (1)

we can compute the moments of T as:

E[TK ] =
∫ ∞

0

fW (x)
k∑

j=0

uk,j(xμ)j(
√

xσ)k−jdx =

=
k∑

j=0

uk,jμ
jσk−j

∫ ∞

0

fW (x)xj(
√

x)k−jdx =

=
k∑

j=0

uk,jμ
jσk−jE[W

k+j
2 ] (2)

Since σ2 appears only for even exponents, k + i is always even, so E[T
k+i
2 ] is

always an integer moment of T . For example, for the first and second moment,
since E[N(xμ, xσ2)2] = xμ and E[N(xμ, xσ2)2] = x2μ2 + xσ2, we have:

E[T ] = μE[W ],
E[T 2] = μ2E[W 2] + σ2E[W ].

3 Combining Large and Small Time-Scale Variability

Large scale variability can be considered using a discrete state Markov modulat-
ing process (MMP) of K states, denoted by M(t). The MMP is a CTMC with
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infinitesimal generator matrix denoted by Q. In state i, the service is charac-
terised by rate μi and variance σi.

Only considering large scale variability (that is, assuming σk ≡ 0) would
lead to a standard first order Markov-modulated fluid model. However, including
small-scale variability makes for an interesting and complex model.

Assume that a job of size W = x starts service at time t = 0, with the
background modulating process in state i. Then the evolution of the service
time B(x) as a function of the job size is the following:

– Let a1 denote the time of the first transition of M(t). As long as B(x) is
smaller than a1, B(x) evolves according to a BM(μi, σi).

– At time a1, M(t) changes to some state j. Accordingly, assuming that the
first passage of B(x) to a1 occurs at work amount w1, for x ≥ w1, B(x)
evolves according to a BM(μj , σj) (starting from the point w1 and from level
a1).

– This is repeated for further transitions of M(t) at times a2, a3, . . . , up to the
point x = W .

Note that in visualization, the x axis denotes the job size, and the y axis
denotes time, see Fig. 2. Thus for B(x), the behaviour can be described as a
type of level-dependent Brownian motion: the parameters μ and σ of the Brow-
nian motion change upon first passage to levels a1, a2, . . . . This is different from
usual second order Markov-modulated fluid models, where parameter changes
occur upon the variable of the Brownian motion (x in our case) reaching some
transition points instead of the level reaching transition points.

0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

Fig. 2. A possible realization of B(x) for job size W = 1.2

Keeping in mind that M(t) is a CTMC, the entire distribution of B(x) is
determined by the initial points t = 0 and x = 0 and the initial state of the
modulating process M(0) = i. The process B(x) can be simulated as follows:
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– B(x) starts from t = 0, x = 0, with M(0) = i and job size W .
– Generate the first transition time a1 of M(t).
– B(x) runs as a BM(μi, σ

2
i ) until either the value of B(x) reaches a1 or x

reaches W , whichever occurs first.
– If x = W occurred first, then the simulation is finished.
– If B(w1) = a1 for some w1 < W , then we generate the next state j and

also the next transition time a2 according to the CTMC M(t), then continue
B(x) as a Brownian motion with parameters (μj , σ

2
j ) starting from the point

(w1, a1) until either the value of B(x) reaches a2 or x reaches W , whichever
occurs first.

– We keep generating new transitions and new Brownian motion sections until
we reach W . The service time of the job is T = B(W ).

The main question, similar to Sect. 2, is the distribution of T and performance
measures derived from T . In this case, an analytical answer is non-trivial even
for a given job size W = x. One possible analytic formulation is to first introduce
the cumulative distribution type functions (for fixed x)

Gij(x, t) = Pr (B(x) ≤ t,M(B(x)) = j|M(0) = i,W = x) (3)

which include information about the initial and final background state of M(t)
along with the distribution of the service time. An analytic formula for Gij(W, t)
is subject to ongoing research.

4 Simulation Results

To study the effects of variability, we have applied the procedure outlined in
Sect. 3 to simulate the behaviour of the queue with short and long scale vari-
ability. In particular, to find the intersection between the Brownian motion and
the level determined by the time at which the modulating process changes state,
we have discretised the work with a quantum Δx, and during the period when
the MMP stays in state i, for each quantum we have set the evolution of the
time according to a normal distribution N(μiΔx, σ2

i Δx) (following the proce-
dure outlined at the beginning of Sect. 2). The MMP leaves state i at the first
time instant in which the discretised BM crosses the level Tn, where Tn is the
time of the nth state transition of the MMP. When the nth state transition
occurs in state i, then Tn = Tn−1 + τi, where Tn−1 is the time of the previous
state transition and τi is exponentially distributed with parameter −Qii (the
ithe diagonal element of the generator matrix of the modulating CTMC). This
simulation approach is indeed an approximation, but it can be made arbitrarily
precise by choosing appropriately small values of Δx.

In our numerical experiment, we have considered a two-state modulating
process with jump rates γ12 and γ21, and studied the effects of different service
speed and variability parameters μi and σi. To show a possible application,
we have used the proposed process to describe the variable service rate in an
M/G/1 queue, where jobs arrive according to a Poisson process of rate λ and are
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served by a single server subject to short and long range variability according to
a first-come-first-served discipline. To compare the results for different service
time distributions we assumed that the mean service time E[W ] is identical in
each cases. The arrival rate, λ, is selected such that the queue is stable. Unless
otherwise stated, the used parameters have been the following:

λ = 1000
350 job/s, E[W ] = 100ms, ΔX = 0.05ms,
μ1 = 2, μ2 = 4, σ1 = 0.4, σ2 = 1.5,

1
γ12

= 1.25 s, 1
γ21

= 0.8 s.
(4)

In this framework, the discretisation interval has been chosen so that on average,
the BM for each job requires 2000 samples, and in the average sojourn time in
the two modulating states, the BM is samples respectively 25000 and 16000
times. Each simulation considers the execution of N = 10000 jobs.

We start focusing on jobs requiring a fixed amount of work (i.e. W = E[W ]
is deterministic. Figure 3a shows the service time distribution for different server
variability configuration. The Base case, considers the case in which no vari-
ability is used: in particular to μ1 = μ2 = 2.4848 and σ1 = σ2 = 0. As it is
expected, all the probability mass is centred along μE[W ] = 248.48. The Small
variability cases, differs from the Base one by adding a small variability. In the
Small (fixed) case σ1 = σ2 = 0.98773 and in the Small (variable) case we have
the state dependent variability σ1 = 0.4 and σ2 = 1.5. As it can be seen, they
both destroy the deterministic behaviour, in a slightly different way: the fixed σ
case has a more uniform effect, while the variable one presents larger tails. The
case called Large considers only large scale variability only, i.e., σ1 = σ2 = 0.
During a sojourn in a state of the MMP the service time of a job is determin-
istic. In state 1, with μ1 = 2, the service time is exactly 200 ms, and in state 2,
with μ2 = 4, it is exactly 400 ms. The jumps in Fig. 3a at 200 ms, and 400 ms
are associated with the cases when the MMP stays in state 1 (2, respectively)
for the whole period of the service. The cases when the MMP experiences state
transition during the service are represented by the continuously increasing part
of the Large curve. The case that combines both small and large scale vari-
ability (Small+Large, μ1 = 2, μ2 = 4, σ1 = 0.4, σ2 = 1.5) further smooths the
curves, and the effect is more evident near the two probability masses at 200 ms,
and 400 ms. Figure 3b shows the response time distribution of the corresponding
queuing models. In this case it is interesting to see that in the cases where small
variability is considered there are no jumps due to its perturbation effect.

We then study the effect of the modulating process, by changing the average
sojourn time in its two states, while maintaining the state probabilities. Figure 4
considers different combinations of sojourn times ranging from 12.5 s and 8 s
down to 1.25 ms and 0.8 ms for the deterministic job length distribution W ,
and the other parameters defined as in (4). When the sojourn time is very large,
service times are correlated, and the service time distribution tend to concentrate
the probability mass near the times required in both modulating states. On the
other hand, when the switching process changes very fast, the distribution tend
to concentrate in the average case, producing results very similar to the one seen
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Fig. 3. Considering different small scale and large scale variability configurations for a
fixed job length: (a) service time distribution, (b) response time distribution

in Fig. 3 for the cases with small variability only: in this case, there is almost
no difference between large scale and small scale variability, because the quick
alternation of the modulating process eliminates the large scale effect. As a final
remark, in order to consider a switching process with 1.25 ms and 0.8 ms, we
had to reduce the sampling time Δx = 0.01 to allow a sufficient number of
samples during the sojourn in a modulating state. For what concerns response
time (Fig. 4c), when the modulating process present deep correlation by spending
longer times in a single state, bursts are created, decreasing considerably the
performances of the system.

Fig. 4. Considering different durations in the modulating process for a fixed job length:
(a) service time distribution, (b) response time distribution

We finally consider the effect of variability on different job length distri-
butions. In particular, Fig. 5a shows the service time distribution when the
job length follows, beside the deterministic distribution already discussed, an
exponential distribution, an Erlang distribution with 4 stages, and the following
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Hyper-Exponential (wH(x)) and Pareto (wP (x)) distributions characterised by
the following probability density functions:

wH(x) =
1
2
λ1e

−λ1x +
1
2
λ2e

−λ2x,

wP (x) =

{
20

5
4 5

4

x
9
4

x > 20,

0 x < 20,

where λ1 = 1

100(1+
√

3
5 )

and λ2 = 1

100(1−
√

3
5 )

. As it can be noted, the effect of

service variability is more evident on job length distributions with a lower coeffi-
cient of variation. Figure 5b shows the effect on response time: indeed, combining
the effect of service variability with heavy tailed distribution, as for the Pareto
case, can create very long queues which can lead to extremely long response
times.

Fig. 5. Considering small scale and large scale variability for different job length dis-
tributions: (a) service time distribution, (b) response time distribution

5 Conclusions

In this work, we have introduced a queue with a service model where the large
timescale variability is modelled by a modulating background Markov process,
and small timescale variability is modelled by a second-order fluid process for
the service time of a job. The resulting service model can be interpreted as a
certain type of level-dependent Brownian motion.

We have presented simulation results for the service time and response time
of a job for various job size distributions. In future work, we hope to give a full
analytic description of the system, most notably by giving an analytic solution
for (3).
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Abstract. For the purpose of satisfying the response performance of
cloud users while reducing the energy consumption in cloud comput-
ing, we propose a task scheduling strategy with a sleep-delay timer and
a waking-up threshold. According to the stochastic behavior of tasks
with the proposed strategy, we establish a synchronous vacation queue-
ing model with vacation-delay and N -policy. Then we derive the average
sojourn time of tasks and the energy conservation level of the system in
a steady state. Finally, we provide numerical experiments to investigate
the impacts of system parameters on performance criteria.

Keywords: Cloud computing · Task scheduling strategy
Sleep-delay timer · Waking-up threshold · Sojourn time · Energy
conservation level

1 Introduction

Cloud computing is a style of computing in which dynamically scalable and
virtualized resources are provided as a service over the Internet. However, all
servers are responsible for dramatic amounts of energy consumption and carbon
dioxide emission, making the creation of a greener cloud environment one of the
fundamental challenges in cloud computing. Greener cloud environment aims to
reduce the energy utilization and weaken the impact of carbon dioxide emissions
on the environment.

Due to its unprecedented computing capability, cloud computing has become
a popular paradigm and has attracted attention from a wide range of enter-
prises. Many scholars have carried out research into the energy management
and optimization of cloud computing. Cheng et al. designed an algorithm, Min-
imum Expectation Execution Energy with Performance Constraints (ME3PC),
which can reduce energy consumption effectively while meeting performance
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constraints [1]. Chen et al. proposed a Dynamic Voltage and Frequency Scaling
(DVFS) scheme, which can dynamically predict the most suitable voltage and
frequency for the multi-core embedded system [2]. Shen et al. discussed a genetic
algorithm E-PAGA to achieve adaptive regulations for different requirements of
energy and performance in cloud tasks [3]. While all these approaches seek to
reduce energy consumption, they ignore the issue of VMs staying awake even
when no tasks are being processed.

In general, putting idle virtual machines (VMs) in sleep mode during low-load
periods is a direct way to reduce power consumption. Kempa investigated a finite-
buffer queueing system with vacation, in which the transmission after each sleep
period is initialized only after the number of packets in the buffer reaches a thresh-
old [4]. Lawanyashri et al. used a vacation and threshold policy to efficiently con-
trol the workload level of each VM in the data center. This policy can reduce the
energy consumption and cost accordingly [5]. For a greener cloud computing, Singh
et al. proposed a deep-sleep mode when all the VMs were not being used. With this
method, the energy consumption is reduced, while the resource utility is improved
[6].Making idleVMs sleep can reduce energy consumption in a certaindegree.How-
ever, continually switching VMs can cause response penalties.

Inspired by these observations, we propose a novel energy efficient task
scheduling strategy with a sleep-delay timer and a waking-up threshold under
the constraint of the quality of experience (QoE) of cloud users. By constructing
a two-dimensional continuous-time Markov chain (CTMC), we evaluate the sys-
tem performance in terms of the average sojourn time of tasks and the energy
conservation level of the system.

The remainder of this paper is organized as follows: Sect. 2 describes the
task scheduling strategy proposed in this paper and the system model. Section 3
presents the steady-state distribution analysis of the system model. Section 4 gives
the performance criteria and provides numerical experiments to evaluate the sys-
tem by using this proposed strategy. Finally, Sect. 5 draws conclusions of the paper.

2 Task Scheduling Strategy and System Model

In this section, we present the task scheduling strategy that we propose in this
paper and present the system model by using this strategy.

2.1 Task Scheduling Strategy

Cloud computing employs distributed hardware and software services. Multiple
VMs can be deployed onto one physical machine (PM) through virtualization in
cloud computing environments. Groups of VMs distributed across one or more
PMs are always awake, even though there are no tasks to be processed. Thus,
large amounts of power are wasted.

In cloud data centers, the PM is usually a high configured server. To provide
high availability and improve parallel processing capabilities, each VM hosted
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on one PM works independently under the control of its own operating system.
From the perspective of each VM, it is possible to introduce the sleep mode.

In view of this situation, we propose a novel energy efficient task scheduling
strategy with a sleep-delay timer and a waking-up threshold for cloud computing.
To improve the energy efficiency, we set a critical threshold N . At the completion
instant of a sleep period, if the number of tasks waiting in the system buffer
reaches or exceeds the threshold, all the VMs will wake up to provide service.
Otherwise, another sleep period will be activated and all the VMs will remain
asleep. To guarantee the quality of experience (QoE) of cloud users, we set a
sleep-delay timer for the PM. The task arriving within the sleep-delay timer
will be processed immediately. Only when there are no task arrivals within the
sleep-delay timer will all the VMs go to sleep.

In the proposed strategy, there are three operating states for the PM: awake
state, sleep state and sleep-delay state.

In the awake state, tasks can be processed continuously following the first−
come first − served discipline. Once the system becomes empty, a sleep-delay
timer will be started, and all the VMs will enter the sleep-delay state. If any
new tasks arrive while the sleep-delay timer is on, all the VMs will provide
service immediately. Otherwise, all the VMs will go to sleep when the sleep-
delay timer expires. Once the PM enters the sleep state, a sleep timer with a
random duration will be activated. Tasks arriving while the sleep timer is on
will queue in the system buffer. At the completion instant of a sleep period, if
the number of tasks queueing in the system buffer is less than the threshold
N , another sleep period will be activated and the sleep timer will be restarted.
Otherwise, all the VMs will wake up and begin serving all the tasks in the system
one by one.

2.2 System Model

By regarding the tasks submitted to the cloud computing system as customers,
each VM hosted on the PM as a server, the sleep state as the vacation, the sleep-
delay state as the vacation-delay, the waking-up threshold as the N -policy, we
establish a synchronous multiple vacation queueing model with a vacation-delay
and an N -policy.

Since the behavior of PMs in cloud data centers is stochastically homoge-
neous, in this paper, we focus on a tagged PM to investigate the task schedul-
ing strategy. The task arrivals are assumed to follow a Poisson process with
parameter λ (0 < λ < +∞). Each task requires an independently and iden-
tically distributed service time, which also follows an exponential distribution
with parameter μ (0 < μ + ∞). In addition, the time lengths for the sleep-delay
timer and the sleep timer are supposed to follow exponential distributions with
parameters β (0 < β < +∞) and θ (0 < θ < +∞), respectively. The number of
VMs in the system is assumed to be k and the system buffer is supposed to be
infinite.

The behavior of the system model under consideration can be described in
terms of the regular irreducible two-dimensional continuous-time Markov chain
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(CTMC) {(Xt, Yt), t ≥ 0}, where Xt = i (i = 0, 1, . . .) is the number of
tasks in the system at the instant t. Xt is also referred to as the system level.
Yt = j (j = 0, 1, 2) is the PM state at the instant t. Yt is called the PM state.
j = 0 means the PM is in a sleep state, j = 1 means the PM is in an awake
state, and j = 2 means the PM is in a sleep-delay state.

Let πi,j be the steady-state distribution of the two-dimensional CTMC. To
satisfy the necessary and sufficient condition for the system model to be stable,
we assume the CTMC is positive recurrent. Then we can define πi,j as

πi,j = lim
t→∞ P{Xt = i, Yt = j}, i = 0, 1, . . . , j = 0, 1, 2. (1)

We define πi as the steady-state probability distribution for the system level
being equal to i. πi can be partitioned as follows:

πi = (πi,0, πi,1, πi,2), i = 0, 1, . . . . (2)

The steady-state probability distribution Π of the two-dimensional CTMC
is composed of πi (i = 0, 1, . . .). Π is then given as follows:

Π = (π0,π1, . . .). (3)

3 Model Analysis

In this section, we discuss the state transition of the two-dimensional CTMC
and derive the steady-state probability distribution of the system model.

3.1 State Transition

From the model hypothesis mentioned in Subsect. 2.2, we can easily recognize
that {(Xt, Yt), t ≥ 0} is a Markov process. Due to the relationship between the
number k of VMs in the system and the value of the threshold N , two forms of
the state transition for the CTMC exist. For the case of the N ≤ k, the state
transition of the CTMC is represented in Fig. 1(a). For the case of the N > k,
the state transition of the CTMC is represented in Fig. 1(b).

From Fig. 1, we can find that the system state transitions occur only between
adjacent levels. Hence, the two-dimensional CTMC {(Xt, Yt), t ≥ 0} can be seen
as a type of quasi birth-and-death (QBD) process.

3.2 Steady-State Probability Distribution

For the case in Fig. 1(a), the state transition is repetitive from the level k. For
the case in Fig. 1(b), the state transition is repetitive from the level N . The
steady-state probability distribution satisfies the matrix geometric solution form
as follows:

πi = πyR
i−y, i ≥ y + 1 (4)
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Fig. 1. The state transition of the two-dimensional CTMC presented in this paper.

where y is defined as the maximum of the number k of VMs and the threshold
N , i.e., y = max{k ,N }, R is the rate matrix.

According to the state transition in Subsect. 3.1, the form of the rate matrix
R can be assumed as follows:

R =

⎛
⎝

r11 r12 0
0 r22 0
0 0 0

⎞
⎠ (5)

where rij is the element that need to be solved.
In the matrix geometric solution method shown in [7], the matrix quadratic

equation is equivalent to the following set of equations:
⎧⎪⎨
⎪⎩

kμ(r11r12 + r12r22) + θr11 − (λ + kμ)r12 = 0
kμr22

2 − (λ + kμ)r22 + λ = 0
−(λ + θ)r11 + λ = 0.

(6)

By solving Eq. (6), the rate matrix R is derived as follows:

R =

⎛
⎜⎝

λ

λ + θ
ρ 0

0 ρ 0
0 0 0

⎞
⎟⎠ (7)

where ρ =
λ

kμ
< 1.

Applying the normalized condition (π0,π1, . . . ,πy−1)e+πy(I −R)−1e1 = 1
and the Gauss-Seidel method, we can obtain πi (i = 0, 1, . . . , y). In the normal-
ized condition, e is a 3y × 1 vector with ones, and e1 is a 3× 1 vector with ones.
By substituting πy into Eq. (4), we can obtain πi (i = y + 1, y + 2, . . .). Then,
the steady-state distribution Π = (π0,π1, . . .) of the system can be presented
numerically.
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4 Performance Criteria and Experimental Results

In this section, we derive the performance criteria and provide numerical exper-
iments to investigate the system performance.

4.1 Performance Criteria

We define the average sojourn time of tasks as the sum of the average waiting
time of tasks in the system buffer and the average service time of tasks on the
VM. According to the steady-state distribution given in Subsect. 3.2 and using
Little’s law, the average sojourn time W of tasks can be given as follows:

W =
1
λ

( ∞∑
i=0

i(πi,0 + πi,1 + πi,2)

)
. (8)

We then define the energy conservation level of the system as the average
energy conservation per unit time with our proposed strategy. Let Ca be the
energy consumption per unit time in the awake state or the sleep-delay state.
Let Cs be the energy consumption per unit time in the sleep state. Energy can be
saved in the sleep state. However, additional energy will be consumed, including
the energy consumption Ct for each switching from the sleep state to the awake
state, and the energy consumption Cl for each listening. From the perspective
of the whole system, the energy conservation level Ev of the system is given as
follows:

Ev =
∞∑
i=0

πi,0 × (Ca − Cs) −
∞∑
i=1

πi,0 × θ × Ct −
∞∑
i=0

πi,0 × θ × Cl. (9)

4.2 Experimental Results

We provide numerical experiments to investigate the proposed strategy. Refer-
encing to [8], we set the experimental parameters in Table 1.

Table 1. Experimental parameters.

Parameters Values

Total number n of VMs in the system 20

Service rate μ 0.2 (tasks/ms)

Sleep-delay parameter β 1.2 (times/ms)

Energy consumption level Cs of a sleeping VM 2 (mW)

Energy consumption level Cl of each listening 4 (mW)

Energy consumption level Ca of a busy VM 20 (mW)

Energy consumption level Ct of each switching 12 (mW)
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Considering different arrival rate λ of tasks (λ = 0.4 and λ = 0.7) as an
example, we investigate the change trend of the average sojourn time W of tasks
versus the sleep parameter θ for the different threshold N in Fig. 2. For the same
threshold, as the sleep parameter increases, the time length of a sleep period gets
shorter, the processing of a task is less likely to be delayed. Thus, the average
sojourn time of tasks decreases. For the same sleep parameter, as the threshold
increases, the time spent waiting in the system buffer becomes longer. Thus, the
average sojourn time of tasks increases. Comparing Figs. 2(a) and (b), we find
that for the same sleep parameter and the same waking-up threshold, as the
arrival rate increases, the number of tasks is more likely to reach the waking-
up threshold during the sleep period, thus the sleep period will be terminated
sooner. So the average sojourn time of tasks decreases.

Fig. 2. The average sojourn time of tasks.

Considering different arrival rate λ of tasks (λ = 0.4 and λ = 0.7) as an exam-
ple, we investigate the change trend of the energy conservation level Ev of the
system versus the sleep parameter θ for the different threshold N in Fig. 3. For
the same threshold, as the sleep parameter increases, the time length of a sleep
period gets shorter. Thus the energy conservation within the system decreases.
For the same sleep parameter, as the threshold increases, the PM will stay in
sleep state longer. Thus the energy conservation within the system increases.
Comparing Figs. 3(a) and (b), we find that for the same sleep parameter and the
same waking-up threshold, as the arrival rate increases, the PM is less likely to
be asleep. Thus, the energy conservation within the system decreases.

In summary, there is a trade-off between the average sojourn time of tasks
and the energy conservation level of the system when setting the sleep parameter
and the threshold no matter the arrival rate of tasks is larger or smaller. For the
applications with higher requirements on response performance, the sleep param-
eter should be set larger and the waking-up threshold should be set smaller.
For the applications with higher requirements on energy conservation level, the
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Fig. 3. The energy conservation level of the system.

sleep parameter should be set smaller and the waking-up threshold should be
set larger.

5 Conclusions

This paper is original in that it systematically studies the correlation between
the response performance and the energy consumption in cloud computing envi-
ronment. We applied queueing vacation theory as the basic means of modeling
the task scheduling strategy in cloud computing. The proposed strategy is repre-
sentative in realistic cloud scenarios. The presented model can also be extended
to evaluate the performance and energy metrics for a more complicated public
cloud scenario with numerous different cloud services. The experimental results
illustrated changes to the waking-up threshold may potentially lead to energy
conservation, and that the use of a sleep-delay timer can bring about task perfor-
mance enhancement. For further development of our research, we will focus on
formulating a cost function to optimize our proposed strategy by considering the
tradeoff between the response performance and the energy conservation level.
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Abstract. In an effort to improve the energy efficiency of cloud data
centers, in this paper, we propose a clustered Virtual Machine (VM)
allocation strategy based on an N -threshold sleep-mode in which all the
VMs in a cloud data center are clustered into two modules. The VMs
in Module I are always awake, whereas the VMs in Module II will go
to sleep under a light traffic load. When the number of waiting requests
reaches or exceeds the threshold N , sleeping VMs will resume process-
ing requests independently after their corresponding sleep timers expire.
Accordingly, we establish an N -policy partially asynchronous multiple
vacations queueing model, and derive the energy saving rate of the sys-
tem. Numerical results are provided to show the efficiency of the proposed
strategy in reducing energy consumption.

Keywords: Cloud data center · Clustered VM allocation
N -threshold · Sleep-mode · Energy saving rate

1 Introduction

According to the current “Cisco Global Cloud Index”, more than four fifths
of the workload in data centers will be handled in cloud data centers by 2019
[1]. As a result, energy efficiency is becoming increasingly important in a cloud
environment [2].

The use of a sleep mode improves energy efficiency in cloud data centers [3].
In [4], Duan et al. proposed a dynamic idle interval prediction scheme that could
estimate the future idle interval length of a CPU and thereby choose the most
cost-effective sleep state to minimize the energy consumption during runtime. In
[5], Chou et al. proposed a fine-grain power management scheme for data center
workloads. This scheme dynamically postponed the processing of some requests,
created longer idle periods and promoted the use of a deeper sleep mode. In
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[6], Luo et al. proposed a dynamic adaptive scheduling algorithm based on flow
preemption and power-aware routing. This algorithm saved energy by decreasing
the ratio of low utilization devices and putting more devices into sleep mode. In
the literature mentioned above, we note that a sleep mode was only applied to
a Physical Machine (PM) rather than a Virtual Machine (VM).

In this paper, taking advantage of virtualization technology in cloud com-
puting, we propose a clustered VM allocation strategy based on an N -threshold
sleep-mode, and build an N -policy partially asynchronous multiple vacations
queueing model. Then, we evaluate the system performance in terms of the
energy saving rate of the system, both mathematically and numerically.

The rest of this paper is organized as follows. In Sect. 2, we propose a clustered
VM allocation strategy based on an N -threshold sleep-mode in a cloud environ-
ment and build a system model accordingly. In Sect. 3, we analyze the system
model using the method of matrix geometric solution. In Sect. 4, we derive the
energy saving rate of the system. With numerical experiments, we investigate
the system performance with the proposed strategy in Sect. 5. Finally, Sect. 6
concludes the whole paper.

2 VM Allocation Strategy and System Model

In this section, to improve the energy efficiency in a cloud environment, we
first propose a clustered VM allocation strategy based on an N -threshold sleep-
mode. Then, we develop an N -policy partially asynchronous multiple vacations
queueing model to analyze the system with the proposed strategy.

2.1 VM Allocation Strategy

We note that additional energy will be consumed when the VM frequently
switches from the sleep state to the awake state, and the system performance
will be degraded when all the VMs are put in an imposed sleep-mode. To get
around this problem, a clustered VM allocation strategy based on an N -threshold
sleep-mode is proposed.

All the VMs in a cloud data center are clustered into two modules, namely,
Module I and Module II. The VMs in Module I stay awake and operate on
a higher speed. The VMs in Module II will go to sleep independently when
there are no requests in the system buffer. At the end of a sleep period, if the
requests gathered in the system buffer reaches or exceeds a certain value, namely
threshold N , the corresponding VM in Module II will wake up independently
and operate on a lower speed. Otherwise, the VM in Module II will restart a
sleep timer and begin another sleep period.

In the proposed strategy, all the VMs are dominated by a control server, in
which several sleep timers, a request counter, and a VM scheduler are deployed.
Each sleep timer determines the time length of a sleep period. The request
counter records the number of the requests waiting in the system buffer. Based



126 X. Qie et al.

on the sleep timers and the request counter, the VM scheduler adjusts the system
state.

In Fig. 1, we demonstrate the workflow of VMs with the clustered VM allo-
cation strategy based on an N -threshold sleep-mode.

Fig. 1. The workflow diagram of a VM with the proposed strategy.

2.2 System Model

Regarding a request as a customer, a VM as an independent server, and a sleep
period as a vacation, we model the proposed strategy as an N -policy partially
asynchronous multiple vacations queueing model.

In this system model, the numbers of the VMs in Module I and Module
II are denoted as c and d, respectively. The arrival intervals of requests are
assumed to follow an exponential distribution with parameter λ (λ > 0). The
service times of requests processed in Module I and in Module II are assumed
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to follow exponential distributions with parameters μ1 (μ1 > 0) and μ2 (0 <
μ2 < μ1), respectively. Furthermore, the sleep timer length is assumed to follow
an exponential distribution with parameter θ (θ > 0). Here, the parameter θ is
called the sleeping parameter.

The system model is described with an infinite buffer capacity. Let S(t) =
i, i ∈ {0, 1, . . .} be the total number of requests in the system at instant t. S(t) is
also called the system level. Let J(t) = j, j ∈ {0, 1, . . . , d} be the number of busy
VMs in Module II at instant t. J(t) is also called the system stage. Based on
the assumptions above, {S(t), J(t), t ≥ 0} can be regarded as a two-dimensional
continuous time Markov chain (CTMC).

