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Abstract. The paper presents a computational framework for assessing quanti‐
tatively the detection capability of structural health monitoring (SHM) systems
for flat plates. The detection capability is quantified using the probability of
detection (POD) metric, developed within the area of nondestructive testing,
which accounts for the variability of the uncertain system parameters and
describes the detection accuracy using confidence bounds. SHM provides the
capability of continuously monitoring the structural integrity using multiple
sensors placed sensibly on the structure. It is important that the SHM can reliably
and accurately detect damage when it occurs. The proposed computational frame‐
work models the structural behavior of flat plate using a spring-mass system with
a lumped mass at each sensor location. The quantity of interest is the degree of
damage of the plate, which is defined in this work as the difference in the strain
field of a damaged plate with respect to the strain field of the healthy plate. The
computational framework determines the POD based on the degree of damage of
the plate for a given loading condition. The proposed approach is demonstrated
on a numerical example of a flat plate with two sides fixed and a load acting normal
to the surface. The POD is estimated for two uncertain parameters, the plate
thickness and the modulus of elasticity of the material, and a damage located in
one spot of the plate. The results show that the POD is close to zero for small
loads, but increases quickly with increasing loads.
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1 Introduction

Structural health monitoring (SHM) is used for the diagnosis and localization of damage
existing in large-scale infrastructures (Laflamme et al. 2010, 2013). The increased
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utilization and insufficient maintenance of these infrastructures usually lead to high risks
associated with their failures (Karbhhari 2009; Harms et al. 2010). Due to the expensive
costs on repairs, timely inspection and maintenance are essential in improving health
and ensuring safety of civil infrastructures (Brownjohn 2007), in turn to lengthen the
sustainability.

Probability of detection (POD) (Sarkar et al. 1998) was developed to provide a
quantitative assessment of the detection capability of nondestructive testing (NDT)
systems (Blitz and Simpson 1996; Mix 2005). POD can be used for various purposes,
for example, it can be used to demonstrate compliance with standard requirements for
inspection qualification, such as “90% POD with 95% confidence”. It can also be used
as input to probabilistic safety assessment (Spitzer et al. 2004; Chapman and Dimitri‐
jevic 1999) and risk-based inspection (RBI) (Zhang et al. 2017; DET NORSKE
VERITAS 2009). Because of these wide applications, POD is selected as an important
metric in many industrial areas to detect defects or flaws, such as cracks inside parts or
structures during manufacturing or for products in service. Traditional POD determi‐
nation relies on experimental information (Generazio 2008; Bozorgnia et al. 2014).
However, experiments can be time-consuming and expensive.

To reduce the experimental information needed for determining the POD, model-
assisted probability of detection (MAPOD) methods have been developed (Thompson
et al. 2009). MAPOD has been successfully applied to various NDT systems and modal‐
ities, such as eddy current simulations (Aldrin, et al. 2009), ultrasonic testing simulations
(Smith et al. 2007), and SHM models (Aldrin et al. 2010, 2011). Due to the economic
benefits of MAPOD in the SHM area, several approaches have been developed, such as
the uniformed approach (Thompson 2008), advanced numerical simulations (Buethe
et al. 2016; Aldrin et al. 2016; Lindgren et al. 2009), and have applied those on guided
wave models (Jarmer and Kessler 2015; Memmolo et al. 2016).

In this paper, a MAPOD framework for SHM of flat plates is proposed. The approach
determines the POD of damage of flat plates based on the loading and the degree of
damage, which depends on the change in strain field of the damaged plate relative to the
healthy one. The structural behavior is modeled with a simple spring-mass system to
estimate the strain field. To demonstrate the effectiveness of the proposed framework,
a flat plate with fixed ends and a normal load, as well as one damaged location is inves‐
tigated. The uncertain parameters used in the study are plate thickness and the material
modulus of elasticity. The results show that the framework can determine the POD as a
function of the load and the degree of damage.

This paper is organized as follows. Next section describes the SHM structural model.
Section 3 outlines the MAPOD framework used in this work. Section 4 presents results
of a numerical example on the plate model. The paper ends with conclusion and plans
of future work.

