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Abstract. This paper presents a finite element solver for linear poroe-
lasticity problems on quadrilateral meshes based on the displacement-
pressure two-field model. This new solver combines the Bernardi-Raugel
element for linear elasticity and a weak Galerkin element for Darcy flow
through the implicit Euler temporal discretization. The solver does not
use any penalty factor and has less degrees of freedom compared to other
existing methods. The solver is free of nonphysical pressure oscillations,
as demonstrated by numerical experiments on two widely tested bench-
marks. Extension to other types of meshes in 2-dim and 3-dim is also
discussed.
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1 Introduction

Poroelasticity involves fluid flow in porous media that are elastic and can deform
due to fluid pressure. Poroelasticity problems exist widely in the real world, e.g.,
drug delivery, food processing, petroleum reservoirs, and tissue engineering [6,7,
19] and have been attracting attention from the scientific computing community
[10,16,17,23] (and references therein). Some recent work can be found in [9–
11,20,24].

Mathematically, poroelasticity can be modeled by coupled Darcy and elas-
ticity equations as shown below

{−∇ · (2με(u) + λ(∇ · u)I) + α∇p = f ,
∂t (c0p + α∇ · u) + ∇ · (−K∇p) = s,

(1)

where u is the solid displacement, ε(u) = 1
2

(∇u + (∇u)T
)

is the strain tensor,
λ, μ (both positive) are Lamé constants, f is a body force, p is the fluid pressure,
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K is a permeability tensor (that has absorbed fluid viscosity for notational con-
venience), s is a fluid source or sink (treated as negative source), α (usually close
to 1) is the Biot-Williams constant, c0 ≥ 0 is the constrained storage capacity.
Appropriate boundary and initial conditions are posed to close the system.

An early complete theory about poroelasticity was formulated in Biot’s con-
solidation model [3]. A more recent rigorous mathematical analysis was presented
in [18]. It is difficult to obtain analytical solutions for poroelasticity problems.
Therefore, solving poroelasticity problems relies mainly on numerical methods.

According to what variables are being solved, numerical methods for poroe-
lasticity can be categorized as

– 2-field : Solid displacement, fluid pressure;
– 3-field : Solid displacement, fluid pressure and velocity;
– 4-field : Solid displacement and stress, fluid pressure and velocity.

The simplicity of the 2-field approach is always attractive and hence pursued by
this paper.

Continuous Galerkin (CG), discontinuous Galerkin (DG), mixed, noncon-
forming, and weak Galerkin finite element methods all have been applied to
poroelasticity problems. A main challenge in all these methods is the poroelas-
ticity locking, which often appears in two modes [24]: (i) Nonphysical pressure
oscillations for low permeable or low compressible media [8,15], (ii) Poisson
locking in elasticity.

Based on the displacement-pressure 2-field model, this paper presents a finite
element solver for linear poroelasticity on quadrilateral meshes. The rest of this
paper is organized as follows. Section 2 discusses discretization of planar linear
elasticity by the 1st order Bernardi-Raugel elements on quadrilaterals. Section 3
presents discretization of 2-dim Darcy flow by the novel weak Galerkin finite
element methods, in particular, WG(Q0, Q0;RT[0]) on quadrilateral meshes. In
Sect. 4, the above two types of finite elements are combined with the first order
implicit Euler temporal discretization to establish a solver for poroelasticity on
quadrilateral meshes, which couples the solid displacement and fluid pressure
in a monolithic system. Section 5 presents numerical tests for this new solver
to demonstrate its efficiency and robustness (locking-free property). Section 6
concludes the paper with some remarks.

2 Discretization of Elasticity by Bernardi-Raugel (BR1)
Elements

In this section, we consider linear elasticity in its usual form
{−∇ · σ = f(x), x ∈ Ω,
u|Γ D = uD, (−σn)|Γ N = tN ,

(2)

where Ω is a 2-dim bounded domain occupied by a homogeneous and isotropic
elastic body, f is a body force, uD, tN are respectively Dirichlet and Neumann
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data, n is the outward unit normal vector on the domain boundary ∂Ω = ΓD ∪
ΓN . As mentioned in Sect. 1, u is the solid displacement,

ε(u) =
1
2

(∇u + (∇u)T
)

(3)

is the strain tensor, and

σ = 2μ ε(u) + λ(∇ · u)I, (4)

is the Cauchy stress tensor, where I is the order two identity matrix.
Note that the Lamé constants λ, μ are given by

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
, (5)

where E is the elasticity modulus and ν is Poisson’s ratio.
In this section, we discuss discretization of linear elasticity using the first

order Bernardi-Raugel elements (BR1) on quadrilateral meshes. The Bernardi-
Raugel elements were originally developed for Stokes problems [2]. They can be
applied to elasticity problems when combined with the “reduced integration”
technique [4,5,24]. In this context, it means use of less quadrature points for the
integrals involving the divergence term. The BR1 element on a quadrilateral can
be viewed as an enrichment of the classical bilinear Q2

1 element, which suffers
Poisson locking when applied directly to elasticity.