We define πi,j as the steady-state probability distribution of the system model
for the system level being equal to i and the system stage being equal to j.

We define πi as the steady-state probability distribution when the system
level is i. The steady-state probability distribution Π of the two-dimensional
CTMC is composed of πi (i ≥ 0). Π is given as follows:

Π = (π0,π1, . . .). (1)

3 Model Analysis

Based on the system level, the one-step state transition rate matrix Q of the two-
dimensional CTMC {(S(t), J(t)), t ≥ 0} can be written in a block-tridiagonal
form as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C0

B1 A1 C1

. . . . . . . . .
Bc Ac Cc

Bc+1 Ac+1 C c+1

. . . . . . . . .
Bc+d Ac+d C

B Ac+d+1 C
. . . . . . . . .

B Ac+d+N−1 C
B A C

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the one-step state transition rate matrix Q , the sub-matrices Bk are
repeated forever starting from the system level (c + d + 1), the sub-matrices
Ak are repeated forever starting from the system level (c + d + N), and the
sub-matrices C k are repeated forever starting from the system level (c + d).
The repetitive sub-matrices Bk, Ak and C k are represented by B , A and C ,
respectively.
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Bk (k = 1, 2, . . . , c), Bk (k = c+1, c+2, . . . , c+ d) and B (k = c+ d+1, c+
d+2, . . .) are the one-step state transition rate sub-matrices for the system level
k decreasing by one.

Bk = kμ1, k = 1, 2, . . . , c,

Bk =

⎛
⎜⎜⎜⎜⎜⎝

cμ1

cμ1 + μ2

. . .
cμ1 + (x − 1)μ2

cμ1 + xμ2

⎞
⎟⎟⎟⎟⎟⎠

, k = c + x, x = 1, 2, . . . , d,

B = diag (cμ1, cμ1 + μ2, . . . , cμ1 + dμ2) , k = c + x, x = d + 1, d + 2, . . . .

Ak (k = 1, 2, . . . , c), Ak (k = c + 1, c + 2, . . . , c + d + N − 1) and A (k =
c+d+N, c+d+N +1, . . .) are the one step state transition rate sub-matrices for
the system level k remaining fixed. For convenience of presentation, we introduce
hy (hy = λ + cμ1 + yμ2, 0 � y � d) to simplify the sub-matrices Ak and A.

Ak = −(λ + kμ1), k = 0, 1, . . . , c,

Ak = diag (−h0,−h1, . . . ,−hx) , k = c + x, x = 1, 2, . . . ,min{N, d} − 1.

For the case of N > d,

Ak = diag (−h0,−h1, . . . ,−hd) , k = c + x, x = d, d + 1, . . . , N − 1.

For the case of N � d,

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h0 − dθ dθ
. . . . . .

−hx−N − (d − (x − N))θ (d − (x − N))θ
−hx−N 0

. . . . . .
−hx−1 0

−hx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = c + x, x = N,N + 1, . . . , d − 1.
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Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h0 − dθ dθ
. . . . . .

−hx−N − (d − (x − N))θ (d − (x − N))θ
−hx−N 0

. . . . . .
−hd−1 0

−hd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = c + x, x = max{N, d},max{d,N} + 1, . . . , d + N − 1.

A =

⎛
⎜⎜⎜⎜⎜⎝

−h0 − dθ dθ
−h1 − (d − 1)θ (d − 1)θ

. . . . . .
−hd−1 − θ θ

−hd

⎞
⎟⎟⎟⎟⎟⎠

,

k = c + x, x = d + N, d + N + 1, . . . .

Ck (k = 1, 2, . . . , c), Ck (k = c + 1, c + 2, . . . , c + d − 1) and C (k = c + d, c +
d+1, . . .) are the one-step state transition rate sub-matrices for the system level
k increasing by one.

Ck = λ, k = 0, 1, . . . , c,

C k =

⎛
⎜⎜⎜⎜⎜⎝

λ 0
λ 0

. . .
...

λ 0
λ 0

⎞
⎟⎟⎟⎟⎟⎠

, k = c + x, x = 1, 2, . . . , d − 1,

C = diag (λ, λ, . . . , λ) , k = c + x, x = d, d + 1, . . . .

Obviously, the state transitions of the CTMC occur only between adjacent
system levels. The two-dimensional CTMC {S(t), J(t), t ≥ 0} can be seen as a
type of Quasi Birth-and-Death (QBD) process.

To analyze the QBD process {S(t), J(t), t ≥ 0} by using the matrix geometric
solution method, we need to solve for the minimal non-negative solution of the
matrix quadratic equation R2B +RA+C = 0. This solution is called the rate
matrix R.

Based on the discussions above, we find that the sub-matrices B , A and C
are upper-triangular matrices. So, the rate matrix R must be an upper-triangular
matrix, and can be explicitly determined.
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Applying the Gauss-Seidel method [7], we can obtain πi (i = 0, 1, . . . , c+d+
N). Based on the matrix geometric solution form πi = πc+d+NRi−(c+d+N), i ≥
c + d + N, we can obtain πi (i = c + d + N + 1, c + d + N + 2, . . .).

4 Performance Measures

We define the energy saving rate of the system as the energy conservation per unit
time. Energy saving rate of the system is a measure to compare the total energy
consumption in our proposed strategy and that in the conventional strategy.
Based on the steady-state probability distribution of the system model given in
Sect. 3, the energy saving rate E of the system with our proposed strategy is
given as follows:

E = E1 − (E2 + E3) (2)

where E1 is the energy saving rate during the sleep period, E2 and E3 are the
additional energy consumption rates caused by a request-migration and by a
listening at the boundary of the sleep period.

E1 = (ω − ωs)
∞∑
i=0

d∑
j=0

(d − j)πij ,

E2 = ωm

c+d∑
i=c+1

d∑
j=1

cμ1πij ,

E3 = ωl

∞∑
i=0

d∑
j=0

θ(d − j)πij

where ω (ω > 0) is the energy consumption per unit time for a busy VM in
Module II. ωs (ωs > 0) is the energy consumption per unit time for a sleeping
VM in Module II. ωm (ωm > 0) is the energy consumption for each request-
migration. ωl (ωl > 0) is the energy consumption for each listening.

5 Numerical Experiments

In order to quantify the impact of the sleeping parameter on the energy saving
rate of the system for the different number of the VMs in Module II and the
different thresholds N , we provide numerical experiments. Referencing to [8], we
set the experimental parameters as follows: c + d = 50, λ = 7.00 (requests/ms),
μ1 = 0.20 (requests/ms), μ2 = 0.10 (requests/ms), ω = 0.50 mW, ωs = 0.10
mW, ωm = 0.50 mW and ωl = 0.15 mW.

Figure 2 examines the influence of the sleeping parameter θ on the energy
saving rate E of the system for the different number d of the VMs in Module II
and the different thresholds N .

From Fig. 2(a), we notice that when the sleeping parameter θ and the thresh-
old N are given, a larger number d of the VMs in Module II will lead to a higher
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Fig. 2. Energy saving rate E of the system.

energy saving rate E of the system. As the number of the VMs in Module II
increases, more VMs have the opportunity to take a sleep, so the energy saving
rate of the system improves.

From Fig. 2(b), we notice that when the sleeping parameter θ and the number
d of the VMs in Module II are given, a bigger threshold N will lead to a higher
energy saving rate E of the system. The higher the threshold N is, the later a
VM in Module II will wake up from sleeping, so the VMs in Module II will stay
in the sleep state for longer. This results in a higher energy saving rate of the
system.

Combining Figs. 2(a) and 2(b), we also observe that for any number d of the
VMs in Module II and any value for threshold N , the energy saving rate E of
the system decreases as the sleeping parameter θ increases. On the one hand,
the larger the sleeping parameter is, the shorter the time length of a sleep period
is, and the later a VM in Module II will wake up from sleeping, so less energy
will be saved. On the other hand, the larger the sleeping parameter is, the more
frequently the VM in Module II listens to the system buffer, so additional energy
will be consumed. Therefore, the energy saving rate of the system will decrease.

6 Conclusions

In this paper, we proposed a clustered VM allocation strategy. Considering an
N -threshold sleep-mode with the proposed strategy, we established an N -policy
partially asynchronous multiple vacations queueing model. The queueing model
quantified the effects of the number of VMs in Module II, the threshold N and the
sleeping parameter on the energy saving rate of the system. In future research,
we aim to extend our study to investigate the average latency of requests and
to optimize the proposed strategy by making trade-offs between different per-
formance measures.



132 X. Qie et al.

Acknowledgements. This work was supported in part by National Natural Sci-
ence Foundation (No. 61472342), Hebei Province Natural Science Foundation (No.
F2017203141), China, and was supported in part by MEXT, Japan.

References

1. Hintemann, R., Clausen, J.: Green Cloud? the current and future development of
energy consumption by data centers, networks and end-user devices. In: 4th Inter-
national Conference on ICT for Sustainability, pp. 109–115 (2016)

2. Jin, X., Zhang, F., Vasilakos, A., Liu, Z.: Green data centers: a survey, perspectives,
and future directions (2016). https://arxiv.org/pdf/1608.00687v1.pdf

3. Fan, L., Gu, C., Qiao, L., Wu, W., Huang, H.: GreenSleep: a multi-sleep modes
based scheduling of servers for cloud data center. In: International Conference on
Big Data Computing and Communications, pp. 368–375 (2017)

4. Duan, L., Zhan, D., Hohnerlein, J.: Optimizing cloud data center energy efficiency
via dynamic prediction of CPU idle intervals. In: 8th IEEE International Conference
on Cloud Computing, pp. 985–988 (2015)

5. Chou, C., Wong, D., Bhuyan, L.: DynSleep: fine-grained power management for a
latency-critical data center application. In: International Symposium on Low Power
Electronics and Design, pp. 212–217 (2016)

6. Luo, J., Zhang, S., Yin, L., Guo, Y.: Dynamic flow scheduling for power optimization
of data center networks. In: 5th International Conference on Advanced Cloud and
Big Data, pp. 57–62 (2017)

7. Jiang, M., Hu, J., Zhao, R., Wei, X., Nie, Z.: Hybrid IE-DDM-MLFMA with Gauss-
Seidel iterative technique for scattering from conducting body of translation. Appl.
Comput. Electromagn. Soc. J. 30(2), 148–156 (2015)

8. Jin, S., Ma, X., Yue, W.: Energy-saving strategy for green cognitive radio networks
with an LTE-advanced structure. J. Commun. Netw. 18(4), 610–618 (2016)

https://arxiv.org/pdf/1608.00687v1.pdf


Performance Evaluation
for a Registration Service with an Energy

Efficient Cloud Architecture

Haixing Wu1, Shunfu Jin1(B), Wuyi Yue2, and Yutaka Takahashi3

1 School of Information Science and Engineering, Yanshan University,
Qinhuangdao 066004, People’s Republic of China

wuhaixing1112@163.com, jsf@ysu.edu.cn
2 Department of Intelligence and Informatics,

Konan University, Kobe 658-8501, Japan
yue@konan-u.ac.jp

3 Graduate School of Informatics, Kyoto University, Kyoto 606-8225, Japan
takahashi@i.kyoto-u.ac.jp

Abstract. Cloud computing allows application providers to seamlessly
scale services and enables users to adaptively scale usage. Cloud ven-
dors always provide a free service to appeal to more anonymous users. In
this paper, we propose a sleep-mode based cloud architecture, in which a
free service and an optional registration service are provided on the same
server. Regarding the free service as the first service, the registration ser-
vice as the second optional service and the sleep state as the vacation, we
establish an asynchronous multiple-vacation queueing model with a sec-
ond optional service. We construct a three-dimensional Markov chain to
derive the steady-state distribution of the queueing model, and estimate
the average response time of anonymous users and the energy saving
rate of system. Finally, we provide numerical results to investigate the
trade-off between difference performance measures.

Keywords: Cloud computing · Registration service
Second optional service queue · Energy saving rate
Average response time

1 Introduction

Cloud computing is offering utility-oriented Information Technology (IT) ser-
vices to users worldwide [1]. In order to appeal to more users, cloud vendors
always provide free service to anonymous users. If an anonymous user is satis-
fied with the free service and believes they are likely to receive better service next
time, the anonymous user may well register as a VIP (Very Important Person)
user. On the other hand, in cloud computing systems, the energy consumption
of the under-utilized resources accounts for a substantial amount of the actual
energy use [2]. Therefore, how to provide a registration service along with energy
efficient cloud architecture is an important issue for cloud vendors.
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Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 133–141, 2018.
https://doi.org/10.1007/978-3-319-93736-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93736-6_10&domain=pdf


134 H. Wu et al.

A scientific evaluation of system performance helps to run a cloud system
well. Queueing theory with a second optional service is suitable for modeling the
registration service in cloud systems. Queueing theory with a vacation mecha-
nism is suitable for modeling the sleep mode in cloud systems. Queueing the-
ory with second optional service was first formulated by Madan [3]. Following
Madan, there were various papers on queueing models with a second optional
service. Wei et al. discussed a discrete-time Geom/G/1 retrial queue with balking
customers and a second optional service, where the retrial time followed a geo-
metrical distribution [4]. The vacation model terminology first appeared in the
1970s. Doshi wrote an excellent survey paper on vacation models [5]. Numerous
papers on vacation models have appeared since that time. Jain et al. considered
an asynchronous vacation policy for a multi-server repair problem with a server
breakdown and two types of spares [6]. All the aforementioned papers do not
study a queueing model combining the second optional service and the vacation
together.

In this paper, we firstly propose a sleep-mode based cloud architecture where
a free service and a registration service are provided on the same server. The
newly vacated server will enter the sleep state once there are no users waiting in
the system buffer. We build an asynchronous multiple-vacation queueing model
with a second optional service to investigate the system performance of the
proposed cloud architecture. Then, we construct a three-dimensional Markov
chain from the perspective of the total number of anonymous users, the number
of servers running normally and the number of anonymous users applying for the
registration service to analyze the queueing model. Moreover, we evaluate the
system performance in terms of the average response time of anonymous users
and the energy saving rate of the system in a cloud environment.

The rest of this paper is organized as follows: In Sect. 2, we propose a sleep-
mode based cloud architecture with a second optional service, and establish a
queueing model accordingly. In Sect. 3, we analyze the queueing model using the
method of matrix-geometric solution. In Sect. 4, we analyze the average response
time of anonymous users and the energy saving rate of system. In Sect. 5, we
demonstrate the influence of system parameters on the system performance with
numerical results. Finally, we summarize the conclusions in Sect. 6.

2 System Model

In this section, we propose a sleep-mode based cloud architecture with a regis-
tration service. Then, we establish an asynchronous multiple-vacation queueing
model with a second optional service.

2.1 Cloud Architecture

It is a common practice for cloud vendors to offer a free service to attract
new anonymous users. In conventional cloud computing systems, all the vir-
tual machines (VMs) always stay awake even if there are no users to be serviced.
This results in a large amount of wasted energy.
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Considering the energy efficiency, we present a sleep-mode based cloud archi-
tecture with tasks initiated by ordinary cloud users. In cloud environment, the
configuration of physical machines (PMs) is usually very high. Several VMs are
deployed to a PM and each VM runs its own operating system independently.
This makes it possible to implement sleep mode at the VM level. Anonymous
users receive an essential free service and an optional registration service from
one of the VMs.

(1) When an anonymous user enters the system, the anonymous user will queue
in the system buffer waiting for the free cloud service. Once there is at least
one newly vacated VM or one newly woken VM on any PMs, this VM will
be allocated to the first anonymous user queueing in the system buffer by
the task scheduler. Then the anonymous user allocated the VM will receive
the free cloud service.

(2) After the completion of the free cloud service, the anonymous user selects
whether to receive the registration service according to the service satisfac-
tion. If the anonymous user opts to register as a VIP user after experiencing
a registration process, the user has to pay a reasonable fee and will get a
better service next time. Otherwise, the anonymous use will leave the system
directly and remain an anonymous user.

(3) If there are no anonymous users waiting in the system buffer and a user
departs from a VM, i.e., a VM is vacated, the VM will enter the sleep mode.
Once the VM enters the sleep state, a sleep timer with a random durations
will be activated to control the time length of the sleep period. At the end
of the sleep period, if there are no anonymous users in the system buffer,
another sleep timer will be activated, and the VM will begin another sleep
period. Otherwise, the VM will return to the active state and wake up for
serving the anonymous users in the system buffer.

It is necessary to mathematically evaluate the cloud service with the proposed
architecture.

2.2 System Model

Regarding the free service as the first essential service, the registration service
as the second optional service, the sleep mode as the vacation and a VM as a
server, we establish an asynchronous multiple-vacation queueing model with a
second optional service.

The buffer in the system is supposed to be infinite. The total number of
VMs in the system is c. Let the random variable N(t) = i, i ∈ {0, 1, . . .} be the
total number of anonymous users in system at instant t. Let the random variable
Y (t) = j, j ∈ {0, 1, . . . ,min(i , c)} be the number of servers running normally
at instant t. Let the random variable S(t) = k, k ∈ {0, 1, . . . ,min(j , c)} be
the number of anonymous users who are experiencing the registration service
at instant t. N(t) is called the system level, Y (t) is called the system state and
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S(t) is called the system phase. {N(t), Y (t), S(t), t ≥ 0} constitutes a three-
dimensional continuous-time stochastic process with state space Ω as follows:

Ω ={(i, j, k) | i ∈ {0, 1, . . .}, j ∈ {0, 1, . . . ,min(i, c)},

k ∈ {0, 1, . . . ,min(j, c)}}.
(1)

In this model, we assume that the arrival intervals of anonymous users follow
an exponential distribution with parameter λ (λ > 0). We assume that the free
service time and the registration service time of an anonymous user follow expo-
nential distributions with mean service times 1/μ1 (μ1 > 0) and 1/μ2 (μ2 > 0),
respectively. Moreover, we assume that an anonymous user selects the registra-
tion service with probability q or opts not to select the registration service with
probability q̄ (q̄ = 1 − q). Furthermore, we assume that the time length of the
sleep timer follows an exponential distribution with parameter θ (θ > 0). The
traffic load ρ of the system model can be given as follows:

ρ =
λ(μ2 + qμ1)

cμ1μ2
. (2)

Based on the assumptions above, we conclude that the stochastic process
{N(t), Y (t), S(t), t ≥ 0} is a three-dimensional continuous-time Markov chain
(CTMC).

We define πijk as the steady-state probability distribution of the three-
dimensional CTMC for the system level being equal to i, the system state being
equal to j, and the system phase being equal to k. πijk is then given as follows:

πijk = lim
t→∞ P{N(t) = i, Y (t) = j, S(t) = k}, (i, j, k) ∈ Ω. (3)

We define the vector πi as the steady-state probability distribution for the
system level being equal to i. The steady-state probability distribution Π of the
three-dimensional CTMC is composed of πi (i = 0, 1, . . .). Π is given as follows:

Π = (π0,π1, . . .). (4)

3 Model Analysis

In this section, we first investigate the transition rate matrix of the three-
dimensional CTMC. Then, we derive the steady-state distribution of the system
model.

3.1 Transition Rate Matrix

The necessary step in analyzing the steady-state distribution of the system model
is to construct the transition rate matrix.

Let Q be the one-step state transition rate matrix of the three-dimensional
CTMC {N(t), Y (t), S(t), t ≥ 0}. Let Qx,y be the one-step state transition rate
sub-matrix for the system level changing from x (x = 0, 1, . . .) to y (y = 0, 1, . . .).
For convenience of presentation, we denote Qx,x−1 as Bx, Qx,x as Ax, and
Qx,x+1 as C x. We discuss Bx, Ax, and C x in respect to three cases.
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(1) System level decreases:
1 ≤ x ≤ c means that the number of anonymous users is no more than the
number of VMs.
x > c means that the number of anonymous users is more than the number
of VMs in the system.

(2) System level remains fixed:
x = 0 means that there are no anonymous users in the system and all the
VMs are in the sleep state.
x ≥ 1 means that there is at least one anonymous user in the system.

(3) System level increases:
No matter how many anonymous users are there in the system, how many
VMs that are working normally, or how many anonymous users who are
applying for the registration service, as long as there is one anonymous user
arriving at the system, the system level increases by one, while the system
state and the system phase remain fixed, and the transition rate is λ.

For this, we write Q as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C 0

B1 A1 C 1

B2 A2 C 2

. . . . . . . . .
Bc−1 Ac−1 C c−1

Bc A C
B A C

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The block-tridiagonal structure of Q shows that the state transitions
occur only between adjacent levels. Hence, the three-dimensional CTMC
{N(t), Y (t), S(t), t ≥ 0} can be seen as a type of Quasi Birth-and-Death (QBD)
process.

3.2 Steady-State Distribution

To analyze this QBD process, we need to solve the matrix quadratic equation
R2B +RA+C = 0 for the minimal non-negative solution R, and the spectral
radius SP (R) < 1.

Using the rate matrix R obtained from the matrix quadratic equation, we
construct a square matrix B[R] as follows:

B[R] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A0 C 0

B1 A1 C 1

B2 A2 C 2

. . . . . . . . .
Bc−1 Ac−1 C c−1

Bc RB + A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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Using the method of matrix-geometric solution [7] and normalized condition,
we can give a set of equations as follows:

{
(π0,π1, . . . ,πc)B[R] = 0
(π0,π1, . . . ,πc−1)e + πc(I − R)−1e1 = 1

(6)

where e is a
(

c(c+1)(c+2)
2

)
× 1 vector with ones, and e1 is a

(
(c+1)(c+2)

2

)
× 1

vector with ones.
By using the Gauss-Seidel method to solve Eq. (6), we can obtain π0, π1, π2,

. . ., πc. From the structure of the one step state transition rate matrix Q, we
know that πi (i = c + 1, c + 2, . . .) satisfies the matrix-geometric solution form
as follows:

πi = πcR
i−c, i ≥ c. (7)

By substituting πc obtained from Eq. (6) into (7), we can obtain πi (i =
c + 1, c + 2, . . .). Then, the steady-state distribution Π = (π0,π1, . . .) of the
system can be given numerically.

4 Performance Measures

We define the response time of a user as the duration from the instant this user
arrives at the system to the instant this user completes service and departs from
the system. We note that the response time of a user includes the time period
waiting in the system buffer and the time period getting service from the system.
Following Little’s law, the average waiting time E[W ] of anonymous users is then
given as follows:

E[W ] =
1
λ

E[L]

=
1
λ

⎛
⎝

∞∑
i=c

c∑
j=0

j∑
k=0

(i − c)πijk

⎞
⎠ .

(8)

For an anonymous user who selects the registration service, the average ser-
vice time E[X] is the sum of the average free service time and the average
registration service time, i.e., E[X] = 1

µ1
+ 1

µ2
.

The average response time E[T ] of an anonymous user who selects the reg-
istration service is then given as follows:

E[T ] =E[W ] + E[X]

=
1
λ

⎛
⎝

∞∑
i=c

c∑
j=0

j∑
k=0

(i − c)πijk

⎞
⎠ +

1
μ1

+
1
μ2

.
(9)

We define the energy saving rate as the energy conservation per unit time
for a system with the proposed sleep-mode based cloud architecture. During the
active state of the VM, the energy will be consumed normally, while during the
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sleep state of the VM, the energy will be saved. Moreover, additional energy will
be consumed when a VM switches from the sleep state to the active state.

Let Va1 be the energy consumption per unit time of a VM providing the free
service, Va2 be the energy consumption per unit time of a VM providing the
registration service, Vs be the energy consumption per unit time of a VM in the
sleep state, and Vt be the energy consumption for each VM switching from the
sleep state to the active state. The energy saving rate E[S] of the system is

E[S] = (Va − Vs)
∞∑
i=0

c∑
j=0

j∑
k=0

(c − j)πijk − Vt

∞∑
i=0

c∑
j=0

j∑
k=0

(c − j)πijk × θ (10)

where Va = qVa1 + (1 − q)(Va1 + Va2).

5 Numerical Experiments

In order to evaluate the system performance of the proposed sleep-based cloud
architecture, we provide numerical experiments with analysis.

Generally speaking, for a massive cloud data center, there are many VMs in
a PM. The service ability of a VM is stronger, however, the energy consumption
is greater. By setting c = 10, μ1 = 0.5, μ2 = 0.2, q = 0.5, Va1 = 5 mW,
Va2 = 4 mW, Vs = 0.5 mW and Vt = 6 mW as an example, we show how
the average response time E[T ] of anonymous users who select the registration
service and the energy saving rate of the system changes versus the arrival rate
λ of the anonymous users for different the sleep parameter θ in Figs. 1 and 2,
respectively.

Fig. 1. Change trend of the average response time of anonymous users who select the
registration service.



140 H. Wu et al.

Fig. 2. Change trend of the energy saving rate.

As can be seen from Fig. 1, for the same sleep parameter θ, as the arrival
rate λ of anonymous users increases, the waiting time of the anonymous users
including the anonymous users who will select the registration service later in
the system buffer will be longer. Therefore, the average response time E[T ] of
the anonymous users who select the registration service increases. For the same
arrival rate λ of the anonymous users, as the sleep parameter θ increases, the
time length of a sleep period gets shorter, the anonymous users arriving during
the sleep period can be served earlier. Therefore, the average response time E[T ]
of the anonymous users who select the registration service will decreases.

From Fig. 2 we find that with the same sleep parameter θ, as the arrival
rate λ of the anonymous users increases, the VMs are less likely to be asleep.
Therefore, the energy saving rate E[S] of the system decreases. For the same
arrival rate λ of the anonymous users, as the sleep parameter θ increases, the
time length of a sleep period will become shorter. Therefore, the energy saving
rate E[S] of the system decreases.

For a larger sleep parameter, the average response time of the anonymous
users selected the registration service is shorter, but the energy saving rate of
the system is lower. For a smaller sleep parameter, the energy saving rate of
the system is higher, but the average response time of the anonymous users
selected the registration service is longer. We understood that there is a trade-
off between the average response time of the anonymous users who select the
registration service and the energy saving rate of the system when setting the
sleep parameter.

6 Conclusions

In this paper, we proposed a sleep-mode based cloud architecture. Accordingly,
we presented a method to model and evaluate the proposed cloud architecture
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by establishing an asynchronous multiple-vacation queueing model with a second
optional service. We provided numerical results to investigate the impact of the
sleep parameter on the average response time of the anonymous users who select
the registration service and the energy saving rate of the system. In future work,
this research would be extended to the optimization for the sleep parameter.
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Abstract. Wireless Local Area Networks (WLAN) has been in the spot-
light as a potential solution to solve the exponentially growing demand of
wireless services due to its wide availability and there have been a plenty
of research works on WLAN including mathematical modeling and anal-
ysis. However, the spatial modeling and analysis of WLAN have received
little attention due to the complexity in the dynamics of WLAN. In this
work we tackle this issue and provide a spatial modeling and analysis
based on Poisson point process to investigate the impact of the spatial
distribution on the performance of WLAN. Through our spatial modeling
and analysis we verify the conditions where the independence assumption
on successful transmissions of data packets holds, which is most widely
assumed in most of the previous works on WLAN.

Keywords: Poisson Point Process · Spatial modeling
Transmission success probability · WLAN

1 Introduction

Currently, the era of the Internet of Things (IoT) has opened and tons of devices
are connected over wireless links. As one of the most promising solutions to meet
the increasing wireless communication demand, the IEEE 802.11 Wireless Local
Area Network (WLAN) has been in the spotlight for decades due to its easy
implementation and hence wide availability. Since there are a plenty of wireless
devices over a wide range of the network spectrum, multiple users in WLAN are
forced to coexist in the same channel. So efficient channel sharing in WLAN has
been one of important research issues and a number of studies have attempted
to analyze and improve the performance of WLAN [1–3].

In the performance modeling and analysis of WLAN, if we take into consid-
eration the dynamics of real networks in the model such as randomness in the
number of nodes and the locations of nodes, the complexity of the analysis is
substantially increased. This is one of the main reasons why most of the previous
works on the performance modeling and analysis of WLAN assume fixed number
of nodes, e.g., [1–3], and do not consider the locations of nodes in WLAN that
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obviously and significantly affect the packet transmissions through channel fad-
ing and interference, e.g., [4–7]. However, if we do not consider in performance
modeling the main characteristics in WLAN such as the randomness in the num-
ber and locations of nodes, the resulting investigation from the model might not
be true in a practical WLAN. This is the motivation of this work where we use
the theory of stochastic geometry to consider the randomness in the number and
locations of nodes.

Stochastic geometry is a good and tractable mathematical tool that is based
on point process theory that well captures the randomness mentioned above in
WLAN by a spatial distribution of nodes. For this reason, stochastic geometry
is widely used to analyze the performance of wireless networks [8–13]. Regarding
the study of WLAN based on stochastic geometry [12,13], [12] investigates the
performance of mobile data offloading through Wi-Fi where the deployment of
Wi-Fi is modeled as a Poisson Point Process (PPP). The work in [13] analyzes
the performance of downlink traffic in WLAN by modeling the locations of APs
and nodes with a PPP.

In most of previous works on the modeling and analysis of WLAN, it is
widely assumed that individual transmission results are independent [1–7,14–
16] because the performance results based on the assumption are well matched
with simulation results and the assumption makes the analysis eminently simple.
However, the simulation in the previous works usually consider a fixed number of
nodes or do not consider the locations of nodes and channel fading. So it is desir-
able to check if the performance results based on the assumption still remains
valid when we consider the spatial distribution of nodes in the mathematical and
simulation models. More specifically, we focus on the time interval between two
successive transmissions of an arbitrary transmitter to investigate whether the
spatial distribution of nodes affects the validity of the independence assumption.
It is reasonable to assume that the locations of nodes remain unchanged during
the time interval because one packet transmission time is relatively very short
compared to the moving speed of a user. This naturally raises a question that
the results of the two consecutive transmissions may be dependent.

