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Abstract. A novel numerical scheme including time and spatial discretization is
offered for coupled Cahn-Hilliard and Navier-Stokes governing equation system
in this paper. Variable densities and viscosities are considered in the numerical
scheme. By introducing an intermediate velocity in both Cahn-Hilliard equation
and momentum equation, the scheme can keep discrete energy law. A decouple
approach based on pressure stabilization is implemented to solve the
Navier-Stokes part, while the stabilization or convex splitting method is adopted
for the Cahn-Hilliard part. This novel scheme is totally decoupled, linear,
unconditionally energy stable for incompressible two-phase flow diffuse inter-
face model. Numerical results demonstrate the validation, accuracy, robustness
and discrete energy law of the proposed scheme in this paper.
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1 Introduction

Two-phase flow is omnipresent in many natural and industrial processes, especially for
the petroleum industry, the two-phase flow is throughout the whole upstream pro-
duction process including oil and gas recovery, transportation and refinery, e.g. [1].

As a critical component in the two-phase fluid system, the interface is usually
considered as a free surface, its dynamics is determined by the usual Young-Laplace
junction condition in classical interface tracking or reconstruction approaches, such as
Level-set [2], volume-of-fluid [3] and even some advanced composite method like
VOSET [4].
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But when it traced back to 19th century, Van der Waals [5] provided a new
alternative point of view that the interface has a diffuse feature, namely non-zero
thickness. It can be implicitly characterized by scalar field, namely phase filed, taking
constant values in the bulk phase areas and varying continuously but radically across a
diffuse front. Within this thin transition domain, the fluids are mixed and store certain
quantities of “mixing energy” in this region. Thus, unlike other methods proposed
graphically, phase dynamics is derived from interface physics by energy variational
approach regardless of the numerical solution, which gives rise to coupled nonlinearly
well-posed system at partial differential equation continuous form that satisfies ther-
modynamically consistent energy dissipation laws. Then there is possibility for us to
design numerical scheme preserving energy law in discrete form [6].

The diffuse interface approach excels in some respects of handling two-phase flow
among other available methods. Firstly, it is based on the principle of energy mini-
mization. Hence it can deal with moving contact lines problems and morphological
changes of interface in a natural way effortlessly, such as droplet coalescence or
break-up phenomena. Secondly, we can benefit from the simplicity of formulation, ease
of numerical implementation without explicitly tracking or reconstructing interface,
also the capability to explore essential physics at the interfacial domain. The accessi-
bility of modeling various material properties or complex interface behaviors directly
by introducing appropriate energy functions. Therefore, enforcing certain rheological
fluid or modeling polymeric solutions or viscoelastic behaviors would be alluring
feature naturally. For these benefits, the diffuse interface model attracted substantial
academic attention in recent years, a great number of the advanced and cutting-edge
researches are conducted corresponding to partial immiscible multi-components flow
based on phase field theory [7] and thermodynamically consistent diffuse interface
model for two-phase flow with thermo-capillary [8] et al.

The classical diffuse interface model for cases of two-phase incompressible viscous
Newtonian fluids is known as the model H [9]. It has been successfully applied to
simulate flows involving incompressible fluids with same densities for both phase
components. This model is restricted to the matched density case using Boussinesq
approximation. Unlike the matched density case, when it comes to the case with big
density ratio, the incompressibility cannot guarantee mass conservation any longer in
this model. Therefore, the corresponding diffuse interface model with the divergence
free condition no longer preserve an energy law. Thus, a lot of further works have been
done by (1998) Lowengrub [10], (2002) Boye [11], (2007) Ding [12], (2010) Shen [13]
and most recently Benchmark computations were carried out by (2012) Aland [14].

Generally there are two kinds of approaches to deal with variable densities prob-
lem, one is that material derivative of momentum equation written in one kind form
that takes density variations into consideration without resorting to mass conservation
to guarantee stability of energy proposed by Guermond [15]. Another approach is
proposed by Abels [16]. The approach introduces an intermediate velocity to decouple
the Cahn-Hilliard equation and Navier-Stokes equation system in Minjeaud’s paper
[17], and recently this approach is applied in Shen [18] to simulate the model in [16].
However, the schemes proposed in [17, 18] employ the intermediate velocity in the
Cahn-Hilliard equation only, imposing the mass balance equation to ensure the discrete
energy-dissipation law. Very recently, in Kou [19] the schemes that the intermediate
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velocity is applied in both mass balance equations and the momentum balance equation
are developed to simulate the multi-component diffuse-interface model proposed in
[20] to guarantee the consistency between the mass balance and energy dissipation. In
this paper, we extend this treatment to the model in [16]. However, this extension is not
trivial due to a crucial problem that Cahn-Hilliard equation is not equivalent to mass
balance equation. In order to deal with this problem, a novel scheme applying the
intermediate velocity in Navier-Stokes equation will be proposed in this paper.

