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Abstract. In this paper, we study linearly first and second order in
time, uniquely solvable and unconditionally energy stable numerical
schemes to approximate the phase field model of solid-state dewetting
problems based on the novel approach SAV (scalar auxiliary variable), a
new developed efficient and accurate method for a large class of gradient
flows. The schemes are based on the first order Euler method and the
second order backward differential formulas(BDF2) for time discretiza-
tion, and finite element methods for space discretization. It is shown
that the schemes are unconditionally stable and the discrete equations
are uniquely solvable for all time steps. We present some numerical exper-
iments to validate the stability and accuracy of the proposed schemes.
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1 Introduction

Solid-state dewetting of thin films plays an important role in many engineering
and industrial applications, such as microelectronics processing, formation of
patterned silicides in electronic devices, production of catalysts for the growth
of carbon and semiconductor nanowires [2,4–6]. In general, solid-state dewet-
ting can be modeled as interfacial dynamic problems where the morphological
evolution is controlled by the surface diffusion. However, during the evolution,
the interface may experience complicated topological changes such as pinch-off,
splitting and fattening. All of them make great difficulties in the simulation of
this interface evolution problem. The phase field model of solid-state dewetting
problems presented in [1] can naturally capture topological changes that occur
during the morphological evolution and can be easily extended to high dimen-
sion spaces. The idea of phase field approach dates back to the pioneering work
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of [12,16], which use an auxiliary variable φ (phase field function) to localize the
phases and describe the interface by a layer of small thickness. Now, the phase
field method becomes one of the major modeling and computational tools for the
study of interfacial phenomena (cf. [3,7,10,11,17]), and the references therein).

From the numerical perspective, for phase field models, one main challenge
in the numerical approximation is how to design unconditionally energy stable
schemes which keep the energy dissipative in both semi-discrete and fully discrete
forms. The preservation of the energy dissipation law is particularly important,
and is critical to preclude the non-physical numerical solutions. In fact, it has
been observed that numerical schemes which do not respect the energy dissipa-
tion law may lead to large numerical errors, particular for long time simulation,
so it is specially desirable to design numerical schemes that preserve the energy
dissipation law at the discrete level [7,8]. Another focus of developing numeri-
cal schemes to approximate the phase field models is to construct higher order
time marching schemes. Under the requests of some degree of accuracy, higher
order time marching schemes are usually preferable to lower order time marching
schemes when we want to use larger time marching steps to achieve long time
simulation [9–11]. This fact motivates us to develop more accurate schemes.
Moreover, it goes without saying that linear numerical schemes are more effi-
cient than the nonlinear numerical schemes because the nonlinear scheme are
expensive to solve.

In this paper, we study linearly first and second order accurate in time,
uniquely solvable and unconditionally energy stable numerical schemes for solv-
ing the phase field model of solid-state dewetting problems based on the SAV
(scalar auxiliary variable) approach which are applicable to a large class of gra-
dient flows [13,14]. The essential idea of the SAV approach is to split the total
free energy E(φ) of gradient flows into two parts, written as

E(φ) =
1
2
(φ,Lφ) + E1(φ), (1)

where L is a symmetric non-negative linear operator contains the highest linear
derivative terms in E , and E1(φ) ≥ C > 0 is the nonlinear term but with only
lower order derivative than L. Then the SAV approach transform the nonlinear
term E1 into quadratic form by only introduce a scalar variable r =

√
E1 and the

total free energy E can be written as

E(φ, r) =
1
2
(φ,Lφ) + r2. (2)

The rest of the paper is organized as follows. In Sect. 2, we describe the
phase field model of solid-state dewetting problems and the associated energy
law. In Sect. 3, we develop linear numerical schemes with first order and second
order accuracy in time for simulating the model, and prove their unconditional
energy stabilities and unconditionally unique solvability. In Sect. 4, some numer-
ical experiments are performed to validate the accuracy and energy stability of
the proposed schemes. Finally, some concluding remarks are given in Sect. 5.
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2 The Governing System and Energy Law

We now give a brief introduction to the phase field model as is proposed in
[1] that simulates the solid-state dewetting phenomenon of thin films and the
morphological evolution of patterned islands on a solid substrate. If we consider
that the free interface (surface between thin film phase and vapor phase) energy
is isotropic, then the total free energy of the system is defined as follows

