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Abstract. In this paper we present the concept of modeling and solving
uncertainly defined boundary value problems described by 2D Laplace’s
equation. We define uncertainty of input data (shape of boundary and
boundary conditions) using interval numbers. Uncertainty can be con-
sidered separately for selected or simultaneously for all input data. We
propose interval parametric integral equations system (IPIES) to solve
so-define problems. We obtain IPIES in result of PIES modification,
which was previously proposed for precisely (exactly) defined problems.
For this purpose we have to include uncertainly defined input data into
mathematical formalism of PIES. We use pseudo-spectral method for
numerical solving of IPIES and propose modification of directed inter-
val arithmetic to obtain interval solutions. We present the strategy on
examples of potential problems. To verify correctness of the method, we
compare obtained interval solutions with analytical ones. For this pur-
pose, we obtain interval analytical solutions using classical and directed
interval arithmetic.
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1 Introduction

Classical definition of boundary problems assumes that the shape of the bound-
ary and boundary conditions are precisely (exactly) defined. This is an idealized
way. In practice we can obtain measurement errors, for example. The Measure-
ment Theory is widely presented in [1]. Additionally, even differential equations
(used to define physical phenomena mathematically) do not model all of the
phenomena properties. Therefore, the differential equations, as well as shape of
boundary and boundary condition, do not model the phenomenon accurately.
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Nevertheless, the methods of solving so-define problems are still being developed.
In the most popular techniques the domain or boundary is divided into small
parts (elements). On these elements some interpolation functions are defined.
Next, to obtain solutions for whole problem, the complex calculations (on so-
define numerical model) were carried out.

Above mentioned strategy is used in finite element method (FEM) [2] and in
boundary element method (BEM) [3]. The basic problem of such strategy is to
ensure proper class of continuity of interpolation functions in points of segment
join. However, these methods do not consider the uncertainty of problems. It is
impossible to use these methods directly for solving uncertainly defined prob-
lems. There is no option to define the uncertainty using traditional mathematical
apparatus.

Recently, there is growing number of well known techniques modifications for
solving boundary value problems, which use different ways of uncertainty mod-
eling. For example, interval numbers and its arithmetic [4] or fuzzy set theory [5]
can be used. In element methods, their development in the form of interval FEM
[6] and interval BEM [7] appeared. Unfortunately they inherit disadvantages of
classical methods (used with precisely defined boundary value problems), which
definitely affect the effectiveness of their application. Description of the boundary
shape uncertainty is very troublesome because of discretization process. More-
over, in classical boundary integral equations (BIE), the Lyapunov condition for
the shape of boundary should be met [8] and appropriate class of continuity
in points of elements join should be ensured. It is significantly troublesome for
uncertainly defined boundary value problems.

Contrary to traditional boundary integral equations (BIE), we separate
approximation of the boundary shape from the boundary function in parametric
integral equations system (PIES). Therefore, we decided to use this method in
uncertainly modelled problems. Recently PIES was successfully used for solving
boundary value problems defined in precise way [9,10]. PIES was obtained as a
result of analytical modification of traditional BIE. The main advantage of PIES
is that the shape of boundary is included directly into BIE. The shape could be
modeled by curves (used in graphics). Therefore, we can obtain any continu-
ous shape of boundary (using curves control points) directly in PIES. In other
words, PIES is automatically adapted to the modified shape of boundary. It sig-
nificantly improves the way of modeling and solving problems. This advantage
is particularly visible in modeling uncertainly defined shape of boundary.