The rest part of this paper is organized as follows. In Sect. 2 we introduce a diffuse
interface model for two-phase flow with variable densities and viscosities in detail; In
Sect. 3 we propose a brand new numerical scheme for solving the coupled Navier–
Stokes and Cahn–Hilliard equation system based on this model; In Sect. 4 some
numerical results are demonstrated in this part to validate this scheme comparing with
benchmark and to exam the accuracy, discrete energy decaying tendency. Other cases
and numerical performances will be investigated to show the robustness of the novel
scheme.

2 Mathematical Formulation and Physical Model

The phase field diffuse interface model with variable densities and viscosities can be
described through the following Cahn-Hilliard equation coupled with Navier-Stokes
equation. An introduced phase field variable /, namely order parameter, defined over
the domain, identifies the regions occupied by the two fluids.

/ x; tð Þ ¼ 1 fluid 1
�1 fluid 2

�
ð1Þ

With a thin smooth transition front of thickness e bridging two fluids, the micro-
scopic interactions between two kinds of fluid molecules rules equilibrium profiles and
configurations of interface mixing layer neighboring level-set Ct ¼ / : x; tð Þ ¼ 0f g.
For the situation of isotropic interactions, the following Ginzburg–Landau type of
Helmholtz free energy functional is given by the classical self-consistent mean field
theory in statistical physics [21]:

W /;r/ð Þ ¼ k
Z
X

1
2

r/k k2 þF /ð Þ
� �

dx ð2Þ

The foremost term in right hand side represents the effect of mixing of interactions
between the materials, and the latter one implies the trend of separation. Set the

Ginzburg–Landau potential in the usual double-well form F /ð Þ ¼ /2�1
4e2 . k means

mixing energy density, e is the capillary width of interface between two phases. If we
focus on one-dimensional interface and assume that total diffusive mixing energy in
this domain equals to traditional surface tension coefficient:

A Novel Energy Stable Numerical Scheme 115



r ¼ k
Z þ1
�1

1
2

d/
dx

� �2

þF /ð Þ
( )

dx ð3Þ

The precondition that diffuse interface is at equilibrium is valid, then we can get the
relationship among surface tension coefficient r, capillary width e and mixing energy
density k:

r ¼ 2
ffiffiffi
2

p� �
3

k
e

ð4Þ

The evolution of phase field (/Þ is governed by the following Cahn-Hilliard
equations:

/t þr � u/ð Þ ¼ MDl
l ¼ dW

d/ ¼ f /ð Þ � D/

�
ð5Þ

Where l represents the chemical potential, namely dW
d/ that indicates the variation of

the energy W with respect to /; the parameter M is a mobility constant related to the
diffusivity of bulk phases and f /ð Þ ¼ F0 /ð Þ

The momentum equation for the two-phase system is presented as the usual form

q ut þ u � rð Þuð Þ ¼ r � s
s ¼ gD uð Þ � pIþ se
se ¼ �k r/�r/ð Þ

8<: ð6Þ

with the identical equation

r � ru�ruð Þ ¼ D/� f /ð Þð Þþ 1
2
r r/k k2 þF /ð Þ
� 	

¼ �lr/

þ 1
2
r r/k k2 þF /ð Þ
� 	

¼ /rlþ 1
2
r r/k k2 þF /ð Þ � /l
� 	 ð7Þ

The second term in Eq. (7) can be merged with the pressure gradient term p, then
the pressure of the momentum equation should be a modified pressure p�, It denotes

that: p� ¼ pþ 1
2r r/j j2 þF /ð Þ � /l

� 	
. The p is represented the modified one in the

following contents for unity.