To tackle this issue, we develop a mathematical model of WLAN based on
stochastic geometry where the spatial distribution of nodes is captured by a
PPP. For the channel access in WLAN, we consider the Renewal Access Proto-
col (RAP) which is recently proposed to improve the throughput and fairness
performance of the IEEE 802.11 Distributed Coordination Function (DCF) [14].
We analyze the performance of WLAN based on the model and investigate the
impact of the randomness in practical WLANs.
Our main contributions in this work are summarized as follows.

– We develop a mathematical model where the spatial distribution of nodes
in WLAN is captured. We also consider in our mathematical model the con-
tention window size for selecting a backoff counter that is ignored in the model
in [13].

– Using our mathematical model, we derive analytical expressions on the proba-
bility of having a successful packet transmission and the probability of having
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consecutive successful packet transmissions. With our analytical results, we
investigate the impact of the spatial distribution of nodes on the probability
of having a successful packet transmission.

– It is widely assumed in the performance analysis of WLAN that individual
packet transmissions result in either success or failure independently, which
makes the analysis simple and tractable. Comparing the ratio of two probabil-
ities mentioned above, we investigate whether the independence assumption
is valid. What we find is that the independent assumption is only valid when
the network environment is relatively good, i.e., the expected number of nodes
in the network is relatively small.

The rest of the paper is organized as follows. In Sect. 2 we provide our sys-
tem modeling. In Sect. 3 we derive the probability of having a successful packet
transmission and the probability of having consecutive successful packet trans-
missions. In Sect. 4 we provide simulation studies to validate our analysis and
investigate the performance behaviors of WLAN. Finally, our conclusions are
provided in Sect. 5.

2 System Modeling

We consider a wireless network consisting of homogeneous nodes equipped with
the RAP proposed in [14]. The RAP is the same as the IEEE 802.11 DCF except
the backoff stage and it performs as follows. When a node in the network has a
packet to transmit, it selects its own backoff counter value according to a priori
given selection distribution on [1,W ] where W denotes the window size. The
backoff counter value of each node is decremented by 1 if there are no packet
transmissions in the network during a fixed time length or is frozen until the
end of packet transmissions if a packet transmission occurs in the network. The
node transmits its packet whenever its backoff counter value becomes 0. After
a packet transmission, the node selects a new backoff counter value with the
selection distribution.

We consider an arbitrary node and its embedded time epochs where the
backoff counter value of the node is decremented by 1, is frozen (due to the
transmissions by some other nodes), or is renewed by a new value. A time interval
between two consecutive embedded epochs is called a slot. We assume the perfect
sensing, i.e., each node has correct information whether the channel is idle or not.
We remove all busy slots (where there occur packet transmissions in the network)
as in [14]. The remaining idle slots are indexed by t = 0, 1, 2, · · · . For simplicity
and by abuse of notation we simply use the term slots to denote the remaining
idle slots. When the probability mass function of the selection distribution is
denoted by {p1, p2, · · · , pW }, the transition probability matrix for the backoff
counter of a node between two consecutive slots, denoted by P, is given by
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P =

⎛
⎜⎜⎜⎜⎝

1 2 3 · · · W − 1 W

1 p1 p2 p3 · · · pW−1 pW

2 1 0 0 · · · 0 0
3 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

W 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠

.

For analysis we consider two nodes in the network where one node, called the
tagged transmitter, is to transmit and the other node, called the tagged receiver,
is to receive the transmitted packet from the tagged transmitter. We assume that
the tagged receiver is located at the origin and the tagged transmitter is located
at z in R

2. All the other transmitters are distributed according to a Homogeneous
Poisson Point Process (HPPP) with intensity λ in R

2.
Let g(r) be the path loss function for r ≥ 0 where r is the distance between

two nodes involving the transmission of interest. We assume that the path loss
function g(r) is given by g(r) = r−α where α > 2 is the path loss exponent
determined by the environment (outdoor, indoor, urban, suburb, etc.). Let h(k)
denote the fading power received at the tagged receiver from the tagged trans-
mitter in slot k. Similarly, let hx(k) denote the fading power received at the
tagged receiver from a transmitter located at x in slot k. We assume that all fad-
ing powers are independent and exponentially distributed with mean 1

μ [12,13].
Let N(k) and I(k) denote the noise power and the interference at the tagged
receiver in slot k. We assume that the noise power process {N(k), k ≥ 0} forms
independent and identically distributed random variables.

Let ρ be the Signal-to-Interference-plus-Noise Ratio (SINR) threshold value
to have a successful transmission at the tagged receiver. We assume that there
occurs a transmission from the tagged transmitter to the tagged receiver just
before the end of slot t = 0. Then the tagged transmitter selects a new back-
off counter value according to a given selection distribution. If the new backoff
counter value is k, then the next transmission from the tagged transmitter occurs
just before the end of the k-th slot (for simplicity we say “in slot k” from now
on) by our modeling assumption. To derive the joint probability of having con-
secutive successful packet transmissions, we first derive, for k ≥ 1

P

{
h(0)g(||z||)
N(0) + I(0)

> ρ,
h(k)g(||z||)
N(k) + I(k)

> ρ,BC = k

}

where BC denotes the new backoff counter value selected by the tagged trans-
mitter after a transmission in slot 0 and ||v|| denotes the length of a vector
v in R

2.
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P

{
h(0)g(||z||)
N(0) + I(0)

> ρ,
h(k)g(||z||)
N(k) + I(k)

> ρ,BC = k

}

= P{BC = k}P

{
h(0) >

ρ

g(||z||) (N(0) + I(0)), h(k) >
ρ

g(||z||) (N(k) + I(k))
}

= P{BC = k}E

[
P

{
h(0) >

ρ

g(||z||) (N(0) + I(0)),

h(k) >
ρ

g(||z||) (N(k) + I(k))
∣∣∣∣ Φ,N(0), N(k), I(0), I(k)

}]

= P{BC = k}E
[
e−μρ(||z||)(N(0)+I(0))e−μρ(||z||)(N(k)+I(k))

]

= P{BC = k}E
[
e−μρ(||z||)N(0)

]
E

[
e−μρ(||z||)N(k)

]
E

[
e−μρ(||z||)(I(0)+I(k))

]

(1)

where ρ(r) := ρ
g(r) .

3 Performance Analysis

In this section, we derive the probability of having a successful packet transmis-
sion and the probability of having consecutive successful packet transmissions.
To this end, we first compute the last term of (1) as follows. From the Laplace
functional of the independently marked PPP [17] we have

E
[
e−μρ(||z||)(I(0)+I(k))

]

= E
[
e−μρ(||z||)∑

x∈Φ(1{X∈Φ(0)}hx(0)+1{x∈Φ(k)}hx(k))g(||X||)
]

= exp
(

−
∫

R2
1 − E

[
e−μρ(||z||)(1{x∈Φ(0)}hx(0)+1{x∈Φ(k)}hx(k))g(||x||)

]
Λ(dx)

)
.

(2)

where 1{·} denotes the indicator function, Λ is intensity measure with intensity
λ and Φ(l) denotes the locations of all active transmitters that transmit their
packets in slot l.

In the above derivation we assume that the locations of nodes remain
unchanged during the consecutive packet transmissions because the packet trans-
mission times are relatively very short compared to the moving speed of a node.

To compute the expectation in the integrand of (2), let BCx(k) denote the
backoff counter value of the transmitter located at x in slot k. It then follows
that

E
[
e−μρ(||z||)(1{x∈Φ(0)}hx(0)+1{x∈Φ(k)}hx(k))g(||x||)

]

= P{BCx(0) = 1, BCx(k) = 1}E
[
e−μρ(||z||)(hx(0)g(||x||)+hx(k)g(||x||))

]
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+
W∑

j=2

P{BCx(0) = 1, BCx(k) = j}E
[
e−μρ(||z||)hx(0)g(||x||)

]

+
W∑
i=2

P{BCx(0) = i, BCx(k) = 1}E
[
e−μρ(||z||)hx(k)g(||x||)

]

+
W∑
i=2

W∑
j=2

P{BCx(0) = i, BCx(k) = j}. (3)

Let q be the stationary distribution of the backoff counter transition proba-
bility matrix P, i.e., qP = q = (q1, q2, · · · , qW ). So using (3) and the assumption
that the fading powers are independent and identically distributed yield

E
[
e−μρ(||z||)(1{x∈Φ(0)}hx(0)g(||x||)+1{x∈Φ(k)}hx(k)g(||x||))

]

= q1(Pk)11
(
E

[
e−μρ(||z||)hx(0)g(||x||)

])2

+
W∑

j=2

q1(Pk)1jE
[
e−μρ(||z||)hx(0)g(||x||)

]

+
W∑
i=2

qi(Pk)i1E
[
e−μρ(||z||)hx(0)g(||x||)

]

+
W∑
i=2

W∑
i=2

qi(Pk)ij

=: f0(z,x, k). (4)

Combining (2) and (4) yields

E
[
e−μρ(||z||)(I(0)+I(k))

]
= exp

(
−

∫

R2
1 − f0(z,x, k)Λ(dx)

)
. (5)

We now consider two consecutive transmissions, denoted by the first and
second transmissions, from the tagged transmitter. Let Si, i = 1, 2 denote the
event that the i-th transmission is successful. Then, from (1) and (5) we have

P{S1 ∩ S2}

=
W∑

k=1

P

{
h(0)g(||z||)
N(0) + I(0)

> ρ,
h(k)g(||z||)
N(k) + I(k)

> ρ,BC = k

}

=
W∑

k=1

P{BC = k}E
[
e−μρ(||z||)N(0)

]
E

[
e−μρ(||z||)N(k)

]

× exp
(

−
∫

R2
1 − f0(z,x, k)Λ(dx)

)
. (6)
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Using a similar argument as above, it is easy to show that

P{S1} = P{S2} = E
[
e−μρ(||z||)N(0)

]
exp

(
−q1

∫

R2
1 − f1(z,x) Λ(dx)

)
(7)

where
f1(z,x) := E

[
e−μρ(||z||)hx(0)g(||x||)

]
.

So it immediately follows that

P{S2|S1}

=
P{S1 ∩ S2}

P{S1}

=
∑W

k=1 P{BC = k}E
[
e−μρ(||z||)N(k)

]
exp

(− ∫
R2 1 − f0(z,x, k)Λ(dx)

)

exp
(−q1

∫
R2 1 − f1(z,x) Λ(dx)

) . (8)

Our next step is to derive (5) and (8) explicitly. To this end, we have to
calculate the following exponent

∫

R2
1 − f0(z,x, k)Λ(dx). (9)

From (4), we can write (9) as follows:

∫
R2

1− f0(z,x, k)Λ(dx)

=

∫
R2

(
1− q1(P

k)11f1(z,x)2 − q1

W∑
j=2

(Pk)1jf1(z,x)

−
W∑

i=2

qi(P
k)i1f1(z,x)−

W∑
i=2

W∑
j=2

qi(P
k)ij

)
Λ(dx)

= q1(P
k)11

∫
R2

(1− f1(z,x)2)Λ(dx)

+ q1

W∑
j=2

(Pk)1j

∫
R2

(1− f1(z,x))Λ(dx) +

W∑
i=2

qi(P
k)i1

∫
R2

(1− f1(z,x))Λ(dx). (10)

Since q is the stationary distribution, we have

q1 = q1

W∑
j=1

(Pk)1j = q1(Pk)11 + q1

W∑
j=2

(Pk)1j ,

q1 =
W∑
i=1

qi(Pk)i1 = q1(Pk)11 +
W∑
i=2

qi(Pk)i1.
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Combining the above and (10), we rewrite (9) as follows:
∫

R2
1 − f0(z,x, k)Λ(dx)

= q1(Pk)11
∫

R2
(1 − f1(z,x)2) − (1 − f1(z,x)) − (1 − f1(z,x))Λ(dx)

+ 2q1

∫

R2
(1 − f1(z,x))Λ(dx)

= −q1(Pk)11
∫

R2
(1 − f1(z,x))2Λ(dx) + 2q1

∫

R2
(1 − f1(z,x))Λ(dx). (11)

Recall that fading powers are assumed to be independent and exponentially
distributed with mean 1

μ . Then we have

f1(z,x) = E
[
e−μρ(||z||)hx(0)g(||x||)

]

=
μ

μ + μρ(||z||)g(||x||)
=

1
ρ(||z||)g(||x||) + 1

=
1

ρ||z||α||x||−α + 1
.

Thus the integrand in (11) is given by

1 − f1(z,x) =
ρ||z||α||x||−α

ρ||z||α||x||−α + 1

and
∫
R2

(1 − f1(z,x))2Λ(dx)

=

∫
R2

(
ρ||z||α||x||−α

ρ||z||α||x||−α + 1

)2

Λ(dx)

=

∫ 2π

0

∫ ∞

0

(
ρ||z||αs−α

ρ||z||αs−α + 1

)2

λsdsdθ since Λ is a measure with intensityλ

=

∫ ∞

0

(
ρ||z||αs−α

ρ||z||αs−α + 1

)2

2λπsds

=

∫ ∞

0

(
ρ||z||α

ρ||z||α + sα

)2

2λπsds

=

∫ ∞

0

(
ρ||z||α

ρ||z||α + u

)2

2λπu
2
α

−1 1

α
du where u := sα

= λδπρ2||z||2α

∫ ∞

0

uδ−1

(ρ||z||α + u)2
du where δ :=

2

α
< 1
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= λδπρ2||z||2α(ρ||z||α)δ−2 Γ (2 − δ)Γ (δ)

Γ (2)
for

∫ ∞

0

uδ−1

(η + u)k
du = ηδ−k Γ (k − δ)Γ (δ)

Γ (k)

= λδπρδ||z||2Γ (2 − δ)Γ (δ)

= (1 − δ)λπρδ||z||2Γ (1 − δ)Γ (1 + δ). (12)

Similarly, we obtain
∫

R2
(1 − f1(z,x))Λ(dx)

=
∫

R2

ρ||z||α||x||−α

ρ||z||α||x||−α + 1
Λ(dx)

=
∫ ∞

0

ρ||z||α
ρ||z||α + sα

2λπsds

=
∫ ∞

0

ρ||z||α
ρ||z||α + u

λδπuδ−1du

= λδπρ||z||α(ρ||z||α)δ−1 Γ (1 − δ)Γ (δ)
Γ (1)

= λδπρδ||z||2Γ (1 − δ)Γ (δ)

= λπρδ||z||2Γ (1 − δ)Γ (1 + δ). (13)

Hence, we obtain (9) by combining (11), (12) and (13) as follows:
∫

R2
1 − f0(z,x, k)Λ(dx)

=
[−q1(Pk)11(1 − δ) + 2q1

]
λπρδ||z||2Γ (1 − δ)Γ (1 + δ).

Consequently,

E
[
e−μρ(||z||)(I(0)+I(k))

]

= exp
(

−
∫

R2
1 − f0(z,x, k)Λ(dx)

)

= exp
(−q1

[
2 − (Pk)11(1 − δ)

]
λπρδ||z||2Γ (1 − δ)Γ (1 + δ)

)
. (14)

We are now ready to provide our main theorem.
Theorem 1

P{S1} = E
[
e−μρ(||z||)N(0)

]
exp

(−q1λπρδ||z||2Γ (1 − δ)Γ (1 + δ)
)
, (15)

P{S2|S1} =
W∑

k=1

[
P{BC = k}E

[
e−μρ(||z||)N(k)

]

× exp
(−q1

[
1 − (Pk)11(1 − δ)

]
λπρδ||z||2Γ (1 − δ)Γ (1 + δ)

) ]
.

(16)
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Proof. The success probability P{S1} is obtained by combining (7) and (13).
The conditional probability P{S2|S1} is also obtained from (8), (13) and (14).

Since we assume that the noise power process {N(k), k ≥ 0} forms inde-
pendent and identically distributed random variables, we can rewrite (16) as
follows:

P{S2|S1}
= E

[
e−μρ(||z||)N(0)

]
exp

(−q1λπρδ||z||2Γ (1 − δ)Γ (1 + δ)
)

×
W∑

k=1

P{BC = k} exp
(
q1(Pk)11(1 − δ)λπρδ||z||2Γ (1 − δ)Γ (1 + δ)

)

= P{S1}
W∑

k=1

P{BC = k} exp
(
q1(Pk)11(1 − δ)λπρδ||z||2Γ (1 − δ)Γ (1 + δ)

)

= P{S1}Ψ(λ, ||z||, α)

where

Ψ(λ, ||z||, α)

:=
W∑

k=1

P{BC = k} exp
(

q1(Pk)11(1 − 2
α

)λπ||z||2ρ 2
α Γ (1 − 2

α
)Γ (1 +

2
α

)
)

.

(17)

Note that Ψ(λ, ||z||, α) is the ratio of P{S2|S1} over P{S1}. So, if Ψ(λ, ||z||, α)
were equal to 1, we might have the validity of the independence assumption on
individual packet transmission results. However, since α > 2, Ψ(λ, ||z||, α) is
always greater than 1. Hence, we see that there obviously exists a correlation in
the consecutive packet transmission results. However, if the ratio Ψ(λ, ||z||, α)
is very close to 1, we might say that the independence assumption on consecu-
tive packet transmission results is approximately valid. In the next section we
call the ratio Ψ(λ, ||z||, α) by Dependency Factor (DF) and investigate the ratio
Ψ(λ, ||z||, α) numerically to find the conditions where the independent assump-
tion is approximately valid.

4 Numerical Results

In this section, we first provide numerical and simulation results to verify our
analytical result on the DF in (17). We then plot the DF under various net-
work scenarios to find the conditions where the independence assumption on
consecutive packet transmissions is approximately valid.

In numerical and simulation studies, we assume that each node uses uniform
distribution on {1, 2, · · · ,W} to select its backoff counter value. For simulation
we use MATLAB with parameters given in Table 1 and consider a ball-shaped
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Table 1. Network parameters

λ 0.01 ∼ 0.15 (points/m2)

||z|| 1 ∼ 20 (m)

α 3, 4

ρ 3.1623 (=5 dB)

μ 1

W 63, 127

RS 60 (m)

Fig. 1. Comparison of the analytic results (17) with simulation results where ||z|| =
10 (m).
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Fig. 2. Dependency Factor under various network parameters

region around the tagged receiver with the radius RS . We assume that nodes are
distributed in the region according to a HPPP with intensity λ. We also assume
perfect sensing, i.e., every node has correct information on whether the channel
is idle or not. The range of λ is restricted so that the probability of having a
successful transmission is greater than 0.1 for given α and W . The results are
plotted in Fig. 1. As seen in the figure, our analytical results of the DF in (17)
are well matched with simulation results, which verifies that our analysis is valid.

It is worth noting that the DF Ψ(λ, ||z||, α) is an increasing function of λ and
||z||; see (17) and Fig. 2. The reason for this is explained as follows. As λ and
||z|| increase, the network condition for the tagged receiver becomes worse and it
becomes more difficult for the tagged receiver to have a successful packet recep-
tion, i.e., the tagged receiver has a smaller success probability P{S1}. Therefore,
once the tagged receiver has a successful reception in a network with large λ and
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||z||, it is reasonable to understand that the network condition becomes relatively
good (for example, less contenders) for given λ and ||z||. Accordingly, the next
packet transmission is also more likely to be successful. With a similar reason, we
see that the DF decreases as W increases because increasing the window size W
decreases the access opportunities of nodes in the network and hence eases com-
petition between the nodes. We also see that the DF decreases as α increases
because the increase in α results in that the number of significant interferers
becomes less and this increases the success probability and decreases the DF.

A closer look at (15) and (17) gives the following interesting observations.
Note that λπ||z||2 is the expected number of nodes closer to the tagged receiver
than the tagged transmitter. So, we can interpret M := λπ||z||2 in (17) as the
expected number of strong interferers to the tagged receiver. Note also that
P{S1} and Ψ(λ, ||z||, α) are functions of λπ||z||2. To see the impact of M on
the DF and the success probability explicitly, we plot Ψ(λ, ||z||, α) and P{S1}
in Fig. 3 when we change the value of M . The figure shows that the higher the
success probability, the lower the DF. Recall that the independent assumption
on individual packet transmission results is approximately valid only when the
DF is close to 1. From our observations above we conclude that the indepen-
dent assumption is only valid for the network environment is relatively good,
i.e., the expected number of nodes around the tagged receiver is relatively small.
On the other hand, the independent assumption is not valid when the network
environment is relatively bad, i.e., the expected number of nodes around the
tagged receiver is relatively large. Therefore, it is necessary to develop a new
mathematical model for the performance analysis of WLAN without the inde-
pendence assumption for a super-dense network like a Small-World Super-Dense
Device-to-Device wireless Network [18].

Fig. 3. Ψ(λ, ||z||, α) versus M := λπ||z||2
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5 Conclusions

We developed a mathematical model to consider the spatial distribution of nodes
and the MAC protocol for channel access in WLAN. Based on our mathematical
model we analyze the performance of WLAN and verify our analysis through
numerical and simulation studies. From our analysis we investigate the per-
formance behavior and the impact of the spatial distribution of node on the
performance of WLAN.
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Abstract. In cognitive radio networks, spectrum sensing errors are
unavoidable, and it is necessary to evaluate the negative effects of spec-
trum sensing errors on the system performance. In this paper, we con-
sider and analyze the system performance of a cognitive radio network
with non-ideal spectrum sensing. Considering the diversity of data trans-
mission in modern communication networks, we also introduce multiple
classes of secondary users (SUs) into the system evaluation. By building
and analyzing a discrete-time Markov chain model, we obtain formulas
for the collision probability, and the interruption rate and the average
delay for the SU packets with lower priority. Finally, with the help of
numerical results, we show the influence exerted the non-ideal spectrum
sensing.

Keywords: Cognitive radio networks · Non-ideal spectrum sensing
Multiple classes of secondary users · Performance analysis

1 Introduction

Secondary users (SUs) have spectrum sensing abilities in cognitive radio net-
works. These SUs can sense the state of the spectrum and transmit opportunis-
tically on the spectrum holes [1].

The spectrum sensing ability of the SUs allows them to avoid interfering with
the transmission of the primary users (PUs). However, it has been posited that
this ability may technically restricted, and as such, not ideal [2]. Consequently, in
recent years, some researches, such as [3,4], have begun to explore the influence
of non-ideal spectrum sensing on different performance measures in cognitive
radio networks.

Most available research about non-ideal spectrum sensing does not consider
a network environment with multiple classes of SUs. In modern networks, data
transmission needs are many and varied. Therefore, in cognitive radio networks,
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it is necessary to introduce an SU grading mechanism to differentiate the diver-
sity of data transmission needs among SUs. It is noteworthy that some previous
studies have focused on grading the SUs in cognitive radio networks [5–8]. But
all of these studies mentioned assumed ideal spectrum sensing abilities.

We note that the research that most relates to this paper is that done by
[4,6] mentioned above. In [4], the non-ideal spectrum sensing results were intro-
duced into a cognitive radio network with single-class SU packets. As a point of
difference from [4], in this paper, we focus on multiple classes of SUs to capture
the diversity of data transmission needs. In [6], a cognitive radio network with
multiple classes of SUs but ideal spectrum sensing results was analyzed. Differ-
ent from [6], in this paper, we introduce and evaluate the effects of non-ideal
spectrum sensing results on the system performance of multiple classes of SUs.

Moreover, we note in cognitive radio systems, the SUs have different trans-
mission demands. For example, one is real-time transmission demand (such as
voice or video), which is strict with regard to instantaneous delivery but rela-
tively tolerance of bit errors, and no-real-time transmission demand, which is
strict with regard to bit errors but relatively tolerance of instantaneous delivery.
We introduce two classes of SUs, SU1 and SU2 in this paper.

There are several innovative aspects to our paper. Firstly, we introduce simul-
taneously both non-ideal spectrum sensing and multiple classes of SUs into the
performance evaluation of cognitive radio networks. Where the SU1 can be con-
sidered to be an SU with real-time transmission demands, and the SU2 can be
considered to be an SU with non-real-time transmission demands. Secondly, dif-
ferent from the continuous-time models built into most existing research, in this
paper, we overcome the complexity of discrete-time modeling analysis and build
a discrete-time Markov chain model to perform the system performance analysis.
With assumption of non-ideal spectrum sensing brought into consideration, we
conduct numerical experiments to evaluate the influence of non-ideal spectrum
sensing on different performance measures.

We organize the paper as follows. We present a discrete-time Markov chain
model in Sect. 2 and analyze this Markov chain model in Sect. 3. We then derive
the formulas for the collision probability, the SU2 packet interruption rate and
the average delay and also show the numerical results for different performance
measures in Sect. 4. Finally, we conclude our work in Sect. 5.

2 System Model

We focus on the system actions of the network users on a single channel. There
is one PU in the system. The PU packets generated from the PU are endowed
with the highest priority to occupy the channel. Considering the diversity of the
SUs, we assume that there are two classed of SUs, SU1 and SU2 in the system.
Therefore, in the system model considered in this paper, there is one PU and
two classes of SUs, SU1 and SU2. Compared with PU packets and SU1 packets,
SU2 packets have the lowest priority.
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On the other hand, in real radio systems, the buffers can be employed to hold
the packets. We assume that the SU2 has a buffer to reduce SU2 packets’ loss. Cor-
respondingly, no buffers are set to accommodate PU packets and SU1 packets.

Generally speaking, two types of non-ideal spectrum sensing results for SU
packets should be considered: missed detection and false alarm [3]. We note that
the non-ideal spectrum sensing results of SU2 packets will influence the transmis-
sion of both PU packets and SU1 packets. In this paper, we focus on evaluating
the effect of spectrum sensing errors of the SU2 packets on the system perfor-
mance. The two examples of sensing errors that we consider are false alarms and
missed detections.

We build an early arrival system model, and consider a slotted time structure.
We denote the slot boundaries as t = 1, 2, . . . and assume that the SU2 can
sense the channel at the boundary of each slot. There are two possibilities for
a false alarm. Firstly, an SU2 packet cannot access a channel that is in an idle
state. Secondly, an SU2 packet can wrongly interrupt its ongoing transmission
and return back to the SU2 buffer. In the case of missed detection, if a missed
detection occurs, an SU2 packet will collide with a PU packet (or an SU1 packet)
and then all the packets in the collision will be lost. We denote the notation
pf (p̄f = 1 − pf ) as the false alarm rate and the notation pm(p̄m = 1 − pm) as
the missed detection rate.

With the same assumptions as in [4,6], the arrival processes of the three
types of packets follow a Bernoulli process with arrival rates λ1(λ̄1 = 1 − λ1),
λ21(λ̄21 = 1 − λ21) and λ22(λ̄22 = 1 − λ22), respectively. The transmission times
of the three types of packets follow geometric distributions with service rates
μ1(μ̄1 = 1 − μ1), μ21(μ̄21 = 1 − μ21) and μ22(μ̄22 = 1 − μ22), respectively.

Let Sn be the number of SU2 packets and Cn be the channel state at the
instant t = n+. Cn = 0 denotes that the channel is not occupied by any packets.
Cn = 1, 2, 3 denote that the channel is occupied by a PU packet, an SU1 packet
or an SU2 packet, respectively. Specifically, Cn = 4 denotes the channel is in a
state of confusion caused by packet collisions. Then {Sn, Cn} constitutes a two-
dimensional Markov chain. The state space K of {Sn, Cn} can be given as follows:

K = {(0, j) : j = 0, 1, 2} ∪ {(i, j) : i ≥ 1, j = 0, 1, 2, 3, 4}.

3 Model Analysis

Based on the possible state transitions of {Sn, Cn}, we define and discuss the
block-structured transition probability matrix P as follows:

P =

⎛
⎜⎜⎜⎜⎜⎝

U 00 U 01

U 10 X 1 X 0

X 2 X 1 X 0

X 2 X 1 X 0

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠

. (1)

Based on the following equations, we discuss each non-zero block in P . We
introduce notations ρ = λ1μ1 + μ̄1, ζ = λ21μ21 + μ̄21 and ϑ = λ22μ22 + λ̄22μ̄22.
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(1) U 00 is a 3 × 3 matrix given as follows:

U 00 =

⎛
⎝

λ̄22λ̄1λ̄21 λ̄22λ1 λ̄22λ̄1λ21

λ̄22λ̄1λ̄21μ1 λ̄22ρ λ̄22λ̄1λ21μ1

λ̄22λ̄1λ̄21μ21 λ̄22λ1 λ̄22λ̄1ζ

⎞
⎠ .

(2) U 01 is a 3 × 5 matrix given as follows:

U 01 = λ22V (2)
where V can be given as follows:

V =

⎛
⎝

λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm
λ̄1λ̄21μ1pf ρp̄m λ̄1λ21μ1p̄m λ̄1λ̄21μ1p̄f (1 − μ1λ̄1λ̄21)pm
λ̄1λ̄21μ21pf λ1p̄m λ̄1ζp̄m λ̄1λ̄21μ21p̄f (1 − μ21λ̄1λ̄21)pm

⎞
⎠ .

