
A Modified Bandwidth Reduction
Heuristic Based on the WBRA

and George-Liu Algorithm

Sanderson L. Gonzaga de Oliveira1(B), Guilherme O. Chagas1,
Diogo T. Robaina2, Diego N. Brandão3, and Mauricio Kischinhevsky2

1 Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
sanderson@dcc.ufla.br, guilherme.chagas@computacao.ufla.br
2 Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil

{drobaina,kisch}@ic.uff.br
3 CEFET-RJ, Nova Iguaçu, Rio de Janeiro, Brazil

diego.brandao@eic.cefet-rj.br

Abstract. This paper presents a modified heuristic based on the Won-
der Bandwidth Reduction Algorithm with starting vertex given by the
George-Liu algorithm. The results are obtained on a dataset of instances
taken from the SuiteSparse matrix collection when solving linear sys-
tems using the zero-fill incomplete Cholesky-preconditioned conjugate
gradient method. The numerical results show that the improved vertex
labeling heuristic compares very favorably in terms of efficiency and per-
formance with the well-known GPS algorithm for bandwidth and profile
reductions.

1 Introduction

An undirected sparse graph is often used to represent a sparse symmetric matrix
A. As a result, such matrices play an important role in graph theory. In order to
improve cache hit rates, one can reduce processing times when using the conju-
gate gradient method by finding an adequate ordering to the vertices of the corre-
sponding graph that represents the matrix A. This reduction in execution times
is possible because program code and data have spatial and temporal locality. To
provide more specific detail, row and column permutations of A can be obtained
by reordering the vertices of the corresponding graph. A heuristic for band-
width reduction returns an adequate ordering of graph vertices. Consequently, a
heuristic for bandwidth reduction provides adequate memory location and cache
coherency. Then, the use of vertex reordering algorithms is a powerful technique
for reducing execution costs of linear system solvers. Thus, the computational
cost of the preconditioned conjugate gradient method (i.e., the linear system
solver studied here) can be reduced using appropriately the current architecture
of memory hierarchy and paging policies. Hence, much attention has been given
recently to the bandwidth and profile reduction problems (see [1,2,9] for discus-
sions and lists of references). This paper considers heuristics for preprocessing
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 416–424, 2018.
https://doi.org/10.1007/978-3-319-93713-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_35&domain=pdf

A Modified Bandwidth Reduction Heuristic 417

matrices to reduce the running time for solving linear systems on them. Specifi-
cally, we consider the ordering of symmetric sparse positive definite matrices for
small bandwidth and profile. Let G = (V,E) be a connected undirected graph,
where V and E are sets of vertices and edges, respectively. The bandwidth of
G for a vertex labeling S = {s(v1), s(v2), · · · , s(v|V |)} (i.e., a bijective mapping
from V to the set {1, 2, · · · , |V |}) is defined as β(G) = max

{v,u}∈E
[|s(v) − s(u)|],

where s(v) and s(u) are labels of vertices v and u, respectively. The pro-
file is defined as profile(G) =

∑

v∈V

max
{v,u}∈E

[|s(v) − s(u)|]. Let A = [aij] be

an n × n symmetric matrix associated with a connected undirected graph
G = (V,E). Equivalently, the bandwidth of row i of matrix A is given by
βi(A) = i − min

1≤j≤i
[j : aij �= 0], noting that aij represents the left-most non-

null coefficient (i.e., in column j) in row i in matrix A. Thus, the bandwidth of a
matrix A is defined as β(A) = max

1≤i≤n
[βi(A)]. The profile of a matrix A is defined

as profile(A) =
∑n

i=1 βi(A). The bandwidth and profile minimization problems
are NP-hard [10,11]. Since these problems have connections with a wide number
of important applications in science and engineering, efforts should be contin-
ued to develop low-cost heuristics that are capable of producing good-quality
approximate solutions. Thus, this paper gives an improved heuristic for band-
width reduction, and our main objective here is to accelerate a preconditioned
conjugate gradient method. A systematic review [9] reported the Wonder Band-
width Reduction Algorithm (WBRA) [4] as a promising heuristic for bandwidth
reduction. This present paper proposes a variant of this algorithm to provide a
heuristic for bandwidth reductions with lower execution times and smaller mem-
ory requirements than the original algorithm. To be more precise, the purpose
of this paper is to propose a modified WBRA with starting vertex given by the
George-Liu algorithm [5]. Thereby, this paper consists of improving the Wonder
Bandwidth Reduction Algorithm (WBRA) [4] for bandwidth reduction aiming at
accelerating the zero-fill incomplete Cholesky-preconditioned conjugate gradient
(ICCG) method.