E(φ) = EFV (φ) + Ew(φ) =
∫

Ω

fFV (φ)dx +
∫

Γw

fw(φ)ds (3)

here Ω is a bounded domain in IR2, with boundary ∂Ω that has an outward-
pointing unit normal n. Γw ⊆ ∂Ω represents the solid surface (solid substrate)
to where the thin film adhere, called as wall boundary. EFV represents the free
interface energy of two phases (thin film phase and vapor phase), Ew represents
the combined energy on the solid surface called wall energy, and fFV and fw are
the corresponding energy densities, respectively, defined as follows

fFV (φ) = F (φ) +
ε2

2
|∇φ|2 (4)

fw(φ) =
ε(φ3 − 3φ)

3
√

2
cos θs. (5)

where F (φ) = 1
4 (φ2−1)2 is the well-known Ginzburg-Landau double-well poten-

tial, ε is a positive constant related to the interface width, and θs is the prescribed
contact angle between the free interface and the solid surface.

The governing equations of the system is defined as follows

∂φ

∂t
= ∇ · (M(φ)∇μ), in Ω (6)

μ =
δE
δφ

= φ3 − φ − ε2Δφ, in Ω (7)

with the following boundary conditions

ε2
∂φ

∂n
+ f ′

w = 0,
∂μ

∂n
= 0, on Γw (8)

∂φ

∂n
= 0,

∂μ

∂n
= 0, on ∂Ω\Γw (9)

The above system can be derived as a gradient flow of the total free energy
functional E(φ) with the dissipation mechanism ∇ · (M(φ)∇μ), where M(φ) =
1−φ2 is the mobility function chosen in [1] and μ is the first variational derivative
of the total free energy E with respect to the phase field variable φ called the
chemical potential. The boundary condition ∂μ

∂n = 0 implies that the total mass
is conservative:

d

dt

∫
Ω

φdx =
∫

Ω

φtdx =
∫

Ω

∇ · (M(φ)∇μ)dx = −
∫

Ω

M(φ)
∂μ

∂n
ds = 0. (10)
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Moreover, the total free energy functional E(t) is dissipative:

d

dt
E(t) =

∫
Ω

F
′
(φ)φt + ε2∇φ · ∇φtdx +

∫
Γw

f
′
w(φ)φtds

=
∫

Ω

μφtdx +
∫

Γw

(
ε2

∂φ

∂n
+ f

′
w(φ)

)
φtds =

∫
Ω

μM�μdx

= −
∫

Ω

M∇μ · ∇μdx +
∫

∂Ω

μM
∂μ

∂n
ds

= −
∫

Ω

M |∇μ|2dx ≤ 0 (11)

3 Numerical Schemes and Energy Stability

In this section, we construct several fully discrete numerical schemes for solving
the dewetting problems, and prove their energy stabilities and unique solvability.

We aim to obtain some effective numerical schemes, in particular, the linear
schemes. Inspired by the SAV approach, we split the total free energy E as
follows,

E(φ) =
ε2

2
(∇φ,∇φ) +

1
4

∫
Ω

(φ2 − 1)2dx +
∫

Γw

φ3 − 3φ

3
√

2
ε cos θsds

=
ε2

2
(−Δφ, φ) +

ε2

2

∫
∂Ω

∂φ

∂n
φds +

β

2

∫
Ω

φ2dx +
1
4

∫
Ω

(φ2 − 1 − β)2dx

+
∫

Γw

φ3 − 3φ

3
√

2
ε cos θsds − 1

4

∫
Ω

β2 + 2βdx

=
1
2
(φ,Lφ) + E1(φ) − 1

4

∫
Ω

β2 + 2βdx (12)

where β is a positive constant to be chosen, and

(φ,Lφ) = ε2(−Δφ, φ) + ε2
∫

∂Ω

∂φ

∂n
φds + β

∫
Ω

φ2dx = ε2(∇φ,∇φ) + β(φ, φ)

E1(φ) =
1
4

∫
Ω

(φ2 − 1 − β)2dx +
∫

Γw

φ3 − 3φ

3
√

2
ε cos θsds.

We drop the constant − 1
4

∫
Ω

β2 + 2βdx in the total free energy E(φ), then the
total free energy becomes as

E(φ) =
1
2
(φ,Lφ) + E1(φ), (13)

and the gradient flow Eqs. (6) and (7) can be written as

∂φ

∂t
= ∇ · ((1 − φ2)∇μ), (14)

μ = Lφ + U(φ), (15)
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where,

U(φ) =
δE1

δφ
(16)

is the first variational derivative of the free energy E1 with respect to the phase
field variable φ.