(3) U 10 is a 5 × 3 matrix given as follows:

U 10 =

⎛
⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0

μ22λ̄1λ̄21λ̄22 μ22λ1λ̄22 μ22λ̄1λ21λ̄22

λ̄1λ̄21λ̄22 λ1λ̄22 λ̄1λ21λ̄22

⎞
⎟⎟⎟⎟⎠

. (3)

(4) X 1 is a 5 × 5 matrix given as follows:

X 1 =

⎛
⎜⎜⎜⎜⎝

λ̄22 0 0 0 0
0 λ̄22 0 0 0
0 0 λ̄22 0 0
0 0 0 ϑ 0
0 0 0 0 λ22

⎞
⎟⎟⎟⎟⎠

× W (4)

where W can be given as follows:

W =

⎛
⎜⎜⎜⎜⎝

λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm
λ̄1λ̄21μ1pf ρp̄m λ̄1λ21μ1p̄m λ̄1λ̄21μ1p̄f (1 − μ1λ̄1λ̄21)pm
λ̄1λ̄21μ21pf λ1p̄m λ̄1ζp̄m λ̄1λ̄21μ21p̄f (1 − μ21λ̄1λ̄21)pm

λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm
λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm

⎞
⎟⎟⎟⎟⎠

.

(5) X 0 is a 5 × 5 matrix given as follows:

X 0 = λ22Y (5)

where Y can be given as follows:

Y =

⎛
⎜⎜⎜⎜⎝

λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm
λ̄1λ̄21μ1pf ρp̄m λ̄1λ21μ1p̄m λ̄1λ̄21μ1p̄f (1 − μ1λ̄1λ̄21)pm
λ̄1λ̄21μ21pf λ1p̄m λ̄1ζp̄m λ̄1λ̄21μ21p̄f (1 − μ21λ̄1λ̄21)pm
μ̄22λ̄1λ̄21pf μ̄22λ1p̄m μ̄22λ̄1λ21p̄m μ̄22λ̄1λ̄21p̄f μ̄22(1 − λ̄1λ̄21)pm

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.
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(6) X 2 is a 5 × 5 matrix given as follows:

X 2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 μ22λ̄22 0
0 0 0 0 λ̄22

⎞
⎟⎟⎟⎟⎠

× Z (6)

where Z can be given as follows:

Z =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm
λ̄1λ̄21pf λ1p̄m λ̄1λ21p̄m λ̄1λ̄21p̄f (1 − λ̄1λ̄21)pm

⎞
⎟⎟⎟⎟⎠

.

We further define the steady-state distribution πi,j of {Sn, Cn} as follows:

πi,j = lim
n→∞ P {Sn = i, Cn = j} . (7)

From the structure of P , we conclude that the Markov chain {Sn, Cn} fol-
lows a Quasi Birth and Death (QBD) process. With the matrix-geometric solution
method introduced in [9], we can obtain πi,j defined in Eq. (7).

4 Performance Measures and Numerical Results

4.1 Performance Measures

We try to give the formulas for the collision probability, the SU2 packet inter-
ruption rate and average delay in this subsection.

An SU2 packet may collide with a PU packet or an SU1 packet because
of non-ideal spectrum sensing. In the system considered in this paper, there
may be a state of confusion caused by packet collisions. For this, we define
a collision probability β as the probability for this state of confusion in this
system. Therefore, the formula for β can be given as follows:

β =
∞∑
i=1

πi,4. (8)

The SU2 packet interruption rate γ is the average number of SU2 packets
whose transmissions are interrupted per slot. There are two possible cases. In
the first case, the SU2 packet being transmitted correctly detects the arrivals of
packets with higher priority, and then returns to the buffer. In the second case,
the SU2 packet being transmitted on the channel false alarms the arrivals of
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packets with higher priority, and then returns to the buffer. So the formula for
γ can be given as follows:

γ =
∞∑
i=1

πi,3μ̄22

[(
1 − λ̄1λ̄21

)
p̄m + λ̄1λ̄21pf

]
. (9)

The SU2 packet average delay τ is defined as the average time that an SU2
packet stays in the system. Based on Little’s equation [10], the formula for τ can
be given as follows:

τ =

∑∞
i=1

∑4
j=0 iπi,j

λ22
. (10)

4.2 Numerical Results

In this subsection, we show how the non-ideal spectrum sensing results influence
the system performance by using numerical results. Without loss of generality,
the service rates for the packets are set as μ1 = μ21 = μ22 = 0.5 in the numerical
results.

Figure 1 shows how the SU2 packet interruption rate γ changes with respect
to the PU packet arrival rate λ1 when λ21 = λ22 = 0.1.
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Fig. 1. SU2 packet interruption rate γ versus arrival rate λ1.

In Fig. 1, the SU2 packet interruption rate γ is lower with the ideal spec-
trum sensing (pm = 0.00, pf = 0.00). That is to say, the non-ideal spectrum
sensing results have detrimental effects on the system performance. Figure 1 also
shows that a higher arrival rate λ1 for PU packets can increase the SU2 packet
interruption rate γ. Moreover, a higher false alarm rate pf can increase the SU2
packet interruption rate γ. The reason is that more SU2 packets will interrupt
their transmissions with a higher false alarm rate. Additionally, it’s worth noting
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that as the missed detection rate pm increases, the SU2 packet interruption rate
γ will decrease. The reason may be that as the missed detection rate increases,
more SU2 packets will leave the system because of packet collisions, and the
possibility of the channel being idle will be higher. This obviously will lower the
SU2 packet interruption rate.

Figure 2 shows the change trend for the SU2 packet average delay τ when
λ1 = λ22 = 0.1.
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Fig. 2. SU2 packet average delay τ with false alarm rate pf .

Figure 2 shows that as the false alarm rate pf increases, the SU2 packet
average delay τ will increase. This is because larger numbers of SU2 packets
may be in the SU2 buffer under a higher false alarm rate. While the SU2 packet
average delay τ can be decreased by setting a higher missed detection rate pm.
The reason for this interesting change trend may be that the higher the missed
detection rate is, the more SU2 packets there are that will leave the system
because of packet collisions, and then this will decrease the SU2 packet average
delay. Moreover, Fig. 2 shows that a higher SU1 packet arrival rate λ21 also
can cause an increase in the SU2 packet average delay τ . This is because the
transmission probability for the SU2 packets is lower with a higher SU1 packet
arrival rate.

From Figs. 1 and 2, we conclude that the SU2 packet interruption rate and the
average delay will be increased under a higher false alarm rate, although these two
performance measures seem to be decreased with a higher missed detection rate.
But these results in fact come from larger numbers of packet collisions and losses.

5 Conclusion

Taking the non-ideal spectrum sensing results into consideration, this paper stud-
ied and evaluated the system performance of cognitive radio networks with two
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grades of SUs. We introduced two types of non-ideal spectrum sensing results;
missed detection and false alarm of the SU2 packets, when building and analyzing
the discrete-time Markov chain model. Accordingly, we derived the expressions
for the collision probability, the SU2 packet interruption rate and the average
delay. Finally, the numerical experiments showed that the non-ideal spectrum
sensing results brought some detrimental effects to the system performance. For
example, a higher false alarm rate that could increase both the interruption rate
and the average delay for SU2 packets. Moreover, the numerical experiments also
showed that the SU2 packet average delay could be increased under a higher SU1
packet arrival rate.

In future work, we plan to derive some more expressions of the system per-
formance measures and further explore the non-ideal spectrum sensing results
of the SU1 packets.
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Abstract. Motivated by the need of an efficient energy-saving scheme in
Wireless Sensor Networks (WSNs), several works considered variants of
vacation queueing models with N-policy which is designed as an efficient
queued wakeup scheme for improving the lifetime of WSNs. However,
it can have a significant negative impact on the latency delay of data
packets. The aim of the present paper is to propose an energy saving
and latency efficiency technique for full-duplex wireless sensor nodes,
based on a combination of normal vacation and working vacation policy,
that we called the two thresholds working vacation policy. Moreover, we
propose the modeling and the performance analysis of the new queueing
vacation policy using the Generalized Stochastic Petri Nets formalism. To
this end, we developed the formulas of the main stationary performance
indices and energy consumption. Finally, we give a detailed analysis that
proves the efficiency of the proposed approach.

Keywords: Wireless Sensor Networks · Latency delay
Energy conservation · Queueing vacation policies
Generalized Stochastic Petri Nets · N-policy
Working vacation models · Performance indices

1 Introduction

In the last decade, Wireless Sensor Networks (WSNs) were extensively investi-
gated due to the large number of emerging applications that cover several fields.
A WSN is composed of significant number of sensor nodes which are tiny devices
with various energy and computational constraints [1]. Considering the fact that
the sensor nodes are usually deployed to cover distant, inaccessible and some-
times hostile environment which makes it very difficult to recharge or replace
their limited batteries, minimizing the energy consumption became the most
important constraint in the network design.
c© Springer International Publishing AG, part of Springer Nature 2018
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Several approaches can be used to conserve energy and extend the sensor
nodes lifetime [2,3]. The duty cycling technique can save energy by putting
nodes on sleep mode when there is no network activity. The radio is put to
rest whenever possible in sleep mode (low-energy mode), and is brought back to
active mode upon the occurrence of some event or, alternatively, by following
some scheduling approach [4]. Additionally, the energy consumption of a sensor
node during active mode can be more reduced by operating the radio at different
frequency levels [5]. Thereby, we can save the amount of energy wasted in the
transition frequency of the radio from the idle state to the busy state to start the
transmission of data packets. This is an easy way to save the sensor energy by
allowing it to be inactive (or on vacation) during idle state. during this period of
time, it can only receive data packets. However, it can both receive and transmit
data packets during busy state, and switches to idle state as soon as all queued
packets are transmitted.

In the literature, vacation queueing models are widely used to model and
analyze the dynamic behavior of sensor nodes with energy-saving. Almost works
consider variants of N-policy vacation queue [6–11]. The N-policy is designed as
an efficient queued wakeup scheme characterized by the fact that customers are
accumulated and the idle server is turned on whenever there are N (N ≥ 1)
or more customers in the system, and that the server is turned off when the
system becomes empty. The authors of [6,7] investigated a variant of N-policy
vacation queue with infinite buffer to minimize energy consumption for full-
duplex nodes. Similarly, the papers [8,9] considered a variant of limited capacity
N-policy vacation queue based on half-duplex nodes for simplicity. In the same
way, Nidehi and Goswami [10] considered a finite N-policy vacation queue for
full-duplex nodes.

It has been proven in the literature that the N-policy is an efficient method for
improving the lifetime of WSNs, but it can have a significant negative impact on
the latency delay of data packets. To minimize the induced latency delay, Jiang
et al. [12] proposed the Min(N,T) policy queue with infinite buffer for full-duplex
nodes, where in addition to the queue threshold N , the radio can switch to the
busy state when the waiting time of the leading packet has reached a fixed T
time slots. On the other hand, based on full-duplex nodes with finite buffer, we
have proposed in [11], a new vacation policy called Hybrid-policy, which can
be viewed as a combination of the N-policy with the random vacation. Hence,
a node can switch from idle state to busy state and starts the transmission of
queued packets, if its buffer size reached the threshold N or at the end of the
vacation period whose duration is random.

The aim of the present paper is to propose an energy saving and latency effi-
ciency technique for full-duplex wireless sensor nodes based on a combination of
normal vacation and working vacation policy. During a working vacation period
[13], the server remains working at a lower service rate rather than completely
stopping service during ordinary vacation period. Recently, in the papers [14,15],
the authors introduced the N-policy to return the server from the working vaca-
tion period to busy (or service) mode. The novelty of our investigation and with
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the aim of improving energy and minimizing latency, we propose in this paper
a new vacation policy that we call the two thresholds working vacation policy,
which corresponds to the N-policy with two different thresholds to switch the
server between ordinary vacation, working vacation and service states. Hence,
a node can switch from idle state (ordinary vacation state) to semi-busy state
(working vacation state) and starts the transmission of queued packets at lower
rate, if its buffer size reached the threshold N2. While being in semi-busy state,
a node can switch to busy state (service state) and start transmission of queued
packets at normal rate, if its buffer size reached the threshold N1 or return to
idle state when the buffer empties. Moreover, we propose to model a full-duplex
sensor node during its active mode by considering the limited capacity buffer,
using the Generalized Stochastic Petri Nets (GSPNs) high level formalism.

The paper is organized as follows. In Sect. 2, we provide the model descrip-
tion of a sensor node, while in Sect. 3, we present a detailed description of the
proposed GSPN models. Then, in Sect. 4, we develop the steady state perfor-
mance indices and energy consumption of the given models. Several numerical
results have been carried out using the efficient software tool GreatSPN in Sect. 5.
Section 6 concludes the paper.

2 Mathematical Description of a Sensor Node
with Vacation

In our paper, we consider a single full-duplex and finite buffer sensor node during
its active period. First, we propose to model a sensor node as a vacation queueing
system with N-policy, in which packets (relayed and sensed) arrive following
a Poisson process with parameter λ and the service times are exponentially
distributed with mean 1/μ1. We assume that the sensor node can alternate
between busy and idle states, which correspond to the service and vacation states
of a vacation queueing model. During the busy state, the node can generate
sensing data, receive and transmit data packets until the buffer empties. At this
moment, it switches to idle state. While being in idle state, a node can generate
sensing data, receive relayed data packets and store them in the buffer until the
number of queued packets reaches the threshold N1.

In a second time, we propose a new vacation policy for the sensor node, as
a combination of normal vacation and working vacation queueing system, that
we call the two thresholds working vacation policy, in which the normal service
and the working vacation service times are exponentially distributed with mean
1/μ1, and 1/μ2, respectively. We assume that the sensor node can alternate
between busy, semi-busy and idle states, which correspond to the service, working
vacation and ordinary vacation states of a queueing model. During the busy state,
the node transmits data packets until the buffer empties with mean 1/μ1. At
this moment, it switches to idle state and remains in this state till the buffer
size reaches the threshold N2 where instantly it switches to the semi-busy state.
Within the semi-busy state, packets are transmitted with mean 1/μ2 (μ2 <
μ1). If during the semi-busy state, the number of waiting packets reaches the
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threshold N1, the sensor node immediately switches to the busy state or returns
to idle state if the buffer becomes empty.

3 GSPN Models of a Sensor Node with the Two Vacation
Policies

The Generalized Stochastic Petri Nets (GSPNs) [16] are a powerful mathematical
and graphical formalism which allows to model easily the system behavior and
to obtain interesting steady state performance indices of the modeled system. A
GSPN consists mainly of a set of places, a set of transitions and directed arcs.
Places are drawn as circles and may contain any number of tokens (black dots)
which model the various resources of the system. Transitions represent actions
and can be immediate transitions or timed transitions, which are drawn as thin
lines and rectangles respectively. Timed transitions model the execution of time
consuming actions and fire with a random, exponentially distributed firing delay,
whereas immediate transitions model logic activities, like synchronization, fire
without any delay and have priority over timed transitions. Places and transi-
tions are linked by arcs which may be labeled by a multiplicity. However, the
presence of tokens in places connected with inhibitor arcs to a transition ( circle-
headed arcs from places to transitions) inhibit the firing of this transition. The
firing of a transition removes tokens from its input places (the number of tokens
indicated on input arcs of the transition) and putting tokens to its output places
(the number of tokens indicated on output arcs of the transition). The GSPN
marking M is defined by the number of tokens contained in each place which
represents the system state. M0 is called the initial marking of a GSPN and
determines its initial state.

In the following, we describe the proposed GSPNs models for wireless sensor
node with the two vacation policies, namely N-policy and the two thresholds
working vacation policy.

3.1 The GSPN Model with N-Policy

In Fig. 1, the wireless sensor node model with the N-policy queueing vacation
discipline is graphically represented as a GSPN model.

– The place Capacity: represents the available storage capacity in the buffer of
the sensor node. The buffer capacity is K packets represented by K tokens
initially residing in the place Capacity.

– The place Buffer: represents the number of packets in the buffer waiting for
transmission.

– The place Idle: represents that the radio is in idle state.
– The place Busy: represents that the radio is in busy state.
– The initial marking of the net is:

M0 = {M(Capacity),M(Buffer),M(Idle),M(Busy)} = {K, 0, 1, 0},
which represents the fact that no packet is present in the node, the radio
is idle and the buffer is empty.
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Fig. 1. GSPN of a sensor node with N-policy

– The firing of the timed transition T Arr indicates the arrival of new packets
(relayed or sensed).

– At the arrival of a new packet, if the place Capacity contains at least one
token, which represents the fact that there is at least one idle position in
the buffer, the transition T Arr fires and produces one token in the place
Buffer.

– Whenever the place Busy contains a token (The radio is in busy state) and
the place Buffer is not empty, the timed transition T Serv fires with mean
rate μ1 by removing one token from each input places (Buffer and Busy),
remitting a token to the place Busy representing that the radio becomes ready
to transmit another packet and producing another token in Capacity repre-
senting thus the liberation of a position in the buffer. This firing represents
the transmission of a packets.

– The firing of the immediate transition T Idle begin represents the transition
from busy to idle state. When the radio is in idle state (represented by a token
in the place Idle) and the buffer is empty, which is verified by an inhibitor
arc from the place Buffer to the immediate transition T Idle begin.

– The passage of the sensor node from the idle to the busy state is controlled by
the N-policy. Hence, the end of the idle state (vacation period) corresponds
to the firing of the immediate transition T Idle end as soon as the number of
token reaches N1 in the place Buffer, which corresponds to have N1 waiting
packets in the sensor node buffer.
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3.2 The GSPN Model with the Two Thresholds Working Vacation
Policy

The GSPN model with the two thresholds working vacation policy is depicted
in Fig. 2. In this model, the passage from idle state to semi-busy state and
from semi-busy state to busy state are both controlled by the N-policy
but with different thresholds values (N1 and N2). To this aim, we add to
the previous model (given in Fig. 1) the place SemiBusy which represents
that the radio is in semi-busy state, the timed transition T Serv SB, two
other immediate transitions T SB end and T Idle begin2 and we rename
the transition T Idle begin to T Idle begin1. The initial marking of the net
is M0 = {M(Capacity),M(Buffer),M(Idle),M(SemiBusy),M(Busy)} =
{K, 0, 1, 0, 0}, which represents the fact that the buffer is initially empty and
the radio is idle. When the sensor node is idle (place Idle contains a token)
and after the arrival of the N2th packet, the immediate transition T Idle end
fires and removes a token from the place Idle and deposits a token in the place
SemiBusy. This firing represents the transition from idle state to semi-busy
state. While being in semi-busy state, the radio transmits packets using the
lower mean rate μ2 to reduce the latency and minimize the energy consump-
tion by operating with a lower speed. The transmission during semi-busy state
(working vacation) is achieved by the firing of the timed transition T Serv SB.
Meanwhile, if the number of queued packets reaches the threshold N1, the radio
come back to the normal working level immediately (busy state ) by firing the
immediate transition T SB end. At a transmission completion of a packet dur-
ing busy (semi-busy) state and the buffer is empty, the sensor node switches to
idle state by the firing of the immediate transition T S Idle begin.

Fig. 2. GSPN of a sensor node with two thresholds working vacation policy
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4 Performance Indices

As the GSPN models described in Sect. 3 are bounded and their initial marking
M0 is a home state, they are ergodic and the steady-state distribution exists
and is unique. Hence, the stationary probability vector π = (π1, π2, ..., πn) can
be computed and we can derive the exact steady-state performances indices
and energy consumption of a wireless sensor node. The GreatSPN [17] software
system is used to validate the correctness (qualitative analysis) of the developed
GSPN models, compute the vector π and the performance measures using the
formulas given below. In what follows, Mi(p) indicates the number of tokens in
place p in the marking Mi, πi is the probability that the process is in the state
Mi at steady state, A is the set of reachable tangible markings, and E(t) is the
set of tangible markings reachable by transition t.

– The blocking probability of packets (PB): It corresponds to the buffer satu-
ration probability.

PB =
∑

i:Mi(Capacity)=0

πi. (1)

– The probability that a sensor node is on idle state PI : It corresponds to the
probability that the place Idle contains one token.

PI =
∑

i:Mi(Idle)=1

πi. (2)

– The Probability that a sensor node is on semi-busy state PSB : It corresponds
to the probability that the place SemiBusy contains one token.

PSB =
∑

i:Mi(SemiBusy)=1

πi. (3)

– The mean number of packets in a sensor node (Q): It represents the mean
number of waiting packets in the sensor including the packet being transmit-
ted. This corresponds to the mean number of tokens in the place Buffer.

Q =
∑

i:Mi∈A

Mi(Buffer) · πi. (4)

– The packets reception throughput λ : It corresponds to the effective rate of
packets reception by the sensor node.

λ = λ ·
∑

i:Mi∈E(T Arr)

πi. (5)

– The average length of an idle period I : It corresponds to the average duration
of time when the place Idle contains one token.

I =

⎧
⎨

⎩

N1
λ N-policy

N2
λ Two thresholds working vacation policy

. (6)
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– The average length of a semi-busy period SB : It corresponds to the average
duration of time when the place SemiBusy contains one token (in the second
model), which represents the average time of packets transmission with low
rate μ2.

SB = min{N1 − N2

λ
,
QSB

μ2
}. (7)

Where: QSB =
∑

i:Mi∈A&Mi(SemiBusy)=1 Mi(Buffer) · πi which represents
the mean number of packets in the sensor node during semi-busy state.

– The average length of a busy period B: It corresponds to the average duration
of time when the radio transmits packets with high rate μ1.

B =
QB

μ1
. (8)

Where: QB =
∑

i:Mi∈A&Mi(Busy)=1 Mi(Buffer) · πi which represents the
mean number of packets in the sensor node during busy state.

– The Average duration of a cycle (C): From (6), (7) and (8), we can get the
mean duration of one cycle per time unit.

C =
{

B + I N-policy
B + SB + I Two thresholds working vacation policy

(9)

– The mean sojourn time of packets W : Using Little’s formula, the expected
mean sojourn time of packets in the sensor node is given by :

W =
Q

λ
. (10)

– The energy consumption at a sensor node (EC): Based on Jiang et al. [7], we
propose the following mean energy consumption formulas.

EC =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ECI · PI + ECb · (1 − PI) + ECs

C
+ Q · ECTx

N-policy

ECSB · PSB + ECI · PI + ECb · (1 − PSB − PI)+
ECs

C
+ Q · ECTx

Two thresholds working vacation policy

. (11)

where :
ECSB energy consumption while the radio is in semi-busy state.
ECI energy consumption while the radio is in idle state.
ECb energy consumption while the radio is in busy state.
ECTx energy consumption for holding each packet present in the sensor node.
ECs energy dissipated when a sensor node switches between the different

states.
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Table 1. System parameters

Parameter Value

Capacity of buffer (K) 20

Queue threshold N1 Range from 1 to K − 1

Queue threshold N2 2

Mean data arrival rate (λ) Range from 0.25 to 0.75

Mean normal service rate (μ1) 5

Mean working vacation service rate (μ2) Range from 0.25 to 0.75

ECI 10

ECSB Range from 25 to 75

ECb 500

ECTx 5

ECs 300

Fig. 3. Average energy consumption vs. queue threshold N1, N-policy λ : 0.25 ∼ 1

5 Experimental Results and Discussions

In this section, some numerical results are presented to show the efficiency of
the proposed models. The numerical results were computed using the GreatSPN
tool [17]. The system parameters are taken as shown in Table 1.

First, we investigate the effect of varying the queue threshold N1 on the
average energy consumption for various λ values, when μ1 is set to 5. Figure 3
considers the sensor node model with N-policy. It shows that the mean energy
consumption decreases when the queue threshold N1 increases till it reaches an
optimal value of N1 which mitigates the average energy consumption and then
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Fig. 4. Average energy consumption vs. queue threshold N1, λ : 0.25 ∼ 0.75

it increases thereafter. For example, the optimal value of N1 can be reach at
N1 = 5 for λ = 0.25 and we can conserve until 45, 73% compared to the mean
energy consumption for an ordinary sensor node (N = 1), which agree with the
intuitive expectations. In Fig. 4, we we compare the average energy consumption
for the N-policy and the two thresholds working vacation policy models, where
the queue threshold during semi-busy state N2 is set to 2 and μ2 is set to 0.5.
We notice that with the two thresholds working vacation policy, the average
energy consumption also decreases as the queue threshold N1 increases until it
reaches an optimal value of N1 which minimizes the average energy consumption
and then it increases slowly thereafter. It can be seen that the average energy
consumption for the model with two thresholds working vacation policy is less
than the model with N-policy. Note that, within the sensor node model with the
two thresholds working vacation policy, we can conserve for example over then
5.8% when N1 = 7 and λ = 0.25. However, we can also conserve until 8% when
N1 = 8 and λ = 0.50.

Likewise we compare and examine the influence of the queue threshold N1 on
the mean sojourn time W of the proposed models (N-policy and Two thresholds
working vacation policy). We assume that the queue threshold during semi-busy
state N2 is set to 2, μ1 is set to 5 and μ2 is set to 0.25. Figure 5 shows that W
increases with the increasing of N1. However, we can notice that W decreases
with the increase of λ. This result agrees with the intuition, that N1 is reached
with the higher values of λ faster than the lower values. It can be also clearly seen
that among the two models, the model with the two thresholds working vacation
policy has the lowest W , due to the fact that the radio remains transmitting data
packets at a lower mean service rate μ2 during semi-busy state.
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Then, similarly we study the impact of the queue threshold N1 on the block-
ing probability PB for several values of λ when μ1 is set to 5, μ2 = 0.25 and
N2 = 2. As shown in Fig. 6, the PB increases by increasing N1. We can also
notice that among the two models, the model with two thresholds working vaca-
tion policy gives the best (lowest) PB, This is due to the fact that the radio
continues to transmit data packets at a lower service rate μ2 during semi-busy
state rather than completely stopping service in the model with N-policy.

Fig. 5. Mean sojourn time vs. queue threshold N1, λ : 0.25 ∼ 0.75

Finally, we consider the model with two thresholds working vacation policy
where we pay attention to the relation between the queue threshold N1, the
average energy consumption and the mean sojourn time for various semi-busy
state mean service rate μ2, when the mean arrival rate λ is set to 0.5, the
normal mean service rate μ1 is set to 5 and the queue threshold N2 is set to 2.
Figure 7 shows that the average energy consumption decreases with the increase
of N1 until it reaches an optimal queue threshold value of N1 then it increases
thereafter, however, the average energy consumption increases with the increase
of μ2. This is due to the fact that with the increase of μ2, the ECSB will also
increase, which increases the average energy consumption. Figure 8 highlights
the effects of N1 and μ2 on the mean sojourn time W . It can be see that W
decreases with the increase of N1 while it decreases with the increase of μ2. This
results are logical because the increasing of μ2 describes the fact that the radio
will work faster, hence, the average energy consumption increases and the mean
sojourn time W decreases.
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Fig. 6. Blocking probability PB vs. queue threshold N1, λ : 0.25 ∼ 0.75

Fig. 7. Average energy consumption vs. queue threshold N1, two thresholds working
vacation policy μ2 : 0.25 ∼ 0.75
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Fig. 8. Mean sojourn time vs. queue threshold N1, two thresholds working vacation
policy μ2 : 0.25 ∼ 0.75

6 Conclusion

In this paper, we have proposed a new energy saving and latency efficiency
technique for wireless sensor nodes. First, a finite buffer vacation queueing sys-
tem with N-policy is used to model a sensor node. Then, a finite buffer vaca-
tion queueing system with two thresholds working vacation policy is considered.
Using the high level GSPNs formalism, we have modeled a sensor node with
each vacation policy and we have developed the formulas of the main steady
state performance indices and energy consumption. The numerical results com-
paring the two models are made by using the efficient software tool GreatSPN
and demonstrate that, although the sensor node model with N-policy reduces
the energy consumption, the sensor node model with the two thresholds working
vacation policy reduces more energy and has also a significant effect on mini-
mizing the latency delay and the blocking probability. These results prove that
the proposed sensor node model with two thresholds working vacation policy is
an efficient technique for extending the lifetime of WSNs.
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Abstract. In order to resolve the issues of channel scarcity and low channel
utilization rates in cognitive radio networks (CRNs), some researchers proposed
to the idea of “secondary utilization” for the licensed channels. In “secondary
utilization”, secondary users (SUs) opportunistically take advantage of unused
licensed channels, thus guaranteeing the transmission performance and quality
of service (QoS) of the system. Based on the channel vacation scheme, we
analyze a preemptive priority queueing system with multiple synchronization
working vacations. Under this discipline, we build a three-dimensional Markov
process for this queueing model. Through the analysis of performance measures,
we obtain the average queue length of two types of users, the mean busy period
and the channel utility. Finally, by analyzing several numerical experiments, we
demonstrate the effect of the parameters on the performance measures.

Keywords: Channel vacation scheme � Three-dimensional markov process
Preemptive priority � Queueing model

1 Introduction

In the traditional static channel allocation method, the system allocates a fixed wireless
channel for each server. Even though the use of this method had enabled the elimi-
nation of interference between different servers, it has also led to a high imbalance in
channel utilization. Research reports show that licensed channel utilization ranges from
15% to 85%, and that the utilization of most licensed channels is very low [1].
However, remaining unlicensed channels are used frequently, which leads to an
enormous waste of channel resources, and an increased shortage in wireless channel
availability. How to take advantage of channel resources more efficiently has thus
become a research focus. Cognitive radio networks (CRNs) have altered the thinking
around traditional static channel allocation, and have given rise to the concept of
dynamic channel distribution.

In general, there are two types of users and multiple licensed channels in CRNs.
Primary Users (PUs) own the exclusive rights to licensed channels, and Secondary
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Users (SUs) own the ability to sense channels and opportunistically utilize unused
licensed channels, which leads to the idea of “secondary utilization” for the licensed
channels. Many researchers have investigated the multiple channels model using dif-
ferent strategies. For instance, Yu et al. considered a multi-channel CRN where each
SU could only choose to sense a subset of channels [2].