In this paper, for modeling uncertainly defined potential problems (defined
using two-dimensional Laplace’s equation) we proposed interval parametric inte-
gral equations system (IPIES). We obtain IPIES as a result of PIES modification.
We include directed interval arithmetic into mathematical formalism of PIES
and verify reliability of proposed mathematical apparatus based on examples. It
turned out that obtained solutions are different for the same shape of boundary
defined in different location in coordinate system. Therefore, to obtain reliable
solutions using IPIES, we have to modify applied directed interval arithmetic.
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2 Concept of Classical and Directed Interval Arithmetic

Classical interval number x is the set of all real numbers x satisfying the condi-
tion [4,12]:

x = [x, x] = {x ∈ R|x ≤ x ≤ x}, (1)

where x - is infimum and x - is supremum of interval number x. Such numbers are
also called as proper interval numbers. In order to perform calculations on these
numbers, the interval arithmetic was developed and generally it was defined as
follows [4]:

x◦y = [x, x]◦[y, y] = [min(x◦y, x◦y, x◦y, x◦y),max(x◦y, x◦y, x◦y, x◦y)], (2)

where ◦ ∈ {+,−, ·, /} and in division 0 /∈ y.
The development of different methods of classical interval number applica-

tions [13,14] resulted in the detection of some disadvantages of this kind of
representation. For example, it is impossible to obtain opposite and inverse ele-
ment of such numbers. Therefore in the literature, the extension of intervals
by improper numbers was appeared. Such extension was called as directed (or
extended) interval numbers [15].

Directed interval number x is the set of all ordered real numbers x satisfying
the conditions:

x = [x, x] = {x ∈ x|x, x ∈ R}. (3)

Interval number x is proper if x < x, degenerate if x = x and improper if x >
x. The set of proper interval numbers is denoted by IR, of degenerated numbers
by R and improper numbers by IR. Additionally directed interval arithmetic was
extended by new subtraction (�) and division (�) operators:

x � y = [x − y, x − y], (4)

x � y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x/y, x/y] for x > 0, y > 0
[x/y, x/y] for x < 0, y < 0
[x/y, x/y] for x > 0, y < 0
[x/y, x/y] for x < 0, y > 0
[x/y, x/y] for x � 0, y < 0
[x/y, x/y] for x � 0, y > 0

. (5)

Such operators allow us to obtain an opposite element (0 = x � x) and inverse
element (1 = x � x). Therefore, it turned out, that direct application of both
classical and directed interval arithmetic in modeling the shape of boundary
failed. Hence, we try to interpolate the boundary by boundary points using
directed interval arithmetic. We define the same shape of boundary in each
quarter of coordinate system and, as a result of interpolation, we obtain different
shapes of boundary depending on place of its location. Therefore, we propose
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modification of directed interval arithmetic, where all of arithmetic operations
are mapped into positive semi-axis:

x · y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xs · ys − xs · ym − xm · ys + xm · ym for x ≤ 0,y ≤ 0
xs · y − xm · y for x > 0,y ≤ 0
x · ys − x · ym for x ≤ 0,y > 0
x · y for x > 0,y > 0

, (6)

where for any interval number x = [x, x] we define xm =

{
|x| for x > x

|x| for x < x
and

xs = x + xm, where x > 0 means x > 0 and x > 0, x ≤ 0 means x < 0 or x < 0
and (·) is an interval multiplication. Finally, application of so-defined modifica-
tion allow us to obtain the same shapes of boundary independently from the
location in coordinate system.

3 Interval Parametric Integral Equations System (IPIES)

PIES for precisely defined problems was applied in [9,10,16]. It is an analytical
modification of boundary integral equations. Defining uncertainty of input data
by interval numbers, we can present interval form of PIES:

0.5ul(s1) =
n∑

j=1

ŝj∫

ŝj−1

{
U∗

lj(s1, s)pj(s) − P ∗
lj(s1, s)uj(s)

}
Jj(s)ds, (7)

where ŝl−1 ≤ s1 ≤ ŝl, ŝj−1 ≤ s ≤ ŝj , then ŝl−1, ŝj−1 correspond to the beginning
of l-th and j-th segment, while ŝl, ŝj to their ends. Function:

Jj(s) =
[(∂Sj

(1)(s)
∂s

)2

+
(∂Sj

(2)(s)
∂s

)2]0.5
(8)

is the Jacobian for segment of interval curve Sj = [S(1)
j ,S

(2)
j ] marked by index

j, where Sj
(1)(s) = [S(1)

j (s), S
(1)

j (s)], Sj
(2)(s) = [S(2)

j (s), S
(2)

j (s)] are scalar com-
ponents of vector curve Sj and depending on parameter s.