2.1 Case of Matched Density

The governing equations system:
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/t þr � u/ð Þ ¼ MDl
l ¼ f /ð Þ � D/

ut þ u � rð Þu ¼ r � gD uð Þ � rp� /rl
r � u

8><>: ð8Þ

A set of appropriate boundary condition and initial condition is applied to the above
system: no-slip boundary condition for momentum equation and the period boundary
condition for the Cahn-Hilliard equation.

uj@X ¼ 0
@/
@n






@X

¼ 0
@l
@n






@X

¼ 0 ð9Þ

Also the initial condition:

ujt¼0 ¼ u0/jt¼0 ¼ /0 ð10Þ

If the density contrast of two phases is relatively little, a common approach is to
employ the Boussinesq approximation [22], replacing momentum equation in equation
system (8) by

q0 ut þ u � rð Þuð Þ ¼ r � gD uð Þ � rp� /rlþ /þ 1
2

dqg ð11Þ

Set the background density q0 ¼ q1 þ q2ð Þ and term /þ 1
2 dqg is an additional body

force term in charge of the equivalent gravitational effect caused by density difference.
Since the density q0 distributed everywhere in this field do not change respect to time.
If the divergence of the velocity field r � u ¼ 0 holds. Then basic mass conservation
qt þr � quð Þ ¼ 0 is a natural consequence of incompressibility.

By inner product operation of 1st 2nd and 3rd equation of system (8) with �l, /t, u
respectively and summation of these three results, It is easily to conclude that system
(8) admits the following energy dissipation law:

d
dt

Z
X

1
2

uk k2 þ k
2

r/k k2 þ kF /ð Þ
� �

dx ¼ � Z
X

g
2

D uð Þk k2 þM rlk k2
� 	

dx ð12Þ

2.2 Case of Variable Density

Now we consider the case where the density ratio is so large that the Boussinesq
approximation is no longer in effect. Here introduced a phase field diffuse interface
model for incompressible two-phase flow with different densities and viscosity pro-
posed by Abels [16].
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/t þr � u/ð Þ ¼ MDl
l ¼ f /ð Þ � D/

qut þ quþ Jð Þ � ru ¼ r � gD uð Þ � rp� /rl
r � u ¼ 0

8><>: ð13Þ

among them

J ¼ q2 � q1
2

Mrl ð14Þ

The density and viscosity is the function of phase parameter.

q /ð Þ ¼ q1 � q2
2

/þ q1 þ q2
2

g /ð Þ ¼ g1 � g2
2

/þ g1 þ qg2
2

ð15Þ

The mass conservation property can be derived from Eqs. (14), (15) and (16).

qt þr � quð Þþr � J ¼ 0 ð16Þ

The NSCH governing system holds thermodynamically consistency and energy
law. We can obtain the following energy dissipation law:

d
dt

Z
X

q
2

uk k2 þ k
2

r/k k2 þ kF /ð Þ
� �

dx ¼ � Z
X

g
2

D uð Þk k2 þ Mrlk k2
� 	

dx ð17Þ

If we add the gravity in this domain, such as modeling topological evolution of a
single bubble rising in a liquid column, the total energy must contain the potential
energy. Then this energy dissipation law can be expressed as follow:

dEtot

dt
¼ d

dt
Z
X

q
2

uk k2 þ k
2

r/k k2 þ kF /ð Þ � qgy
� �

dx� 0 ð18Þ

3 Decoupled Numerical Scheme

3.1 Time Discretization

In matched density case, for simplicity of presentation, we will assume that
g1 ¼ g2 ¼ g. Given initial conditions /0, u0, p0 we compute /kþ 1, lkþ 1, pkþ 1, eukþ 1,
ukþ 1 for n� 0. Here is an additional term to the convective velocity introduced based

on the idea from [17]. Then the intermediate velocity term buk ¼ uk � dt /
krlkþ 1

qk makes

the Cahn-Hilliard equation and the Navier-Stokes equation decoupled fundamentally.
The novel scheme can be described as below:
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/kþ 1�/k

dt þr � bun/kþ 1� � ¼ MDlkþ 1

lkþ 1 ¼ k fe /k� �þ fc /kþ 1� �� D/kþ 1� �
:or:

lkþ 1 ¼ k f /k� �� D/kþ 1� �þ k
e2 /kþ 1 � /k� �

n � r/kþ 1



@X
¼ 0 n � rlkþ 1




@X
¼ 0

8>>><>>>: ð19Þ

We add a stabilizing term k
e2 /kþ 1 � /k� �

or treat the term by convex splitting
method f /ð Þ ¼ fe /ð Þþ fc /ð Þ. Then the time step for computation will not be strictly
limited in extreme range by the coefficient Capillary width e.