Let E be a quadrilateral with vertices Pi(xi, yi)(i = 1, 2, 3, 4) starting at the
lower-left corner and going counterclockwise. Let ei(i = 1, 2, 3, 4) be the edge
connecting Pi to Pi+1 with the modulo convention P5 = P1. Let ni(i = 1, 2, 3, 4)
be the outward unit normal vector on edge ei. A bilinear mapping from (x̂, ŷ)
in the reference element Ê = [0, 1]2 to (x, y) in such a generic quadrilateral is
established as follows{

x = x1 + (x2 − x1)x̂ + (x4 − x1)ŷ + ((x1 + x3) − (x2 + x4))x̂ŷ,
y = y1 + (y2 − y1)x̂ + (y4 − y1)ŷ + ((y1 + y3) − (y2 + y4))x̂ŷ.

(6)

On the reference element Ê, we have four standard bilinear functions

φ̂4(x̂, ŷ) = (1 − x̂)ŷ, φ̂3(x̂, ŷ) = x̂ŷ,

φ̂1(x̂, ŷ) = (1 − x̂)(1 − ŷ), φ̂2(x̂, ŷ) = x̂(1 − ŷ).
(7)

After the bilinear mapping defined by (6), we obtain four scalar basis functions
on E that are usually rational functions of x, y:

φi(x, y) = φ̂i(x̂, ŷ), i = 1, 2, 3, 4. (8)

These lead to eight node-based local basis functions for Q1(E)2:
[

φ1

0

]
,

[
0
φ1

]
,

[
φ2

0

]
,

[
0
φ2

]
,

[
φ3

0

]
,

[
0
φ3

]
,

[
φ4

0

]
,

[
0
φ4

]
. (9)
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Furthermore, we define four edge-based scalar functions on Ê:

ψ̂1(x̂, ŷ) = (1 − x̂)x̂(1 − ŷ), ψ̂2(x̂, ŷ) = x̂(1 − ŷ)ŷ,

ψ̂3(x̂, ŷ) = (1 − x̂)x̂ŷ, ψ̂4(x̂, ŷ) = (1 − x̂)(1 − ŷ)ŷ.
(10)

They become univariate quadratic functions on respective edges of Ê. For a
generic convex quadrilateral E, we utilize the bilinear mapping to define

ψi(x, y) = ψ̂i(x̂, ŷ), i = 1, 2, 3, 4. (11)

Then we have four edge-based local basis functions, see Fig. 1 (left panel):

bi(x, y) = ni ψi(x, y), i = 1, 2, 3, 4. (12)

Finally the BR1 element on a quadrilateral is defined as

BR1(E) = Q1(E)2 + Span(b1,b3,b3,b4). (13)

Fig. 1. Left panel : Four edge bubble functions needed for the 1st order Bernardi-Raugel
element on a quadrilateral; Right panel : WG(Q0, Q0; RT[0]) element on a quadrilateral.

On each quadrilateral, there are totally twelve vector-valued basis functions.
Their classical gradients are calculated ad hoc and so are the strains. Clearly,
their classical divergences are not constants. The elementwise averages of diver-
gence or the local projections into the space of constants are calculated accord-
ingly.

Let Vh be the space of vector-valued shape functions constructed from the
BR1 elements on a shape-regular quadrilateral mesh Eh. Let V0

h be the subspace
of Vh consisting of shape functions that vanish on ΓD. Let uh ∈ Vh and v ∈
V0

h. Then the bilinear form in the strain-div formulation utilizing the Bernardi-
Raugel elements reads as

ASD
h (uh,v) =

∑
E∈Eh

2μ
(
ε(uh), ε(v)

)
E

+ λ(∇ · uh,∇ · v)E , (14)
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where the overline bar indicates the elementwise averages of divergence. The
linear form for discretization of the body force is simply

Fh(v) =
∑

E∈Eh

(f ,v)E , ∀v ∈ V0
h. (15)

Now there are two sets of basis functions: node-based and edge-based. Com-
patibility among these two types of functions needs to be maintained in enforce-
ment or incorporation of boundary conditions.

