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Abstract. Forest fires are a significant problem that every year causes
important damages around the world. In order to efficiently tackle these
hazards, one can rely on forest fire spread simulators. Any forest fire
evolution model requires several input data parameters to describe the
scenario where the fire spread is taking place, however, this data is usu-
ally subjected to high levels of uncertainty. To reduce the impact of the
input-data uncertainty, different strategies have been developed during
the last years. One of these strategies consists of adjusting the input
parameters according to the observed evolution of the fire. This strat-
egy emphasizes how critical is the fact of counting on reliable and solid
metrics to assess the error of the computational forecasts. The aim of
this work is to assess eight different error functions applied to forest fires
spread simulation in order to understand their respective advantages and
drawbacks, as well as to determine in which cases they are beneficial or
not.
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1 Introduction

As it is known, forest fires are one of the most destructive natural hazards in
the Mediterranean countries because of their significant impact on the natural
environment, human beings and economy. For that reason, scientific community
has invested lots of efforts in developing forest fire propagation models and com-
putational tools that could help firefighter and civil protection to tackle those
phenomena in a smart way in terms of resources allocation, extinguish actions
and security. The quality results of these models depend not only on the prop-
agation equations describing the behaviour of the fire, but also on the input
data required to initialize the model. Typically, this data is subjected to a high
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degree of uncertainty and variability during the evolution of the event due to
the dynamic nature of some of them such as meteorological conditions or mois-
ture contents in the vegetation. Any strategy oriented to reduce this input data
uncertainty requires a quality measure of the results to determine the goodness
of the proposed strategy. Typically, on the forest fire spread prediction field, this
assessment relies on a fitness/error function that must evaluate how well the pre-
diction system reproduces the real behaviour of the fire. In order to speed up the
process of finding good estimations of certain input parameters, the prediction
systems tend to include a calibration stage prior to perform the forest fire spread
prediction (prediction stage) [4]. In particular, we focus on a well know two-stage
methodology, which is based on Genetic Algorithms (GA). In this scheme, the
calibration stage runs a GA to reduce input data uncertainty. To do that, the GA
generates an initial population (set of individuals) where each individual con-
sists of a particular configuration of the input parameters from which reducing
their uncertainty implies an improvement in terms of quality results. This initial
population will evolve using the so called genetic operators (elitism, mutation,
selection, crossover) to obtain an improved set of individuals that better repro-
duces the observed past behaviour of the fire. After several iterations of the GA,
the best individual will be selected to predict the near future (prediction stage).
A key point in all this process is the error function applied to determine the
prediction quality of each individual. This function drives the GA’s evolution
process, consequently, to establish an appropriate level of confidence in the way
that the error function is assessed is crucial in the system, [2].

The goal of this work is to study and test eight different error functions to
assess the simulation error in the case of forest fire spread prediction.

This paper is organized as follows. In Sect. 2 the data uncertainty problem
when dealing with forest fires spread prediction and how it can be minimize
with an appropriate error function selection is introduced. Section 3 details an
analysis of the different proposed functions to compute the simulation error.
Section 4 presents the experimental results and, finally, Sect. 5 summarizes the
main conclusions and future work.

2 Reducing Input Data Uncertainty

In order to minimize the uncertainty in the input data when dealing with forest
fire spread prediction, we focus on the Two-Stage prediction scheme [1]. The
main goal of this approach is to introduce an adjustment stage previous to the
prediction stage to better estimate certain input parameters according to the
observed behaviour of the forest fire. The main idea behind this strategy is
to extract relevant information from the recent past evolution of the fire that
could be used to reduce data uncertainty in the near future forecast. As it has
previously mentioned, this scheme relies on a GA. Each individual of the GA
population consists of a particular input parameter setting that will be fed into
the underlying forest fire spread simulator. In this work, the forest fire spread
simulator used is FARSITE [7], however, the methodology described would be
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reproduced for any other simulator. Each simulation generates a forest fire prop-
agation that must be compared to the real evolution of the fire. According to
the similarity in terms of shape and area among the simulated propagation and
the real fire behaviour, the corresponding input parameters set is scored with an
error value. Typically, low errors indicates that the provided forecast is closer
to the reality, meanwhile higher errors indicate certain degree of mismatching
between the two propagations.