As in [13,14], a scalar auxiliary variable r =
√

E1 is introduced, then we
rebuild the total free energy functional (12) as

E(φ, r) =
1
2
(φ,Lφ) + r2, (17)

and accordingly we can rewrite the gradient flow Eqs. (14) and (15) as follows

∂φ

∂t
= ∇ · ((1 − φ2)∇μ), (18)

μ = Lφ +
r√

E1(φ)
U(φ), (19)

rt =
1

2
√

E1(φ)
〈U(φ), φt〉. (20)

where,

〈U(φ), ψt〉 =
∫

Ω

(φ3 − φ − βφ)ψtdx +
∫

Γw

√
2

2
(φ2 − 1)ε cos θsψtds. (21)

The boundary conditions are also (8) and (9), and the initial conditions are

φ(x, y, 0) = φ0, r(0) =
√

E1(φ0) (22)

Taking the inner products of the Eqs. (18)–(20) with μ, ∂φ
∂t and 2r respectively,

the new system still follows an energy dissipative law:

d

dt
E(φ, r) =

d

dt
[(φ,Lφ) + r2] = −(μ,M(φ)μ) ≤ 0. (23)

Remark: β is a positive number to be chosen.
Since finite element methods have the capability of handling complex geome-

tries, we consider the fully discrete numerical schemes for solving the system (18)–
(20) in the framework of finite element methods. Let Th be a quasi-uniform trian-
gulation of the domain Ω of mesh size h. We introduce the finite element space Sh

to approximate the Sobolev space H1(Ω) based on the triangulation Th.

Sh = {vh ∈ C(Ω) | vh| ∈ Pr,∀ ∈ Th}, (24)

where Pr is the space of polynomials of degree at most r. Denote the time step
by δt and set tn = nδt. Firstly, we give the fully discrete scheme of first order.
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3.1 The Fully Discrete Linear First Order Scheme

In the framework of finite element space above, we now give the fully discrete
semi-implicit first order scheme for the system (18)–(20) based on the back-
ward Euler’s method. Assuming that φn

h and rn
h are already known, we find

(φn+1
h , μn+1

h , rn+1
h ) ∈ Sh × Sh × IR+ such that for all (νh, ψh) ∈ Sh × Sh there

hold (φn+1
h − φn

h

dt
, νh

)
= −

( ∣∣1 − (φn
h)2

∣∣ ∇μn+1
h ,∇νh

)
, (25)

(
μn+1

h , ψh

)
=

(
Lφn+1

h , ψh

)
+

rn+1
h√

E1(φn+1
h )

〈U(φn
h), ψh〉, (26)

rn+1
h − rn

h =
1

2
√

E1(φn
h)

〈U(φn
h), φn+1

h − φn
h〉. (27)

where

(Lφn+1
h , ψh) = ε2(−Δφn+1

h , ψ) + ε2
∫

∂Ω

∂φn+1
h

∂n
ψhds + β

∫
Ω

φn+1
h ψhdx

= ε2(∇φn+1
h ,∇ψh) + β(φn+1

h , ψh) (28)

and

〈U [φn+1
h ], ψh〉 =

∫
Ω

(
(φn+1

h )
3 − φn+1

h − βφn+1
h

)
ψhdx

+
∫

Γw

√
2

2
(
(φn+1

h )
2 − 1

)
ε cos θsψhds. (29)

Remark: Taking νh = 1 in Eq. (25), we obtain the conservation of the total
mass, ∫

Ω

φn+1
h dx =

∫
Ω

φn
hdx = · · · =

∫
Ω

φ0
hdx (30)

Theorem 1. Given (φn
h, rn

h) ∈ Sh × IR+, the system (25)–(27) admits a unique
solution (φn+1

h , μn+1
h , rn+1

h ) ∈ Sh × Sh × IR+ at the time tn+1 for any h > 0 and
δt > 0. Moreover, the solution satisfies a discrete energy law as follows

En+1
1st − En

1st +
1
2
(φn+1

h − φn
h,L(φn+1

h − φn
h)) + (rn+1

h − rn
h)2

= −δt(
∣∣1 − (φn

h)2
∣∣ ∇μn+1

h ,∇μn+1
h )

where En+1
1st is the modified energy

En
1st =

1
2
(φn

h,Lφn
h) + (rn

h)2. (31)

Thus the scheme is unconditionally stable.

