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Abstract. In this paper, we address the scheduling of scientific work-
flows in hybrid clouds considering data placement and present the
Hybrid Scheduling for Hybrid Clouds (HSHC) algorithm. HSHC is
a two-phase scheduling algorithm with a genetic algorithm based static
phase and dynamic programming based dynamic phase. We evaluate
HSHC with both a real-world scientific workflow application and ran-
dom workflows in terms of makespan and costs.

1 Introduction

The cloud environment can be classified as a public, private or hybrid cloud. In
a public cloud, users can acquire resources in a per-as-you-go manner wherein
different pricing models exist as in Amazon EC2. The private cloud is for a
particular user group and their internal usage. As the resource capacity of the
latter is “fixed” and limited, the combined use of private and public clouds has
been increasingly adopted, i.e., hybrid clouds [1].

In recent years, scientific and engineering communities are increasingly seek-
ing a more cost-effective solution (i.e., hybrid cloud solutions) for running their
large-scale applications [2–4]. Scientific workflows are of a particular type of
such applications. However, as these workflow applications are often resource-
intensive in both computation and data, the hybrid cloud alternative struggles
to satisfy execution requirements, particularly of data placement efficiently.

This paper studies the data placement of scientific workflow execution in
hybrid clouds. To this end, we design Hybrid Scheduling for Hybrid Clouds
(HSHC) as a novel two-phase scheduling algorithm with the explicit consider-
ation of data placement. In the static phase, an extended genetic algorithm is
applied to simultaneously find the best place for datasets and assign their cor-
responding tasks accordingly. In the dynamic phase, intermediate data during
workflow execution are dealt with to maintain the quality of schedule and execu-
tion. We evaluate HSHC in comparison with FCFS and AsQ [5]. Results show
HSHC is a cost-effective approach that can utilize the private cloud effectively
and reduce data movements in a hybrid cloud.
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Algorithm 1. Static Algorithm
Data: private VM list, task-list, dataset-list, #generation, mutation probability
Result: The optimal placement of datasets and assignment of tasks

1 Prepare the initGeneration;
2 Evaluate initGeneration via Eq. 2;
3 while either the optimal is not found, or generation size is not exceeded do
4 apply tournament-selection;
5 apply k-way-crossover ;
6 apply concurrent-rotation mutation;
7 evaluate the new solution and add it the to population;

8 end
9 rank the population and return the best one;

2 Hybrid Scheduling for Hybrid Clouds (HSHC)

HSHC consists of two phases: static and dynamic. The static phase deals with
finding the optimal placement for tasks and their datasets in the private cloud,
using a genetic algorithm (GA, Algorithm 1). In the dynamic phase, some tasks
are expected to be re-allocated due to changing execution conditions.

2.1 Static Phase

To generate the initial population, we start by placing the fixed number of tasks
and their corresponding data sets to computational resources (virtual machines
or VMs). Then, we randomly assign the flexible datasets and tasks to the rest
of VMs in the system. The representation of a solution (chromosome) in our
algorithm is shown in Fig. 1. In this structure, a cell (i) consists of task-set
(TSi), data-set (DSi), and a VM (VMi) that hosts the assigned data-set and
task-set.

Fig. 1. Chromosome structure.

The main objective here is deter-
mining the locality of the tasks and
datasets such that the overall execu-
tion time is minimized. This results
in considering several factors dur-
ing the representation of the fitness
function. During the construction of
the solution, for any given task, in
order to reduce the delay in execu-
tion, this task must be assigned to
the VM that results in increasing the
number of available data sets for this task execution. We denote the percentage
of available data sets for task i at virtual machine j by ava(ti, V Mj). Moreover,
for any given VM (VMj), the dependency between data sets assigned to the VM
and data sets located at different VMs must be minimized. In other words, the
dependency between data sets assigned to the same VM must be maximized.
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For a VM (VMj), we refer to the data dependency between data sets assigned
to VMj as DIj and the data dependency between its data sets and data sets of
other VMs’ as DOj .