Other researchers have concentrated on saving network resources that are waste-
fully depleted by idle channels. For instance, Zhao et al. investigated a kind of spec-
trum allocation strategy with dynamic channel closing scheme, in which parts of the
channels could be closed periodically to realize the data transmission control once there
are not any transmission requests in the system [3]. Wu et al. proposed an optimal
resource allocation scheme in a multi-channel CRN, and considered the dynamic
channel model and the sensing errors based on a vacation queueing model [4].

Additionally, different strategies using queueing models have been applied in
CRNs. For example, Kim considered preemptive priority in CRNs by building a new
T-preemptive priority M/G/1 queueing model, and calculated the average waiting time
for PUs and SUs [5].

In our model, we mainly present both channel utility and resource conservation in
cognitive radio networks with a dynamic multichannel vacation scheme controlled by
central controller, and establish a Markov process to evaluate the system performance
measures. We would like to consider the performance analyses of the wireless com-
munication networks with interference or sensing protocol.

The remainder of this paper is organized as follows. In Sect. 2, the novel strategy
and the queueing model we studied is described. In Sect. 3, the steady-state distribution
of the queue length is analyzed. In Sect. 4, some performance measures are considered.
In Sect. 5, some numerical experiments are given. In Sect. 6, conclusions are stated.

2 Channel Allocation Strategy and System Model

2.1 The Dynamic Channel Vacation Scheme

In this paper, we consider a CRN consisting of two types of users and multiple licensed
channels. The central controller and web users interact with information about the
licensed channels. In order to conserve the network resource properly, a kind of channel
allocation strategy with a dynamic channel vacation scheme is proposed. In this strategy,
all c channels can enter into a working vacation period to realize data transmission
control once there are no remaining transmission requests in the system. The specific
description for the CRN with a dynamic channel vacation scheme is shown as Fig. 1.

According to the dynamic channel vacation scheme, we can divide the system state
into three states as follows:

1. Working vacation state. If the channels are empty, the channels would enter into a
working vacation period. In this state, if no user arrives when the working vacation
period is completed, the channels will enter into the next working vacation period.
However, if some newly arriving users enter the channels when the system is in a
working vacation period, the users will be served with a lower service rate. If there
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are still some users in the channels at the end of the vacation, the vacation period
will end and a new busy period will begin.

2. Preemptive priority state. In this state, if there are no channels available but not all
channels are used by PUs, the service for SUs will be preempted by a newly
arriving PU, and the SU being served will return to the head of the waiting queue.

3. Blocking state. In this state, all channels are used by PUs. The system will discard
any newly arriving PUs.

Because of the infinite buffer for the SUs, the SUs are able to access the buffer
space directly when waiting for the service if the system is in the second or third state.
The specific actions of the PUs and SUs in this paper are as follows. For PUs, if there
are some empty channels, a newly arriving PU will be served directly. If there is no
channel available but not all channels are being used by PUs, the service of SUs is
preempted by newly arriving PUs. If all channels are used by PUs, then any newly
arriving PUs will be lost due to the blocked system. For SUs, if there are some empty
channels, any newly arriving SU can be served directly. If there are no channels
available, any arriving SUs will enter the buffer and wait for the central controller to
allot them channels. And if any PUs arrive at the system while SUs are receiving
service, the SUs will immediately release their channels to the PUs and enter the buffer
at the head of the queue. We assume that the service order is a FIFO discipline.

2.2 System Model

In this model, we assume that SUs are regarded as class I users, PUs are regarded as
class II users, and c licensed channels are regarded as c servers. At the same time,
considering the preemptive priority of PUs to licensed channels, a continuous time
three-dimensional queueing model is built, where the class II user has preemptive
priority. In order to ultimately enhance the response performance of PUs, an infinite
buffer is set for the SUs, and no buffer is set for the PUs. The inter-arrival time, the
service time and the vacation time are all assumed to be independently sequenced. The
specific description for this model is as follows:

1. The two classes of users arrive at the system obeying a Poisson process with
parameters k1; k2ðk1; k2 [ 0Þ respectively as follows:

Fig. 1. The dynamic channel vacation scheme proposed in this paper.
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PfT1 � xg ¼ 1� e�k1x; PfT2 � xg ¼ 1� e�k2x; x[ 0

where T1 and T2 represent the inter-arrival times of SUs and PUs respectively.

2. The service times S1; S2 follow exponential distributions with parameters
l1; l2ðl1; l2 [ 0Þ as follows:

PfS1 � xg ¼ 1� e�l1x; PfS2 � xg ¼ 1� e�l2x; x[ 0

where S1; S2 represent the service times of SUs and PUs when the channels are in busy
periods respectively.

3. The vacation time V follows an exponential distribution with parameter h, and the

service times SðvÞ1 ; SðvÞ2 follow exponential distributions with parameters

lðvÞ1 ; lðvÞ2 lðvÞ1 ; lðvÞ2 [ 0
� �

in a working vacation period as follows:

PfV � xg ¼ 1� e�hx; PfSðvÞ1 � xg ¼ 1� e�lðvÞ1 x; PfSðvÞ2 � xg ¼ 1� e�lðvÞ2 x; x[ 0

where SðvÞ1 ; SðvÞ2 represent the service times of SUs and PUs when the channels are in
working vacation periods respectively.

3 Model Analysis

According to the above description, let N1ðtÞ;N2ðtÞ be the number of SUs and PUs in
the system at instant t, and JðtÞ be the server state at instant t. Define

JðtÞ ¼ 0; the instant t is in the working vacation period;
1; the instant t is in the busy period:

�

Then, the three-dimensional stochastic process N1ðtÞ;N2ðtÞ; JðtÞð Þ; t� 0f g is a
Markov process with the state space:

X ¼ fð0; 0; 0Þg [ fð0; l; jÞ; 1� l� c; j ¼ 0; 1g[ fði; l; jÞ; i� 1; 0� l� c; j
¼ 0; 1g:

All possible states: ði; 0; 0Þ; ði; 0; 1Þ; ði; 1; 0Þ; ði; 1; 1Þ; . . .; ði; c; 0Þ; ði; c; 1Þ are
called level i, where i� 1. Specifically, level 0 has states: ð0; 0; 0Þ; ð0; 1; 0Þ;
ð0; 1; 1Þ; . . .; ð0; c; 0Þ; ð0; c; 1Þ:

Using the lexicographical ordering for the states, the state transition rate matrix of
the process can be written as:
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Q ¼

A00 A01

A10 A11 A2

A21 A22 A2

. .
. . .

. . .
.

Ac;c�1 Acc A2

Ac;c�1 Acc A2

. .
. . .

. . .
.

2
66666666664

3
77777777775

: ð1Þ

According to the block tri-diagonal structure of the transition rate matrix, we can
obtain that ðN1ðtÞ;N2ðtÞ; JðtÞÞ; t� 0f g a quasi birth and death process.When theMarkov
process is positive recurrent, the steady-state distribution is indicated as follows.

pi;l;j ¼ lim
t!1PfN1ðtÞÞ ¼ i; N2ðtÞ ¼ l; JðtÞ ¼ jg; ði; l; jÞ 2 X

P ¼ ðp0; p1; p2; . . .Þ

where

p0 ¼ ðp0;0;0; p0;1;0; p0;1;1; . . .; p0;c;0; p0;c;1Þ

pi ¼ ðpi;0;0; pi;0;1; pi;1;0; pi;1;1; . . .; pi;c;0; pi;c;1Þ; i� 1:

The necessary and sufficient condition that the Markov process
fðN1ðtÞ; N2ðtÞ; JðtÞÞ; t� 0g is positive recurrent is the matrix quadratic equation

R2Ac;c�1 þRAcc þA2 ¼ 0

which has a minimal non-negative solution R, a spectral radius SP ðRÞ\1, and a
ð2c2 þ 4cþ 1Þ dimensional stochastic matrix:

B½R� ¼

A00 A01

A10 A11 A2

A21 A22 A2

. .
. . .

. . .
.

Ac�1;c�2 Ac�1;c�1 A2

Ac;c�1 RAc;c�1 þAc;c

2
66666664

3
77777775

ð2Þ

and has a left-zero vector. When the Markov process is positive recurrent, its
steady-state distribution satisfies:

ðp0; p1; � � � ; pcÞB½R� ¼ 0
Pc�1

i¼0
pieþ pcðI � RÞ�1e ¼ 1

pi ¼ pcRi�c; i� c

8>><
>>:

ð3Þ
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where e is an appropriate dimensional column vector with all elements being equal to
one.

The proof of Eq. (3) can be obtained by using the equilibrium equation PQ ¼ 0
and the matrix-geometric solution method presented in [6]. The main step is given as
follows. Firstly, according to Q and B½R�, we can prove that B½R� is a ð2c2 þ 4cþ 1Þ
dimensional square matrix and B½R�e ¼ 0. Secondly, because the Markov process
satisfies the steady state equation PQ ¼ 0, we can obtain the matrix geometric dis-
tribution pi ¼ pcRi�c; i� c. Thirdly, according to the normalization condition, we can

get
Pc�1

i¼0
pieþ pcðI � RÞ�1e ¼ 1.

4 Performance Measures

According to the results from Sect. 3, we can obtain the corresponding formulas for the
performance measures in terms of data loss rate, the average queue length of SUs and
PUs, the throughput of PUs, the channel utility and so on.

1. The average queue length EðL1Þ is defined as the number of SUs in the system. The
average number EðL2Þ is defined as the number of PUs. Then, we have that

EðL1Þ ¼
X1
k¼0

kPðL1 ¼ kÞ ¼
X1
k¼1

X1
j¼0

Xc

i¼0

kpk;i;j;

EðL2Þ ¼
Xc

i¼0

iPðL2 ¼ iÞ ¼
Xc

i¼1

X1
j¼0

X1
k¼0

ipk;i;j:

2. The mean busy period EðBÞ is defined as the mean time that the system state takes
to go from busy to empty. The mean busy period EðBÞ is given by:

EðBÞ¼EðL1Þ 1
l1

þEðL2Þ 1
l2

:

3. The channel utility Pu is defined as the probability that the channels are occupied in
the process of data communication. The channel utility Pu is given by:

Pu ¼ min E L1ð ÞþE L2ð Þ; cf g
c

:

4. The data loss rate Pd is defined as the probability that PUs have to disappear
because of the blocked state. The data loss rate Pd is given by:

Pd ¼
X1
k¼0

X1
j¼0

pk;c;j:
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5 Numerical Experiments

In this section, we provide some numerical results to describe the effect of parameters

on performance measures. Taking k1 ¼ 6; l1 ¼ 3; lðvÞ1 ¼ 0:5; lðvÞ2 ¼ 1; h ¼ 3.
In Fig. 2, taking k2 ¼ 10, we find that the average queue length of the SUs

increases with an increase of l2. That is mainly because l2 increases, the PUs can be
served more quickly, which leads to less opportunity for the SUs to occupy the
channels, so the average length of the SUs increases too. When l2 is unchanged, EðL1Þ
decreases with an increase in the value c. This is mainly because c increases, so the SUs
have more chances to depart. Hence, the average length of the SUs decreases.

In Table 1, taking l2 ¼ 6, the average busy period increases with an increase in k2.
When k2 is unchanged, the average busy period decreases with an increase in the value
c. This is mainly because an increase of the value c allows more PUs to access service
and reduces the opportunity for servers to be in an idle state; therefore, the average
busy period decreases.

Fig. 2. The relation of EðL1Þ with l2 and c

Table 1. The relation of EðBÞ with k2 and c.

c The main busy period EðBÞ of channels
k2¼6 k2¼ 7 k2¼ 8 k2¼ 9 k2¼ 10

3 0.4900 0.4983 0.5052 0.5109 0.5156
4 0.4678 0.4793 0.4891 0.4975 0.5046
5 0.4594 0.4731 0.4852 0.4957 0.5049
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In Fig. 3, taking k2 ¼ 10, we find that the channel utility decreases with an increase in
l2. This is mainly because an increase in the service rate of the PUs allows users to be
serviced quicker, and channels havemore chances to be in idle state; therefore the channel
utility decreases. When l2 is unchanged, the channel utility decreases with an increase in
the number of servers. The more channels there are, the more idle channels there will be.

In Fig. 4, taking l2 ¼ 8, the data loss rate Pd increases with an increase in k2. This
is mainly because an increase in the arrival rate of the PUs leads to more channels to be
in the blocking state frequently. Hence, the data loss rate Pd increased. On the other
hand, when k2 is fixed, the data loss rate Pd decreases with an increase in the channel
number c. This is because the more channels there are, the more opportunity can be
offered to the PUs for service.

Fig. 3. The relation of Pu with l2 and c.

Fig. 4. The relation of Pd with k2 and c.
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6 Conclusion

In this paper, a dynamic channel vacation scheme in cognitive radio networks is
considered in order to conserve network resources and to guarantee the QoS for the
users. Based on the working principle of a dynamic channel vacation scheme and a
preemptive priority discipline for PUs in cognitive radio networks, we presented a
preemptive priority M/M/c queueing model with multiple synchronization working
vacations, and established a three-dimension Markov process for the system. By using
a matrix-geometric solution method, we derived the steady-state distribution of the
queue length. Finally, some numerical examples are discussed to illustrate the effect of
the parameters on the system measures.
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Abstract. Load balancing is one of the key components in many dis-
tributed systems as it heavily impacts performance and resource utiliza-
tion. We consider a heterogeneous system where each server belongs to
one of K classes and the speed of the server depends on its class. Arriv-
ing jobs are immediately dispatched to a server class in a randomized
manner, i.e., with probability pk a job is assigned to class k. Within each
class a power of d choices rule is used to select the server that executes
the job.

For large systems and exponential job size durations the optimal prob-
abilities pk to minimize the mean response time can be determined easily
via convex optimization. In this paper we develop a mean field model
(validated by simulation) to investigate how these optimal probabilities
pk are affected by the higher moments and in particular by the variability
of the job size distribution when the service discipline at each server is
first-come-first-served. The main insight provided is that optimizing the
probabilities pk based on the higher moments is much more involved and
provides only a non negligible gain for very specific system load regions.

Keywords: Performance analysis · Distributed computing
Processor scheduling

1 Introduction

Consider a large distributed system consisting of N servers and a (number of)
centralized dispatchers. Incoming jobs are assigned by the dispatcher(s) to the
servers using a load balancing (LB) scheme. A very efficient manner to distribute
the incoming jobs among the servers is to rely on a pure randomized assignment
scheme or some form of round robin. While this allows very fast load balanc-
ing decisions, the resulting performance is known to be inferior to LB schemes
that exploit information concerning the current system state, such as the queue
lengths or server speeds. Examples of the latter include join-the-shortest-queue
(JSQ) LB [13] or the power-of-d-choices (POD) LB [19,22]. Under JSQ incoming
jobs are assigned to the server containing the least number of jobs, while under
POD d servers are selected uniformly at random and the job is assigned to the
server with the shortest queue length among the d selected servers.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 193–215, 2018.
https://doi.org/10.1007/978-3-319-93736-6_15
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When the system is heterogeneous, for instance when not all the servers have
the same speed, the choice of the LB scheme becomes even more critical as LB
schemes based on joining the server with the least number of jobs among a set
of randomly selected servers may lead to system instability even if the total
offered load is (well) below the total service rate of the system [6]. A manner
to avoid instability when the servers have different speeds (and the overall load
is below 1), exists in assigning jobs to servers based on the server speeds [10].
While such an assignment becomes necessary as the overall load tends to one,
it is clearly suboptimal under low and medium loads as the mean response time
can be reduced by assigning a larger fraction of the jobs to the faster servers. In
case of Poisson arrivals, processor sharing (PS) servers and random job routing
(that is, server i is selected with a fixed probability pi) explicit expressions
can be derived for the routing probabilities that minimize the mean response
time [3,10]. Under first-come-first-served (FCFS) service and more complex LB
schemes determining the optimal fraction of the incoming jobs that needs to be
assigned to each of the servers is much harder.

In this paper we consider a system consisting of N servers where jobs arrive
according to a Poisson process with rate λN with λ < 1. The servers are parti-
tioned into K classes of homogeneous servers, process their jobs in FCFS order
and have an infinite waiting room. By considering FCFS service, we are consider-
ing a setting where jobs are very expensive to preempt and are therefore typically
run-to-completion without interruption (such as in supercomputing centers, see
[14]). Servers belonging to class k serve jobs at rate μk and incoming jobs are
assigned to a class k server with probability pk. The server that executes the job
within class k is selected using POD LB. In other words, with probability pk a
set of d servers is selected among the class k servers and the jobs is assigned to
the server holding the least number of jobs among the d selected class k servers.

Note that the above setting is identical to Scheme 3 presented in [20], except
that our servers operate under FCFS instead of PS. For exponential job durations
the queue length distribution under FCFS and PS is the same and under PS the
system is believed to become insensitive to the job size distribution as the sys-
tem size N tends to infinity [7,8]. Under FCFS the mean response time remains
sensitive to the job size distribution as N tends to infinity. The main objective
of this paper is to see how the probabilities pk that minimize the mean response
time in a large system, are effected by the variability of the job size distribution
and more importantly whether these optimized values reduce the mean response
time significantly compared to the optimal probabilities obtained by assuming
exponential job sizes. To answer these questions we develop a mean field model,
the accuracy of which is validated using simulation. Our main insights is that
neglecting the variability of the job size distribution when optimizing the prob-
abilities pk does not result in a substantial loss in performance, except under
very specific loads combined with highly variable job sizes.
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2 The Model

Consider a system of N servers belonging to K classes operating under FCFS.
There are Nk servers of class k and let γk = Nk/N such that

∑K
k=1 γk = 1.

All servers have an infinite waiting room and the speed of a class k server is
denoted as μk. The server speeds are such that

∑K
k=1 γkμk = 1, meaning the

average speed of a server is equal to 1. Incoming jobs arrive at one or multiple
dispatchers as a Poisson process with an overall rate λN and are immediately
forwarded to one of the N servers. To select a server the dispatcher selects d
servers uniformly at random among the class k servers with a given probability
pk. In other words, the server class is determined via randomization and the
server within the class is selected using a POD LB. The job size distribution is
assumed to follow a phase-type distribution [17] with mean 1 characterized by
(α, S), where α is a stochastic vector and S a subgenerator matrix such that
αeSxe is the probability that the job size exceeds x, where e is a column vector
of ones. The time to execute a job on a class k server is therefore phase-type
distributed with parameters (α, μkS).

We note that the class of phase-type distributions is dense in the field of
all positive-valued distributions. As such any positive-valued distribution can be
approximated arbitrarily close by a phase-type distribution. Various fitting tools
for phase-type distributions are also available online (e.g., jPhase [21], ProFiDo
[5] or BuTools).

Note that due to the Poisson arrivals and randomization, the system under
consideration behaves as a set of K independent homogeneous LB systems where
the k-th system has load ρk = λpk/(γkμk) (as the total arrival rate is λN
and with probability pk the job is assigned to one of the γk class k servers).
For exponential job sizes the probabilities pk for large N can be optimized by
relying on the explicit formula for the mean response time in a homogeneous
system derived in [19,22], that is, the probability that a server contains i or more

jobs converges to ρ
di−1
d−1

k as N tends to infinity under POD LB with exponential
job sizes and load ρk. This results (by Little’s law) in the following convex
optimization problem that can be solved numerically without much effort:

minimize
pk

f(p1, . . . , pK) = 1
λ

∑

k

γk

∑

i≥1

ρ
di−1
d−1

k .

subject to 0 ≤ ρk < 1; k = 1, . . . , K,∑

k

γkρk = λ.

(1)

Note that the first set of constraints demands that each of the K subsystems
is stable, while the second constraint demands that the total assigned workload
matches the incoming workload. For K = 2 the first set of constraints can be
restated as 1 − γ2μ2

λ < p1 < γ1μ1
λ (as p2 = 1 − p1). The main objective of this

paper is to study the equivalent optimization problem for phase-type distributed
job lengths.
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Fig. 1. Mean response time (for exponential job sizes) as a function of λ for Scheme
2 of [1] with d1 = d2 = 2 and for the hybrid SQ(4) scheme when γ1 = γ2 = 1/2 and
μ1 = 9μ2.

3 Related Work

A closely related paper is [20] which proposes mean field models for three LB
schemes: the optimal randomized, SQ(d) and hybrid SQ(d) LB. The hybrid
SQ(d) LB scheme, which was shown to outperform the other two, is identical
to the LB scheme considered in this paper except that [20] considers PS servers
and exponential job sizes. Evidence that the SQ(d) scheme becomes insensitive
to the job size distribution was provided using simulation experiments, while
evidence1 for the asymptotic insensitivity for the hybrid SQ(d) LB under PS
was presented in [7,8].

Two other LB schemes for heterogeneous networks were proposed in [1]. In
both LB schemes a server is chosen by first selecting dk servers of type k at
random for all k and then by selecting one of the servers among the selected∑

k dk servers based on the queue length information only (scheme 1) or on the
queue length and server speeds (scheme 2). While Figs. 3 and 4 in [1] suggest
that these schemes may outperform the hybrid SQ(d) scheme in some cases,
the hybrid SQ(2) scheme uses the queue length information of 2 servers per
incoming job, while the other two LB schemes use the queue length information
of 4 queues per job. Figure 1 indicates that if we also allow 4 choices for the
hybrid SQ(d) scheme, the optimal hybrid SQ(d) scheme outperforms scheme 2
of [1] for all arrival rates λ. Another LB scheme, called HALO POD, that uses
a POD rule in a heterogeneous PS network was proposed in [10]. In this scheme
a job is assigned to the shortest of d selected servers, where a class k server is

1 The asymptotic insensitivity under PS was proven given the ansatz of asymptotic
independence of the queue length for any finite subset of queues.
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selected based on the optimal routing probabilities of a pure randomized LB
scheme (first derived in [3]).

In this paper we propose a mean field model to assess the mean response
time in a heterogeneous FCFS LB network with phase-type distributed job sizes.
Another approach to analyze such a network exists in numerically determining a
fixed point of a so-called hydrodynamical PDE presented in [2] as our network is
equivalent to a set of K independent homogeneous FCFS networks. In fact, this
is the approach that we initially used, but finding the optimal probabilities pk by
repeatedly solving a hydrodynamical PDE turns out to be much more time and
memory consuming than the approach taken in this paper (due to the required
size of the mesh used by the numerical scheme). Load balancing systems that
rely on POD LB with phase-type service were also analyzed in [18], however the
set of ODEs presented in [18] is incorrect (as a new job is only assigned to a
server if all the d selected servers are in the same service phase).

In this paper we assume that the job sizes are not known in advance. Con-
siderable work has also been performed in case the job sizes are considered to be
known when assigning a job to a server. Effective policies in such case include
various Size Interval Task Assignment (SITA) and Least Work Left (LWL) poli-
cies (e.g., [4,15,16]).

4 The Mean Field Model

Let X
(N)
k,j,i(t) be the number of type k ∈ {1, . . . , K} servers with i > 0 or more jobs

that are in service phase j ∈ {1, . . . , J} at time t. Define Z
(N)
k,j,i(t) = X

(N)
k,j,i(t)/Nk

as its scaled version. We would like to study limt→∞ Z
(N)
k,j,i(t) for large N . For

this purpose we introduce a mean field model in Sect. 4.1 for which we provide
theoretical and numerical support in Sects. 4.2 and 4.3

4.1 System Dynamics

Assume (α, S) is an order J phase-type distribution. The mean field model uses
the variables sk,j,i(t) with i > 0, 1 ≤ j ≤ J and 1 ≤ k ≤ K, that represent the
fraction of servers that are of type k, contain i or more jobs and are in service
phase j at time t. Let zk,j,i(t) = sk,j,i(t)/γk, denote σi,j as the (i, j)-th entry of
the matrix S and let νj = (−Se)j . The evolution of zk,j,i(t) is described by the
following set of ODEs, the intuition behind this set of ODEs is presented below:

dzk,j,1(t)
dt

=
λpk

γk
(1 − zd

k,1(t))αj − μkνj(zk,j,1(t) − zk,j,2(t))

− μkνj(1 − αj)zk,j,2(t) +
∑

j′ �=j

μkνj′zk,j′,2(t)αj

+
∑

j′ �=j

zk,j′,1(t)μkσj′,j − zk,j,1(t)
∑

j′ �=j

μkσj,j′
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=
λpk

γk
(1 − zd

k,1(t))αj − μkzk,j,1(t)νj + μk

J∑

j′=1

zk,j′,2(t)νj′αj

+ μk

J∑

j′=1

zk,j′,1(t)σj′,j − μkzk,j,1(t)
J∑

j′=1

σj,j′

=
λpk

γk
(1 − zd

k,1(t))αj + μk

J∑

j′=1

(zk,j′,1(t)σj′,j + zk,j′,2(t)νj′αj) , (2)

where zk,i(t) =
∑J

j=1 zk,j,i(t) and

dzk,j,i(t)
dt

=
λpk

γk

zk,j,i−1(t) − zk,j,i(t)
zk,i−1(t) − zk,i(t)

(zd
k,i−1(t) − zd

k,i(t))

− μkνj(zk,j,i(t) − zk,j,i+1(t)) − μkνj(1 − αj)zk,j,i+1(t)

+
∑

j′ �=j

μkνj′zk,j′,i+1(t)αj +
∑

j′ �=j

zk,j′,i(t)μkσj′,j − zk,j,i(t)
∑

j′ �=j

μkσj,j′ ,

=
λpk

γk

zk,j,i−1(t) − zk,j,i(t)
zk,i−1(t) − zk,i(t)

(zd
k,i−1(t) − zd

k,i(t))

+ μk

J∑

j′=1

(zk,j′,i(t)σj′,j + zk,j′,i+1(t)νj′αj) , (3)

for i > 1. For i = 1 the intuition is as follows. The arrival rate in a class k server
is λpk/γk and zk,j,1(t) increases when not all of the d selected servers are busy
(probability (1−zd

k,1(t))) and service starts in phase j (probability αj). For i > 1,
zk,j,i(t) increases when all d selected servers have at least i − 1 jobs and not all
have i jobs or more, this is represented by the probability (zd

k,i−1(t) − zd
k,i(t)).

The server that gets the job has to be in phase j, which is represented by the
probability zk,j,i−1(t)−zk,j,i(t)

zk,i−1(t)−zk,i(t)
.

For i ≥ 1, zk,j,i(t) decreases when a job completion occurs in a class k server
with exactly i jobs that is in phase j (with rate μkνj). It also decreases when a
server in phase j with at least i+1 jobs has a job completion and starts process-
ing the next job in phase j′ �= j (with rate μkνj(1−αj)) or a server with at least
i jobs changes its phase from j to j′ �= j (with rate μkσj,j′). Finally, zk,j,i(t)
increases when a server in phase j′ �= j with i + 1 or more jobs completes a job
and start processing the next job in phase j (with rate μkνj′αj) or a server with
at least i jobs changes its phase from j′ �= j to j (with rate μkσj′,j).

Numerical Evaluation: The queue length distribution of the mean field model,
characterized by (2–3), is determined via a forward Euler iteration. More specif-
ically, we start with an empty system at time t = 0, i.e., set zk,j,i(0) = 0 for all
k, j and i > 0, and compute

zk,j,i(t + δt) = zk,j,i(t) + δt
dzk,j,i(t)

dt
,
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with a step size δt that is sufficiently small. This iteration is repeated until a
fixed point π is found, i.e., until dzk,j,i(t)/dt ≤ ε for ε small (e.g., ε = 10−9).
The mean response time is subsequently determined via Little’s law.

Asymptotic Sensitivity: We end this subsection by showing that any fixed point π
of the set of ODEs is sensitive to the higher moments of the job size distribution
(as opposed to the system with PS service). Summing (2–3) over i and j yields

∑

i≥1

dzk,i(t)/dt = μk(ρk −
∑

j′
zk,j′,1νj′).

Let ν be the column vector with its j-th entry equal to νj and denote βj as the
j-th entry of the unique row vector β for which β(S + να) = 0 and

∑
j βj = 1

holds. It is easy to check that β = α(−S)−1 and therefore 1/(βν) is the mean
job duration. If we now assume asymptotic insensitivity, that is, πk,j,i can be
written as πk,iβj , where πk,i is the fixed point of the set of ODEs in case of
exponential job sizes with load ρk, then (3) implies

0 =
λpk

γk
βj(πd

k,i−1 − πd
k,i) + μk(πk,i(βS)j + πk,i+1(βν)αj)

=
λpk

γk
βj(πd

k,i−1 − πd
k,i) − μk(πk,i − πk,i+1)(βν)αj , (4)

with βν = 1. As πk,i is the fixed point of the set of ODEs in case of exponential
job sizes with load ρk, we have

0 =
λpk

γk
(πd

k,i−1 − πd
k,i) − μk(πk,i − πk,i+1). (5)

Hence, (4) holds if and only if βj = αj for all j ∈ {1, . . . , J}. However, when
β = α one finds that the probability αeSxe that the job size exceeds x can be
written as

αeSxe =
∞∑

s=0

αSsexs/s! =
∞∑

s=0

(−βν)sxs/s! = e−βνx,

meaning the job sizes are exponential with mean 1/(βν). Thus for any phase-
type distribution that is not a redundant2 representation of the exponential
distribution πk,iβj is not a fixed point (which would be the case if the system
was asymptotically insensitive as in the PS service case).

