
Guiding the Optimization of Parallel
Codes on Multicores Using an Analytical

Cache Model

Diego Andrade(B), Basilio B. Fraguela, and Ramón Doallo

Universidade da Coruña, A Coruña, Spain
{diego.andrade,basilio.fraguela,ramon.doalllo}@udc.es

Abstract. Cache performance is particularly hard to predict in modern
multicore processors as several threads can be concurrently in execu-
tion, and private cache levels are combined with shared ones. This paper
presents an analytical model able to evaluate the cache performance of
the whole cache hierarchy for parallel applications in less than one sec-
ond taking as input their source code and the cache configuration. While
the model does not tackle some advanced hardware features, it can help
optimizers to make reasonably good decisions in a very short time. This
is supported by an evaluation based on two modern architectures and
three different case studies, in which the model predictions differ on
average just 5.05% from the results of a detailed hardware simulator and
correctly guide different optimization decisions.

1 Introduction

Modern multicore processors, which can execute parallel codes, have complex
cache hierarchies that typically combine up to three private and shared levels [2].
There is a vast bibliography on the subject of improving the cache performance
of modern multicore systems. Several works have addressed this problem from
the energy consumption perspective [6,9]. Other works try to enhance the cache
performance in order to improve the overall performance of the system [3,5,8].

The Parallel Probabilistic Miss Equations (ParPME) model, introduced
in [1], can estimate the cache performance during the execution of both par-
allelized and serial loops. In the case of parallelized loops, this model can only
estimate the performance of caches that are shared by all the threads that exe-
cute the loop. This paper presents the ParPME+ model, an extension of the
ParPME model to predict the effect of parallelized loops on private caches as
well as in caches shared by an arbitrary number of threads, this ability enables
the possibility to model the whole cache hierarchy of a multicore processor.
The evaluation shows that the predictions of our model match the performance
observed in a simulator, and that it can be an useful tool to guide an iterative
optimization process.

The rest of this paper is structured as follows. First, Sect. 2 reviews the
existing ParPME model and Sect. 3 describes the ParPME+ model presented
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 387–394, 2018.
https://doi.org/10.1007/978-3-319-93713-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_32&domain=pdf

388 D. Andrade et al.

in this paper. Then, Sect. 4 is devoted to the experimental results and finally
Sect. 5 presents our conclusions and future work.

2 The Parallel PME Model

The Parallel Probabilistic Miss Equations Model [1] (ParPME) is an extension of
the PME model [4] that can predict the behavior of caches during the executions
of both parallelized and sequential codes. The scope of application of this model
is limited to regular codes where references are indexed using affine functions.
The inputs of the ParPME model are the Abstract Syntax Tree (AST) of the
source code and a cache configuration. The replacement policy is assumed to be
a perfect LRU. This model is built around three main concepts: (1) A Proba-
bilistic Miss Equation (PME) predicts the number of misses generated by
a given reference within a given loop nesting level. (2) The reuse distance is
the number of iterations of the currently analyzed loop between two consecutive
accesses to the same cache line. (3) The miss probability is the probability of
an attempt to reuse a cache line associated to a given reuse distance.

Depending on whether the studied reference is affected by a parallelized loop
in the current nesting level, the model uses a different kind of PME. The PME
for non-parallelized loops, introduced in [4], is valid for both private and shared
caches as in both cases all the iterations of the loop are executed by one thread
and the corresponding cache lines are loaded in the same cache, no matter if the
cache is private to each core or shared among several cores.

The modeling of parallelized loop is much more challenging, as the iterations
of this kind of loops are distributed among several threads. In this case, each
cache stores the cache lines loaded by the threads that share that cache and one
thread can reuse lines loaded previously by the same thread (intra-thread reuse)
or a different one (inter-thread reuse). The new PME introduced in the ParPME
model [1] only covers the situation where a cache is shared among all the threads
involved in the computation. However, current architectures include both private
and shared caches. Moreover, many systems include several multicore processors,
and thus even if the last level cache of each processor is shared by all its cores,
when all the cores in the system cooperate in the parallel execution of a code,
each cache is only shared by a subset of the threads.

3 The ParPME Plus Model

This section introduces the main contribution of this paper, the ParPME Plus
(ParPME+) model, which extends the existing ParPME model to enable the
modeling of all the levels of a multicore cache hierarchy, including both the shared
and private ones. Rather than adding more types of PMEs and extending the
method to calculate the miss probability, our approach relies on transforming the
source code to analyze in order to emulate the behavior of the threads that share
a given cache level. Then, the transformed code is analyzed using the original
ParPME model.

Guiding the Optimization of Parallel Codes Using the ParPME+ Model 389

. . .
#pragma omp for schedu le (static , b i)
for (i =0; i<Mi ; i++)

. . .
array [. . .] [i ∗k] [. . .] ;
. . .

. . .
#pragma omp for schedu le (static , 1)
for (i 1 =0; i1<t s i ; i 1++)

for (i 2 =0; i2<Mi/(t i ∗ bi) ; i 2++)
for (i 3 =0; i<bi ; i 3++)

. . .
array [. . .] [i 2] [i 1] [i 3 ∗k] [. . .] ;
. . .

