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Abstract. In this paper, we firstly study numerical methods for gas flow sim-
ulation in dual-continuum porous media. Typical methods for oil flow simulation
in dual-continuum porous media cannot be used straightforward to this kind of
simulation due to the artificial mass loss caused by the compressibility and the
non-robustness caused by the non-linear source term. To avoid these two prob-
lems, corrected numerical methods are proposed using mass balance equations
and local linearization of the non-linear source term. The improved numerical
methods are successful for the computation of gas flow in the double-porosity
double-permeability porous media. After this improvement, temporal advance-
ment for each time step includes three fractional steps: (i) advance matrix pres-
sure and fracture pressure using the typical computation; (ii) solve the mass
balance equation system for mean pressures; (iii) correct pressures in (i) by mean
pressures in (ii). Numerical results show that mass conservation of gas for the
whole domain is guaranteed while the numerical computation is robust.
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1 Introduction

Fractured reservoirs contain significant proportion of oil and gas reserves all over the
world. This proportion is estimated to be over 20% for oil reserves [1] and probably
higher for gas reserves [2]. The large proportion of petroleum in fractured reservoirs is
a good supplementary to convectional petroleum resource, which cannot solely satisfy
energy demands all over the world for oil and gas. Fractured reservoirs are attracting
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petroleum industry and getting more developments. Despite well understandings and
technological accumulations for conventional oil and gas, technologies for explorations
in fractured reservoirs are relative immature due to the complicated structures and flow
behaviors in fractured reservoirs. Therefore, researches driven by the increasing needs
to develop petroleum in fractured reservoirs have been received growing attentions.
Efforts on modeling and understanding the flow characteristics in fractured reservoirs
have been made continuously [3]. Among the commonly used conceptual models, the
double-porosity double-permeability model is probably widely used in petroleum
engineering due to its good ability to match many types of laboratory or field data and
has been utilized in commercial software [5].

Some numerical simulations [6] and analytical solutions [7, 8] have been proposed
for oil flow in dual-continuum porous media. However, analytical solutions can only be
obtained under much idealized assumptions, such that slight compressibility, infinite
radial flow, homogenization etc., so that their applications are restricted to simplified
cases of oil flow. For gas flow, slight compressibility assumption is not held any more.
The governing equations are nonlinear and cannot be analytically solved. Numerical
computations for gas flow in dual-continuum porous media might be more difficult than
oil flow because the strong nonlinearity induced by compressibility of gas. Therefore, it
is important to study numerical methods for gas flow in fractured reservoirs based on
the dual-continuum model. We also numerically study the effect of the production well
on the gas production in a dual-continuum porous medium with non-uniform fracture
distribution.

2 Governing Equations and Numerical Methods

2.1 Physical Model and Governing Equations

Figure 1 shows the computational domain. The side length of the domain is L. Other
sets can be found in the figure.
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Fig. 1. Physical model
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Darcy’s law in a dual-continuum system is:
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where uM and vM are two components of Darcy velocity of gas flow in matrix, uF and
vF are two components of Darcy velocity of gas flow in fracture, kxxM and kyyM are two
components of matrix permeability, kxxF and kyyF are two components of fracture
permeability, pM and pF are pressures in matrix and fracture respectively. l is the
dynamic viscosity.

Mass conservation equations for gas flow in dual-continuum reservoirs governed
by Darcy’s law are:
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Where /M and /F are porosities of matrix and fracture respectively, kM is the
intrinsic permeability of matrix for the matrix-fracture interaction term. a is the shape
factor of fracture, taking the form proposed by Kazemi et al. [9]:

a ¼ 4
1
l2x

þ 1
l2y

 !
ð5Þ

Where lx and ly are the lengths of fracture spacing in the x and y directions
respectively. Cw is a factor of the well:

Cw ¼ 2pkF
lhxhy ln re=rwð Þ ð6Þ

Where kF is the permeability of fracture at the location of the production well, hx and
hy are side lengths of the grid containing the well, rw and re are well radius and equivalent
radius (re ¼ 0:20788h, h ¼ hx ¼ hy and hx ¼ Dx, hy ¼ Dy for uniform square grid).Cw is
1 for the grid cell containing the well and 0 for other cells. pbh is the bottom hole pressure.

2.2 Numerical Methods

The above governing equations are similar with those of oil flow in dual-continuum
porous media so that we directly apply the numerical methods for oil flow to gas flow at
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first. Finite difference method is used on staggered grid. Temporal advancement is the
semi-implicit scheme to ensure a large time step. Spatial discretization adopts the
second-order central difference scheme. Based on these methods, Eqs. (3) and (4) are
discretized to:

cpMi;j p
nþ 1ð Þ
Mi;j ¼ cexMi;j p
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Miþ 1;j þ cwxMi;j p
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Where cpMi;j ¼ /M þ cwxMi;j þ cexMi;j þ csyMi;j þ cnyMi;j þDt akMi;j
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,

cpFi;j ¼ /F þ cwxFi;j þ cexFi;j þ csyFi;j þ cnyFi;j þDt akMi;j

l p nð Þ
Mi;j,

bMi;j ¼ /Mp
nð Þ
Mi;j þ swxMi;j þ sexMi;j þ ssyMi;j þ snyMi;j,

bFi;j ¼ /Fp
nð Þ
Fi;j þ swxFi;j þ sexFi;j þ ssyFi;j þ snyFi;j. Other coefficients are not shown

here due to the limitation of the paper.