This present work evaluates experimentally the results of the modified
WBRA against the GPS algorithm [6] aiming at reducing the execution costs
of the ICCG method in sequential runs applied to instances arising from real-
world applications. The remainder of this paper is organized as follows. Section 2
presents the improved heuristic proposed in this work. Section 3 shows numer-
ical experiments that compares the modified heuristic for bandwidth reduction
with the original WBRA [4] and GPS ordering [6]. Finally, Sect. 4 addresses the
conclusions.

2 An Improved Vertex Labeling Heuristic

Heuristics for bandwidth reduction should execute at low processing times
because the main objective of bandwidth reduction is to reduce computa-
tional costs when solving linear systems [1,2]. The WBRA obtained promising

418 S. L. Gonzaga de Oliveira et al.

bandwidth reductions in the experiments presented by Esposito et al. [4]. In
particular, it achieved better bandwidth results than the GPS algorithm [6].
Nevertheless, in our exploratory investigations, the WBRA reached high com-
putational times and large memory requirements. This occurs because, depend-
ing on the instance, many initial vertices may be chosen in its first step and,
consequently, various structures are stored and several reordering processes are
performed. Sections 2.1 and 2.2 describe the WBRA and the improved WBRA
heuristic, respectively.

2.1 The WBRA

The WBRA [4] is based on graph-theoretical concepts. Let G = (V,E) be
a connected, simple, and undirected graph, where V and E are sets of ver-
tices and edges, respectively. Given a vertex v ∈ V , the level structure rooted
at v, with depth �(v) (or the eccentricity of v), is a partitioning L (v) =
{L0(v), L1(v), . . . , L�(v)(v)}, where L0(v) = {v}, Li(v) = Adj(Li−1(v)) −
⋃i−1

j=0 Lj(v), for i = 1, 2, 3, . . . , �(v) and Adj(U) = {w ∈ V : (u ∈
U ⊆ V) {u,w} ∈ E}. The width of a rooted level structure is defined as
b(L (v)) = max

0≤i≤�(v)
[|Li(v)|]. The WBRA presents two main steps. In the first

step, the WBRA builds level structures rooted at each vertex of the graph, i.e.,
|V | rooted level structures are built. Then, it reduces the width of each rooted
level structure generated using a heuristic named Push Up [4]. This process is
performed level by level of a level structure, considering the bottleneck linear
assignment problem. It is performed by moving some vertices from a level with
a large number of vertices to adjacent levels of the level structure, satisfying
the condition that, for each edge {v, u} ∈ E, the vertices v and u belong to the
same level of the level structure or belong to adjacent levels. This can convert a
rooted level structure in a level structure K (ν, · · ·) that is not rooted at a spe-
cific vertex. After reducing the width of each level structure, each level structure
K (ν, · · ·) with width b(K (ν, · · ·)) smaller than the original bandwidth β(A)
[i.e., (ν ∈ V) b(K (ν, · · ·)) < β(A)] is stored in a priority queue organized in
ascending order of width b(K (ν, · · ·)). Hence, in the worst case from the point
of view of memory usage, the WBRA takes O(|V |2) since it can store |V | level
structures and a level structure grows in Θ(|V |) memory.

In its second step, the WBRA labels the vertices of the graph. In the reorder-
ing procedure, the WBRA labels the vertices of each level structure stored in the
priority queue. The WBRA removes a level structure K (ν, · · ·) from the priority
queue and sorts the vertices of each level of the level structure in ascending-degree
order. The labeling procedure reduces the bandwidths of submatrices generated
by labeling the vertices of each level of the level structure. Finally, this algorithm
returns the labeling with the smallest bandwidth found. Therefore, the WBRA
[4] shows high computational costs because it builds a level structure rooted at
each vertex of a graph and these structures are rearranged based on a bottleneck
linear assignment. This strategy makes the whole procedure costly in both time
and space. Thus, the WBRA for bandwidth reduction of symmetric matrices did
not show competitive results in our exploratory investigations when compared

A Modified Bandwidth Reduction Heuristic 419

with other heuristics, such as the GPS algorithm [6], when aiming at reducing
the computational costs of a linear system solver applied to large instances.