Integral functions pj(s) = [p
j
(s), pj(s)],uj(s) = [uj(s), uj(s)] are interval

parametric boundary functions on corresponding interval segments of boundary
Sj (on which the boundary was theoretically divided). One of these functions
will be defined by interval boundary conditions on segment Sj , then the other
one will be searched as a result of numerical solution of IPIES (7).

Interval integrands (kernels) U∗
lj and P ∗

lj are presented in the following form:

U∗
lj(s1, s) =

1
2π

ln
1

[η2
1 + η2

2 ]0.5
, P ∗

lj(s1, s) =
1
2π

η1n1(s) + η2n2(s)
η2
1 + η2

2

, (9)
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where η1 = η1(s1, s) and η2 = η2(s1, s) are defined as:

η1(s1, s) = S
(1)
l (s1) − S

(1)
j (s), η2(s1, s) = S

(2)
l (s1) − S

(2)
j (s), (10)

where segments Sl,Sj can be defined by interval curves such as: Bézier, B-
spline or Hermite, n1(s),n2(s) are the interval components of normal vector
nj to boundary segment j. Kernels (9) analytically include in its mathematical
formalism the shape of boundary. It is defined by dependencies between interval
segments Sl,Sj , where l, j = 1, 2, 3, ..., n. We require only a small number of
control points to define or modify the shape of curves (created by segments).
Additionally, the boundary of the problem is a closed curve and the continuity
of C2 class is easily ensured in points of segments join.

The advantages of precisely defined PIES are more visible in modeling uncer-
tainty of boundary value problem. Inclusion of uncertainly defined shape of the
boundary directly in kernels (9) by interval curves is the main advantage of
IPIES. Numerical solution of PIES do not require the classical boundary dis-
cretization, contrary to the traditional BIE. This advantage in modeling uncer-
tainty of the boundary shape significantly reduces amount of interval input data.
Therefore the overestimation is also reduced. Additionally, the boundary in PIES
is analytically defined by interval curves. That ensure the continuity in points
of segments join.

3.1 Interval Integral Identity for Solutions in Domain

Solving interval PIES (7) we can obtain only solutions on boundary. We have
to define integral identity using interval numbers, to obtain solutions in domain.
Finally, we can present it as follows:

u(x) =
n∑

j=1

ŝj∫

ŝj−1

{
Û∗

j (x, s)pj(s) − P̂ ∗
j (x, s)uj(s)

}
Jj(s)ds, (11)

it is right for x = [x1, x2] ∈ Ω.
Interval integrands Û∗

j (x, s) and P̂ ∗
j (x, s) are presented below:

Û∗
j (x, s) =

1
2π

ln
1

[←→r1
2 + ←→r2

2]0.5
, P̂ ∗

j (x, s) =
1
2π

←→r1 n1(s) + ←→r2 n2(s)←→r1
2 + ←→r2

2
, (12)

where ←→r1 = x1 − S
(1)
j (s) and ←→r2 = x2 − S

(2)
j (s).

Interval shape of boundary is included in (12) by expressions: ←→r1 and ←→r2

that are defined by boundary segments, uncertainly modeled by interval curves
Sj(s) = [S(1)

j (s),S(2)
j (s)].
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4 Interval Approximation of Boundary Functions

Interval boundary functions uj(s), pj(s) are approximated by interval approxi-
mation series presented as follows:

pj(s) =
M−1∑

k=0

p
(k)
j f

(k)
j (s), uj(s) =

M−1∑

k=0

u
(k)
j f

(k)
j (s) (j = 1, ..., n), (13)

where u
(k)
j ,p

(k)
j - are searched interval coefficients, M - is the number of terms

in the series (13) defined on segment j, fk
j (s) - are base functions defined in the

domain of segment. In numerical tests, we use the following polynomials as base
functions in IPIES:

f
(k)
j (s) =

{
P

(k)
j (s),H(k)

j (s), L(k)
j (s), T (k)

j (s)
}

, (14)

where P
(k)
j (s) - Legendre polynomials, H

(k)
j (s) - Hermite polynomials, L

(k)
j (s) -

Laguere polynomials, T
(k)
j (s) - Chebyshev polynomials of I kind.