3 Discussions on Numerical Method

The discretized equations are solved using parameters in Table 1. Computational
results show that the well pressure is always negative, which is unphysical, because all
pressures must be higher than Pbh (2 atm). We further find the difference between
initial total mass and computational total mass is increasing (Fig. 2), indicating that gas
mass is lost in the computation. This phenomenon demonstrates that current numerical
methods cannot automatically ensure the mass conservation, although the computation
is based on the mass conservation equation (Eqs. (3) and (4)). Therefore, mass con-
servation law should be utilized to correct current numerical methods.
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Fig. 2. Difference between real mass and computational mass

132 Y. Wang et al.



Table 1. Computational parameters

Parameter Value Unit

/M 0.5 /
/F 0.001 /
pM t0ð Þ 100 atm
pF t0ð Þ 100 atm
pbh 2 atm
kxxF 100 md
kyyF 100 md
kxxM 1 md
kyyM 1 md
kM 1 md
W 16 g/mol
R 8.3147295 J/(mol � K)
T 25 oC
l 11.067 � 10−6 Pa � s
nx 101 /
ny 101 /
L 100 m
lx 20 cm
ly 20 cm
rw 20 cm
Dt 0.24 h

*1 atm = 101325 Pa;
1md = 9.8692327 � 10−16m2; t0
represents initial time.
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Fig. 3. Matrix pressure after 10000 Dt

0 20 40 60 80 100
0

20

40

60

80

100

220000
200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0
-600

x (m)

y (
m
)

Fig. 4. Fracture pressure after 10000 Dt
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Matrix pressure and fracture pressure at 10000 Dt are shown in Figs. 3 and 4
respectively. Their distributions indicate that pressure gradients are correct. Thus, the
incorrect pressures are caused by the unreal mean pressures. They can be corrected by
the real mean pressures as follows:

p nþ 1ð Þ
M

� �
i;j
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� �
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calculated via the numerical methods in Sect. 2.2 so that they are all known variables

for each time step. Thus, the calculation of p nþ 1ð Þ
M

� �
i;j

and p nþ 1ð Þ
F

� �
i;j

turns to the

calculation of unknown prealM and prealF . Gas is continuously flowing from matrix to
fracture and leaving the dual-continuum system from the well. Therefore, mass balance
of matrix in each time step should be:

mM nð Þ � mT nþ 1ð Þ ¼ mM nþ 1ð Þ ð11Þ

Mass balance of fracture in each time step is:

mF nð Þ þmT nþ 1ð Þ � Q nþ 1ð Þ ¼ mF nþ 1ð Þ ð12Þ

Where mM nð Þ and mF nð Þ are the masses of gas in matrix and fracture at the
beginning moment of each time step, mM nþ 1ð Þ and mF nþ 1ð Þ are the masses of gas in
matrix and fracture at the ending moment of each time step, mT nþ 1ð Þ is the mass
leaving matrix (i.e. equivalent to the mass entering fracture) at each time step, Q nþ 1ð Þ is
the mass leaving the fracture via the production well at each time step.

Equations (3) and (4) are mass conservation equations in the unit of Pa/s.
DxDyDt W

RT should be multiplied to all terms of Eqs. (3) and (4) to obtain the masses in
Eqs. (11) and (12):
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The masses of gas can be calculated via equation of state:
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Equations (17) and (18) can be used to directly obtain the values of mM nð Þ and
mF nð Þ in every time step. Equations (13)–(16) are substituted to Eqs. (11) and (12) so
that the mass balance equations become:
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Equations (9) and (10) are substituted to the above two equations to obtain the
following expressions:
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where iW, jW are the grid numbers of the well in the x and y directions respectively.
Equations (21) and (22) are the final expressions of mass balance equations Eqs. (11)

and (12). prealM and prealF can be directly solved combining these two equations. Once the

combined equations (Eqs. (21) and (22)) are solved, prealM and prealF are obtained so that
pressures can be corrected using Eqs. (9) and (10) for every time step.

Well pressure and total mass of gas using the above method considering mass
conservation law are shown in Table 2. Well pressure becomes positive. The mass
difference is always zero to show the mass conservation is satisfied. However, the well
pressure (pwell) in Table 2 has an unphysical inverse. This is due to the diagonal
dominance cannot be satisfied. It is clear in the governing equations that only the well

term dwCwDt p nð Þ
Fi;j � pbh

� �
may cause the diagonal coefficient decreasing. Thus, the

non-linear well term (S ¼ �dwCwpF pF � pbhð Þ) in Eq. (4) should be transformed to the
form of S ¼ Sc þ SppF with Sp � 0 [10]. Sc and Sp can be obtained by the following
Taylor expansion:

Table 2. Well pressure and mass difference after improvement

nt/100 1 2 3 … 10 11 12 13 14

pwell 3.83 3.63 3.47 … 2.80 2.74 2.69 2.65 2.75
mreal − mcomp 0 0 0 … 0 0 0 0 0
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S ¼ S nð Þ þ dS
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Equation (23) is used in the discretization of Eq. (4) instead of S ¼
�dwCwpF pF � pbhð Þ so that Eq. (8) can be modified to be the following form:
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Figure 5 shows that pwell decreases monotonically and is always larger than pbh
after this improvement.

4 Conclusion

From the above discussions, the proposed numerical methods can be summarized as
follows: (1) Governing equations should be discretized into the form of Eqs. (7) and
(24) respectively, using linearization of source term; (2) Mass conservation equation
(Eqs. (21) and (22)) should be established according to the mass balance of the whole
system and solved to obtain real mean pressures of matrix and fracture in every time
step; (3) Matrix pressure and fracture pressure should be corrected using the mean
pressures obtained in (2). Future computations could be made using field data in
engineering.
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