2.2 An Improved Heuristic for Bandwidth Reduction

This paper proposes a modification in the first step of WBRA [4] aiming at
obtaining a low-cost heuristic. The improved heuristic proposed here consists of
computing only one level structure used by WBRA rooted at a carefully chosen
vertex given by the George-Liu algorithm [5] instead of building level structures
rooted at each vertex (i.e., |V | rooted level structures) as it is performed in the
original WBRA [4]. We will refer this new algorithm as ECMT-GL heuristic.
The main difference between the WBRA and ECMT-GL heuristic is in their
first steps.

Given a rooted level structure L (v), the Push Up heuristic is also applied
in the ECMT-GL heuristic to reduce the width b(L (v)), resulting in a level
structure K (ν, · · ·). Then, only K (ν, · · ·) is stored and no priority queue is used.
Consequently, the ECMT-GL heuristic grows in Θ(|V |) memory. Subsequently,
similar steps of the WBRA are performed in the ECMT-GL heuristic, with
the difference that the labeling procedure is performed using only a single level
structure K (ν, · · ·), resulting in a low-cost heuristic for bandwidth reduction.

The original WBRA cannot have the same storage requirements than the
ECMT-GL heuristic. As described, the original WBRA builds a level structure
rooted at each vertex contained in V (then |V | rooted level structures are built)
and stores in a priority queue those rooted level structures with width smaller
than the original bandwidth β(A), which gives the memory requirements of
the algorithm. After removing a level structure from the priority queue, the
original WBRA labels the vertices and stores only the current level structure
that provides the smallest bandwidth found. To have a memory usage of one
level structure, the original WBRA would have to label the vertices accord-
ing to all |V | rooted level structures (instead of labeling the vertices of rooted
level structures stored in the priority queue), resulting in an algorithm extremely
expensive. Therefore, the variant of the WBRA proposed here improves the orig-
inal algorithm in terms of processing and storage costs. Esposito et al. [4] per-
formed experiments with instances up to 2,000 vertices. Moreover, the authors
provided no storage cost analysis of the heuristic. Our exploratory investiga-
tions showed that the WBRA presents large memory requirements so that the
WBRA is impractical to be applied even to an instance composed of appropri-
ately 20,000 unknowns (what also depends on the number of non-null coefficients
of the instance). Thus, our modification in the WBRA increases its efficiency and
performance.

3 Results and Analysis

This section presents the results obtained in simulations using the ICCG method,
computed after executing heuristics for vertex labeling. Thus, the results of the

420 S. L. Gonzaga de Oliveira et al.

improved heuristic proposed in this paper are compared with the results from
the use of the GPS algorithm [6].

The WBRA [4], GPS [6], and ECMT-GL heuristics were implemented using
the C++ programming language. In particular, the g++ version 4.8.2 compiler
was used. Additionally, a data structure based on the Compress Row Storage,
Compress Column Storage, and Skyline Storage Scheme data structures was
used within the implementation of the ICCG method.