There are several metrics to compare real and simulated values and each one
weighs the events involved differently, depending on the nature of the problem
[2]. In the forest fire spread case, the map of the area where the fire is taking
place is represented as a grid of cells. Each cell is labeled to know if it has
been burnt or not in both cases: the real propagation map and the simulated
fire spread map. Then, if one compare both maps cell by cell, we came up with
different possibilities: cells that were burnt in both the actual and simulated
spread (Hits), cells burnt in the simulated spread but not in the reality (False
Alarms), cells burnt in the reality but not in the simulated fire (Misses) and cells
that were not burnt in any case (Correct negatives) [6,8]. These four possibilities
are used to construct a 2 × 2 contingency table, as is shown in Fig. 1.

Fig. 1. Standard structure of a contingency table.

Nevertheless, at the time to put a prediction system into practice, it is impor-
tant to consider what a good forecast actually means, according to the underly-
ing phenomena we are dealing with, since there are many factors that models do
not take into account. In our case, when a fire is simulated, a free fire behavior
is considered, without including human intervention (firefighters). Under this
hypothesis, the simulations should overestimate the burnt area. For this reason,
when a simulation produces an underestimated perimeter (front of the fire), it
is considered a bad result. Because of this, we are interested in those error func-
tions that minimize the impact of False Alarms above the impact of Misses.
Let’s imagine two hypothetical forest fire spread predictions where the number
of FA in one of them is the same value that the number of Misses in the other
one. Under this assumption, we would expect that the error function provides a
lower error in the first case than in the second case.

In addition, for the particular case of forest fire spread forecast, the cells
labeled as correct negatives are ignored because the area of the map to be
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simulated may vary independently of the fire perimeter, so they may distort the
measurement of the error. In the following section, a description of the different
error functions analyzed in this work is done.

3 Error Function Description

We propose the analysis of eight different functions that are potential candidates
to be used as error metric in the Calibration Stage of a forest fire spread forecast
system. To study their strengths and lacks, we carried out a preliminary study
to artificially compute the error of each function depending on its Hits, False
Alarms and Misses. For this purpose, we consider a sample map with a number
of real burnt cells equal to 55 (RealCell = 55). A simple and intuitive, way to
test the behavior of a given error function consists of evaluating its value for
all configurations of Hits, Misses and False Alarms when their values varies
within the range [0 to 55]. With the computed errors we build a color map
representation where the behavior of the Error function with regard to the False
Alarms and the Misses is shown. On the right side of the color map, the legend
will show a color scale for the error function values where blue color represents
lowest errors, while red colour represents highest errors. In this section, we will
use the described color map to understand the behaviour of all described error
functions.

Our goal is to find an error function that grows faster as Misses increases
rather than doing so as False Alarms increase, that is, solid error function
candidates should present a faster variation along the Misses axis than along
the False Alarms axis.

To facilitate the data processing, the elements of the contingency table are
expressed in the context of difference between sets. The description of the con-
version of these metrics is showed in the Table 1. Using this notation, in the
subsequent sections, we shall describe different error functions that have been
deployed in the above described Calibration Stage, and the advantages and draw-
backs of each one are reported.

3.1 Bias Score or Frequency Bias (BIAS)

The BIAS score is the ratio of the number of correct forecasts to the number
of correct observations [8]. Equation 1 describes this error function. This metric
represents the normalized symmetric difference between the real map and the
simulated map.

BIAS =
Hits + FA

Hits + Misses
(1)

However, in the evolutionary process we focus on minimizing the ratio of the
frequency of the erroneous simulated events, so we rely on a slight variation
of the BIAS score. The same Error Function can be expressed in terms of the
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Table 1. Elements of the contingency table expressed in the context of difference
between sets.

RealCell Hits + Misses Cells burnt in real fire

SimCell Hits + FA Cells burnt in simulated fire

UCell Hits + Misses + FA Union of cells burnt in real fire and simulated one

ICell Hits Cells burnt in real fire and in simulated fire

difference between sets where the initial fire is considered a point and, therefore,
it can be removed from the equation. The obtained formula is shown in Eq. 2.