q0
eukþ 1�uk

dt þ uk � r� �eukþ 1 ¼ r � g0D eukþ 1
� ��rpk � /krlkþ 1 þFmeukþ 1




@X
¼ 0

(
ð20Þ

Then we can get the pressure by solving a constant coefficient Poisson equation and
correct the velocity filed to satisfy divergence free condition.

q0
ukþ 1�eukþ 1

dt ¼ �r pkþ 1 � pk
� �

r � ukþ 1 ¼ 0
ukþ 1




@X
¼ 0

8<: ð21Þ

For variable density case, [15, 16] serve as incentive for the novel numerical
scheme below. To deal with the variable densities and ensure numerical stability, we

have to define a cut-off function b/ for the phase order parameter at first place.

/ ¼ / /j j � 1
sign /ð Þ /j j[ 1

�
ð22Þ

Given initial conditions /0; u0; p0; q0; g0 we compute /kþ 1; lkþ 1; pkþ 1ukþ 1;

qkþ 1; gkþ 1 for n� 0.The discretization of the Cahn-Hilliard part is same with the
matched density as Eq. (19).

We update the density and viscosity by cut-off function

q /nþ 1� � ¼ q1�q2
2

b/nþ 1 þ q1 þ q2
2

g /nþ 1� � ¼ g1�g2
2

b/nþ 1 þ g1 þ qg2
2

(
ð23Þ

For the momentum equation part, we use

qk ukþ 1�uk
dt þ qkbuk þ Jk

� � � rukþ 1 ¼ r � gD ukþ 1
� ��rpk

�/krlkþ 1 þ 1
2

q1 þ q2
2 r � buk

� �
ukþ 1

ukþ 1



@X
¼ 0

8>><>>: ð24Þ

together with
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Jk ¼ q2 � q1
2

Mrlk ð25Þ

For saving the computer time consuming and stability, we adopt schemes based on
pressure stabilization.

D pkþ 1 � pk
� � ¼ h

dtr � unþ 1

r pkþ 1 � pk
� �



@X
¼ 0

h ¼ 1
2min q2; q1ð Þ

8<: ð26Þ

Pressure stabilization at the initial stage might cause velocity without physical
meaning because it cannot satisfy solenoidal condition strictly. If we use pressure
correction method, we have to face the non-linear Poisson equation. Thus, the solution
must cost much more time.

3.2 Spatial Discretization

For 2-D cases, the computational domain is X ¼ 0; Lxð Þ � 0; Ly
� �

, the staggered grid
are used for spatial discretization. The cell centers are located on

xi ¼ i� 1
2

� �
hx i ¼ 1; . . .; nx yi ¼ j� 1

2

� �
hy i ¼ 1; . . .; ny

Where hx and hy are grid spacing in x and y directions. nx, ny are the number of
grids along x and y coordinates respectively. In order to discretize the coupled
Cahn-Hilliard and Navier-Stokes system, the following finite volume method is
introduced (Fig. 1).

Fig. 1. The staggered grid based on finite volume method
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Uh ¼ xi�1
2
; yj

� 	


i ¼ 1; 2; . . .; nx þ 1; j ¼ 1; 2; . . .; ny

Vh ¼ xi; yj�1
2

� 	


i ¼ 1; 2; . . .; nx; j ¼ 1; 2; . . .; ny þ 1

Ph ¼ xi�1
2
; yj

� 	


i ¼ 1; 2; . . .; nx; j ¼ 1; 2; . . .; ny

Where Ph is cell-centered space, Uh and Vh are edge-center space,
/; l; p; q; gð Þ 2 Ph, u 2 Uh, v 2 Vh. Some common differential and averaged operators
are used to interpolation of these physical variables from one space to another space
which are not discussed in detail here.