The experiments were performed on an Intel R© CoreTM i7-2670QM CPU @
2.20 GHz (6 MB cache, 8 GB of main memory DDR3 1333 MHz) (Intel; Santa
Clara, CA, United States) workstation. The Ubuntu 16.04.3 LTS 64-bit operating
system was used and the Linux kernel-version 4.4.0-97-generic is installed in this
workstation. Three sequential runs, with both a reordering algorithm and with
the preconditioned conjugate gradient method, were performed for each instance.
A precision of 10−16 to the CG method using double-precision floating-point
arithmetic was employed in all experiments. Table 1 shows the name and number
of non-null matrix coefficients, the dimension n (or the number of unknowns) of
the respective coefficient matrix of the linear system (or the number of vertices
of the graph associated with the coefficient matrix), the name of the heuristic for
bandwidth reduction applied, the results with respect to bandwidth and profile
reductions, the results of the heuristics in relation to the execution costs [t(s)], in
seconds (s), when applied to nine real symmetric positive definite matrices taken
from the SuiteSparse matrix (SSM) collection [3]. Moreover, column % in this
table shows the percentage (rounded to the nearest integer) of the execution time
of the heuristics for bandwidth reduction in relation to the overall execution time
of the simulation. In addition, the same table shows the number of iterations and
the total running time, in seconds, of the ICCG method applied to the linear
systems. The first rows in each instance in Table 1 show “—”. This means that no
reordering heuristic was used in these simulations. This makes it possible to check
whether the use of a heuristic for bandwidth and profile reductions decreases the
execution times of the linear system solver. The last column in this table shows
the speed-up/down of the ICCG method. Table 1 and Figs. 1(a)–(b) reveal that
the execution and memory costs of the ECMT-GL heuristic is significantly lower
than the computational cost of the WBRA (that was applied to the LFAT5000
instance). In particular, the three heuristics evaluated here obtained the same
bandwidth and profile results when applied to the LFAT5000 instance. The
executions with the WBRA applied to the cvxbqp1, Pres Poisson, and msc10848
instances were aborted because the high consumption of time and memory. Thus,
Table 1 and Figs. 1(a)–(b) show that the new ECMT-GL heuristic outperforms
the WBRA in terms of running time and memory consumption.

Even though the ECMT-GL heuristic reduces bandwidth and profile to a
considerable extent, Table 1 and Fig. 2 also show that the GPS algorithm [6]
obtained in general better bandwidth and profile results than the ECMT-GL
heuristic. The ECMT-GL heuristic achieved better bandwidth (profile) results
than the GPS algorithm [6] when applied to the cant (cvxbqp1, cant) instance.
In particular, the GPS ordering [6] increased the bandwidth and profile of the

A Modified Bandwidth Reduction Heuristic 421

Table 1. Results of solutions of nine linear systems (ranging from 79,966 to 4,444,880
non-null coefficients (|E|)) contained in the SuiteSparse matrix collection [3] using the
ICCG method and vertices labeled by the GPS [6] and ECMT-GL heuristics.