(i) For a Dirichlet edge, one can directly enforce the Dirichlet condition at the
two end nodes and set the coefficient of the edge bubble function to zero;

(ii) For a Neumann edge, integrals of the Neumann data against the three basis
functions (two linear polynomials for the end nodes, one quadratic for the
edge) are computed and assembled accordingly.

3 Discretization of Darcy Flow by WG(Q0, Q0;RT[0])
Elements

In this section, we consider a 2-dim Darcy flow problem prototyped as
{∇ · (−K∇p) + c p = f, x ∈ Ω,

p|Γ D = pD, ((−K∇p) · n)|Γ N = uN ,
(16)

where Ω is a 2-dim bounded domain, p the unknown pressure, K a conductivity
matrix that is uniformly SPD, c a known function, f a source term, pD a Dirichlet
boundary condition, pD a Neumann boundary condition, and n the outward unit
normal vector on ∂Ω, which has a nonoverlapping decomposition ΓD ∪ ΓN .

As an elliptic boundary value problem, (16) can be solved by many types
of finite element methods. However, local mass conservation and normal flux
continuity are two most important properties to be respected by finite element
solvers for Darcy flow computation. In this regard, continuous Galerkin meth-
ods (CG) are usable only after postprocessing. Discontinuous Galerkin methods
(DG) are locally conservative by design and gain normal flux continuity after
postprocessing. The enhanced Galerkin methods (EG) [21] are also good choices.
The mixed finite element methods (MFEM) have both properties by design but
result in indefinite discrete linear systems that need specially designed solvers.
The recently developed weak Galerkin methods [12,22], when applied to Darcy
flow computation, have very attractive features in this regard: They possess the
above two important properties and result in symmetric positive linear systems
that are easy to solve [12–14].

The weak Galerkin methods [22] rely on novel concepts to develop finite ele-
ments for differential equations. Discrete weak basis functions are used separately
in element interiors and on interelement boundaries (or mesh skeleton). Then
discrete weak gradients of these basis functions are computed via integration by
parts. These discrete weak gradients can be established in certain known spaces,
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e.g., the local Raviart-Thomas spaces RT0 for triangles, the standard RT[0] for
rectangles, and the unmapped RT[0] for quadrilaterals [14]. These discrete weak
gradients are used to approximate the classical gradient in variational forms.

Recall that for a quadrilateral element E, the local unmapped Raviart-
Thomas space has dimension 4 and can be generated by these four basis functions

RT[0](E) = Span(w1,w2,w3,w4), (17)

where

w1 =
[

1
0

]
, w2 =

[
0
1

]
, w3 =

[
X
0

]
, w4 =

[
0
Y

]
, (18)

and X = x − xc, Y = y − yc are the normalized coordinates using the element
center (xc, yc).

For a given quadrilateral element E, we consider 5 discrete weak functions
φi(0 ≤ i ≤ 4) as follows:

– φ0 for element interior: It takes value 1 in the interior E◦ but 0 on the
boundary E∂ ;

– φi(1 ≤ i ≤ 4) for the four sides respectively: Each takes value 1 on the i-th
edge but 0 on all other three edges and in the interior.

Any such function φ = {φ◦, φ∂} has two independent parts: φ◦ is defined in E◦,
whereas φ∂ is defined on E∂ . Then its discrete weak gradient ∇w,dφ is specified
in RT[0](E) via integration by parts [22] (implementation wise solving a size-4
SPD linear system):

∫
E

(∇w,dφ) · w =
∫

E∂

φ∂(w · n) −
∫

E◦
φ◦(∇ · w), ∀w ∈ RT[0](E). (19)

When a quadrilateral becomes a rectangle E = [x1, x2] × [y1, y2], we have
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇w,dφ0 = 0w1 + 0w2 + −12
(Δx)2w3 + −12

(Δy)2w4,

∇w,dφ1 = −1
Δxw1 + 0w2 + 6

(Δx)2w3 + 0w4,

∇w,dφ2 = 1
Δxw1 + 0w2 + 6

(Δx)2w3 + 0w4,

∇w,dφ3 = 0w1 + −1
Δyw2 + 0w3 + 6

(Δy)2w4,

∇w,dφ4 = 0w1 + 1
Δyw2 + 0w3 + 6

(Δy)2w4,

(20)

where Δx = x2 − x1,Δy = y2 − y1.
Let Eh be a shape-regular quadrilateral mesh. Let ΓD

h be the set of all edges
on the Dirichlet boundary ΓD and ΓN

h be the set of all edges on the Neumann
boundary ΓN . Let Sh be the space of discrete shape functions on Eh that are
degree 0 polynomials in element interiors and also degree 0 polynomials on edges.
Let S0

h be the subspace of functions in Sh that vanish on ΓD
h . For (16), we seek

ph = {p◦
h, p∂

h} ∈ Sh such that p∂
h|Γ D

h
= Q∂

h(pD) (the L2-projection of Dirichlet
boundary data into the space of piecewise constants on ΓD

h ) and

Ah(ph, q) = F(q), ∀q = {q◦, q∂} ∈ S0
h, (21)
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where
Ah(ph, q) =

