
Performance Analysis of 2D-compatible
2.5D-PDGEMM on Knights

Landing Cluster

Daichi Mukunoki1,2(B) and Toshiyuki Imamura1

1 RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan

{daichi.mukunoki,imamura.toshiyuki}@riken.jp
2 Tokyo Woman’s Christian University,

2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

Abstract. This paper discusses the performance of a parallel matrix
multiplication routine (PDGEMM) that uses the 2.5D algorithm, which
is a communication-reducing algorithm, on a cluster based on the
Xeon Phi 7200-series (codenamed Knights Landing), Oakforest-PACS.
Although the algorithm required a 2.5D matrix distribution instead of
the conventional 2D distribution, it performed computations of 2D dis-
tributed matrices on a 2D process grid by redistributing the matrices
(2D-compatible 2.5D-PDGEMM). Our use of up to 8192 nodes (8192
Xeon Phi processors) demonstrates that in terms of strong scaling, our
implementation performs better than conventional 2D implementations.

Keywords: Parallel matrix multiplication · 2.5D algorithm
Xeon Phi · Knights landing

1 Introduction

Toward the Exa-scale computing era, the degree of parallelism (i.e., the numbers
of nodes, cores, and processes) of HPC systems is increasing. On such highly par-
allel systems, computations can become communication-bound when the size of
a problem is insufficiently large, even if the computation is a compute-intensive
task, such as parallel matrix multiplication (the so-called PDGEMM in ScaLA-
PACK). Consequently, communication-avoiding techniques have been the focus
of research to improve performance of computations in terms of strong scaling
on highly parallel systems.

For PDGEMM, the 2.5D algorithm (2.5D-PDGEMM) has been proposed as a
communication-avoiding algorithm [4] that assumes a 2D distribution of matrices
stacked and duplicated vertically in a 3D process grid (the 2.5D distribution).
The 2.5D algorithm decreases the number of the computational steps of the 2D
algorithms (e.g., Cannon and SUMMA) by parallelizing the steps by utilizing
the redundancy of the matrices in the 2.5D distribution, unlike the conventional
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 853–858, 2018.
https://doi.org/10.1007/978-3-319-93713-7_85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_85&domain=pdf

854 D. Mukunoki and T. Imamura

PDGEMM, which uses 2D algorithms that are computed in parallel only by
utilizing the 2D data parallelism of the matrices. Thus, if the 2.5D algorithm is
used to compute matrices distributed in a 2D process grid with a 2D distribution,
as executed by ScaLAPACK PDGEMM, the matrices must be redistributed
from 2D to 2.5D. The implementation and performance of 2.5D-PDGEMM have
been featured in several studies [1,3,4]; however, so far, these studies have not
addressed the 2D compatibility.

We expect that such a 2D compatibility would be required so that, in the
future, applications using the conventional PDGEMM would be able to achieve
good strong scalability on highly parallel systems. Our previous study pro-
posed a 2D-compatible 2.5D-PDGEMM implementation that computes matri-
ces distributed on a 2D process grid with a 2D distribution and analyzed the
performance of up to 16384 nodes on the K computer [2]. This implementa-
tion outperformed conventional 2D implementations, including the ScaLAPACK
PDGEMM, in terms of strong scaling, even when the cost of the matrix redis-
tribution between 2D and 2.5D was included.

This paper presents the results of our 2D-compatible 2.5D-PDGEMM imple-
mentation on the Oakforest-PACS system, which is a Xeon Phi 7200-series (code-
named Knights Landing) based cluster hosted by the Joint Center for Advanced
High Performance Computing (JCAHPC), Japan. The system is equipped with
8208 Xeon Phi processors and was ranked numer six on the TOP500 list in
November 2016. Our study used 8192 of the processors to assess the perfor-
mance and effectiveness of the 2D-compatible 2.5D-PDGEMM on Xeon Phi-
based supercomputers.