4 Numerical Results

4.1 Validation of the Novel Scheme

Case1: A Bubble Rising in Liquid in 2D Domain
There is a rectangular domain X ¼ 0; 1ð Þ � 0; 2ð Þ filled with two-phase incompressible
fluid and a lighter bubble (with density q1 and dynamic viscosity g1) in a heavier
medium (with density q2 and dynamic viscosity g2) rises from a fixed position initially.
As it described in benchmark test paper [23], the boundary condition imposed on the
vertical walls and top wall are replaced by free slip condition. The physical parameters
for case 1 follows Table 1.

The initial bubble is perfect round with radius r ¼ 0:25 and its center is set at the point
x0; y0ð Þ ¼ 0:5; 1ð Þ. The initial profile of / is set as

/ x; yð Þ ¼ �tanh ð 1ffiffiffi
2

p
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q
� r

� �
ð27Þ

We must note these parameters have been through the non-dimensionalization.
Mobility coefficient is an additional numerical parameter, which is not appeared in the
sharp interface model. The value is chosen in a rational range for comparison of
different spatial step and interface thickness. Furthermore, the interface thick e is
chosen proportional to h. The energy density parameter k can be calculated by the
surface tension coefficient r through the Eq. (4). The time step dt ¼ 0:0001 (Fig. 2).

The bubble shape at the time point t = 3.0 calculated by the novel scheme is
compared with the solution from the benchmark paper by the level-set method [23] and
the diffuse interface method [14] in Fig. 3(a). Different bubble shapes at the time
t = 3.0 are compared from the coarsest grid (h = 1/50, e ¼ 0:02) to the finest grid
(h = 1/200, e ¼ 0:005).

Table 1. The physical parameters for numerical test case 1.

Case q1 q2 g1 g2 g r M

1 1000 100 10 1 0.98 24.5 1 � 105
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(a)t=0 (b)t=1.5                   (c)t=3.0                    (d)t=5.5

(e)t=8.0                    (f)t=10.0                (g)t=12.0                  (h)t=20.0 

Fig. 2. Snapshots of the bubble evolution with velocity vector field (computed on h = 1/150
grid).
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Fig. 3. Bubble shapes at t = 3 for the novel scheme comparing with the level-set and diffuse
interface benchmark results provided in [14, 23] (a); bubble shapes at t = 3 solved by grid with
different refinement level and different interface thickness (b).
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The shapes of bubble differ distinctly for different values of interface thickness e.
But they seem to be convergent so that there is no significant differences for the finest
grid and the case with e ¼ 0:008. We can also remark that the bubble shape from novel
scheme is quite approximate to the benchmark level-set and diffuse interface results.
But it is clearly not sufficient to only look at the bubble shapes, therefore we use some
previously defined benchmark quantities to validate the new scheme rigorously.

I. Center of the Mass:
Various positions of points can be used to track the motion of bubbles. The most
common way is to use the center of mass defined by

yc ¼
R
/[ 0ydxR
/[ 01dx

ð28Þ

with y as the vertical coordinate of x x; yð Þ
II. Rise Velocity
v is the vertical component of the bubble’s velocity u. Where /[ 0 denotes the region
that bubble occupies. The velocity is volume average velocity of bubble.

vc ¼
R
/[ 0vdxR
/[ 01dx

ð29Þ

Combining the contours given in Fig. 3 and Figs. 4, 5 and 6 about the mass center
and rise velocity of the lighter bubble before t = 3, a significant increase in rise velocity
can be observed at the initial stage and then the velocity decrease slowly to a constant
value when the time advances to t = 3 gradually. The shape of bubble will reach to a
temporary steady state when the rise velocity keeps constant. The mass center of the
bubble could be recognized as a linear function of time asymptotically after it is higher
than y = 0.6.

(a) (b)0 0.5 1 1.5 2 2.5 3
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0.5
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0.7
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=0.01
=0.008

=0.005

Fig. 4. Center of the mass of the bubble for the novel scheme comparing with the level-set and
diffuse interface benchmark result provided in [14, 23] (a); Solutions of center of mass from grids
with different refinement level and different interface thickness (b).
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Although the difference is visible for the coarsest grid and thickest interface on the
velocity plot. It is obvious to see that results become closer and closer to the line
corresponding to the computation on the finest grid with refinement. The results cal-
culated by the new scheme shows good agreement with the level-set solution [23] and
benchmark diffuse interface method [14].
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Fig. 5. Rise velocity of the bubble for the novel scheme comparing with the level-set and diffuse
interface benchmark results (a); close-up of rise velocity at maximum values area (b).
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Fig. 6. Solutions of rise velocity of the bubble from grids with different refinement level and
different interface thickness (a); close-up of rise velocity at maximum values area (b).
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The decaying trend of discrete energy in Fig. 7 confirms that the proposed scheme
is energy stable. The whole system reaches the equilibrium state at t = 25.