∑
E∈Eh

∫
E

K∇w,dph · ∇w,dq +
∑

E∈Eh

∫
E

c p q (22)

and
F(q) =

∑
E∈Eh

∫
E

fq◦ −
∑

γ∈Γ N
h

∫
γ

uNq∂ . (23)

As investigated in [14], this Darcy solver is easy to implement and results
in a symmetric positive-definite system. More importantly, it is locally mass-
conservative and produces continuous normal fluxes.

4 Coupling BR1 and WG(Q0, Q0;RT[0]) for Linear
Poroelasticity on Quadrilateral Meshes

In this section, the Bernardi-Raugel elements (BR1) and the weak Galerkin
WG(Q0, Q0;RT[0]) elements are combined with the implicit Euler temporal dis-
cretization to solve linear poroelasticity problems.

Assume a given domain Ω is equipped with a shape-regular quadrilateral
mesh Eh. For a given time period [0, T ], let

0 = t(0) < t(1) < . . . < t(n−1) < t(n) < . . . < t(N) = T

be a temporal partition. Denote Δtn = t(n) − t(n−1) for n = 1, 2, . . . , N .
Let Vh and V0

h be the spaces of vector-valued shape functions constructed
in Sect. 2 based on the first order Bernardi-Raugel elements. Let Sh and S0

h be
the spaces of scalar-valued discrete weak functions constructed in Sect. 3 based
on the WG(Q0, Q0;RT[0]) elements. Let u(n)

h ,u(n−1)
h ∈ Vh be approximations to

solid displacement at time moments t(n) and t(n−1), respectively. Similarly, let
p
(n)
h , p

(n−1)
h ∈ Sh be approximations to fluid pressure at time moments t(n) and

t(n−1), respectively. Note that the discrete weak trail function has two pieces:

p
(n)
h = {p

(n),◦
h , p

(n),∂
h }, (24)

where p
(n),◦
h lives in element interiors and p

(n),∂
h lives on the mesh skeleton.

Applying the implicit Euler discretization, we establish the following time-
marching scheme, for any v ∈ V0

h and any q ∈ S0
h,

⎧⎪⎪⎨
⎪⎪⎩

2μ
(
ε(u

(n)
h ), ε(v)

)
+ λ(∇ · u(n)

h , ∇ · v) − α(p
(n),◦
h , ∇ · v) = (f (n),v),

c0
(
p
(n),◦
h , q◦

)
+ Δtn

(
K∇p

(n)
h , ∇q

)
+ α(∇ · u(n)

h , q◦)

= c0
(
p
(n−1),◦
h , q◦

)
+ Δtn

(
s(n), q◦

)
+ α(∇ · u(n−1)

h , q◦),

(25)

for n = 1, 2, . . . , N . The above two equations are further augmented with appro-
priate boundary and initial conditions. This results in a large monolithic system.

This solver has two displacement degrees of freedom (DOFs) per node, one
displacement DOF per edge, one pressure DOF per element, one pressure DOF
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per edge. Let Nd, Ne, Ng be the numbers of nodes, elements, and edges, respec-
tively, then the total DOFs is

2 ∗ Nd + Ne + 2 ∗ Ng, (26)

which is less than that for many existing solvers for poroelasticity.

5 Numerical Experiments

In this section, we test this novel 2-field solver on two widely used benchmarks. In
these test cases, the permeability is K = κI, where κ is a piecewise constant over
the test domain. Finite element meshes align with the aforementioned pieces.
Rectangular meshes (as a special case of quadrilateral meshes) are used in our
numerics.

Fig. 2. Example 1: A sandwiched low permeability layer.

Example 1 (A sandwiched low permeability layer). This problem is simi-
lar to the one tested in [8,9], the only difference is the orientation. The domain is
the unit square Ω = (0, 1)2, with a low permeability material (κ = 10−8) in the
middle region 1

4 ≤ x ≤ 3
4 being sandwiched by the other material (κ = 1). Other

parameters are λ = 1, μ = 1, α = 1, c0 = 0. Listed below are the boundary
conditions.

– For solid displacement :
For the left side: Neumann (traction) −σn = tN = (1, 0);
For the bottom-, right-, and top-sides: homogeneous Dirichlet (rigid) u = 0;

– For fluid pressure:
For the left side: homogeneous Dirichlet (free to drain) p = 0;
For 3 other sides: homogeneous Neumann (impermeable) (−K∇p) · n = 0.