Fig. 1. Implementation of 2D-compatible 2.5D-PDGEMM

2 Implementation

Our 2D-compatible 2.5D-PDGEMM is based on the SUMMA algorithm [5] and
computes C = αAB + βC, where α and β are scalar values, and whereas A,B,
and C are dense matrices distributed on a 2D process grid with a 2D block
distribution. For simplicity, our current implementation only supports square
matrices, a square process grid, and a 2D block distribution. Figure 1 summarizes
our implementation. p corresponds to the total number of processes joining the
computation and c corresponds to the stack size (duplication factor) of the 2.5D

Performance Analysis of 2D-compatible 2.5D-PDGEMM 855

algorithm. Thus, the matrices are initially distributed on a 2D process grid of
p =

√
p × √

p processes with a 2D distribution.
The computation is executed as follows: (1) the MPI Comm split creates

the 3D logical process grid from a 2D process grid by dividing the original 2D
process grid to form the levels of the 3D process grid; (2) the MPI Allgather
redistributes and duplicates matrices A and B; (3) the 2.5D algorithm executes
1/c of the SUMMA algorithm’s steps at each level of the 3D process grid using
DGEMM and MPI Bcast; and (4) the MPI Allreduce computes the final result
for matrix C by reducing and redistributing the temporal results of the matrix
on each level of the 3D process grid.

Table 1. Environment and conditions of evaluation

Processor Intel Xeon Phi 7250 (Knights Landing, 1.4 GHz, 68 cores)

Memory MCDRAM (16 GB) + DDR4 (96 GB)

Interconnect Intel Omni-Path Architecture (100 Gbps, Full-bisection Fat Tree)

Compiler Intel compiler 18.0.1

MKL Intel MKL 2018.1

MPI Intel MPI 2018.1.163

MPI options OMP NUM THREADS=16, I MPI PIN DOMAIN=64

I MPI PIN PROCESSOR EXCLUDE LIST=0,1,68,69,136,137,204,205

I MPI PERHOST=4, KMP AFFINITY=scatter,

KMP HW SUBSET=1t, I MPI FABRICS= tmi:tmi,

HFI NO CPUAFFINITY=1

3 Results

We evaluated the performance of our implementation using 8192 nodes on the
Oakforest-PACS system. Table 1 summarizes the environment and conditions of
the evaluation. Each node is equipped with one processor; therefore, the number
of nodes is equal to the number of processors. The parallel execution model was
a hybrid of the MPI and the OpenMP; however, hyperthreading was not used
(1 OpenMP thread per core). We assigned 4 MPI processes per node when the
number of the nodes was 256, 1024, and 4096 for performance reasons; however,
due to a limitation in our implementation, we assigned 2 MPI processes per node
when the number of the nodes was 128, 512, 2048, and 8192. On the Oakforest-
PACS system, the tickless mode was set for the core number 0 only to receive
timer interruptions. Therefore, the logical cores 0 and 1 were excluded to avoid
the effects of OS jitter (the logical core 1 was also excluded, as both belong to
the same core group).

We evaluated the performance of our implementation with stack sizes of
c = 1, 4, and 16. Our implementation was designed to perform equivalently
to the conventional 2D-SUMMA when c = 1. In addition, we measured the

856 D. Mukunoki and T. Imamura

performance of the ScaLAPACK PDGEMM for reference (the block size nb =
512 at maximum). We excluded the MPI sub-communicator setup cost from the
execution time, because, on ScaLAPACK, such a communicator setup process
becomes separated from the PDGEMM routine.