Instance |E| n Heuristic β Profile t(s) % ICCG:iter ICCG:t(s) Speedup

LFAT 5000 79966 19994 — 5 84958 — — 19994 19 —

ECMT-GL 3 34984 0.1 1 19994 18 1.04

GPS 3 34984 2.9 14 19994 18 0.90

WBRA 3 34984 65.7 74 19994 23 0.21

cvxbqp1 349968 50000 — 33333 819815962 — — 50000 485 —

ECMT-GL 2240 53110785 6.8 2 50000 280 1.69

GPS 1690 53398841 12.8 4 50000 332 1.41

thermo mech TK 711558 102158 — 102138 2667823445 — — 11121 459 —

ECMT-GL 364 18788072 2.8 1 9090 307 1.48

GPS 270 18153270 125.6 31 9725 284 1.12

Pres Poisson 715804 14822 — 12583 9789525 — — 349 9 —

ECMT-GL 614 3166017 0.7 9 233 7 1.09

GPS 334 2916499 23.0 70 206 10 0.27

msc23052 1142686 23052 — 23046 183660755 — — 23052 213 —

ECMT-GL 1992 19046925 7.3 20 1 30 5.75

GPS 1462 17122364 27.4 54 1 23 4.20

msc10848 1229776 10848 — 10706 50044035 — — 10848 63 —

ECMT-GL 1963 11833479 7.8 49 1 8 4.03

GPS 1694 6826017 14.7 57 1 11 2.45

ct20stif 2600295 52329 — 49323 162549961 — — 52329 1063 —

ECMT-GL 4091 107413396 46.0 22 1 159 5.18

GPS 3329 107013694 121.2 43 1 159 3.79

cant 4007383 62451 — 275 16778583 — — 24 272 —

ECMT-GL 275 16778583 0.3 0 1 254 1.07

GPS 302 16976671 1018.9 79 1 265 0.21

thread 4444880 29736 — 29339 177235110 — — 29736 835 —

ECMT-GL 3804 51720915 42.5 28 1 110 5.49

GPS 3521 45119385 387.3 75 1 132 1.61

cant instance. Table 1 also shows that in general the number of ICCGM itera-
tions was the same when using the ECMT-GL heuristic and GPS algorithm [6].
The number of ICCGM iterations was smaller using the ECMT-GL (GPS [6])
heuristic than using the GPS (ECMT-GL) algorithm when applied to the ther-
momech TK (Pres Poisson) instance. Nevertheless, the most important issue in
this context is to reduce the execution time of the ICCG method. Specifically,
if high cache hit rates are achieved, a large number of CGM iterations can be
executed faster than a smaller number of iterations with high cache miss rates.
In this scenario, Table 1 [see column ICCG:t(s)] shows lower processing times
of the ICCG method in simulations in conjunction with the GPS algorithm [6]
than in conjunction with the ECMT-GL heuristic only when applied to the ther-
momech TK and msc23052 instances. In particular, column t(s) in Table 1 and
Fig. 1(a) show that the execution costs of the ECMT-GL heuristic are lower than
the GPS algorithm [6]. Figure 1(b) shows that the storage costs of the ECMT-
GL heuristic is similar to the GPS algorithm [6]. Moreover, both reordering
algorithms shows linear expected memory requirements, but the hidden con-

422 S. L. Gonzaga de Oliveira et al.

Fig. 1. Running times and memory requirements of heuristics for bandwidth and pro-
file reductions when applied to nine instances contained in the SuiteSparse matrix
collection [3].

stant in the GPS algorithm [6] is slightly smaller than the hidden constant in
the ECMT-GL heuristic.

Fig. 2. Bandwidth and profile reductions (in percentage) obtained by the ECMT-
GL and GPS [6] heuristics when applied to nine instances contained in the SSM
collection [3].

Although the GPS algorithm [6] obtains in general better bandwidth and
profile results, low execution times of the ECMT-GL heuristic pay off in reduc-
ing the running time of the ICCG method. Specifically, the ECMT-GL heuristic
obtained better results (related to speedup of the ICCG method) than the GPS
ordering [6] in all experiments, including when using the thermomech TK and
msc23052 instances (at least when considering that only a single linear system
is to be solved). As mentioned, the reason for this is that the ECMT-GL heuris-
tic achieved similar performance to the GPS algorithm [6] at lower execution
times than the GPS algorithm [6]. Specifically in the simulation using the ther-
momech TK and msc23052 instances (situation which could also happen in the
cases of solving linear systems composed of multiple right hand side vectors and
in transient FEM analysis in which linear systems are solved multiple times), the
initial cost for reordering can be amortized in the iterative solution steps. In this
scenario, a reordering scheme can be beneficial if it presents a reasonable cost
(time and memory usage) and can reduce the runtime of the linear system solver
at a higher level (such as in the case of the GPS algorithm [6] when applied to
the thermomech TK and msc23052 instances).

Table 1 and Fig. 3 show the average results from the use of the ICCG method
applied to nine instances taken from the SSM collection [3]. The ECMT-GL

A Modified Bandwidth Reduction Heuristic 423

heuristic improved significantly the performance of the ICCG method when
applied to the msc23052, msc10848, ct20stif, and thread instances. Table 1 and
Figs. 1(a) and 3 show that on average the new ECMT-GL heuristic outpaced
the GPS algorithm in terms of output quality (regarding to the speedup of the
ICCG method) and running time in the simulations performed. Column % in
Table 1 shows that the execution time of a heuristic for bandwidth reduction
can be roughly the same order of magnitude as the ICCG computation (e.g.
see results concerning the msc10848 instance). Setting a lower precision to the
CG method can let the reordering time more evident. Therefore, it is useful to
parallelize the reordering and this is a next step in this work.

Fig. 3. Speed-ups of the ICCG method resulted when using heuristics for bandwidth
and profile reductions applied to nine instances contained in the SSM collection [3].