Fig. 1. Generic transformation to model cache shared among a subset of threads. Orig-
inal code (top) and transformed code (bottom)

Figure 1, shows the general form of the aforementioned transformation. The
top part of the figure shows the original loop, and the bottom part shows the
transformed one that is associated to the representation used to analyze the
behavior of a cache shared by a subset of tsi threads. The index variable of
the parallel loop that is being modeled can be used in the indexing functions
of one or more dimensions of one or several data structures. The first step of
the transformation eases the identification of which parts of a data structure are
referenced by the iterations assigned to a subset of the threads that share the
cache. With this purpose, each dimension of an array that is indexed by the index
variable of a parallelized loop i multiplied by a constant value k is split into three
dimensions. If the split dimension has size Ni, the three resulting dimensions,
defined from the most to the least significant one, have sizes Ni/(ti × bi × k),
ti and bi × k respectively, ti being the number of threads among which the
iterations of loop i are distributed and bi is the block size used to distribute
the iterations of the loop among the threads. Since the product of the sizes of
these three new dimensions is equal to the size of the original dimension, this
modification changes the way the data structure is indexed but not its size or
layout. In the case that Ni is not divisible by ti × bi × k, the most significant
dimension must be rounded up to �Ni/(ti × bi × k)�, slightly increasing the size
of the data structure by up to ti × bi − 1 × k elements. For big values of Ni this
will not affect significantly the accuracy of the predictions.

The second step of the transformation modifies the parallel loops so that (a)
indexing functions can be generated for all the new dimensions defined and (b)
such indexings give place to access patterns identical to those of the original
code in the considered cache. For this latter purpose the transformation of each
parallel loop i must take into account a new parameter, tsi, which is the number
of threads that share the cache that is being modeled at this point out of the ti

390 D. Andrade et al.

threads that participate in the parallelization of the loop. This transformation
replaces each considered parallelized loop i of Mi iterations with three different
consecutively nested ones of tsi, Mi/(ti×bi) and bi iterations respectively, where
the first one is the outermost one and the last one the innermost one. Out of
them, only the outermost one is parallel, being each one of its tsi iterations
executed in parallel by a different thread, while the two inner ones are executed
sequentially by the same thread. This transformation also implies using the loop
indexes of these loops for indexing the new dimensions defined in the first step.
The mapping is always the same. Namely, the most significant dimension is
indexed by the index of the middle loop, the next dimension is indexed by the
index of the outermost (and parallel) loop, and the least significant dimension
is indexed by the innermost loop.

The new code, or actually, its new representation, is almost equivalent to the
original, replicating the same access patterns and work distribution, with a single
critical difference. Namely, it only covers the iterations assigned to the subset of
tsi threads of interest, i.e. the ones that share the cache we want to model at
this point, instead of all the ti threads. Notice that this strategy assumes that
if several threads share a cache, then they get consecutive chunks of the loop to
parallelize. While this may not be always the case, this is a common and very
desirable situation, as this tends to increase the potential cache reuse and reduce
the overheads in case of false sharing. In those situations in which these benefits
do not hold, for example when there is no possible reuse between the data used
by different threads, the assumption is irrelevant, as the cache behavior should
be the same no matter the sharing threads get consecutive chunks of the loop
or not.

4 Experimental Results

The model has been validated on two Intel platforms with very different fea-
tures: a i7-4790 (with 4 physical cores), and a Xeon 2699 v4 (with 22 cores). The
experiments try to prove that the model can accurately predict the cache per-
formance of codes on real cache hierarchies, and that it can guide cache memory
optimizations. With this purpose, we have built our experiments around three
case studies: (1) The loop fision technique is applied to a code (2) The loop
fusion technique is applied to a code. (3) A matrix multiplication implemented
using the 6 possible loop orders (ikj, ijk, jik, jki, kij, kji).

The ParPME+ model is used to predict the number of misses generated
by these codes in the different levels of the cache hierarchy. These predictions
are used to calculate the memory cost (MemCost) associated to the execution
of each given code, that is, the number of cycles it spends due to the cache
hierarchy. This calculation has been made using the same approach followed
in [3]. The predictions of the model have been compared to the observations
made in the SESC cycle-accurate simulator [7] in order to assess their accuracy.
The difference between both values is expressed as a relative percentage The
average difference across all the experiments is just 5.05%, the accuracy thus

Guiding the Optimization of Parallel Codes Using the ParPME+ Model 391

being remarkable, from the 0.2% obtained for the fusion benchmarks in the
Intel i7, to the 11.6% obtained for the fision benchmark in the same platform.

Fig. 2. Results for fision

As a second step, the optimization choices made by the model are compared
to those made using the guidance of the actual execution time. Figure 2 summa-
rizes the results for the fision. The figure is composed of two columns with two
graphs each. Each column represents the results for one of the two platforms. The
number of threads used for the experiments is equal to the number of physical
cores available in each platform. We have made sure that each thread is mapped
to a different physical core using the affinity feature of OpenMP 4.0. The iter-
ations of the parallel loop have been distributed cyclically among the threads
in chunks of 16 iterations. This chunk size has been used in all the experiments
of this section. The top graph in each column shows the memory performance
predicted by the model for the versions without fision (fisionorig) and with fision
(fisionopt) for different problem sizes. The bottom graph of each column make
the same comparison using the average execution times of ten executions. These
times and the model predictions lead to the same conclusion, this optimization
is successful in both the i7 and the Xeon.