The initial displacement and pressure are assumed to be zero. See Fig. 2 for an
illustration.
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Fig. 3. Sandwiched low permeability layer: Numerical displacement and dilation,
numerical pressure and velocity, numerical pressure contours for h = 1/32 and
Δt = 0.001. Left column for time T1 = 0.001; Right column for time T2 = 0.01.
Further shrinking in solid, drop of maximal fluid pressure, and pressure front moving
are observed.

For this problem, we examine more details than what is shown in the litera-
ture. We use a uniform rectangular mesh with h = 1/32 for spatial discretization
and Δt = 0.001 for temporal discretization. This way, Δt ≈ h2. Shown in Fig. 3
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are the numerical displacement and dilation (div of displacement), the numer-
ical pressure and velocity, and the numerical contours at time T1 = 0.001 and
T2 = 0.01, respectively. As the process progresses and the fluid drains out from
the left side (x = 0), it is clearly observed that

(i) The maximal pressure is dropped from around 0.9915 to around 0.9570;
(ii) The pressure front moves to the right and becomes more concentrated

around the interface x = 0.25;
(iii) The solid is further shrunk: maximal shrinking (negative dilation) magni-

tude increases from around 0.2599 to around 0.3385.

Fig. 4. Example 2: Cantilever bracket problem.

Fig. 5. Example 2: Cantilever bracket problem. Numerical pressure at time T = 0.005
is obtained by combining Bernardi-Raugel and weak Galerkin elements through the
implicit Euler discretization with Δt = 0.001, h = 1/32.
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Example 2 (Cantilever bracket problem). This benchmark is often used
to test spurious pressure oscillations [1,17,24]. The domain is the unit square
Ω = (0, 1)2. A no-flux (Neumann) condition is prescribed on all four sides for
the fluid pressure. The left side is clamped, that is, a homogeneous Dirichlet
condition u = 0 is posed for the solid displacement for x = 0. A downward
traction (Neumann condition) −σn = tN = (0,−1) is posed on the top side,
whereas the right and bottom sides are traction-free. The initial displacement
and pressure are assumed to be zero. See Fig. 4.

Here we follow [1,24] to choose the following parameter values

E = 105, ν = 0.4, κ = 10−7, α = 0.93, c0 = 0.

We set Δt = 0.001, h = 1/32. Shown in Fig. 5 are the numerical pressure profile
and contours at T = 0.005, obtained from using the Bernardi-Raugel elements
and weak Galerkin elements. Clearly, the numerical pressure is quite smooth and
there is no nonphysical oscillation.

This new finite element solver has been added to our Matlab code package
DarcyLite. The implementation techniques presented in [13] are used.

It is demonstrated in [24] that nonphysicial pressure oscillations occur when
the classical continuous Galerkin method is used for elasticity discretization.

6 Concluding Remarks

In this paper, we have developed a finite element solver for linear poroelasticity
on quadrilateral meshes based on the two-field model (solid displacement and
fluid pressure). This solver relies on the Bernardi-Raugel elements [2] for dis-
cretization of the displacement in elasticity and the novel weak Galerkin elements
[14] for discretization of pressure in Darcy flow. These spatial discretizations are
combined with the backward Euler temporal discretization. The solver does not
involve any nonphysical penalty factor. It is efficient, since less unknowns are
used, compared to other existing methods. This new solver is robust, free of
poroelasticity locking, as demonstrated by experiments on two widely tested
benchmarks.

This paper utilizes the unmapped local RT[0] spaces for discrete weak gradi-
ents, which are used to approximate the classical gradient in the Darcy equation.
Convergence can be established when quadrilateral are asymptotically parallel-
ograms [14]. This type of new solvers are simple for practical use, since any
polygonal domain can be partitioned into asymptotically parallelogram quadri-
lateral meshes. Efficient and robust finite element solvers for Darcy flow and
poroelasticity on general convex quadrilateral meshes are currently under our
investigation and will be reported in our future work.

Our discussion focuses on quadrilateral meshes, but the ideas apply to other
types of meshes. For triangular meshes, one can combine the Bernardi-Raugel
elements on triangles for elasticity [2] and the weak Galerkin elements on tri-
angles for Darcy [12]. This combination provides a viable alternative to the
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three-field solver investigated in [24]. Similar 2-field solvers can be developed for
tetrahedral and cuboidal hexahedral meshes. This is also a part of our current
research efforts for developing efficient and accessible computational tools for
poroelasticity.
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