In this paper we apply Lagrange interpolation polynomials. When the Dirich-
let (or Neumann) interval boundary conditions are defined as analytical function,
we can interpolate them by approximation series (14). In case of Dirichlet inter-
val boundary conditions the coefficients u

(k)
j are defined, while for Neumann

interval conditions p
(k)
j ones.

5 Verification of the Concept Reliability

We presented inclusion of the interval numbers and its arithmetic into PIES.
Next, we need to verify the strategy on examples to confirm the reliability of
IPIES. Firstly, we will test and analyze proposed strategy (application of modi-
fied directed interval arithmetic) on simple examples of boundary value problems
modeled by Laplace’s equation. Solutions obtained by IPIES will be compared
with analytical solutions. However, analytical solutions are known only for pre-
cisely defined problems. Therefore, we apply interval arithmetic to obtain analyt-
ical interval solutions. These solutions will be compared with solutions obtained
using IPIES.

5.1 Example 1 - Interval Linear Shape of Boundary and Interval
Boundary Conditions

We consider Laplace’s equation in triangular domain with interval shape of
boundary and boundary conditions. In Fig. 1 we present the uncertainly modeled
problem and the cross-section where solutions are searched. The shape is defined
by three interval points (P0,P1 i P2) with the band of uncertainty ε = 0.0667.

Interval Dirichlet boundary condition (precisely defined in [17]) are defined
as follows:

ϕ(x,y) = 0.5(x2 + y2). (15)
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Fig. 1. Example 1 - uncertainty of linear shape of boundary.

So-defined interval boundary condition is defined by interval shape coeffi-
cients (x = [x, x],y = [y, y]) and its uncertainty is caused by uncertainly defined
shape of boundary only. Solutions of so-defined problem with uncertainty are
obtained in cross-section (Fig. 1) and are presented in Table 1. W decided to
compare obtained interval solutions with analytical solution [17], which are pre-
sented, with uncertainly defined shape of boundary (interval parameter a), as
follow:

ϕ(x) =
x3 − 3xy2

2a
+

2a2

27
, (16)

where a = [a, a] define interval shape of boundary and the middle value of a
was marked as a on Fig. 1.

The analytical solution (defined by intervals) are obtained using interval num-
bers and their arithmetic. Analytical solutions obtained using classical as well
as directed interval arithmetic are compared with IPIES solutions and presented
in Table 1. We can notice, that obtained interval analytical solutions are very
close to the interval solutions of IPIES. However, classical interval arithmetic
solutions (in some points) are wider than in IPIES solutions.

Interval solutions obtained using IPIES are close to analytical solutions
obtained using directed interval arithmetic. It confirm reliability of an algo-
rithm. However, for more accurate analysis we decide to consider an example
with uncertainly defined curvilinear shape of boundary.
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Table 1. Interval solutions in domain.

Cross section Interval analytical solutions IPIES

x y Directed arithmetic Classical arithmetic Modified arithmetic

−0.4 0 [0.61264,0.700817] [0.611928,0.701529] [0.611936, 0.701502]

−0.1 0 [0.622802,0.711679] [0.622791,0.711691] [0.622783, 0.711675]

0.2 0 [0.624342,0.713142] [0.624253,0.713231] [0.624325, 0.713136]

0.5 0 [0.644515,0.732013] [0.643124,0.733404] [0.644492, 0.732014]

0.8 0 [0.711239,0.794432] [0.705544,0.800128] [0.711213, 0.794441]

1.1 0 [0.852446,0.926529] [0.83764,0.941335] [0.852411, 0.926579]

5.2 Example 2 - Interval Curvilinear Shape of Boundary
and Interval Boundary Conditions

In the next example we consider Laplace’s equation defined in elliptical domain.
In Fig. 2 we present the way of modeling of the domain with interval shape of
boundary. We defined the same width of the band of uncertainty ε = 0.1 on each
segment.