∈=
Misses + FA

Hits + Misses
=

UCell − ICell

RealCell
(2)

Fig. 2. Colour map representation of BIAS (Eq. 2).

In Fig. 2 the behaviour of the function 2 depending on False Alarms and
Misses is shown. As it can be seen, the computed error grows up slightly faster
in the False Alarms direction than in the Misses direction, this effect means
that Eq. 2 lightly penalizes False Alarms compared to Misses.

3.2 BIAS+False Alarm Rate (BIAS+FAR) (∈1)

This function is a combination of the previous formula (Eq. 2) and the False
Alarm Rate (FAR). The FAR measures the proportion of the wrong events fore-
cast (see Eq. 3).

FAR = FA/(Hits + FA) (3)

Since we are interested in penalizing those cases that underestimate the fore-
cast, ∈1 combines BIAS and FAR. Equation 4 shows this new Fitness Function
in terms of events and difference between cell sets.
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∈1 =
1
2

·
(

Misses + FA

Hits + Misses
+

FA

Hits + FA

)
(4)

=
1
2

·
(

UCell − ICell

RealCell
+

SimCell − ICell

SimCell

)

Fig. 3. Colour Map representation of BIAS+FAR (Eq. 4)

The behavior of this metric is shown in Fig. 3. As it can be seen, the variation
of the error is not lineal. The color map shows that while the blue part forms a
convex curve, the yellow zone of the map forms a concave curve. It means that,
while the amount of cells is low, the Eq. 4 penalizes more the Misses than the
False Alarms, whereas with a large number of cells it tends to provide higher
error for underestimated areas than for overestimated ones.

3.3 BIAS-False Alarm Rate (BIAS-FAR) (∈2)

The next Error Function is quite similar to the previous equation (Eq. 4), but in
this case the FAR is subtracted from the BIAS, as it is shown in the Eq. 5. As we
said, FAR measures the rate of False Alarms, so the overestimated simulations
have a high value of FAR. So, in this case, we subtract FAR from BIAS in order
to provide a better position for those simulations that provide overestimated
spread perimeters.

∈2 = 1
2 ·

(
Misses+FA
Hits+Misses − FA

Hits+FA

)
(5)

= 1
2 · (

UCell−ICell
RealCell − SimCell−ICell

SimCell

)
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The behavior of this metric is shown in Fig. 4. This figure shows that this
metric presents a not linear behavior. We are able to see how the blue zone (low
error) is bigger in the False Alarms axis than in the Misses one, it means that
BIAS-FAR penalizes much more the Misses than the False Alarms. Moreover,
a big green zone is present, where the computed error remains more or less
constant. Above this green zone, we can see that the error grows faster in the
False Alarms direction than in the Misses direction.

Fig. 4. Colour Map representation of BIAS-FAR (Eq. 5)

The main problem of this function is that for values around Misses = 55
and FalseAlarms = 10 (see Fig. 4), the error is lower than some simulations
with better fitness. So, we cannot be confident about this metric, since it could
cause that individuals with a better adjustment are discarded before individuals
with a worse adjustment.

3.4 FAR+Probability of Detection of Hit Rate (FAR+POD) (∈3)

The next Fitness Function used is a combination of Eq. 3 and the Probability
of Detection of hits rate (POD). The POD formula relates the observed events
and estimated positively with all ones, Eq. 6. It represents the probability of a
phenomenon being detected.

POD =
Hits

Hits + Misses
(6)

However, as it was mentioned, we focus on minimizing the ratio of the frequency
of the erroneous simulated events, so a slight variant of the POD is used, as
expressed in formula 7.

∈=
Misses

Hits + Misses
(7)



214 C. Carrillo et al.

The result of combining Eq. 7 with Eq. 3 is expressed in Eq. 8.

∈3 = 1
2 ·

(
Misses

Hits+Misses + FA
Hits+FA

)
(8)

= 1
2 · (

RealCell−Icell
RealCell + SimCell−ICell

SimCell

)

Fig. 5. Colour Map representation of FAR+POD (Eq. 8)

In Fig. 5, we can see that, while False Alarms are low, the error grows more
slowly in the Misses direction than when the amount of FalseAlarms is high.
In the same way, when the number of Misses is low, the error remains more or
less constant in the False Alarms direction, but when the amount of Misses
increases, the error grows up very fast in the False Alarms direction.