Proof. Taking νh = μn+1 and ψh = (φn+1 −φn)/δt in Eqs. (25) and (26) respec-
tively and adding Eqs. (25)–(27) together, we can obtain the discrete energy
law, in addition, the schemes (25)–(27) is a linear system, thus there exists a
unique solution (φn+1

h , μn+1
h , rn+1

h ) at time tn+1.
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3.2 The Fully Discrete Linear Second Order Scheme

We now give the fully discrete semi-implicit second order scheme for the system
(18)–(20) based on the backward differentiation formula (BDF2). Assuming that
φn−1

h , rn−1
h , φn

h and rn
h are already known, we find (φn+1

h , μn+1
h , rn+1

h ) ∈ Sh ×
Sh × IR+ such that for all (νh, ψh) ∈ Sh × Sh there hold

(
3φn+1

h − 4φn
h + φn−1

h

2δt
, νh

)
= −

( ∣∣1 − (φ̄n+1
h )2

∣∣ ∇μn+1
h ,∇νh

)
(32)

(
μn+1

h , ψh

)
=

(
Lφn+1

h , ψh

)
+

rn+1
h√

E1(φ̄h
n+1)

〈U(φ̄n+1
h ), ψh〉, (33)

3rn+1
h − 4rn

h + rn−1
h =

1

2
√

E1(φ̄n+1
h )

〈U(φ̄n+1
h ), 3φn+1

h − 4φn
h + φn−1

h 〉, (34)

where φ̄n+1
h = 2φn

h − φn−1
h ,

(Lφn+1
h , ψh) = ε2(−Δφn+1

h , ψ) + ε2
∫

∂Ω

∂φn+1
h

∂n
ψhds + β

∫
Ω

φn+1
h ψhdx

= ε2(∇φn+1
h ,∇ψh) + β(φn+1

h , ψh), (35)

and

〈U [φ̄n+1
h ], ψh〉 =

∫
Ω

(
(φ̄n+1

h )
3 − φ̄n+1

h − βφ̄n+1
h

)
ψhdx

+
∫

Γw

√
2

2
(
(φ̄n+1

h )
2 − 1

)
ε cos θsψhds. (36)

Remark: The second order scheme (32)–(34) is a two step method, we can
solve for φ1

h and r1h through the first order scheme (25)–(27), similarly by taking
νh = 1 in Eq. (32), we obtain the conservation of the total mass,

∫
Ω

φn+1
h dx =

∫
Ω

φn
hdx = · · · =

∫
Ω

φ0
hdx (37)

Theorem 2. Given (φn
h, rn

h) ∈ Sh × IR+, the system (32)–(34) admits a unique
solution (φn+1

h , μn+1
h , rn+1

h ) ∈ Sh × Sh × IR+ at the time tn+1 for any h > 0 and
δt > 0. Moreover, the solution satisfies a discrete energy law as follows

En+1,n
2nd − En,n−1

2nd +
1
4
(
φn+1

h − 2φn
h + φn−1

h ,L(φn+1
h − 2φn

h + φn−1
h )

)

+
1
2
(rn+1

h − 2rn
h + rn−1

h )2 = −δt(
∣∣1 − (φ̄n+1

h )2
∣∣ ∇μn+1

h ,∇μn+1
h )

where En+1,n
2nd is the modified energy

En+1,n
2nd =

1

4

((
φn+1
h ,Lφn+1

h

)
+

(
2φn+1

h −φn
h ,L(2φn+1

h −φn
h)

)
+

1

2

(
(rn+1

h )2+(2rn+1
h −rnh)2

))

(38)
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Proof. Taking νh = μn+1
h and ψh = (3φn+1

h − 4φn
h + φn−1

h )/δt in Eqs. (32) and
(33) respectively integrating the first two equations and applying the following
identity:

2(3ak+1 − 4ak + ak−1, ak+1) =
∣∣ak+1

∣∣2 +
∣∣2ak+1 − ak

∣∣2 +
∣∣ak+1 − 2ak + ak−1

∣∣2
−

∣∣ak
∣∣2 −

∣∣2ak − ak−1
∣∣2, (39)

we can obtain the discrete energy law, in addition, the schemes (32)–(34) is
a linear system, thus there exists a unique solution (φn+1

h , μn+1
h , rn+1

h ) at time
tn+1.

4 Numerical Experiments

In this section, we present some numerical experiments to validate the accuracy
and stability of numerical schemes presented in this paper. For simplicity, we
use the conforming P1 finite element in space Sh to approximate φh and μh.
For all our experiments in this section, the computational domain is taken as a
rectangle Ω = [−1, 1] × [0, 1], and the wall boundary Γw is the bottom of the
rectangle domain, defined as

Γw = {(x, y)| − 1 < x < 1, y = 0}.

The algorithms are implemented in MATLAB using the software library
iFEM [15].