To ensure the feasibility of a solution, we use the variable ckf to check if
the assignment for the fixed data sets and tasks does not violate the locality
constraints. We also use the variable ckr to check if the assigned task can retrieve
the required data sets from its current VM. Moreover, to pick up the best VMs,
we use a variable termed Pratio. This ratio represents how robust the selected
VMs for task execution are, and it is defined as:

Pratio =
M∑

i=0

si (1)

Tasks assigned to a virtual machine might have the ability to be executed con-
currently. Thus, a delay is defined to help the fitness function with the selection
of solutions that have less concurrent values. To find the concurrent tasks within
a VM, the workflow structure has to be considered. In other words, tasks are
monitored to be realized when they will be available for execution in accordance
with their required intermediate datasets. Then, they are categorized, and their
execution time is examined against their assigned deadline. If within a VM, there
are tasks that they do not need any intermediate datasets, they will also influ-
ence concurrent tasks. Once the priorities are ready, the amount of time they
would be behind their defined deadline is evaluated based on the total amount
of delay for a solution, Tdelay. In some situations, a solution might have virtual
machines that do not have either a task-set or data-set. Thus, to increase the
number of used VMs, we introduced the variable V uj , which denotes the per-
centage of the used virtual machine in the solution. Given these variables, the
fitness function is defined as follows.

fitness = (pr × ckr × ckf ×
M∑

j=0

vuj) × (
|T |,M∑

i=0;j=0

ava(ti, V Mj)

× (
|T |,M∑

i=0;j=0

DIj −
|T |,M∑

i=0;j=0

DOj) −
M∑

j=0

Tdelayj)

(2)

As the solutions are evaluated, the new solution should be produced based on
the available ones. Due to the combined structure of the chromosome, the nor-
mal crossover operation cannot be applied to the solutions. Thus, the newly
proposed crossover knowns as k-way-crossover is introduced. In this operation,
after getting the candidates based on a tournament selection, k-worst and k-best
cells of each parent are swapped with each other. By utilizing this crossover, the
length of a solution may change. If either the best or worst cell has any fixed
datasets, they will remain within the cell along with their corresponding tasks.
Concurrent-rotation is introduced to mutate a solution. It creates four different
ways to mutate a chromosome. For each cell within a solution, the task and
dataset with least dependency are selected and by the direction-clockwise or
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counterclockwise- they are exchanged with the next or previous cell. If the least
dependency is related to fixed datasets and its corresponding task, the next least
task and dataset are selected.

The output solution is used to initially place datasets and assign their cor-
responding tasks to the most suitable VMs inside a private cloud.

2.2 Dynamic Phase

In the dynamic phase, based on the status of the available resources (VMs), task
reallocation is done with the private cloud or public cloud. Given the ready-to-
execute tasks, we map them to the VMs such that the total delay in execution
is minimized. This mapping begins by trying to schedule tasks which become
ready based on their required intermediate datasets in the private cloud. Then,
we offload the tasks that cannot be scheduled in the private cloud to be performed
in the public cloud.

In the beginning, we divide the ready-to-execute tasks into flexible and non-
flexible sets. The non-flexible set contains tasks with fixed datasets, and this
results in restricting the locality of the VMs. The flexible set contains the tasks
that can be executed at any VMs, as long as necessary criteria like deadline
and storage are met. We are mainly concerned with scheduling of the flexible
tasks. We start by calculating the available capacity and workload for the cur-
rent “active” VMs. This is used to determine the time in which these VMs can
execute new tasks. For each task (ti) and VM (vmi), we maintain a value that
represents the time when vmi can finish executing ti. We refer to this value as
T (ti, vmi). These values are stored in FTMatrix. Task reallocation is estab-
lished by identifying the task (ti ∈ T ) and the VM (vmi ∈ VM) such that the
finish time (FT (ti, vmi)) is the lowest possible value in FTMatrix. If assign-
ing ti to vmi does not violate this task deadline and its required storage, this
assignment will be confirmed. In this case, we will refer to ti and vmi as the last
confirmed assignment. Otherwise, this task will be added to an offloading list
(loff ), where all tasks belonging to this list will be scheduled on the public cloud
at a later stage. There is an exception to the list, and it is when the storage
criterion would be the only violation for a task that could not be satisfied. Thus,
the task would be removed from the list and would be added again in another
time fraction to the ready-to-execute list. This process of task reallocation takes
place for all tasks in the flexible set.