4 Conclusions

This paper proposes a new approach to the Wonder Bandwidth Reduction Algo-
rithm (WBRA) [4] based on the George-Liu algorithm [5] for matrix bandwidth
reduction. This variant of the WBRA was termed ECMT-GL heuristic. Specifi-
cally, our approach employs a pseudo-peripheral vertex selected by the George-
Liu algorithm [5] in the first step of WBRA. The results of the implementations
of the WBRA [4] and GPS algorithm [6] described in this paper confirm their
merit in accordance with the findings presented in the current literature, i.e.,
Table 1 and Fig. 2 show that these algorithms reduce the bandwidth and pro-
file substantially. Specifically, the heuristics for bandwidth reductions evaluated
in this computational experiment can enhance locality in accessing data and
enable column (profile) information compression. Moreover, numerical experi-
ments showed that the heuristic for bandwidth reduction proposed here provides
further worthwhile gains when compared with the original WBRA [4] and GPS
algorithm [6]. Nine model problems taken from the SuiteSparse matrix collection
[3] were used to examine the efficiency of the proposed algorithm. These model
problems are solved with the conjugate gradient method in conjunction with the
zero-fill incomplete Cholesky preconditioner.

The performance of the proposed algorithm was compared with the original
WBRA [4]. The new heuristic uses less memory and has advantageous perfor-
mance properties in relation to the original algorithm. Thus, the modification in

424 S. L. Gonzaga de Oliveira et al.

the WBRA proposed here reduces the amount of time and memory required by
the algorithm to a considerable extent.

The results of the ECMT-GL heuristic were also compared with the results
of the well-known GPS algorithm [6]. In experiments using nine instances (with
some of them comprised of more than 4,000,000 non-null coefficients), the
ECMT-GL heuristic performed best in reducing the computational cost of the
ICCG method. We conclude that a high-cost heuristic for bandwidth reduc-
tion based on rooted level structures can be improved by starting the algorithm
with a single vertex carefully chosen by a pseudoperipheral vertex finder (such
as the George-Liu algorithm [5]). Although the original high-cost heuristic will
probably yield better bandwidth results for exploring a larger domain space,
low execution and storage costs of the new heuristic will pay off in reducing
the execution costs of linear system solvers. This makes it possible to improve
a number of heuristics developed in this field [1,7–9]. We plan to investigate
parallel approaches of these algorithms and compare them along with algebraic
multigrid methods in future studies.

References

1. Bernardes, J.A.B., Gonzaga de Oliveira, S.L.: A systematic review of heuristics for
profile reduction of symmetric matrices. Procedia Comput. Sci. 51, 221–230 (2015)

2. Chagas, G.O., Gonzaga de Oliveira, S.L.: Metaheuristic-based heuristics for
symmetric-matrix bandwidth reduction: a systematic review. Procedia Comput.
Sci. 51, 211–220 (2015)

3. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Software 38(1), 1–25 (2011)

4. Esposito, A., Catalano, M.S.F., Malucelli, F., Tarricone, L.: A new matrix band-
width reduction algorithm. Oper. Res. Lett. 23, 99–107 (1998)

5. George, A., Liu, J.W.H.: An implementation of a pseudoperipheral node finder.
ACM Trans. Math. Software 5(3), 284–295 (1979)

6. Gibbs, N.E., Poole, W.G., Stockmeyer, P.K.: An algorithm for reducing the band-
width and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 236–250 (1976)

7. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of low-
cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math.
37(2), 1412–1471 (2018). https://doi.org/10.1007/s40314-016-0394-9

8. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of
reordering algorithms to reduce the computational cost of the incomplete Cholesky-
conjugate gradient method. Comput. Appl. Math. (2017). https://doi.org/10.1007/
s40314-017-0490-5

9. Gonzaga de Oliveira, S.L., Chagas, G.O.: A systematic review of heuristics for
symmetric-matrix bandwidth reduction: methods not based on metaheuristics. In:
Proceedings of the Brazilian Symposium on Operations Research (SBPO 2015),
Sobrapo, Ipojuca, Brazil (2015)

10. Lin, Y.X., Yuan, J.J.: Profile minimization problem for matrices and graphs. Acta
Mathematicae Applicatae Sinica 10(1), 107–122 (1994)

11. Papadimitriou, C.H.: The NP-completeness of bandwidth minimization problem.
Comput. J. 16, 177–192 (1976)

https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1007/s40314-017-0490-5
https://doi.org/10.1007/s40314-017-0490-5

	A Modified Bandwidth Reduction Heuristic Based on the WBRA and George-Liu Algorithm
	1 Introduction
	2 An Improved Vertex Labeling Heuristic
	2.1 The WBRA
	2.2 An Improved Heuristic for Bandwidth Reduction

	3 Results and Analysis
	4 Conclusions
	References