4.1 Convergence Test

In this subsection, we provide some numerical evidence to show the second order
temporal accuracy for the numerical scheme (32)–(34) by the method of Cauchy
convergence test as in [17]. We consider the problem with an given initial con-
dition but with no explicit exact solution. The domain Ω is triangulated by a
structured mesh with uniform 2k+1 grid points in the x direction and uniform
2k grid points in the y direction, for k from 4 to 8. The final time is taken to be
T = 0.1 and the time step is taken to be δt = 0.2h. Since the P1 finite element
approximation is used for the phase field variable φh, the L2 norm of the Cauchy
difference error ‖φk

h −φk−1
h ‖ is expected to converge to zero at the rate of second

order err = O(δt2) + O(h2) = O(δt2). The initial condition of the phase field
variable φ is taken to be

φ0(x, y) = tanh(
0.25 −

√
x2 + y2

√
2ε

), (40)

We take parameters ε = 0.1, β = 5 and use five different contact angles θs = π,
θs = 3π/4, θs = π/2, θs = π/4, θs = 0 to test the convergence rate respectively,
The Cauchy errors and the relative convergence rates are presented in Table 1
which shows the second order convergence for all cases.
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Table 1. Cauchy convergence test for the second order linear numerical scheme (32)–
(34) with the initial condition (40), parameters are ε = 0.1 and β = 5, errors are
measured in L2 norm; 2k+1 and 2k grid points in the x and y direction for k from 4
to 8, five different contact angles θs = π, θs = 3π/4, θs = π/2, θs = π/4, θs = 0 are
tested respectively

θ 16 − 32 Cvg. rate 32 − 64 Cvg. rate 64 − 128 Cvg. rate 128 − 256

π 0.0063 1.9480 0.0016 2.0777 3.8837e-004 2.1738 8.9332e-005

3π/4 0.0063 1.9505 0.0016 2.0246 3.9578e-004 2.0869 9.4824e-005

π/2 0.0061 1.9379 0.0016 1.9797 3.9895e-004 1.9978 9.9849e-005

π/4 0.0066 1.9218 0.0017 1.9882 4.2918e-004 2.0253 1.0596e-004

0 0.0069 1.9084 0.0018 1.9850 4.5246e-004 2.0179 1.1211e-004

4.2 Solid-State Dewetting Simulation in Two Dimension

In this subsection, we present some two-dimensional simulations for the solid-
state dewetting problems using the schemes (32)–(34). The initial state of the
thin film is taken to be a small rectangle:

φ0(x, y) =
{

1 if − 0.5 ≤ x ≤ 0.5 and 0 ≤ y ≤ 0.2
−1 otherwise. (41)

the computational parameters are taken as ε = 0.01 and δt = 1/128. Numerical
simulations in [18] suggest that in order to accurately capture the interfacial
dynamics, at least 4 elements are needed across the interfacial region of thickness
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Fig. 1. The evolution of thin film for four different prescribed contact angles: (a) θs = π,
(b) θs = 5π/6, (c) θs = 3π/4, (d) θs = π/2. The film profiles are shown every 2500
time steps (labeled as black lines). The red line and blue line represent the initial and
numerical equilibrium states, respectively. (Color figure online)
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√
2ε. We explore adaptive mesh refinement algorithm of the software library

iFEM [15] with the finest element size h = 1/256 to improve the computational
efficiency. We examine the evolution of thin film under 4 different prescribed
contact angles: θs = π, θs = 5π/6, θs = 3π/4, θs = π/2, respectively. The results
are shown in Fig. 1.

We plot dissipative curve of the modified free energy in Fig. 2. Using five
different time step of δt = 0.01, 0.05, 0.1, 0.5, 1 with the prescribed contact angle
θs = π/2. We observe that the energy decreases at all times, which confirms that
our algorithm is unconditionally stable, as predicted by the theory.
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Fig. 2. Time evolution of the free energy functional for five different time steps of
δt = 0.01, 0.05, 0.1, 0.5, 1 with the prescribed contact angle θs = π/2. The energy curves
show the decays for all time steps, which confirms that our algorithm is unconditionally
stable.

5 Conclusions

In this paper, we present linearly first and second order in time, uniquely solvable
and unconditionally energy stable schemes for solving the solid-state dewetting
problems based on the novel SAV approach. We verify numerically that our
schemes are up to second order accurate in time. Adaptive strategy is used to
improve the efficiency of the algorithm. Numerical examples are presented to
illustrate the stability and accuracy of the proposed schemes.
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