All of the offloaded tasks will be scheduled to be executed on the public cloud.
Scheduling these tasks uses a strategy similar to the private cloud scheduling.

3 Evaluation

In this section, we present our evaluation results in comparison with FCFS and
AsQ. The former is the traditional scheduling approach for assigning tasks to
VMs through a queue-based system. The latter schedules deadline-based appli-
cations in a hybrid cloud environment in a cost-effective manner (Fig. 2).
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Fig. 2. Average execution time: (a) Random workflows. (b) Montage workflows.

3.1 Environment Setup

The simulation environment is composed of a private cloud and a public cloud
with 20 VMs each. The public cloud has three types of VM: small, medium and
large with 4, 8 and 8 VMs, respectively. The cost of public cloud is similar to
the pricing of Amazon EC2, i.e., proportional pricing based on the rate of the
small VM, $0.023 per hour in this study. VMs in the private cloud are with the
computing power of 250 MIPS whereas that for VM types in the public cloud
are 2500 MIPS, 3500 MIPS, and 4500 MIPS, respectively.

For the static phase, the initial population size is 50, and max generation size
is 500. Mutation probability is 0.2. We have used Montage scientific workflows
(http://montage.ipac.caltech.edu/docs/grid.html) and random workflows with
user-defined deadlines as the input for our simulation. The random workflow
is created based on a hierarchical structure that has 85 datasets which have
sizes in MB from [64–512]. The input and output degrees are chosen from [3–8].
Extracted results are based on the 10% fixed datasets for the random workflows
and are reported in average based on 10 simulation runs.
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Fig. 3. Average number of tasks that missed deadline: (a) Random (b) Montage.

http://montage.ipac.caltech.edu/docs/grid.html
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3.2 Results

As VMs in the homogeneous private cloud come with the low computation capa-
bilities, consequently, the higher offloading rate to the public cloud would be
noticeable to stay with the task’s deadline; Fig. 5(a) and (b). Moreover, the
workflow structure also influences the offloading process. Therefore, considering
the deadline as well as the ability of the private cause to execute tasks in the
public cloud. Also, the utilization of public cloud resources would lead having
minimum execution time as it would reduce the average execution time but
would increase the cost. Despite the fact that the cost for FCFS is almost zero
for Montage shown in Fig. 6(b) it could not achieve meeting deadlines Fig. 3(b).
Our proposed method executed all the tasks within the expected deadline. As it
is shown in Fig. 3, missed deadlines for the other methods is considerable (Fig. 4).

Contrary, HSHC met all task deadlines by offloading a portion of tasks to the
public cloud. For the random workflows shown in Fig. 5 AsQ sent fewer tasks
to the public cloud in comparison to our approach, but it could not execute
tasks within their deadlines. This is also true for FCFS as it obtained a better
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Fig. 4. Average transferring time: (a) Random (b) Montage.
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Fig. 5. Average number of tasks dispatched to public cloud: (a) Random (b) Montage.
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Fig. 6. Average cost: (a) Random (b) Montage.

execution time due to a higher rate of offloading but it could not also utilise
the VMs properly. Thus, HSHC not only outperforms other approaches but also
efficiently utilizes cloud VMs for task execution.

4 Conclusion

In this paper, we have studied data placement aware scheduling of scientific
workflows in a hybrid cloud environment and presented HSHC. The scheduling
process is divided into static and dynamic phases. The static phase leverages
a customised genetic algorithm to concurrently tackle data placement and task
scheduling. In the dynamic phase, the output schedule from the static phase
adapts to deal with changes in execution conditions. The evaluation results
compared with FCFS and AsQ demonstrated the efficacy of HSHC in terms
particularly of makespan and cost by judiciously using public cloud resources.
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