2 Structural Health Monitoring Model

SHM techniques use arrays of large-area electronics measuring strain to detect local
faults. In Downey et al. (2017), a fully integrated dense sensor network (DSN) for the
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real-time SHM of wind turbine blades was proposed and experimentally validated on a
prototype skin. The sensor, called soft elastomeric capacitor (SEC), is customizable in
shape and size. The SEC’s unique attribute is its capability to measure additive in-plane
strain. It follows that the signal needs to be decomposed into orthogonal directions in
order to obtained unidirectional strain maps. The SEC based sensing skin is illustrated
in Fig. 1, with the sketch Fig. 1a showing an individual SEC, and Fig. 1b showing the
fully integrated DSN system.

Fig. 1. Conceptual layout of a fully integrated SEC-based sensing skin for a wind turbine blade:
(a) SEC with connectors and annotated axis; (b) deployment inside a wind turbine blade (Downey
et al. 2017).

Inspired by the completed experimental work and SEC, a simulation model, devel‐
oped as a matrix of discrete mass and stiffness elements, was constructed linking the
strain to exist condition of the structures. A spring-mass system is used to represent the
system being monitored, with a lumped mass at each sensor location. This model is
based on the stiffness relationship between force vector F and measured displacement
vector U. The additive strain is related to displacement by a transformation matrix D.
Then, a static strain error function was defined to find the stiffness K by taking the
difference between the predicted additive strain and field additive strain measurements.

Mindlin plate theory is used in this work to implement the plate model. In particular,
the plate is divided by rectangular elements with SEC in the center for computational
efficiency. On each element, the displacements in each node parallel to the undeformed
middle plane, u and v, as a distance z from the centroidal axis can be expressed by

u = z𝜃
x
= z

𝜕w

𝜕x
, v = z𝜃

y
= z

𝜕w

𝜕y
, w = w0,

where 𝜃
x
 and 𝜃

y
 are the rotations of the normal to the middle plane with respect to axes

y and x, respectively as illustrated in Fig. 2.
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Fig. 2. Free-body diagram of a flat plate showing the stress distributions.

In this work, a fixed-ends plate is tested under a SHM system, containing 40 sensors,
as shown in Fig. 3. Red regions represent the boundaries, which are fixed, so they are
not considered in calculation. Cells containing blue numbers have sensors set up at
centers, and strain field within the same cell is assumed to be uniform. Black numbers
are computational nodes, where the calculation of strain is made.

30

Fig. 3. SHM system setup. (Color figure online)

The red circle at node #33 shows the location where the load is applied, pointing
normal to the plate. The green cell, #30, will be used to add artificial damage at its center.
Contours of the deflection field contours for a healthy plate are shown in Fig. 4.
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(b)

Fig. 4. Contours of deflection of the healthy plate for a force of 1 N. (Color figure online)

3 MAPOD Framework

POD is essentially the quantification of inspection capability starting from the distribu‐
tions of variability, and describes its accuracy with confidence bounds, also known as
uncertain bounds. In many cases, the final product of a POD curve is the flaw size, a,
for which there is a 90% probability of detection. This flaw size is denoted a90. The 95%
upper confidence bound on a90 is denoted as a90/95. The POD is typically determined
through experiments which are both time-consuming and costly. This motivated the
development of the MAPOD methods with the aim for reducing the number of experi‐
mental sample points by introducing insights physics-based simulations (Thompson
et al. 2009).

The main elements of the proposed MAPOD framework is shown in Fig. 5. The
process starts by defining the random inputs with specific statistical distributions
(Fig. 5a). Next, the random inputs are propagated through the simulation model (Fig. 5b).
For this step of the process, we use latin hypercube sampling (LHS) (Haddad 2013) to
obtain identically independent samples from the input parameter distributions.

In this work, the simulation model is calculated using an analytical model (described
in Sect. 2), to obtain the quantity of interest (Fig. 5c). In this work, the quantity of interest
is the sum of the difference between current strain field and mean of healthy-plate strain
field, in other words we are interested in Σ(S − μS*) where S is the current strain field
and is the mean of the healthy plate strain field.