Fig. 2. Uncertainly defined shape of boundary.

The shape of boundary is modeled by interval NURBS curves of second
degree. Uncertainty was defined by interval points (P0 − P7). Interval Dirichlet
boundary condition is defined in the same way as in previous example:

u(x) = 0.5(x2 + y2) (17)

Analytical solution for precisely defined problem is presented in [17], therefore
it could be define as interval assuming, that the parameters a, b are intervals,
i.e.: a = [a, a] and b = [b, b]:

ua =
x2 + y2

2
− a2b2( x2

a2 + y2

b2 − 1)
a2 + b2

. (18)
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Interval solutions in domain of so-define problem with the interval shape of
boundary and interval boundary conditions are shown in the Fig. 3. Similarly
like in previous example, we obtain interval analytical solutions using classical
and directed interval arithmetic. As we can see in Fig. 3, the widest interval
is obtained using classical interval arithmetic. Directed interval arithmetic is
slightly shifted from IPIES solution, but with similar width.
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Fig. 3. Comparison between interval analytical solutions and IPIES.

6 Conclusion

In this paper we proposed the strategy of modeling and solving uncertainly
defined potential boundary value problems. We modeled uncertainty using inter-
val numbers and its arithmetic. The shape of boundary and boundary condi-
tions were defined as interval numbers. Solutions of so-defined problems are
obtained using modified parametric integral equations system. Such general-
ization includes the directed interval arithmetic into mathematical formalism
of PIES. Additionally, we had to modify mentioned arithmetic mapping all of
operations into positive semi-axis. Reliability of modeling and solving process
of the boundary problems using IPIES was verified on examples with analytical
solutions. Applying interval arithmetic to analytical solutions, well known for
precisely defined (non-interval) problems, we could easily obtain interval analyt-
ical solutions. We used such solutions to verify reliability of proposed algorithm
(based on obtained IPIES).
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14. Zieniuk, E., Kapturczak, M., Kużelewski, A.: Solving interval systems of equations
obtained during the numerical solution of boundary value problems. Comput. Appl.
Mathe. 35(2), 629–638 (2016)

15. Markov, S.M.: Extended interval arithmetic involving intervals. Mathe. Balkanica
6, 269–304 (1992). New Series

16. Zieniuk, E., Kapturczak, M., Sawicki, D.: The NURBS curves in modelling the
shape of the boundary in the parametric integral equations systems for solving the
Laplace equation. In: Simos, T., Tsitouras, Ch. (eds.) 13th International Confer-
ence of Numerical Analysis and Applied Mathematics ICNAAM 2015, AIP Con-
ference Proceedings, vol. 1738, 480100 (2016). https://doi.org/10.1063/1.4952336

17. Hromadka II, T.V.: The Complex Variable Boundary Element Method in Engi-
neering Analysis. Springer, New York (1987). https://doi.org/10.1007/978-1-4612-
4660-2

https://doi.org/10.1007/978-3-642-48860-3
https://doi.org/10.1007/978-3-642-48860-3
https://doi.org/10.1007/978-3-642-31464-3_12
https://doi.org/10.1007/978-3-642-31464-3_12
https://doi.org/10.1063/1.4952336
https://doi.org/10.1007/978-1-4612-4660-2
https://doi.org/10.1007/978-1-4612-4660-2

	Modification of Interval Arithmetic for Modelling and Solving Uncertainly Defined Problems by Interval Parametric Integral Equations System
	1 Introduction
	2 Concept of Classical and Directed Interval Arithmetic
	3 Interval Parametric Integral Equations System (IPIES)
	3.1 Interval Integral Identity for Solutions in Domain

	4 Interval Approximation of Boundary Functions
	5 Verification of the Concept Reliability
	5.1 Example 1 - Interval Linear Shape of Boundary and Interval Boundary Conditions
	5.2 Example 2 - Interval Curvilinear Shape of Boundary and Interval Boundary Conditions

	6 Conclusion
	References