The results for the fusion case study are shown in Fig. 3, which has the same
structure as Fig. 2. In this case, the model also leads to the right decision, which
is to apply the optimization in all the platforms and for all the problem sizes.

392 D. Andrade et al.

Fig. 3. Results for fusion

Fig. 4. Results for matmul

Guiding the Optimization of Parallel Codes Using the ParPME+ Model 393

The results for the matrix multiplication case study are shown in Fig. 4.
In this case, we have to decide the best loop ordering to perform the matrix
multiplication. The outermost i or j loop is the one parallelized. The results have
the same structure as in the previous cases. According to the actual execution
time, the ikj and kij ordering are the best ones, and this decision is accurately
taken using the model.

All the predictions of our model have been obtained in less than one second
no matter the problem size. However, the execution of the real codes or the
simulator took quite longer for the larger problem sizes, ranging from the 3
times longer of padding in the Intel i7, to the 30 times longer of matmul in the
Intel Xeon 2680. This is a crucial characteristic of our model, as we can evaluate
several optimization choices in a fraction of the time required to execute the real
codes.

5 Conclusions

This paper explores the possibility of using an analytical model of the cache
behavior to guide compiler optimizations on parallel codes run on real multicore
systems. The existing ParPME model introduced in [1], supported caches shared
by all the threads participating in the parallelization. Nevertheless, several archi-
tectures present caches that are private to one threads or shared by a subset of
the cores/threads participating in the execution of a parallel application. For
this reason, a first contribution in this paper, leading to the ParPME+ model,
has been the development of a procedure which, by changing the representation
of the code to analyze inside the model, allows it to also accurately predict the
behavior of this kind of caches. As a result, the model can now analyze the behav-
ior of the complete cache hierarchy of a multicore multiprocessor computer. Our
experiments using three case studies and two architectures show that the model
is a good guide to choose the most cache friendly optimization choice. This is
not surprising, as the predictions of our model only differ by 5.05% on average
from the observations of a cycle-accurate simulator. In addition, the model can
provide its predictions in less than a second.

In the future, the model can be extended to model any of the missing hard-
ware features present in some processors. It would also interesting to complement
it with a CPU model.

Acknowledgment. This research was supported by the Ministry of Economy and
Competitiveness of Spain and FEDER funds (80%) of the EU (TIN2016-75845-P),
and by the Government of Galicia (Xunta de Galicia) co-founded by the European
Regional Development Fund (ERDF) under the Consolidation Programme of Compet-
itive Reference Groups (ED431C 2017/04) as well as under the Centro Singular de
Investigación de Galicia accreditation 2016-2019 (ED431G/01). We also acknowledge
the Centro de Supercomputación de Galicia (CESGA) for the use of their computers.

394 D. Andrade et al.

References

1. Andrade, D., Fraguela, B.B., Doallo, R.: Accurate prediction of the behavior of
multithreaded applications in shared caches. Parallel Comput. 39(1), 36–57 (2013)

2. Balasubramonian, R., Jouppi, N.P., Muralimanohar, N.: Multi-Core Cache Hierar-
chies. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers,
San Rafael (2011)

3. Fraguela, B.B., Carmueja, M.G., Andrade, D.: Optimal tile size selection guided
by analytical models. In: Proceedings of Parallel Computing, vol. 33, pp. 565–572
(2005). publication Series of the John von Neumann Institute for Computing (NIC)

4. Fraguela, B.B., Doallo, R., Zapata, E.L.: Probabilistic miss equations: evaluating
memory hierarchy performance. IEEE Trans. Comput. 52(3), 321–336 (2003)

5. Ramos, S., Hoefler, T.: Modeling communication in cache-coherent SMP systems: a
case-study with xeon phi. In: 22nd International Symposium on High-Performance
Parallel and Distributed Computing, pp. 97–108. ACM (2013)

6. Rawlins, M., Gordon-Ross, A.: A cache tuning heuristic for multicore architectures.
IEEE Trans. Comput. 62(8), 1570–1583 (2013)

7. Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi, S., Sack,
P., Strauss, K., Montesinos, P.: SESC simulator, January 2005

8. Schuff, D.L., Kulkarni, M., Pai, V.S.: Accelerating multicore reuse distance analysis
with sampling and parallelization. In: 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT 2010, pp. 53–64. ACM, New York
(2010)

9. Zang, W., Gordon-Ross, A.: A survey on cache tuning from a power/energy per-
spective. ACM Comput. Surv. (CSUR) 45(3), 32 (2013)

	Guiding the Optimization of Parallel Codes on Multicores Using an Analytical Cache Model
	1 Introduction
	2 The Parallel PME Model
	3 The ParPME Plus Model
	4 Experimental Results
	5 Conclusions
	References