4.2 Theoretical Support

Let J = {1, . . . , J} and denote the set of ODEs given by (2–3) as
dzk,j,i(t)/dt = Fk,j,i(zk(t)), where zk(t) = (zk,1(t),zk,2(t), . . .) and zk,i(t) =
2 Redundant representations are order J phase-type distributions (α, S) that can be

represented by a phase-type distribution of a smaller order. For instance, any order
J > 1 phase type distribution with S equal to minus the identity matrix is a redun-
dant representation of the exponential distribution with mean one.
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(zk,1,i(t), . . . , zk,J,i(t)). Define the space EJ = {(xj,i)j∈J ,i≥1|1 ≥ xj,1 ≥ xj,2 ≥
. . . ≥ 0; 1 ≥ ∑

j∈J xj,1}. Let w be the metric defined on EJ by setting

w(x,y) = sup
j∈J

sup
i≥1

|xj,i − yj,i|
(i + 1)2

.

Proposition 1. (EJ , w) is a compact metric space.

Proof. By Tychonoff’s theorem any sequence (xn)n in EJ has a subsequence
(xnm

)m that converges pointwise to some limit x∗ ∈ EJ . We argue that this
subsequence also converges to x∗ under the metric w which proves compactness.
For any i we can pick m′ large enough such that for m ≥ m′ we have

sup
j∈J

|(xnm
)j,i′ − x∗

j,i′ |
(i′ + 1)2

≤ 1/(i + 1)2,

for 1 ≤ i′ ≤ i due to the pointwise convergence. Further

sup
j∈J

|(xnm
)j,i′ − x∗

j,i′ |
(i′ + 1)2

≤ 1/(i′ + 1)2 < 1/(i + 1)2,

for any m when i < i′ as |(xnm
)j,i′ − x∗

j,i′ | ≤ 1. ��
The next proposition shows that F k(x) : EJ → EJ is Lipschitz, that is,

there exists a constant Lk such that w(F k(x),F k(y)) ≤ Lkw(x,y). As (EJ , w)
is compact it is a Banach space and the Lipschitz property implies that the
set of ODEs (2–3) has a unique solution zk,j,i(t) for any given initial state
(zk,j,i(0))j∈J ,i≥1 ∈ EJ and this solution is continuous in t and the initial state.

Proposition 2. Fk(x) is Lipschitz with constant Lk = 3Jμk maxj(−σj,j) +
λpk(2 + dJ + 2Jd2)/γk on (EJ , w).

Proof. We make repeated use of the inequality |am1
1 am2

2 − bm1
1 bm2

2 | ≤ m1|a1 −
b1| + m2|a2 − b2| for 0 ≤ a1, a2, b1, b2 ≤ 1 and m1,m2 ∈ {1, 2, . . .}. Due to (2–3)
one finds

w(F k(x),F k(y)) ≤ 3Jμk max
j

(−σj,j)w(x,y) +
λpk

γk
dJw(x,y) +

λpk

γk
2w(x,y)

+
λpk

γk
sup
i>1

1
i + 1

∣
∣
∣
∣
∣

xd
k,i−1 − xd

k,i

xk,i−1 − xk,i
− yd

k,i−1 − yd
k,i

yk,i−1 − yk,i

∣
∣
∣
∣
∣

As (xd
k,i−1 − xd

k,i)/(xk,i−1 − xk,i) =
∑d−1

m=0 xm
k,i−1x

d−1−m
k,i we get

sup
i>1

1
i + 1

∣
∣
∣
∣
∣

xd
k,i−1 − xd

k,i

xk,i−1 − xk,i
− yd

k,i−1 − yd
k,i

yk,i−1 − yk,i

∣
∣
∣
∣
∣

≤ sup
i>1

d−1∑

m=0

|xm
k,i−1x

d−1−m
k,i − ym

k,i−1y
d−1−m
k,i |

(i + 1)2

≤ 2d2 sup
i>1

|xk,i − yk,i|
i + 1

≤ 2Jd2w(x,y).

��
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Let ĒJ = {(xj,i)j∈J ,i≥1 ∈ EJ |∑i>0

∑J
j=1 xj,i < ∞}, then we have the

following result:

Theorem 1. Let x(0) ∈ ĒJ and assume limN→∞ Z
(N)
k,j,i(0) = xj,i(0), then

lim
N→∞

sup
u≤t

sup
j∈J

sup
i≥1

|Z(N)
k,j,i(u) − zk,j,i(u)|

(i + 1)2
= 0 a.s.,

for any fixed t, where z(u) is the unique solution of the set of ODEs given by
(2–3) with zk,j,i(0) = xj,i(0).

Proof. The Markov chain Z
(N)
k,j,i(t), for N ≥ 1, is a density dependent population

process as defined in [9, Chapt. 11]. Theorem 2.1 in [9, Chapter 11] establishes
our result provided that two conditions (being (2.6) and (2.7) in [9, Chapt. 11])
apply for any K ⊂ ĒJ compact. We will argue that both conditions are valid on
EJ which implies that they apply to any compact subset of ĒJ .

The first condition demands that
∑

�∈L

w(�, 0) sup
x∈EJ

β�(x) < ∞,

where L is the set of all transitions and β�(x) is the scaled transition rate of
transition � in state x. In our system there are three types of transitions (in
a queue of length i > 0): arrivals, changes in the service phase and service
completions. Arrivals in a queue of length i (in service phase j) increase the
queue length by one and the vector � corresponding to an arrival therefore has
two non-zero entries: being �j,i which equals −1 and �j,i+1 which equals +1.
Hence, w(�, 0) = 1/(i+1)2. Similarly for a change of service phase and a service
completion in a queue of length i we find w(�, 0) = 1/(i + 1)2.

The scaled rate of any of these transitions for any x ∈ EJ is bounded by
λpk/γk (for arrivals) and μk maxj(−σj,j) (for phase changes or service comple-
tions). Thus,

∑

�∈L

w(�, 0) sup
x∈EJ

β�(x) ≤

(Jλpk/γk + J2μk max
j

(−σj,j))
∑

i≥0

1/(i + 1)2 < ∞.

The second condition demands that Fk(x) is Lipschitz, which was shown in
Proposition 2. ��

The above theorem indicates that the sample paths of the Markov chains
converge to the unique solution of the set of ODEs given by (2–3) as the number
of queues N tends to infinity over any finite time scale. One may wonder whether
this convergence extends to the stationary regime, meaning whether the steady
state measures of the Markov chains weakly converge to the Dirac measure of a
fixed point of the set of ODEs. While we believe this to be the case (as indicated
in next section that numerically validates this convergence), proving such a result
is hard and considered to be out of scope of the current paper.
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4.3 Validation

For the model validation we present only results for K = 2 types of servers,
similar results were obtained for K > 2. Let μr = μ1

μ2
and recall that γ1μ1 +

γ2μ2 = 1. Further assume that μ1 > μ2, meaning class 1 servers are the fast
servers and class 2 the slow servers. As stated before the mean job size is assumed
to be 1. Let C2

X be the squared coefficient of variation of the job size distribution.
Whenever C2

X = 1/k for some k ∈ {2, 3, . . .}, we model the job size distribution
as an Erlang distribution with k phases. For C2

X ≥ 1, we used a hyperexponential
(HEXP) distribution with parameters (α1, ν1, ν2), thus with probability αi a job
is a type-i job and has an exponential duration with mean 1/νi, for i = 1, 2
(where α2 = 1 − α1). When C2

X ≥ 1 we additionally match the fraction f of the
workload that is contributed by the type-1 jobs (i.e., f = α1/ν1). If we assume
that ν1 � ν2 this can be interpreted as stating that a fraction f of the workload
is contributed by the short jobs. The mean (equal to 1), C2

X and fraction f can
be matched as follows:

ν1 =
C2

X + (4f − 1) +
√

(C2
X − 1)(C2

X − 1 + 8ff̄)

2f(C2
X + 1)

, (6)

ν2 =
C2

X + (4f̄ − 1) −
√

(C2
X − 1)(C2

X − 1 + 8ff̄)

2f̄(C2
X + 1)

, (7)

with f̄ = 1 − f and α1 = ν1f .

Table 1. Parameter settings used to validate the accuracy of the mean field model.

Case λ μr γ1 d p1 C2
X

1 0.26754 1.34 0.6 2 0.1692 0.25

2 0.4116 2.8116 0.4 3 0.79378 0.25

3 0.29374 1.3922 0.7 4 0.47121 0.5

4 0.57975 1.9541 0.5 5 0.53563 0.125

5 0.18995 1.3764 0.3 3 0.43491 0.125

6 0.66992 2.2192 0.6 3 0.71812 0.5

7 0.65294 2.0177 0.4 5 0.57074 4

8 0.24765 1.7567 0.6 2 0.63567 2

9 0.75905 1.6631 0.3 3 0.38569 8

10 0.13251 2.2569 0.5 4 0.22224 4

11 0.78211 2.9592 0.6 5 0.95466 2

12 0.25638 2.8824 0.3 5 0.24434 8

To validate the mean field model, the ODE based mean response times are
compared to a discrete event simulation of the system for various parameter set-
tings listed in Table 1. The discrete event simulation has an additional parameter
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N which is the size of the system. We let N ∈ {40, 80, 160, 320, 640, 1280} and
expect that the mean field model becomes more accurate as N increases. In fact
due to the results in [11], the expected response time predicted by the mean field
model is 1/N -accurate, which means that multiplying N by 2 should approxi-
mately reduce the relative error by a factor 2. The first six scenarios considered
have Erlang distributed job sizes, the last six scenarios have hyperexponentially
distributed job sizes where the fraction f = 1/2 (for f �= 1/2 similar results
were obtained). Table 2 shows the relative error of the mean field model and
the associated 95% confidence interval of the simulation runs. In all cases the
accuracy improves with N and the relative error is below or close to 10−2 for
N ≥ 160. We note that for small N the relative error can be further reduced by
relying on the refined mean field approximation introduced in [12].

5 Numerical Results

We mainly focus on the case with K = 2 types of servers and discuss settings
with more than two types of servers in Subsect. 5.4.

5.1 Optimal p1

In case of exponential job sizes we know that the mean response time is a convex
function of p1 as stated in Sect. 2. Various numerical experiments (see Fig. 2 for
one specific example) suggest that the mean response time is still convex in p1 in
case of non-exponential service times. Note that as λ approaches 1, the system
is only stable in a very narrow region around p = γ1μ1 (which corresponds to a
simple proportional assignment). Let popt be the value of p1 for which the result-
ing mean response time is minimized. We now study the impact of the various
system parameters on popt. In Sect. 5.2 we look at the relative increase in the
mean response time when a suboptimal p1 is used.

Arrival Rate λ: As illustrated in Fig. 3 popt typically decreases as a function of λ
(the squares mark the λ value for which the mean response time equals 1). This
is expected as fewer jobs in the system implies that one can benefit from sending
a larger fraction of the jobs to the fast servers. There are however exceptions,
when the job sizes are highly variable and the number of choices is large (e.g.,
C2

X = 8 and d = 20) the optimal p1 value may increase as a function of λ at high
loads. For λ sufficiently small only the fast servers receive jobs and as λ → 1 the
load on both server types must be balanced to guarantee stability, i.e., p1 and
p2 are such that λp1

γ1μ1
= λp2

γ2μ2
.

Job Size Variability C2
X : When looking at the impact of the job size variability

C2
X in Fig. 3, we note that popt drops below 1 at lower rates λ when C2

X increases.
This can be understood by noting that if all the jobs go to the fast servers and
λ becomes large enough, some of the jobs start to experience queueing delays.
When the job sizes are highly variable, there is a bigger risk of experiencing a
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Table 2. Relative error of the mean field model wrt simulation.

Case N = 40 (95% conf.) N = 80 (95% conf.) N = 160 (95% conf.)

1 1.321e−2 (±5.901e−5) 6.439e−3 (±3.939e−5) 3.225e−3 (±3.013e−5)

2 5.484e−3 (±3.682e−5) 2.646e−3 (±2.505e−5) 1.285e−3 (±1.546e−5)

3 2.229e−2 (±5.484e−5) 1.060e−2 (±3.433e−5) 5.277e−3 (±2.656e−5)

4 2.290e−2 (±4.309e−5) 1.078e−2 (±3.063e−5) 5.239e−3 (±2.331e−5)

5 7.873e−4 (±3.726e−5) 3.566e−4 (±2.547e−5) 1.819e−4 (±1.989e−5)

6 3.038e−2 (±6.501e−5) 1.415e−2 (±4.541e−5) 6.720e−3 (±2.900e−5)

7 5.163e−2 (±7.688e−4) 2.260e−2 (±7.466e−4) 1.114e−2 (±3.122e−4)

8 3.935e−3 (±4.969e−4) 1.535e−3 (±3.217e−4) 9.654e−4 (±3.264e−4)

9 9.580e−2 (±2.509e−3) 4.394e−2 (±1.804e−3) 1.937e−2 (±1.028e−3)

10 8.466e−3 (±1.027e−3) 3.486e−3 (±7.692e−4) 2.000e−3 (±4.353e−4)

11 1.631e−1 (±2.260e−3) 7.475e−2 (±1.102e−3) 3.594e−2 (±5.970e−4)

12 1.630e−2 (±1.228e−3) 8.366e−3 (±7.925e−4) 3.983e−3 (±6.873e−4)

Case N = 320 (95% conf.) N = 640 (95% conf.) N = 1280 (95% conf.)

1 1.601e−3 (±1.742e−5) 8.157e−4 (±1.547e−5) 4.197e−4 (±1.081e−5)

2 6.338e−4 (±1.225e−5) 3.003e−4 (±9.128e−6) 1.477e−4 (±7.971e−6)

3 2.709e−3 (±1.710e−5) 1.429e−3 (±1.191e−5) 8.141e−4 (±1.066e−5)

4 2.587e−3 (±1.304e−5) 1.290e−3 (±9.276e−6) 6.288e−4 (±1.115e−5)

5 9.046e−5 (±1.415e−5) 3.764e−5 (±1.043e−5) 1.935e−5 (±5.237e−6)

6 3.109e−3 (±1.994e−5) 1.387e−3 (±1.329e−5) 5.081e−4 (±1.880e−5)

7 5.248e−3 (±2.872e−4) 2.691e−3 (±1.914e−4) 1.332e−3 (±1.746e−4)

8 3.784e−4 (±2.446e−4) 2.082e−4 (±1.665e−4) 1.151e−4 (±1.212e−4)

9 9.372e−3 (±6.956e−4) 5.681e−3 (±3.789e−4) 2.372e−3 (±3.195e−4)

10 9.152e−4 (±4.019e−4) 5.060e−4 (±2.877e−4) 2.400e−4 (±1.696e−4)

11 1.807e−2 (±4.032e−4) 1.012e−2 (±2.764e−4) 6.137e−3 (±2.767e−4)

12 2.280e−3 (±3.967e−4) 1.166e−3 (±2.814e−4) 4.118e−4 (±1.546e−4)

long delay, thus it is advisable to start making use of the slow servers at smaller
λ values.

For some parameter settings we see that more variable job sizes result in a
lower popt for any arrival rate λ. This means that when job sizes become more
variable, it is beneficial to reduce the fraction of the jobs assigned to the faster
servers when minimizing mean response times. This rule is however not valid in
all cases: in Fig. 3b, where d = 5 and μr = 2, we see that popt for C2

X = 8 is
larger than the corresponding value for C2

X = 4 for some λ ranges. The cause lies
in the fact that the curves of popt start to oscillate notably for larger d values.
These oscillations (that are also visible in Fig. 2b) are probably caused by the
fact that for larger d the tail probabilities of the queue length distribution decay
very rapidly and depending on the precise value of λ a minor change in λ may
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Fig. 2. Mean response time as a function of p for γ1 = γ2 = 1/2, μr = 2, f = 1/2 and
C2

X = 4.

cause a more significant change in the tail probabilities of either the fast or slow
servers.

Number of Choices d: Another observation from Fig. 3 is that higher choices for
d tend to increase the optimal value of p1. When d increases the rate λ at which
p1 drops below 1 always seems to increase. This can be understood by noting
that increasing d implies that the likeliness of finding an idle fast server when all
the jobs are assigned to the fast servers increases. Thus the risk of experiencing
a queueing delay decreases with d and therefore assigning all the jobs to the
fast servers remains optimal for larger λ values. The fact that popt increases for
increasing d is generally valid for small to medium loads, but does not remain
valid for higher loads. For instance it is easily verified that when λ = 0.8 the
popt for d = 2 equals 0.7024, while for d = 10 it equals 0.6982 when the job sizes
are exponentially distributed.

Higher Moments f : Figure 4 illustrates that the first two moments of the job
size distribution do not suffice to determine the optimal split probability popt,
meaning there is no insensitivity with respect to the moments beyond the second
moment and optimizing popt in practice is therefore hard to achieve. The figure
also indicates that the optimal fraction of jobs assigned to the fast servers is
lower when a larger fraction of the workload consists of long jobs. This is intu-
itively clear: if a larger fraction 1− f of the load is contributed by the long jobs,
there is a bigger risk for short jobs to be stuck behind a long job and therefore
it is better to make more use of the slow servers.

System Heterogeneity μr: We expect that popt tends to increase as the system
heterogeneity μr = μ1/μ2 increases. Figure 5 confirms this intuition for the case
with d = 10 and 20 choices when γ = f = 1/2 and C2

X = 1.



206 I. Van Spilbeeck and B. Van Houdt

Fig. 3. Optimal choice of p1 as a function of λ for γ1 = 0.5, μr = 2, f = 1/2 and
different values of C2

X

5.2 Accuracy of Simple Suboptimal Policies

We start by depicting the mean response time for various settings of d, μr and
C2

X in Fig. 6 when using the optimal splitting probability popt. As expected the
mean response time increases with the job size variability, decreases as a function
of d and μr, and drops below 1 for sufficiently low loads as the mean service time
of the fast servers is less than one.

More importantly, one may wonder how much gain in the mean response
time one achieves by optimizing p1. For this purpose we now study the relative
gain in the mean response time of the optimal p1 with the following three less
complex assignment policies:

– Proportional: in this case a job is assigned to class k with probability

pk =
γkμk

∑K
j=1 γjμj

,

such that each of the K classes experiences the same load.
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Fig. 4. Optimal popt as a function of λ for γ1 = γ2 = 1/2.

Fig. 5. Optimal choice of p1 as a function of λ for γ1 = 0.5, f = 1/2, C2
X = 1 and

different values of μr = μ1/μ2.

– Random within a class: in this case we use the optimized probability pk by
assuming that a random server is selected within a class and job lengths are
exponential. Hence, pk is given by the explicit formula in [3,10], which can
be written as

pk =
1
λ

γkμk
∑K

j=1 γjμj

+ (1 − 1
λ

)
γk

√
μk

∑K
j=1 γj

√
μj

, (8)

where pk is set to one (zero) when the above formula results in a pk larger than
one (less than zero). Note as λ approaches one, these probabilities converge
to the proportional scheme.

– Exponential job size: in this case we optimize p1 by solving the convex opti-
mization problem of (1). Hence we optimize assuming that the job lengths
are exponential.
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Fig. 6. Optimal mean response times as a function of λ for γ1 = 0.5 and f = 1/2 for
different values of C2

X .

Note that for all three policies the probabilities p1, . . . , pK only depend on the
server speeds and the mean job size (which equals one), either by means of an
explicit formula or via a simple convex optimization problem. When K = 2
we denote p1 for the above three policies as pprop, prand and pexp. Their cor-
responding mean response times are denoted as mrtprop,mrtrand and mrtexp,
respectively.
pprop versus popt: Figure 7 depicts the relative increase in the mean response
time if we replace the optimal policy (i.e., p1 value) with a simple proportional
assignment for μr = 2. Similar results were obtained for other choices of μr.
While the proportional scheme is very simple, it results in poor performance
for low to medium loads and this loss in performance compared to the optimal
policy grows as the number of choices d increases (see Fig. 7b versus c). This is
as expected as the optimal strategy under low load exists in sending all the jobs
to the fast servers, while the proportional scheme balances the load among the
servers.



Job Size Variability and Heterogeneity-Aware Load Balancing 209

Fig. 7. Ratio mrtprop/mrtopt as a function of λ with μr = 2.

prand versus popt: Figure 8 depicts the relative increase in the mean response
time when relying on (8) instead of using the optimal value for pk. For small λ
both policies (that is, the optimal and the random within a class policy) assign
all the jobs to the fast servers. For somewhat higher arrival rates (at about 0.2
in Fig. 8) the random within a class policy starts utilizing the slower servers
as well, while the optimal strategy continues to assign all the jobs to the fast
servers. Indeed, when all the jobs are assigned to the fast servers, the risk of
assigning a job to a busy server increases as d decreases, thus the smaller d the
sooner one needs to utilize the slow servers. Figure 8 illustrates that assuming a
random assignment (i.e., d = 1) results in a performance loss of up to 15% that
tends to increase with the number of choices d and that decreases when the job
sizes become more variable. The latter can be understood by looking at Fig. 3
which indicates that under low to medium loads, popt increases as a function of
d and decreases as a function of C2

X . Therefore popt and prand are more alike for
small d and large C2

X . We note that in the limit as λ goes to one, both policies
use proportional assignment and thus perform alike.

When comparing the relative errors of the proportional scheme with the ran-
dom within a class policy (compare Figs. 7 and 8), we see that the latter results
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Fig. 8. Ratio mrtrand/mrtopt as a function of λ with μr = 2.

in lower relative errors. We should however note that the proportional scheme is
easier to implement as it does require an estimation of the arrival rate λ.

pexp versus popt: Figure 9 studies the relative increase in the mean response time
when we only neglect the higher moments of the job size distribution when optimiz-
ing p1. When d = 5 this results in errors below 5% and the error is only significant
in a fairly small load region. Thus for large enough d, taking the job size variability
into account is not paramount (thiswas confirmed for otherμr values).When d = 2
the relative increase does surge up to 12% in case of highly variable job sizes when
λ is close to 0.35. The load at which the relative error is the highest corresponds
to the largest arrival rate λ for which pexp still equals 1. Thus, for highly variable
job sizes the region where the relative error surges up corresponds to the settings
where popt drops below 1, but pexp remains 1.

Note that solving the convex optimization problem (1) or computing (8)
both requires one to estimate the arrival rate λ. When comparing Figs. 8 and
9, it is clear that solving the convex optimization problem (which can be done
in a fraction of a second) is far more effective than relying on (8) for d = 5,
i.e., larger d values. Indeed, the convex optimization problem takes the value
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Fig. 9. Ratio mrtexp/mrtopt as a function of λ with μr = 2.

of d into account and therefore causes smaller errors for d large. A somewhat
unexpected result is that (8) does result in smaller relative error when d = 2,
in case of medium loads and highly variable job sizes. The explanation is that
when computing prand we make two errors that mostly cancel each other in this
case: we assume that d = 1 and that jobs have exponential sizes. For pexp only
the latter error is present.

5.3 Impact of the 3rd and Higher Moments of the Job Size
Variability

In the previous section we studied the impact of neglecting the job size variability
when optimizing p by comparing the performance gain obtained by using popt

instead of pexp. In this section we look at the impact of the higher moments
(3rd and beyond). To investigate their impact we consider a hyperexponential
distribution as defined in Sect. 4.3, where we matched the mean EX = 1, the
squared coefficient of variation C2

X and the fraction f of the workload contributed
by the short jobs. Note that changing f influences the higher moments of the
job size distribution, but not the mean or variance.
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Fig. 10. Ratio mrtf/mrtopt as a function of λ.

To assess the impact of the higher moments we therefore consider job size
distributions with f �= 1/2 and compare the mean response time in a system
with p1 optimized for f = 1/2, denoted as pf , with the optimal p1. Figure 10
depicts the relative gain obtained by using the optimal p1 instead of pf when
C2

X = 8 (smaller C2
X values result in even smaller relative gains) for f = 0.1

to 0.4. While the shape of these curves is very unpredictable and irregular, it
is also clear that the relative gain is very minor and less than 2.5% in all cases
considered. This indicates that there is little use in taking these higher moments
into account when optimizing p1 (which is good as they are harder to estimate
in practice compared to the mean or variance).

5.4 Beyond 2 Server Types

In the previous subsections we assumed that the system consists of two types of
servers only. In this section we illustrate that as the number of server types K
increases, the differences between the mean response time of the simple policies
considered in Subsect. 5.2 and the optimal choice of p1, . . . , pK decreases. In
other words, the scenario with K = 2 in a way provides an upper bound on how
much one gains by optimizing the pk probabilities.
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Fig. 11. Relative increase in mean response time when a suboptimal policy is used as
a function of the number K of server types for λ = 0.75, d = 2 and μ1/μK = 2.

In Fig. 11 we set d = 2, λ = 0.75, γk = 1/K and ordered the server types
such that μ1 > μ2 > . . . μK with μ1/μK = 2 and μk+1 − μk = μk − μk−1 for
k = 2, . . . ,K − 1. We depict the increase in the mean job response time when
the proportional and exponential job size policies are used instead of the optimal
pk values with both low and high job size variability (with f = 1/2). The results
confirm our intuition that this increase tends to diminish as more server types
K are introduced.

6 Conclusion

A class of load balancing schemes for a heterogeneous set of FCFS servers is
analyzed. The servers are partitioned in K classes of servers: within each class
all servers are identical, while servers belonging to different classes only differ in
their server speed. Jobs are assigned to a server class via randomization and a
power-of-d choices rule is used to select a server within a class. We developed a
mean field model to estimate the mean job response time in a system with many
servers. The model was supported by some theoretical results and validated using
simulation.

While the impact of the different system parameters (like the job size vari-
ability or number of choices d) on the optimal randomization probabilities is
not always easy to predict (due to oscillations in some of the curves), the main
insight provided is that only taking the mean job sizes into account when deter-
mining the randomization probabilities (via convex optimization) often results
in a very limited loss in performance compared to the optimal probabilities.

The load balancing schemes considered in this paper assume that the job
lengths are not known during the job assignment (by the job dispatcher). Fur-
ther work may exist in studying load balancing schemes that are size aware in
combination with a power-of-d choices rule.
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Abstract. In optical packet/burst switched networks fiber loops pro-
vide a viable and compact means of contention resolution. For fixed size
packets it is known that a basic void-avoiding schedule (VAS) can vastly
outperform a more classical pre-reservation algorithm as FCFS. In this
contribution we propose two novel forward-looking algorithms, WAS and
XAS, that outperform VAS in the setting of a uniform distributed packet
size and a restricted buffer size. This paper presents results obtained by
Monte Carlo simulation, showing that improvements of more than 20%
in packet loss in specific settings are obtainable. In other settings and
for other performance measures similar improvements are within reach.

Keywords: Contention resolution · Scheduling · Optical buffering
Fiber loops

1 Introduction

As video on demand (VoD) services increase in popularity and 4 K video quality
will become the new normal, global IP traffic is expected to grow at a compound-
ing annual rate of 24% between 2016 and 2021 [1]. As wavelength and spatial
multiplexing allows optical fiber technology to reach dazzling bandwidths of
up to 1 Petabit/s [2], it seems that our unlimited demand for bandwidth can be
met without a problem. Unfortunately, in existing optical networks capacity is
not limited by the connections but in the nodes where slow electronic switching
or inflexible optical circuit switching muffle the optical highway capacity.

Promising solutions to address the issues in optical backbones are optical
burst switching (OBS) [3–5] and optical packet switching (OPS) [6–8]. In these
packet based switching techniques, optical signals are, similar to optical cir-
cuit switching (OCS) [9,10], kept in the optical domain to avoid slow optical-
electronic-optical (OEO) conversions but, similar to electronic switching, pro-
cessed as packets to increase statistical multiplexing efficiency. Although RAM
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 216–226, 2018.
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buffering in the nodes is infeasible because it requires OEO conversions, at least
a limited amount of buffering remains advisable to address the unavoidable con-
tention that arises in the nodes [11,12].

One of the most compact implementations of optical buffering today is a
fiber loop buffer. As opposed to feed-forward buffers where every line is traversed
only once [13], fiber loop buffers allow contending packets to recirculate multiple
times within the same coiled fiber loop [14,15]. Although alternative designs as
dual-loop optical buffers exist [16–19], most use a set of single fiber loops in
parallel which can all accommodate a single packet at once (shown in Fig. 1).
Because packets can only exit a loop after a round number of recirculations, fiber
loops can only provide a discrete set of delays. As opposed to electronic memory
(RAM) packets can thus not be retrieved at will, resulting in small time gaps or
voids in between packets on the outgoing line. Moreover, as packets recirculate
in the same loop, fiber loops can only accommodate packet sizes smaller than
or equal to their loop length and packet length directly limits the resolution of
possible delays. Since the footprint is preferably kept small, with a small number
of fiber loops, and also the number of recirculations a packet can make in a loop
is kept low to prevent signal degeneration, scheduling algorithms in which the
resources are used as efficiently as possible are needed to achieve low packet loss
and packet delay.

spa al  
switch 

spa al  
switch 

…
 

…
 

1 

2 

N 

overall incoming 
traffic overlaps 

outgoing traffic  
no longer 
overlaps 

Fig. 1. Parallel optical fiber loop buffer to resolve contention at the input.

In [20] an analytical model is used to evaluate performance of the void-
avoiding schedule (VAS) for fixed size packets equal to the loop length. The
void-avoiding schedule is a post-reservation scheme [21], allowing the packets to
enter the buffer freely, only deciding later when a packet has to exit its loop.
In [20] it is shown that performance of the VAS is significantly better than that
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of algorithms with a pre-reservation scheme, e.g. FCFS, in which the number of
recirculations is decided upon arrival of a packet.

In this paper we evaluate the performance of the void-avoiding schedule
(VAS) for uniform distributed packet size in both unlimited and constricted
fiber loop buffer settings. We also propose two new algorithms, WAS and XAS,
which, to the best of our knowledge, are the first known algorithms to outper-
form VAS. Particularly, both yield significant improvement for variable-length
packet size, as discussed further below. The structure of this paper is organized
as follows: System model and assumptions are discussed in Sect. 2, the schedul-
ing algorithms in Sect. 3, performance measures and methodology in Sect. 4,
numerical results in Sect. 5 and finally conclusions and future work in Sect. 6.