Figure 8 gives the evolution of free energy and kinetic energy respectively. At the
early stage of bubble rising, kinetic energy and free energy rise dramatically, which
come from part of the reduced gravity potential energy. Then the velocity keep constant
to some extent at next stage. The bubble shape also change into a relative steady state.
When the bubble almost touching the top lid. The kinetic energy gives a considerable
decrease to the zero. Then the gas phase will evolve to a stratified state finally under the
lead of the diffusion in the Cahn Hilliard equation.

Case2: Novel Scheme for Matched Density with Boussinesq Approximation
In the section, We simulate a physical problem with matched viscosities and a relative
low density contrast q1 ¼ 1; q2 ¼ 10ð Þ which ensures the Boussinnesq approximation
is applicable. We set 2d bubble diameter d ¼ 1:0, g ¼ 1:0, g1 ¼ g2 ¼ 0:1,
k ¼ 4� 10�3, Mobility = 0.02 and e ¼ 0:008. The incompressible fluid in a rectan-
gular domain X ¼ 0; 2ð Þ � 0; 4ð Þ with initially a lighter bubble center located on
x0; y0ð Þ ¼ 1; 1:5ð Þ. These dimensionless parameters are set according to the cases in
[13]. The mesh size is 200� 400 and the boundary condition at the vertical wall is
no-slip boundary condition (Fig. 9).

It is easy to find that the shape of the bubble and the vertical displacement at
different time step is pretty similar with the reference contour provided in [13] by
GUM/PSM method. The reference only have a contour line at certain /. For a beautiful
presentation of the integral contour calculated by the novel scheme here, we adjust
interface thickness e ¼ 0:008. The novel scheme can be employed in the situation.

(a)t=2                   (b)t=2                  (c)t=10                   (d)t=10 (a)t=2                   (b)t=2                  (c)t=10                   (d)t=10 

Fig. 9. The shape and displacement comparison of the bubble calculated by novel scheme with
the results presented in [13] for matched density case.
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4.2 Robustness Test of the Novel Scheme

Case3: Examining the Performance for Big Density Contrast
We now consider two-phase incompressible fluid with the same initial condition and
boundary condition with the case1. But density and viscosity contrast is much more
violent in this case (Table 2 and Fig. 10).

Table 2. The physical parameters for numerical test case 3.

Case q1 q2 g1 g2 g r M

3 1000 1 10 0.1 0.98 1.96 1 � 105

(a1)t=0.6                 (a2)t=1.2              (a3)t=1.8 (a4)t=3.0

(b1)t=0.6                  (b2)t=1.2             (b3)t=1.8 (b4)t=3.0

(c1)CFX     (c2)COMSOL      (c3)Fluent 

Fig. 10. The shapes and displacement comparison of the bubble calculated by novel scheme
with the benchmark level-set results and the contours at t = 3.0 provided by three common
commercial software in [23]
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The break-up of bubble happen before the time t = 3.0 in the level-set benchmark. So it
is not appropriate to compare the results from the new scheme with the contour. But
from the results of some common commercial computing software [23]. It’s not that
difficult to find the shape of bubble and the vertical displacement at t = 3.0 solved by
our scheme is pretty close to them. Although it could be some slight diffusion on the
interface caused by the Cahn-Hilliard system itself. The case shows the robustness of
the novel scheme proposed in this paper. It can not only handle an extreme numerical
situation with harsh density and viscosity ratio but get reliable results to some extent.

5 Concluding Remark

The numerical simulation and approximation of incompressible and immiscible
two-phase flows with matched and variable densities and viscosities is the main topic in
this paper. We proposed a brand new scheme for coupled diffuse interface model
system with matched and variable densities and viscosities that satisfies the mass
conservation and admits an energy law. Plenty of numerical experiments are carried out
to illustrate the validation, accuracy compared with sharp interface method by the
benchmark problem and to test the robustness of the new scheme for some extreme
cases as well.
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