 0.01

 0.1

 1

 10

 128 256 512 1024 2048 4096 8192

PF
lo

ps

of nodes (processors)

Performance on Oakforest−PACS

ScaLAPACK, n=64k
SUMMA(c=1), n=64k
SUMMA(c=4), n=64k

SUMMA(c=16), n=64k
ScaLAPACK, n=16k

SUMMA(c=1), n=16k
SUMMA(c=4), n=16k

SUMMA(c=16), n=16k

Fig. 2. Strong scaling performances for matrix sizes n=16384 (16 k) and n=65536
(64 k)

Figure 2 shows the strong scaling performances when the matrix size
n = 16384 (16 k) and n = 65536 (64 k). Figure 3 shows the breakdown of the per-
formances when the matrix size n = 65536. Bcast corresponds to the communi-
cation cost of using the SUMMA algorithm for the 2.5D matrix multiplication
whereas Allgather and Allreduce correspond to the communication costs for
redistribution and reduction.

Overall, the results show that the effectiveness of the 2.5D algorithm is
higher than that we observed in our previous work on the K computer [2].
The factor that may most strongly cause the difference between the results
of the Oakforest-PACS and the K computer is the ratio of the computation
performance to the communication performance. Whereas the K computer has
a relatively richer network compared with the floating-point performance per
node, i.e., 20 [GB/s]/128 [GFlops] ≈ 0.16, the Oakforest-PACS system is a typ-
ical example of modern supercomputers, which has a relatively huge floating-
point performance per node compared with the network’s performance, i.e.,
25 [GB/s]/3046.4 [GFlops] ≈ 0.0082. Thus, the Oakforest-PACS is approximately
20 times more a “Flops-oriented” system than the K computer is. The evaluation
indicates that the 2.5D-PDGEMM is more effective as a communication-avoiding
technique in such environments.

Performance Analysis of 2D-compatible 2.5D-PDGEMM 857

Fig. 3. Performance breakdown (matrix size n=65536)

4 Conclusions

This paper presented the evaluation of the performance of our 2D-compatible
2.5D-PDGEMM, which was designed to execute computations of 2D distributed
matrices by using up to 8192 Xeon Phi Knights Landing processors on the
Oakforest-PACS system. The results demonstrated that, on recent HPC systems,
such as the Oakforest-PACS, which provide huge floating-point performance as
compared with the network’s performance, a 2D-compatible 2.5D-PDGEMM
was quite effective as a substitute for the conventional 2D-PDGEMM. Beyond
this study, we will further analyze and estimate the performance of the 2.5D-
PDGEMM on future Exa-scale systems by creating a performance model and
using a system simulator.

Acknowledgment. The computational resource of the Oakforest-PACS was awarded
by the “Large-scale HPC Challenge” Project, Joint Center for Advanced High Per-
formance Computing (JCAHPC). This study is supported by the FLAGSHIP2020
project.

References

1. Georganas, E., González-Domı́nguez, J., Solomonik, E., Zheng, Y., Touriño, J.,
Yelick, K.: Communication Avoiding and Overlapping for Numerical Linear Algebra.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC 2012), pp. 100:1–100:11 (2012)

2. Mukunoki, D., Imamura, T.: Implementation and performance analysis of 2.5D-
PDGEMM on the K computer. In: Wyrzykowski, R., Dongarra, J., Deelman, E.,
Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 348–358. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78024-5 31

3. Schatz, M., Van de Geijn, R.A., Poulson, J.: Parallel matrix multiplication: a sys-
tematic journey. SIAM J. Sci. Comput. 38(6), C748–C781 (2016)

https://doi.org/10.1007/978-3-319-78024-5_31

858 D. Mukunoki and T. Imamura

4. Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix multipli-
cation and LU factorization algorithms. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 90–109. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23397-5 10

5. Van de Geijn, R.A., Watts, J.: SUMMA: Scalable Universal Matrix Multiplication
Algorithm, Technical report, Department of Computer Science, University of Texas
at Austin (1995)

https://doi.org/10.1007/978-3-642-23397-5_10

	Performance Analysis of 2D-compatible 2.5D-PDGEMM on Knights Landing Cluster
	1 Introduction
	2 Implementation
	3 Results
	4 Conclusions
	References