3.5 BIAS+Incorrectness Rate (BIAS+IR) (∈4)

This Error Function was proposed in [3]. Using this function, the individuals
that provide overestimated prediction have a better error than those individuals
that underestimate the fire evolution. This function is shown in Eq. 9.

∈4 = 1
2 ·

(
Misses+FA
Hits+Misses + Misses+FA

Hits+FA

)
= 1

2 · (
UCell− Icell

RealCell + UCell− ICell
SimCell

) (9)

Figure 6 depicts the behaviour of this metric. As it can be seen, it shows a
predominance of blue color, which means that the error growths very slowly.
This might suggest that the errors obtained are very good in any case, but in
the reality what happens is that this function practically treated every case,
i.e., overestimated simulations and underestimated ones, in the same way. It is
for a large number of cells where equation BIAS+IR provide lower errors for
overestimated simulations than for underestimate simulations.
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Fig. 6. Colour Map representation of BIAS+IR (Eq. 9)

3.6 Adjustable Incorrectness Aggregation (AIA) (∈5)

As we said, we look for an equation that penalize more the underestimated
simulated areas than the overestimated, this implies that Misses cells are worse
than False Alarms cells. In order to penalize more Misses than False Alarms the
Eq. 10 was proposed

∈5 = α ·FA+β ·Misses = α · (SimCell− ICell)+β · (RealCell− ICell) (10)

with α = 1 and β = 2. This Fitness Function provides very high errors, but,
in our case, this is not a problem, because we only want to compare the errors
among the individuals but not the absolute value of the error.

Fig. 7. Colour Map representation of AIA (Eq. 10)

Figure 7 represents the behaviour of this metric. As it can be observed, this
metric clearly reproduces the behavior that we were expected. It is easy to see
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that Eq. 10 penalizes more the Misses than the False Alarms, which is what
we are looking for.

3.7 AIA with Correctness BIAS (AIA+CB) (∈6)

This equation is close to Eq. 10 but, in this case, the Hits are removed (see
Eq. 11). This implies that when using this error function, negatives values can
be obtained but, as it was stated, we do not care about the value of the error but
on the final ranking that is generated using it. In this case, the best individual
will be the individual with a higher negative value.

∈6 = α · FA + β · Misses − γ · Hits (11)
= α · (SimCell − ICell) + β · (RealCell − ICell) − γ · ICell

Fig. 8. Colour Map representation of AIA+CB (Eq. 11)

As in the previous case, using this metric, the error of the overestimated
predictions increase slower than in the case of underestimated simulations (see
Fig. 8). The problem of Eqs. 10 and 11 is that the values of α, β, and γ are fixed
and they are not the best choice for all forest fires.

3.8 Ponderated FA-MISS Rate (PFA-MR) (∈7)

In order to overcome the restrictions of Eqs. 10, 12 has been proposed.

∈7 = α · FA + β · Misses (12)

with
α =

Hits

Hits + FA
=

ICell

SimCell
(13)

and
β = α +

Hits

Hits + Misses
=

ICell

SimCell
+

ICell

RealCell
(14)
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Then, the Error Function expressed in context of difference between sets
corresponds to Eq. 15.

∈7 =
ICell

SimCell
·(SimCell−ICell)+

(
ICell

SimCell
+

ICell

RealCell

)
·(RealCell−ICell)

(15)

Fig. 9. Color Map representation of PFA-MR (Eq. 11)

In Fig. 9 the behavior of Eq. 15 is shown. As it was expected, it can be
seen that this metric penalizes the Misses above the False Alarms. However,
similarly to the case of BIAS-FAR, it behaves in a way that, in cases with high
values of Misses (combined, in this case, with high values of False Alarms),
it returns low error values. The big orange zone, between 20 and 45 Misses
value, means that the maximum value of the error is achieved within this area.
This implies that a large number of Misses can distort the selection of those
individuals with a better fitting.

Based on the previous analyses and interpretations of the different proposed
Error Functions, in the subsequent section we present an applied test using both
synthetic and real results of a large fire that took place in Greece in 2011.