2 System Model and Assumptions

Throughout the paper the same continuous-time setting as in [22–24] is supposed.
The fiber loop buffer is assumed to be located at and dedicated to a single
outgoing port of an optical switch. Wavelength convertors, if present within
the switch, are assumed to perform conversion to a single outgoing wavelength
associated with this single outgoing port. The analysis can thus be limited to
a single wavelength. We assume the joint packet arrival at the output port on
this single wavelength is a Poisson process, i.e. the inter-arrival times T are
exponentially distributed with an average of E[T ]. The length of arriving packets,
B, is assumed to be uniform distributed on the interval [0, S] with an average
of E[B] = S/2. Related, the overall incoming traffic load at the output port is
given by ρ = E[B]/E[T ] = S/(2 · E[T ]).

Because of the nature of the arrival process it is possible that different arrivals
overlap upon their arrival at which instant one of the contending packets has to
be temporarily buffered in one of the fiber loops. We assume a set of parallel
fiber loops of length S, that indepently of the packet’s size, can accommodate
a single packet. The assignable delays to a packet are thus multiples of S. The
number of fiber loops and the maximum number of times a packet can recirculate
are both varied in simulations. Combinations of both finite (4, 8, and 16) and
infinite values for these buffer parameters are evaluated.

3 Scheduling Algorithms

As in a buffer loop setting the well-known FCFS algorithm is outperformed
by the void avoiding schedule (VAS), we choose the latter as our benchmark
algorithm. In the VAS packets that arrive are transmitted immediately if the
outgoing line is available or stored in a fiber loop if not. After each loop recir-
culation, the availability of the outgoing line is checked. If the outgoing line is
available upon such a check, the packet exits its fiber loop and is sent. If the out-
going line is not available, the packet is recirculated again and the procedure is
repeated. The VAS does not preserve the arrival order and is a post-reservation
algorithm.
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In terms of resource usage, VAS is a greedy algorithm, sending a packet
whenever a transmission opportunity, i.e. an available outgoing line and either
an arrival or a finished recirculation, arises. The newly proposed WAS algorithm,
where “W” may refer to the aim of minimizing the Wait for the outgoing line to
turn available after departure of the two packets, is more considerate and well
aware of the other packets present in the system. When a transmission oppor-
tunity arises, WAS will first calculate the time needed to send each combination
of two packets (packets i and j, i �= j) present in the system. When N + 1
packets are present in the system (i.e. packets which are either in the buffer
or a new arrival), this gives an N × N two dimensional matrix with the time
needed to send each combination. In this matrix rows are assumed to be the
first packet sent and columns the second (rows before columns). Only when the
packet is the first packet (i.e. the row, not the column) of the lowest combination
in this matrix, the WAS algorithm will send this packet. Otherwise, depending
on whether the transmission opportunity is a new arrival or a finished recircu-
lation, this packet is buffered in a new loop or given another round in its loop.
Note that in this situation the lowest combination will not necessarily be the
next two packets to be sent as the matrix is re-evaluated at every transmission
opportunity. Similarly when the packet that triggered the transmission oppor-
tunity is actually sent, the packet that was also part of the lowest combination
is not guaranteed to be transmitted next.

Similar to the WAS algorithm, the XAS algorithm, where X may refer to
the aim of eXtending the period during which the outgoing line is effectively
used by the two packets, also calculates a combination matrix to decide upon
transmission when a transmission opportunity arises. In this matrix the efficiency
of the outgoing line is calculated for each combination by dividing the sum of
both packet lengths by the total time needed to send each combination. Only
when the packet that triggered the transmission opportunity is the first packet
of the combination with the highest efficiency, the XAS algorithm will actually
send this packet.

When either the number of fiber loops or the maximum number of recircula-
tions is constricted, the WAS and XAS algorithms will transmit a packet upon
a transmission opportunity if doing otherwise would result in an immediate and
unnecessary loss. Suppose for example that upon arrival of a new packet the
output line is available but all of the fiber loops (finite set) are occupied by
other packets. In such a case both WAS and XAS will transmit the new arrival
even though a more favorable combination may be present in the fiber loops. By
doing so the new arrival need not be dropped and unnecessary loss is prevented.
Likewise when the maximum number of recirculations is reached upon the end
of a loop recirculation, WAS and XAS will always transmit the packet if the
output line is available. In the terminology of [25] we could say that both WAS
and XAS are tuned to avoid the use of preventive drop. A flowchart showing
the decision process of WAS and XAS when both the number of fiber loops and
the maximum number of recirculations is constricted is shown in Fig. 2. When
either the number of fiber loops and/or the maximum number of recirculations
is not constricted, the flowchart slightly simplifies.
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Note that in the case of fixed size packets both WAS and XAS schedule in
exactly the same way as VAS. Indeed, as all packets have the same size, the
combination that minimizes the time to transmit a pair of packets will always
consist of the packet causing the transmission opportunity. Only when packet
sizes are not equal to a fixed size, WAS and XAS schedule different, and thus
possibly better, than VAS.
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Fig. 2. Flowchart for WAS and XAS both the number of fiber loops and the maximum
number of recirculations is constricted.

4 Performance Measures and Methodology

To obtain a complete and representative image of the performance of the various
algorithms we look at different performance measures for different settings. For
the case with an unlimited number of fiber loops and no restriction on the
number of recirculations, no packets are lost and we compare the algorithms
on the average packet delay. In case either, or both, the number of fiber loops
or the maximum number of recirculations is limited, the loss probability (LP),
or equivalently, packet loss, is our main performance measure. In addition, we
study a related performance measure which we refer to as LPsize, accounting
for the relative total size of packets lost to the relative total size of packets, or,
equivalently, the relative amount of data lost with respect to the total amount
of data that arrived.

As extending the analytical method from [20] to different algorithms, settings
and packet size distributions proved to be too challenging, the performance of
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the algorithms is evaluated by means of Monte Carlo Simulations. Specifically, all
algorithms are programmed in Matlab using a discrete event simulation (DES).
In a DES, the system is modelled as a sequence of events marked by their partic-
ular instant in time, i.e. the simulation is event-based. The system state changes
from one event to the next and does not change in-between events. This is as
opposed to continuous simulation in which time is broken into small pieces called
time slices. At each ending of a time slice the system state is (possibly) changed
based on the events happened in the last time slice. Because DES simulations
do not simulate every time slice, they are far more efficient in terms of compu-
tational resources.

5 Numerical Results

Fiber loops are assumed to have a length of one time unit and packets to be
uniformly distributed on the interval [0, 1]. Load is varied from 0.6 to 0.95 in
steps of 0.05 by changing the average inter-arrival time of the Poisson arrival
process. The arrival of 106 packets is simulated 10 times for each algorithm and
parameter combination. In this way adequate average performance measures and
accompanying confidence intervals are obtained.

Figure 3 shows the average packet delay for the setting with an unlimited
number of fiber loops and no restriction on the maximum number of recircula-
tions. As in this setting, for the load values investigated, the FCFS algorithm
results in an unstable regime, it is not included in the graph. From Fig. 3 it is
clear that in the unrestricted case and with a uniform packet size distribution
only XAS can outperform VAS. Table 1 shows the performance improvement
(in percentage) XAS can obtain in waiting time relative to VAS. As the load
increases, the obtainable improvement also goes up, reaching an improvement of
almost 20% for a load of 0.95.

Table 1. Percentage-wise performance improvement in packet delay of XAS relative
to VAS for different load values in an unrestricted buffer setting.

Packet delay reduction Load

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

XAS 1.1% 2.4% 4.2% 7.3% 9.6% 13.7% 17.2% 18.1%

Table 2 shows the LP and LPsize of the VAS algorithm in different restricted
buffer settings. Note that LP and LPsize have the same values for the VAS
algorithm. This is because the length of a packet does not influence the way a
packet is scheduled in VAS. In Tables 3 (WAS) and 4 (XAS) the performance
improvements (in percentage) compared to VAS of LP and LPsize are shown.
This is done for load values of 0.6, 0.7, 0.8 and 0.9, and all combinations of
the number of loops and the maximum number of recirculations (both take on
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values of 4, 8, 16 and infinity). From these tables it is clear that not for all
combinations of parameters a performance improvement is possible. In general,
but not always, performance improvements increase for lower load values, a lower
number of maximum recirculations, and a higher number of loops. Comparing

0
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Fig. 3. Packet delay for the VAS, WAS and XAS algorithms in an unrestricted buffer
setting.

Table 2. LP and LPsize values for VAS for different load values in different restricted
buffer settings.

VAS Load

0.60 0.70 0.80 0.90

# loops # loops # loops # loops

4 8 16 ∞ 4 8 16 ∞ 4 8 16 ∞ 4 8 16 ∞
LP = LPsize (%)

Max

recirculations

4 10.3 8.8 8.8 8.8 15.7 13.3 13.2 13.2 21.2 18.2 18.0 18.0 26.5 23.0 22.6 22.6

8 7.2 3.6 3.4 3.4 12.6 7.6 6.8 6.8 18.7 12.7 11.2 11.3 24.6 18.4 16.2 16.1

16 6.6 1.5 0.7 0.7 12.0 4.8 2.5 2.4 18.1 10.3 6.1 5.8 24.1 16.7 11.3 10.5

∞ 6.6 1.2 0.0 0.0 12.0 4.3 0.4 0.0 18.0 9.8 3.1 0.0 24.1 16.4 9.2 0.0

Table 3. Percentage-wise performance improvement in LP and LPsize of WAS relative
to VAS for different load values in different restricted buffer settings.

WAS Load

0.60 0.70 0.80 0.90

# loops # loops # loops # loops

4 8 16 ∞ 4 8 16 ∞ 4 8 16 ∞ 4 8 16 ∞
LP reduction (%)

Max 4 17.3 27.3 27.7 27.4 11.3 21.4 22.0 21.9 7.5 17.7 18.7 18.6 5.2 15.0 16.6 16.5

recirculations 8 7.0 23.5 23.4 23.7 4.3 16.6 18.2 18.1 2.5 12.6 15.8 15.9 1.3 9.8 15.6 15.7

16 4.1 13.7 −0.7 −1.3 1.7 6.4 −1.6 −3.6 0.5 1.6 2.3 −0.3 −0.6 0.3 6.7 5.5

∞ 3.8 21.2 53.6 NaN 1.8 4.8 3.4 NaN 0.2 −4.4 −39.2 NaN −0.6 −6.9 −32.7 NaN

LPsize reduction (%)

Max 4 8.8 8.8 8.9 8.4 3.4 1.3 1.2 0.8 0.5 −3.2 −3.7 −3.8 −1.2 −5.6 −6.8 −6.8

recirculations 8 3.4 −3.1 −8.5 −8.1 0.8 −10.1 −16.7 −16.6 −0.8 −11.7 −20.7 −20.6 −1.9 −11.9 −21.5 −21.5

16 3.9 −5.0 −59.8 −61.3 1.2 −10.1 −59.7 −63.4 0.0 −12.2 −51.3 −58.6 −1.2 −11.3 −40.4 −49.5

∞ 3.6 21.5 53.0 NaN 1.8 4.9 3.3 NaN 0.3 −4.4 −39.0 NaN −0.6 −6.8 −32.6 NaN
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Table 4. Percentage-wise performance improvement in LP and LPsize of XAS relative
to VAS for different load values in different restricted buffer settings.

XAS Load

0.60 0.70 0.80 0.90

# loops # loops # loops # loops

4 8 16 ∞ 4 8 16 ∞ 4 8 16 ∞ 4 8 16 ∞
LP reduction (%)

Max

recirculations

4 9.9 15.9 16.2 16.3 4.6 8.3 8.7 8.7 1.2 3.2 3.6 3.6 −0.6 −0.1 0.1 0.2

8 −0.9 10.1 12.4 12.1 −1.0 3.4 5.1 5.5 −1.2 −0.6 −0.2 0.2 −1.6 −2.8 −3.6 −3.4

16 −3.3 −3.9 0.7 0.7 −2.0 −0.7 1.3 0.7 −1.1 0.2 −2.0 −2.5 −0.8 −0.1 −4.3 −6.2

∞ −3.8 −4.3 −9.3 NaN −1.8 2.0 7.6 NaN −1.1 3.3 13.4 NaN −0.5 3.2 10.5 NaN

LPsize reduction (%)

max

recirculations

4 17.5 30.1 30.6 30.6 11.4 22.3 23.2 23.0 7.1 16.2 17.3 17.4 4.6 11.8 13.0 13.2

8 2.9 31.6 37.9 37.6 2.5 22.0 29.7 30.1 2.1 15.0 22.5 23.0 1.3 10.1 16.9 17.4

16 −3.1 8.3 41.0 40.9 −1.8 8.5 35.5 36.7 −0.7 7.8 26.3 29.4 −0.4 5.9 18.2 21.8

∞ −3.8 −4.3 −13.9 NaN −1.9 2.0 8.0 NaN −1.1 3.2 13.4 NaN −0.5 3.3 10.5 NaN
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Fig. 4. LP difference between VAS and WAS for different parameter combinations.
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Fig. 5. LPsize difference between VAS and XAS for different parameter combinations.

WAS and XAS, the WAS algorithm seems to be better suited to improve LP
with improvements of up to 28% in a setting with a low load (0.6) and a large
buffer size (16), but this only for small maximum number of recirculations (4).
The XAS algorithm on the other hand seems to better at improving the LPsize,
with improvements of up to 41% for certain parameter combinations, i.e. for a
load value of 0.6, a maximum number of recirculations of 16 and a number of
loops equal to 16 or infinite.

Note that the trends along certain parameter variations of Tables 3 and 4
are not necessarily visible in the actual performance differences of VAS, WAS
and XAS. This is clear from Figs. 4 and 5 showing the difference in LP of VAS
and WAS (Fig. 4) and the difference in LPsize of VAS and XAS (Fig. 5) for all
parameter combinations. For example although the relative improvement tends
to decrease with an increasing load, the actual differences are more steady or
even increase. This is as both LP and LPsize increase with an increasing load and
a smaller relative improvement can thus correspond with a larger actual perfor-
mance difference. Similarly, as both LP and LPsize decrease with an increasing
number of loops, the relative higher performance improvements for a higher
number of loops do not necessarily translate in higher performance differences.
This as opposed to the maximum number of recirculations, for which both the
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relative improvement and the actual performance difference decrease with an
increasing number.

6 Conclusions and Future Work

In this paper we proposed the WAS and XAS scheduling algorithms for optical
fiber loop buffers in a variable sized packets setting. Performance was evalu-
ated by means of Monte Carlo simulation and showed that they outperform
the current state-of-the-art void-avoiding (VAS) schedule in both unlimited
and restricted buffer settings. Both algorithms succeed in doing so by “look-
ing ahead”, i.e. by taking into account the schedule of other packets present in
the system. In this way XAS is capable of improving packet delay with almost
20% for high loads in the unlimited buffer setting. In the restricted buffer setting
WAS algorithm is better at improving loss probability (LP) while XAS is better
at improving LPsize (related to LP, taking into account packet size). Both algo-
rithms succeed to improve performance with dozens of percentages. To improve
the performance of both WAS and XAS even further and for a wider parameter
range, future work should focus on taking into account more packets simulta-
neously or using an optimizable threshold to decide among packet transmission
orders.
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Abstract. For tandem queues with no buffer spaces and both dedicated
and flexible servers, we study how flexible servers should be assigned to
maximize the throughput. We focus on systems in which flexible servers
are constrained to serve at specific stations. With three stations and
one or two constrained flexible servers, we completely characterize the
optimal policies and compare throughput improvement with systems
in which flexible servers are not constrained. Using numerical experi-
ments, we discuss the impact of constrained flexibility on performance
and dimensioning of systems.
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1 Introduction

Consider a tandem queueing network with N ≥ 2 stations, M ≥ 1 dedicated
servers, and F ≥ 1 flexible servers. At any given time, each station can be
assigned multiple servers and each server can work only on one job, and a job
may have at most one server assigned to it. Assume that the service times of
each job at station i ∈ {1, . . . , N} are independent and identically distributed
exponential random variables with rate μi, i.e. the service rate of each server at
the ith station is only dependent on the station.

We assume that dedicated servers are already assigned to stations. We are
interested in determining the dynamic assignment policy for flexible servers that
maximizes the long-run average throughput. For simplicity, we assume that the
travel times for jobs to progress and also the travel times for flexible servers to
move between stations are negligible. We also assume there is an infinite supply
of jobs in front of the first station and infinite space for jobs completed at the
last station. There are no buffer spaces between stations – blocking occurs after
service (manufacturing blocking).

In this paper, we study situations where flexible servers are constrained to
operate between two adjacent stations. The motivation for this study is that
in practice, there might be situations where moving flexible servers among all
stations is not possible (or if possible, it might be costly).
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The concept of “hand-off” for flexible servers was introduced in [9]. Hand-off
happens when a flexible server passes the job it is serving to a dedicated server at
the same station. Although it is possible to perform hand-off at any time, we let
it occur only in the following two cases. When a station has a busy flexible server
and a free dedicated server, the flexible server can pass its job to the dedicated
server and become free. When a station has a busy flexible server and a blocked
dedicated server, jobs can be swapped between the two servers. In either of the
two cases, we say a hand-off has taken place. With the insights gained from [9]
(Theorems 1 and 2), our problem is significantly simplified, as we are able to
restrict our analysis to policies that perform hand-offs as described above and are
non-idling. (Note that is such hand-offs were not allowed, then optimal policies
may allow idling, to avoid flexible servers being blocked for extended periods of
time.)

Any allocation policy should define appropriate actions when blocking or
starvation occurs. In cases where there are multiple blocked or starved servers,
policies should prioritize resolving blocking or starvation of the involved servers.
We show that for systems with three stations, with balanced service rates, the
optimal policy clears blocking from the end of the line to the beginning and
avoids starving servers.

The literature on tandem lines with multiple servers and finite buffers is not
large, see the discussion in van Vuuren et al. [7]. We have previously studied
related problems in the assignment of dedicated and flexible servers in zero-
buffer tandem lines. In [8], we studied the problem of how to assign dedicated
servers in such settings, and in [9], we examined the problem of how to coordinate
dedicated and flexible servers, where the locations of where flexible servers could
work was not constrained. Constraining the servers in this manner is the focus
of the current paper.

Our work has been motivated by related work in two application domains:
hospital bed management and assembly line design. In the hospital bed setting,
Bekker et al. [1] discuss a number of issues with respect to how to manage
flexible hospital beds. In particular, they develop the insight that full flexibility
is beneficial for smaller systems, with less flexibility required for larger systems.
Our work complements this, as rather than studying the impact of the number
of flexible servers (as in [1]), we explore the scenario when movement of servers is
constrained. We imagine that such constrained flexibility may be appropriate in
such a setting – it may be problematic to move a flexible bed to all locations in a
ward/hospital. Our main conclusion is that there can still be significant benefit,
even if flexibility is constrained. For further discussion of the bed management
problem, see de Bruin et al. [2], Green [3], and Hall [4]. In terms of assembly
line design, an example of a zero-buffer tandem line can be seen in Hu et al. [5],
where a subset of fixtures can be reconfigured.

This paper is organized as follows. In Sect. 2 we use Markov Decision Process
theory to derive the optimal policy for tandem lines with three stations, a dedi-
cated server at each station, and one or two constrained flexible servers. We further
show how to employ the Policy Iteration algorithm to construct the optimal policy.



Maximizing Throughput with Constrained Servers 229

In Sect. 3 we examine larger systems and discuss the impact of constrained flexibil-
ity. Finally, Sect. 4 concludes the paper and discusses future work.

2 Tandem Lines with Three Stations

In this section, we study the following four cases: when there is a flexible server
which only moves between the first and second stations; when there is a flexible
server which only moves between the second and third stations; when there are
two flexible servers, one moving only between the first and second stations and
the other one moving only between the second and third stations; and finally
when there are two flexible servers that can move among all of the stations (which
we call the fully flexible case). We provide a brief comparison between the last
two cases. Before looking at these cases, we first discuss the framework for such
problems with an arbitrary number of servers and stations. The performance
metric that we seek to optimize is the throughput.

We use a Markov Decision Process (MDP) model. For our controlled
continuous-time Markov chain (CTMC), let S,A, and As represent the state
space, the action space, and the action space conditioned on the Markov chain
being in state s ∈ S, respectively. We assume that the system employs hand-offs
in the following manner. If a station has a busy flexible server and an idle ded-
icated server, then the busy flexible server can pass its job to an idle dedicated
server. Also, when a station has a busy flexible server and a blocked dedicated
server, the jobs are swapped between the servers. We also assume that servers
are non-idling. Theorems 1 and 2 from [9] can be applied to show that an opti-
mal policy performs hand-offs and is non-idling. With these assumptions, the
choice of a state is simplified, as we do not need to keep track of which servers
(dedicated or flexible) are busy at each station. Thus our choice of state s ∈ S
is defined by the tuple

s = (x1, y1, . . . , xi, yi, . . . , xN )

where xi is the number of busy servers in station i and yi is the number of
blocked servers in station i. Note that we do not need to include yN in the
state, as no servers can be blocked at the last station. We uniformize the CTMC
(see Lippman [6]) to convert the continuous time problem to discrete time. The
normalization constant that we will employ is denoted by q, and is defined below.

Constructing the transition matrices is a two stage process. One needs to
start from the initial state (s) and follow possible actions (a) to determine the
new states (s′). The state s′ is an intermediate state which does not appear
in the transition matrix. The transition between s and s′ is immediate. From
there, it is possible to follow further transitions and reach new states (s′′) with
the probabilities defined in the transition matrix. We have:

s
a→ s′ Pa→ s′′

that is reflected in the transition matrix as Pa(s, s′′) = γa,s,s′′
q where
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q = max
s∈S,a∈As

∑

s′′∈{S−s}
γa,s,s′′ and γa,s,s′′ is the transition rate from s′ to s′′, and

s′ is the state transitioned to from state s using action a.

The size of the action space is |A| =
(
F+N−1

N−1

)
. An action a ∈ A is denoted

by ai1i2···iK , where ij is the location of the jth flexible server.

2.1 Constrained Servers

We first consider a tandem line with three stations and a dedicated server at each
station. Assume a flexible server exists which can only move between the first
and second stations. Theorem 1 describes the optimal policy. In the interest of
space, we have not included the proof, as it is similar to the proof of Theorem 3.
(Theorem 3 is the key analytic result, so as such it is the one result for which
we provide a proof outline.)

Theorem 1. The optimal policy prioritizes clearing blocking. It performs hand-
off and allocates the flexible server to the first station, whenever possible. Oth-
erwise the flexible server is assigned to the second station. The optimal policy is
independent of the service rates.

Next, we consider a tandem line with three stations and a dedicated server
at each station. Assume a flexible server exists which can only move between
the second and third stations. Theorem 2 describes the optimal policy. As for
Theorem 1, its proof is not provided.

Theorem 2. The optimal policy prioritizes clearing blocking. It performs hand-
off and allocates the flexible server to the second station, whenever possible.
Otherwise the flexible server is assigned to the third station. The optimal policy
is independent of the service rates.

Comparing the policies described in Theorems 1 and 2 with the fully flexible
case, described in [9], all policies have similar structures. They clear blocking
and send the flexible server to upstream stations whenever possible.

We now move to the case where there are flexible servers between both sta-
tions. Unfortunately, the optimal server assignment becomes more complicated.
In general, the optimal policy is rate dependent. However, in the case where
the service rates are identical across all stations, the optimal policy again clears
blocking (here from the end to the beginning). This would suggest that such a
policy would be optimal when the service rates are near balanced across stations.
Theorem 3 provides the optimal policy for equal service rates in a zero-buffer
tandem line with three stations, a dedicated server at each station, and two flex-
ible servers, one constrained between the first and second stations, the second
constrained between the second and third stations.

Theorem 3. Suppose that μ1 = μ2 = μ3 = μ. The optimal policy clears blocking
from the end to the beginning (i.e. the policy prioritizes clearing any blocking at
the second station over clearing blocking at the first station, when possible).
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Proof. In the proof, we leave μ1, μ2, and μ3 general, as we will later comment
on the dependence of the optimal policy on these rates. To be able to construct
the discrete-time MDP, the normalization factor is q = μ1 +μ2 +μ3 +max{μ1 +
μ2, μ1 + μ3, μ2 + μ3, 2μ2}. The MDP details are as follows.

A = {a12, a13, a22, a23}

S = {(2, 0, 2, 0, 1), (2, 0, 2, 0, 0), (2, 0, 1, 1, 1), (2, 0, 1, 0, 2), (2, 0, 1, 0, 1), (2, 0, 1, 0, 0),
(2, 0, 0, 1, 2), (2, 0, 0, 1, 1), (2, 0, 0, 0, 2), (2, 0, 0, 0, 1), (2, 0, 0, 0, 0), (1, 1, 2, 0, 0), (1, 1, 1, 0, 2),
(1, 1, 1, 0, 1), (1, 1, 1, 0, 0), (1, 1, 0, 1, 2), (1, 1, 0, 1, 1), (1, 0, 3, 0, 1), (1, 0, 3, 0, 0), (1, 0, 2, 1, 1),
(1, 0, 2, 0, 2), (1, 0, 2, 0, 1), (1, 0, 2, 0, 0), (1, 0, 1, 2, 1), (1, 0, 1, 1, 2), (1, 0, 1, 1, 1), (1, 0, 0, 2, 2),
(1, 0, 0, 2, 1), (0, 1, 3, 0, 1), (0, 1, 3, 0, 0), (0, 1, 2, 1, 1), (0, 1, 2, 0, 2), (0, 1, 2, 0, 1), (0, 1, 2, 0, 0),
(0, 1, 1, 2, 1), (0, 1, 1, 1, 2), (0, 1, 1, 1, 1), (0, 1, 1, 0, 2), (0, 1, 1, 0, 1), (0, 1, 0, 2, 2), (0, 1, 0, 2, 1),
(1, 0, 1, 0, 2), (1, 0, 1, 0, 1), (1, 0, 1, 0, 0), (1, 0, 0, 1, 2), (1, 0, 0, 1, 1), (1, 0, 0, 0, 2), (1, 0, 0, 0, 1),
(1, 0, 0, 0, 0)}

Let s̄ represent the index of a state s ∈ S, according to the order repre-
sented above. In what follows, we will use the label s̄ interchangeably with the
corresponding state s, i.e. A1 = A(2,0,2,0,1).

As̄ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a12 for s̄ = 1, 2
a13 for s̄ = 4, 7, 9
a22 for s̄ = 18, 19, 29, 30
a23 for s̄ = 21, 25, 27, 32, 36, 40
{a12, a13} for s̄ = 3, 5, 6, 8, 10, 11
{a12, a22} for s̄ = 12
{a13, a23} for s̄ = 13, 16, 38, 42, 45, 47
{a22, a23} for s̄ = 20, 24, 31, 35
{a12, a22, a23} for s̄ = 22, 23, 33, 34, 41
{a13, a22, a23} for s̄ = 28
{a12, a13, a22, a23} for s̄ = 14, 15, 17, 26, 37, 39, 43, 44, 46, 48, 49

Our candidate optimal policy d0 is:

d0(s̄) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a12 for s̄ = 1, 2, 5, 6, 8, 10, 11, 14, 15, 22, 23, 39, 43, 44, 48, 49
a13 for s̄ = 3, 4, 7, 8, 9, 17, 26, 28, 37, 42, 45, 46, 47
a22 for s̄ = 12, 18, 19, 29, 30, 33, 34
a23 for s̄ = 13, 16, 20, 21, 24, 25, 27, 31, 32, 35, 36, 38, 40, 41

and associated reward function is:

rd0(s̄) =

⎧
⎪⎨

⎪⎩

0 for s̄ = 2, 6, 11, 12, 15, 19, 23, 30, 34, 39, 44, 49

µ3 for s̄ = 1, 3, 5, 8, 10, 14, 17, 18, 20, 22, 24, 26, 29, 31, 33, 35, 37, 43, 46, 48

2µ3 for s̄ = 4, 7, 9, 13, 16, 21, 25, 27, 28, 32, 36, 38, 40, 41, 42, 45, 47
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Again in the interests of space, we explicitly provide only the first row of the
transition matrix Pa12(s, s

′′). It is a straightforward excercise to calculate the
remaining rows of Pa12(s, s

′′), as well as the other matrices Pai1i2
(s, s′′).

Pa12(1, 18) =
2μ1

q

Pa12(1, 4) =
2μ2

q

Pa12(1, 2) =
μ3

q

Pa12(1, 1) =
q − 2μ1 − 2μ2 − μ3

q

Pa12(1, k) = 0, k �= 1, 2, 4, 18.

To prove the optimality of d0, we need to show that d1(s) = d0(s), where:

d1(s) = argmaxa∈As
{r(s, a) +

∑

j∈S

Pa(s, j)h0(j)},∀s ∈ S,

is the result of one iteration of the Policy Iteration algorithm. This is equivalent
to showing that for all s

r(s, a) +
∑

j∈S

Pa(s, j)h0(j) −
⎛

⎝r(s, d0(s)) +
∑

j∈S

Pa(s, j)h0(j)

⎞

⎠ ≤ 0. (1)

When μ = μ1 = μ2 = μ3, we directly verified inequality that (1) holds
for each s and therefore d0(s) is optimal. The algebra is straightforward (but
somewhat lengthy). �

If the service rates are arbitrary, there are several states where the optimal
action is rate independent. These states are (2,0,0,0,1), (2,0,0,0,0), (1,0,0,0,1),
(1,0,0,0,0) with a12; (1,1,2,0,0), (0,1,2,0,1), (0,1,2,0,0) with a22; and (1,1,1,0,2),
(1,1,0,1,2), (0,1,1,2,1), (0,1,1,0,2) with a23.