The stiffness and strain within each cell are assumed to be the same in the structural
model. Therefore, to describe the damage of the cells, we introduce a reduction param‐
eter, α, ranging between 0 and 1. If the reduction parameter is equal to 1 there is no
damage, while a value of 0 indicates total damage. We also introduce a parameter repre‐
senting the degree of damage as γ = 1 – α (which ranges between 0 and 1). Values close
to 1 indicate high degree of damage, and values close to 0 indicate low degree of damage.

The next step in the MAPOD process is to construct the so-called “â vs. a” plot
(Fig. 5d) by drawing from the samples obtained in the last step and using linear
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regression to plot the quantity of interest (Σ(S − μS*)) versus the degree of damage (γ).
With this information, the POD at each degree of damage is determined and the POD
curves are generated (Fig. 5e).

4 Results

In this study, two random input parameters are considered, the thickness of the plate and
the modulus of elasticity. The thickness distribution is assumed to have an uniform
distribution of U(1.3 mm, 1.35 mm) and the modulus of elasticity is assumed to have a
Gaussian distribution of N(7e4, 1e3). The distributions are shown in Fig. 6. The distri‐
butions are sampled one hundred times using latin hypercube sampling (LHS) (see
Fig. 7). The LHS samples are propagated through the structural model with a force of
F = 1 N without any damage. The mean strain field of those runs, μS*, is shown Fig. 8.
This term is used as a reference vector, and POD curves can be generated through
comparing the sum of the difference between this mean strain field and current strain
field with detection threshold of system.

Fig. 5. Overview of model-assisted probability of detection for structural health monitoring: (a)
probabilistic inputs, (b) simulation model, (c) response (strain field in this work), (d) “â vs. a”
plot, (e) POD curves.
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(a)                  (b)

Fig. 6. Statistical distribution on uncertainty parameters: (a) thickness of plate; (b) modulus of
elasticty.

(a)             (b)

Fig. 7. Latin hyper cube (LHS) sampling: (a) thickness of plate; (b) elastic modulus.

(a)                                    (b)

Fig. 8. Mean strain field of healthy plate: (a) F = 1 N; (b) F = 4 N.
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To determine the POD of the SHM system the following computational experiments
are performed using the proposed MAPOD framework (Fig. 5). An artificial damage is
introduced by parametrically varying the degree of damage parameter at cell number 30
(see Fig. 3), γ30, with the values of 0.1, 0.3, 0.5, 0.7, and 0.9. In each case, we take 1,000
LHS samples and propagate them through structural model to obtain the output strain
fields. From those results, we take the sum of the difference between each of those strain
fields and the mean strain field of the healthy plate. With the “â vs. a” plots generated,
we set the detection threshold as 0.85 and determine the POD curves. The process is
repeated for loads, F, ranging from low to medium to high. In this case, we use values
of F of 0.1 N, 1 N, and 4 N.

The results of the MAPOD analysis giving the POD curves for the SHM system as
a function of the load F and the degree of damage γ are presented in Figs. 9, 10 and
11. It can be seen that for low loads, the POD is very low, and the POD increases as the
load increases. In particular, for F = 0.1 N, the POD is close to zero even when the
damage is large. For the higher loads, the SHM system is capable of detecting the
damage. More specifically, for F = 1 N the 50% POD, a50, 90% POD, a90, and 90% POD

Fig. 9. Model responses at different degrees of damage, and linear regression, for various forces.

Fig. 10. POD curves versus different degrees of damage, for various forces.
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with 95% confidence, a90/95, are 0.3078, 0.5581, and 0.5776, respectively, whereas for
F = 4 N, we have those metrics at 0.0619, 0.1157, and 0.1199, respectively. Thus, we
can see that the larger load, the smaller the damage is needed to be detected, which in
turn means that the detection capability is improving with increasing loads.

Fig. 11. POD surface with respect to degree of damage and force added, in 3D space

5 Conclusion

A framework for model-assisted probability of detection of structural health monitoring
(SHM) systems of flat plates is proposed. Provided information on the uncertainties
within the system and the sensor responses, the probability of detecting damage can be
determined. The framework provided a quantitative capability to assess the reliability
of SHM systems for flat plates. This capability is important when designing the SHM
system. For example, answering the question of where to place the sensors. Future work
will consider more complex cases, such as systems with larger numbers of uncertain
parameters and damage locations.
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