4 Experimental Study and Results

In order to analyze how the use of different error functions affects the prediction
of the forest fire spread, we have selected as study case one event stored in the
database of EFFIS (European Forest Fire Information System) [5]. In particular,
we have retrieved the information of a past fire that took place in Greece during
the summer season of 2011 in the region of Arkadia. The forest fire began on the
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26th of August, and the total burnt area was 1.761 ha. In Fig. 10, it can be seen
the fire perimeters at three different time instants: t0 (August 26th at 09:43am)
called Perimeter 1, t1 (August 26th at 11:27am) corresponds to Perimeter 2
and t2 (August 27th at 08:49am) is Perimeter 3. The Two-Stage predictions
strategy based on the Genetic Algorithm has been applied where the Perimeter
1 was used as initial perimeter (ignition Perimeter), Perimeter 2 was used in
the Calibration Stage and the perimeter to be predicted is Perimeter 3.

Fig. 10. Fire perimeters corresponding to the Arkadia fire.

Figure 11 shows the forest fire spread obtained using best individual at the
end of the Calibration Stage and the forecast delivered using that individual
for each error function defined in the previous section. As it can be observed,
the fire evolution provided by the best individual at the end of the Calibration
Stage is directly related to the Error Function applied. Using the POD+FAR
and AIA+CB errors functions, the obtained best individuals fits well enough the
bottom of the fire, see Fig. 11(d) and (g), but they overestimate the top very
much. This could be a good result because it could happen that human interven-
tion had stopped the real fire spread in that zone. However, the problem is that
the corresponding predictions have a high overestimation of the burned area.
The worst error formula is the seventh (PFA-MR), because the best individual
obtained underestimates the real fire but the simulation in the Prediction stage
has a very overestimate burned area.

In this case, the prediction that better fits the burned area is the simulation
obtained when BIAS is used in the Calibration Stage (see 11(a)). This function
provides the forecast with the highest number of intersection cells, although in
some regions the burned area is overestimated. As we can see, the Error Function
with the lower number of intersections cells are the AIA equation, Fig. 11(f). The
predictions obtained from BIAS+FAR, BIAS-FAR and BIAS+IR, Fig. 11(b), (c)
and (e) respectively, have less intersection cells than the prediction using BIAS
but, at the same time, it has less False Alarms.



Reducing Data Uncertainty in Forest Fire Spread Prediction 219

Fig. 11. For each error function (a) to (h), the upper figure shows the forest fire spread
obtained using the best individual provided by the Calibration stage and the bottom
figure depicts the final forecast delivered using that individual. The error evaluated for
each case is also included

5 Conclusions

In the last years, the simulation of complex systems have demonstrated to be a
powerful tool to improve the fight against natural hazards. For this reason, an
adequate error function to evaluate the fitness of these models is a key issue. In
this work, we focus on the specific case of wild fires as one of the most worrisome
natural disaster.

In this work, eight equations have been tested in order to evaluate the pre-
diction quality for large forest fires taking into account the factor of overesti-
mated/underestimated predictions compared to the real fire. The results show
that different error functions imply different calibration of the parameters and,
therefore, different forest fire spread predictions are obtained. After applying the
proposed error functions in the Two-Stage methodology, we can conclude that
FAR+POD and AIA+CB functions tend to select individuals that provide very
overestimated predictions. These functions provide the fittest individual in the
Calibration Stage. The problem is, that using the adjusted inputs in these cases,
the obtained predictions present very overestimated burnt areas. The function
that underestimated more the fire perimeter is the sixth Error function (AIA),
using this equation, the obtained prediction is the one with fewer intersection
cells. The PFA-MR function is dismissed due to its lack of reliability.

There are a set of three Error Functions which stand out above others. These
equations are BIAS, BIAS+FAR and BIAS+IR. As a result of our experimental
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study, we can observe that we obtain more favorable results with this set of
functions than with the rest. However, we are not able to determine undoubt-
edly which Equation is best for most of the cases. For this reason, our future
work will be oriented to differentiate large fires of small fires, or fires with differ-
ent meteorological conditions (wind prominence, mainly), in order to determine
which Error function is more suitable, depending on these aspects.
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