The remaining states have optimal actions which depend on the service rates.
For example, for state (2,0,1,1,1), action a13 is the optimal action for equal ser-
vice rates (and also rates sufficiently close to each other). Action a12 becomes
the optimal choice when the service rate at the first station is much faster
than the second station and a constrained flexible server will be required at
the second station, but at the same time the third station is fast enough to clear
the blocking with its dedicated server. Looking at an extreme set of rates like
μ1 = 20, μ2 = 1, μ3 = 17 makes it easier to comprehend why clearing blocking
is not the immediate chosen action, but this also occurs for less extreme rates.
Unfortunately, explicitly characterizing the boundary between the optimality of
actions a13 and a12 appears difficult in general.

Another example is state (0,1,1,1,1), where action a13 is the optimal action
for equal service rates. Action a23 becomes the optimal choice when service rates
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are skewed such that the first station is much slower than the second and third
stations, in which case admitting jobs becomes the priority. An example set of
rates where this holds is μ1 = 1, μ2 = 4, μ3 = 5.

2.2 Two Fully Flexible Servers

Consider a tandem line with three stations and a dedicated server at each station.
Assume two flexible servers exist that can move between all stations. The optimal
policy is rate dependent. When the service rates are equal, Theorem 4 describes
the optimal policy. Its proof is similar to the proof of Theorem 3.

Theorem 4. When μ1 = μ2 = μ, the optimal policy clears blocking from the
end to the beginning. The policy sends the flexible servers to the first station,
whenever possible.

Now we compare the structure of the optimal policies with two flexible
servers. When the service rates are equal, in both constrained and fully flex-
ible cases, the optimal policies prioritize clearing blocking. Both of the policies
coordinate allocations such that flexible servers are freed to send them to the
first station. Both of the policies are rate dependent.

In terms of throughput results, Table 1 compares the two policies for a number
of workloads. In this table, the entries in the header row represent service rate
vectors and the other table entries are throughput values.

Table 1. Comparison of throughputs for different flexibility situations

Flexibility Rates

(1, 1, 1) (2, 1, 1) (1, 2, 1) (1, 1, 2)

Dedicated (5) 0.8873 1.2812 1.1186 1.2888

Dedicated (6) 1.3314 1.4779 1.5597 1.4785

Constrained 1.3606 1.6355 1.4974 1.6027

Fully flexible 1.4600 1.6407 1.7252 1.6435

All fully flexible 1.6667 2.0 2.0 2.0

The first row considers an allocation where there is a dedicated server at each
station and two of the stations have one extra dedicated server each. For each
column of the first row, the highest throughput resulting from different possible
server allocations is represented. The second row represents an allocation where
there are two dedicated servers at each station. The third and fourth rows give
throughput results for systems with a dedicated server at each station, the third
row also has two constrained servers as in Theorem 3, the fourth row has two
fully flexible servers as in Theorem 4. The final row has all five servers fully
flexible.
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Examining Table 1 in more detail, we see that moving to a system with a
single constrained server between each pair of servers achieves a significant per-
centage of the gains made by making servers flexible (compare rows one, three
and four). So, without increasing the total number of servers, significant per-
formance gains are possible, even with constrained flexibility. Also, we see that
with two constrained servers, we essentially have the same throughput with five
servers as with six dedicated servers, a potential savings in required resources.

3 Larger Systems

In this section, we examine how our insights for N = 3 stations extends to
systems with both a larger number of stations and servers. The numerical results
in this section are obtained from simulation, where each simulation is a long run
(100 million departures).

We begin with systems where there is one constrained flexible server between
each pair of stations. The service rates at all stations are equal to one. In Table 2,
the first column, N , shows the number of stations. In the case of dedicated
servers (represented in the second column), there are two dedicated servers at
each station; in the case of constrained flexible servers (represented in the third
column), each station has a dedicated server and there are N − 1 constrained
flexible servers, one between each consecutive pair of stations (so there is one less
server in total than for the dedicated system); in the case of fully flexible servers
(represented in the fourth column), there are N −1 fully flexible servers and each
station has one dedicated server. For the fully flexible server system (here and
throughout this section), we use “Policy I” as described in [9]: “clear blocking
from end to beginning only if it does not cause starvation in the � 2

3N	 previ-
ous stations; uses hand-off”, which was shown to perform well for longer lines.
Looking at Table 2, constrained flexibility offers roughly 40% of the throughput
improvement that full flexibility provides. Note that the constrained flexibil-
ity appears to make the resulting throughput relatively insensitive to N . As a
result, the throughput gain (as a percentage) appears to be a slightly increasing
function of N .

Table 2. Throughput for larger homogeneous systems

N Dedicated Const flx Fully flx

4 1.2420 1.3438 1.6001

5 1.1939 1.3434 1.6520

8 1.1192 1.3514 1.7286

15 1.0610 1.3561 1.7868

30 1.0282 1.3585 1.8213
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We extend our study to systems where there is more than one dedicated
server per station. Table 3 considers a configuration with three stations. The
third column of this table shows the number of constrained flexible servers among
each pair of stations. For example (2,2,0) means that there are two constrained
flexible servers between the first and second stations and two constrained flex-
ible servers between the second and third stations. Comparing the first and
eighth rows, a configuration with 21 dedicated servers and six constrained flex-
ible servers has throughput close to a configuration with 30 dedicated servers,
meaning constrained flexibility can compensate for a reduction of three servers.
Also, comparing the eighth and ninth rows, it appears that when there are mul-
tiple servers per station, the throughput difference between constrained and full
flexibility is less compared to configurations which have one or two servers per
stations.

Table 3. Throughput for configurations with N = 3 and multiple dedicated and flexible
servers per station

N Dedicated Alloc Const flx Alloc Throughput

30 (10, 10, 10) 8.31077

30 (9,10,9) (1,1,0) 8.63140

29 (9,9,9) (1,1,0) 8.39741

30 (8,9,9) (2,2,0) 8.87239

30 (9,9,8) (2,2,0) 8.86033

30 (8,8,8) (3,3,0) 9.14992

28 (8,8,8) (2,2,0) 8.35096

27 (7,7,7) (3,3,0) 8.22025

27 (7,7,7) F = 6 (fully) 8.63805

To give an idea of how the effect scales, we examine a system with 10 stations,
see Table 4. We see that with N = 91 or 92 servers and 18 of these being
(constrained) flexible servers, we can achieve close to the same throughput as
with N = 100 servers, all dedicated. In general, it appears that we can reduce
the number of servers by approximately 10 percent by adding a small amount of
constrained flexibility. Finally, the gap between constrained flexibility and full
flexibility increases with the number of stations. This is not at all surprising, as
full flexibility allows the flexible servers to work at all of the stations, providing
more opportunities to leverage them.
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Table 4. Throughput for configurations with N = 10 and multiple dedicated and
flexible servers per station

N Allocations Throughput

100 dedicated: (10,10,10,10,10,10,10,10,10,10) 7.65041

99 dedicated: (9,9,9,9,9,9,9,9,9,9)

const flx: (1,1,1,1,1,1,1,1,1,0)

8.06876

99 dedicated: (9,9,9,9,9,9,9,9,9,9)

fully flx: 9

8.81186

89 dedicated: (8,8,8,8,8,8,8,8,8,8)

const flx: (1,1,1,1,1,1,1,1,1,0)

7.19769

89 dedicated: (8,8,8,8,8,8,8,8,8,8)

fully flx: 9

7.93998

98 dedicated: (8,8,8,8,8,8,8,8,8,8)

const flx: (2,2,2,2,2,2,2,2,2,0)

8.30885

98 dedicated: (8,8,8,8,8,8,8,8,8,8)

fully flx: 18

9.26543

88 dedicated: (7,7,7,7,7,7,7,7,7,7)

const flx: (2,2,2,2,2,2,2,2,2,0)

7.41644

91 dedicated: (7,7,7,7,7,8,7,8,7,8)

const flx: (2,2,2,2,2,2,2,2,2,0)

7.61384

92 dedicated: (7,7,7,8,7,8,7,8,7,8)

const flx: (2,2,2,2,2,2,2,2,2,0)

7.69727

88 dedicated: (7,7,7,7,7,7,7,7,7,7)

fully flx: 18

8.28586

97 dedicated: (7,7,7,7,7,7,7,7,7,7)

const flx: (3,3,3,3,3,3,3,3,3,0)

8.37838

97 dedicated: (7,7,7,7,7,7,7,7,7,7)

fully flx: 27

9.36535

87 dedicated: (6,6,6,6,6,6,6,6,6,6)

const flx: (3,3,3,3,3,3,3,3,3,0)

7.47718

87 dedicated: (6,6,6,6,6,6,6,6,6,6)

fully flx: 27

8.38774

96 dedicated: (6,6,6,6,6,6,6,6,6,6)

const flx: (4,4,4,4,4,4,4,4,4,0)

8.33007

96 dedicated: (6,6,6,6,6,6,6,6,6,6)

fully flx: 36

9.45340

86 dedicated: (5,5,5,5,5,5,5,5,5,5)

const flx: (4,4,4,4,4,4,4,4,4,0)

7.39672

86 dedicated: (5,5,5,5,5,5,5,5,5,5)

fully flx: 36

8.46073

95 dedicated: (5,5,5,5,5,5,5,5,5,5)

const flx: (5,5,5,5,5,5,5,5,5,0)

8.14238

95 dedicated: (5,5,5,5,5,5,5,5,5,5)

fully flx: 45

9.36825

85 dedicated: (4,4,4,4,4,4,4,4,4,4)

const flx: (5,5,5,5,5,5,5,5,5,0)

7.17594

85 dedicated: (4,4,4,4,4,4,4,4,4,4)

fully flx: 45

8.40664
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4 Conclusion

Based on our observations, optimal policies under constrained flexibility have
a similar structure to optimal policies under full flexibility. All of the policies
perform hand-off such that the flexible server is freed to send it to upstream
stations. They also clear blocking if any exists. Also as expected, the through-
put improvement under constrained flexibility is less compared to full flexibility.
Unlike full flexibility, the optimal policy under constrained flexibility is not rate
independent for arbitrary configurations. The trade-off between the cost of mak-
ing servers flexible (fully or constrained) and the throughput improvement can
be used to decide if flexible servers should be constrained or not. In the future,
it would be instructive to explore if structural results could be developed for
systems where the service rates are heterogeneous and where the service distri-
butions are not exponential. It would also be instructive to examine more general
structures for how servers are constrained. For example, each flexible server could
have a “zone” in which they could work – here, the zones are simply pairs of
servers, but these zones could be more general in applications.
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Abstract. Routing jobs to parallel servers is a common and important
task in today’s computer and communication systems. As each routing
decision affects the jobs arriving later, determining the (near) optimal
decisions is non-trivial. In this paper, we apply reinforcement learning
techniques to the job routing problem with heterogeneous servers and
a general cost structure. We study the convergence of the reinforce-
ment learning to a near-optimal policy (that we can determine by other
means), and compare its performance against heuristic policies such as
Join-the-Shortest-Queue (JSQ) and Shortest-Expected-Delay (SED).

Keywords: Job dispatching · Task assignment · Machine learning
Reinforcement learning · Value function · Parallel servers

1 Introduction

Routing jobs to parallel servers has been a long standing problem class for queue-
ing theory. The problem was first studied by Haight already in 1958 [1]. Today,
the same problem arises in many new contexts. For example, when routing data
traffic in Internet, alternative routes can be modelled as parallel servers. Simi-
larly, in cloud computing, each task needs to be assigned to one of the available
servers. In supercomputing, the time scales are longer but the same fundamental
question appears. Moreover, the heterogeneity of computing hardware is increas-
ing both in large-scale systems comprising several (thousands of) physical com-
puters, as well as within a single physical device (cf. GPUs vs. CPUs, and new
heterogeneous multi-core architectures for mobile devices).

In this paper, we study an elementary routing (or dispatching) problem to
heterogeneous parallel servers subject to a large class of cost structures. Both job
inter-arrival times and service times are assumed to be exponentially distributed.
The state information is the number of jobs in each server. One of the most
popular routing policies is Join-the-Shortest-Queue (JSQ), which chooses the
server with the fewest jobs. JSQ has been shown to be optimal in some specific
cases, but, especially when the service rates are unequal, the exact analysis of
the system becomes surprisingly tedious.

The optimization problem for the optimal routing falls in the category of
Markov decision processes (MDPs). However, our state space is countably infinite
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Takahashi et al. (Eds.): QTNA 2018, LNCS 10932, pp. 238–249, 2018.
https://doi.org/10.1007/978-3-319-93736-6_18
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and optimal routing decisions are difficult to determine. We apply reinforcement
learning techniques to this problem [2]. The infinite state space remains as a
problem as it is impossible to visit every state (preferably multiple times) in any
finite time, and therefore learning the optimal action for every state is impossible.

We work around this by focusing on a finite subset of states where deci-
sions presumably matter the most, and rely on an appropriately chosen heuris-
tic routing elsewhere. Effectively, similarly as in [3], we aggregate states so that
the resulting optimization problem has a finite set of states, and then apply the
reinforcement learning in this state space. If a good heuristic policy is sufficient,
then the first policy iteration step (FPI) can be considered. In this case, it is
often possible to determine the corresponding value function analytically given
the basic policy is static and the system decomposes [4,5]. The value function
can also be estimated by a set of short Monte Carlo simulations at each decision
point [6]. In this case, the basic policy can be dynamic.

The main contributions of this paper are as follows: First, we show that the
heuristic partitioning of the original infinite state space into two classes yields a
computationally efficient optimization problem for which machine learning tech-
niques can be applied. Second, we experiment with different learning parameters
to gain insight on how fast a near-optimal policy can be learned. This is impor-
tant especially when the system parameters evolve in time.

The rest of the paper is organized as follows. The routing problem is formally
defined in Sect. 2, to which the reinforcement learning technique is in Sect. 3.
Section 4 gives some numerical examples, and Sect. 5 concludes the paper.

2 Model

The model for a parallel server system, illustrated in Fig. 1(a), is as follows:

1. Jobs arrive according to a Poisson process with rate λ.
2. Jobs are routed immediately upon arrival to one of the K servers, where the

service time in server i is exponentially distributed with parameter μi.
3. We consider the so-called number-aware setting, where state n = (n1, . . . , nK)

means that server i has ni jobs. The state space is thus X = N
K , where N

denotes the set of natural numbers, N = {0, 1, 2, . . .}.
4. Each state n has an associated cost rate rn at which the system incurs costs

when in state n.
(a) For the mean response time metric, the cost rate is the number of jobs,

rn = n1 + . . . + nK .

(b) The costs can also deter the use of some servers by using server-specific
weights wi for response time,

rn =
∑

i

wini.
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Fig. 1. Partitioning the infinite state space by the finite subset S. Visits outside S may
involve several jobs arriving and departing before the state of the system returns to S.

(c) If servers incur costs when busy, we have running cost rates,

r(r)n =
∑

i

w
(r)
i 1(ni > 0).

Thus, serving a job in server i incurs an average cost of w
(r)
i /μi. Note

that this serves also as an elementary model for energy consumption.
(d) Similarly, with very minor modifications, we can also introduce admission

costs ci,n incurred when a job enters server i in state n (cf. PASTA).

3 Learning the Optimal Routing Policy

Our aim is to devise a machine learning procedure that determines the optimal
policy. As mentioned, the state space of the system is infinite, which tends to be
a problem as it is not possible to visit every state in finite time. However, often
important routing decisions need to be made only in some relatively small sub-
set and elsewhere an appropriate heuristic rule such as Join-the-Shortest-Queue
(JSQ) does an adequate job. In particular, decisions near the origin (empty
system) are typically critical for the performance.

Therefore, similarly as in [3], we limit our focus on a finite set of states S ⊂ X .
For example, with two server systems we can consider n × n boxes,

Sn = {(i, j) | i < n, j < n}.

However, unlike in [3], we are not limited to some specific shapes but S can be
arbitrary finite subset of X . The idea is that we will determine the so-called
value function only for states in S. Consequently, S induces the action set A
that includes those states n for which all routing decisions lead to a state in S,

A = {n : n+ ei ∈ S ∀ i},

where ei is a vector with the ith component one and all other zero. Hence,
given the value function in S is known, it defines the corresponding policy in A.
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Elsewhere, in Ac, we assume a fixed heuristic rule such as RND (random split),
JSQ or SED (shortest expected delay)1.

The division of the state space, induced by S, is illustrated in Fig. 1(b). Note
that there are (i) direct transitions within S, as well as, (ii) longer visits outside
S. For example, long busy periods with many jobs correspond to long visits
outside S. Eventually, after a random time T , a stable system still returns to S.
The costs C incurred during time T can obviously be high. Nonetheless, both
E[T ] and E[C] can be estimated by straightforward simulations. Effectively, we
view states in Sc as one or more aggregated super state(s): the system “escapes”
from S to somewhere in Sc, and then returns after a random time.

3.1 Learning the Value Function

Let v(n) denote the value function with a fixed routing,

v(n) � lim
t→∞E[V (n, t) − rt],

where V (n, t) denotes the cost incurred during time (0, t) when initially in state
n and r is the long-run mean cost rate (assumed to be finite). The value function
for any state n ∈ S satisfies (cf. Howard’s and Bellman’s equations [7,8]),

v(n) = c(n,S) − t(n,S) · r +
∑

m∈S
pS(n,m) · v(m), (1)

where c(n,S) denotes the average costs incurred since arriving to state n until
the system moves to a (new) state in S (that can be the same state n if the
system first moves to a state in Sc), t(n,S) denotes the corresponding mean
time interval, and pS(n,m) is the probability that the next state (in S) is m.
Equation (1) is the basis for the Reinforcement learning algorithm aiming to find
the optimal control in A.

Suppose first that the routing is fixed ω0(n), and the aim is to determine
(estimate) the value function in S corresponding to ω0(n). Let nj ∈ S denote
the jth state visited in S, i.e., nj is a sequence of states the system visits from
which the states outside S have been omitted. Then the learning equations for
the value function are

C ← C + cj ,
T ← T + tj ,
r ← C/T,

v(nj)← (1 − αj)v(nj) + αj [cj − tj · r + v(nj+1)] ,

(2)

where cj is the costs incurred since entering state nj until reaching state nj+1,
tj is the corresponding time interval, and αj is the learning rate at step j. The

1 RND (random) chooses the server independently in random using some probabilities
pk, JSQ chooses the queue with the least number of jobs, and SED the queue with
the shortest expected response time, i.e., the admission cost to queue i is (ni+1)/μi.
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first three equations provide an estimate for the mean cost rate r, and the last
equation updates the estimate for the value function. Initially, the learning rate
can be set a high value, close to one, and then, as time goes by, it is decreased
gradually to zero (or a value close to zero). For example, one can use

αj = e−βj ,

where β > 0 is an appropriately chosen constant. If the system parameters keep
on changing, as often is the case in practice, then one can use some fixed small
value, e.g., α = 0.1.

As the constant offset in the value function is irrelevant (for routing deci-
sions), we can fix it, e.g., so that v(0) = 0. In this case, whenever empty state
n = (0, . . . , 0) is updated, we immediately subtract its new value from all states,

v(n) ← v(n) − v(0), ∀n. (3)

Equation (2), combined with (3), learns the value function for states S for a
given routing policy.

3.2 Policy Improvement

Given the value function, one policy iteration round can be carried out, yielding a
new routing policy that is better than ω0(n) (unless ω0(n) was already optimal).
This is known as the first policy iteration (FPI). In our case, when a job arrives
in state n ∈ A, the improved policy routes the job to server j such that

v(n+ ej) ≤ v(n+ ei) ∀i.

Possible ties can be resolved, e.g., in random. Letting v0(n) denote the value
function corresponding to ω0(n), the improved routing policy is

ω1(n) � argmin
j

v0(n+ ej).

Example 1. Suppose we have K = 2 identical servers, μ1 = μ2 = μ, and arrival
rate λ < 2μ. The (basic) routing policy is uniform random split routing a job
to server 1 with probability of 0.5, and otherwise to server 2. As the routing
decision does not depend on the state of the system, the routing policy is static
and the value function decomposes,

v(n) = v1(n1) + v2(n2).

Suppose further that the cost structure is the response time metric. Then

vi(n) =
n(n + 1)
2(μi − λi)

− λμ

(μ − λ)3
,

where now μi = 1 and λi = 0.5 · λ. As the constant in the value functions is
irrelevant, we can as well choose v(0, 0) = 0, yielding

v(n) =
n1(n1 + 1)
2(μ − λ/2)

+
n2(n2 + 1)
2(μ − λ/2)

=
n1(n1 + 1) + n2(n2 + 1)

2μ − λ
. (4)
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For example, with μ = 1 and λ = 1, the mean cost rate is r = 2 and (4) gives

v(n) =

⎡

⎢⎢⎢⎢⎢⎣

0 2 6 12
2 4 8 14 . . .
6 8 12 18
12 14 18 24

...
. . .

⎤

⎥⎥⎥⎥⎥⎦
(5)

In policy iteration, one next determines the value function v1(n) correspond-
ing to ω1(n), yielding a new policy ω2(n). This is repeated until the mean cost
rate no longer improves and an optimal routing policy has been found. In con-
trast, with reinforcement learning, one updates the routing policy at the same
time as the estimates for the (optimal) value function. This leads to the algo-
rithm described in the next section.

3.3 Reinforcement Learning

Several reinforcement learning techniques have been proposed in the literature.
For example, in Q-learning the aim is to learn the utility function Q(s, a) for
each state s and corresponding action a. With the optimal policy, one always
chooses such action a that maximizes the utility. Q-learning is typically applied
to models with a finite horizon or a discounting factor. In this case, the dynamic
programming Eq. (1) defining the value function also look different. In particular,
there is no need to subtract the mean cost rate.

However, our problem formulation has the infinite time-horizon and the mean
cost rate r is an integral part of the dynamic programming Eq. (1), leading to
update rules (2). Table 1 describes the complete reinforcement learning algorithm
based on (2).

Note also that the reinforcement learning involves two basic modes of opera-
tion: exploration and exploitation. Exploration refers to making random decisions
which provide information on the value of actions that currently may seem non-
optimal. Exploitation, on the other hand, refers to decisions that utilize the
available information and choose (typically) the action that appears to be the
optimal. Choosing the ratio between exploration and exploitation is an impor-
tant optimization problem in reinforcement learning. In our algorithm, we have
an implicit function exploit(j) that as a function of time decides (in random)
whatever to choose the action that appears optimal (exploit) or to choose a ran-
dom server (explore). Typically, it is important to explore more at start, but as
the time goes by, exploitation should become the default action.

Example 2. Let us continue with the previous example. As a basic policy, we
now utilize JSQ outside A. Within A, the routing policy is according to the
Reinforcement learning rule. As the system has two identical exponential servers,
the optimal routing policy is JSQ also within A. That is, once Reinforcement
learning algorithm converges, the resulting value function should be such that

v(n+ e1) < v(n+ e2) ∀ n ∈ A,
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Fig. 2. Learning of the value function with a fixed learning rate α = 0.1 and when
α = e−10t/t2 for two and three server example scenarios. On the x-axis is the time and
the y-axis corresponds to the mean squared error (MSE) in log-scale.

whenever n1 < n2, and vice versa, which means that

ω(n) = argmin
j

nj ∀ n ∈ A,

with ties resolved in an arbitrary fashion.

Fig. 3. Learning the optimal policy happens much faster.

4 Numerical Examples

In this section, we discuss some numerical experiments with the reinforcement
learning. First we assume identical servers so that the correct results are known
in advance (see Examples 1 and 2). Then we consider two heterogeneous systems
and compare reinforcement learning to some well-known heuristic policies.
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Table 1. Reinforcement learning for optimal routing in sub-space A.
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4.1 Learning the Value Function

In the first numerical experiment, we study how fast the value function can
be learned. To this end, we assume two or three identical servers with μ = 1,
unit arrival rate λ = 1, and the RND basic policy. The boxes for the substate
spaces have 6 × 6 and 4 × 4 × 4 states, respectively, which (relative) values
are to be learned. Moreover, we use either a fixed α = 0.1, or let α decay
exponentially, α(t) = e−βt/t2 , where β = 10 and t2 is the length of the simulation.
The simulation algorithm is otherwise the same as in Table 1, but the server for
the new jobs is always chosen using the basic policy, i.e.,

k = ω0(x),

where ω0 is RND in our case. That is, we update v(x) but do not use it to
make (better) routing decisions. Note that we could learn the value function of
any given policy, but we have chosen RND because its value function is known
exactly, and we see how fast the system learns it.

Figure 2 depicts the convergence of the learned value function to the known
exact solutions, given in (5) for two servers. On the x-axis is the simulation time,
and the y-axis corresponds to the mean squared error (MSE),

MSE =
1
N

∑

i

(v̂i − vi)2,

where N = 62 and N = 43 in our case. Note that the y-axis is in logarithmic
scale. We can see that at with a fixed α = 0.1, the learning converges fast to a
certain level. When α decreases exponentially (with β = 10), the learning rate is
slower, but the final result is more accurate, as expected. However, the estimates
for the value function are useful long before that, as we will see next.

4.2 Learning the Optimal Policy

Next we study how the reinforcement learning algorithm converges to the opti-
mal policy in this elementary case. That is, with the identical servers and the
response time cost metric, the optimal policy is JSQ. At start, the value function
is initialized to zero, and thus random server would be chosen at every state.
However, as different states have been visited and the corresponding updates for
the value function recorded, we soon start to make correct decisions.

Figure 3 depicts the fraction of states where the correct routing decision is
made as a function of the simulation time. We can observe that the optimal
behavior is learned much faster than the “correct” values for the value function.
This suggests that a routing policy based on the reinforcement learning can
quickly adapt to changes in its operating environment. In such cases, a fixed
learning rate such as α = 0.1 is naturally preferred.
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Fig. 4. Left figure (a) depicts the simulation results with heterogeneous service rates
(μ1, μ2) = (3, 1). Right figure (b) shows the simulation results with unequal running
cost rates, (r(r)1 , r

(r)
2 ) = (0, 10).

4.3 Heterogeneous Service Rates

Let us next consider a heterogeneous system with service rates (μ1, μ2) = (3, 1),
i.e., server 1 is now three times faster than server 2. We note that optimal routing
policy for heterogeneous systems is not available in closed-form for the mean
response time metric even when the service times are exponentially distributed.
The near-optimal policy can be determined numerically [3], and here we apply
the reinforcement learning algorithm to the same end.

The simulation results are depicted in Fig. 4(a). On the x-axis is the offered
load ρ, and the y-axis corresponds to the scaled mean response time, (1−ρ)E[T ].
With the load balancing random split, the system reduces into K independent
M/M/1 queues, and the mean response time is

E[T ] =
∑

i

μi∑
j μj

· E[Ti] =
∑

i

1∑
j μj

1
1 − ρ

=
K

(1 − ρ)
∑

j μj
,

and thus with the two servers the scaled mean response time with RND is 1/2.
Other reference policies are JSQ and SED. The reinforcement learning (RL)
uses SED outside the 6 × 6 box, where the optimal value function is learned
and utilized to make near-optimal routing decisions. We can observe that the
performance with RL indeed is better than with JSQ or SED.

4.4 Unequal Running Costs

Finally, suppose we have two equally fast servers, (μ1, μ2) = (1, 1), but server 2
is owned by a third party and they charge us according to used CPU cycles so
that the corresponding running costs are (r(r)1 , r

(r)
2 ) = (0, 10). In other words,

processing a job at server 2 costs on average r
(r)
2 /μ2 = 10, whereas at server

1 it is free. In addition to the running costs, the mean response time is also
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minimized (i.e., the mean response time is the quality of service component)
and the total cost rate at state (n1, n2) is given by

rn = n1 + n2 + 10 · 1(n2 > 0).

The simulation results are depicted in Fig. 4(b). As μ1 = μ2, SED reduces
to JSQ and it has been omitted. On the x-axis is the offered load ρ, and the
y-axis corresponds to the scaled mean cost rate, (1 − ρ)E[C]. We can see that
all policies, RND, JSQ and RL, have the same shape. Moreover, the dynamic
policies, JSQ and RL, seem to converge to the same mean cost rate as ρ → 1. At
this limit, both servers must be busy all the time and the unequal running cost
rates no longer matter. However, when ρ is small or moderate, the reinforcement
learning based policy RL reduces costs significantly. It routes jobs to server 2
only to the extend it is meaningful!

5 Conclusions

A straightforward reinforcement learning approach is studied in this paper. The
approach is more general than our numerical examples suggest. First, as men-
tioned, the cost structure can be rather general and could, e.g., penalize the sys-
tem when a queue length exceeds given thresholds. Second, without any modifi-
cations, the number of servers can be more than two or three. The finite substate
space unavoidably becomes larger, which eventually limits the applicability to
small systems in terms of number of servers. However, if some servers are iden-
tical, the corresponding symmetries can be taken into account to mitigate the
scaling problem. Third, it is also straightforward to include batch arrivals to the
model and the learning algorithm. By adjusting the batch size distribution, more
bursty arrival processes can be modelled, which makes the approach more appli-
cable. Fourth, in our case, the jobs were identical. It is possible to introduce job
classes, having, e.g., different size distributions or holding cost rates. However,
each job class increases the dimensionality of the state space, and therefore we
are again limited to a small number of job classes.

In our future work, we plan to investigate on how well the reinforcement
learning based dispatching policy adapts to changing environment. In particular,
we will compare it to other adaptive and (load) insensitive routing policies.
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